
Automatic Document Classification

By

Jignesh Jani

11MICT19

Guided By

Prof. Vijay Ukani

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2013

Automatic Document Classification

Major Project (Part-II)

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Information and Communication Technology

By

Jignesh Jani

(11MICT19)

Guided By

Prof. Vijay Ukani

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

AHMEDABAD-382481

MAY 2013

Certificate

This is to certify that the Major Project(Part-II) entitled “Automatic Document Classi-

fication” submitted by Jignesh Jani (11MICT19), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Information and Communication

Technology of Nirma University, Ahmedabad is the record of work carried out by him

under my supervision and guidance. In my opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this major

project part-I, to the best of my knowledge, haven’t been submitted to any other univer-

sity or institution for award of any degree or diploma.

Prof. Vijay Ukani Dr. Sanjay Garg

Guide, Associate Professor, Professor and Head,

Department of C.S.E., Department of C.S.E,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad. Nirma University, Ahmedabad.

Prof. Gaurang Raval Dr. Ketan Kotecha

Associate Professor, Director,

PG-Coordinator, ICT, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad

Nirma University, Ahmedabad.

iii

Undertaking for Originality of work

I, Jignesh S. Jani, Roll. NO. 11MICT19, give undertaking that the major project entitled

”Automatic Document Classification” submitted by me, towards the partial fulfillment

of the requirements for the degree of Master of Technology in Information and Commu-

nication of Nirma University, Ahmedabad, is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made. I understand that in the

event of any similarity found subsequently with any published work or any dissertation

work elsewhere; it will result in severe disciplinary action.

Signature of Student

Date: Place:

Endorsed By

Signature of Guide

iv

Abstract

Enormous amount of documents are generated everyday life. There is always a need

to retrieve the documents over any medium. This has come up with the solution of

classifying the documents with appropriate label. A lot of research has been done on

this topic to classify them using different classifiers. The classifier used in this research is

Nave Bayes classifier, due to its simplicity. The Nave Bayes classifier classifies a document

only under one class no matter by what fraction posterior probabilities of other classes

are smaller. By considering the fraction by which other associated terms are smaller we

rank a document more into a specific context but also little less into another context.

The Apriori algorithm is used to find the frequent patterns out of the document which

will give the context of the document and will help in labeling the document with more

appropriate classification tag. The proposed approach is to classify the document with

Nave Bayes classifier at first level and then finding associated terms from documents and

comparing them with the already mined frequent patterns from the train dataset. This

two level classification gives more precise label to the document.

v

Acknowledgements

My deepest thanks to Prof. Gaurang Raval, Associate Professor, PG-Coordinator(ICT),

Department of Computer Science and Engineering, Institute of Technology, Nirma Uni-

versity, Ahmedabad. I want to give my sincere thanks to my guide Prof. Vijay Ukani,

under whom I have done this project. Though he knows about my internship outside

college, he always has guided me whenever needed even when I reply late regarding any

issue I faced. He has taken the pain to go through the project and make necessary

amendments as and when needed. I thank HOD Dr. Sanjay Garg, for his support and

providing facilities at the department level.

I would like to thank Dr.Ketan Kotecha, Hon’ble Director, Institute of Technology,

Nirma University, Ahmedabad for his unmentionable support, providing basic infrastruc-

ture and healthy research environment.

I would also thank my Institution, all my faculty members in Department of Computer

Science.

Last, but not the least, I thank my parents and my wife for constant support, because of

which I could complete my dissertation work successfully.

-Jignesh Jani

11MICT19

vi

Contents

Certificate iii

Undertaking for Originality of Work iv

Abstract v

Acknowledgements vi

List of Tables ix

List of Figures x

1 Introduction 1

2 Literature Survey 3
2.1 Document Classification . 3

2.1.1 pre-processing . 3
2.1.2 Feature Construction . 4

2.2 Term Frequency Inverse Document Frequency 4
2.3 Dealing with bunch of letters and with whole sentences 5
2.4 Precision and Recall . 7
2.5 Näıve Bayes Classifier for document classification 7
2.6 Flat Classification and Hierarchical Classification 8

