
SELECTING AN EFFICIENT
CLASSIFIER FOR THE GIVEN

DATASET

Prepared By

Riya S. Shah

11MCEC17

Guided by

Dr. Ketan Kotecha

Department of Computer Science & Engineering

Institute of Technology,

Nirma University

Ahmedabad-382481

May 2013

SELECTING AN EFFICIENT
CLASSIFIER FOR THE GIVEN

DATASET

Major Project - Part II

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science & Engineering

By

Riya S. Shah

11MCEC17

Department of Computer Science & Engineering

Institute of Technology,

Nirma University

Ahmedabad-382481

May 2013

Certificate

This is to certify that the Major Project entitled ”Selecting an Efficient Clas-

sifier for the Given Dataset” submitted by Ms. Riya S. Shah (Roll No:

11MCEC17), towards the partial fulfillment of the requirement for the degree of

Master of Technology in Computer Science & Engineering of Instutite of Technol-

ogy, Nirma university, Ahmedabad is the record of work carried out by her under

my supervision and guidance. In my opinion, the submitted work has reached a

level required for being accepted for examination. The result embodied in this major

project, to the best of my knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

...

Project Guide:

Dr. Ketan Kotecha

Director,

Institute of Technology,

Nirma University,

Ahmedabad.

Prof. Vijay Ukani Dr Sanjay Garg

MTech(CSE) Coordinator, HOD,

Department of C.S.E., Department of C.S.E.,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University, Ahmedabad

iii

Acknowledgements

It is indeed a pleasure for me to express my sincere gratitude to those who have al-

ways helped me throughout my project work.

First of all I like to thank my internal project guide Dr. Ketan Kotecha (Director,

Institute of Technology,Nirma University) for his keen interest, constant encourage-

ment and valuable guidance at all stages of this dissertation work. I am sincerely

thankful for his valuable guidance and help to enhance my presentation skills.

I am very much indebted to Dr. Sanjay Garg (HOD, Dept. of Computer Science &

Engineering), Prof. Vijay Ukani (PG course coordinator, Dept. of Computer Science

& Engineering) and Prof. Priyank Thakkar (Project Coordinator, Dept. of Computer

Science & Engineering) for their valuable support, guidance and constant encourage-

ment throughout my study.

Specially, I would like to thank Prof. Matthias Reif, Multimedia Analysis and Data

Mining group(MADM) of German Research Center for Artificial Intelligence and Prof.

Christophe Giraud-Carrier, Dept. of Computer Science at Brigham Young University,

Provo, UT for their kind and warm support throught out the project work.

Last but not the least, I would like to thank God Almighty, My parents, My family

members and friends for their love, support and excellent co-operation to build my

moral during the work.

- Riya S. Shah

11MCEC17

iv

Abstract

Over the past two decades, Machine Learning applications has spread to almost every

fields and also the methods used for machine learning has converged from many

sources. Current machine learning tools contain excessive set of these methods but are

lacking in providing assistance to select a suitable classifier because of the variations

in the development and the disciplines. The main goal of meta learning is to provide

this assistance to the end user who may not be expert in the field of machine learning

but has to deal with the algorithms for the classification process. Here, in this paper,

the idea to design an assistant model using the meta learning techniques has been

discussed. The survey of various meta learning techniques is done and have been

explained in brief in this paper.

v

Contents

Certificate iii

Acknowledgements iv

Abstract v

Contents v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Background . 3

1.1.1 Overview to Machine Learning 3
1.1.2 Machine Learning Tools . 12

2 Literature Survey 14
2.1 Meta Learning . 14
2.2 Basic Architecture . 16

2.2.1 Meta Feature Generation . 18
2.3 Meta Learning Tools and Applications 22
2.4 Approaches . 27

2.4.1 Common Terms and Evaluation Parameters in Meta Learning 27
2.4.2 Meta Learning Approaches . 28
2.4.3 Statistical Methods . 38

3 Proposed Work 40
3.1 Background . 40
3.2 Proposed Design . 44
3.3 Experimental Results . 46
3.4 Conclusion and Future Work . 49

References 51

vi

A Appendix 55

vii

List of Figures

2.1 Cross Validation Meta Learner [17] 15
2.2 Knowledge Acquisition Phase . 16
2.3 Advisory Phase . 18
2.4 Example of partial order of 6 classification algorithms [2] 30
2.5 Several possible outcomes [2] . 31
2.6 Plots of two meta attributes values against the rank of C4.5 for 53

datasets [1] . 34
2.7 Active Learning Process [22] . 37

3.1 Average Performance (Accuracy) . 46
3.2 Average Performance (Time) . 48

viii

List of Tables

1.1 Comparison based on Usability Aspects [29] 13
1.2 Comparison based on the Supported Classifiers [29] 13

2.1 Confusion Matrix . 27

3.1 Results: Accuracies of 5 Base Learners over 17 selected Datasets . . . 47

ix

Chapter 1

Introduction

Machine learning is one of the most active research field for last two decades. As

the applications of this field spread over almost every field, researchers are trying to

develop the learning techniques for each application domain varying from classifica-

tion to recognition. As a result, there are hundreds of methods with variations in

different parameters and their application domains developed till now and hence if a

user wants to use any applications which have learning technique embedded in it, the

user ought to have the knowledge of that technique. The researchers have developed

several tools specifically developed for machine learning techniques.

Machine learning tools are the softwares that incorporate various machine learning

algorithms and provides an user interface which is easy-to-use. Machine Learning

researchers have already proposed many different types of classification algorithms,

including nearest neighbor methods, decision tree induction, error back-propagation,

reinforcement learning, lazy learning, rule based learning, and relatively new addition

is statistical learning. Hence, the user need to have the knowledge of these algorithms

to use them properly for their dataset. As every dataset has a different characteristics,

one particular algorithm which works well with one dataset, may not work efficiently

with another dataset. Thus, the user need to have some expertise about the algo-

1

rithms as well as the purpose for which the dataset has been used. In general, the

user may not have the specific knowledge about the algorithms or the classification

process to which the user has to deal, which creates a barrier in using the machine

learning tool efficiently by the end user. One possible solution to this problem would

be by evaluating all possible candidate algorithms using a well known cross-validation

(CV) procedure. All the candidate algorithms then can be reordered using the mean

success rate and pick the first algorithm in the ordering. However, this trial-and-error

method could be very cost effective as the number of algorithms available is very large.

The lack of these guidelines to select the right method according to the nature of

the given dataset, leads to development of an assistance system which can help the

end user in getting the better results. The primary focus of meta learning is to define

or to learn the relationship between the classification method and the tasks of the

domain (datasets and final class or prediction), which results in appropriate selection

of a suitable classifier(predictive model) or combination of classifiers. The solution is

to construct a meta learning system which provides automatic assistance to the user

in selecting the classifier for the particular domain/dataset. The focus is to exploiting

the cumulative knowledge of previous experiences in the current process [16].

The goal of this project is to develop a meta learning system which provides rec-

ommendations to the non-experts who wish to use the machine learning approaches

for their pattern recognition applications. The report is organized as follows: First

section gives a brief look on the machine learning field. Next section provides an

overview to meta learning and how it works. It also explains existing meta learning

systems. Subsequent section explains different approaches explored for meta learning

process. Next two sections give the proposed work and the partly implementation

results as well as the future work.

2

1.1 Background

1.1.1 Overview to Machine Learning

Machine learning can be defined as the computer program that improves its perfor-

mance at some task through experience. It has been grew out of Artificial Intelligence.

A Machine learns whenever it changes structure, program or data and improves its

future performance with record of each change. Machine learning deals with the de-

sign of prediction algorithms or models that takes the input dataset and gives the

output patterns using the features provided in the dataset.There are several reasons

behind the need of machines which can learn. For example, an AI application, where

the machine derives the relationship between the input-output pairs and takes the

decision accordingly. Other applications of machine learning includes extracting the

relationships and correlations hidden among large pile of data (mining), for job im-

provement of existing machine designs according to the environment in which they

are working (adopting the changing environment) [25].

Types of Learning

In any learning method, there are three parameters: input data, function and out-

put class. Now, in machine learning there are two phase: 1) training phase and 2)

testing phase. During training phase, the input data, whose output class is known, is

provided to the learning algorithm. The learning algorithm derives the relationship

between the data and its output class. The function is the implementation of these

relationships only.

