

1

Declaration

This is to declare that

1. The thesis comprises my original work towards the degree of Master of
Technology in Computer Science at Nirma University and has not been
submitted elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material
used.

- Poorna Banerjee (11MCEC23)

iii

Certificate

This is to certify that the Major Project entitled ”GPGPU Based High Perfor-
mance Computation Support for Client-Server framework” submitted by Ms.
Poorna Banerjee (11MCEC23), towards the partial fulfilment of the require-
ments for the degree of Master of Technology in Computer Science and En-
gineering of Nirma University of Science and Technology, Ahmedabad, is the
record of work carried out by her under my supervision and guidance. In my
opinion, the submitted work has reached a level required for being accepted for
examination. The results embodied in this major project, to the best of my
knowledge, haven’t been submitted to any other university or institution for
award of any degree or diploma.

Mr. Amit Dave
External Guide, PCSVD Division,
Space Applications Centre (SAC), ISRO
Ahmedabad - 380015

Dr. Madhuri Bhavsar
Guide and Section-Head (IT)

Institute of Technology,
Nirma University, Ahmedabad

Prof. Vijay Ukani
PG Coordinator, M.Tech (CSE)
Institute of Technology,
Nirma University, Ahmedabad

Dr. Sanjay Garg
Professor and Head,

Department of Computer Engineering,
Institute of Technology,

Nirma University, Ahmedabad

Dr. Ketan Kotecha
Director,
Institute of Technology,
Nirma University, Ahmedabad

iv

Acknowledgements

It gives me immense pleasure in expressing my gratitude towards Mr. Amit
Dave, Sr. Scientist, Space Applications Centre (SAC), ISRO - Ahmedabad, for
his valuable guidance, support and motivation throughout the Major Project.
I am thankful to him for the valuable time he spent with me for my thesis, for
suggestions that shaped this project.

I will always be grateful to Shri D. R. Goswami, Group Director (PCEG/SEDA)
and Mr. Ashish Mishra, Head of PCSVD Division, Space Applications Cen-
tre (SAC), ISRO Ahmedabad, for their valuable time and highly constructive
suggestions right from the very early stage of this project work.

I would like to extend my heart-felt gratitude to Dr. Madhuri Bhavsar,
Institute of Technology, for her valuable guidance and suggestions in improving
the quality of my thesis work and always directing me towards the right path
to progress.

I would like to give my special thanks to Prof Vijay Ukani, Institute of Tech-
nology for providing constant motivation and support.

I am also thankful to Dr. K Kotecha, Director, Institute of Technology for
his kind support in all respects during my study.

I am thankful to all faculty members of Department of Computer Science and
Engineering, Nirma University, Ahmedabad for their special attention and sug-
gestions towards the improvement of my project work.

Last, but not the least, no words are enough to acknowledge the constant sup-
port and motivation given by my family members during the course of this
project work.

- Poorna Banerjee (11MCEC23)

v

Abstract

In today’s era of computing where applications can require up to terabytes of
data for processing, virtually all microprocessor vendors have switched to mod-
els where multiple processing units, referred to as processor cores, are used in
each chip to increase the processing power.

This brings into focus the Graphics Processing Units (GPUs) which emphasize
on the many-core paradigm of data processing rather than the multi-core ap-
proach supported by most of today’s modern Central Processing Units (CPUs).
With the advent of General Purpose GPUs (GPGPU), even those applications
that are not directly associated with graphics operations can still harness the
computing capabilities of a GPU.

The objective of this project is the development of a platform-independent
client-server framework to support GPGPU based high performance compu-
tation with transparency to underlying hardware and operating systems.

The system would provide extensibility in terms of the number and type of tasks
or jobs that the client can submit for processing at the remote server connected
to the GPGPU. The processed results would then be returned back to the client.

Keywords: Client-Server Framework, Client Tasks, High Performance, GPGPU,
Many-core, Multi-core, Parallel Computing.

vii

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vii

1 About Space Applications Centre (SAC), ISRO 1

2 Introduction 5
2.1 Motivation . 5
2.2 Scope of this Project . 6

3 Establishment and Completion of the Client-Server Framework 8

4 Demosaicing of an Image 12
4.1 Bilinear Interpolation based Demosaicing of an Image 12

4.1.1 Mathematical Analysis . 12
4.1.2 Task-Module Description 14
4.1.3 Execution Performance Analysis 14

4.2 Gradient Interpolation based Demosaicing of an Image 16
4.2.1 Mathematical Analysis . 16
4.2.2 Task-Module Description 19
4.2.3 Execution Performance Analysis 19

4.3 Qualitative Comparison between Bilinear and Gradient-based In-
terpolation . 21

5 Least-Squares Curve Fit for any Polynomial Order on Given
Data 24
5.1 Estimation of Best-Fit Curve using Least Squares Method 24
5.2 Task-Module Description . 25
5.3 Results Accuracy Analysis: a comparison with MATLAB’s polyfit()

function . 26
5.3.1 Methodology Adopted . 26

viii

CONTENTS ix

5.3.2 Comparison MATLAB’s polyfit() function 26
5.4 Execution Performance Analysis 27

6 GPGPU Information Generation 31
6.1 Task-Module Description . 31

7 Edge Detection from an Image and Edge Ranking for MTF
Determination of an Imaging System 33
7.1 Introduction . 33
7.2 Mathematical analysis for Edge-Rank Determination 36
7.3 Task-Module Description and Execution Performance Analysis . 37

8 Conclusions and Future Scope for Work 42

9 Publications 44

Appendix A: Literature Review 45
A Overview . 46

A.1 Compute Unified Device Architecture (CUDA) 46
A.2 Single sensor CCD Camera and Alternate Color Filter

Arrays . 50
A.3 Alternate methods for Image Demosaicing 52
A.4 Image Segmentation . 54
A.5 Modulation Transfer Function 57

Appendix B: Plagiarism Report 59

References 60

List of Figures

2.1 Enlarging performance gap between GPUs and CPUs. [11] 6
2.2 Basic Schematic Diagram. 7

3.1 Header template for sending user parameters to the server (Field
sizes in bytes) . 9

3.2 GUI Interface for GPGPU Based Computation Support 11

4.1 The Bayer Pattern [16] . 13
4.2 Executing Bilinear Interpolation Based Demosaicing 15
4.3 Results of Bilinear Interpolation Based Demosaicing 16
4.4 Performance Chart for Bilinear Interpolation Based Demosaicing 17
4.5 Speed-ups Obtained from Bilinear Interpolation Based Demosaicing 18
4.6 Executing Gradient Interpolation Based Demosaicing 20
4.7 Results of Gradient Interpolation Based Demosaicing 21
4.8 Performance Chart for Gradient Interpolation Based Demosaicing 22
4.9 Speed-ups Obtained from Gradient Interpolation Based Demo-

saicing . 23

5.1 Executing Least Squares Curve Fitting 25
5.2 Speed-ups Obtained from Least Squares Curve Fitting 29
5.3 Performance Chart for Least Squares Curve Fitting 30

6.1 Executing GPU Information Generation Utility 32

7.1 Edge profiles for an ideal and ramp edge 34
7.2 The Laplacian-of-Gaussian filter 35
7.3 Edge Detection and Ranking for sample-image1 37
7.4 Edge Detection and Ranking for sample-image2 38
7.5 GUI configuration for Edge Detection and Ranking 39
7.6 Performance Chart for Edge Detection and Ranking 40
7.7 Speed-ups Obtained from Edge Detection and Ranking 41

