
Enforcing Reliable Routing in
Ad-Hoc Networks

BY

Ghada Vaseem

11MICT05

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2013

Enforcing Reliable Routing in Ad-Hoc
Networks

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Information and Communication Technology

BY

Vaseem Ghada

11MICT05

GUIDED BY

Prof. Sharada Valiveti

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY-2013

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Technol-

ogy in Information and Communication Technology at Nirma University and

has not been submitted elsewhere for a degree.

b. Due acknowledgement has been made in the text to all other material used.

Ghada Vaseem

iv

Certificate

This is to certify that the Major Project entitled ” Enforcing Reliable Routing in

Ad-Hoc Networks” submitted by Ghada Vaseem (11MICT05), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Informa-

tion and Communication Technology of Nirma University, Ahmedabad is the record

of work carried out by her under my supervision and guidance. In my opinion, the

submitted work has reached a level required for being accepted for examination. The

results embodied in this major project part-II, to the best of my knowledge, haven’t

been submitted to any other university or institution for award of any degree or

diploma.

Prof. Sharada Valiveti Prof. Gaurang Raval

Guide, Associate Prof. Associate Prof. and PGICT-Coordinator,

Department of C.S.E., Department of C.S.E,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Prof. Sanjay Garg Dr Ketan Kotecha

Professor and Head, Director,

Department of C.S.E., Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

v

Abstract

An Ad Hoc network is the network of self-configuring nodes without having fixed

infrastructure. Each node acts as a system and router. Many of the routing protocols

of Ad Hoc network are designed based on the assumption that every node forwards

every packet but practically many of them act as selfish nodes, they use network and

its service but dont cooperate with other nodes so as to save resources for themselves.

This report discusses the types of availability attack, malicious activity of selfish node,

a Survey of techniques used to detect selfishness attack and some approach to detect

selfishness attack. Here i have implemented the selfishness attack and analyze its

effect on the Packet delivery ratio, latency, throughput. I have also implemented and

designed the credit based algorithm to detect and overcome the activity of selfish

nodes. I have checked the effect of mobility and number of active connection on the

PDR, Throughput and Delay.

vi

Acknowledgements

My deepest thanks to Prof. Sharada Valiveti, Department of Computer Science

and Engineering, Institute of Technology, Nirma University, Ahmedabad the Guide

of the project that I undertook for giving her valuable inputs and correcting various

documents of mine with attention and care. She has taken the pain to go through

the project and make necessary amendments as and when needed.

My deep sense of gratitude to Prof. Gaurang Raval, PGICT-Coordinator of De-

partment of Computer Science and Engineering, Institute of Technology, Nirma Uni-

versity, Ahmedabad for an exceptional support and continual encouragement through-

out part one of the Major project.

I would like to thanks Prof. Sanjay Garg, Hon’ble Head of Department, Insti-

tute of Technology, Nirma University, Ahmedabad for his unmentionable support,

providing basic infrastructure and healthy research environment.

I would like to thanks Dr Ketan Kotecha, Hon’ble Director, Institute of Technol-

ogy, Nirma University, Ahmedabad for his unmentionable support, providing basic

infrastructure and healthy research environment.

I would also thank my Institution, all my faculty members in Department of Com-

puter Science and my colleagues specially Pratiti Mankodi without whom this project

would have been a distant reality. Last, but not the least, no words are enough to

acknowledge constant support and sacrifices of my family members because of whom

I am able to complete the first part of my dissertation work successfully.

- Ghada Vaseem

11MICT05

vii

Abbreviations

AODV . Ad hoc On-Demand Distance Vector Routing Protocol

IDS . Intrusion Detection System

RREQ . Route Request

RREP .Route Reply

RRER . Route Error

MANETs . Mobile Ad-hoc Networks

CORE . Collaborative Reputation

AODV . Adhoc On-demand Distance Vector

CONFIDANT . . . Cooperation Of Nodes and Fairness In Dynamic Ad-hoc Network

OCEAN Observation based Co-operation enforcement in Ad hoc Networks

SORI . Secure and Objective Reputation based Incentive

NS . Network Simulator

PDR . Packet Delivery Ratio

PLR . Packet Loss Rate

CBR . Constant Bit Rate

Contents

Certificate iv

Acknowledgements vi

Abbreviations vii

1 Introduction 1
1.1 Objective of the Work . 1
1.2 Scope of the Work . 1
1.3 Motivation of the Work . 2

2 Literature Survey 3
2.1 Routing in Ad-Hoc Networks . 3

2.1.1 Pro-active (table-driven) Routing Protocols 4
2.1.2 Reactive (on-demand) Routing Protocols 4

2.2 Ad-Hoc On-Demand Distance Vector Routing Protocol (AODV) . . . 4
2.3 Vulnerabilities of Ad Hoc Networks 5
2.4 Types of Attacks . 6
2.5 IDS Schemes for Selfishness Attack 9

3 Study of NS-2 Simulator 14
3.1 Network Simulator-2 . 14

3.1.1 Basic NS-2 program steps . 17
3.2 Example of Simple wireless.tcl file . 17

3.2.1 Generation of Traffic and Movement pattern file 20
3.3 AWK script . 22

3.3.1 Running awk script . 24

4 AODV protocol in detail 25
4.1 Message formats of AODV . 25

4.1.1 Route Request-RREQ . 25
4.1.2 Route Reply-RREP . 28
4.1.3 Hello Messages . 29
4.1.4 Link failure . 30

viii

CONTENTS ix

4.1.5 Forwarding Packets . 30
4.1.6 Sending and Receiving Triggered RREP 30

4.2 Steps to design AODV . 31
4.3 AODV flow . 31
4.4 Description of main implementation files aodv.cc and aodv.h 33

4.4.1 Enabling Hello packets . 33
4.4.2 Timers . 34
4.4.3 General Functions . 35
4.4.4 Functions for Routing Table Management 35
4.4.5 Functions for Neighbors Management 37
4.4.6 Functions for Broadcast ID Management 37
4.4.7 Functions for Packet Transmission Management 38
4.4.8 Functions for Packet Reception Management 38

5 Implementation of Selfishness Attack 40
5.1 Introduction of Selfish Nodes . 40

5.1.1 Analysis of Selfish Nodes . 40
5.1.2 Behaviours of Selfish Nodes 41

5.2 Performance Metrics . 42
5.3 Implementing Selfishness behaviour 42

6 Detection of Selfishness Attack 45
6.1 Selfishness Detection Using Watchdog 45
6.2 Promiscuous mode in AODV protocol 46

7 Implementation of Credit Based System 49
7.1 Algorithm for Credit Based System 49
7.2 Implementation step for Credit using NS2.34 50

8 Results and Analysis 52

9 Conclusion and Future work 58
9.1 Conclusion . 58
9.2 Future work . 59

A List of publications 60

References 61

List of Tables

I Generalized explanation of trace format[1] 23

I Simulation parameters . 52
II Effect of number of Nodes on PDR, Throughput, and Delay. 53
III Effect of number of Active connection on PDR, Throughput, and Delay. 53
IV Effect of Mobility Speeds on PDR, Throughput, and Delay. 54
V Simulation parameters . 55

x

List of Figures

3.1 NS-2 Directory Structure[2] . 15
3.2 Running NS-2 Program[2] . 16

4.1 File Reference of AODV.CC[1] . 33
4.2 File Reference of AODV.H[1] . 34

6.1 watchdog monitoring[3] . 45

8.1 Effect of number of nodes on PDR, Throughput, Delay. 53
8.2 Effect of number of Active Connections on PDR, Throughput, Delay. 54
8.3 Effect of number of Mobility Speeds on PDR, Throughput, Delay. . . 54
8.4 Running AODV.tcl without malicious node. 55
8.5 Running AODV.tcl with malicious node. 55
8.6 Effect of Malicious node on PDR . 56
8.7 Effect of Malicious node on Throughput 56
8.8 Effect of Malicious node on Latency 56
8.9 Effect of Malicious node on Latency 57
8.10 Effect of Malicious node on Throughput 57
8.11 Watchdog Detection output . 57

xi

Chapter 1

Introduction

1.1 Objective of the Work

• To implement and analyze effect of availability attack on Ad hoc networks and

implement detection methods.

• Develop a reliable trust based routing protocol which works in the presence of

Selfish node.