Learning techniques can be categorized based on the way the function is imple-

mented: 1) Supervised Learning 2) Unsupervised Learning 3) Semi-supervised Learn-

ing.Basically, they differ in the way in which the program need to learn. It can learn

3

with and/or without supervisor.

a. Supervised Learning:

In this technique, the input to the learning technique is the training dataset

from which the learner derives the relationships between the data and the out-

put class. The values of function f for the input data X is derived from the

m samples of X only. The output class of samples m is already given, the

learner designs the function f from that. When the testing data Y is provided

to f, it gives the output class of that data, which is matched with the original

class. The accuracy of the learner is calculated based on the number of class

predicted correctly and the number of class predicted incorrectly. Here the

learning is done under the supervision of pre-determined classifications. Exam-

ples of supervised learning are concept learning, decision tree learning, bayesian

learning, ANN, genetic algorithm, ant colony optimization, etc.). Few of this

learning techniques have been explained below [25]:

b. Unsupervised Learning: In unsupervised learning, the machine simply receives

inputs X but does not receive any supervised target outputs. Hence, here the

learner develops a pattern from the dataset. Two widely used examples of

unsupervised learning are clustering and dimensionality reduction. In this type

of learning, the class labels or the output classes are unknown. So, if the dataset

has been provided, then the function of the learner is to establish a group or

cluster of the data, and hence the data has to be explored to find patterns in it.

c. semi-supervised learning: In many domains, there is a large amount of unla-

beled data but limited labeled data, which can be expensive to generate, e.g.

text processing, video-indexing, bioinformatics, etc. In semi-supervised learn-

ing, a learner learns from a combination of both labeled and unlabeled data. As

seen earlier, that supervised learning requires large amount of training data to

get the higher accuracy, while unsupervised learning methods are employed to

4

discover structure in unlabeled data. Semi-supervised learning takes both the

techniques and gets the advantage out of it. Unlabeled data in semi-supervised

learning helps to identify data structure and to make cluster assumption. Two

important notations for this learning: 1) Local consistency: Nearby points are

likely to have the same label. 2) Global consistency: Points on the same struc-

ture are likely to have the same label [26].

The goal of semi-supervised learning is to understand how combining labeled

and unlabeled data may change the learning behavior. Semi-supervised learn-

ing is of great interest in machine learning and data mining because it can use

readily available unlabeled data to improve supervised learning tasks when the

labeled data are scarce or expensive. Semi-supervised learning also shows po-

tential as a quantitative tool to understand human category learning, where

most of the input is self-evidently unlabeled.

Here, some of the machine learning techniques have been explained, which are used

for different domains of applications. [25] [26]

a. Decision Trees:

C4.5 algorithm of this decision tree, derives the results simply using divide-

and-conquer method. Like, in numeric attributes, the possibilities are restricted

to a binary split. When creating decision trees using the divide-and-conquer

method, once the first attribute to split on has been selected, a top level tree

node is created that splits on that attribute, and the algorithm proceeds re-

cursively on each of the child nodes. For each numeric attribute, it appears

that the subset of instances at each child node must be re-sorted according to

that attributes values. This algorithm is enhanced using the concept of miss-

ing values. There are several ways to tackle this. One is to handle them as

another attribute value, another is to ignore those dataset instances which con-

5

tain missing values. But a good solution is that the instances for which the

values are missing, are split into pieces, one piece is provided to each branch.

Another problem with decision tree is that the fully expanded decision trees can

be too long and hence some of the part of the tree is pruned. This can be done

using pre-pruning (forward pruning) and the post-pruning (backward pruning)

techniques. The entropy is calculated using the following formula:

entropy(D) = −
|C|∑
j=1

Pr(cj)log2Pr(cj)

This entropy is used as the measure of impurity or disorder of dataset. The

attribute with highest information gain is chosen for the split. The information

gain is calculated using

gain(D,Ai) = entropy(D)− entropyAi
(D)

b. Bayesian Learning:

In bayesian learning, explicit probabilities of the dataset is calculated. Each

training example can incrementally increase/decrease the probability that a

dataset instance is classified correctly. Hypothesis are created, weighted by their

probabilities. Even when Bayesian methods are computationally intractable,

they can provide a standard of optimal decision making against which other

methods can be measured. The Näive Bayes Theorem can find the probability

of a certain class given mutually exclusive events. The Näive Bayes classifier

applies to learning tasks where each instance x is described by a conjunction

of attribute values and where the target function f(x) can take on any value

from some finite set V. A set of training examples of the target function is

provided, and a new instance is presented, described by the tuple of attribute

values < x1, x2, , xn >. The learner is asked to predict the target value, or

6

classification, for this new instance.

c. Clustering:

A group of similar data is created, which is called cluster. There are different

types of clustering algorithms based on the method using which the similarity

of the data has been checked i.e. K-means clustering, hierarchical clustering.

The k-means clustering algorithm partitions the dataset into k clusters. Each

cluster has a center point called a centroid, from which the distance of the data

instance is measured. Data instances which are nearer in distance are grouped

together. For categorical data, centroid is represented by most frequent values

and it is sensitive to outliers. Hierarchical clustering produces a nested sequence

of clusters. At the beginning each data point is considered as a centroid of the

cluster. Then, the clusters who have least distance between them are merged.

This step is followed recursively until when the desired number of clusters is

not achieved.

d. Generative Models:

Generative models are perhaps the oldest semi-supervised learning method. It

assumes a model p(x, y) = p(y)p(x—y) where p(x—y) is an identifiable mix-

ture distribution, for example Gaussian mixture models. With large amount of

unlabeled data, the mixture components can be identified; then ideally we only

need one labeled example per component to fully determine the mixture distri-

bution. The mixture model ideally should be identifiable. If the mixture model

assumption is correct, unlabeled data is guaranteed to improve accuracy. How-

ever if the model is wrong, unlabeled data may actually hurt accuracy. Even if

the mixture model assumption is correct, in practice mixture components are

identi?ed by the Expectation-Maximization (EM) algorithm.

e. Self-Training:

7

Self-training is a commonly used technique for semi-supervised learning. In

self-training a classifier is first trained with the small amount of labeled data.

The classifier is then used to classify the unlabeled data. Typically the most

confident unlabeled points, together with their predicted labels, are added to

the training set. The classifier is re-trained and the procedure repeated. Note

the classifier uses its own predictions to teach itself. The procedure is also called

self-teaching or bootstrapping. Self-training has been applied to several natu-

ral language processing tasks. Self-training has also been applied to parsing

and machine translation. Self-training is a wrapper algorithm, and is hard to

analyze in general.

f. Co-training:

Co-training assumes that (i) features can be split into two sets; (ii) each sub-

feature set is sufficient to train a good classifier; (iii) the two sets are condition-

ally independent given the class. Initially two separate classifiers are trained

with the labeled data, on the two sub-feature sets respectively. Each classifier

then classifies the unlabeled data, and teaches the other classifier with the few

unlabeled examples (and the predicted labels) they feel most confident. Each

classifier is retrained with the additional training examples given by the other

classifier, and the process repeats. In co-training, unlabeled data helps by re-

ducing the version space size. In other words, the two classifiers (or hypotheses)

must agree on the much larger unlabeled data as well as the labeled data.

g. Artificial Neural Networks:

Artificial neural networks are among the most powerful learning models. They

have the versatility to approximate a wide range of complex functions represent-

ing multi-dimensional input-output maps. An Artificial Neural Network (ANN)

8

is an information processing paradigm that is inspired by the way biological ner-

vous systems, such as the brain, process information. It is composed of a large

number of highly interconnected simple processing elements (neurons) working

in unison to solve specific problems. ANNs, like people, learn by example. An

ANN is configured for a specific application, such as pattern recognition or data

classification, through a learning process. Artificial neural networks are repre-

sented by a set of nodes, often arranged in layers, and a set of weighted directed

links connecting them. The nodes are equivalent to neurons, while the links

denote synapses. The nodes are the information processing units and the links

acts as communicating media.

h. Genetic Algorithms:

Genetic Algorithm is robust and probabilistic search algorithm based on the

mechanics of natural selection and genetics. Genetic Algorithm follows the

principle of Survival of the Fittest laid down by Charles Darwin. The basic

components of genetic algorithms are chromosomes (encoding a solution), pop-

ulation (set of solutions), fitness function (quality of a solution), genetic operator

(reproduction, crossover, mutation), and generations. Genetic algorithm starts

with creating random population of the given genes. Then the fitness function

evaluates fitness of each individual of the population. By selecting some of the

best individuals from the population, they are operated with the genetic oper-

ators one by one. At last, the best chromosome is assigned as solution and the

process is repeated.

i. IBK:

IBk is an implementation of the k-nearest-neighbors classifier that employs the

distance metric. Here number of nearest neighbor can be specified manually.

If more than one neighbor is selected, the predictions of the neighbors can be

9

weighted according to their distance to the test instance. The time taken to

classify a test instance with nearest-neighbor classifier increases linearly with

the number of training instances.

j. OneR:

One-attribute-Rule (OneR) is an algorithm for finding a rule, such that the

minimum error attribute is chosen for prediction. A rule is created for each

attribute and the one with the lowest error is chosen. A single node decision

tree consisting of the chosen attribute as root is then built as a classification

model. which produces simple rules based on one attribute only. It takes a

single parameter: the minimum number of instances that must be covered by

each rule that is generated (default value 6).

k. ZeroR:

ZeroR simply predicts the majority class in the training data if the class is

categorical and the average class value if it is numeric.

l. Decision Table:

Decision Table produces a decision table using the wrapper method to find

a good subset of attributes for inclusion in the table. This is done using a

bestfirst search. Usually, a decision table assigns the majority class from the

training data to a test instance if it does not match any entry in the table.

m. Decision Stump:

Decision Stump, builds binary decision stumpsone-level decision treesfor datasets

with either a categorical or a numeric class. It copes with missing values by

extending a third branch from the stump; in other words, by treating missing

10

as a separate attribute value.

n. Random Forest:

It is based on learning ensemble consisting of a bagging of un-pruned deci-

sion tree learners with a randomized slection of features at each split. Random

forest applies randomness by selecting a random subset of the predictors for

each split. It bulds a randomized decision tree in each iteration of the bagging

algorithm, and often produces excellent predictors.

o. Support Vector Machines:

SVM is a supervised learning models which uses a non-probabilistic binary

linear classifier. An SVM model can be viewed as a space where input examples

are plotted according to their categories. It selects a small number of critical

boundary instances called support vectors from each class and build a linear

discriminant function that separates them as widely as possible.

p. Ensemble Methods:

This type of methods uses combination of models to increase accuracy. It com-

bines a series of k learned models, M1, M2, ..., Mk, with the aim of creating

an improved model M∗. Bagging and Boosting are popular ensemble methods.

