
BIOS Support for Intel R© 2014(Broadwell)
Platform

Major Project Report

Part-I & II

Submitted in partial fullfilment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

By

Adodariya Vishal P.

(11MCEC01)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD

BIOS Support for Intel R© 2014(Broadwell)
Platform

Major Project Report

Phase-I & II

Submitted in partial fullfilment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

By

Adodariya Vishal P.

(11MCEC01)

External Project Guide: Internal Project Guide:

Mr. Satya Yarlagadda Prof. Vibha Patel

Project Lead, Dept.of Computer

Intel India Technology Pvt. Ltd. Science & Engineering,

Bangalore Nirma University

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD

ii

DECLARATION

This is to certify that,

I, Adodariya Vishal P., 11MCEC01, a student of semester IV Master of Technol-

ogy in Computer Science Engineering, Nirma University, Ahmedabad , hereby declare

that the project work BIOS Support for Intel R© 2014(Broadwell) Platform has

been carried out by me under the guidance of Mr. Satya Yarlagadda and Mr. Piyush

Sharma, Intel Technology India Private Limited, Bangalore and Prof, Vibha Patel De-

partment of Computer Science and Engineering, Nirma University, Ahmedabad. This

Project has been submitted in the fulfillment of the requirements for the award of degree

Master of Technology (M.Tech.) in Computer Science and Engineering, Nirma Univer-

sity, Ahmedabad during the year 2012 - 2013.

I have not submitted this work in full or part to any other University or Institution

for the award of any other degree.

Adodariya Vishal P. (11MCEC01)

iii

CERTIFICATE

This is to certify that the Major Project entitled BIOS Support for Intel R© 2014(Broad-

well) Platform submitted by Adodariya Vishal Parsottambhai (11MCEC01),

towards the fulfillment of the requirements for the degree of Master of Technology in

Computer Science Engineering of Nirma University of Science and Technology, Ahmed-

abad is the record of work carried out by her under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for examina-

tion. The results embodied in this major project, to the best of my knowledge, have not

been submitted to any other university or institution for award of any degree or diploma.

Mr. Satya Yarlagadda

External Guide,

Intel Technology India Ltd.

Prof, Vibha Patel

Internal Guide,

Nirma University

Mr. Piyush Sharma

Project Manager,

Intel Technology India Ltd.

Prof. Vijay Ukani

PG Coordinator - CSE,

Nirma University

Dr. Ketan Kotecha

Director,

Nirma University

Dr. Sanjay Garg

HOD - CSE,

Nirma University

iv

ACKNOWLEDGEMENT

First and foremost, sincere thanks to my Mentor, Mr. Satya Yarlagadda, Intel Tech-

nology India Private Limited, Bangalore for his valuable guidance. Throughout the train-

ing, he has given me much valuable advice on project work. Without him, this project

work would never have been completed.

I would like to thank my Manager Mr. Piyush Sharma , Intel Technology India

Private Limited, Bangalore. I enjoyed his vast knowledge and owe him lots of gratitude

for having a profound impact on this report.

I would also like to thank my Internel guide Prof, Vibha Patel, Institute of Tech-

nology, Nirma University, Ahmedabad for her valuable guidance.

I would also like to thank Dr. K.R.Kotecha, Director, Institute of Technology, Nirma

University, Ahmedabad for providing me an opportunity to get an internship at Intel

Technology India Private Limited, Bangalore.

I would like to thank my all faculty members for providing encouragement, exchang-

ing knowledge during my post-graduate program.

I also owe my colleagues my teammates specially Supriyo, Sudhakar, Satya, Bimod,

Radhika, Rajeend in the Intel, special thanks for helping me on this path and for making

project at Intel more enjoyable.

Adodariya Vishal P. (11MCEC01)

v

Contents

List of Figures viii

Abstract 1

1 Introduction 2

2 literature survey 3

2.1 Intel Architecture - Platform Overview 3

2.1.1 Introduction to platform . 3

2.1.2 Platform Controller Hub (PCH) Architecture Overview 4

2.1.3 Platform Software Architecture Overview 5

2.2 Introduction to BIOS as ingredient . 5

2.2.1 Major features in the platform BIOS 7

2.2.2 Power-on self-test . 8

2.2.3 EFI BIOS boot phases . 9

2.2.4 Boot modules . 12

3 Platform Detection 14

3.1 Platform directory . 14

3.2 Pkg directory structure . 16

3.3 Firmware Storage . 19

3.4 Platform detection . 20

3.5 Result . 24

4 POST status code 26

4.1 POST (Power-on self-test) . 26

4.2 Why POST status codes are required ? 27

vi

4.3 How POST status codes works ? . 27

4.4 Overview of POST status codes . 28

4.5 Computing Unit Class . 29

4.6 User-Accessible Peripheral Class . 30

4.7 I/O Bus Class . 31

4.8 Software Classes . 32

4.9 Implementation . 33

5 Conclusion and Future Work 36

vii

List of Figures

2.1 Intel platform architecture . 4

2.2 EFI BIOS boot phases . 9

3.1 Firmware Storage . 19

3.2 Two SPI parts . 20

3.3 one SPI part . 20

3.4 high level flow of platform detection . 21

3.5 high level flow of platform detection . 22

3.6 high level flow of platform detection . 23

3.7 Board ID detection of TRAD board . 25

3.8 Board ID detection of ULT board . 25

4.1 BIOS POST card for PCI slot. 28

4.2 BIOS POST card for PCI slot. 28

4.3 Progress code for execution reached to DXE phase 34

4.4 Error code for memory is installed or not 35

viii

Abstract

Today, the complexity of the computer systems has grown, with processors and

chipsets incorporating millions of the transistors and compatible with dozens of oper-