1.2 Scope of the Work

• Analysis of different availability attacks

• Focus on selfishness attack

• Finding Detection methods for this attack

• Defining a reliable routing protocol using this tables

• Analysis

1

CHAPTER 1. INTRODUCTION 2

1.3 Motivation of the Work

• Ad hoc networks are vulnerable for many attacks like Black hole, fabricated

route, Resource consumption and Selfishness. It is highly necessary to secure

the routing of the Ad hoc network, which inspired me to develop detection

methods for Selfishness[3].

Chapter 2

Literature Survey

An Ad Hoc network is the network of self-configuring nodes without having fixed

infrastructure. Each node acts as a system and router. Many of the routing protocols

of Ad Hoc network are designed based on the assumption that every node forwards

every packet but practically many of them act as selfish nodes, they use network and

its service but dont cooperate with other nodes so as to save resources for themselves.

This report discusses the types of availability attack, malicious activity of selfish node,

a Survey of techniques used to detect selfishness attack and some approach to detect

selfishness attack. Here i have implemented the selfishness attack and analyze its

effect on the Packet delivery ratio, latency, throughput. I have also implemented and

designed the credit based algorithm to detect and overcome the activity of selfish

nodes. I have checked the effect of mobility and number of active connection on the

PDR, Throughput and Delay.

2.1 Routing in Ad-Hoc Networks

Using limited recourses, routing helps to find and maintain routes between nodes in

dynamic topology with preferably uni-directional links.

3

CHAPTER 2. LITERATURE SURVEY 4

2.1.1 Pro-active (table-driven) Routing Protocols

This type of protocols maintains fresh lists of destinations and their routes by period-

ically distributing routing tables throughout the network[4]. The main disadvantages

of such algorithms are:

• Respective amount of data for maintenance

• Slow reaction on restructuring and failures

Table-driven protocols are: Destination-Sequenced Distance Vector Routing Proto-

col(DSDV),Wireless Routing Protocol(WRP),Global State Routing(GSR),Hierarchical

State Routing(HSR),Zone-based Hierarchical Link State Routing Protocol(ZHLS)

and Clusterhead Gateway Switch Routing Protocol(CGSR)[4].

2.1.2 Reactive (on-demand) Routing Protocols

This type of protocol creates on demand routes because this type of protocols finds

a route on demand by overflowing the network with route request packets[4]. The

main disadvantages of such algorithms are:

• High lead time in route finding

• Excessive overflowing can lead to network jam

On-demand Protocols are: Ad-Hoc On-Demand Distance Vector Routing (AODV),

Cluster based Routing Protocol (CBRP), Dynamic Source Routing (DSR), Tempo-

rally Ordered Routing Algorithm (TORA)[4].

2.2 Ad-Hoc On-Demand Distance Vector Routing

Protocol (AODV)

The Ad-hoc On-demand Distance Vector (AODV) routing protocol is a routing proto-

col used for dynamic wireless networks where nodes can enter and leave the network[5].

CHAPTER 2. LITERATURE SURVEY 5

The Ad hoc On Demand Distance Vector (AODV) routing algorithm is a routing

protocol designed for dynamic wireless networks[5]. As the name suggest AODV

builds routes between nodes as per the wish of source code. AODV is capable of both

unicast and multicast routing. These routes are maintained by the time it is required

by source node. Additionally, AODV is capable of forming trees to connect multicast

group member with nodes.

The source node transmits a Route Request (RREQ) to its immediate neigh-

bors to find route to a particular destination node. The neighbor replies back with

Route Reply (RREP) if the neighbor has a route to the destination. Otherwise the

neighbors in turn rebroadcast the request. This continues until the RREQ hits the

final destination or a node with a route to the destination. At that point a chain of

RREP messages is sent back and the original source node finally has a route to the

destination.

Advantages:

• Here routes are established on demand and the latest route to the destination

is found based on sequence number.. So the connection setup delay is lower.

Disadvantages:

• Here, if source code sequence number is very old, the intermediate nodes may

follow inconsistent route and the intermediate nodes have higher but not the

latest sequence number leads to stale entries.

• Multiple Route Reply packets in response to a single Route Request packet can

lead to heavy control overhead.

• Periodic beaconing leads to unnecessary bandwidth consumption.

2.3 Vulnerabilities of Ad Hoc Networks

• Nodes of mobile ad hoc networks have limited ranges and because of that it

requires multi hop communication. Ad hoc network runs on an assumption that

CHAPTER 2. LITERATURE SURVEY 6

once the node has promised to transmit the packet, it will not cheat but this

does not holds true when nodes in the networks have contradictory goals. Due

to this, neighbors of intermediate nodes can use the reputation of intermediate

nodes to transmission.

• Node mobility leads to frequent change in network topology

• Use of wireless links into network increases the risk of link attacks

• Relatively poor protection

• Long life of network requires distributed architecture

• Risk of Denial of Service (DoS) attacks due to lack of infrastructure and chances

of link breakage and channel errors due to mobility

• Need of scalability

• Nodes in Ad Hoc Networks have limited services and security provision due to

limited memory and computational power

• Dynamic topology

2.4 Types of Attacks

Attacks on networks come in many varieties and they can be grouped based on dif-

ferent characteristics.

a. Availability Attacks

Availability is the most basic requirement of any network. If the networks con-

nection ports are unreachable, or the data routing and forwarding mechanisms

are out of order, the network would cease to exist[5].

CHAPTER 2. LITERATURE SURVEY 7

• Packet Dropping or Black-hole Attack[5]: In mobile ad hoc networks (MANETs),

nodes usually cooperate and forward each other’s packets in order to en-

able out of range communication. However, in hostile environments, some

nodes may deny to do so, either for saving their own resources or for in-

tentionally disrupting regular communications. This type of misbehavior

is generally referred to as packet dropping attack or black hole attack.

• Fabricated route Attack[5]: Fabrication attacks generate false routing mes-

sages. Such attacks can be difficult to confirm as invalid constructs, espe-

cially in the case of fabricated false messages that claim a neighbor cannot

be contacted.

• Resource Consumption Attack[5]: In this attack, a malicious node inten-

tionally tries to consume the resources (e.g. battery power, bandwidth

etc) of other nodes in the network. The attack can be of various types

like unnecessary route requests, route discovery, control messages, or by

sending stale information.

• Selfishness Attack[5]: Selfish and malicious nodes participate in route dis-

covery stage properly to update their routing table, but as soon as data

forwarding stage begins, they discard data packets.

b. Confidentiality Attacks

Confidentiality describes the need to protect the data roaming in the network

from being understood by unauthorized parties. Essential information is en-

crypted to achieve confidentiality. By which, only the communicating nodes

can analyze and understand it.

• Location Disclosure Attack[5]: A location disclosure attack can reveal

something about the locations of nodes or the structure of the network.

The information gained might reveal which other nodes are adjacent to the

target, or the physical location of a node. Routing messages are sent with

CHAPTER 2. LITERATURE SURVEY 8

inadequate hop-limit values and the addresses of the devices sending the

ICMP error-messages are recorded. In the end, the attacker knows which

nodes are situated on the route to the target node. If the locations of some

of the intermediary nodes are known, one can gain information about the

location of the target.

• Content Disclosure Attack[5]: The content disclosure attack enables a ma-

licious attacker to learn the contents of messages being transmitted.

c. Authenticity Attacks

Authenticity is crucial to keep eavesdroppers out of the network. With many

services applicable in ad hoc networks, it is important to ensure that when

communicating with a certain node, that node is really who/what we expect it

to be (node authentication). Message authentication ensures that the contents

of a message are valid.

d. Integrity Attacks

Integrity of communication data helps to ensure that the information passed on

between nodes has not been altered in any way. Data can be altered by two

ways- intentionally and accidentally (for example through hardware glitches, or

interference in the case of wireless connections).

• False Route Propagation Attack[5]: In this attack, a malicious node adver-

tises a route to a node with a destination sequence number greater than

the authentic value. By doing this, it diverts the traffic towards the at-

tacker because the nodes will select the RREP with the highest destination

sequence number.

• Man-in-the-Middle Attack[5]: In this attack, a malicious node reads and

possibly modifies the messages between two parties. The attacker can

impersonate the receiver with respect to the sender, and the sender with

CHAPTER 2. LITERATURE SURVEY 9

respect to the receiver, without having either of them realize that they

have been attacked.

• Misrouting Attack[5]: In this class of attacks, a malicious node attempts

to send a data packet to the wrong destination. For example, this can be

achieved by forwarding a data packet to the wrong next hop in the route

to the destination or by modifying the final destination address of the data

packet.

e. Non-repudiation

Non-repudiation refers to the capability to guarantee that a party cannot deny

the authenticity of their signature on a document or the sending of a message

that they created.

