Analysis And Characterization Of
Popular OpenCL Kernels

BY

Shruti Chhatbar
11MCECO05

UNIVERSITY

T X [

gNR A

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
AHMEDABAD-382481

March - 2013

11

Abstract

In all computing domains heterogeneous parallel computing platforms composed of
CPUs, GPUs, FPGAs and DSPs are widening their user base. GPUs are emerging as
a general purpose high performance computing device. GPGPU research is growing
very fast as a cost effective approach for accelerating data and compute intensive
application which has made many new workloads available. It has been driven by
the introduction of C-based programming environments such as NVIDIA’s CUDA |
OpenCL. OpenCL (Open Computing Language) is an open standard and emerging
parallel programming model to write parallel applications for such heterogeneous
platforms. However there is no systematic approach to analyse and characterize the
workload to assist future work on microarchitecture design, application re-structuring
and compiler optimizations. In this paper I will present the software architecture that
produces interesting statistics to understand the dynamic behaviour of the GPGPU.
In addition to that a set of metrics for evaluation of OpenCL kernels is proposed.
ArchOCL is a software model that includes dynamic library that support all OpenCL
application to produce statistics to analyse OpenCL application. Development of
ArchOCL model includes implementa-tion of OpenCL APIs, Compiler enhancement

to support OpenCL kernel compilation and Statistics collection.

Contents

[Abstract]

[List of Figures|

(1 _Introduction|

M1 OpenCL and CUDA] . . o o o oo
T2 GPGPU . . . o oo e

[2.1.2 Memory model|o
2.1.3 Execution Modell L.
2.1.4 Programming Model|
2.2 OpenCL Framework{
2.3 Clang Compiler|
2.4 Mesa library|o
[2.5 Characterization Methodology|
2.5.1 ArchOCL Design goal|
2.5.2 Performance characterization of Media Benchmarkl

API Implementation|

[3.1 OpenCL Plattorm Layer|
[3.1.1 Querying Platform|
[3.1.2 Querying Device| 00
B.1.3 Contextso

[3.2 OpenCL Runtime|
[3.2.1 Command Queues|
[3.2.2 Memory Objects|
[3.2.3 Sampler Objects|
[3.2.4 Program Objects|
[3.2.0 Kernel Objects|,
[3.2.6 Event Objects|

[3.3 OpenCL APIs for OpenGL interoperability|

il

ii

CONTENTS

[4 Testing Mechanism|

B Cl — rCLBond K

[>.1 Average Channel Utilization|

5.2 Instruction Breakdownl L.

[>.5 Global Memory Access Per Instruction|

5.6 SLM Reusel

[6 Characterization using OpenCV and OpenCL)

[6.1 Matching algorithms|

[r__Conclusion|

v

24

29
29
30
31
32
32
33

35
40

44

List of Figures

[2.1 Platform Model and Memory Model. 7
(2.2 Mapping OpenCL platform model to the multicore CPU system| . . . 8
(2.3 Mapping OpenCL platform model to the GPU system|. 8
2.4 Work-item and work-group Example] 10
[2.5 Heirarchy of OpenCL program|. 11
2.6 OpenCL Framework And Flow|. 12
2.7 Architecture Of ArchOCLI 15
4.1 Structureof Testsl 25
4.2 Structureof Testsl 26
4.3 Grid Structurel oL 27
4.4 System Flow Diagram| 28
4o ResultofTestl 28
[>.1 Average Channel Utilization| 30
(b2 Cache Line Hitl o . oo 31
b3 Bank Conflictsl o 32
(.4 Global Memory Access Per Instruction| 33
B.5 SLM Reusel 34
6.1 OpenCV Overview| 35
6.2 FAST Detector] 38
[6.3 Performance Comparison for Fast Feature Detector| 39
[6.4 Performance Comparison for Computing Descriptor| 40
[6.5 Precision and time consumed over linear search for different branching |

factorsl 42

Chapter 1

Introduction

In last few decades, the performance of processors has increased drastically and
number of cores per CPU is also found to be increased gradually. With hundreds
of in-order cores per chip, Graphics Processing Unit (GPU) provides performance
throughput on data parallel and computation intensive applications. Therefore, a
heterogeneous microarchitecture, consisting of chip multiprocessors and GPUs seems
to be good choice for data parallel algorithms. Nvidia CUDA[3], AMD stream and
OpenCL[2]. Emerging CPU-GPU heterogeneous multicore processing has motivated
the computer architecture research community to study various microarchitectural

designs, optimizations, and analysis for GPU.

Modern processor architectures parallelism is required to increase the performance.
Fixed function rendering devices are converted into programmable parallel proces-
sors. Now a days since computer systems include highly parallel CPUs, GPUs and
other types of processors, it is very important to enable software developers to take
full benefit of such heterogeneous processing platforms. Thus OpenCL plays an im-

portant role as heterogenous computing lagnuage.

Characterization is the process of classification of kernels or workload, measuring

those classes and indentifying their impact. This thesis consists of two parts which

CHAPTER 1. INTRODUCTION 3

includes workload characterization without performance measurements and other is

performance characterization of media benchmark workload.

1.1 OpenCL and CUDA

Two comparisons have been drawn between CUDA and OpenCL since its inception.
They both draw the same conclusions: if the OpenCL implementation is correctly
tweaked to suit the target architecture, it performs no worse than CUDA. Because
the key feature of OpenCL is portability (via its abstracted memory and execution
model), the programmer is not able to directly use GPU speci ¢ technologies, un-
less they are willing to give up direct portability by using device speci ¢ technology
such as inline PTX. CUDA is more directly connected to the platform upon which it
will be executing because it is limited to Nvidia hardware. Compiler technology for
both standards supported by Nvidia’s toolkit is based upon LLVM and compiles to

Nvidia’s PTX instruction set abstraction.