ating system,hundreds of platform components and thousands of hardware devices and

software applications. Hence the complexity of BIOS source code is increased so it is hard

to develop different BIOS for each type of platform with different flavor, so need arise of

one BIOS source code that can support all types of different board . POST (Power-on

self-test) activated by BIOS. It runs a series of checks and diagnostics on your mother-

board. The POST runs very quickly, Its hard to finds out where actually execution is

stopped in which phase or which hardware is faulty or missing in the system if its stops

in between. Thats why POST status codes are required which display progress and Error

codes while executing the POST. By using these status codes we can track the execution

of POST if serial debug log is not available.

1

Chapter 1

Introduction

Today, the complexity of the computer systems has grown, with processors and chipsets

incorporating millions of the transistors and compatible with dozens of operating system,

hundreds of platform components and thousands of hardware devices and software appli-

cations. Hence the complexity of BIOS source code is increased so it is hard to develop

different BIOS code for each type of platform with different flavor.

Platform is mainly divided in to two categories one is traditional (TRAD) and another

is ultrathin (ULT). Traditional has two chip solution which means different die for CPU

and PCH , while in ULT, CPU and PCH are in same die which called as single chip

solution.Each type of platform has different flavors like mobile, desktop, unicore servers

. Each type of flavor can support different types of board, they are different in terms of

components on it. like some board has 4 Dimms while some has 2 Dimms.

In this thesis report, our proposal is to develop algorithm for detection of a board dy-

namically which support same bios available for specific platform. Also program various

GPIOs depends upon which components is used, how usb port mapping is done Etc.., so

that each board can support same BIOS.

2

Chapter 2

literature survey

2.1 Intel Architecture - Platform Overview

2.1.1 Introduction to platform

Platform encompasses all required ingredients, features, capabilities, initiatives and tech-

nologies.

The 4 major ingredients:

• Hardware.

– Processors, chipsets, communications, memory, boards, and systems.

• Software.

– Operating systems (OSs), applications, firmware, and compilers.

• Technologies.

– Hyper-Threading Technology (HT Technology), Intel Virtualization Technol-

ogy, and Intel Active Management Technology (Intel AMT).

• Standards and Initiatives.

– Wi-Fi, WiMAX, the Wireless Verification Program, and so on.

The platform is complex with lots of components on it. Every component must work

as designed and there shouldn’t be any conflicts between the devices on it. The Figure

below [1] shows the typical diagram of Intel Client platform 2014. It comes up with single

chip solution which means CPU and PCH are in single die.

3

Figure 2.1: Intel platform architecture

2.1.2 Platform Controller Hub (PCH) Architecture Overview

Platform Controller Hub is a Intel microchips which is found in Intel Hub Architecture

chipsets. PCHs are designed to remove problem of a bottleneck between processor and the

motherboard. As cores or speed of processor is increasing, the data transfer rate between

the CPU and the motherboard would achieve full bandwidth capacity hence bottleneck

can remove. The speed would be limited by the Front Side Bus. As a solution, the new

PCH chips are coms in to picture platform architecture transferred several functions, con-

nections, and controllers belonging to previously northbridge and southbridge chip and

insert chip called the PCH and the CPU. In summary, the PCH took over most of the

tasks of the southbridge and the few remaining roles traditionally done by northbridge

that have not been incorporated into the CPU package.[6]

Before the Platform Controller Hub, a motherboard would have a two piece chipset

consisting of an northbridge chip called the MCH and a southbridge chip. The north-

bridge, also refer as an memory controller hub (MCH) later. The CPU, memory, PCI

Express graphics slot(PEG), if present it would connect to it directly to platform. The

northbridge connected with the CPU, with front-side bus (FSB), and RAM is connected

through back-side bus, were each described by data transfer speeds. The southbridge chip

now also called an I/O controller hub , connects northbridge chip to all other peripherals

such as hard drives, CD and floppy drives, Ethernet, keyboard/mouse which are lower

bandwidth h/w.bigger pipeline is required between the CPU and the northbridge chip

would soon be unable to keep up with the CPUs speed hence system down.because CPUs

4

gained more speed and more cores.

2.1.3 Platform Software Architecture Overview

Firmware

The definition of firmware on PC is instructions (with data) that are consumed by non-

IA execution engines associated with a non-CPU hardware device. There are three main

categories of firmware:

• Fixed embedded firmware: contained in ROM and hidden from platform view.