2.6.1 Comparison of Flat classification with Hierarchical Classification . 9
2.7 Finding Frequent Patterns to be more specific in classification 10

3 Proposed Approach 11
3.1 Problem with the existing approach . 11
3.2 Proposed Approach: Näıve Bayes with Apriori Algorithm 11

4 Implementation 13
4.1 Tools . 13
4.2 Integration of Apriori with Näıve Bayes 13
4.3 Classification through MALLET . 13
4.4 Technique . 14
4.5 Näıve Bayes Trainer . 17

vii

5 Simulation and Result Analysis 18
5.1 Document having multiple contexts . 18
5.2 Extraction ans listing of Associated terms with their Context 19
5.3 Results . 20

6 Conclusion and Future Work 23

viii

List of Tables

2.1 Classification Accuracy of Different Classifiers 8
2.2 Time Taken to build different Classifiers 8

5.1 Associated terms with their context . 20
5.2 Results of some test documents . 22

ix

List of Figures

5.1 Pictorial Representation of Document having multiple context 18
5.2 Associated Attributes using CF’s subset Evaluator 19
5.3 Näıve Bayes classifier with training time 0.04 seconds 20
5.4 DT Classifier with training time 0.17 seconds 21
5.5 True positive documents out of 60 documents 21
5.6 Time taken to train three classifiers . 22

x

Chapter 1

Introduction

Wide variety and vast number of documents are generated if we look at one big organiza-

tion or in normal work culture. These Documents belong to some domains or categories.

Classification is used to label the documents with this categories so user can understand

the concept behind it and can understand what information it stores, either critical, se-

cure or normal. When these categories are not known to normal users it becomes difficult

task to label them. The reason behind choosing this topic is to lessen the burden on the

user to judge the classification of the document and classify the unlabeled documents in

a mass.

So many research has been done and is still going on for this topic but the approach

followed in this report is not classifying the document once and labeling it with the con-

cluded classification. But to have more specific classification down the hierarchy, each

document will be treated twice with two different algorithms. If we consider the hierarchy

of the labels then we may have numerous labels for each document. e.g. If we have a

document with the data regarding Sachin Tendulkar, it may be classified under sports.

But down the hierarchy it comes under Cricket. For this kind of classification we will

include the TF and IDF finding in the Apriori algorithm itself.

Näıve Bayes classifier gives the probabilistic output[13] i.e. It lists the classification

tags with the probability and the tag with the highest probability is suggested by Näıve

Bayes classifier. But only by calculating the occurrence of terms in the document, doc-

uments can not be classified perfectly. The Apriori algorithm is used to resolve this

1

issue. The frequent patterns are found from the document and they are listed under the

classification tag. This will give more specific classification.

2

Chapter 2

Literature Survey

2.1 Document Classification

Automatic classification techniques use algorithms that learn from human classifications,

so they can only do as well as the human training data provided. Different algorithms

can learn different types of patterns in the data. There are different Machine Learning

algorithms that have been used. They include Neural Networks, Näıve Bayes, Support

Vector Machine and k-nearest Neighbors. Each of these methods has their advantages

and limitations on classification performance and scalability[?]. The choice of algorithm

will depend on the application, and the amount of data to be used. We can distinguish

two phases in automatic document classification, the learning phase and the subsequent

classification phase. In the learning phase users define categories in which they are

interested by giving sample documents (training examples) for each of these categories.

The main pre-processing task is removal of stop words and applying stemmer algorithm

on the document[?]. Then the feature construction approach is followed.

2.1.1 pre-processing

This algorithm is mainly based on the Porter stemming algorithm. Removing suffixes

by automatic means is an operation, which is especially useful in the field of information

retrieval. Terms with a common stem will usually have similar meanings. The algo-

rithm defines that any word or part of a word may be represented by the single form

[C](VC)m[V]. Where C a list of consonant, V a list of vowel and the square brackets

denotes arbitrary presence of their contents. Using (VC)m to denote VC repeated m

3

times. The rules for removing a suffix will be given in the form

(condition)S1→ S2 (2.1)

This means that if a word ends with the suffix S1, and the stem before S1 satisfies the

given condition, S1 is replaced by S2. Therefore REPLACEMENT will be replaced with

REPLACE.