CUDA and OpenCL are two di erent frameworks for GPU programming. OpenCL
is an open standard that can be used to program CPUs, GPUs, and other devices
from di erent vendors, while CUDA is speci ¢ to NVIDIA GPUs. Open Computing
Language (OpenCL)[2] and Compute Unifed Device Architecture (CUDA) are two
interfaces for GPU computing, both presenting similar features but through di erent
programming interfaces. Both OpenCL and CUDA call a piece of code that runs on
the GPU ”a kernel”.

CUDA is a proprietary API and set of language extensions that works only on
NVIDIA’s GPUs. This may have been ne for students experimenting with a new
approach, but mainstream ISVs and other large scale developers need the inherent

exibility in industry standards. With a standard, cross platform API, developers can

CHAPTER 1. INTRODUCTION 4

deliver solutions on multiple vendors’ hardware while streamlining their development
processes and timelines. OpenCL , by the Khronos Group, is an open standard for
parallel programming using Central Processing Units (CPUs) , GPUs, Digital Signal

Processors (DSPs) and other types of processors.

1.2 GPGPU

GPGPU = General Purpose computation on Graphics Processing Units. Graph-
ics Processing Units (GPUs) can be used to speed up wide range of applications.
Graphics chips started as fixed function graphics processors but became increasingly
programmable and computationally powerful, which led NVIDIA to introduce the
first GPU. In the 1999-2000 timeframe, computer scientists and domain scientists
from various elds started us-ing GPUs to accelerate a range of scientific applications.
This was the advent of the movement called GPGPU, or General Purpose computa-
tion on GPU. While users achieved unprecedented performance (over 100x compared
to CPUs in some cases), the challenge was that GPGPU required the use of graphics
programming APIs like OpenGL to program the GPU. This limited accessibility to
the tremendous capability of GPUs for science[6].

Beyond the obvious need for CPUs to drive execution, most mainstream applica-
tions are heterogeneous in nature. They have some functions that accelerate well
on multicore CPUs, and others that are perfectly suited for a GPU’s data parallel
architecture. A good development platform needs to take that into account this is
the di erence between GPGPU as a niche accelerator and GPGPU as a new baseline

feature, ready for tomorrow’s systems and applications

Chapter 2

Literature Survey

Creating applications for heterogeneous parallel processors is difficult. CPU based
parallel programming models are standards but have a shared address space and do
vector operations are not covered. General purpose GPU programming models cov-
ers complex memory hierarchies and vector operations but also they are platform,
vendor or hardware specific. Due to this its difficult to check compute power of het-
erogeneous CPUs, GPUs and other types of processors from a single, multi-platform.
There is a need to enable software developers to effectively take full advantage of
heterogeneous processing platforms from high performance compute servers, through
desktop computer systems to handheld devices that include a diverse mix of parallel

CPUs, GPUs and other processors such as DSPs and the cell/B.E. processor.

OpenCL (Open Computing Language) is an open free standard language for program-
ming across CPUs, GPUs and other processors, so that software developers portable
and efficient access to these heterogeneous processing platforms. OpenCL supports a
wide range of applications, ranging from embedded and consumer software to HPC so-
lutions, through a low-level, high performance, portable abstraction. OpenCL creates
metal programming interface and forms the foundation layer of a parallel comput-
ing ecosystem of platform independent tools, middleware and applications. OpenCL

is particularly suited to play an increasingly significant role in emerging interactive

CHAPTER 2. LITERATURE SURVEY 6

graphics applications that combine general parallel compute algorithms with graphics
rendering pipelines. OpenCL is made of an API for communicating parallel compu-
tation across heterogeneous architectures; and a cross platform language with a well

specified environment. The OpenCL standard:

Supports both data and task based parallel programming models

Utilizes a subset of ISO C99 with extensions for parallelism

Defines consistent numerical requirements based on IEEE 754

Defines a configuration profile for handheld and embedded devices

Efficiently interoperates with OpenGL, OpenGL ES and other graphics APIs

2.1 The OpenCL Architecture

OpenCL is a framework for doing programming in parallel way and includes a lan-
guage, libraries and a runtime system to support software environment. The target of
OpenCL is for programmers who wants to write portable and also efficient code. This
includes library writers, middleware vendors, and performance oriented application
program-mers. So OpenCL is a low-level hardware abstraction with a environment

2]

to support programming with overview of underlying hardware?. Following is the

hierarchy model of OpenCL . Following is the hierarchy model of OpenCL:
e Platform Model
e Memory Model
e Execution Model

e Programming Model

CHAPTER 2. LITERATURE SURVEY 7

2.1.1 Platform Model

The model is made such that one host is connected to one or many OpenCL devices.
As shown in diagram an OpenCL device is divided into one or many compute units
(CUs) and then divided into one or many processing elements (PEs). Computations
here occurs within the processing elements. An OpenCL application runs on a host
according to the models native to the host platform. The OpenCL application gives
argumets from the host to do computational work on the processing elements in
a device. In a compute unit, the processing elements execute a single stream of
instructions as SIMD units or as SPMD units. SIMD - execute in lockstep with a

single stream of instructions. SPMD - each PE maintains its own program counter..

J Compute Device
,:" Compute Unit 1 Compute Unit N
— cg::,ﬁ’;f N Private Private Private Private
J Memory 1| |MemoryM|| | |Memory 1| [Memory M
Host ! [1 [~ 1
Ll Compute PE 1 PE M PE 1 PEM
: L || Device I ¥ 7]
\ Local Global/Constant Memory Local
Host : \ Memory 1 Data Cache Memory N
' 3
Processor N T
A
Host — Cg:ﬁ:e N | Global Memory ‘ Constant
Al
Y Compute Device Memory il

Figure 2.1: Platform Model and Memory Model

CHAPTER 2. LITERATURE SURVEY

Mapping OpenCL platform model to the multicore CPU system!

[OpenCL | Multicore CPU System
Host processor Logical core
Host memory Main memory
Compute device A set of logical cores
CuU Logical core
PE Virtualized PE by a logical core
Global memory Main memory
Constant memory Main memory
Local memory Main memory
Private memory Main memory

Figure 2.2: Mapping OpenCL platform model to the multicore CPU system

Mapping OpenCL platform model to the GPU system!