• Upgradeable embedded firmware: contained in built-in non-volatile memory with

default image (code/data); upgradable during life cycle.

• Externally stored firmware: storage of the code/data is outside of the device package

that executes the firmware. The external storage is likely in non-volatile memory

form. Patches for embedded firmware falls into this category.

No action is required on platform SW to support fixed embedded firmware. Examples of

embedded firmware components are:

• CPU microcode, uncore firmware.

• ME ROM code.

Upgradeable embedded firmware is presumed to be functional at platform build time.

Discrete graphics card firmware is in this category. Upgrade tool is expected to be

available for at least one of the user’s SW environment. There is no known ingredient

with firmware in this category.

2.2 Introduction to BIOS as ingredient

The basic input/output system (BIOS), also known as the System BIOS or ROM BIOS,

is a de facto standard defining a firmware interface.[7]

The BIOS software is built into the PC, and is the first code run by a PC when powered

5

on (’boot firmware’). The primary function of the BIOS is to set up the hardware and

load and start a boot loader. When the Power button of PC is pressed, the BIOS checks

and initialize system devices which can be potential boot device like the video display

card, keyboard, mouse, hard disk drive, optical disc drive and other hardware. The BIOS

after locates boot device in which OS is stored,like hard disk or a CD/DVD,and loads

and executes that software, giving it control of the PC. This process is known as booting,

also known as bootstrapping short for .

BIOS software is stored on a Flash chip on the motherboard. now a days the BIOS

flash chip’s contents can be flashed and upgradeable.

BIOS will also have a user interface (or UI for short). Typically this is a menu sys-

tem accessed by pressing a certain key on the keyboard when the PC starts. In the BIOS

UI, a user can:

• Hardware configuration.

• setting of the system clock.

• trigger system’s components.

• select devices which doesn’t through any Error and eligible for potential boot device.

• set various password,for example password for securing access to the BIOS UI func-

tions itself and preventing malicious users from booting the system from unautho-

rized peripheral devices.

The BIOS provides a small library of basic input/output functions used to operate and

control the peripherals such as the keyboard, text display functions and so forth, and

these software library functions are callable by external software. In the IBM PC and

AT, certain peripheral cards such as hard-drive controllers and video display adapters

carried their own BIOS extension Option ROM, which provided additional functional-

ity. Operating systems and executive software, designed to supersede this basic firmware

functionality, will provide replacement software interfaces to applications.

previously BIOS works with 16-bit, 32-bit,architecture after that in 64-bit architecture

6

eras, while new BIOS architecture comes up which is known as EFI is used for new 32-bit

and 64-bit architectures. this era BIOS is used for booting up a system and for video

initialization; but otherwise is not used during the ordinary running of a system, while

in early systems (particularly in the 16-bit era), BIOS was used for hardware access -

operating systems (notably MS-DOS) would call the BIOS rather than directly accessing

the hardware. In the 32-bit era and later, operating systems instead generally directly

accessed the hardware using their own device drivers.

The role of the BIOS has changed over time; some time ago BIOS is a legacy system,but

now super seded by the more complex Extensible Firmware Interface (EFI),

2.2.1 Major features in the platform BIOS

Here is a (not exhaustive) list of the major features in the platform BIOS (not in execution

order):

• Core initialization.

• CPU initialization (Multi-core, multi-threading).

• Memory initialization (DDR3).

• Chipset initialization (PCI, USB, etc.).

• BIOS setup and update facilities with protection.

• Various pre-OS devices.

• User Inputs (keyboard, mouse, PS/2, USB, ...).

• VBIOS (discrete, integrated, switchable).

• MEBx, AMT (Advanced Management Technology)

• Security .

• BIOS, HDD password.

• TXT.

• TPM measurement, including iTPM.

7

• Configuration, power and thermal management setup

• ACPI.

• APM.

• Wake from S-state.

• Hot keys.

• Boot select .

• Optical drive.

• USB.

• SATA,SSD.

• Boot manager, User OS, EFI Shell, recovery OS.

2.2.2 Power-on self-test

Power-On Self-Test (POST) refers to routines run immediately after power is applied,

by nearly all electronic devices. Perhaps the most widely-known usage pertains to com-

puting devices (personal computers, PDAs, networking devices such as routers, switches,

intrusion detection systems and other monitoring devices). Other devices include kitchen

appliances, avionics, medical equipment, laboratory test equipment all embedded devices.

The routines are part of a device’s pre-boot sequence. Once POST completes successfully,

bootstrapping code is invoked.

POST includes routines to set an initial value for internal and output signals and to

execute internal tests, as determined by the device manufacturer. These initial condi-

tions are also referred to as the device’s state. They may be stored in firmware or included

as hardware, either as part of the design itself, or they may be part of semiconductor

substrate either by virtue of being part of a device mask, or after being burned into a

device such as a Programmable Logic Array (PLA).