A.1 The CUDA thread model . 47
A.2 CUDA device memory model . 48

x

LIST OF FIGURES xi

A.3 The conventional Bayer Pattern color filter array 50
A.4 Spatial distribution for alternate CFA patterns 51
A.5 Filter Coefficients for High Quality Linear Interpolation 53
A.6 Bayer CFA sampling structure 53
A.7 Line detection masks . 55
A.8 Gray-level histrograms that can be partitioned by a (a) a single

threshold (b) by multiple thresholds 55
A.9 Edge Based Estimation of MTF 58

List of Tables

4.1 PSNR Calculation for Bilinear and Gradient-based interpolation 22

5.1 Matrix A . 26
5.2 Matrix V . 27
5.3 LTC Data-set for one Pixel . 27
5.4 Coefficients for Best-Fit Least Squares Curve 28
5.5 Fitted Data from Generated Coeff and MATLAB Coeff for Order 3 28

xii

Chapter 1

About Space Applications
Centre (SAC), ISRO

Introduction: Space activities in the country started during early 1960s
with the scientific investigation of upper atmosphere and ionosphere over the
magnetic equator that passes over Thumba near Thiruvananthapuram using
small sounding rockets Realising the immense potential of space technology for
national development, Dr. Vikram Sarabhai, the visionary leader envisioned
that this powerful technology could play a meaningful role in national develop-
ment and solving the problems of common man. Thus, Indian Space programme
born in the church beginning, space activities in the country, concentrated on
achieving self reliance and developing capability to build and launch communi-
cation satellites for television broadcast, telecommunications and meteorological
applications; remote sensing satellites for management of natural resources.

The objective of ISRO is to develop space technology and its application to var-
ious national tasks. Accordingly, Indian Space Research Organisation (ISRO)
has successfully operationalised two major satellite systems namely Indian Na-

1

CHAPTER 1. 2

tional Satellites (INSAT) for communication services and Indian Remote Sens-
ing (IRS) satellites for management of natural resources; also, Polar Satellite
Launch Vehicle (PSLV) for launching IRS type of satellites and Geostationary
Satellite Launch Vehicle (GSLV) for launching INSAT type of satellites.

Space Applications Centre (SAC) is one of the major centres of the Indian
Space Research Organisation (ISRO) located in Ahmedabad, Gujarat. SAC
focuses on the design of space-borne instruments for ISRO missions and devel-
opment and operationalisation of applications of space technology for national
development. The applications cover communication, broadcasting, navigation,
disaster monitoring, meteorology, oceanography, environment monitoring and
natural resources survey.

SAC designs and develops all the transponders for the INSAT and GSAT series
of communication satellites and the optical and microwave sensors for IRS series
of remote sensing satellites. Further, SAC develops the ground transmit/receive
systems (earth stations/ ground terminals) and data/image processing systems.

In order to carry out the above tasks, SAC has highly sophisticated payload
integration laboratories, electronic and mechanical fabrication facilities, envi-
ronmental test facilities, systems reliability/assurance group, image processing
and analysis facilities, project management support group and a well-stocked
library.

The Centre also conducts nine-month post graduate diploma courses for stu-
dents from the Asia Pacific region under the aegis of the Centre for Space
Science and Technology Education (CSSTEAP) in satellite meteorology and
communication. SAC works with industry for sourcing and indigenization, in-
volves Indian universities in space research and propagates space technology and
applications amongst students and public through in-house and mobile exhibi-
tions.

History and Achievements:
Prior to 1972, research in applications of space technology was pursued by dif-
ferent units of ISRO in Ahmedabad - the birthplace of Dr Vikram A. Sarabhai.
These were merged to form SAC in 1972. SAC is one of the major centres of
Indian Space Research Organisation.

Satellite Communications:
Recognizing the possible role of space communications in nation building, an
Experimental Satellite Communication Earth Station (ESCES) was established
in 1967 at Ahmedabad (now part of SAC). It was an experimental Earth Station
and training centre where scientists and engineers of India and other developing
countries could receive training and first hand experience in the design, develop-
ment and operations of an earth station for communications and broadcasting.
A large number of international training courses have been conducted since then.

CHAPTER 1. 3

A unique experiment called the Satellite Instructional Television Experiment
(SITE) was conducted during 1975-76 utilising the American ATS-6 satellite.
It involved telecasting educational programmes aimed at socio-economic uplift-
ment of rural India, to 2400 villages - spread over six states - through experimen-
tal Direct Reception Sets. SITE was followed by communication techniques de-
velopmental project called Satellite Telecommunications Experiments Projects
(STEP), carried out with the Frenco-German satellite, Symphony.

The first experimental communication satellite APPLE, designed, fabricated
and qualified at SAC, It was launched onboard the first experimental flight of
the Arian. An exhaustive communications application programme called the
APPLE Utilisation Programme (AUP) was also conceived and carried out si-
multaneously. The INSAT-1 series of satellites was custom designed and made
as per the unique requirements of the country by a US company. The INSAT
2A, 2B, 2C, 2D and 2E, launched in the years 1992, 1993, 1995, 1997 and 1999
respectively, were designed, fabricated and qualified in house. These had various
combinations of C, Ext. C, Ku and S band transponders with varying degrees
of EIRP Some of these also carried meteorological payload VHRR, payload for
Search and Rescue, etc. It is worth noting here that eleven transponders on-
board the INSAT2E was leased to the international INTELSAT group even
before its launch.

Remote Sensing:
The utilisation of aerial and Landsat imagery for resources application in early
70s paved way for initiation of the remote sensing activities in the country. Ac-
tivities were also carried in the field of meteorology with available data from
foreign satellites and from indigenously developed airborne thermal Scanner.
All the remote sensing activities so far can be divided into three Phases, viz.
Experimental Phase, Semi-Operational and Operational Phase.

The first phase saw the development of airborne thermal sensors such as Infrared
(IR) scanner, multispectral scanner, linear Charge Coupled Device (CCD) cam-
era, Side Looking Radar, Colour Infrared (CIR) based photographic systems and
a number of photo interpretation and ground truth equipment which were later
productionised through technology transfer. Landsat data were fully utilised
since 1973 to learn space based Remote Sensing applications. For all these sen-
sors, efforts were made to also define and develop data products systems.

Based on above initial work, a strong applications programme was evolved
around these instruments. Foundations for space borne sensors were laid during
this period. Under Satellite for Earth Observation (SEO) programme, 2 satel-
lites were launched and called Bhaskara satellites after their Launch onboard
Russian launch Vehicle. Bhaskara carried a 1 km resolution 2 band TV camera
systems and a three channel microwave radiometer. These were designed, de-
veloped and successfully qualified in house. The programme formed the basis

CHAPTER 1. 4

for the advanced sensor development leading to operational applications. Users
were also sensitised for utilising remote sensing data from satellite based sensors.