OpenCL GPU System
Host processor CrPU
Host memory Main memory
Compute device GPU
CuU Streaming multiprocessor
PE Scalar processor
Global memory GPU global memory
Constant memory GPU constant memory
Local memory GPU shared memory
Private memory GPU registers

Figure 2.3: Mapping OpenCL platform model to the GPU system

CHAPTER 2. LITERATURE SURVEY 9

2.1.2 Memory model

There are four memory regions among Work-item(s) executing a kernel:

e Global Memory :
Depending on devices read and writes to this memory may be cached. This is
generally for allowing read/write access among threads and blocks. Thread can

read to and from a memory object

e Constant Memory :
During working of kernel this part of memory remains constant and it is part
of global memory. Allocation and initialization of this memory is done by host

and then put into constant memory.

e Local Memory :
A memory portion local to a block. Variables that are shared by all threads
in a block are allocated by this memory. It may be implemented as dedicated
regions of memory on the OpenCL device. Alternatively, the local or private

memory region may be aligned to part of the global memory.

e Private Memory :
This region is private to single thread. Variables defined in one thread private

memory are not visible to another thread.

2.1.3 Execution Model

To execute a kernel context is required and created by host. The following resources

are included by context:

e Devices: The pool of OpenCL devices that can utilized by the host

e Kernels: The OpenCL devices run this OpenCL functions.

CHAPTER 2. LITERATURE SURVEY 10

e Objects in Program: The program source and program exes that forms the

kernels.

e Memory Objects: A collection of memory objects that can be seen by devices

and host.

Kernel operates on values in memory objects. Functions from OpenCL works on
context created by host. Command queue is used to do communication between
kernels and devices. Command queue schedules various commands and execution is
done according. Nd range kernel is passed through device and then results are again

given back to host memory. Buffers are used for this purpose[3] !

32 8

11111

local id: (4,2)
global id: (28,10)

32

workgroup id: (3,1)
local size: 8x8=64

dimension: 2
global size: 32x32=1024
num of groups: 16

Figure 2.4: Work-item and work-group Example

2.1.4 Programming Model

The OpenCL execution model consists of data parallel and task parallel programming
models, also have various combinations of these two models. Data parallelism is the
primary model forming the design of OpenCL.

Data Parallel Programming Model : This model tells that a memory object is

CHAPTER 2. LITERATURE SURVEY 11

there which computes in terms of a sequence of instructions given to various factors of
object. The index space plays an important role in defining work item and mapping
of data with workitems.

Task Parallel Programming Model : In this model no kernels work is dependent

on any index space. It is same as running a kernel in a compute unit having a work-

item in a block

Get platform and device information

Create an | context then Create a command queue

Create memory buffers on the device for each vector

Copy the lists to their respective memory buffers

Create a program from the kernel source

Build the program

Createthe O CL kernel

Execute the ClL kernel on the list

Read the memory buffer on the device to the local variable

Figure 2.5: Heirarchy of OpenCL program

2.2 OpenCL Framework

The OpenCL environment allows to use one host and many devices as a single het-

erogeneous system. The framework contains the following components|[3]1!:

e OpenCL Platform layer:
The platform layer helps the host program to create contexts and find OpenCL

devices and their capabilities.

CHAPTER 2. LITERATURE SURVEY 12

e OpenCL Runtime:
Once context has been created the runtime allows the host program to work on

contexts.

e OpenCL Compiler:
Program executables are formed by opencl compiler that have OpenCL kernels.

The compiler forms OpenCL C programming language and it will be a subset

of the ISO C99 language with extensions that will have parallelism.

Context

Figure 2.6: OpenCL Framework And Flow

2.3 Clang Compiler

Clang is an "LLVM native” C/C++/Objective-C compiler, which aims to deliver
amazingly fast compiles (e.g. about 3x faster than GCC when compiling Objective-C
code in a debug configuration), extremely useful error and warning messages and to

provide a platform for building great source level tools. The Clang Static Analyzer is

CHAPTER 2. LITERATURE SURVEY 13

a tool that automatically finds bugs in your code, and is a great example of the sort
of tool that can be built using the Clang frontend as a library to parse C/C++ code.

Some of the goals for the clang include the following:

End-User Features:

e Fast compiles and low memory use
e Expressive diagnostics (examples)
e GCC compatibility

Utility and Applications:

e Modular library based architecture
e Support diverse clients (refactoring, static analysis, code generation, etc)
e Allow tight integration with IDEs
e Use the LLVM "BSD’ License
Internal Design and Implementation:
e A real-world, production quality compiler
e A simple and hackable code base

e A single unified parser for C, Objective C, C++, and Objective C++

2.4 Mesa library

Mesa is an open-source implementation of the OpenGL specification - a system for
rendering interactive 3D graphics. A variety of device drivers allows Mesa to be

used in many different environments ranging from software emulation to complete

CHAPTER 2. LITERATURE SURVEY 14

hardware acceleration for modern GPUs. Mesa ties into several other open-source
projects: the Direct Rendering Infrastructure and X.org to provide OpenGL support
to users of X on Linux, FreeBSD and other operating systems [7).

Mesa serves following purposes:

e Mesa is quite portable and allows OpenGL to be used on systems that have no

other OpenGL solution.

e Software rendering with Mesa serves as a reference for validating the hardware

drivers.

e A software implementation of OpenGL is useful for experimentation, such as

testing new rendering techniques.

2.5 Characterization Methodology

Analytical GPU models. Analytical GPU models. Hong et. al. propose a predic-
tive analytical performance model for GPUs. The main components of their model
are memory parallelism among concurrent warps and computational parallelism. By
tuning their model to machine parameters, static characteristics of applications, and
regressions, their performance model predicts kernel runtimes with errors of 13percent
or less. Our approach, on the other hand, does not assume particular principal com-
ponents and instead attempts to determine them based on measurable statistics that

may change substantially with the evolution of GPU and CPU micro-architecturel®.