2.5 IDS Schemes for Selfishness Attack

This IDS Schemes deal with problem of Selfishness on packet forwarding in MANET.

a. End-to-end Acknowledgements[3]:

This mechanism consists of monitoring the reliability of routes by acknowledging

packets in an end-to-end manner, to render the routing protocol reliable. In this,

the destination node gives acknowledgement of receipt of packets by sending a

feedback to the source.

Advantages:

• Helps to avoid sending packets through unreliable routes and it can be

combined with other technique.

Disadvantages:

• Lack of misbehaving node detection.

CHAPTER 2. LITERATURE SURVEY 10

• This technique may detect routes containing misbehaving or malicious

nodes and those which are broken, but without any further information

regarding node causing packet loss.

b. Two-hop Acknowledgements[6]:

This scheme uses asymmetric cryptography.

Advantages:

• Mitigate Watchdog’s problem related to power control technique usage.

c. Watchdog[3]:

It aims to detect misbehaving nodes that don’t forward packets, by monitoring

neighbors in the promiscuous mode. The solution also includes path-rater com-

ponent, that selects route based on the link reliability knowledge.

Advantages:

• It is able to detect misbehaving nodes in many cases, and requires no

overhead when no node misbehaves.

Disadvantages:

• It fails to detect misbehavior in cases of collisions, partial collusion and

power control employment.

• It fails when two successive nodes collude to conceal the misbehavior of

each other.

• It doesn’t control detected misbehaving nodes.

d. PathRater[3]:

To check reliability of each path in the network, each node is preloaded with

path rater. It gives the rate to path by averaging the reputation of each node of

that path. If there are multiple path to reach destination in network, the path

which has highest rate is selected for transmission of packet.

CHAPTER 2. LITERATURE SURVEY 11

e. ABO (activity-based overhearing)[5]:

It is a generalization of Watchdog.

Advantages:

• Node constantly monitors in promiscuous mode the traffic activity of all its

neighbors and oversees the forwarding of each packet whose next forwarder

is also in its neighborhood. This can increase the number of observations

and improve watchdog efficiency.

• It mitigates collusion problem.

f. Probing[7]:

It is a combination of route and node monitoring.This approach consists of

simply incorporating into data packets commands to acknowledge their receipt.

These commands are called probes and intended for selected nodes.Probes are

launched when a route that contains a misbehaving node is detected.

Disadvantages:

• A selfish node could analyze each packet it receives before deciding either

to forward this packet or not. When it gets a probe packet, it would notice

that a probing is under way and would consequently choose to cooperate

and forward packets for a limited time, until the probe is over.

g. Friends and foes[3]:

In this, nodes are permitted to publicly claim that they are unwilling to forward

packets to some nodes.

Each node maintains basically three sets.

1.Set of friends-to which it is willing to provide services.

2.Set of foes-to which it is unwilling to provide services.

3.Set of nodes-known to act as if it is their foe(they don’t provide service packets

for it)named set of Selfish.

Advantages:

CHAPTER 2. LITERATURE SURVEY 12

• It is used to secure control packet from dropping.

Disadvantages:

• Watchdog’s problems remain same.

• More overhead

• Each node only keeps information about its current neighbors and infor-

mation of nodes leaving its neighborhood are begun, a mobile selfish can

easily avoid and would never be detected.

h. Nuglets[3]:

Each node spend nuglets (virtual currency) for utilizing the network services.

Nuglets are represented by counter at nodes and they are managed by temper

restitant hardware module. Only this module can directly perform operation

on this counter.

Nuglets are managed by two model PPM and PTM .

advantages:

• It enforce node to cooperate in forwarding mechanism

i. SPRITE[3]:

In this method the virtual currency is managed by CCS (credit clearance ser-

vices)

No need of temper resistant hardware

j. Ex-Watchdog[5]:

It is implemented with encryption mechanism and maintaining a table that

stores entry of source, destination, sum(Total number of packets+ the current

node sends+ forwards or receives) and path. It’s main feature is ability to

discover malicious nodes which can partition the network by falsely reporting

CHAPTER 2. LITERATURE SURVEY 13

other nodes as misbehaving.

Advantages:

• Solves problem of Watchdog.

Disadvantages:

• Fails when malicious node is on all paths from specific source and destina-

tion.

Chapter 3

Study of NS-2 Simulator

After detailed study of different existing simulators, NS-2 was selected as simulator

for implementation.

3.1 Network Simulator-2

NS-2 stands for Network Simulator version 2. It is a discrete event simulator for

networking research. It is used in the simulation of routing protocol. It works at

packet level. It provides substantial support to simulate bunch of protocols like TCP,

UDP, FTP, HTTP, AODV and DSR.It simulates wired and wireless network. It is

primarily UNIX based. It uses TCL as its scripting language.NS-2 is a standard

experiment environment in research community[2].

• otcl: Object-oriented support

• tclcl: C++ and otcl linkage

• Discrete event scheduler

• Data network components

From Figure, the C++ classes of ns-2 network components or protocols are im-

plemented in the subdirectory ”ns-2”, and the TCL library in the subdirectory of

14

CHAPTER 3. STUDY OF NS-2 SIMULATOR 15

Figure 3.1: NS-2 Directory Structure[2]

”tcl”.

• Network Components

Network components are Node, Link, Queue, etc. Some of them are simple com-

ponents, i.e. they are created from the corresponding C++ classes; others are com-

pound components, which are composed of multiple simple C++ classes, e.g. Links

are composed of Delay (emulating propagation delay) and Queue. In general, in ns-2,

all network components are created, plugged and configured from TCL.

• Event Scheduling

Events are something associated with time. class Event is defined by time, uid,

next, handler, where time is the scheduling time of the event, uid is the unique id

of the event, next is the next scheduling event in the event queue that is a link list,

and handler points to the function to handle the event when the event is scheduled.

Events are put into the event queue sorted by their time, and scheduled one by one by

the event scheduler. Note that class Packet is subclass of class Event as packets are

CHAPTER 3. STUDY OF NS-2 SIMULATOR 16

received and transmitted at some time. And all network components are subclass of

class Handler as they need to handle events such as packets. The event at the head of

the event queue is delivered to its hander of some network object. Then, this network

object may call other network object, and finally some new events are inserted into

the event queue.

Figure 3.2: Running NS-2 Program[2]

CHAPTER 3. STUDY OF NS-2 SIMULATOR 17

3.1.1 Basic NS-2 program steps

• Create a new simulator object

• Create network (physical layer)

• Create link and queue (data-link layer)

• Define routing protocol

• Create transport connection (transport layer)

• Create traffic (application layer)

• Insert errors

3.2 Example of Simple wireless.tcl file

• Components of a mobile node : Link Layer, Interface Queue between LL

and Network Layer, MAC Layer Routing Layer

• Parameters of a mobile node : Type of antenna, Radio propagation model

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(ant) Antenna/OmniAntenna ;# Antenna type

set val(ifq) Queue/DropTail/PriQueue ;# Interface queue type

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802 11 ;# MAC type

set val(rp) AODV ;# ad-hoc routing protocol

set val(nn) 2 ;# number of mobilenodes

Creates new instance of ’Simulator’.

set ns [new Simulator]

Creates new instance of trace file.

CHAPTER 3. STUDY OF NS-2 SIMULATOR 18

set tracefd [open simple.tr w]

$ns trace-all $tracefd

Creates new topology.

set topo [new Topography]

Sets resolution of topology to 500 x 500.

$topo load atgrid 500 500

#Configure nodes $ns node-config

-adhocRouting $val(rp)

-llType $val(ll)

-macType $val(mac)

-ifqType $val(ifq)

-antType $val(ant)

-channelType $val(chan)

-agentTrace ON

-routerTrace ON

-macTrace OFF

-movementTrace OFF

for {set i 0} {$i <$val(nn)} {incr i} {

set node ($i) [$ns node] $node ($i) random-motion 0 }

Random motion is disabled. So provide initial position and movement parameters.