2.1.2 Feature Construction

Almost all existing learning and classification techniques require vectors of (real) numbers

as input. They cannot work directly on documents. Therefore, vector representations

of documents have to be constructed in order to make these methods applicable. The

process of constructing these vector representations is called feature (vector) construction.

We compared two kinds of features, viz. letter 5-gram features and features constructed

by a morphological analysis. The number of unique features in the document collection

determines the dimension of the feature vector representations for the documents and

the position of each feature in an alphabetically ordered list of all features determines

its position in the feature vector representations. A feature vector representation for a

document is simply a vector of weights for all the features.

2.2 Term Frequency Inverse Document Frequency

Term Frequency is defined as the number of occurrence of the term in the document[?].

The more the number of occurrence the more the document closer to one category. Term

frequency is known to improve recall in information retrieval, but does not always im-

prove precision. Because frequent terms tend to appear in many texts, such terms have

little discriminative power. In order to remedy this problem, terms with high frequency

are usually removed from the term set. Finding optimal thresholds is the main concern in

this method. Inverse Document Frequency is defined as the occurrence of a term across

the set of documents, or the ratio of term occurring in documents and total no of docu-

ments in the set. This IDF concept is used since along with the highly occurring term,

rare occurrence of a word is also helpful. The rare the word is more easy is the task to

classify. Since IDF represents term specificity, it is expected to improve the precision.

Solution proposed to combine term frequency and IDF to weight terms, and showed that

4

the product of them gave better performance. The factors TF(d,t) and IDF(t) would

contribute to improve the recall and the precision respectively. Weighted IDF is an ex-

tended version of IDF[5]. A drawback of IDF is that all the texts that contain a certain

term are treated equally. That is, IDF does not distinguish between one occurrence of

a term in a text and many. IDF assumes that the importance of a term is inversely

proportional to the number of texts that contain the term. We have to weight this factor

by the frequency of each term. Unlike IDF, WIDF differs for each text.

Term Frequency is defined as

TF (ti, d) = count(ti)/Wd (2.2)

where Wd is number of words in document d.

Inverse Document Frequency is defined as

IDF (Ti) = log(|D|/DF (Ti)) (2.3)

The document frequency DF(Ti) is the number of documents in which term Ti occurs at

least once. —D— is the total number of documents.

Therefore TFIDF can be written as

TFIDCF (Ti, d) = TF (Ti, d) ∗ IDF (Ti) (2.4)

TFIDF(Ti, d) is the weight of term Ti in document d.

2.3 Dealing with bunch of letters and with whole

sentences

The approach which deals with the bunch of letters is called letter n-gram approach.

Here the whole file will be tokenized with n-letter words. Here the meaning does not

matter since n-letter may not bring the meaning to it. One difficulty in handling some

classes of documents is the presence of different kinds of textual errors, such as spelling

5

and grammatical errors. The system is based on calculating and comparing profiles of N-

gram frequencies[4]. First, we use the system to compute profiles on training set data that

represent the various categories, e.g. language samples or newsgroup content samples.

Then the system computes a profile for a particular document that is to be classified.

Finally, the system computes a distance measure between the documents profile and

each of the category profiles. The system selects the category whose profile has the

smallest distance to the documents profile. An N-gram is an N-character slice of a longer

string. Although in the literature the term can include the notion of any co-occurring

set of characters in a string (e.g. an N-gram made up of the first and third character

of a word). N-gram is a co-occurrence statistics data which collect every adjacent word

from huge web documents. It has been applied many research field especially Natural

Language Processing field. Because of linguistic advantage of n-gram it is possible to

extract core features of documents written in human language. Also, n-gram applied to

speech recognition,topic discovery and a system for filling out incomplete sentences. The

n-gram can be expressed into two different ways. First is a method for extracting the

n-gram by each adjacent English character from documents. Second is the n-gram by

each adjacent word. Typically, one slices the string into a set of overlapping N-grams.