Test results may be enunciated either on a panel that is part of the device, or output via

8

bus to an external device. They may also be stored internally, or may exist only until

the next power-down. In some cases, such as in aircraft and automobiles, only the fact

that a failure occurred may be displayed (either visibly or to an on-board computer) but

may also upload detail about the failure(s) when a diagnostic tool is connected. POST

protects the bootstrapped code from being interrupted by faulty hardware. Diagnostic

information provided by a device, for example when connected to an engine analyzer,

depends on the proper function of the device’s internal compo nents. In these cases,

if the device is not capable of providing accurate information, subsequent code (such as

bootstrapping code) may not be permitted to run. This is done to ensure that, if a device

is not safe to run, it is not permitted to run.

2.2.3 EFI BIOS boot phases

BIOS boot phases are shown in fig below [3] [4]

Figure 2.2: EFI BIOS boot phases

Security phase:

The Security (SEC) phase is the first phase in the PI Architecture architecture and is

responsible for the following:

• Handling all platform restart events.

• Creating a temporary memory store.

• Serving as the root of trust in the system.

• Passing handoff information to the PEI Core.

In addition to the minimum architecturally required handoff information, the SEC phase

can pass optional information to the PEI Core, such as the SEC Platform Information

9

PPI or information about the health of the processor.

Pre-EFI Initialization (PEI) Phase:

The Pre-EFI Initialization (PEI) phase of the PI Architecture specifications (hereafter re-

ferred to as the PI Architecture) is invoked quite early in the boot flow. Specifically, after

some preliminary processing in the Security (SEC) phase, any machine restart event will

invoke the PEI phase.The PEI phase will initially operate with the platform in a nascent

state, leveraging only on processor resources, such as the processor cache as a call stack,

to dispatch Pre-EFI Initialization Modules (PEIMs). These PEIMs are responsible for

the following:

• Initializing some permanent memory complement.

• Describing the memory in Hand-Off Blocks (HOBs).

• Describing the firmware volume locations in HOBs.

• Passing control into the Driver Execution Environment (DXE) phase.

Philosophically, the PEI phase is intended to be the thinnest amount of code to achieve

the ends listed above. As such, any more sophisticated algorithms or processing should

be deferred to the DXE phase of execution.

The PEI phase is also responsible for crisis recovery and resuming from the S3 sleep

state. For crisis recovery, the PEI phase should reside in some small, fault-tolerant block

of the firmware store. As a result, it is imperative to keep the footprint of the PEI phase

as small as possible. In addition, for a successful S3 resume, the speed of the resume

is of utmost importance, so the code path through the firmware should be minimized.

These two boot flows also speak to the need to keep the processing and code paths in the

PEI phase to a minimum. The implementation of the PEI phase is more dependent on

the processor architecture than any other phase. In particular, the more resources the

processor provides at its initial or near initial state, the richer the interface between the

PEI Foundation and PEIMs.

Driver execution Environment (DXE) Phase:

The Driver Execution Environment (DXE) phase is where most of the system initializa-

tion is performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is responsible for

10

initializing permanent memory in the platform so that the DXE phase can be loaded and

executed. The state of the system at the end of the PEI phase is passed to the DXE phase

through a list of position-independent data structures called Hand-Off Blocks (HOBs).

HOBs are described in detail in the Platform Initialization Hand-Off Block Specification.

There are several components in the DXE phase:

• DXE Foundation.

• DXE Dispatcher.

• A set of DXE Drivers.

The Dxe Core produces a set of Boot Services, Runtime Services, and DXE Services. The

DXE Dispatcher is responsible for discovering and executing DXE drivers in the correct

order. The DXE drivers are responsible for initializing the processor, chipset, and plat-

form components as well as providing software abstractions for system services, console

devices, and boot devices. These components work together to initialize the platform

and provide the services required to boot an operating system. The DXE phase and

Boot Device Selection (BDS) phases work together to establish consoles and attempt the

booting of operating systems. The DXE phase is terminated when an operating system is

successfully booted. The Dxe Core is composed of boot services code, so no code from the

Dxe Core itself is allowed to persist into the OS runtime environment. Only the runtime

data structures allocated by the Dxe Core and services and data structured produced by

runtime DXE drivers are allowed to persist into the OS runtime environment.

Boot Device Selection (BDS) Phase:

The Boot Manager in DXE executes after all the DXE drivers whose dependencies have

been satisfied have been dispatched by the DXE Dispatcher. At that time, control is

handed to the Boot Device Selection (BDS) phase of execution. The BDS phase is re-

sponsible for implementing the platform boot policy.This boot policy provides flexibility

that allows system vendors to customize the user experience during this phase of execu-

tion.

The Boot Manager must also support booting from a short-form device path that starts

with the first node being a firmware volume device path. The boot manager must use

the GUID in the firmware volume device node to match it to a firmware volume in the

11

system. The GUID in the firmware volume device path is compared with the firmware

volume name GUID. If a match is made, then the firmware volume device path can be

appended to the device path of the matching firmware volume and normal boot behavior

can then be used.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE

Foundation will hand control to the BDS Architectural Protocol after all of the DXE

drivers whose dependencies have been satisfied have been loaded and executed by the

DXE Dispatcher. The BDS phase is responsible for the following:

• Initializing console devices.