The second phase in 1980s witnessed the results of earlier efforts of experi-
mental satellites. The IRS 1A programme was successfully launched and the
users started receiving multispectral imagery with 36m resolution. Profession-
alism was brought into the design of sensors, data products and applications
projects. Major applications in agriculture, hydrology, geology and other ar-
eas were defined in close interaction with user agencies and the IRS utilisation
programme was carried out successfully. These efforts led to semi-operational
applications of IRS 1A data

Meteorological and Oceanography:
The Meteorological activities at SAC basically involve payload design and fab-
rication and applications using the data received from such satellites. The suc-
cessful ventures outlined in the previous paragraphs enabled ISRO to evolve an
ambitious Remote Sensing and Meteorology programme for the country to have
a unique constellation of satellites for resources and environmental applications.
Bhaskara I and II were the first Indian Meteorological satellites which carried
microwave radiometer called SAMIR to provide information on sea state and
atmospheric water vapour content for use in meteorological studies.

In the initial phase of met applications data from Bhaskara were supplemented
by data from NOAA, SEASAT, and ERS etc. Meteorological components from
INSAT, starting from 1982 have now become fully operational. Over the years
the resolution available from VHRR onboard INSATs has become better. The
CCD camera also onboard some of the INSATs and inclusion of water vapour
channel in the new VHRRs have added advantage. Exclusive meteorological
payload would be carried ON BOARD Metsat.

The first exclusive meteorological satellite KALPANA-1 was launched by ISRO’s
PSLV on Sept. 12, 2002. It carried a VHRR and a data relay transmitter. ISRO
has also launched the Oceansat-I in May, 1999. It has an Ocean Colour Moni-
tor (OCM), an optical sensor with 8 narrow spectral bands with high resolution
and higher dynamic range and Multi frequency Microwave Scanning Radiome-
ter (MSMR). These sensors have high repetivity of 2 days and hence are most
suited for dynamic events in coastal and mid ocean regions.

SAC has also taken up many Applications projects under Announcement of Op-
portunity scheme of several international missions like ERS, TRMM, ADEOS,
ENVISAT, etc. SAC has state of the art General Circulation Models for exper-
imentation with satellite data. Prediction of weather in the extended range and
prediction of Ocean state in the short range are the fields of active research.

Chapter 2

Introduction

2.1 Motivation

Microprocessors based on a single central processing unit (CPU) drove rapid
performance increases and cost reductions in computer applications for more
than two decades. These microprocessors brought giga (billion) floating-point
operations per second (GFLOPS) to the desktop and hundreds of GFLOPS to
cluster servers. This relentless drive of performance improvement has allowed
application software to provide more functionality, have better user interfaces,
and generate more useful results. The users, in turn, demand even more im-
provements once they become accustomed to these improvements, creating a
positive cycle for the computer industry.

Virtually all microprocessor vendors have switched to models where multiple
processing units, referred to as processor cores, are used in each chip to increase
the processing power. Traditionally, the vast majority of software applications
are written as sequential programs. The execution of these programs can be
understood by a human sequentially stepping through the code. Historically,
computer users have become accustomed to the expectation that these programs
run faster with each new generation of microprocessors. Rather, the applica-
tions software that will continue to enjoy performance improvement with each
new generation of microprocessors will be parallel programs, in which multiple
threads of execution cooperate to complete the work faster.

Over the previous decades, microprocessor design has taken two trajectories:

• The multicore trajectory seeks to maintain the execution speed of sequen-
tial programs while moving into multiple cores. The multicores began
as two-core processors, with the number of cores approximately doubling
with each semiconductor process generation.

• In contrast, the many-core trajectory focuses more on the execution through-

5

CHAPTER 2. 6

put of parallel applications. The many-cores began as a large number of
much smaller cores, and, once again, the number of cores doubles with
each generation. A current exemplar is the NVIDIA GeForce GTX 280
graphics processing unit (GPU) with 240 cores, each of which is a heavily
multithreaded, in-order, single-instruction issue processor that shares its
control and instruction cache with seven other cores. Many-core proces-
sors, especially the GPUs, have led the race of floating-point performance
since 2003. This phenomenon is illustrated in Figure 2.1.

Figure 2.1: Enlarging performance gap between GPUs and CPUs. [11]

2.2 Scope of this Project

This project is aimed at the development of a platform-independent client-server
framework to support GPGPU based high performance computation with trans-
parency to underlying hardware and operating systems. The system would pro-
vide extensibility in terms of the number and type of tasks the client can submit
for processing at the remote server connected to the GPGPU. Some examples
of such tasks would be:

• Radiometry

CHAPTER 2. 7

• LUT Generation and Image Correction

• Bayer-Pattern based Demosaicing of an Image

• Least Squares Curve Fitting for any Polynomial Order

• Graphic Visualization

and many more.

Development of this project would involve establishment of client and server
interfaces and management of distributed data structures. The user application
interacts with client-side library modules which in turn interact with server-side
modules associated with the GPGPU for data processing. The processed results
are then sent back to the client. In the basic scenario, the client and server ma-
chines are situated on different networks as demonstrated in Figure 2.2. Thus,

Figure 2.2: Basic Schematic Diagram.

this project involves development of customized data exchange mechanisms be-
tween the client and server, designing modules at both the client and server
sides for dynamic loading and unloading of data and design of efficient parallel
programs for optimized processing of data at the GPGPU.

Chapter 3

Establishment and
Completion of the
Client-Server Framework

Certain design issues came into perspective while developing the framework:

• Type of application interface that is to be provided to the client - it can be
GUI or Command Line (CLI) based. Both GUI and CLI based support
has been provided during the actual implementation of the framework.

• Various parameters that are needed to be passed to the client-side process-
ing modules. Some such parameters could be - IP-address of the remote
GPGPU server, input data file to be processed, output file in which the
results are to be returned back, task flags and other options.

• Representation of the data for transmission over the network. Certain
aspects that need to be decided are - fields and format of the data sent
and received, maximum allowable data size, required meta-data to be
added such as data-type indicators, matrix-dimensions, etc.
One such template header structure, for sending client parameters to the
server, is shown in Figure 3.1. Field sizes indicated in the header are in
bytes. In Figure 3.1, the first field of 29 bytes in the header indicates the
task flag that is generated when a client chooses a particular processing
task. This task flag helps the GPGPU sever decide what kind of processing
is to be carried out on the input data. The next field is a one-byte special
symbol which indicates to the server whether it should expect any input
data from the client. A + indicates input data follows the header. A null
character indicates absence of input data from the client. The next 200
bytes in the header have been allocated for specifying a comma separated
list of parameters. The set of parameters present in the list depends on
what particular task the client has chosen. Some common parameters

8

CHAPTER 3. 9

include data-matrix dimensions, data type indicator, polynomial orders,
etc. The next 30 bytes in the header specify the name of the output file in
which the client wants to receive the results. All the fields in the header
get populated whenever the client fires a task for processing, either via
the GUI or CLI, and accordingly a suitable header structure is generated
by the client-side processing modules and sent to the server.

Figure 3.1: Header template for sending user parameters to the server (Field
sizes in bytes)

• Technology that should be used to establish the connection and transmit
data between the client and server. Some possible choices include Socket
Programming, RPC, Java RMI, and CORBA. While the more sophisti-
cated option such as CORBA and RMI work best with Java and introduce
a layer of middleware functionalities, options such as RPC and socket-
programming are more primitive, C/C++ based and can provide better
performance. During actual implementation of the framework, C/C++
sockets have been used.