In bagging the final prediction is average of all the predictions made by each

classifier from the collection of the classifiers. In Boosting, Each prediction is

given a weight and final prediction is done through weighted vote. Detailed

description of these methods are given in later section.

11

1.1.2 Machine Learning Tools

This section gives a brief introduction to some of the machine learning tools which

are widely used. At the end of the section a comparison of several other machine

learning tools are also given.

• WEKA (Waikato Environment for Knowledge Analysis) is a open source soft-

ware in Java. It is having GPL license. [27] [28]It is a portable tool having

a comprehensive collection of data processing and modeling techniques. It is

divided into three interfaces:

1) Explorer: main user interface providing the functionalities in GUI form.

2) CLI: Provides all the functionalities from command line.

3) Experimenter: provides comparison of the various machine learning algo-

rithms provided in Weka.

• RapidMiner (previously known as YALE) supports machine learning, data min-

ing, text mining, and analysis(predictive, business, etc.) [9] [17] It is written in

Java and has used many algorithms of Weka.

• KNIME (Konstanz Information Miner) has integrated many machine learning

algorithms with the mining algorithms for data analysis. [17]It has been used

mainly in pharmaceutical research. It is also written in Java and also provides

fragments calling for Pearl and Python.

The comparison of these three tools with other very well known tools are summarized

in the following two tables. The Table I describes the comparative study of the

tools based on the usability aspects in the terms of programming languages in which

they are developed, human interaction (how much human intervention is needed to

complete the process), interoperability (whether the system is internally operable or

it supports PMML(the predictive modelling markup language)), and extensibility.

Table II describes the comparison in terms of various known classifiers provided by

the tools. First column ’pre-processing’ rates the tool on pre-processing on the scale

12

of 0 to 3. Next few columns shows the availability of the classifier in the tool. Last

two columns rates the tool on Data Visualization and Model Visualization on the

scale of 0 to 3. [17]

Tool LanguageHuman Interaction Interoperability Extensibility
Weka Java Manual Self Excellent

RapidMiner Java Manual Self Excellent
KNIME Java Manual PMML Excellent
ADAM Python Autonomous Self Simple

AlphaMiner Java Manual PMML Excellent
MLC++ C++ Guided Self Simple
Orange C++

Python
Manual Self Excellent

Table 1.1: Comparison based on Usability Aspects [29]

Tool Pre-proc. Bayes DTree NNet SVM Boosting KMeans Associations Evaluation Data Vis. Model Vis.
Weka 3 Yes Yes Yes Yes Yes Yes Yes Yes 3 3

RapidMiner 3 Yes Yes Yes Yes Yes Yes Yes Yes 3 3
KNIME 3 Yes Yes Yes Yes Yes Yes Yes Yes 3 3
ADAM 3 Yes Yes Yes No No Yes Yes Yes 3 3

AlphaMiner 3 Yes Yes No No No No No No 1 1
MLC++ 3 Yes Yes Yes No No No No Yes 3 3
Orange 3 Yes Yes No Yes Yes No Yes Yes 3 3

Table 1.2: Comparison based on the Supported Classifiers [29]

13

Chapter 2

Literature Survey

2.1 Meta Learning

As we saw, there are numerous learning techniques developed for various domains

and if a user wants to embed any technique in the application, he ought to learn the

domain of that application. It may possible that the user does not have adequate

knowledge of the technique and might choose the technique which is not suitable for

the application for which he is working. As a solution to this, meta learning concept

is developed under supervised learning with keeping a goal of providing an assistance

in selecting the classifier based on performance. [16]

Meta learning can be defined as learning to learn. As from the No Free Lunch

Theorem, there is no single learning technique which can be applied to all type of

domains/datasets and can deliver the better results, as the process presents us with

learning problems induces a non-uniform probability distribution over the possible

functions. Cross-validation is regularly used as a mechanism to select among com-

peting learning algorithms. Fig-01 shows a general CV method. Even, NFL holds for

cross validation technique too and hence it can not be used for each domain, which

14

leads to other solution to make individual algorithm for each application, which is

not viable. The researchers used trial-and-error method- that performs well on the

target domains and others that are to be evaluated. But, as the number of algorithms

have increased, this approach is not suitable. As the solution to this a new knowledge

driven strategy, meta learning found. Meta learning assumes only a bias for learning

the estimate of the function distribution. [18]

Figure 2.1: Cross Validation Meta Learner [17]

Given a new dataset, we wish to produce a recommendation of an algorithm from

the set of candidate algorithms, that would be related to their actual performance on

that dataset, without actually executing them. According to No Free Lunch theorem,

it is not possible to determine one algorithms which performs well on all the types

of datasets. And hence, in meta learning, the process of choosing the datasets from

previously executed ones are done. This selection process is based on the relevance

of the training datasets to the query dataset. It is expected that if two datasets

are quite similar, so should be the corresponding performance of a given candidate

algorithm. [1]

This process is done through training of the meta model. Now, the amount of training

data available is really small for the meta learning process. The process of building

the meta model is explained below.

15

2.2 Basic Architecture

The meta learning is a two phase process:

1) Knowledge Acquisition Phase

2) Advisory Phase

a. Knowledge Acquisition Phase

The input to the knowledge acquisition phase is the datasets or the samples

with the known classifiers appropriate for them. The meta learner tries to set a

relationship between datasets and the classifiers through a set of meta features.

This process in detail is shown in the Fig. 02. [19]

Figure 2.2: Knowledge Acquisition Phase

In knowledge acquisition phase, the example datasets are provided to the meta

feature generator, which creates meta-dataset. Before using these example

datasets for the feature generation, the data pre-processing can be done. An-

other module of this phase is basic learner, which applies the basic learning

techniques to the example dataset. These learning techniques include data

pre-processing, parameter settings and base learners. This is an independent

module which does not take any previous experience into account. After apply-

16

ing the learning techniques to the example dataset, the user selects a learning

strategy best known to him. The machine learning tool then evaluates the

performance of the strategy on the given dataset and generates a report. The

modules ’chosen learning strategy’ and ’performance evaluation’ pass their re-

sults to the meta feature which at the end exploit this knowledge to choose the

classifier for another dataset. Finally, the results of ’meta feature generator’

and ’performance evaluation’ are combined and an instance of meta-dataset is

generated.

During this phase, the meta learner does not exploit the knowledge of previous

results. Hence, this phase can be seen as training phase of the meta learner.

The next phase is advisory phase, which accumulates the current results with

the known previous results.

b. Advisory Phase

The input to the advisory phase is also the new dataset. The meta learner now

process on it to recommend the classifier. The modules of this phase is shown

in Fig. 03.

Firstly, the ’meta feature generator’ processes the arrived dataset as it does

in advisory mode. This module processes on the dataset and generates the

meta features, which is sent to the ’meta feature’. The inputs to the ’meta

feature’ come from the ’meat feature generator’ and ’meta-dataset’. Both in-

puts are meta features, which is compared in this module. There are various

interpretations developed for the matching process of the meta features. Us-

ing the classification problem, this module generates the list of best suitable

classifiers for the given dataset. It may also provide the ranking to these classi-

fiers according to their performance. This list is provided to the user using the

17

’recommendation’ module.

Figure 2.3: Advisory Phase

It has been observed that effectiveness of the meta learner increases as increase

of the accumulation of meta knowledge in the classification process. Meta learn-

ing can be seen as the classification process of the classifiers themselves. As we

are accumulating the meta knowledge with each new dataset, it is also called

experience learning and the meta learner itself becomes an expert after a certain

point.

2.2.1 Meta Feature Generation

As discussed earlier, the goal behind meta-learning is to learn about the learning

algorithms themselves. The prediction of choosing the best algorithm for the given

dataset is based on extraction of meta features- Features that describe the dataset

itself. In other words, meta features are the characteristics of the datasets. These

features are used to train the meta model on training data (characteristics of the

datasets whose classifiers are known). Thereafter, this model is applied on the meta-

features of a new dataset (whose classifier need to be learn). The model should be able

to predict the appropriate classifier for the target dataset based on the performance

of the previously known datasets and classifiers pairs. Meta features construct the

feature space in which each dataset is represented as a point. The training dataset is

18

already plotted points in this feature space and this distribution is used to infer the

knowledge about the new dataset.