$node (0) set X 5.0

$node (0) set Y 2.0

$node (0) set Z 0.0

$node (1) set X 390.0

$node (1) set Y 385.0

$node (1) set Z 0.0

CHAPTER 3. STUDY OF NS-2 SIMULATOR 19

Node (1) starts to move towards node (0)

$ns at 50.0 ”$node (1) setdest 25.0 20.0 15.0”

$ns at 10.0 ”$node (0) setdest 20.0 18.0 1.0”

Node (1) then starts to move away from node (0)

$ns at 100.0 ”$node (1) setdest 490.0 480.0 15.0”

TCP connections between node (0) and node (1)

set tcp [new Agent/TCP]

$tcp set class 2

set sink [new Agent/TCPSink]

$ns attach-agent $node (0) $tcp

$ns attach-agent $node (1) $sink

$ns connect $tcp $sink

set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 10.0 ”$ftp start”

#Tell nodes when the simulation ends

for {set i 0} {$i <$val(nn)} {incr i} {

$ns at 150.0 ”$node ($i) reset”;}

$ns at 150.0001 ”stop”

$ns at 150.0002 ”puts NS EXITING...””;

$ns halt

proc stop { } {

global ns tracefd

close $tracefd}

CHAPTER 3. STUDY OF NS-2 SIMULATOR 20

3.2.1 Generation of Traffic and Movement pattern file

cbr-test is connection-pattern file and scen-test is movement-pattern file.

For setting the value of cbr-test and scen-test, please write following lines.

set val(cp) and set val(sc).

For loading connection and movement pattern file,please write following lines.

source $val(cp) and source $val(sc)

Defines size of node in nam

for {set i 0} {$i <$val(nn)} {incr i} {

$ns initial node pos $node ($i) 20}

CHAPTER 3. STUDY OF NS-2 SIMULATOR 21

• Traffic pattern file

”cbrgen.tcl” is available at:

/ns2.34/indep-utils/cmu-scen-gen

ns cbrgen.tcl [-type cbr/tcp] [-nn nodes] [-seed seed] [-mc connections] [-rate

rate] >[filenm]

-type : type of connection cbr or tcp

-nn : no. of nodes

-seed : seed value used by random number generator

-mc : no. of connections

-rate : rate at with packets are sent

Example:

ns cbrgen.tcl -type cbr -nn 10 -seed 1.0 -mc 8 -rate 4.0>cbr-test

Generates traffic-pattern and saves in file cbr-test.

• Movement-pattern file

”setdest” utility available at:

ns-2.34/indep-utils/cmu-scen-gen/setdest

In this, there are two versions.

Version 1:

./setdest - v 1 n <nodes>-p <pause time>-M <maxspeed>-t <sim time>-x

<maxx>-y <maxy>

Version 2:

./setdest - v 2 n <nodes>-s <speed type>-m <minspeed>-M <max speed>-t

<sim time>-P <pause type>-p<pause time>-x <maxx>-y <maxy>

Speed type: 1 - uniform speed and 2 - normal speed

Pause type: 1 - constant and 2 uniform

For e.g. ./setdest v 2 -n 50 -s 1 -m 1 -M 20 -t 200 -P 1 -p 0 -x 200 -y 200

>scen-test

CHAPTER 3. STUDY OF NS-2 SIMULATOR 22

3.3 AWK script

AWK is a programming language that is designed for processing text-based data,

either in files or data streams, and was created at Bell Labs in the 1970s. The name

AWK is derived from the family names of its authors - Alfred Aho, Peter Weinberger

and Brian Kernighan[8].

”AWK is a language for processing files of text. A file is treated as a sequence of

records, and by default each line is a record. Each line is broken up into a sequence

of fields, so we can think of the first word in a line as the first field, the second word

as the second field, and so on. An AWK program is of a sequence of pattern-action

statements. AWK reads the input a line at a time. A line is scanned for each pattern

in the program, and for each pattern that matches, the associated action is executed.”

CHAPTER 3. STUDY OF NS-2 SIMULATOR 23

Table I: Generalized explanation of trace format[1]

Column Number What Happened? Values for instance...
1 It shows the oc-

cured event
’s’ SEND, ’r’ RECEIVED, ’D’ DRPPED

2 Time at which the
event occured?

10.000000000

3 Node at which the
event occured?

Node id like 0

4 Layer at which the
event occured?

’AGT’ application layer, ’RTR’ routing layer,
’LL’ link layer, ’IFQ’ Interface queue, ’MAC’
mac layer, ’PHY’ physical layer

5 show flags -
6 shows the sequence

number of packets
0

7 shows the packet
type

’cbr’ CBR packet, ’DSR’ DSR packet, ’RTS’
RTS packet generated by MAC layer, ’ARP’
link layer ARP packet

8 shows size of the
packet

Packet size increases when a packet moves
from an upper layer to a lower layer and de-
creases when a packet moves from a lower
layer to an upper layer

9 [...] It shows information about packet duration,
mac address of destination, the mac address
of source, and the mac type of the packet
body.

10 show flags -
11 [...] It shows information about source node ip :

port number, destination node ip (-1 means
broadcast) : port number, ip header ttl, and
ip of next hop (0 means node 0 or broadcast).

CHAPTER 3. STUDY OF NS-2 SIMULATOR 24

3.3.1 Running awk script

For running awk script please write

awk -f file1.awk file2.tr >out.txt

where file1.awk is command file.

file2.tr is primary input file and

out.txt is an output file.

Chapter 4

AODV protocol in detail

4.1 Message formats of AODV

AODV have four different messages that it uses for route discovery and route main-

tenance. All messages are sent using UDP.

4.1.1 Route Request-RREQ

Type: Type of message.

Reserved: Reserved for future use. Currently sent as 0 and ignored on reception.

Hop count: Number of hops from the source IP address to the node handling the

request.

Broadcast IP address: IP address of the destination for which a route is required.

Destination sequence number: The last sequence number received in the past by

the source for any route towards the destination.

Source IP address: IP address of the node that originated the request.

Source sequence number: Current sequence number for route information gener-

ated by the source of the route request.

• Algorithm of Sending RREQ

RREQ will only be sent by the source nodes (no intermediate node sends

25

CHAPTER 4. AODV PROTOCOL IN DETAIL 26

RREQs), if there does not exist any route for the destination.

IF (no route exists)

check-request buffer for requests already sent for destination

IF (no request sent already)

create a RREQ packet

add (dest addr, broadcast ID) to request buffer

locally broadcast RREQ

set timer for RREP WAIT TIME before rebroadcasting RREQ

increment broadcast ID

ELSE

buffer packet from stream or discard, according to need

ENDIF

ENDIF

• Algorithm of Receiving RREQ

When a node receives a RREQ, it must first of all decide if it already has

processed the RREQ.

The RREQ is discarded if it has been processed. Otherwise the source address

and the broadcast ID from RREQ will be buffered to prevent it from being

processed again.

IF ((source addr, broadcast ID) in request buffer)

discard request - already heard and processed

ELSE

add (source addr, broadcast ID) to request buffer

ENDIF

The next step is to create or update the route entry in the routing table. This

route can be used by the RREP when a route is found.

IF (no route to source)

create a route entry for source addr

CHAPTER 4. AODV PROTOCOL IN DETAIL 27

ELSE IF (source seqno in RREQ > source seqno in route entry)

update route entry for source addr

ELSE IF ((source seqno in RREQ = source seqno in route entry) AND (hop

count in RREQ< hop count in route entry))

update route entry for source sddr

ENDIF

Then , the node must check if it knows the route to the wanted destination. If

the node knows the route, it will unicast a RREP to the source. Otherwise it

will forward the RREQ.

IF (you are destination of RREQ)

create a RREP packet

unicast RREP to source of request

ELSE IF ((have route to destination) AND (destination seqno in route entry

>= destination seqno in RREQ))

create a RREP packet

unicast RREP to source of request

ELSE

forward RREEQ

ENDIF

• Algorithm of Forwarding RREQ

When a node receiving a RREQ that it has not processed yet does not have a

route, it will forward the RREQ.

1. create a RREQ packet

2. copy all fields from received RREQ into new packet

3. incremnet hop count field

4. locally broadcast new RREQ packet

5. discard received RREQ

CHAPTER 4. AODV PROTOCOL IN DETAIL 28

4.1.2 Route Reply-RREP

Type: Type of message.

L: If the L-bit is set the message is a hello message and contains a list of the nodes

neighbors.

Reserved: Reserved for future use. Currently sent as 0 and ignored on reception.

Hop count: Number of hops from the source IP address to the destination IP

address.

Destination IP address: IP address of the destination for which a route is supplied.

Destination sequence number: The destination sequence number associated to

the route.

Lifetime: Time for which nodes receiving the Reply consider the route to be valid.

• Algorithm of Forwarding RREP

When a node receives a RREP that is not addressed for the node, it will set

up forward route by updating the table and forward the RREP back to the

requesting source.