• Upon reception of processed results, the client-side modules would have to
re-assemble the data to present it in an understandable form to the user
application. This requires data conversion methods.

• Choice of transport layer protocol. Common choices would be TCP, UDP
and XTP. While TCP is connection oriented and reliable, UDP is connec-
tionless, unreliable but faster. Since most of the data transfer involved
in the given client-server scenario involves data files which must be sent
and received without any errors, TCP was chosen as the transport layer
protocol.

Thus, designing the framework involved:

• Development of customized data exchange mechanisms between the client
and server.

• Designing client-side and server-side modules for dynamic loading and
unloading of user-submitted tasks and data.

• Development of efficient, parallelized programs for optimized processing
at the GPGPU.

CHAPTER 3. 10

After establishing the system-framework, the following four functions to es-
tablish the capability of the framework and an essential utility for the user have
been developed:

1. Bilinear Interpolation based Demosaicing of an Image.

2. Gradient Interpolation based Demosaicing of an Image.

3. Least-Squares Curve Fit for any Polynomial Order on Given Data.

4. Edge Detection and Edge Ranking for an Image.

5. Remote GPGPU Information Generation

A user-friendly GUI has been developed for the client so that various input
parameters can be specified, as shown in Figure 3.2. The GUI has been designed
so as to facilitate both command-prompt based and UI based execution of tasks
submitted by the client. Additional features have been provided in the GUI for
fault detection and error-log archiving.

When adding further tasks to the framework is considered, the framework
has been designed keeping in mind that future developers can contribute their
GPGPU library codes to the already existing task-set. The only steps that
code developers have to follow is to create their library codes according to a
certain generic template designed specially for the framework, following which
the new libraries can be seamlessly integrated with the existing task-set through
creation of shared, dynamically loaded libraries. All that is needed is a one-step
compilation to generate the shared-library object.

CHAPTER 3. 11

Figure 3.2: GUI Interface for GPGPU Based Computation Support

Chapter 4

Demosaicing of an Image

With the advent of technology,the resolutions for single-sensor imaging devices
such as digital cameras, are becoming better by the day but the core working-
principle remains the same. These cameras are based on a charge coupled device
(CCD) array and each sensor on the CCD captures only one sample of the color
spectrum[8].

Digital color cameras generally use a Bayer mask over the CCD. A Bayer filter
mosaic is a color filter array (CFA) for arranging Red Green Blue (RGB) color
filters on a square grid of photo-sensors, as shown in Figure 4.1. Each square
of four pixels has one filtered red, one blue, and two green. This is because the
human eye is more sensitive to green than either red or blue and the Bayer CFA
is based on the knowledge of human visual perception.

We now have a mosaiced image; at each pixel,there is only one spectral mea-
surement, which means that the other colors have to be estimated according to
the neighboring colors in order to produce a high resolution color image. This
process is referred to as demosaicing.

In order to produce the demosaiced image, the process of Interpolation has to
be performed. There are many methods for performing such interpolation, two
of them being Bilinear Interpolation and Gradient-Based Interpolation, which
are discussed in the following two subsections.

4.1 Bilinear Interpolation based Demosaicing of
an Image

4.1.1 Mathematical Analysis

In this method of interpolation, we calculate the average on each pixel depend-
ing on its position in the Bayer Pattern for determining the spectrum of that

12

CHAPTER 4. 13

Figure 4.1: The Bayer Pattern [16]

particular pixel. For each pixel, we consider its 8 direct neighbors and then
we determine the 2 missing color components of that pixel by averaging the
corresponding colors of the neighboring pixels.

Depending on pixel position,we have 4 different cases of averaging:

1. the pixel is red

2. the pixel is blue

3. the pixel is green and is in a blue row

4. the pixel is green and is in a red row.

For each case, there are separate equations to calculate the average value,
which are given as follows:

Case 1: Pixel R33 (red pixel):
Red = R33
Green = (G23+G34+G32+G43) / 4
Blue = (B22+B24+B42+B44) / 4

Case 2: Pixel B44 (blue pixel):
Blue = B44
Green = (R33+R35+R53+R55) / 4
Red = (R33+R35+R53+R55) / 4

Case 3: Pixel G43 (Green in a blue row):
Green = G43
Red = (R33+R53) / 2
Blue = (B42+B44) / 2

CHAPTER 4. 14

Case 4: Pixel G34 (Green in a red row):
Green = G34
Red = (R33+R35) / 2
Blue = (B24+B44) / 2

This method of interpolation allows us to determine the red, green and blue
color values for each pixel. Also, Bilinear interpolation produces better results
than the pixel-doubling interpolation because we calculate the average of the
neighbor pixels instead of just copying the values. The missing color-component
values will hence be closer to the true values.

4.1.2 Task-Module Description

In the client-server framework scenario, the client will submit raw image data
over the network as input to the remote GPGPU server for performing Bilinear
Interpolation based Demosaicing. The resultant demosaiced image will then be
sent back to the client. Figure 4.2 shows the how the client may submit raw
image data to the remote GPGPU server for performing Bilinear Interpolation
based demosaicing of an image. The client needs to specify the IP address of
the server, name of the input image-data file, the type of processing task to be
carried out (in this case, its Bilinear Bayer Demosiacing) and the name of the
output-file in which the results are to be returned. These controls can be spec-
ified either via the command prompt controls or through the GUI based data
parameters. Upon successful execution and thereafter completion of the submit-
ted task, the demosaiced image is sent back to the client in the specified output
file name. As a sample output, the mosaiced input image and the demosaiced
output images are shown in Figure 4.3. Fig.4.3(a) shows the original mosaiced
image, 4.3(b)shows the demosaiced output image, 4.3(c) shows a zoomed out
portion of the original image to highlight the mosaiced checkerboard pattern,
4.3(d) shows the same demosaiced portion from the output image.

4.1.3 Execution Performance Analysis

The task of gradient interpolation based demosaicing was performed on images
of size 2048x2048, with each pixel’s intensity value being represented by 16 bits
(short int). The task of performing Bilinear Interpolation based demosaicing
on an image requires similar actions to be performed on each pixel of the im-
age, and these operations can be carried out on each pixel simultaneously. This
provides a very good scope for parallelizing the task of Bilinear Interpolation
based demosaicing on an image. A parallelized, CUDA/C based implementation
has been developed which has been tested on the Nvidia Tesla C1060 GPGPU
and Nvidia Quadro FX580 graphics-card. The sequential version of the same
program has been implemented and tested on many different platforms. A com-
parative performance chart, along with the corresponding speed-ups obtained,

CHAPTER 4. 15

Figure 4.2: Executing Bilinear Interpolation Based Demosaicing

are shown in Figure 4.4. From the performance chart, it can be seen that sig-
nificant speed-up has been obtained due to parallelization of the demosaicing
process. The individual speed-up’s for different platforms have been calculated
keeping the performance on the Nvidia Tesla C1060 as the comparison bench-
mark. The speed-up’s obtained, along with the specifications of each platform,
are summarized in the table of Figure 4.5. From the table, it is evident that
tremendous speed-ups have been achieved, the values going up to 30x.