We also append blanks to the beginning and ending of the string in order to help with

matching beginning-of-word and ending of-word situations. In Letter n-gram approach

the n characters are separated for each word. e.g. 5-grams for ”very good” will be ”very

”, ”ery g”,”ry go”,”y goo” and ” good”[4]. The total number of n-gram is depending on

the number of word in a given document and what type of n-gram will be constructed.

It simply follows given formula.

tNgram = tWord − depth + 1 (2.5)

where, tNgram is total number of constructed n-gram, tWord is total number of word in

given the document, and depth is the type of n-gram. If we want to extract bigram, then

depth will be 2. This will help in removing the spelling mistakes and other errors from

the document. And the classification and counting TF will be easy.

Second approach which deals with the sentences known as morphological approach.

Here the whole sentences are taken into account and meaning is fetched from this. Here

more number of comparison has to be made since we have longer sentences and combi-

6

nation of more than one word. But it represent meaning full words and so classifier built

from morphological approach are more efficient than letter n-gram approach.

N-gram letter features have a variety of advantages compared to morpheme features.

Implementation of n-gram feature construction is very easy and independent of language.

N-gram features automatically perform certain kinds of stemming and they are robust

against misspellings. Furthermore, N-gram features automatically capture many kinds of

multi word phrases, if one considers n-grams across word-borders (inter-word n-grams).

2.4 Precision and Recall

When Machine tries to classify previously unseen documents, the result may be desired

or undesired. These results are put under four categories. True Positive, False Positive,

True Negative and False Negative.

Precision can be describe as the ratio of truly identified documents from relevant docu-

ments. Recall can be defined as the ratio of truly identified documents and total available

documents under that category. We are using this measures to find the effectiveness of

the classifiers. In this research the measure used is F1 measure.

2.5 Näıve Bayes Classifier for document classifica-

tion

Document classification is a growing interest in the research of text mining. Correctly

identifying the documents into particular category is still presenting challenge because of

large and vast amount of features in the dataset. In regards to the existing classifying

7

approaches, Näıve Bayes is potentially good at serving as a document classification model

due to its simplicity. Results show that Näıve Bayes is the best classifiers against several

common classifiers (such as decision tree, neural network, and support vector machines)

in term of accuracy and computational efficiency. The below given tables shows that the

Näıve Bayes is better than other classifiers. This is simple simulated WEKA.

Table 2.1: Classification Accuracy of Different Classifiers
Classifiers TP and TN FP and FN Precision Recall F-Measure

Näıve Bayes 2717 83 0.970 0.970 0.970
SVM 2712 88 0.969 0.969 0.969
DT 2551 249 0.911 0.911 0.911

Table 2.2: Time Taken to build different Classifiers
Classifiers Time Taken to Build (seconds)

Näıve Bayes 0.19
SVM 2.69
DT 1.8

Näıve Bayes models allow each attribute to contribute towards the final decision equally

and independently from other attributes, in which it is more computational efficient when

compared with other text classifiers. Näıve Bayes classifier is the simplest instance of a

probabilistic classifier. The output Pr(C—d) of a probabilistic classifier is the probabil-

ity that a document d belongs to a class C. Each document contains terms which are

given probabilities based on its number of occurrence within that particular documents.

With the supervised training, Näıve Bayes can learn the pattern of examining a set of

test documents that have been well-categorized and hence comparing the contents in all

categories by building a list of words as well as their occurrence. Thus, such list of word

occurrence can be used to classify the new documents to their right categories, according

to the highest posterior probability.

2.6 Flat Classification and Hierarchical Classification

Näıve Bayes approach is used to deal with the problem of document classification via a

deceptively simplistic model: assume all features are independent of one another, and

8

compute the class of a document based on maximal probability. The Näıve Bayes ap-

proach is applied in Flat (linear) and hierarchical manner for improving the efficiency of

classification model. It has been found that Hierarchical Classification technique is more

effective then Flat classification.

The Näıve Bayes classifier performs its classification tasks starting with analyzing the

text document by extracting words which are contain in the document. To perform this

analysis, an extraction is used to extract each individual word from the document to

generate a list of words. This will be termed as vocabulary. —vocabulary— =the total

number of distinct word set found.