Meta features are the measures which plays important role in computing the rela-

tionship among the classifiers and the datasets. A major focus of research has been

on defining the proper meta feature for the datasets. These meta features should

characterize the dataset in each and every aspect to keep comparison between the

datasets as simple as possible. The number of meta features to describe the dataset

should be optimized.

The development of meta features for meta learning should take the following issues

into account:

• Discriminative Power:

The set of meta features should contain information that distinguishes between

the base-algorithms in terms of their performance. Therefore they should be

carefully selected and represented in an adequate way.

• Computational Complexity:

The meta features should not be too computationally complex. If this is not the

case, the savings obtained by not executing all the candidate algorithms may

not compensate for the cost of computing the measures used to characterize

datasets.

• Dimensionality:

The number of meta features should not be too large compared to the amount

of available metadata; otherwise overfitting may occur.

Many different meta features has been defined by many researchers till now. Following

are the techniques to define the meta features for any dataset:

a. Direct Measures: (Statistical and Information Theoretic

19

This is the simplest way to generate the meta features of the dataset. They are

directly derived from the dataset. Here, the assumption made by the researchers

is that learning algorithms can be separated from each other with respect to

this dimensions offered by this information.

(I) Genotype of dataset: generates the measures based on statistical and in-

formational propertiess of the dataset. These measures are directly visible

in the dataset.

• Simple Characteristics

i. No. of instances

ii. No. of attributes

iii. No. of classes

iv. No. of binary attributes

• Statistical Characteristics

i. Standard deviation ratio

ii. Mean absolute correlation attributes

iii. First canonical correlation

iv. Mean skewness of the attributes

v. Mean kurtosis of attributes

b. Landmarking

In this technique, the performance evaluation is done using a set of simple learn-

ers which are fast in execution. [5] [9] This method follows the concept that every

dataset has certain characteristics which relates to the classifier which have ex-

pertise in that area. The simple learners are called landmarkers. Later, the

20

landmarkers or the combination of these landmarkers can estimate the perfor-

mance of any given dataset. Here, the assumption made by the researchers is

that While choosing the landmarkers following criteria should be satisfied:

(1) The learner should have minimal execution time, having less complex cal-

culations.

(2) The learners chosen in the landmarkers set, should differ in the computa-

tional mechanism, parameter measurements, and bias.

The learners which have beenthe learning algorithms’ space can be designed

into areas of expertise and that the performances of the simple learners give an

indication of the performance of more complex learning algorithms. The exces-

sively used as landmarkers: Naive Bayes Learner, Linear Discriminant Learner,

One Nearest Neighbor Learner, Decision Node Learner, Randomly Chosen Node

Learner, Worst Node Learner, Average Node Learner [6].

c. Model Based Features

The model based approach creates a model from the data and uses its properties

as feature values. The used model in this context is typically a decision tree as

it is relatively simple to characterize a tree. In this technique, a decision tree is

generated from the given dataset. [8] The measures of this decision tree is used

as the features for meta learner. In this techniques, the assumption is made

for the characteristics and that is the characteristics of the dataset should be

strongly dependent on the task/domain.The following is the list of the measures

generally derived from decision trees [7]:

• Nodes per attribute

• Nodes per instance

• Average leaf corroboration

21

• Average gain-ratio difference

• Maximum depth

• Number of repeated nodes

• Shape

• Homogeneity

• Imbalance

• Internal Symmetry

2.3 Meta Learning Tools and Applications

This section describes several tools developed for meta learning process. These tools

are being used in the industry to provide the recommendations for the classifiers.

Some tools are extensions to the machine learning tools and some are developed in-

dependently [20].

a. PaREn: A RapidMiner Extension for Meta Learning

The PaREn Automatic System Construction Wizard is a tool supporting meta

learning in RapidMiner. This extension has been developed at DFKI (Ger-

man Research Center for Artificial Intelligence) as part of the BMBF funded

project. The user just need to provide the dataset, this PaREn extension auto-

matically recommends and constructs a classification process based on certain

characteristics of the dataset. The user need to provide the dataset in the

RapidMiner environment. The PaREn wizard generates the meta features of

the given dataset and gives the predicted accuracies of the classifiers. Execu-

tion time of this process depends on the size of the dataset. At the end of the

22

process, the wizard displays the list of classifiers with their ranking based on

their accuracies and RMSE (root Mean Squared Error) value. The user can

now select any of the classifier from the list. RapidMiner then starts it normal

path for the data pre-processing for the selected classifier and the classification

process. This extension uses a predefined set of classifiers for landmarking pro-

cess which may limit its performance.

b. WekaMetal: Weka Meta Learning Environment

WekaMetal is a meta learning extension to the Weka. It provides assistance

in selection of classification algorithms based on expected accuracy and time

performance. Like PaREn, it also provides ranking to the classifiers. The train-

ing phase is performed on the datasets known as benchmark datasets and the

ranker characterizes these datasets to generate the meta knowledge. Whenever

a new dataset arrives, ranker compares the characteristics of the new dataset

with the previously gained knowledge and creates the list of the classifiers pre-

dicting the performance for the given dataset. There are several limitations of

this system in the ranking and timing. This extension needs more benchmarks

for characterization and more waiting time is experienced. Caching of the char-

acteristics also causes problems.

c. Metal DM: DMA (Data Mining Assistant)

It is prototype for web enabled assistance system, based on meta learning, that

helps the user in selecting the classifier. It is developed by European ESPRIT

Framework IV’s METAL project. It uses a set of 10 classifiers containing C5.0

Trees, C5.0 Rules, C5.0 with boosting, Naive Bayes, IB1, MLP, RBF Network,

Ripper, Linear Discriminant and LTree. The meta learner algorithm is k-NN

23

with k=3. The recommendation takes the form of the 10 algorithms in L, ob-

tained by aggregating the ranking of the query task’s nearest neighbors.

d. IDEA: Intelligent Discovery Electronic Assistant

An IDA interacts with the user to obtain dataset and the desired goal. Then

it generates the set of features based on all valid KD (Knowledge Discovery)

processes according to the user’s requirements. This involves the pre-processing

and post-processing modules and the induction algorithms. Next, the IDA will

rank suitable processes into a suggested order based on the desired results. The

IDA basically works on machine learning operators which is divided into three

categories:

1) Pre-processing: This includes processes like categorical attribute trans-

formation (e.g. categorical to binary, dual scaling etc.), Continuous attribute

transformation (e.g. class-based discretization, fixed-bin discretization, princi-

ple component analysis), record sampling(e.g. progressive sampling, random

sampling, stratified sampling) and selecting features (e.g. sequential forward

selection, correlation based selection).

2) Induction Algorithm: This include classifier (e.g. Decision trees, rule

learner), CPE (e.g. Naive Bayes, logistic regression) and regressor (e.g. Neural

network, linear regression).

3) Post-processing: This includes pruning (e.g. rule-set pruning, tree prun-

ing), thresholding (e.g. CPE thresholding, regression thresholding) and logical

model transformation (e.g. decision trees to rules).

Main advantage of IDAs is that they take user requirements into account while

ranking the algorithms. Still it is lacking in composition of the algorithms.

24

e. Consultant and Selecting Classification Algorithms

The European ESPRIT research project MLT was one of the first formal at-

tempts at addressing the practice of machine learning. To facilitate such prac-

tice, MLT produced a rich toolbox consisting of a number of symbolic learning

algorithms for classification, datasets, and standards. Considerable insight into

many important machine learning issues was gained during the project, much

of which was translated into rules that form the basis of Consultant-2, the user

guidance system of MLT.

Consultant-2 is a kind of expert system for algorithm selection. It functions

by means of interactive question-answer sessions with the user. Its questions

are intended to elicit information about the data, the domain and user prefer-

ences. Answers provided by the user then serve to fire applicable rules that lead

to either additional questions or, eventually, a classification algorithm recom-

mendation. Several extensions to Consultant-2, including user guidance in data

preprocessing, were suggested and reflected in the specification of a next version

called Consultant-3. To the best of our knowledge, however, Consultant-3 has

never been implemented.

Although its knowledge base is built through expert-driven knowledge engineer-

ing rather than via metalearning, Consultant-2 stands out as the first automatic

tool that systematically relates application and data characteristics to classifi-

cation learning algorithms.

f. MiningMart and Preprocessing

MiningMart, another large European research project , focused its attention on

25

algorithm selection for preprocessing rather than for model building. Prepro-

cessing generally consists of nontrivial sequences of operations or data transfor-

mations, and is widely recognized as the most time consuming part of the KDD

process, accounting for up to 80% of the overall effort. Hence, automatic guid-

ance in this area can indeed greatly benefit users. The goal of MiningMart is to

enable the reuse of successful preprocessing phases across applications through

case-based reasoning. A model for metadata, called M4, is used to capture

information about both data and operator chains through a user-friendly com-

puter interface. The complete description of a preprocessing phase in M4 makes

up a case, which can be added to MiningMarts case base.