2.5.1 ArchOCL Design goal

Momentum is achieved by GPU as a cost-effective approach in data acceleration and
compute-intensive applications.
Design goal for ArchOCL software architecture is to characterize the workload for

OpenCL. ArchOCL is a software model which runs any OpenCL application and

CHAPTER 2. LITERATURE SURVEY 15

produces interesting statistics that reveals the dynamic behavior of the application.
Statistics collected by ArchOCL is useful for GPU architecture design. It also helps
developers to effectively port their applications in OpenCL. Example of statistics
are Shared Memory Density which is a ratio of number of shared memory access to
number of global memory access, SIMD Channel Utilization which is a number of

threads active averaged over all dynamic instructions and many more.!

OpenCL Kernels/ OpenCL application

OpenCL API Linkage

GPU
Memory
Management

Thread
Scheduler GPU Core

Texture
Sampler

Compiler

Figure 2.7: Architecture Of ArchOCL

ArchOCL is useful for

e Multicore and manycore architecture research
e Reveals dynamic behaviour of application

e Evaluation of impact on microarchitecture design and parallelization.

CHAPTER 2. LITERATURE SURVEY 16

2.5.2 Performance characterization of Media Benchmark

Feature Detection, Feature Extraction and Feature Matching are the basic steps in
any media benchmark algorithm. Goal of using OpenCL and OpenCV with this
media benchmark is to improve the performance on each of these steps. Nearest
Neighbor search is an interesting problem in computer vision application. Next goal

is to check which nearest neighbor performs best while changing its parameters.

Chapter 3

API Implementation

3.1 OpenCL Platform Layer

This section describes the OpenCL platform layer which implements platform spe-
cific features that allow applications to query OpenCL devices, device configuration

information, and to create OpenCL contexts using one or more devices.

3.1.1 Querying Platform

clGetPlatformIDs: The list of platforms available can be obtained using this APIL.
clGetPlatformInfo: This API gives specific information about the OpenCL plat-

form.

3.1.2 Querying Device

clGetDevicelDs: The list of devices available on a platform can be obtained using
the this APIL.
clGetDevicelnfo: This API gives specific information about an OpenCL device.

17

CHAPTER 3. API IMPLEMENTATION 18

3.1.3 Contexts

Contexts are used by the OpenCL runtime for managing objects such as command
queues, memory, program and kernel objects and for executing kernels on one or more
devices specified in the context.

clCreateContext: This API creates an OpenCL context. An OpenCL context is
created with one or more devices.

clCreateContextFromType: This API creates an OpenCL context from a device
type that identifies the specific device(s) to use.

clRetainContext: This API increments the context reference count.
clReleaseContext: This API decrements the context reference count.

clGetContextInfo: This API can be used to query information about a context.

3.2 OpenCL Runtime

This section describes the API calls that manage OpenCL objects such as command
queues, memory objects, program objects, kernel objects for kernel functions in a
program and calls that allow you to enqueue commands to a command-queue such

as executing a kernel, reading or writing a memory object.

3.2.1 Command Queues

OpenCL objects such as memory, program and kernel objects are created using a
context. Operations on these objects are performed using a command-queue. The
command-queue can be used to queue a set of operations (referred to as commands)in
order. Having multiple command-queues allows applications to queue multiple inde-
pendent commands without requiring synchronization.

clCreateCommandQueue: This API creates a command-queue on a specific de-

vice.

CHAPTER 3. API IMPLEMENTATION 19

clRetainCommandQueue: This API increments the command queue reference
count.

clReleaseCommandQueue: This API decrements the command queue reference
count.

clGetCommandQueuelnfo: This API can be used to query information about a
command-queue.

clSetCommandQueueProperty: This API can be used to enable or disable the

properties of a command-queue.

3.2.2 Memory Objects

Memory objects are categorized into two types: buffer objects, and image objects. A
buffer object stores a one-dimensional collection of elements whereas an image object
is used to store a two- or three- dimensional texture, frame-buffer or image. Elements
of a buffer object can be a scalar data type (such as an int,float), vector data type, or
a user-defined structure. clCreateBuffer: A buffer object is created using this API.
clEnqueueReadBuffer & clEnqueueWriteBuffer: This APIs enqueue commands
to read from a buffer object to host memory or write to a buffer object from host
memory.

clEnqueueCopyBuffer: This API enqueues a command to copy a buffer object
identified by src buffer to another buffer object identified by dst buffer.
clRetainMemObject: This API increments the memobj reference count.
clReleaseMemObject: This API decrements the memobj reference count.
clCreateImage2D: An image (1D, or 2D) object is created using this API.
clCreatelmage3D: A 3D image object is created using this APL.
clGetSupportedlmageFormats: This API can be used to get the list of image
formats supported by an OpenCL implementation.

clEnqueueReadImage & clEnqueueWriteImage: This APIs enqueue commands

CHAPTER 3. API IMPLEMENTATION 20

to read from a 2D or 3D image object to host memory or write to a 2D or 3D image
object from host memory.

clEnqueueCopylmage: This API enqueues a command to copy image objects.
clEnqueueCopylmageToBuffer: This API enqueues a command to copy an image
object to a buffer object.

clEnqueueCopyBufferTolmage: This API enqueues a command to copy a buffer
object to an image object.

clEnqueueMapBuffer: This API enqueues a command to map a region of the
buffer object given by buffer into the host address space and returns a pointer to this
mapped region.

clEnqueueMaplImage: This API enqueues a command to map a region in the im-
age object given by image into the host address space and returns a pointer to this
mapped region.

clEnqueueUnmapMemODbject: This API enqueues a command to unmap a pre-
viously mapped region of a memory object. Reads or writes from the host using the
pointer returned by clEnqueueMapBuffer or clEnqueueMaplmage are considered to
be complete.

clGetMemObjectInfo: This API is used to get information that is common to all
memory objects (buffer and image objects).

clGetImagelnfo: This API is used to get information specific to an image object

created with clCreatelmagef2D—3Dg

3.2.3 Sampler Objects

A sampler object describes how to sample an image when the image is read in the
kernel. The built-in functions to read from an image in a kernel take a sampler as an
argument. The sampler arguments to the image read function can be sampler objects
created using OpenCL functions and passed as argument values to the kernel or can

be samplers declared inside a kernel.