IF (route to requested destination does not exist)

create a route entry for requested destination

ELSE IF (destination seqno in RREP > destination seqno in route entry)

update-route entry for requested destination

ELSE IF ((destination seqno in RREP = destination seqno in route entry) AND

(hop count in RREP < hop count in entry))

update route entry for requested destination

IF (route to requesting source exists)

forward RREP to requesting source

ENDIF

ENDIF

• Algorithm of Receiving RREP

When the originating source receives the RREP it will update the routing table.

CHAPTER 4. AODV PROTOCOL IN DETAIL 29

IF (route to destination does not exist)

create a route entry for destination

ELSE IF (destination seqno in RREP > destination seqno in route entry)

update route entry for destination

ELSE IF ((destination seqno in RREP = destination seqno in route entry) AND

(hop count in RREP < hop count in entry))

update route entry for destination

ELSE

discard RREP

ENDIF

4.1.3 Hello Messages

Hello messages are a special case of Route reply messages. The difference is that a

hello message always supplies the route to itself. This means that the hop count field

is set to 0, the destination address set to the nodes IP address and the destination

sequence number set to the nodes latest sequence number.

• Algorithm of Hello handling

Each node periodically broadcasts a hello message to all neighbors. When a

node receives a hello message it knows that the sending node is a neighbor and

will update the routing table.

IF (route entry for HELLO source exists)

update route entry

IF (destination seqno in HELLO > destination seqno in route entry)

update destination seqno in route entry

ELSE

create route entry for HELLO source

ENDIF

ENDIF

CHAPTER 4. AODV PROTOCOL IN DETAIL 30

4.1.4 Link failure

Link failure messages are also special Route reply messages, but in this case the

destination reflects the route that has broken. The broken route is assigned an infinite

hop count and a sequence number that is increased with one.

4.1.5 Forwarding Packets

AODV uses an active neighbor list to keep track of which neighbors that are using

a particular route. These lists are used when sending triggered route replies. The

neighbor lists are updated every time a packet is forwarded.

IF (route entry to destination exists)

IF (neighbor who forwarded packet to you != active neighbor for route)

add neighbor to active neighbor list for route entry

ENDIF

ENDIF

4.1.6 Sending and Receiving Triggered RREP

• Algorithm of Sending Triggered RREP

Link breakages are detected by either the link layer which notifies the routing

agent or by using hello messages.

If a node has not received hello messages from a node for a certain amount

of time it will assume that the link is down. Every time a link detected as

down,AODV will send a Triggered RREP to inform the affected sources.

FOR (each address in the active neighbor list for a route entry)

create a link failure notice packet

unicast to active neighbor

ENDFOR

• Algorithm of Receiving Triggered RREP

CHAPTER 4. AODV PROTOCOL IN DETAIL 31

Every time a triggered RREP is received informing about a broken link, the

affected route entry must be deleted and neighbors using this entry must be

informed.

IF (have active neighbors for broken route)

send Triggered RREP

ENDIF

delete route entry for broken route.

4.2 Steps to design AODV

The TCL scripts that starts the AODV routing agent and creates all mobile nodes

that are using AODV as routing protocol.

• AODV Agent: Implements all AODV specific parts. Handles RREQ, RREP,

Hello and Triggered RREP.It also has a send buffer that buffer packet while a

route is searched for. The timer that handles timeouts on route entries and the

send buffer are also implemented here.

• Hdr AODV: Defines the message format for all messages that AODV uses.

• Request Buffer: Implements the request buffer that prevents a node to process

the same RREQ multiple times.

• AODV RTable: The routing table that AODV uses. The routing table also

implements the active neighbor list for each route entry.

• AODV Constants: All AODV constants are defined here.

4.3 AODV flow

1. In the TCL script, the user configures AODV as a routing protocol by using the

command,

CHAPTER 4. AODV PROTOCOL IN DETAIL 32

$ns node-config -adhocRouting AODV

the pointer moves to the ”start” and this ”start” moves the pointer to the Command

function of AODV protocol.

2. In the Command function, the user can find two timers in the ”start”

* btimer.handle((Event*) 0);

* htimer.handle((Event*) 0);

3. Let’s consider the case of htimer, the flow points to HelloTimer::handle(Event*)

function and the user can see the following lines:

agent -> sendHello();

double interval = MinHelloInterval + ((MaxHelloInterval - Min-HelloInterval) * Random::uniform());

assert(interval -> = 0);

Scheduler::instance().schedule(this, &intr, interval);

These lines are calling the sendHello() function by setting the appropriate interval of

Hello Packets.

4. Now, the pointer is in AODV::sendHello() function and the user can see

Scheduler::instance().schedule(target , p, 0.0)

which will schedule the packets.

5. In the destination node AODV::recv(Packet*p, Handler*) is called, but actually

this is done after the node is receiving a packet.

6. AODV::recv(Packet*p, Handler*) function then calls the recvAODV(p) function.

7. Hence, the flow goes to the AODV::recvAODV(Packet *p) function, which will

check different packets types and call the respective function.

CHAPTER 4. AODV PROTOCOL IN DETAIL 33

8. For example, flow can go to

case AODVTYPE HELLO:

recvHello(p);

break;

9. Finally, in the recvHello() function, the packet is received.

4.4 Description of main implementation files aodv.cc

and aodv.h

Figure 4.1: File Reference of AODV.CC[1]

4.4.1 Enabling Hello packets

By default, HELLO packets are disabled in the aodv protocol. To enable broadcast-

ing of Hello packets, comment the following two lines present in aodv.cc.

#ifndef AODV LINK LAYER DETECTION

#endif LINK LAYER DETECTION and recompile ns2 by using the following com-

mands on the terminal:

CHAPTER 4. AODV PROTOCOL IN DETAIL 34

Figure 4.2: File Reference of AODV.H[1]

make clean

make

sudo make install

4.4.2 Timers

In ns2, timers are used to delay actions or can also be used for the repetition of a

particular action like broadcasting of Hello packets after fixed time interval.

Following are the timers that are used in AODV protocol implementation:

• Broadcast Timer: This timer is responsible for purging the ID’s of Nodes and

schedule after every BCAST ID SAVE.

CHAPTER 4. AODV PROTOCOL IN DETAIL 35

• Hello Timer: It is responsible for sending of Hello Packets with a delay value

equal to interval, where double interval = MinHelloInterval + ((MaxHelloInt-

erval - MinHelloInterval)* Random::uniform());

• Neighbor Timer: Purges all timed-out neighbor entries and schedule after

every HELLO INTERVAL .

• RouteCache Timer: This timer is responsible for purging the route from the

routing table and schedule after every frquency.

• Local Repair Timer: This timer is responsible for repairing the routes.

4.4.3 General Functions

• void recv(Packet *p, Handler *): At the network layer, the Packet is first

received at the recv() function, sended by the MAC layer in up direction.The

recv() function will check the packet type. If the packet type is AODV type,

it will decrease the TTL and call the recvAODV() function. If the node itself

generating the packet then add the IP header to handlebroadcasting, otherwise

check the routing loop, if routing loop is present then drop the packet, otherwise

forward the packet.

• int command(int, const char *const *): Every object created in NS-2 es-

tablishes an instance procedure, cmd{} as a hook to executing methods through

the compiled shadow object. This procedure cmd invokes the method com-

mand() of the shadow object automatically, passes the arguments to cmd{} as

an argument vector to the command() method.

4.4.4 Functions for Routing Table Management

• void rt resolve(Packet *p): This function first set the transmit failure call-

back and then forward the packet if the route is up else check if I am the source

CHAPTER 4. AODV PROTOCOL IN DETAIL 36

of the packet and then do a Route Request, else if the local repair is in progress

then buffer the packet.If this function founds that it has to forward a packet

for someone else to which it does not have a route then drop the packet and

send error upstream. Now after this, the route errors are broadcasted to the

upstream neighbors.

• void rt update(aodv rt entry *rt, u int32 t seqnum,u int16 t metric,

nsaddr t nexthop,double expire time): This function is responsible for

updating the route.

• void rt down(aodv rt entry *rt): This function first confirms that the route

should not be down more than once and after that down the route.

• void local rt repair(aodv rt entry *rt, Packet *p): This function first

buffer the packet and mark the route as under repair and send a RREQ packet

by calling the sendRequest() function.