Given a new mining task, the user may search through MiningMarts case base

for the case that seems most appropriate for the task at hand. M4 supports a

kind of business level, at which connections between cases and business goals

may be established. Its more informal descriptions are intended to help decision

makers to find a case tailored for their specific domain and problem. Once a

useful case has been located, its conceptual data can be downloaded. The local

version of the system then generates preprocessing steps that can be executed

automatically for the current task. MiningMarts case base is publicly available

on the Internet.

26

2.4 Approaches

2.4.1 Common Terms and Evaluation Parameters in Meta

Learning

Confusion Matrix

A confusion matrix contains information about actual and predicted classifications

done by different classifiers. Performance of such classifiers is commonly evaluated

using the data in the matrix. The confusion matrix is shown below:

Classified Positive Classified Negative
Actual Positive TP FN
Actual Negative FP TN

Table 2.1: Confusion Matrix

where,

TP: the number of correct predictions of the positive examples (True Positive), FN:

the number of incorrect predictions of the negative examples (False Negative), FP:

the number of incorrect predictions of the positive examples (False Positive), TN: the

number of correct predictions of the negative examples (True Negative).

Precision

Precision p is the number of correctly classified positive examples divided by the total

number of examples that are classified as positive.

p =
TP

TP + FP

27

Recall

Recall r is the number of correctly classified positive examples divided by the total

number of actual positive examples in the test set.

r =
TP

TP + FN

F1 value or F1 score

It combines precision and recall into one measure. It is harmonic mean of precision

and recall.

F1 =
2pr

p+ r

F1 =
2

1
p

+ 1
q

Accuracy

The accuracy (AC) is the proportion of the total number of predictions that were

correct. Accuracy is related to the degree of bias in the measurements. Accuracy is

used to represent the correct answer or percentage of accurate classification.

2.4.2 Meta Learning Approaches

Stacked Generalization

Originally proposed by Wolpert, this is the common approach to meta learning.

Here, a set of q base learning algorithms are applied to a training dataset Ttrain

28

: {(X̃i, ci)}mi=1 to produce q hypothesis, {hj}j=1
q , also called level-0 generalization.

Meta learning takes place when training set Ttrain is redefined into a new set T ′train.

The redefinition replaces each vector X̃i with the class predicted by each of the q

hypothesis on X̃i :

T ′train = {(X̃i, ci)} = {((h1(X̃i), h2(X̃i), ..., hq(X̃i)), ci)}

The new training set T ′train serves as input to a set of meta learners, which produce a

new set of hypothesis or level-1 generalization. The redefinition of Ttrain into T ′train is

done via k-fold cross validation. Stacked Generalization is considered a form of meta

learning because the transformation of the training set conveys information about

the predictions of the base learners (i.e. conveys meta knowledge). But it has severe

limitation in that both base learning algorithms and meta learning algorithms have a

fixed form of bias, i.e. no dynamic selection of bias. The dominant region of the meta

learning algorithm may be different from the base learning algorithm, but ultimately

fixed.

Research in stacked generalization paradigm investigates what base learning algo-

rithms and meta learning algorithms produce best empirical results. After trans-

forming the original training dataset, each example contains the predictions of the

base learning algorithms, but it may also contain the original features.

Sampling Landmarks

This method, also known as Significant wins(SW), relies on relatively fast pairwise

comparisons involving two algorithms. This method exploits performance informa-

tion of sampling landmarks representing accuracy estimates on simplified versions

of the data. A series of sampling landmarks represents in effect a partial learning

curve. [2] The characterization involves conducting experiments on new dataset. The

29

plan of these experiments is built up gradually, by taking into account the results of

all previous experiments. This whole process is divided into two steps, described as

follows:

Step-01: Determining the Partial Order of Classification algorithms

a. Pick a pair of classification algorithms and determine which one of the two is

better.

b. Repeat this for all pairs of algorithms.

c. Process the partial order obtained in order to identify the best elements.

Figure 2.4: Example of partial order of 6 classification algorithms [2]

The aim is to analyze the partially ordered set of items and identify the top most

elements. Consider an example which involves three elements as A1, A2, and A3.

After completing first two process of this step, there are three possible outcomes:

In case 1, it is visible that A1 is the best algorithm, where in case 2, A1 and A2 are

indistinguishable. In case 3, more consideration for placing the elements are needed

which includes following strategies:

a. Considering losses, L.

b. Considering wins, W.

30

Figure 2.5: Several possible outcomes [2]

c. Considering both, LW.

Step-02: Predicting the Relative Performance of a Pair of Algorithms This step relies

on two kinds of information:

• Information about various datasets used in the past. (i) Data characteristics

(ii) accuracies of the two classification algorithms on samples of data from these

datasets. This information is known as metaknowledge.

• Information about the new dataset. This is again of two kinds as described in

above point.

This method now builds a ranking on the basis of results of pairwise hypothesis tests

concerning the performance of pairs of algorithms. Evaluation starts by testing the

significance of the differences in performance between each pair of algorithms. This

is done for all datasets. It is denoted as:

Algorithm j is significantly better than algorithm k on dataset i as ERi
j << ERi

k.

Then, a win table is constructed for each of the dataset as follows. The value of each

cell, W i
j,k, indicates whether algorithm j wins over algorithm k on dataset i at a given

significance level and is determined in the following way:

W i
j,k =


1 iff ERi

j << ERi
k

−1 iff ERi
k << ERi

j

0 otherwise

31

Note that, W i
j,k= - W i

j,k by definition. Next, the pairwise estimate of the probability

of winning for each pair of algorithms, is calculated which is denoted by pwj,k. This is

calculated by dividing the number of datasets where algorithm j is significantly better

than algorithm k by the number of datasets, n. This value estimates the probability

that algorithm j is significantly better than algorithm k.

Zoomed Ranking [13]

This technique employs the k-nearest neighbor algorithm with distance function based

on a set of statistical, information theoretic, and other dataset characterization mea-

sures to identify datasets that are similar to the one at hand. The first phase is to

define these features. In the second phase, a ranking is constructed on the basis of

the performance information of the candidate algorithms on the selected datasets.

Authors have presented adjusted ratio of ratios method. This method processes per-

formance information on accuracy and total execution time. It is based on the ratio

of success rate ratio and an adjusted time ratio:

ARRdi
ap,aq =

SR
di
ap

SR
di
aq

1 +
log(

T
di
ap

T
di
aq

)

KT

where SRdi
ap and T di

ap are the success rate and time of algorithm ap on dataset di

respectively, and K l
t is a user defined value that determines the relative, importance

of time. The ratio of success rates, SRdi
ap/SR

di
aq can be seen as a measure of advantage,

and the ratio of times, T di
ap/T

di
aq , as a ,easure of the disadvantage of algorithm ap relative

to algorithm aq on dataset di. The former can be considered a benefit while the latter

a cost. Thus, by dividing a measure of benefit by a measure of the cost, the overall

quality of the algorithm can be assessed.

32

Instance Based Learning(IBL) :

In meta learning the amount of data available is usually small. Hence the task

including models that are general is hard, especially with algorithms that generate

crisp thresholds, like decision trees and rule learning. IBL has advantage that the

system is extensible, once a new experimental result becomes available, it can be easily

integrated into the existing results without the need to reinitiate complex re-learning.

The features that are used for this approach are explained below:

• The number of examples: it discriminates algorithms according to how scalable

they are with respect to this measure.

• The proportion of symbolic attributes is indicative of the aptitude or inadequacy

of the algorithm to deal with symbolic or numeric attributes.

• The proportion of missing values (prop.missing.values) discriminates algorithms

according to how robust they are with respect to incomplete data. This measure

was later eliminated, as explained below.

• The proportion of attributes with outliers (prop.attr.outliers) discriminates al-

gorithms according to how robust they are to outlying values in numeric at-

tributes, which are possibly due to noise.2 An attribute is considered to have

outliers if the ratio of the variances of mean value and the -trimmed mean is

smaller than 0.7. We have used α = 0.05.

• The entropy of classes (class.entropy) combines information about the number

of classes and their frequency, measuring one aspect of problem difficulty.

• The average mutual information of class and attributes (mut.info) indicates the

amount of useful information contained in the symbolic attributes.

• The canonical correlation of the most discriminating single linear combination

of numeric attributes and the class distribution (can.cor) indicates the amount

of useful information contained in groups of numeric attributes.

33

Next, a visual analysis of this set of measures is performed with the aim of identifying

measures that seem to provide little useful information. This is done by analyzing the

correlation between values of a particular meta-attribute chosen and the performance

of each algorithm. For each meta-attribute and algorithm pair, the values of the

given meta-attribute and the ranks of the algorithm for all the datasets considered

are plotted. For example, a plot for C4.5 algorithm is shown in the figure.

Figure 2.6: Plots of two meta attributes values against the rank of C4.5 for 53 datasets
[1]

The distance function used here is the unweighted L1 norm.

dist(di, dj) =
∑ |vx, di − vx, dj|

max(vx, dk)−min(vx, dk)

where di and dj are datasets, and vx,di is the value of meta-attribute x for dataset

di . The distance is divided by the range to normalize the values, so that all meta-

attributes have the same range of values.

It may be the case that a meta-attribute is not applicable to a particular dataset.