CHAPTER 3. API IMPLEMENTATION 21

clCreateSampler: This API creates a sampler object.
clRetainSampler: This API increments the sampler reference count.
clReleaseSampler: This API decrements the sampler reference count.

clGetSamplerInfo: This API returns information about the sampler object.

3.2.4 Program Objects

An OpenCL program consists of a set of kernels that are identified as functions
declared with the kernel qualifier in the program source. OpenCL programs may also
contain auxiliary functions and constant data that can be used by kernel functions.

A program object encapsulates the following information:
e An associated context.
e A program source or binary.

e The latest successfully built program executable, the list of devices for which

the program executable is built, the build options used and a build log.
e The number of kernel objects currently attached.

clCreateProgramWithSource: This API creates a program object for a context,
and loads the source code specified by the text strings in the strings array into the
program object.

clCreateProgramWithBinary: This API creates a program object for a context,
and loads the binary bits specified by binary into the program object.
clBuildProgram: This API builds (compiles & links) a program executable from
the program source or binary for all the devices or a specific device(s) in the OpenCL
context associated with program.

clRetainProgram: This API increments the program reference count.
clReleaseProgram: This API decrements the program reference count.

clGetProgramInfo: This API returns information about the program object.

CHAPTER 3. API IMPLEMENTATION 22

clGetProgramBuildInfo: This API returns build information for each device in

the program object.

3.2.5 Kernel Objects

A kernel is a function declared in a program. A kernel is identified by the kernel
qualifier applied to any function in a program. A kernel object encapsulates the spe-
cific kernel function declared in a program and the argument values to be used when
executing this kernel function.

clCreateKernel: This API creates a kernel object.

clCreateKernelsInProgram: This API creates kernel objects for all kernel func-
tions in program.

clSetKernelArg: This API is used to set the argument value for a specific argument
of a kernel.

clRetainKernel: This API increments the kernel reference count.
clReleaseKernel: This API decrements the kernel reference count.
clGetKernellnfo: This API returns information about the kernel object.
clEnqueueNDRangeKernel: This API enqueues a command to execute a kernel

on a device.

3.2.6 Event Objects

An event object can be used to track the execution status of a command. The API
calls that enqueue commands to a command-queue create a new event object that is
returned in the event argument.

clWaitForEvents: This API waits on the host thread for commands identified by
event objects in event list to complete.

clRetainEvent: This API increments the event reference count.

clReleaseEvent: This API decrements the event reference count.

clGetEventInfo: This API returns information about the event object.

CHAPTER 3. API IMPLEMENTATION 23

3.3 OpenCL APIs for OpenGL interoperability

This section describes OpenCL APIs that allow applications to use OpenGL buffer,
texture and render buffer objects as OpenCL memory objects. This allows effcient
sharing of data between OpenCL and OpenGL. The OpenCL API may be used to
execute kernels that read and/or write memory objects that are also OpenGL objects.
clCreateFromGLbuffer: This API creates an OpenCL buffer object from an OpenGL
buffer object. API returns a valid OpenCL buffer object based on OpenGL context
passed as an argument.

clCreateFromGLTexture2D /3D: This API creates an OpenCL 2D/3D image ob-
ject from an OpenGL 2D /3D texture object.

clGetGLObjectInfo: The OpenGL object used to create the OpenCL memory ob-
ject and information about the object type i.e. whether it is a texture, render buffer
or buffer object can be queried using this API.

clEnqueueAcquireGLObjects: This API creates is used to acquire OpenCL mem-
ory objects that have been created from OpenGL objects. These objects need to be
acquired before they can be used by any OpenCL commands queued to a command
queue.

clEnqueueReleaseGLObjects: This API is used to release OpenCL memory ob-
jects that have been created from OpenGL objects. These objects need to be released
before they can be used by OpenGL.

Chapter 4

Testing Mechanism

Conformance testing, also known as compliance testing, is a methodology used in
engineering to ensure that a product, process, computer program or system meets a

defined set of standards.

Conformance testing can be carried out by private companies that specialize in that
service. In some instances the vendor maintains an in-house department for conduct-
ing conformance tests prior to the initial release of a product or upgrade. In the
software industry, once the set of tests has been completed and a program has been
found to comply with all the applicable standards, that program can be advertised
as having been certified by the organization that defined the standards and the cor-

poration or organization that conducted the tests.

Goals :
e Automate the process of testing.

e Check Pass rate.

24

CHAPTER 4. TESTING MECHANISM 25

Regression testing is nothing but full or partial selection of already executed test
cases which are re-executed to ensure existing functionalities work fine. There were
total 24 tests with OpenCL each containing some subtest forming total of 458 sub-

tests. The structure of tests is shown in figure 4.1 below:

. math_brute_force

. multiple_device_context
. profilirg

. relationals

. saleck

B stomics :atom:}c_add ’
. Debug atomic sub”,
| buffers "at . he"
. integer_ops "atcrnic_rnin “,
. images "atomic max",l
| allocations - y 3 "
b opi atomic_inc,
. basic "atomic dec",
L commonfns " . h M
¥ co atomic_cmpxchg”,
| computeinfo “atomic_and " 3
 coniractions "atomic or”,
| CORNVETSIonS " . - " g
L events atCII'I'Ill:_XC'II"' » cenformance.log
L. geomelnics
o ol . .
o "atomic add index",
| — —
|| headers "atomic_add_index_bin",
A
i

. thread_dimensions

Figure 4.1: Structure of Tests

CHAPTER 4. TESTING MECHANISM 26

We can run the above test individually or all toghether. The procedure to run the

tests is explained in figure 4.2 below: In conversion, API and few others subtests were