• void rt ll failed(Packet *p): Basically this function is invoked whenever the

link layer reports a route failure. This function drops the packet if link layer

is not detected. Otherwise, if link layer is detected, drop the non-data packets

and broadcast packets. If this function founds that the broken link is closer to

the destination than source then It will try to attempt a local repair, else brings

down the route.

• void handle link failure(nsaddr t id): This function is responsible for han-

dling the link failure. It first checks the DestCount, if It is equal to 0 then

remove the lost neighbor. Otherwise, if DestCount > 0 then send the error by

calling sendError() function, else frees the packet up.

• void rt purge(void): This function is responsible for purging the routing table

entries from the routing table. For each route, this function will check whether

the route has expired or not. If It founds that the valid route is expired, It will

CHAPTER 4. AODV PROTOCOL IN DETAIL 37

purge all the packets from send buffer and invalidate the route, by dropping

the packets and tracing DROP RTR NO ROUTE ”NRTE” in the trace file.

If It founds that the valid route is not expired and there are packets in the

sendbuffer waiting, It will forward them. Finally, if It founds that the route is

down and if there is a packet for this destination waiting in the sendbuffer, It

will call sendRequest() function.

• void enque(aodv rt entry *rt, Packet *p): Use to enqueue the packet.

• Packet* deque(aodv rt entry *rt): Use to dequeue the packet.

4.4.5 Functions for Neighbors Management

• void nb insert(nsaddr t id): This function is used to insert the neighbor.

• AODV Neighbor* nb lookup(nsaddr t id): This function is used to lookup

the neighbor.

• void nb delete(nsaddr t id): This function is used to delete the neighbor

and It is called when a neighbor is no longer reachable.

• void nb purge(void): This function purges all timed-out neighbor entries and

It runs every HELLO INTERVAL * 1.5 seconds.

4.4.6 Functions for Broadcast ID Management

• void id insert(nsaddr t id, u int32 t bid): This function is used to insert

the broadcast ID of the node.

• bool id lookup(nsaddr t id, u int32 t bid): This function is used to lookup

the broadcast ID.

• void id purge(void): This function is used to purge the broadcast ID.

CHAPTER 4. AODV PROTOCOL IN DETAIL 38

4.4.7 Functions for Packet Transmission Management

• void forward(aodv rt entry *rt, Packet *p, double delay): This function

is used to forward the packets.

• void sendHello(void): This function is responsible for sending the Hello mes-

sages in a broadcast fashion.

• void sendRequest(nsaddr t dst): This function is used to send Request

messages.

• void sendReply(nsaddr t ipdst, u int32 t hop count,nsaddr t rpdst,

u int32 t rpseq,u int32 t lifetime, double timestamp): This function is

used to send Reply messages.

• void sendError(Packet *p, bool jitter = true): This function is used to

send Error messages.

4.4.8 Functions for Packet Reception Management

• AODV::recvAODV(Packet *p): This function classify the incoming AODV

packets. If the incoming packet is of type RREQ, RREP, RERR, HELLO,It

will call recvRequest(p), recvReply(p), recvError(p), and recvHello(p) functions

respectively.

• AODV::recvRequest(Packet *p): When a node receives a packet of type

REQUEST, it calls this function.

• AODV::recvReply(Packet *p): When a node receives a packet of type RE-

PLY, it calls this function.

• AODV::recvError(Packet *p): This function is called when a node receives

an ERROR message.

CHAPTER 4. AODV PROTOCOL IN DETAIL 39

• AODV::recvHello(Packet *p): This function receives the HELLO packets

and look into the neighbor list, if the node is not present in the neighbor list,

It inserts the neighbor, otherwise if the neighbor is present in the neighbor

list, set its expiry time to: CURRENT TIME + (1.5 * ALLOWED HELLO

LOSS * HELLO INTERVAL), where ALLOWED HELLO LOSS = 3 packets

and HELLO INTERVAL= 1000 ms.

Chapter 5

Implementation of Selfishness

Attack

5.1 Introduction of Selfish Nodes

There are two types of uncooperative nodes[5]:

1. Malicious nodes and

2. selfish nodes.

Selfish nodes use the network but do not cooperate, saving battery life for their own

communications. They do not intend to directly damage other nodes.

Malicious nodes aim at damaging other nodes by causing network outage by parti-

tioning while saving battery life is not a priority.

5.1.1 Analysis of Selfish Nodes

In the type 1 model, the packet forwarding function performed in the selfish node is

disabled for all packets that have a source address or a destination address different

from the current selfish node. However, selfish node participates in the Route Dis-

covery and Route Maintenance phases of the on-demand protocol[5].

In the type 2 model, selfish nodes do not participate in the Route Discovery phase

40

CHAPTER 5. IMPLEMENTATION OF SELFISHNESS ATTACK 41

of the reactive protocol. The impact of this model on the network maintenance and

operation is more significant than the first one. A selfish node of this type uses the

node energy only for its own communications[5].

5.1.2 Behaviours of Selfish Nodes

Selfish node can do the following possible actions in Ad hoc network:

• Turn off its power when it does not have active communications with other

nodes.

• Does not re-broadcast Route Request (RREQ) when it receives a RREQ.

• Re-broadcasts RREQ but does not forward Route Reply (RREP) on reverse

route, therefore the source does not know a route to the destination and it has

to rebroadcast a RREQ.

• Re-broadcasts RREQ, forward RREP on reverse route but does not forward

data packets.

• Does not unicast/broadcast Route Error (RERR) packets when data packets

are received but there is no route.

• Selectively drop data packets.

CHAPTER 5. IMPLEMENTATION OF SELFISHNESS ATTACK 42

5.2 Performance Metrics

Following performance metrics are used for analyzing the effect of selfishness attack

on Ad hoc network.

• Packet Delivery Ratio (PDR): It is defined as the ratio of total number of packets

that have reached the destination node to the total number of packets created

at the source node.The larger this metric, the more efficient MANET will be.

PDR =

∑
Packets received by destination∑

Packet sent by source
∗ 100 (5.1)

• End-to-end Delay: It is defined as time taken for a packet to be transmitted

across network from source to destination. The metric should have lower value

for the efficient network.

End− to− endDelay =
Sumof delays of eachCBRpacket received

number of CBRpacket received
(5.2)

• Packet Loss Rate (PLR): It is defined as the ratio of data packets lost over

number of data packet sent during simulation. The metric should have lower

value for the efficient network.

PLR = 100−
(∑

Packets received by destination∑
Packet sent by source

∗ 100

)
(5.3)

5.3 Implementing Selfishness behaviour

First you need to modify aodv.cc and aodv.h files. In aodv.h after

/* The Routing Agent */

class AODV: public Agent

......

/* * History management */

CHAPTER 5. IMPLEMENTATION OF SELFISHNESS ATTACK 43

double PerHopTime(aodv rt entry *rt);

......

add following line

bool malicious;

With this variable we are trying to define if the node is malicious or not. In aodv.cc

after

/*

Constructor

/

AODV::AODV(nsaddr t id) : Agent(PT AODV),btimer(this), htimer(this), ntimer(this),

rtimer(this), lrtimer(this),

rqueue()

index = id;

seqno = 2;

bid = 1;

...

add following line

malicious = false;

The above code is needed to initialize, and all nodes are initially not malicious. Then

we will write a code to catch which node is set as malicious. In aodv.cc after

if(argc == 2)

Tcl& tcl = Tcl::instance();

if(strncasecmp(argv[1], ”id”, 2) == 0)

tcl.resultf(”% d”, index);

return TCL OK;

add following line

if(strcmp(argv[1], ”hacker”) == 0)

malicious = true;

CHAPTER 5. IMPLEMENTATION OF SELFISHNESS ATTACK 44

return TCL OK;

Now we will do some work in TCL to set a malicious node. Using script in my

post , we add following line to set node 5 as malicious node.

$ns at 0.0 ”[$mnode (5) set ragent] hacker”

You may add this line after

for set i 0 $i < $val(nn) incr i

$ns initial node pos $mnode ($i) 10

...

Alright, we have set malicious node but we did not tell malicious node what to do.

As it is known, rt resolve(Packet *p) function is used to select next hop node when

routing data packets. So, we tell malicious node just drop any packet when it receives.

To do that after

/*

Route Handling Functions

/

void

AODV::rt resolve(Packet *p)

struct hdr cmn *ch = HDR CMN(p);

struct hdr ip *ih = HDR IP(p);

aodv rt entry *rt;

...