• Loading device drivers.

• Attempting to load and execute boot selections.

If the BDS phase cannot make forward progress, it will re-invoke the DXE Dispatcher to

see if the dependencies of any additional DXE drivers have been satisfied since the last

time the DXE Dispatcher was invoked.

2.2.4 Boot modules

Platform

• This module touches almost all components on the mother board including CPU

and PCH.

• Board detection.

• Processor Power management including C-states, P-states, throttling.

• Thermal reporting.

• Implement some security features related to processor.

PCH

PCH module is used to provide following services. Intel HD Audio, SMBUS, SPI, SATA,

Legacy interrupt, System Management Interrupts, System reset, Timers, USB, Display

Link Etc.

12

Memory

This module runs in pei phase in 32bit mode.It supports detection and initialization of

memory modules and complies with the requirements in the BIOS specification.

ME

Me is management engine, it provides centralized administration, also responsible for

vpro technology ,integrated clock control etc.

Security

It provides trusted execution environment also provide security related function create

cryptographic keys, windows bitlocker.

System Agent

This is uncore part mainly responsible for graphics also initializing System Memory,

initializing Power Management, internal Graphics, internal Audio, and PCI Express,

modifying SA register default values for optimal performance, SMRAM initialization.

13

Chapter 3

Platform Detection

3.1 Platform directory

BIOS source code is now updated to EDKII fashion as EDK has some drawbacks.The

EDK could not be compiled without the entire source tree. Furthermore, the unit of

distribution required the EDK as the whole tree. To solve this issue, EDKII introduced

the new concept, the ”Package”. Using this, a release and its work can be made with

”Packages” as opposed to requiring the Whole Source Tree.

A package is the minimal unit of distribution as well as providing a natural split in a

big projectwhich serves various purposes. For example, from the viewpoint of hardware

a developer may divide CPU/chipset/platform related definitions and drivers into three

individual packages that facilitate a user’s distribution and reuse. Developers also can put

all modules that are independent of various platforms into a single package. Therefore,

developers only need focus on platform-specific code when porting to a new platform.

14

EDKII and refrence code package details

1 Package Details

2 Basetool Provides build related tools for both EDK and EDK2.

Also contains miscellaneous tools such as ECC and EOT

3 EdkCompatibilityPkg Several security features were introduced

(e.g. Authenticated Variable Service, Driver Signing, etc.)

4 EdkShellBinPkg Provides header files and libraries that enable you to build

the EDK module in UEFI 2.0 mode with EDK II Build

5 EmulationIntelRestrictedPkg Binary images of the EFI

Shell 1.0 for IA32, X64 and IPF

6 FatBinPkg This package provides binary device drivers

to support the FAT32 file system

7 FatPkg This Platform file is used

to generate the Binary Fat Drivers

8 IA32FamilyCpuPkg This package supports IA32 family processors,

with CPU DXE module, CPU PEIM, CPU S3 module,SMM

modules, related libraries, and corresponding definitions

9 IntelFrameworkModulePkg Intel Framework

Module Package contains the definitions and module

implementation which follows

Intel EFI Framework Specification.

10 IntelFrameworkPkg This package provides definitions

and libraries that comply to Intel Framework Specifications

15

11 MdeModulePkg This package provides the modules that

conform to UEFI Industry standards.

12 MdePkg provides all definitions(including

functions, MACROs, structures and library classes)

and libraries instances, which are

defined in MDE Specification.

13 NetworkPkg NetworkPkg provides IPv6 network stack drivers,

IPsec driver, PXE driver, iSCSI driver and necessary

shell applications for network configuration.

14 PcAtChipsetPkg This package is designed to public interfaces and

implementation which follows PcAt defacto standard

15 PerformancePkg Provide performance measurement capability.

16 SecurityPgkg This package provides functionalities

like TPM, User identification (UID),

secure boot and authenticated variable.

17 ShellBinPkg This package contains binary shell application

that follows UEFI specification and

UEFI Shell 2.0 specification.

18 ShellPkg This Package provides all definitions

for EFI and UEFI Shell

19 SourceLevelDebugPkg This package provides target

side modules to support source level debug

20 UefiCpuPkg This Package provides UEFI compatible CPU modules and libraries

3.2 Pkg directory structure

Each pkg contains following type of directory structure,it has one,

• Package.dec Package declaration file

• Package.dsc Platform Package build description file

• Package.fdf platform flash map description file

• Include Public header files

16

• Protocol Public Protocol header files

• Guid Public GUID header files

• IndustryStandard Public Industry Standard header files

• Library Public Library class header files

• Application Uefi Applications

• NameOneDxe Dxe Driver NameOne source files and INF.

• NameTwoPei Pei Driver NameTwo source files and INF.