If dataset di has no numeric attributes, then it makes no sense to calculate, for in-

stance, the canonical correlation meta-attribute. For such an attribute, dataset dj

34

can be considered close to dataset di if it also does not have any numeric attributes

and their distance is 0. On the other hand, if dataset dj does have numeric attributes,

the dataset is considered to be different from di in this respect. So, the distance is

the maximum possible, i.e., 1, after normalization.

Meta Learning using Regression:

One of the objectives of the METAL project was to extend the approach to consider

regression problems in addition to classification problems. As soon as we consider

a new problem domain, however, the most important question becomes: What are

the suitable features that can adequately characterize a dataset? While the Stat-

Log features are suitable for classification problems (e.g., measuring the distributions

between classes, entropy of classes, etc.), they need to be adapted for regression

problems that model a relationship between inputs and a continuous single output or

target variable. These included coefficient of variation, sparcity, and stationarity of

the target variable; presence of outliers in the target; R2 coefficient of a linear regres-

sion model; and average absolute correlations between the variables themselves, and

between the variables and target. These measures were in addition to the suitable

StatLog measures.

Active Meta Learning:

Machine learning algorithm can achieve greater accuracy with fewer training labels

if it is allowed to choose the data from which it learns. An active learner may pose

queries, usually in the form of unlabeled data instances to be labeled by an oracle

(e.g., a human annotator).Active learning is well-motivated in many modern machine

learning problems, where unlabeled data may be abundant or easily obtained, but

labels are difficult, time-consuming, or expensive to obtain. In the traditional su-

pervised learning, the learner is trained by taking input as a set of randomly chosen

35

training examples. This approach is referred in the literatures passive learning, and

it has been broadly applied in several applications. However, both empirical and

theoretical studies have shown that the learning performance can be improved when

the learner is allowed to ask questions to the teacher, i.e. to decide which data will

be included in the training set.

Active Leaning is a paradigm of Machine Learning in which the learning algorithm

has some control over the inputs on which it trains. The main objective of this

paradigm is to reduce the number of training examples, at same time maintaining, or

even improving, the performance of the learning algorithm. Active Learning is ideal

for learning domains in which the acquisition of labeled examples is a costly process,

such as image recognition, text classification and information filtering. [41]

The cost of acquiring labels for Meta Learning is computationally expensive as it

is necessary to execute candidate algorithms on the datasets used for training. This

makes Meta learning a good candidate problem for active learning techniques. So

here evaluation of the candidate algorithm is performed only in a selected subset of

the available datasets. Figure shows active learning process.

Active Learning starts with a small set of one or more labeled examples and a large

set of unlabeled ones. Labeled examples in the context of meta-learning are gener-

ated from datasets for which the candidate algorithms were already evaluated. The

unlabeled examples in turn correspond to datasets which are only candidates for

metaexample generation. An active learning module receives these two sets as input

and selects, from the later, the next example to be labeled. The selection of unlabeled

meta-examples is performed based on pre-defined criteria which take into account the

meta-features of the problems and current set of labeled examples. Labeling is done

by evaluating the candidate algorithms on the selected problems and the best algo-

rithm on each of them becomes the label of the corresponding meta-example.

36

Figure 2.7: Active Learning Process [22]

Other Ranking Methods

Average Ranks Ranking Method [3]:

This is a simple ranking method, inspired by Friedman’s M Statistics (explained

later). For each dataset the algorithms are ordered according to the measured error

rates and ranks are assigned accordingly. The best algorithm will be assigned rank

1, the runner-up 2, and so-on. Let rij be the rank of algorithm j on dataset i. The

avarage rank of each algorithm is r̄j = (
∑

i r
i
j)/n, where n is the number of datasets.

The final ranking is obtained by ordering the average ranks and assigning ranks to

the algorithms accordingly.

Success Rate Ratios Ranking Method [3]:

This method employs ratios of success rates between pairs of algorithms. This method

starts by creating a success rate table for each of the datasets. Each slot of this table

is filled with SRRi
j,k = (1− ERi

j)/(1− ERi
k), where ERi

j is the measured error rate

of algorithm j on dataset i. Next, a pairwise mean success rate ratio is calculated,

SRRj,k = (
∑

i SRR
i
j,k)/n, for each pair of algorithms j and k, where n is the number

37

of datasets. This is an estimate of the general advantage/disadvantage of algorithm

j over algorithm k. Finally, the overall mean success rate ratio for each algorithm,

SRRj = (
∑

k SRRj,k)/(m − 1), where m is the number of algorithms. The ranking

is derived directly from this measure.

2.4.3 Statistical Methods

This section is based on simple statistics. As here, we need to compare the statistics

derived from the datasets. Here, the comparison between two datasamples from two

different populations are compared. If two independent random variables y1 and y2

are normally distributed with means and variances (µ1, σ
2
1) and (µ2, σ

2
2), respectively,

the difference between the random variables is normally distributed with mean equal

to (µ1−µ2) and variance equal to (σ2
1 +σ2

2). Similarly, the sum (y1+y2) of the random

variables is also normally distributed with mean (µ1 + µ2) and variance (σ2
1 + σ2

2).

Wilcoxon Signed Ranks Test: Nonparametric Analysis for Two Popula-

tions

Steps:

a. For each item in a sample of n items, compute a difference score, Di between

the two paired values.

b. Neglect the + and - signs and list the set of n absolute differences, |Di|.

c. Omit any absolute difference score of zero from further analysis, thereby yielding

a set of n’ nonzero absolute difference scores, where n’≤ n. After you remove

values with absolute difference scores of zero, n’ becomes the actual sample size.

38

d. Assign ranks Ri from 1 to n’ to each of the |Di| such that the smallest absolute

difference score gets rank 1 and the largest gets rank n’. If two or more |Di| are

equal, assign each of them the mean of the ranks they would have been assigned

individually had ties in the data not occurred.

e. Reassign the symbol + or - to each of the n’ ranks, Ri, depending on whether

Di, was originally positive or negative.

f. Compute the Wilcoxon test statistics, W, as the sum of the positive ranks as

shown below.

W =
n′∑
i=1

Ri
(+)

39

Chapter 3

Proposed Work

Two approaches are proposed in this project. The first approach is based on the meta

learning as well as some statistical concepts. The second proposal is combination of

ensemble methods, reinforcement learning and meta learning. In the following section

these three concepts are explained. In the subsequent sections, the proposed algorithm

and the partial implementation of the first proposed work is given. Following section

is concluded with future work.

3.1 Background

Ensemble Methods [23]

Ensembles of models are sets of (simple) models whose outputs are combined, for in-

stance with majority voting, into a single output or prediction. As it is often the case

thatpredictive accuracy of ensembles is better than that of their constituent (base)

models, they are quite popular in the machine learning field. The ensemble method

depends on two steps. The first is to generate the base models and the second step is

to combine these models to get the final prediction results. The majority of ensemble

40

research has focused on methods from the first group, i. e., methods that use different

learning data sets. Such data sets can be obtained by resampling techniques such as

bootstrapping where learning sets are drawn randomly with replacement from the

initial learning data set. Once a sufficiently diverse set of base models is generated,

they are combined so that a single prediction can be obtained from the ensemble.

Generally, it is done by two methods: Model Selection or Model Fusion. In model

selection, performance of the all base models is evaluated, and simply the predictions

of the best one is chosen. In model fusion, predictions of all the base learners are

combined to get the final result. Some of the very popular ensemble methods, which

are going to be used in this proposed work are discussed below:

Voting

Strictly speaking, voting is not an ensemble method, but a method for combining

base models, i. e., it is not concerned with the generation of the base models. Still, it

is included in this selection of ensemble methods because it can be used for combining

models regardless of how these models have been constructed. As mentioned before,

voting combines the predictions of base models according to a static voting scheme,

which does not depend on the learning data or on the base models. It corresponds to

taking a linear combination of the models. The simplest type of voting is the plurality

vote (also called majority vote), where each base model casts a vote for its predic-

tion. The prediction that collects most votes is the final prediction of the ensemble.

If we are predicting a numeric value, the ensemble prediction is the average of the

predictions of the base models.

A more general voting scheme is weighted voting, where different base models can

have different influence on the final prediction. Assuming we have some information

41

on the quality of the base models predictions (provided by the models themselves or

through some background knowledge), we can put more weight on the predictions

coming from more trustworthy models. Weighted voting predicting nominal values

simply means that vote of each base model is multiplied by its weight and the value

with the most weighted votes becomes the final prediction of the ensemble. For pre-

dicting numeric values we use a weighted average. If di and wi are the prediction of

the ith model and its weight, the final prediction is calculated as Y =
∑b

i=1widi.

Bagging

Bagging (short for bootstrap aggregation) is a voting method where base models

are learned on different variants of the learning data set which are generated with

bootstrapping (bootstrap sampling). Bootstrapping is a technique for sampling with

replacement; from the initial learning data set we randomly select examples for a new

learning (sub)set, where each example can be selected more than once. If we generate

a set with the same number of examples as the original learning set, the new one

will on average contain only 63.2% different examples from the original set, while the

remaining 36.8% will be multiple copies.