Select the required test Select subtest

CSV File

Python script to run all test

Output : Log File

Figure 4.2: Structure of Tests

failing. So support for such subtests which were failing on ArchOCL were enabled.
But we have to also check the complete pass rate so that we can verify the changes we
made have not affected other tests. This is how we can check the perfectness of our
tool. The technique to run tests is already shown above but as few tests were taking
much time this running mechanism may take months to get the results. In order to
speedup the process and utilize the resource properly grid computing environment

was made which is shown in figure 4.3

CHAPTER 4. TESTING MECHANISM 27

‘Manager

Executors

Figure 4.3: Grid Structure

Now each subtest run individually in pool of PC because of grid computing.
Database is designed in such a way that instead of taking subtests from CSV it
is taking from database and submitted to a PC, The system flow for such system is

show in figure 4.4 below

CHAPTER 4. TESTING MECHANISM 28

Subtest Result = Pass/Fail
Grid Computing >
Each subtest is now in database instead
of CSV and submitted as a job
Manager puts it into queue and assigned
to executor when its free

Executor runs the subtest and shows

whethertest is passed or failed

Figure 4.4: System Flow Diagram

At last we get pass/fail result in database. The final result for ArchOCL pass rate

after support of some statistics and test is show in figure 4.5 below Total Test = 24

Number of SubTest #Passed #Failed Passrate
458 436 23 94.98910675

Figure 4.5: Result of Test

Chapter 5

Characterization of CLBenchmark

CLBenchmark offers an unbiased way of testing and comparing the performance of

OpenCL on differerent hardware arhitectures.

Goals:
e Enable the support of CLBenchmark on ArchOCL

e Obtain Statistics for CLBenchmark

5.1 Average Channel Utilization

ArchOCL provides average number of active channels during each instruction execu-
tion, using which average channel utilization can be determined for different SIMD
width.Workload without branch and barrier shows 100% channel utilization. For

SIMD32 channel utilization of Sequential scan is 30.

29

CHAPTER 5. CHARACTERIZATION OF CLBENCHMARK 30

35 1

mSIMDA4

W SIMDS8

mSIMD16

B SIMD32

Q& N Qo
NS &2 s
& O O
N 2 S
o) <, S
® 4 &
X2 &
@ &
®

Figure 5.1: Average Channel Utilization

5.2 Instruction Breakdown

ArchOCL model gives dynamic instruction count, which is the total number of in-
structions executed. It also gives separate count for each instructions like branch
instruction, barrier instruction,floating-point instruction, integer instruction, special
instruction and memory instruction. Instruction breakdown provides an insight of the
usage of different functional blocks in the GPU. Branch instruction count provides
the control flow behavior. Due to warp divergence, the frequency of branch instruc-
tions plays a significant role in characterizing the workload. Barrier instruction count

shows synchronization behavior of the workload.

CHAPTER 5. CHARACTERIZATION OF CLBENCHMARK 31

5.3 Cache Line Hit

The smallest unit between main memory and cache that can be transferred is cache
line or block. Rather than reading a single word or byte from main memory at a
time, each cache entry holds a certain number of words known as cache line or cache
block and whole line is read and cached at once. This takes advantage of principle of
locality of reference: if one location is read then nearby location are likely to be read
soon afterwards. The cache line is generally fixed in size typically ranging from 16 to

256 bytes.

6 -
5 4
4 -
37 mSIMD4
mSIMD8
2 1 =SIMD16
mSIMD32
1 -4
0
> <
D \,bbb \\)‘,e. & &8 "bﬂa“ 9&“
& & N &% o & &
Q}o N Q\,0 & © N G&-
S N N &
& &0 < ¥
,b\) -‘b\) Q
& &

Figure 5.2: Cache Line Hit

CHAPTER 5. CHARACTERIZATION OF CLBENCHMARK 32

5.4 Bank Conflicts

In GPUs the local memory is divided into memory banks. Each bank can only
address one dataset at a time, so load/store to/from the same bank leads to bank

conflict. Figure above shows bank conflict with 16 banks for different SIMD width.

4 = SIMD4
m SIMDS
37 = SIMD16
= SIMD32

—r . i

globaladd localadd gaussblur gaussblur Reduction Parallel sequential
globaluse imageuse local scan scan

Figure 5.3: Bank Conflicts

For workloads like Reduction and parallel local scan bank conflict increases. Other

has no bank conflict for all SIMD width.

5.5 Global Memory Access Per Instruction

ArchOCL model gives statistics like Amount of Local, Global and Constant memory
used and Total number of Integer and Floating Point operations executed. Using these
statistics, Global Bytes/Compute, SLM Bytes/Compute and Total Bytes/Compute
can be determined and workload can be characterized as either compute intensive or

memory intensive Global Memory Acces per instruction for global add is maximum.

CHAPTER 5. CHARACTERIZATION OF CLBENCHMARK 33

Global memory access is combination of global load and store of all instruction.

4 —
3.5
3 .
2.5
® Global Memory Access (Bytes)
2 - Per Compute Instruction
1.5
1 - ® Global Memory Access (Bytes)
05 Per Compute Instruction
’ including Math Extended
0 . . —— . : Instruction
> & e 2 & Q& L
Q}@b A & LS
%(50 \c;:.‘I %60 . {Q‘b% q__@rb \()(:'b (\;\’\'b
A AN @
& & 2 N
RO Rl
SR <
¢ &

Figure 5.4: Global Memory Access Per Instruction

5.6 SLM Reuse

SLM Reuse is the ratio of shared Local Memory data access to Global Memory data
access. The figure above shows that SLM is reused properly by Reduction and Parallel
Local Scan which results in good performance because Shared Local Memory latency

is less than the Global memory

CHAPTER 5. CHARACTERIZATION OF CLBENCHMARK

Local Memory Access Per Global Memory

Access
a4 -
3.5
3 .
2.5
2 4
1.5
1
0.5
0 - - - - -
‘066 \’bbb &e \5"6 \OQ 4?(\ r__,g'é\
> & o & N A)
F Y & G & & W
S & § RS NY &
SN e &
Y P @ &
Q& @& ??