CHAPTER 4. 16

Figure 4.3: Results of Bilinear Interpolation Based Demosaicing

4.2 Gradient Interpolation based Demosaicing
of an Image

4.2.1 Mathematical Analysis

This method of interpolation involves 3 steps:

1. Compute the luminance on each pixel

2. Interpolation of the color difference : Red minus Green

3. Interpolation of the color difference : Blue minus Green.

These two interpolations are needed in order to determine the red and blue
channel for each pixel. This is a direct consequence of the fact that the human
eye is sensitive to luminance changes. In the first step, we have only to deter-
mine the luminance for the red and blue channel. The luminance is the green
channel so we consider, on the green pixel, that the luminance is actually the
intensity of the pixel. On a red or blue pixel, the luminance of this pixel is
determined by knowing if the pixel is on a vertical edge or on a horizontal one.
In order to know if we have an edge, we can calculate 2 parameters: alpha and
beta, which depends on whether we are on a red or blue pixel.

CHAPTER 4. 17

Figure 4.4: Performance Chart for Bilinear Interpolation Based Demosaicing

If we are on a blue pixel, for example B44, we have:
alpha = abs[(B42 + B46) / 2 - B44] (vertical edge)
beta = abs[(B24 + B64) / 2 - B44] (horizontal edge)
Then using those 2 values, we can estimate the missing green value as follows:

If alpha < beta (vertical edge), G44 = (G43+G45) / 2
If alpha > beta (horizontal edge), G44 = (G34+G54) / 2
If alpha = beta (no edge), G44 = (G43+G45+ G34+G54) / 4
Similarly, for R33, we have :
alpha = abs[(R31 + R35) / 2 - R33] (vertical edge)
beta = abs[(R13 + R53) / 2 - R33] (horizontal edge)
If alpha < beta (vertical edge), G33 = (G32+G34) / 2
If alpha > beta (horizontal edge), G33 = (G23+G43) / 2
If alpha = beta (no edge), G33 = (G32+G34+ G23+G43) / 4

At this point, the luminance values for each pixel (green channel) are known,
we just have to determine the blue and red channel by computing the differences
between those channels and the luminance channel.
Let Dxy = Cxy - Lxy. (C: Red or Blue depending on which one is to be com-
puted, L: Luminance)
We have for red and blue channels:

CHAPTER 4. 18

Figure 4.5: Speed-ups Obtained from Bilinear Interpolation Based Demosaicing

Red:
R34 = G34 + (D33 + D35)/2
R43 = G43 + (D33 + D35)/2
R44 = G44 + (D33 + D35 + D53 + D55)/4
Blue:
B34 = G34 + (D24 + D44)/2
B43 = G43 + (D42 + D44)/2
B33 = G33 + (D22 + D24 + D42 + D44)/4

CHAPTER 4. 19

In this method, we determine the missing color values by averaging and
by considering the different edges that we encounter in the image and also by
computing the luminance. This method of interpolation is expected to produce
more accurate colors in output especially on the edges. When an edge is found,
the pixels along the edge are considered instead of considering all the neighbors.

4.2.2 Task-Module Description

In the client-server framework scenario, the client will submit raw image data
over the network as input to the remote GPGPU server for performing Gradient
Interpolation based Demosaicing. The resultant demosaiced image will then be
sent back to the client.

Figure 4.6 shows the how the client may submit raw image data to the re-
mote GPGPU server for performing Gradient Interpolation based demosaicing
of an image. The client needs to specify the IP address of the server, name of
the input image-data file, the type of processing task to be carried out (in this
case, its Gradient Based Bayer Demosiacing) and the name of the output-file
in which the results are to be returned. These controls can be specified either
via the command prompt controls or through the GUI based data parameters.
Upon successful execution and thereafter completion of the submitted task, the
demosaiced image is sent back to the client in the specified output file name.
As a sample output, the mosaiced input image and the demosaiced output im-
ages are shown in Figure 4.7. Figure 4.7(a) shows the original mosaiced image,
4.7(b)shows the demosaiced output image, 4.7(c) shows a zoomed out portion of
the original image to highlight the mosaiced checkerboard pattern, 4.7(d) shows
the same demosaiced portion from the output image.

4.2.3 Execution Performance Analysis

The task of gradient interpolation based demosaicing was performed on images
of size 2048x2048, with each pixel’s intensity value being represented by 16 bits
(short int). As in the case of Bilinear Interpolation, the task of performing Gra-
dient Interpolation based demosaicing on an image requires similar actions to be
performed on each pixel of the image, and these operations can be carried out on
each pixel simultaneously. This provides a very good scope for parallelizing the
task of Gradient Interpolation based demosaicing on an image. A parallelized,
CUDA/C based implementation has been developed which has been tested on
the Nvidia Tesla C1060 GPGPU and Nvidia Quadro FX580 graphics-card. The
sequential version of the same program has been implemented and tested on
many different platforms. A comparative performance chart, along with the
corresponding speed-ups obtained are shown in Figure 4.8.

From the performance chart, it can be seen that significant speed-up has
been obtained due to parallelization of the demosaicing process. The individual
speed-up’s for different platforms have been calculated keeping the performance

CHAPTER 4. 20

Figure 4.6: Executing Gradient Interpolation Based Demosaicing

on the Nvidia Tesla C1060 as the comparison benchmark. The speed-up’s ob-
tained, along with the specifications of each platform, are summarized in the
following table. From the table in Figure 4.9, it is evident that tremendous
speed-ups have been achieved, the values going up to 19x.

CHAPTER 4. 21

Figure 4.7: Results of Gradient Interpolation Based Demosaicing

4.3 Qualitative Comparison between Bilinear and
Gradient-based Interpolation

In order to gauge the quality of demosaicing performed by both the interpola-
tion algorithms, statistical attributes were analyzed for both the interpolation
methods to compute the Peak Signal to Noise Ratio (PSNR) and they are sum-
marized in Table 4.1. PSNR can be calculated using the following formula where
Xmax represents the peak or maximum intensity value for an image and N rep-
resents the number of pixels:

PSNR = 20 log10 Xmax / RMSE
RMSE = ((demosaiced valuei - actual valuei)

2 / N)1/2

where i = 1 to N
The PSNR values have been computed separately for each color channel. Higher
the PSNR values, better is the quality of the demosaicing performed by the
interpolation algorithm. From the table, it can be seen that Gradient-based
interpolation yields a higher PSNR value for images containing many edges.