Within all the training data This list is helpful when the probabilistic classifier cal-

culates the probability of each word being annotated to each category. The list of words

is then used to generate a table, containing the words which are extracted from the

input document. The probabilistic classifier is needed to be trained with a set of well-

categorized training dataset. Each individual word which will be matched with words

contained in vocabulary from all training documents in the same category are extracted

and listed in a list of words occurrence for the particular category. Based on the list

of word occurrence, the trained probabilistic classifier calculates the posterior probabil-

ity of the particular word of the new unlabeled document being annotated to particular

category by using the formula which is shown as equation(1). The prior probability, Pr

(Category) can be computed from equation (2).

2.6.1 Comparison of Flat classification with Hierarchical Clas-

sification

Limitation of flat classification is that as the number of possible categories increases

the distinction between document classes get blurred. Whole in hierarchical structure

as we go down in hierarchy document types become more specific.In flat classification

relationship among documents cannot be identified thus it proves problematic in multi-

label classification .While the hierarchical structure identify the relationship among the

classes which allows for efficiency in both learning and representation.

9

2.7 Finding Frequent Patterns to be more specific in

classification

To find frequently occurring items in transactions of a database, Apriori Algorithm is

very widely used because of its speed and ease of use. It scans through every transaction

adding one item to a frequent item set at every step and builds possible list of n-frequent

item sets by pruning those candidates which do not have specified support or lift. It uses

the anti-monotone property. When text documents make up the database, we need to

convert the word frequencies into binary form. Each sentence of a document or a single

document can be considered as a transaction.

10

Chapter 3

Proposed Approach

3.1 Problem with the existing approach

Näıve Bayes classifier gives the most probable classification tag using the TFIDF value

of each term. But only calculating the word frequency and inverse document frequency

does not always give correct classification. When we apply Näıve Bayes, it classifies

a document only under one class no matter by what fraction posterior probabilities of

other classes are smaller. By considering the fraction by which other associated terms are

smaller we rank a document more into a specific context but also little less into another

context. To overcome this issue we are integrating Apriori algorithm of frequent pattern

mining to find out the associated terms from the documents and giving more precise and

more concrete labels.

3.2 Proposed Approach: Näıve Bayes with Apriori

Algorithm

Huge amount of unstructured data is available in the form of text documents. Classifying

these text documents by considering their context will be very useful in information

retrieval.

In proposed approach we classify the document first with Näıve Bayes classifier. One

of the strengths of the NB classifier is its simplicity and in many instances it performs

much better than more complex classification methods such as Support Vector Machines

This will give the probability associated with each term and will give the probabilistic

output.We find the context of an abstract by looking for associated terms which help

11

us understand the focus of the abstract and interpret the information beyond simple

keywords. The document is represented as a vector of terms and its weights.

D = T1 : W1, T2 : W2..., Tn : Wn (3.1)

At first level, all the documents are classified using Näıve Bayes classifier. We then

find words that occur together in at least 50% documents of each class by using Apriori

algorithm. We use this set of associated words in each class at second level to determine

different contexts of a text document.

Sat = {{T1, T2} : C1, {T4, T5} : C2}} (3.2)

Above equation states that There can be document in which Term 1 and Term 2

may define one context and Term 4 and Term 5 may define another context. Each test

document is scanned to find the associated words determined in Apriori approach. Then

the occurrence of words are count in the document which are there in associated terms

and they are sorted in decreasing order. Thus it indicates that a document may belong

to one context more but also may belong to some other context. When we apply Näıve

Bayes, it classifies a document only under one class no matter by what fraction posterior

probabilities of other classes are smaller. By considering the fraction by which other

associated terms are smaller we rank a document more into a specific context but also

little less into another context.

12

Chapter 4

Implementation

4.1 Tools

MAchine Learning for LanguagE Toolkit is a tool used in this project for simulation.

Näıve Bayes classifier is used in this classification task. WEKA is used in this case to

prove Näıve Bayes classifier better than the other classifiers e.g. SVM and DT.