We add a few lines

// if I am malicious node

if (malicious == true)

drop(p, DROP RTR ROUTE LOOP);

// DROP RTR ROUTE LOOP is added for no reason. }

Chapter 6

Detection of Selfishness Attack

6.1 Selfishness Detection Using Watchdog

Figure 6.1: watchdog monitoring[3]

As shown in Figure suppose a path exists from node S to node D through inter-

mediate nodes A, B, and C. Here we cant send packet directly from node A to C. To

send packet from S to D, A sends packet to B and then node B sends it to C. This

way packet will reach to destination. Here each node maintains a buffer for recently

sent packets to check the match. If the match is found, the packet is removed from

buffer and forgotten by the watchdog, since it has been forwarded on. If a packet

has remained in the buffer for longer time, the watchdog considers it as failure and

increments a failure counter for the node responsible. If the tally exceeds a certain

threshold bandwidth, it means that the node is selfish and about it the notification

is sent to source node. The problem with watchdog are power limitation, collision at

receiver, ambiguous collision and partial dropping.

45

CHAPTER 6. DETECTION OF SELFISHNESS ATTACK 46

6.2 Promiscuous mode in AODV protocol

1. Modify aodv /aodv.h

#include < mac.h >

class AODV: public Tap, public Agent

{

public:

void tap(const Packet *p);

potected:

Mac *mac ; }

2. Modify aodv /aodv.cc

int AODV::command(int argc, const char*const* argv)

{

printf(”..........Other code of AODV command class.......”);

else if(argc == 3)

{

......

else if (strcmp(argv[1], ”install-tap”) == 0)

{ mac = (Mac*)TclObject::lookup(argv[2]);

if (mac == 0) return TCL ERROR;

mac → installTap(this);

return TCL OK;

}

}

return Agent::command(argc, argv);

}

void AODV::tap(const Packet *p)

{

CHAPTER 6. DETECTION OF SELFISHNESS ATTACK 47

// Your code goes here......

printf(”Our AODV is in promiscuous mode, ”);

}

3. Modify tcl/lib/ns-mobilenode.tcl

Node/MobileNode instproc add-target agent port

$self instvar dmux imep toraDebug mac

Special processing for AODV

set aodvonly [string first ”AODV” [$agent info class]]

if {$aodvonly!= -1} {

$agent if-queue [$self set ifq (0)] ; # ifq between LL and MAC

$agent install-tap $mac (0)

}

Detection of this attack is triggered whenever a node forwards routing traffic to its

neighbouring nodes. A structure called SELFISH Node was developed to hold infor-

mation necessary to monitor the neighbouring nodes that are suspected for malicious

behaviour.

The SELFISH Node data structure holds the following information:

• node id: the IP address of the node to which the routing traffic was forwarded.

• send reply: a boolean value that becomes true whenever the offending node

replies to a RREQ packet that was forwarded to it.

• pre alarm: a boolean value that becomes true if the node does not respond as

expected to the forwarded traffic.

• alarm: a boolean value that becomes true whenever we decide that the offending

node performs the dropping routing packets attack.

CHAPTER 6. DETECTION OF SELFISHNESS ATTACK 48

• time: a double variable that keeps the time where the offending node was added

in the data structure.

Hence, whenever a node forwards routing traffic for which a neighbouring node is not

the destination it adds each neighbouring node to the data structure and waits to

observe their behaviour. Then in the tap method if it overhears that a neighbouring

node has replied to the forwarded RREQ, it means that it has acted appropriately

and it can be removed from the monitoring list. If this is not the case and the

packet was a RREP then the offending node has to forward the packet. If it fails

to do so within the pre alarm time threshold time period, which was determined by

experiments to be 0.01 seconds, the pre alarm state becomes true. This remains in

the pre alarm state for 0.45 seconds which is the alarm threshold time period. If the

offending node fails to forward the routing packet within this time limit, it moves to

the Alarm state. In case of an alarm the legitimate node marks this node as malicious

and stops forwarding traffic to it for 2 seconds and it also sends a RERR message to

all its upstream neighbours to inform them that all the routes that include this node

are not valid.

Chapter 7

Implementation of Credit Based

System

7.1 Algorithm for Credit Based System

1. Initialize all the node with some amount of Virtual money (Credit) and set the

packet drop index as zero.

2. During Packet Forwarding Mechanism if node is forwarding the packet successfully

than increase the Virtual money by two unit else Drop() function will be called and

reduce the virtual money by two unit and increase the drop index.

3. Now set the Minimum Thresold value of credit and than check following condition.

if (Creditis <min Thresold)

{

Discard the node from Route for this give them runtime mobility using Setdest()

function

} OR

if(Drop[index] > Thresold)

{ Discard the node from Route for this give them runtime mobility using Setdest()

function }

49

CHAPTER 7. IMPLEMENTATION OF CREDIT BASED SYSTEM 50

7.2 Implementation step for Credit using NS2.34

step-1. In NS2.34/common/agent.h file add the following line

Class Agent:public Connector{

public:

inline void set credit(int credit)

{ credit =credit;

}

protected:

int credit ;

step-2. In NS2.34/common/agent.cc file add the following line

void Agent::initpkt(packet *p) const

{

ch→set Credit()=Credit ; step-3. In NS2.34/common/packet.h file add the following

line

Struct hdr cmn{

int Credit ;

inline int& set Credit()

{

return(Credit);

}

step-4. In NS2.34/common/packet.cc file add the following line

void export offset()

{

field offset(”Credit ”,OFFSET(hdr cmn,credit));

}

step-5. In NS2.34/common/cbr traffic.cc file add the following line

protected:

CHAPTER 7. IMPLEMENTATION OF CREDIT BASED SYSTEM 51

int credit ;

CBR Traffic::CBR Traffic():seqno (0)

{ bind(”Credit ”,&Credit);

} void CBR Traffic::init()

{

agent →set credit(credit);

}

step-6 NS2.34/tcl/lib/ns-default.tcl add the following line

Application/Traffic/CBR set Credit 100;

step-7 In NS-2.34/aodv/adov.cc/forward() add the following line

int t=1;

int credit[5000];

int counter=0;

static int d[5000]; void forward()

{

if (t==1 && counter==0) {

credit[index]=ch→set credit();

t=0;

counter=1;

}

credit[index]=credit[index]+2;

printf(”credit after increment=%d of node=%d,credit[index],index);

if(ih→ttl =0) {

d[index]=d[index]+1;

drop(p,DROP RTR TTL);

if(d[index]> 25)

{

printf(”index=%d” is malicious,index); }

Chapter 8

Results and Analysis

For simulation, we have used ns-2.34 simulator. Here Table-I shows parameter for

simulating original AODV with various number of nodes, Figure 8.1 shows Compari-

sion of PDR, Throughput and Delay with respect to various number of nodes.Table-

III and Figure-8.2 shows the effect of Active connection on PDR,Throughput and

Delay. Table-IV and Figure-8.3 shows the mobility speed on PDR,Throughput and

Delay.Table-V shows the parameter for simulating AODV with various number of

Selfish nodes. Figure-8.4 shows running AODV.tcl without any selfish nodes and

Figure 8.5 shows running AODV.tc with Selfish nodes. Figure 8.6, 8.7, 8.8 shows the

effect of Selfish nodes on PDR, Throughput and Delay respectively.Figure 8.11 shows

watchdog detection output.

Table I: Simulation parameters
Property Value
Nodes 10,20,30,40,50,60,70
Simulation time 500Sec
Mobility model Random way point
Coverage area 750m*750m
Maximum speed 20 m/s
Pause time 1.0 Sec
Traffic type Constant Bit Rate(CBR/UDP)
Send Rate 10 packets/sec
Packet size 512 bytes

52

CHAPTER 8. RESULTS AND ANALYSIS 53

Table II: Effect of number of Nodes on PDR, Throughput, and Delay.
Nodes PDR(%) Throughput (kbps) End-to-end Delay(ms)
10 80.24 258.56 252.13
20 76.69 180.46 308.15
30 71.36 162.33 405.26
40 65.68 196 588.13
50 58.44 160.23 700.65
60 53.4 143.55 865.16
70 45.46 110.5 987.65

Figure 8.1: Effect of number of nodes on PDR, Throughput, Delay.

Table III: Effect of number of Active connection on PDR, Throughput, and Delay.
Active Connections PDR(%) Throughput (kbps) End-to-end Delay(ms)
5 96.99 74.82 134.947
10 88.68 139.08 170.311
15 73.40 170.29 421.946
20 66.60 201.4 493.753
25 63.80 210.97 495.493

CHAPTER 8. RESULTS AND ANALYSIS 54

Figure 8.2: Effect of number of Active Connections on PDR, Throughput, De-
lay.