CHAPTER 4. 22

Figure 4.8: Performance Chart for Gradient Interpolation Based Demosaicing

Table 4.1: PSNR Calculation for Bilinear and Gradient-based interpolation

Interpolation method Color channel Mean Std. dev Xmax PSNR
Bilinear Red 99.3362 18.497 807 15.8579
Bilinear Green 150.4735 35.4213 1023 27.2455
Bilinear Blue 120.7161 33.4365 1023 30.9678
Gradient Red 99.8825 18.7531 809 16.1532
Gradient Green 150.5353 35.5223 1023 27.3701
Gradient Blue 121.2844 33.6508 1032 31.5739

CHAPTER 4. 23

Figure 4.9: Speed-ups Obtained from Gradient Interpolation Based Demosaicing

Chapter 5

Least-Squares Curve Fit for
any Polynomial Order on
Given Data

5.1 Estimation of Best-Fit Curve using Least
Squares Method

The procedure of Least Squares curve-fitting is exquisitely used in many appli-
cations for fitting a polynomial curve of a given degree to approximate a set of
data. If the input data-set is represented by pairs of the type (xi,yi) where 1 ≤
i ≤ n, n ≥ 2 (n is the number of data-points), then the best fitting curve f(x)
has the least square error, i.e.[13],
Π = Σ[yi-f(xi)]

2 = minimum, where i = 1 to n

For, example if we want to fit a best-fit, Least Squares line on the given set
of data, then f(x) will be given by:
f(x) = a + bx, where a and b are coefficients to be determined.
Similarly, if we want to fit a 2nd degree best-fit curve, then f(x) will be given
by:
f(x) = a + bx + cx2, where a, b and c are coefficients to be determined.
Similarly, for a mth degree polynomial fit,
f(x) = a0 + a1x + a2x2 +...+ amxm, where a1, a2,...,am are coefficients to be
determined.
To obtain the least square error, the unknown coefficients must yield zero first
derivatives, which lead to the following equations:
δ Π / δ aj = 2Σ[yi - (a0 + a1x + a2x2 +...+ amxm)] = 0, i = 1 to n, j = 0 to m

Expanding the above set of equations, we get:
Σ xi

jyi = a0Σ xi
j + a1Σ xi

j+1 +...+ amΣ xi
j+m, i = 1 to n, j = 0 to m

24

CHAPTER 5. 25

The unknown coefficients a0, a1,...,am can hence be obtained by solving the
above set of linear equations.

5.2 Task-Module Description

In the client-server framework scenario, the client will submit the file contain-
ing the data-set over the network as input to the remote GPGPU server for
performing Least Squares curve fitting. Additionally, the client must specify
the order of the polynomial-curve that has to be fitted on the input data. The
resultant polynomial coefficients of the best-fit curve, along with the correlation
coefficients, will then be sent back to the client in the specified output file name.
The following Figure 5.1 shows how the various parameters are submitted by
the client via the GUI.

Figure 5.1: Executing Least Squares Curve Fitting

CHAPTER 5. 26

5.3 Results Accuracy Analysis: a comparison
with MATLAB’s polyfit() function

5.3.1 Methodology Adopted

The set of equations described above indicate that in order to determine the
unknown coefficients a0, a1,...,am, we have to solve a system of linear equations
of the form AX = B, where the matrices A, X, B are given as shown. The
matrix X can now be solved by evaluating the inverse of matrix A, i.e. X =
A−1B. In this project’s implementation, the matrix X has been solved for using
the method of Gaussian Elimination.

Matrix X : [a0 a1 a2 ... am]
Matrix B : [Σyi Σxi

jyi Σxi
2yi ... Σxi

myi]

Table 5.1: Matrix A
1 Σxi Σxi

2 ... Σxi
m

Σxi Σxi
2 Σxi

3 ... Σxi
m+1

...
Σxi

m Σxi
m+1 Σxi

m+2 ... Σxi
2m

5.3.2 Comparison MATLAB’s polyfit() function

MATLAB’s polyfit() function uses an indirect method of determining the least-
squares coefficients. This method is based on constructing the Vandermonde
matrix V and then performing QR factorisation of V, where Q is an orthog-
onal matrix and R is an upper triangular matrix as shown. The QR
factorisation is usually carried out using Holder Reflections[12].

Therefore we have:
V p = Y
If V = QR, where Q is an orthogonal matrix, then QQT = I. Substituting these
values, we have:
(QR) p = Y or (QQT)R p = QT Y
i.e. p = R−1(QTY) or p = (QTY)\ R, where \ is the special matrix division
operator used by MATLAB. Hence, the polyfit() function returns the unknown
coefficients in the array p.
Matrix p : [a0 a1 a2 ... am]
Matrix Y : [y1 y2 y3 ... yn]
In this project’s implementation, several comparisons were made for different
polynomial orders and the coefficients were calculated for each order along with
the corresponding least-squares errors for the fitted data. The data-set used
was obtained from Light Transfer Characteristic(LTC) data set where

CHAPTER 5. 27

Table 5.2: Matrix V
1 x1 x1

2 ... x1
m

1 x2 x2
2 ... x2

m

...
1 xn xn

2 ... xn
m

variable x represents the Ground Truth Radiation(GTR) values and
variable y represents the characteristic pixel response.
The calculated coefficients, along with MATLAB’s coefficients for one pixel’s
data-set are shown in the following tables. Table 3 shows the LTC data-set
for one pixel, Table 4 shows the calculated coefficients for that pixel and Ta-
ble 5 shows the fitted data with calculated coefficients and the corresponding
least-square errors. R represents the Correlation Coefficientin Table 4.
In Table 5, the function f(x) represents the best-fit polynomial with gener-
ated coefficients. The function fm(x) represents the best-fit polynomial with
MATLAB’s coefficients. From Table 5, the sum of Least Squares errors were
calculated, i.e.:
Σe2

f = 128.199937, Σe2
m = 129.651164

According to the definition, the best-fit curve is the one which yields mini-
mum least-squares errors. It can be seen that the generated coefficients
yield a lower least-squares error than the MATLAB coefficients and
hence a best-fit curve is produced as compared to MATLAB. This
procedure was repeated for several other data-sets, and consistent
results were obtained.

Table 5.3: LTC Data-set for one Pixel
x(GTR values) y(Mean Response Values)

39.206 751.912
29.74 567.121
21.31 403.746
12.087 221.738
1.812 18.8418
0.001 1.88672

5.4 Execution Performance Analysis

The procedure of curve fitting was applied on LTC data with 6 scan lines and
6000 pixels per scan-line. The sequential version as well as the parallel versions
were implemented on many platforms, and a comparison chart is shown in the
Figure 5.3.

CHAPTER 5. 28

Table 5.4: Coefficients for Best-Fit Least Squares Curve

Order 1 Order 2 Order 3
Generated MATLAB Generated MATLAB Generated MATLAB
a0=-8.356 a0=-8.356 a0=-6.5106 a0=-6.5109 a0=-4.7553 a0=-4.7551

a1=19.3496 a1=19.3496 a1=18.8735 a1=18.8735 a1=17.5105 a1=17.5109
R=0.9997 a2=0.0127 a2=0.0127 a2=0.1086 a2=0.1086

R=0.9998 a3=-0.0016 a3=0.0016
R=0.9996 .

Table 5.5: Fitted Data from Generated Coeff and MATLAB Coeff for Order 3
y yf=f(x) ym=fm(x) ef=y-yf em=y-ym

751.912 751.183960 752.285156 0.728027 -0.373169
567.121 569.500305 569.985718 -2.379333 -2.864746
403.746 402.053284 402.235626 1.692719 1.510376
221.738 219.903793 219.939758 1.834213 1.798248
18.8418 27.321678 27.321703 -8.479877 -8.479902
1.88672 -4.736779 -4.737589 6.623499 6.624309

Σe2f = 128.199937 Σe2m = 129.651164

From the performance chart, it is evident that tremendous speed-
ups have been achieved, the speed-up achieved going up to 73x. The
various speed-up’s obtained, for varying polynomial orders, are summarized in
the following table of Figure 5.2.