Package Declaration File (DEC)

Each package has a single package declaration file (DEC) to define the packages public

interfaces. The public interfaces are the packages public header files, GUIDs, and PCDs.

The DEC has Defines, Includes, LibraryClasses, Guids, Ppis, Protocols and Pcds sections.

• The [Defines] section defines the package name and package GUID.

• The [Includes] section must list the root directory of public header file directory.

• The [LibraryClasses] section contains every library class header file in the Package

Include

Library directory.

• The [Guids] section specifies the Guid value for each Guid in the Package

Include

Guid directory.

• The [Ppis] section specifies the Guid value for each PPI in the Package

Include

Ppi directory.

• The [Protocols] section specifies the Guid for each Protocol in the Package

Include

Protocol directory.

17

• The PCDs are declared in different PCD sections according to their type (Feature-

Flag, FixedAtBuild, PatchableInModule, Dynamic, and DynamicEx). If a PCD

supports multiple PCD types, it must be declared in all supported type sections.

When a PCD is declared, its data type and default value must also be specified.

Package Declaration File (DSC)

Each package usually creates another build description file (DSC). All modules can be

added into DSC to be compiled and verified. DSC has the following sections:

• Defines

• LibraryClass

• PCD

• Components

• The [Defines] section sets build related information, such as the build output direc-

tory, build target, Guid, and build ARCHs.

• The [Components] section lists all modules (Drivers, Application, and Library In-

stances) in the platform.

• The [LibraryClasses] section specifies the chosen library instance for every library

class, which is consumed by the drivers and applications in the [Components] sec-

tion.

• The [PCDs] section configures PCD type and value for those PCDs used by the

modules in the [Components] section. If the PCD value is same as the default

value in DEC, and the PCD type has no specific requirement, the PCD may not be

configured in the DSC. Its value and type will be the default setting in DEC. If all

PCDs are not required in the DSC file, the [PCDs] section may be not created.

Package flashmap description file

Flash Description File (FDF) used to create firmware images, Option ROM images or

bootable images for removable media. For the purposes of this design discussion, the

FDF file will be also referred to as FlashMap.fdf. it defines size and offsets of firmware

volumes.

18

Figure 3.1: Firmware Storage

3.3 Firmware Storage

Each pkg contains one/many drivers, each driver creates object files. Many object files

together create pkg.

Framework Firmware File System (FFS) is a binary layout of file storage for firmware

volumes. It is a flat file system in that there is no provision for any directory hierarchy;

rather, files all exist in the root directly. Files are stored end to end without any directory

entry to describe which files are present.

A continues physical repository that contains firmware code/ firmware data is known as

firmware device. A single physical firmware device may be divided into smaller pieces

to form multiple logical firmware devices,A logical firmware device is called a firmware

volume.

Rom file maps all FV files according to its address and offset value. This is final BIOS

Rom image which is going to flash on platform. Package SPI image

Each platform has either one or two flash chips which connect through on SPI (serial

peripheral interface).

SPI = BIOS + ME FW + Straps + blank space

Some platforms contain two different spi chips spi0 and spi1 each of 8mb. SPI0 has 2

main modules.

Descriptor/straps

Management Engine firmware (ME FW) .

Giga bit ethernet(Gbe)

In industry where more security requires there 5mb ME firmware used which includes

19

Figure 3.2: Two SPI parts

Figure 3.3: one SPI part

security feactures like Vpro and bitlocker Etc..

SPI1 has main bios image which has gop(Graphics output protocol), which enables dis-

play,makes configuration depends upon whatever display is connected to platform. pxe

(pre execution environment) which is used to install operating system when platform

doesnt have any operating system. It install os from server to harddrive. RST provides

reset address from where cpu starts reading instructions.

The only difference is that here the ME firmware is of 1.5mb instead of 5mb. So

straps,ME FW, BIOS image all resides in same SPI.

3.4 Platform detection

above figure explains the high level flow of board detection happens.

• CPU on Each flavour board has difference cpuid,so first check for valid cpuid and

20

Figure 3.4: high level flow of platform detection

21

Figure 3.5: high level flow of platform detection

22

Figure 3.6: high level flow of platform detection

23

set platform type to ULT or TRAD.

• once platform type is decided after that needs to check weather uncore part present

or not, some platform flovor board doesn’t has graphics or uncore part.

• if SA is present than either board is desktop board or mobile or sever board.

• next step is to check if EC component is present in platform, if yes than set ECp-

resent variable true.

• if FRU device present at address AE than set Ecpresent to false ane Boardsku to

SV board, but if FRU device is not present than checks for pilot SIO3.

• if pilot SIO3 is present than the board type is Upserver.

• Try to open SIO configuration space by writing 0x87 twice to port 0x2e.then try to

read from this port and after that close it if SIO doesn’t close than its not present

on platform, but if it close successfully than platform is Embedded platform.

• if SIO not present than board is RVP/CRB board.

• if SIO is not present and platform flavor is desktop than read board id using GPIO,

if not than it sends a command to check bit 7,

• if bit7 is 0 than return 8-bit boardid, else return 16 bit boardid.