M Local Memory Access Per
Global Memory Access

Figure 5.5: SLM Reuse

34

Chapter 6

Characterization using OpenCV

and OpenCL

OpenCV is a free open source computer Vision Library aimed at real time computer
vision problem. It is free to use under BSD license and it is cross platform. It supports

C, C++, python, java interface, OpenCL and CUDA!

OpenCV OQverview: >500 functions

{144 I\ I e m

m m General Image Processing Functions | L -.;.f "“| Image Pyramids

m.ﬁ @5 A Geometric “ —‘ 2 ;5

descriptors

;‘_- . Segmentation ..;_;2;_:_:__?:“;' & u.}, oo ‘“_\-_:_ Camera

e T g) | 4 calibration,

= o0 Ege
- . 4 -

Transforms

= Utilitiesand
= | Data Structures

Sy O e o =

- | Machine
Learning:
=Detection,

Figure 6.1: OpenCV Overview

35

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 36

The modular structure of OpenCV consists of modules namely core, imgproc,
video, calib3d, features2d objdetect, highgui and gpu. Other helpers modules are
also there such as FLANN and google test wrappers, python bindings and others.

This Chapter focuses on OpenCV OCL module. OpenCV recently started sup-
porting classes and functions so that we can utilize OpenCL compatible device. Here
[would describe OpenCV media benchmark work. There are many media benchmark

namely
e DBrief
e Freak
e SURF
e SIFT

There are three steps in all of these algorithm

1) Feature Detection
e Feature vector creation
e Corner, edge, important points detection
2) Feature Extractor (Descriptor)
e Descriptor creation
3) Feature Matching
e Matching of two vectors using any distance algorithm.

In this chapter we will discuss some points to convert a serial program into parallel
form. After that we will check the time/performance of both sequential and parallel
applications. Steps for Creating a Parallel Program
1) If you are starting with an existing serial program, debug the serial code completely

2) Identify the parts of the program that can be executed concurrently:

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 37

e Requires a thorough understanding of the algorithm
e Exploit any inherent parallelism which may exist.

e May require restructuring of the program and/or algorithm. May require an

entirely new algorithm.

3) Decompose the program:

e Functional Parallelism

e Data Parallelism

e Combination of both
4) Code development

e Code may be influenced/determined by machine architecture

e Choose a programming paradigm

e Determine communication

e Add code to accomplish task control and communications
5) Compile, Test, Debug 6) Optimization

e Measure Performance

e Locate Problem Areas

e Improve them

OpenCV supports OCL matrix and few other things of OpenCL. It does not
support feature detection method directly. So my goal was to convert few of above
into OpenCL modules and charaterize its performance. OpenCV have serial program
for BRIEF. For Feature detection Brief uses FAST algorithm. Corner detection is

an approach used within computer vision systems to extract certain kinds of features

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 38

and infer the contents of an image. AST is an acronym standing for Accelerated
Segment Test. Instead of evaluating the circular disc only the pixels in a Bresenham
circle of radius around the candidate point are considered. If contiguous pixels are all
brighter than the nucleus by at least or all darker than the nucleus by, then the pixel
under the nucleus is considered to be a feature. The first corner detection algorithm
based on the AST is FAST (Features from Accelerated Segment Test). Although can
in principle take any value, FAST uses only a value of 3 (corresponding to a circle of
16 pixels circumference), and tests show that the best results are achieved with being

9.

Figure 6.2: FAST Detector

Fast can be of various type fast8, fast12, fast16. Among all Fast 16 gives best
performance. Above figure 6.2 show how fast16 works. In FAST detector we have to
check opposite points first and check such boundary condition to see if p is feature
point or not. After that score for each feature point is calculated. Here if all such
points p are tested in parallel way it would really improve performance. So if image
contains 200 pixels we can pass that many threads in kernels. Thus all pixels are
checked in parallel way if they are keypoints or not. Therefore optimizing overall
performance. Experiments were done when application was sequential and after con-

verting it in parallel form. That’s how keypoints are detected.

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 39

Results for sequential approach for FAST feature detector
CPU time 0.0166461 sec

Results for parallel approach for FAST Feature detector
Average Kernel Total time 0.000846659 sec

Feature Detector

0.0001

0.001

B Feature
Detector

0.01

Time (Seconds)

0.1 ~

CPU Time GPU Time

Figure 6.3: Performance Comparison for Fast Feature Detector

After Keypoints detection, it’s time for Feature descriptor phase. For each key-
point they will form 16,32,64 or 128 bit descriptor. This this also can be done in
parallel manner. Suppose we want to form 32 bit descriptor and there are 100 key-
points. We can calculate 32 bit descriptor for each keypoint in parallel manner passing
100 threads. Thus descriptor part also can be made parallel and the experiments were

done on this.

Results for sequential approach for computing descriptor

CPU Time 0.0324986 sec

Results for parallel approach for computing descriptor

Average Kernel Total Time 0.000182724 sec

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 40

Computing Descriptor

0.0001
0.001
iy
E
8 B Com puting
5_ 0.01 Descriptor
]
£
=
01 -+

CPU Time GPU Time

Figure 6.4: Performance Comparison for Computing Descriptor

Thus we can see that using appropriate technique we can get a good speed up.

6.1 Matching algorithms

The problem of nearest neighbor search is one of major importance in a variety of
applications such as image recognition, data compression, pattern recognition, ma-
chine learning, document retrieval systems, statistics and data analysis. FLANN
(Fast Library for Approximate Nearest Neighbors) is a library for performing fast
approximate nearest neighbor search. To experiment with matching we have taken 3
matching algorithms namely Kd Tree, Kmeans and LSH (Locality Sensitive Hashing)
. Nearest neighbor search is a very interesting problem in computer vision applica-

tion. The algorithm for Kdtree is as follows:

1) Training part
2) Matching Part

In training KdTree is formed using base descriptor. Now matching part matches
two descriptors. In kmeans algorithm, cluster is formed and then matching is done.