CHAPTER 5. 29

Figure 5.2: Speed-ups Obtained from Least Squares Curve Fitting

CHAPTER 5. 30

Figure 5.3: Performance Chart for Least Squares Curve Fitting

Chapter 6

GPGPU Information
Generation

6.1 Task-Module Description

This module serves as a utility for the client, which when executed gives the
client all the information about the various GPU resources available on the
Remote GPGPU server. A complete listing with all the specifications of each
GPU resource is generated in the form of an XML file which is then sent back
to the client. On the GUI, the client can view this data in the form of a tree-
structure with associated attributes as shown in the Figure 6.1. As the figure
indicates, the client only needs to specify the IP address of the server and the
name of the output file. The resultant XML file is sent back to the client and
this data can be viewed in the form of an xml-tree. Various GPU specifications
include:

• Name

• Compute Capability

• Warp Size

• Device Overlap

• Total Constant Memory Size

• Total Global Memory Size

• Shared Memory Per Block

• Clock Rate

• Multi Processor Count

• Registers Per Block

31

CHAPTER 6. 32

Figure 6.1: Executing GPU Information Generation Utility

• Maximum Threads Per Block

• Maximum Grid Size

• Maximum Threads Dimensions

This module has been developed with the intention that it may help the
user to decide which GPU resource is the best for executing a particular task.
This utility for generating information about remote GPGPU resources can be
extended to enable the client to choose the GPGPU resource on which he or
she wants to execute the chosen task. This would involve associating resource
allocation algorithms with the framework to allocate the available GPGPU re-
sources in the best possible way.

Chapter 7

Edge Detection from an
Image and Edge Ranking
for MTF Determination of
an Imaging System

7.1 Introduction

Edge detection is one of the most principal techniques for detecting discontinu-
ities in the gray levels of image pixels. An edge is a set of connected pixels that
lie on the boundary between two regions. Blurred edges tend to be thick and
sharp edges tend to be thin. The intensity profiles for an ideal edge and a step
’ramp’ edge are shown in Figure 7.1. The task of edge detection can be carried
out by convolving gradient-based filters with the input image in both spatial and
frequency domains. Some simple first-derivative based filters include Sobel, Pre-
witt and Robert’s filters while Laplacian-of-Gaussian and Canny-edge detection
are more advanced edge detection techniques. The shape of the Laplacian-of-
Gaussian filter, along with a 5x5 mask approximating the Laplacian-of-Gaussian
filter in the spatial domain is shown in Figure 7.2 [16].
The quality of satellite camera images is regularly verified in flight. The Modu-
lation Transfer Function (MTF) is one of the criteria of imaging quality. MTF
is a parameter used for measuring the sharpness of an imaging system [14][15].
Measuring the MTF is essential to carry out the focusing of a telescope, or to
implement a deconvolution filter whose goal is to enhance the image contrast or
reduce the noise. Its knowledge also helps us to compare the characteristics of
different known and unknown imaging systems. There are several methods for
determining the MTF of an imaging system. MTF is mathematically given as
the Discrete Fourier Transform (DFT) of the Line Spread Function (LSF). The
LSF can be calculated as the first derivative of the Edge Spread Function (ESF).

33

CHAPTER 7. 34

Figure 7.1: Edge profiles for an ideal and ramp edge

In order to develop the ESF, it is essential to determine the best edge from the
target image so that an edge profile can be developed and then the line spread
function and hence the MTF, can be computed accordingly. For regular image
sizes, the human visual system is adept enough to identify suitable images from
the image. But considering huge image data-sets, such as those obtained from
satellites, the image size may range in few gigabytes and in such a case, manual
inspection of images for determination of the best suitable edge is not plausible.
In such a scenario, edge profiling tasks have to be automated and this brings
into focus GPGPUs which are ideal for such tasks.

However, the process of edge profiling for huge datasets brings into focus certain
issues such as:

• The edge detection algorithm that should be used depends on factors such
as the image thresholding levels, acceptable noise level in the image, the
target imaging system, etc.

• Once all the edges have been detected in the target image, some algorithm
has to be devised for ranking the detected edges, so that the best edge
can be chosen. Some such parameters for ranking edges, specifically for
MTF determination include: thickness of the edge (the ideal edge is one
pixel thick), length of the edge typical edges have the length of 100 or
more pixels, orientation of the edge for MTF determination, vertical or
near-vertical edges are preferred.

• After determining the best ranked edge, the location of such an edge in
the image also has to be determined, so that the best edge, along with its

CHAPTER 7. 35

Figure 7.2: The Laplacian-of-Gaussian filter

location and its edge profile can be given as output to the client. The edge
ranks can be stored in a vector array. Similar arrays or matrices can be
constructed for storing other edge profile information and can be supplied
as output to the client.

• After the rank vector has been constructed, it is necessary to apply efficient
sorting algorithms in order to find the maximum rank, and hence the best
edge, from the array.

• Processing such a huge amount of data has associated issues such as: I/O
time taken up in transferring the data to and from the client/server and
I/O time taken up in transferring the data to and from the host CPU to
the GPGPU. For example, on a gigabit network, transmitting a typical
MTF data file with size 2.5GB would itself take 20 seconds! In order to
reduce the transmission latency incurred, one option is to apply lossless
data compression techniques to the data. One solution for minimizing the
latency incurred in transferring data between the CPU and the GPGPU
is to use memory-mapped I/O, where the GPU and the host CPU would
share the same memory address space. This would eliminate the need for
copying data frequently to and from the GPU to the CPU. NVIDIA GPUs
with compute capability 2.x or higher possess such a feature.
Another option is the use of multiple streams where transfer of data be-
tween GPU and CPU can be overlapped in time with kernel execution. A
stream represents a queue of GPU operations that get executed in a spe-
cific order. Use of streams involves the allocation of page-locked or pinned
memory on the host. Page-locked buffers have an important property: the
operating system guarantees us that it will never page this memory out

CHAPTER 7. 36

to disk,which ensures its residency in physiscal memory, i.e. it becomes
safe for the OS to allow an application access to the physical address of
the memory, since the buffer will not be evicted or relocated. Knowing
the physical address of a buffer, the GPU can then use direct memory
access (DMA) to copy data to or from host. Overlap of such data trans-
fers with kernel execution in an asynchronous manner is supported by
certain GPU’s which have the ’deviceOverlap’ property enabled, such as
in NVIDIA GPU’s with compute capability higher than 1.1.

7.2 Mathematical analysis for Edge-Rank De-
termination

As of now, three prime parameters have been considered for determining the
rank (R) of an edge: the edge thickness (t), edge length (l) and the edge angle
made with the x-axis (Θ). Using these three parameters, the following formula
has been proposed for determining the rank of an edge for MTF determination:

R = (l-t)/10 + abs(Θ) where l, t are in units of pixels, Θ is in radians and
0 ≤ Θ ≤ Π/2.

From the above formula it can be seen that suitable edges should be sufficiently
long and should ideally be single pixel thick and vertical or near-vertical edges
are preferred.
The edge angle Θ can be calculated with the help of the image gradient. The
gradient of an image f(x,y) at location (x,y) is given by the vector 5f.