• to determine weather the board is SV board or not, Read SV Platform ID from

FRU Board ID Info Area at SMBUS address 0xAE,PlatformRead Board Info Area

from FRU starting at offset 0x03 in the common Header, Read Product Name from

Board Info Area at offset 0x0D, if product name is matched with product name

stored in table than return SV board ID,

3.5 Result

board id is unique for each flavor board its either 8 bit or 16 bit.

platform type 1 for 2 chip solution and type 2 is for single chip solution.

platform flavor is either mobile,desktop,embedded, server.

boardRev is a Fab id and is of 3 bits.

24

Figure 3.7: Board ID detection of TRAD board

Figure 3.8: Board ID detection of ULT board

25

Chapter 4

POST status code

4.1 POST (Power-on self-test)

The Power On Self Test is activated by the BIOS. It runs a series of checks and diagnostics

on your motherboard.

The principal duties of the main BIOS during POST are as follows.

• Verify CPU registers

• Verify the integrity of the BIOS code itself.

• Verify some basic components like DMA, timer, interrupt controller.

• Find and verify system main memory.

• Initialize BIOS.

• Identify, organize, and select which devices are available for booting

The BIOS begins its POST when the CPU is reset. The first memory location the CPU

tries to execute is known as the reset vector. In the case of a hard reboot, the CPU will

direct this code fetch (request) to the BIOS located on the system flash memory. For

a warm boot, the BIOS will be located in the proper place in RAM and the CPU will

direct the reset vector call to the RAM.

26

4.2 Why POST status codes are required ?

The POST runs very quickly, it hardly takes 2-3 mins to boot to OS and user will nor-

mally not even noticed that its happening unless it stops in between because presence of

some faulty or some hardware is missing, When turned on the PC, it may happen system

starts beeping sounds and then stopped without booting up. That is the POST telling

something is wrong with the machine. Here the speaker is used because this test happens

so early on, that the video isn’t even activated yet!

Its hard to finds out where actually execution is stopped in which phase or which hard-

ware is faulty or missing in the system,If execution is stops in between.

Some debug boards also doesn’t contain serial interface which is used to take serial dumb

of POST, In this situation also its really hard to find out where the execution is if its

hangs in between, with help of last executed POST code its easy to debug execution is

in which phase.

4.3 How POST status codes works ?

POST diagnostic information available by outputting a number to I/O port 80 (a screen

display was not possible with some failure modes). Both progress indication and error

codes were generated; in the case of a failure which did not generate a code, the code of

the last successful operation was available to aid in diagnosing the problem. There are

add-on cards also available that can be placed in to PCI slot and on which post codes

can be seen else now a days with this comes inbuilt with debug board.

27

Figure 4.1: BIOS POST card for PCI slot.

Figure 4.2: BIOS POST card for PCI slot.

4.4 Overview of POST status codes

POST status codes are mainly divided in to following categories.

• Progress codes

• Error codes

• Debug codes

For progress codes, operations correspond to activities related to the component clas-

sification. For error codes, operations correspond to exception conditions (errors). For

debug codes, operations correspond to the basic nature of the debug information.

The values 0x000x0FFF are common operations that are shared by all subclasses in a

class. There are also subclass-specific operations/error codes. Out of the subclass-specific

operations, the values 0x10000x7FFF are reserved by this specification. The remaining

28

values (0x80000xFFFF) are not defined by this specification and OEMs can assign mean-

ing to values in this range. The combination of class and subclass operations provides the

complete set of operations that may be reported by an entity. The figure below demon-

strates the hierarchy of class and subclass and progress, error, and debug operations.

Hardware Computing Unit EFI COMPUTING UNIT

User-Accessible Peripheral EFI PERIPHERAL

I/O Bus EFI IO BUS

Software Host Software EFI SOFTWARE

. Each class also divided into subclasses:

4.5 Computing Unit Class

The Computing Unit class covers components directly related to system computational

capabilities. Subclasses correspond to types of computational devices and resources.

Subclass Code Name Description

29

4.6 User-Accessible Peripheral Class

The User-Accessible Peripheral class refers to any peripheral with which the user interacts.

Subclass elements correspond to general classes of peripherals.

Subclass Code Name Description

30

4.7 I/O Bus Class

The I/O bus class covers hardware buses irrespective of any software protocols that are

used. At a broad level, everything that connects the computing unit to the user peripheral

can be covered by this class. Subclass elements correspond to industry-standard hardware

buses.

Subclass Code Name Description

31

4.8 Software Classes

The Software class covers any software-generated codes.

32

4.9 Implementation

Each postcode is falls into specific subclass and class, each class has its unique value

which is predefined.

There are four main classes.

• Computing Unit.

• User-Accessible Peripherals.

• I/O Bus.

• Software Host Software.

#define EFI COMPUTING UNIT 0x00000000

#define EFI PERIPHERAL 0x01000000

#define EFI IO BUS 0x02000000

#define EFI SOFTWARE 0x03000000.