Using these sampled sets, a collection of base models is learned and their predic-

tions are combined by simple majority voting. Such an ensemble often gives better

results than its individual base models because it combines the advantages of individ-

ual models. Bagging has to be used together with an unstable learning algorithm (e.

g., decision trees or neural networks), where small changes in the learning set result

in largely different classifiers. Another benefit of the sampling technique is that it

is less likely that (many) outliers in the learning set show up also in the bootstrap

sample. As a result, base models and the ensemble as a whole should be less sensitive

to data outliers.

42

Boosting

Boosting comprises a whole family of similar methods that, just as bagging, use vot-

ing to combine the predictions of base models learned by a single learning algorithm.

The difference between the two approaches is that in bagging the complementarity

of the constructed base models is left to chance, while in boosting we try to generate

complementary base models by learning subsequent models, taking into account the

mistakes of previous models. The procedure starts by learning the first base model

on the entire learning set with equally weighted examples. For the next base models,

we want them to correctly predict the examples that have not been correctly pre-

dicted by previous base models. Therefore, we increase the weights of these examples

(or decrease the weights of the correctly predicted examples) and learn a new base

model.We stop learning new base models when some stopping criterion is satisfied

(like when the accuracy of the new base model is less then or equal to 0.5). The pre-

diction of the ensemble is obtained by weighted voting, where more weight is given to

more accurate base models; the weights of all classifiers that vote for a specific class

are summed and the class with the highest total vote is predicted.

Stacking

Stacking or stacked generalization is a method for combining heterogeneous base

models, i. e., models learned with different learning algorithms such as the nearest

neighbor method, decision trees, naive Bayes, etc. Base models are not combined with

a fixed scheme such as voting, but rather an additional model called meta (or level

1) model is learned and used for combining base (or level 0) models. The procedure

has two steps. First, we generate the meta learning data set using the predictions of

the base models. Second, using the meta learning set we learn the meta model which

can combine predictions of base models into a final prediction.

43

3.2 Proposed Design

Here, in this project, we are proposing a meta learning approach with hierarchical

training to choose the good classification algorithm for the given dataset. For this

a meta dataset is designed, consisting of 26 meta features of 85 datasets. Then, for

testing, we have chosen 45 datasets from random sources(mainly from USI machine

learning repository).

Meta Dataset Generation

The datasets chosen for the training purpose, go through the meta dataset generator.

This module(java based) generates the meta dataset by calculating the meta features.

Here, we have used 26 meta features combining the direct measures, information

theoretic measures and statistical measures. The set of meta features used in this

project are listen in Appendix-A. The meta feature generator module calculates all

these measures for each 85 datasets and puts them as an instance in the metadataset.

After calculating the meta dataset, to assign the class to each data instances of this

meta dataset, a module is designed which builds the classification models of each

classification algorithm selected in the algorithms’ pool. Results are compared of

all built models and a best classification algorithm is chosen based on the values of

accuracy and RMSE(Root mean squared error). (High in accuracy, low RMSE). This

phase returns a complete meta dataset which is used for the training purpose.

Training Phase

The Neural Network algorithm given in the Weka Machine Learning Tool with default

parameter settings, is trained using this meta dataset.Here, we have 16 classification

algorithms hence 16 number of classes and the number of instances are only 85.

If we directly apply the classifier’s name as class, then the accuracy of this model

44

is very less(18%). As in the classifier’s pool, there are 16 classification algorithms,

comprising of Neural network (MLP), J48, Decision Stump, Random Forest, Random

Tree, One-R, Zero-R, PART, Conjuctive Rule, Decision Table, SVM, Bayes Network,

Naive Bayes, KStar, LWL, and IBk. The neural network is not getting the enough

data for the training purpose.

Hence, here, we have followed hierarchical approach in training phase. Note that

here, class is the name of the classification algorithm itself which is well suited for the

particular dataset. These classification algorithms are categorized into five catogories

which are neural based learning algorithms, rule based learning algorithms, tree based

learning algorithms, statistics based learning algorithms, and Instance based learning

algorithms. Following is the list of categorized algorithms:

• Neural based learning algorithms: Multi-layer Perceptron(MLP)

• Rule based learning algorithms: One-R, Zero-R, PART, Conjuctive Rule,

Decision Table

• textbfTree based learning algorithms: J48, Decision Stump, Random Forest,

Random Tree

• Statistics based learning algorithms: Support Vector Machine (SVM),

Bayes Network, Naive Bayes

• Instance based learning algorithms: KStar, LWL, IBk

In the first phase, a NN is trained using the original meta dataset where the class

attribute has the 5 values, Neural, Rule, Tree, Statistics, and Instance. Using cross

validation, we are getting the accuracy of this classification around 77%. When the

new dataset comes (whose well suited classification algorithm is to be determined),

it goes to meta feature generator first, where 26 meta features of the dataset is cal-

culated. This 26 meta features make an instance and it is presented to the trained

model, which predicts the algorithms’ category for the given dataset. After comple-

45

tion of this first phase, we will be having the instance for the new dataset and its

class i.e. algorithm’s category which is well suited for the dataset.

Now, as the category is determined, all the instances from the training meta dataset

containing the same category of the class is extracted, which forms another dataset

which is subset of the original meta dataset. Now in this subdataset, the class at-

tribute is replaced with the classification algorithms’ name, which is already deter-

mined in the first stage. Another NN is trained and the test instance is presented to

this trained model which now determines the classification algorithms’ name which

is well suited for the dataset.

3.3 Experimental Results

The following table shows some accuracy results of 5 algorithms over 17 datasets.

The following graphs show the average performance of each classification algorithm

on the 85 training datasets.

Figure 3.1: Average Performance (Accuracy)

46

Dataset
Base Learners

BN J48 NN IBK KS
Glass 46.38 63.81 61.96 67.33 50.38
Breast 95.8 94.38 96.03 95.74 96.14

Diabetes 75.13 70.53 75.42 70.74 77.68
Spirals 47.79 42.84 48.56 79.47 49.05

Segment 80.01 94.51 95.7 96.94 88.35
Wine 97.65 92.35 97.65 96.12 98.71
Heart 83.04 73.19 82.01 77.26 78.96
Ecoli 80.18 82.36 84.18 79.58 85.88
Flags 43.79 54.93 75.38 71.69 67.69

Balance 90.35 41.35 93.3 78 86.25
Ionosphere 89.37 92.46 89.71 86.8 84.17

Iris 55.37 43.16 54.52 39.26 54.21
Lenses 87.87 89.49 98.44 97.36 94.85

Mushroom 22.05 70.04 43.21 60.01 22.22
Ozone 82.07 90.55 91.25 91.16 90.26

Soybean 76.52 72.14 79.63 82.79 80.19
Yeasy 85.69 93.59 99.37 94.6 93.79

Table 3.1: Results: Accuracies of 5 Base Learners over 17 selected Datasets

47

Figure 3.2: Average Performance (Time)

From the above table and graphs, it is clearly visible that there is no particular

algorithm which works well for each dataset. The average performance is also similar

in most of the classification algorithm.

After assigning the class value, we trained the neural networks in a hierarchy as

explained above. After this training, we selected other 35 datasets from different

domains (mainly from UCI machine learning repository), and calculated their meta

features. The trained neural network predicted the classification algorithm for the

given datasets with 84% of accuracy with 10-fold cross validation. While evaluating

the prediction accuracy for the new 35 datasets, we are getting the accuracy of 81%

and the confidence factor for each individual instance higher than 77%(The minimum

confidence factor is 76.98%). The confidence factor for each test instance is calculated

using the following equation:

CFi =
ni

mi

where,

48

i is the particular test instance for which the CF is calculated.

ni = number of datasets for which (class value = predicted class valuei)

mi = number of datasets that are similar to dataseti

Here, the similarity measure is calculated using Euclidean distance between two

dataset instances.

3.4 Conclusion and Future Work

As shown in the table, and as per No Free Lunch Theorem, there is no such one learn-

ing algorithm which can perform well on every dataset. The results of the learning

algorithm is totally based on its area of expertise as well as the data characteristics.

As, the classifiers selected in the classification pool are predefined, introducing the

categories and the hierarchical approach improves the results significantly. Still, there

are few issues which are untouched in this project work. The pool of the classification

algorithms contains 16 algorithms currently. With this approach, by increasing the

number of algorithms, the performance of the module is affected in terms of the build-

ing time of the model for the meta dataset. This issue can be solved by parallelizing

the models used to create the metadataset. Another issue is feature selection. Here,

we have selected 28 meta features of three types (Direct, Statistical, and Information

theoretic). The metadatasets for all these individual meta feature types are available

but there is no such metadataset available where all the types have been used. Here,

we have applied feature selection on each individual metadataset and have selected

the most affecting features from those metadatasets. Though, feature selection can

be applied to our meta dataset. Another issue which has not been included in this

project work is parameter tuning of the classification algorithms. Even if the number

of algorithms is not increased in the pool, with the same pool, there can be different

variations of all the algorithms with different parameter settings. Here, we have con-

sidered all the classification algorithms with their default parameter settings as given

49

in the WEKA machine learning tool. As shown in many papers, parameter tuning

can improve the classification algorithm’s performace significantly.