4.2 Integration of Apriori with Näıve Bayes

The proposed approach is to find out frequent patterns out of the testing documents and

list them in file. These patterns are actually context of the document. Then in testing

documents find out the associated terms with the patterns and list them in non-increasing

or decreasing order. As soon as the Näıve Bayes classifier classifies the document we apply

the proposed approach and will find the associated terms. The frequency of the terms are

calculated and according to the weight, the percentage of the context is assigned. The

more the percentage of the context, the more the chances of being classified as label.

4.3 Classification through MALLET

MALLET is a Java-based package for statistical natural language processing, document

classification, clustering, topic modeling, information extraction, and other machine learn-

ing applications to text. MALLET includes sophisticated tools for document classifica-

tion: efficient routines for converting text to features, a wide variety of algorithms (in-

cluding Näıve Bayes, Maximum Entropy, and Decision Trees), and code for evaluating

classifier performance using several commonly used metrics.

13

In addition to sophisticated Machine Learning applications, MALLET includes rou-

tines for transforming text documents into numerical representations that can then be

processed efficiently. This process is implemented through a flexible system of pipes,

which handle distinct tasks such as tokenizing strings, removing stopwords, and convert-

ing sequences into count vectors.

The toolkit is Open Source Software, and is released under the Common Public Li-

cense. The Näıve Bayes classifier is used from this tool which gives the probability of

each class.

4.4 Technique

To classify any document some traditional steps need to be followed every time i.e. pre-

processing. which are listed below.

� Remove stopwords from the document e.g.a, an, the, now, is, are, ...

� Use stemmer algorithm for stemming like and accepted, acceptance will be simply

replaced with accept

� feature construction from the pre-processed document.

These feature construction is made through many different algorithms. Some of them

are Rank Search, CF’s Subset Evaluator. This will give the complete vocabulary-no of

distinct necessary words from all the documents. WEKA will help us with this to find

out the features with Chi-Squared Attribute Evaluation. This is done through finding

Term Frequency (TF) and Inverse Document Frequency (IDF). Then the multiplicaiton

TFIDF is the normalization of the values.

After following above steps we will apply apriori algorithm on the train documents

to find out frequent patterns and will list them in .txt file. The name of the .txt file will

be the label. The txt file will contain the frequent patterns in increasing order of their

occurrence in the document. This .txt file contains the context of the document. If we

look at the apriory algorithm we will find that in order to find frequent patterns, in the

first pass it calculates the occurrence of the single terms as well which will give us the

TF in the document.

14

At first level the Näıve Bayes will classify the document using following formula

P (C/D) =
P (D/C) ∗ P (C)

P (D)
(4.1)

where P(D) will remain same so we can neglect it and P(C) can be calculated using

following equation

P (C) =
Twc

Twts

(4.2)

This is the ratio of Total no of words in class to the Total no of words in training set.

The Näıve Bayes classifier will give the probability of the class.

At second level we will find the associated terms with the frequent patterns extracted

using apriori algorithm. The document will have more than one context. For e.g. consider

a fragment from an abstract Load balancing is applied to the development of network-

based Intrusion Detection System (NIDS) to fit the performance problem caused by traffic

in high bandwidth network. This abstract contains two contexts network load balancing

and network intrusion detection system (IDS).

Thus if a document D represents two contexts C1 and C2 , and if C1 is greater than

C2 then if C2 is less than some x percent of C1 then D belong to C1 and then C2 in this

order.

To use MALLET we need to follow the below given steps.

� Download the MALLET tool from the http://mallet.cs.umass.edu/index.php. It is

available for Winodws and Unix.

� Extract MALLET file and copy it in one directory.

� set teh environment variable to the bin path to the MALLET directory.

After setting the environment for MALLET we can start work with it. To train a

classifier in MALLET we first need to import the data in .mallet file. There are two

ways to import data in .mallet file. One instance per file and one instance per line. In

the former one we need to import the whole directory containing training examples. In

the later one we need to import one file containing different training datasets. The one

instance per line datasets will contain following format.

[InstanceName] [Lable] [feature 1] [feature 2] ...

15

� To import data in mallet file we need to write the command

bin/mallet import-file –input sample-data/web/* –output web.mallet

bin/mallet import-dir –input sample-data/web/*.txt –output web.mallet

The above command will load the data in web.mallet file.