Both are explained briefly below. When a search is restricted to some maximum num-

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 41

ber of searched nodes, the probability of finding the true nearest neighbour increases
with the increasing limit. Priority search increases search performance, compared
with a tree backtracking. The problem with diminishing returns in priority search
is that searches of the individual nodes in a tree are not independent, and the more
searched nodes, the further away the nodes are from the node that contain the query

point. To address this problem, we investigate the following strategies.

1. We create m different KD-trees each with a different structure in such a way
that searches in the different trees will be (largely) independent.

2. With a limit of n nodes to be searched, we break the search into simultaneous
searches among all the m trees. On the average, n/m nodes will be searched in each

of the trees.

The tree building process starts with all the points in the dataset and divides them
into K clusters, where K is a parameter of the algorithm, called the branching factor.
The clusters are formed by first selecting K points at random as the cluster centers
followed by assigning to each center the points closer to that center than to any of the
other centers. The algorithm is repeated recursively for each of the resulting clusters
until the number of points in each cluster is below a certain threshold (the maximum
leaf size), in which case that node becomes a leaf node. In kmeans few parameter like
branching plays an important role. The behavior due to change in branching factor

is show in figure 6.5

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 42

50 |
as - 08
40 L 08
.35 - 0.7
v
2 30 L 06
(]
¥]
g 25 05
g 20 - 04
= 1s L 03
10 0.2
5 L 0.1
0 0
8 16 32 64 128 256
Branch

Tree Training Knn Search Total = «Precision

Figure 6.5: Precision and time consumed over linear search for different branching
factors

Number of parallel trees to be created also plays an important role in Kmeans.
The effect of variation in number of trees is shown in Figure 6.6 below

After few experimental results using different descriptor size it was proved that
KDTree shows better performance compared to KMeans. Below Figure 6.7 is for 64

bit descriptor size.

Precision

CHAPTER 6. CHARACTERIZATION USING OPENCV AND OPENCL 43

18 1

16 - 08

14 - 08
. - o7
" 12
5 0% 5

10
L™ ‘o
A 83 g
L4 &
- et
£ - 04 o
= 6
= R

4 - oz

2 -0l

o] o

1 2 3 a 8 16
Trees
e T i === Precision

Figure 6.6: Precision and time consumed over linear search for different number of
parallel randomized trees used by the index

25

20
15
W time 1 (Train)
B total time
10
| l I
| oonsen EEEE - . -

KDTree 55k KDTree 100k KDTree 200k KDTree 280k Kmeans 55k Kmeans 100k kmeans 200k Kmeans 280k

Figure 6.7: Comparison of KDTree and KMeans Index

Chapter 7

Conclusion

ArchOCL is a software model to characterize OpenCL workload. Output of this tool
is the statistics which are really interesting and helps to reveal the dynamic behavior
of the application. It also helps in GPU architecture design. Testing of software
also plays an important role. Effective and fast results can be obtained if proper
way of testing is used. OpenCL increases the performance using proper optimization
techniques and it can be further improved. In matching algorithm while tuning the
parameters like branching factor in KDTree improves the precision but at the cost of
increased runtime. After many experiments we could conclude, in most cases KD Tree

perfrorms better than Kmeans.

44

Bibliography

A. Kerr, G. Diamos, and S. Yalamanchili, ” Characterization and Analysis of PTX
Kernels”, Georgia Institute of Technology, May-2009, CERCS, GIT-CERCS-09-
06

"The OpenCL Specification”, Version 1.2, Published by
Khronos OpenCL Working Group, Aaftab Munshi (ed.), 2011
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

NVIDIA, NVIDIA CUDA Compute Unified Device Ar-
chitecture, Programming Guide, 2nd ed, June 2008
http://developer.download.nvidia.com/compute/cuda/2_0/docs/
NVIDIA_CUDA _Programming_Guide_2.0.pdf

Sangmin Seo, Gangwon Jo and Jaejin Lee, ”Performance Characterization of
the NAS Parallel Benchmarks in OpenCL”, School of Computer Science and

Engineering, Seoul National University, Seoul, 151-744, Korea

Nilanjan Goswami, Ramkumar Shankar, Madhura Joshi, and Tao Li, ”Explor-
ing GPGPU Workloads: Characterization Methodology, Analysis and Microar-
chitecture Evaluation Implications ,” 2010 IEEE International Symposium on

Workload Characterization (IISWC), pages 110. IEEE

. Kerr, G. Diamos, and S. Yalamanchili, "Modeling gpu-cpu workloads and sys-
tems,” in Third Workshop on General-Purpose Computation on Graphics Pro-

cesing Units, Pittsburg, PA, USA, March 2010.

45

BIBLIOGRAPHY 46

[7] The Mesa 3D Graphics Library http://www.mesa3d.org
[8] http://opencv.willowgarage.com/wiki/

[9] M. Muja and D. G. Lowe, Fast Approximate Nearest Neighbors with Automatic
Algorithm Configuration, in International Conference on Computer Vision The-

ory and Application VISSAPP09), 2009, pp. 331340.

	Abstract
	List of Figures
	Introduction
	OpenCL and CUDA
	GPGPU

	Literature Survey
	The OpenCL Architecture
	Platform Model
	Memory model
	Execution Model
	Programming Model

	OpenCL Framework
	Clang Compiler
	Mesa library
	Characterization Methodology
	ArchOCL Design goal
	Performance characterization of Media Benchmark

	API Implementation
	OpenCL Platform Layer
	Querying Platform
	Querying Device
	Contexts

	OpenCL Runtime
	Command Queues
	Memory Objects
	Sampler Objects
	Program Objects
	Kernel Objects
	Event Objects

	OpenCL APIs for OpenGL interoperability

	Testing Mechanism
	Characterization of CLBenchmark
	Average Channel Utilization
	Instruction Breakdown
	Cache Line Hit
	Bank Conflicts
	Global Memory Access Per Instruction
	SLM Reuse

	Characterization using OpenCV and OpenCL
	Matching algorithms

	Conclusion