This is the way how computing unit classs subclasses are defined:

#define EFI COMPUTING UNIT UNSPECIFIED

(EFI COMPUTING UNIT — 0x00000000)

#define EFI COMPUTING UNIT HOST PROCESSOR

(EFI COMPUTING UNIT — 0x00010000)

#define EFI COMPUTING UNIT FIRMWARE PROCESSOR

(EFI COMPUTING UNIT — 0x00020000)

#define EFI COMPUTING UNIT IO PROCESSOR

(EFI COMPUTING UNIT — 0x00030000)

#define EFI COMPUTING UNIT CACHE

(EFI COMPUTING UNIT — 0x00040000)

#define EFI COMPUTING UNIT MEMORY

(EFI COMPUTING UNIT — 0x00050000)

#define EFI COMPUTING UNIT CHIPSET

(EFI COMPUTING UNIT — 0x00060000)

To implement the POST status codes, array of structure have been created. for each pro-

cess codes, and error codes. (STATUS CODE TO DATA MAP mPostCodeProgressMap[]).

..

33

Report status code(Type,Value), this is the function which is used to write on port80 .

Here type is weather status code is process code or error code.

And value is hex number which is displayed

Example:

Progress code:

Progress code for execution reached to DXE phase.

{ PEI CPU AP INIT, 0x35 },

This status falls into compting unit class and host processor subclass.

#define PEI CPU AP INIT (EFI COMPUTING UNIT HOST PROCESSOR —

EFI CU HP PC AP INIT)

For this status code function call is.

REPORT STATUS CODE (

EFI PROGRESS CODE,

EFI COMPUTING UNIT HOST PROCESSOR — EFI CU HP PC AP INIT

)

Which will show value 35 on the status codes display.

Result:

Error code:

Figure 4.3: Progress code for execution reached to DXE phase

Error code for memory is installed or not:

PEI MEMORY NOT INSTALLED, 0x55 ,

34

This status code is falls into software class and PEI foundation subclass.

#define PEI MEMORY NOT INSTALLED (EFI SOFTWARE PEI SERVICE —

EFI SW PEI CORE EC MEMORY NOT INSTALLED)

For this status code function call is.

REPORT STATUS CODE (

EFI ERROR CODE,

EFI SOFTWARE PEI SERVICE — EFI SW PEI CORE EC MEMORY NOT INSTALLED

)

Which will show value 55 on the status codes display.

Result:

Figure 4.4: Error code for memory is installed or not

35

Chapter 5

Conclusion and Future Work

This report includes overview of BIOS, phases of BIOS , BIOS code tree , Pkg directory

structure, detection of platform for various available flavors of boards of each platform

as all the boards are going to use same BIOS image.

With usage of POST status codes its easy to track execution status of POST process also

when serial debug log is not available or execution hangs in between or some hardware

is faulty/missing.

Up till now, we have implement platform detection for Intels 2014 (Broadwell) plat-

form, also implement POST status codes for some major critical events of BIOS, we will

implement POST status codes for Intels refcodepkg, By doing this we can track execution

is exactly in which module (Like CPU,PCH, Etc..)

36

Bibliography

[1] Intel Developers,2014 client Platform Architecture Document(PAD),Intel Technol-

ogy India Pvt. Ltd.

[2] Intel Developers,2014 client Product Requirement Document(PRD),Intel Technology

India Pvt. Ltd.

[3] Michael othman,Tim Lewis,Vincent Zimmer, Robert Hale, Harnessing the UEFI

Shell, Intel press ,March 2010.

[4] Unified Extensible firmware Interface Specifaction, version 2.3,May 2009

[5] Advanced Configuration And Power Interface Specification, Revision 5.0, December

2011.

[6] Intel 64 and IA-32 Architectures Software Developers Manual volume1:Basic Archi-

tecture.

[7] EDKII Module Writers Guide,Revision 7.0,March 2011

[8] EDKII Information file specification,Revision 1.22,June 2012

[9] EDKII Description file specification,Revision 1.22,June 2012

[10] Intel Atom Processor Z670 with Intel SM35 Express Chipset, User Guide,july 2011

Development Kit

[11] EDKII Firmware File system specification,Revision 1.22,June 2012

[12] Platform Initialization Shared Architectural Elements,Vol 3,June 2012 Development

Kit

37

	List of Figures
	Abstract
	Introduction
	literature survey
	Intel Architecture - Platform Overview
	Introduction to platform
	Platform Controller Hub (PCH) Architecture Overview
	Platform Software Architecture Overview

	Introduction to BIOS as ingredient
	Major features in the platform BIOS
	Power-on self-test
	EFI BIOS boot phases
	Boot modules

	Platform Detection
	Platform directory
	Pkg directory structure
	Firmware Storage
	Platform detection
	Result

	POST status code
	POST (Power-on self-test)
	Why POST status codes are required ?
	How POST status codes works ?
	Overview of POST status codes
	Computing Unit Class
	User-Accessible Peripheral Class
	I/O Bus Class
	Software Classes
	Implementation

	Conclusion and Future Work