� To train a classifier we need to write the command

bin/mallet train-classifier –input training.mallet –output-classifier my.classifier

–trainer NäıveBayes

� To classify the unlabeled documents we need to write the command

bin/mallet classify-file –input data –output - –classifier classifier

bin/mallet classify-dir –input datadir –output - –classifier classifier

the above commands will write the results on the standard output. The former one

will classify the on instance per line files and the later one will classify one instance

per file data.

16

4.5 Näıve Bayes Trainer

In this approach at the time of training the classifier frequent patterns are found and they

are stored under one file named the classification tag. Then the simple Näıve Bayes is

trained. When Näıve Bayes classifier classifies the document, the algorithm tries to find

out the associated terms with the frequent patterns found out in Apriori algorithm. This

way the the frequently occurred associated terms are listed under one file in decreasing

order. The document is labeled with highest matching context listed under the classifi-

cation tagged file. The Näıve Bayes algorithm is modified to integrate Apriori within it

and named Näıve Bayes trainer in MALLET.

17

Chapter 5

Simulation and Result Analysis

5.1 Document having multiple contexts

As we have already discussed, using Apriori algorithm we are extracting frequent patterns

from the document and identifying the context of the document. But a document may

have multiple context in it. This will lead us to labeling a document with highest valued

context. Figure 5.1 shows a pictorial representation of the document having multiple

contexts.

Figure 5.1: Pictorial Representation of Document having multiple context

18

5.2 Extraction ans listing of Associated terms with

their Context

To extract features from the document we have used CF’s subset feature evaluator. This

considers rank search algorithm for section of attributes. we have shown the selected

attributes and most frequent terms are listed below selected attributes. It is shown in

below figure.

Figure 5.2: Associated Attributes using CF’s subset Evaluator

In Table 5.1 we have listed the context and associated terms. These are the terms which

are found from the document and they are listed in decreasing order of their occurrence.

If the document contains word balance or load many times, according to the highest

probability calculated by the Näıve Bayes classifier, its classification turns out to be

Computer Networks. Now we will check the .txt file with name ComputerNetwork.txt.

And this will contain Load Balancing in it as the frequent pattern extracted through

Apriori algorithm. This way we can come one level down in the hierarchy.

19

Table 5.1: Associated terms with their context
Associated Terms Context
Balance, load, network, result, scheme,
simulate

Computer Network:Load Balancing

Intrusion, Attack, detect, intrusion,
network, base, system

Computer Network:Intrusion Detection
System

Design, kernel, operating, system Operating System:Kernel Design
Hardware, memory, management, op-
erating, perform, system

Operating System:Memory Manage-
ment

5.3 Results

We used 60 abstracts of IEEE explorer in different subjects like Computer Networks:Load

Balancing and Intrusion Detecion system, operating System:Kernel design and Memory

Management to train the classifier.

We have the results of showing how Näıve Bayes classifier is easy to train because of its

simplicity. It takes very less time to get trained. This is shown in below Figure 5.3 and

Figure 5.4

Figure 5.3: Näıve Bayes classifier with training time 0.04 seconds

20

Figure 5.4: DT Classifier with training time 0.17 seconds

We have shown the comparison of three classifiers with their correctly classifier ex-

amples (True Positive). The chart given below is generated after working on 60 IEEE

paper abstracts on 4 different topics under two different categories Computer Networks

and Operating Systems.

Figure 5.5: True positive documents out of 60 documents

21

Figure 5.6: Time taken to train three classifiers

As we can see the time taken to train the classifier with our algorithm, Adaboost

takes the less amount of time than other two classifiers. But figure 5.5 clearly shows that

the truly identified examples are very less in case of adaboost algoritm.

The Table 5.2 shows how a document is representing multiple context and how it is

categorized in proper classification. For giving example here we have chosen 4 document

which contain more than one context. These way other documents may contain multiple

context and context with more association will be chosen as classification.

Table 5.2: Results of some test documents
Test Document Classification CN:LB CN:ID OS:KD OS:MM

T1 CN 90% 60% 3% 7%
T2 CN 30% 96% 0% 1%
T3 OS 10% 1% 80% 99%
T4 OS 2% 1% 96% 70%

As we can see that some test document T1 has 90% of the content associated with CN,

Load Balancing. And 60% of the context is associated with CN,Intrusion Detection.