50

References

[1] Pavel B. Brazdil, Carlos Soarse, Joaquim Pinto Da Costa, Ranking Learning
Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results, Pro-
ceedings of International Conference on Machine Learning, 50, 251-277, 2008.

[2] Pavel Brazdil, Rui Leite, Determining the Best Classification Algorithm with
Recourse to Sampling and Meta-Learning, Advances in Machine Learning I, SCI
262, pp. 173-188, 2010.

[3] Pavel B. Brazdil, Carlos Soarse, A Comparison of Ranking Methods for Clas-
sification Algorithm Selection, In proceedings of the European Conference on
Machine Learning ECML2008, pp. 63-74, 2008.

[4] Matthias Reif, Faisal Shafait, Markus Goldstein, Thomas M. Breuel, Andreas
Dengel, Automatic Classifier Selection for Non-Experts, Journal of Pattern Anal-
ysis and Applications, July-2012.

[5] Johannes Furnkranz, Johann Petrak, An Evaluation of Landmarking Variants,
Proceedings of the ECML/PKDD Workshop on Integrating Aspects of Data
Mining, Decision Support and Meta-Learning (IDDM-2001), 57-68, 2001.

[6] Hilan Bensusan, Christophe Giraud-Carrier, Discovering task neighbourhoods
thorugh landmark learning performances, Proceedings of the 4th European Con-
ference on Principles of Data Mining and Knowledge Discovery (PKDD-00),
325-330, 2000.

[7] H. Bensusan, C. Giraud-Carrier, C.J. Kennedy, A Higher order approach to
meta-learning, A Technical Report, University of Bristol, UK, 2000.

[8] Hilan Bensusan, Odd bites into bananas don’t make you blind - learning about
simplicity and attribute addition, Proceedings of the ECML’98 workshop on
upgrading learning to the meta-level: model selection and data transformation,
April 1998, 30-42.

[9] Bernhard Pfahringer, Hilan Bensusan, Christophe Giraud-Carrier, Tell me who
can learn you and I can tell you who you are: Landmarking various Learning
Algorithms, Proceedings of the Seventeenth International Conference on Machine
Learning (ICML2000) (pp. 743-750). San Mateo, CA: Morgan Kaufmann.

51

[10] Yonghong Peng, Peter A. Flach, Carlos Soarse, Pavel Brazdil, Improved Dataset
Characterization for Meta-learning, Proceedings of the 5th International Confer-
ence on Discovery Science, pp. 141-152, 2002.

[11] Matthias Reif, Faisal Shafait, Andreas Dengel, Meta-Features: Providing Meta-
Learners More Information, Poster and Demo track of 35th German Conference
on Artificial Intelligence (KI-2012), pp. 74-77, 2012.

[12] Shawkat Ali, Kate A. Smith, On learning algorithm selection for classification,
Applied Soft Computing 6, pp. 119-138, 2006.

[13] Pavel B. Brazdil, Carlos Soarse, Zoomed Ranking: Selection of Classification
Algorithms based on Relevant Performance Information, Proceedings of the 4th
European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD’00), pp. 126-135, 2000.

[14] Robert Engels, Christiane Theusinger, Using a Data Metric for Preprocessing
Advice for Data Mining Applications, 13th European Conference on Artificial
Intelligence, 1998.

[15] Meta Learning, Cognitive Technologies, pp. 31-59, 2009.

[16] Ricardo Vilalta, Christophe Giraud-Carrier, Pavel Brazdil, Carlos Soares, Us-
ing Meta Learning to Support Data Mining, International Journal of Computer
Science and Applications, Vol. I, No. 1, pp. 31-45.

[17] Christophe Giraud-Carrier, Metalearning-A Tutorial, December 2008

[18] Ricardo Vilalta, Youssef Drissi, A Perspective View and Survey of Meta-
Learning, Journal of Artificial Intelligence, Vol. 18, 77-95, 2002.

[19] Ricardo Vilalta, Christophe Giraud-Carrier, Pavel Brazdil, Meta-Learning: Con-
cepts and Techniques, International Journal of Soft Computing and Engineering,
Vol. I, pp. 31-45, 2006.

[20] Xiaojun Chen, Yunming Ye, Graham Williams, Xiaofei XuA, Survey of Open
Source Data Mining Systems, Proceedings of the 2007 international conference
on Emerging technologies in knowledge discovery and data mining (PAKDD’07),
3-14, 2007.

[21] Meta Learning, Cognitive Technologies, pp. 61-72, 2009.

[22] Nikita Bhatt, Amit Thakkar, Ranking of Classifiers based on Dataset Charac-
teristics Using Active Meta Learning, 2012.

[23] Saso Dzeroski, Pance Panov, Bernard Zenko, Ensemble methods in Machine
Learning, Report, Jozef Stefan Institute, Slovenia, 2010.

52

[24] Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of
Information and Computer Science.

[25] Tom Mitchell, Machine Learning, McGraw Hill, 1997.

[26] Xiaojin Zhu, Semisupervised Learning Literature Survey, 2006.

[27] Data Pre-processing in WEKA, www.cs.waikato.ac.nz/ml/weka .

[28] WEKA- Experiences with Java Open Source Project,

[29] Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets,
The journal of Machine Learning Research, January 2006, Vol. 7, 1-30.

[30] Matthias Reif, A Comprehensive Dataset for Evaluating Approaches of Various
Meta Learning Tasks, ICPRAM (2012), p. 273-276.

[31] Matthias Reif, Faisal Shafait, and Andreas Dengel, Dataset Generation for Meta
Learning, 35th German Conference on Artificial Intelligence (KI-2012) pp. 69-73,
2012.

[32] Pavel Kordik, Jan Cerny, On Performance of Meta Learning Templates on Differ-
ent Datasets, IEEE World Congress on Computational Intelligence, June 10-15,
2012, Brisbane, Australia.

[33] Janez Demsar, Statistical Comparisons of Classifiers over Multiple Datasets,
Journal of Machine Learning Research, 7, 1-30, 2006.

[34] Silviu Cacoveanu, Camelia Vidrighin, Rodica Potolea, Evolutional Meta-learning
Framework for Automatic Classifier Selection, IEEE 5th International Confer-
ence on Intelligent Computer Communication and Processing, 2009, 27-30.

[35] Marcilio C. P. de Souto, Ricardo B. C. Prudencio, Rodrigo G. F. Soarse, Daniel S.
A. de Araujo, Ivan G. Costa, Teresa B. Ludermir, Alexander Schliep, Ranking
and Selecting Clustering Algorithms Using a Meta-learning Approach, IEEE
International Joint Conference on Neural Networks, 2008. (IJCNN 2008), 3729-
3735.

[36] M. A. Torsello, C. Castiello, A. M. Fanelli, A Meta Classification Framework,
IEEE International Conference on Fuzzy Systems, July 16-21, 2006, 401-407.

[37] Abraham Bernstein, Foster Provost, An Intelligent Assistant for the Knowledge
Discovery Process, 2001.

[38] Troy Raeder, Nitesh V. Chawla, Model Monitor (M2) : Evaluating, Comparing
and Monitoring Models, The journal of Machine Learning Research, January
2009, Vol. 10, 1387-1390.

53

[39] D. Michie, D. J. Spiegelhalter, C.C. Taylor,Machine Learning, Neural and Sta-
tistical Classification, Ellis Horwood Series in Artificial Intelligence, February
1994, Prentice Hall.

[40] Xiaojun Chen, Yunming Ye, Graham Williams, Xiaofei XuA, Survey of Open
Source Data Mining Systems, Proceedings of the 2007 international conference
on Emerging technologies in knowledge discovery and data mining (PAKDD’07),
3-14.

[41] Ricardo B. C. Prudencio, Teresa B. Ludermir, Active Meta Learning with Un-
certainty Sampling and Outlier Detection, IEEE International Joint Conference
on Neural Networks (IJCNN 2008), pp. 346-351, 2008.

54

Appendix A

Appendix

Meta Features

Here is the list of meta features which have been used in this project:

• Simple(Direct) Measures:

Number of Classes

Number of Attributes

No. of Nominal Attributes

No. of Numeric Attributes

Samples

Dimensionality

Fraction of Nominal Attributes

Fraction of Numeric Attributes

Minimum Symbols

Maximum Symbols

Mean Symbols

Sum of Symbols

55

No. of Missing Values

• Information Theoretic Measures:

Minimum Class Probability

Maximum Class Probability

Mean Class Probability

Class Entropy

Attribute Entropy

Joint Entropy

Mutual Information

Equivalent Attributes

Noise-to-Signal Ratio

• Statistical Measures: Skewness

Kurtosis

Absolute Correlation

Canonical Correlation

56

	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Overview to Machine Learning
	 Machine Learning Tools

	Literature Survey
	Meta Learning
	Basic Architecture
	Meta Feature Generation

	Meta Learning Tools and Applications
	Approaches
	Common Terms and Evaluation Parameters in Meta Learning
	Meta Learning Approaches
	Statistical Methods

	Proposed Work
	Background
	Proposed Design
	Experimental Results
	Conclusion and Future Work

	References
	Appendix