Table IV: Effect of Mobility Speeds on PDR, Throughput, and Delay.
Mobility
speed(m/s)

PDR(%) Throughput (kbps) End-to-end Delay(ms)

8 82.86 192.26 178.534
12 81.92 190.09 335.166
16 72.35 167.91 471.146
20 70.00 162.53 475.016
25 69.87 161.53 480.120

Figure 8.3: Effect of number of Mobility Speeds on PDR, Throughput, Delay.

CHAPTER 8. RESULTS AND ANALYSIS 55

Table V: Simulation parameters
Property Value
Nodes 25
Simulation time 600Sec
Mobility model Random way point
Coverage area 1000m*1000m
Maximum speed 10 m/s
Pause time 2.0 Sec
Traffic type Constant Bit Rate(CBR/UDP)
Send Rate 10 packets/sec
Packet size 512 bytes

Figure 8.4: Running AODV.tcl without malicious node.

Figure 8.5: Running AODV.tcl with malicious node.

CHAPTER 8. RESULTS AND ANALYSIS 56

Figure 8.6: Effect of Malicious node on PDR

Figure 8.7: Effect of Malicious node on Throughput

Figure 8.8: Effect of Malicious node on Latency

CHAPTER 8. RESULTS AND ANALYSIS 57

Figure 8.9: Effect of Malicious node on Latency

Figure 8.10: Effect of Malicious node on Throughput

Figure 8.11: Watchdog Detection output

Chapter 9

Conclusion and Future work

9.1 Conclusion

Ad-hoc networks are vulnerable due to absence of infrastructure, limited physical

security, restricted power supply, dynamically changing network topology, lack of

centralized monitoring and mobility. In this thesis, effect of the selfishness attack

in an AODV network is analyzed. For this purpose, AODV protocol is implemented

and then selfish node is appended in that to analyze its effectiveness. AODV protocol

with various number of selfish node is simulated, where PDR, Throughput and Delay

is reduced. For detection of the selfishness attack we have used Watchdog module.

After implementing the IDS, to make more reliable routing credit based approach

is implemented. I also tested the effect of number of nodes, mobility speeds and

number of active connection on PDR, Throughput and Delay. PDR and Throughput

are increased and Delay is reduced with increasing the number of nodes. PDR and

Delay are increased and Throughput is reduced with increasing the number of active

connections. PDR and Throughput are reduced and Delay is increased with increasing

the number of nodes.

58

CHAPTER 9. CONCLUSION AND FUTURE WORK 59

9.2 Future work

• Selfish node detection can be done using machine learning concepts.

• In this, we have proposed solution for the selfishness problem. Here, we have

implemented selfishness attack, watchdog module and credit based system only

for 25 number of nodes and four number of nodes, we may take more number

of nodes and test its effect on perfomance metrics.

• Apply the selfishness attack, watchdog module and credit based system into

other applications and other routing protocols of the MANET (e.g., DSR and

DSDV).

• We also plan to investigate more attack scenarios in MANETs, not only at the

routing layer, but also at other layers.

• We also plan to developed centralized IDS, genuine and ungenuine identification

of alert for attacker, reduce and combine the alert log using clustering techniques

• We have used UDP connection as traffic type. Instead of that TCP connection

can be used as traffic type.

Appendix A

List of publications

a. Vaseem Ghada, Sharada Valiveti, ”Secure Routing using Detection Method in

Wireless Ad Hoc network”, International Journal for Scientific Research and

Development (IJSRD),Volume-I, Issue-II, May-2013 (ISSN no: 2321-0613).

60

References

[1] S.Dokurer,”Simulation od blackhole attack in wireless ad-hoc net-
works”,2006

[2] J.Wang,”ns-2 tutorial”,2004

[3] Dipali Koshti, Supriya Kamoji, ”Comparative Study of Techniques used
for Detection of Selfish Nodes in MANET”, IJCSE Vol-1 Issues-4,Sept-
2011

[4] D.S.Nishant Chaurasia, Sanjay Sharma,”Review study of routing proto-
cols and versatile challanges of manet”,vol.1

[5] Niyati Shah, Sharada Valiveti, Intrusion Detection System for the Avail-
ability Attacks in Ad-Hoc Networks, IJECSE,2011.

[6] Sangheethaa Sukumaran, Venkatesh. J, Arunkorath, ”A survey of
method to mitigate selfishness in MANET”, IJICT Vol-1 No.2, June
2011l

[7] Charlie Obimbo, Liliana Maria Arboleda-cobo, ”An Intrusion Detection
System for MANET” , CISME, VOl-2 No. 3,2012

[8] Mohit p. tahiliani-blogspot”, tech-report

[9] A.P. Yih-chun Hu, David B. Johnson, Sead: Secure efficient distance
vector routing for mobile wireless Ad Hoc, networks2003.

[10] L.Abusalah,A.Khokhar,G.BenBrahim,W.ElHajj, ”TARP:Trust Aware
Routing Protocol”, ACM July-2006.

[11] A novel approach for selfish node detection in MANETs: proposel and
petri nets based modeling,8th IEEE internation conference on telecom-
munication,2005

[12] Charlie Obimbo, Liliana Maria Arboleda-cobo, ”An Intrusion Detection
System for MANET” , CISME, VOl-2 No. 3,2012

61

REFERENCES 62

[13] Michiardi,Molva,CORE:collaborative reputation mechanism to enforce
node cooperation in MANET,6th IFIP communication and multimedia
security cinference,2002.

[14] Aleksandar Lazarevic, Vipin Kumar, Jaideep Srivastava, ”INTRUSION
DETECTION: A SURVEY”, Computer Science Department, University
of Minnesota

[15] Niyati Shah,”Trust based Routing using IDS in Ad-hoc networks, Thesis
report, May-2012

[16] Preeti Nagrath,Ashish Kumar,Shikha Bhardwaj, ”Authenticated
Routing Protocol based on Reputation System For Adhoc Net-
works”,International Journal on Computer Science and Engineer-
ing(IJCSE),Vol.2: 3095-3099,2010

[17] S.Tamilarasan,Dr.Aramudan, ”A performance and Analysis of Misbe-
having node in MANET using IDS”,International Journal on Computer
Science and Network Security(IJCSNS),Vol.11, May 2011

[18] SADIA HAMID KAZI, ”Congestion control inMobile Ad-Hoc Net-
works(MANETs)”, BRAC UNIVERSITY, April 2011

[19] Ioanna Stamouli, ”Real-time Intrusion Detection for Ad hoc Networks”,
University of Dublin, September 2003

	Certificate
	Acknowledgements
	Abbreviations
	Introduction
	Objective of the Work
	Scope of the Work
	Motivation of the Work

	Literature Survey
	Routing in Ad-Hoc Networks
	Pro-active (table-driven) Routing Protocols
	Reactive (on-demand) Routing Protocols

	Ad-Hoc On-Demand Distance Vector Routing Protocol (AODV)
	Vulnerabilities of Ad Hoc Networks
	Types of Attacks
	IDS Schemes for Selfishness Attack

	Study of NS-2 Simulator
	Network Simulator-2
	Basic NS-2 program steps

	Example of Simple wireless.tcl file
	Generation of Traffic and Movement pattern file

	AWK script
	Running awk script

	AODV protocol in detail
	Message formats of AODV
	Route Request-RREQ
	Route Reply-RREP
	Hello Messages
	Link failure
	Forwarding Packets
	Sending and Receiving Triggered RREP

	Steps to design AODV
	AODV flow
	Description of main implementation files aodv.cc and aodv.h
	Enabling Hello packets
	Timers
	General Functions
	Functions for Routing Table Management
	Functions for Neighbors Management
	Functions for Broadcast ID Management
	Functions for Packet Transmission Management
	Functions for Packet Reception Management

	Implementation of Selfishness Attack
	Introduction of Selfish Nodes
	Analysis of Selfish Nodes
	Behaviours of Selfish Nodes

	Performance Metrics
	Implementing Selfishness behaviour

	Detection of Selfishness Attack
	Selfishness Detection Using Watchdog
	Promiscuous mode in AODV protocol

	Implementation of Credit Based System
	Algorithm for Credit Based System
	Implementation step for Credit using NS2.34

	Results and Analysis
	Conclusion and Future work
	Conclusion
	Future work

	List of publications
	References