Thus, we can say that the document classified with Load Balancing.

Simple Näıve Bayes classifier will classify the document T1 under CN category. But

Our modified algorithm will classify it under Load Balancing. We can figure out for the

other 3 random documents shown in Table 2 under T2, T3 and T4.

22

Chapter 6

Conclusion and Future Work

The vast no of documents are being created and queried every day. To make the retrieval

effective the documents must be classified or labeled. Different classifiers classify the

documents with different accuracy. In this report we shown that Näıve Bayes is better

classifier than others but, it gives just one classification with highest probability and does

not concern with other classification if it is just 0.1% less than the former one. Here after

integrating Apriori algorithm with simple Näıve Bayes we have successfully extracted

context and one level down hierarchy.

This implementation does not create n-level down the hierarchy and classify the doc-

ument with more specific classification. This need to be taken care in future work. The

proposed approach is implemented, with one level down the hierarchy in mind. To go

n-level the implementation need to be modified.

23

Bibliography

[1] Goller Christoph, Joachim Lning, Thilo Will, Werner Wolff, ”Automatic Document

Classification: A thorough Evaluation of various Methods”

[2] Jonathan McElroy, ”AUTOMATIC DOCUMENT CLASSIFICATION IN SMALL

ENVIRONMENTS”, January 2012.

[3] Manevitz, Larry, Malik Yousef , ”Document Classification on Neural Networks Using

Only Positive Examples”, 2000.

[4] Cavnar,William, John, Trenkle, N-Gram-Based Text Categorization”

[5] Tokunaga, Takenobu, Iwayama, Makoto, ”Text categorization based on weighted

inverse document frequency”, March 1994.

[6] Hoda, Mohmed, ”Automatic Document Classification”, 2007.

[7] Joshi Shweta, Bhavna, Nigam, ”Categorizing the Document using Multi Class Clas-

sification in Data Mining”, 2011.

[8] M. IKONOMAKIS, S. KOTSIANTIS, V. TAMPAKAS, ”Text Classification Using

Machine Learning Techniques”, August 2005.

[9] XIU-LI PANG, YU-QIANG, FENG, WEI, JIANG, ”An Impoved Document Classi-

fication Approach With Maximum Entropy And Entropy Feature Slection”, August

2007.

[10] McCallum, Andrew Kachites, ”MALLET: A Machine Learning for Language

Toolkit” http://mallet.cs.umass.edu 2002.

[11] Frank Klawonn, Plamen Angelov, ”Evolving Extended Näıve Bayes Classifiers”,

2006.

24

[12] Soumen Chakrabarti, Shourya Roy, Mahesh V. Soundalgekar, ”Fast and accurate

text classi

cation via multiple linear discriminant projections”, 2002.

[13] S.L. Ting, W.H. Ip, Albert H.C. Tsang, ”Is Nave Bayes a Good Classifier for Docu-

ment Classification”, July 2011.

[14] Razvan Stefan Bot, Yi-fang Brook Wu, Xin Chen, Quanzhi Li, ”Generating Better

Concept Hierarchies Using Automatic Document Classification”, November 2005.

25

	Certificate
	Undertaking for Originality of Work
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Literature Survey
	Document Classification
	pre-processing
	Feature Construction

	Term Frequency Inverse Document Frequency
	Dealing with bunch of letters and with whole sentences
	Precision and Recall
	Naïve Bayes Classifier for document classification
	Flat Classification and Hierarchical Classification
	Comparison of Flat classification with Hierarchical Classification

	Finding Frequent Patterns to be more specific in classification

	Proposed Approach
	Problem with the existing approach
	Proposed Approach: Naïve Bayes with Apriori Algorithm

	Implementation
	Tools
	Integration of Apriori with Naïve Bayes
	Classification through MALLET
	Technique
	Naïve Bayes Trainer

	Simulation and Result Analysis
	Document having multiple contexts
	Extraction ans listing of Associated terms with their Context
	Results

	Conclusion and Future Work