If α(x,y) represents the direction angle of the image vector 5f at location (x,y),
then α(x,y) = tan−1 (Gy/Gx).
The direction of an edge at (x,y) is perpendicular to the direction of the gradient
vector at that point.
The above mentioned rank formula was used for edge detection and edge profil-
ing was carried out. Two such sample test images, along with the corresponding
edge ranks, lengths and starting coordinates of the edges found are shown in
Figures 7.3 and 7.4. The first sample image depicts a typical satellite image of

CHAPTER 7. 37

a city landscape. Edge detection on such images help in detecting major roads,
rivers and other important geographical features. The second sample image was
chosen keeping in mind that vertical edges are preferred for MTF determination.
The best edge found, i.e. the edge with the highest rank has been highlighted
in a blue circle.

Figure 7.3: Edge Detection and Ranking for sample-image1

From the tables of edge-rank, edge-length and starting coordinates, it can
be seen that the best found edge in the first image has a rank of 2.91 and and
edge length of 15 pixels and its starting coordinates is (115,49); in the second
image the best found edge has a rank of 1.6156 with an edge length of 16 pixels
and starting coordinates at (130,132).

7.3 Task-Module Description and Execution Per-
formance Analysis

In order to execute or fire the task of edge detection and ranking at a remote
GPGPU server, the client needs to specify the following general parameters:
server IP address, name of input and output files. Also, the client needs to spec-
ify two special parameters: the user-defined thresholding level and the maximum

CHAPTER 7. 38

Figure 7.4: Edge Detection and Ranking for sample-image2

intensity level that the user wishes to appear in the output image. Thresholding
is done on the output image so that false or weak edges such as those resulting
from noise can be eliminated. Upon execution, the server returns the edge-
detected image and various edge-ranking parameters such as edge length, edge
rank and position coordinates of the detected edge. Figure 7.5 shows the GUI
configuration for executing the edge detection and ranking task.

The algorithm for edge detection and ranking was performed on an image
dataset containing 25000 scanlines and 6000 pixels per scanline and each pixel
value being represented by 16 bits of type short int. The algorithm has been
designed keeping in mind that the datasets obtained from satellites can range
up to many gigabytes and fitting such huge data directly in the memory of
the GPGPU may not always be possible. Thus this algorithm takes an itera-
tive approach and divides the input datset into sub-images that can be fitted
into the GPGPU memory and processes each sub-image per iteration with the
help of multiple streams so that memory transfers between the host and the
GPGPU can be overlapped asynchronously with kernel execution. A paral-
lelized, CUDA/C based implementation has been developed which has been
tested on the Nvidia Tesla C1060 GPGPU and Nvidia Quadro 4000 graphics-
card. The sequential version of the same program has been implemented and
tested on many different platforms. A comparative performance chart, along
with the corresponding speed-ups obtained, is shown in Figure 7.6. From the

CHAPTER 7. 39

Figure 7.5: GUI configuration for Edge Detection and Ranking

performance chart, it can be seen that significant speed-up has been obtained
due to parallelization of the edge detection and ranking process. The individual
speed-up’s for different platforms have been calculated keeping the performance
on the Nvidia Quadro 4000 as the comparison benchmark. The speed-up’s ob-
tained, along with the specifications of each platform, are summarized in Figure
7.7.

CHAPTER 7. 40

Figure 7.6: Performance Chart for Edge Detection and Ranking

CHAPTER 7. 41

Figure 7.7: Speed-ups Obtained from Edge Detection and Ranking

Chapter 8

Conclusions and Future
Scope for Work

As the requirements of today’s scientific applications evolve, parallel data pro-
cessing has become indispensable for processing applications involving huge data
sets and thus the processing paradigm has shifted from multi-core to many-core
processing. This brings into focus the Graphics Processing Units (GPUs) which
emphasize on many-core computing. With the advent of General Purpose GPUs
(GPGPU), applications not directly associated with graphics operations can also
harness the computational capabilities of GPUs. Hence, it would be beneficial
if the computing capabilities of a given GPGPU could be task optimized and
made available to all within an organisation.

The objective of this project is the development of a platform-independent,
client-server framework to support GPGPU based high performance computa-
tion with transparency to underlying hardware and operating systems. In this
framework, users can choose a processing task and submit large data-sets for
processing to a remote GPGPU and receive the results back, using well defined
interfaces. The framework provides extensibility in terms of the number and
type of tasks that the client can choose or submit for processing at the remote
GPGPU server machine, with complete transparency to the underlying hard-
ware and operating systems. The framework has been designed in such way
so as to facilitate the addition of further tasks to the already existing task-set
with minimum possible configuration changes. Parallelization of user-submitted
tasks on the GPGPU has been achieved using NVIDIA’s Compute Unified De-
vice Architecture (CUDA).

Five major tasks or jobs can be submitted by the client to the remote GPGPU
server:

• Bilinear Interpolation based Demosaicing of an Image

42

CHAPTER 8. 43

• Gradient Interpolation based Demosaicing of an Image

• Least-Squares Curve Fit for any Polynomial Order on Given Data

• Remote GPGPU Information Generation

• Edge Detection for an Image and Edge Ranking for MTF Determination
of an Imaging System

Bilinear and Gradient Interpolation are two important interpolation techniques
used to demosaic an image so that missing color components at each pixel po-
sition in an image can be recovered to generate a true color RGB image. While
the Bilinear interpolation method is simpler to implement ,the Gradient-based
interpolation method is more suited for images that have a lot of edges.

Least Square Errors based Curve Fitting is done in order to fit a polynomial
function that best approximates a given set of data-points. Such a best-fit
polynomial is then described in terms of polynomial-coefficients. In order to
qualitatively assess the precision of the results obtained, a comparative analysis
with MATLAB’s polyfit() function was done, and minimum least-squares errors
and hence a best-fit curve was obtained.

The task of Edge Detection and Ranking was carried out for very huge im-
age data-sets where it is not possible to manually determine edges from an
image due to the mere hugeness of the data. An algorithm was proposed to
rank the detected edges of an image so that the ”best edge” which is ideally
single pixel thick, vertical and sufficiently long can be determined. This rank-
ing algorithm was specifically designed for determining the Modulation Transfer
Function (MTF) of an imaging system. MTF is a key parameter which plays a
crucial role in determining the spatial resolution of an image

The Remote GPGPU Information Generation module was developed so that
clients can know what all GPU resources are available on a particular chosen
server machine.
Each of the above mentioned tasks has been parallelized on the GPGPU and
tremendous speed-ups in execution performance have been obtained as com-
pared to the sequential versions of the same.

As future scope of work, the utility for generating information about remote
GPGPU resources can be extended to enable the client to choose the GPGPU
resource on which he or she wants to execute the chosen task. This would in-
volve associating resource allocation algorithms with the framework to allocate
the available GPGPU resources in the best possible way.

Also, the task of edge detection and ranking can be further extended to take
into account sub-pixel accuracy while detecting edges. As a further extension,
the edge detection and ranking algorithm can also be enhanced to convolve
edge-detection filters in the frequency domain instead of the spatial domain.

Chapter 9

Publications

Title: GPGPU Based Parallelized Client-Server Framework for Providing High
Performance Computation Support.

Authors: Poorna Banerjee, Shri Amit Dave.

Publication Journal: International Journal of Computer Science and Tech-
nology (IJCST), Vol-IV, Issue I, Jan-March, 2013.

Link to online published copy of paper: http://ijcst.com/?page id=3679

44

Appendix A: Literature
Review

During the course of this project, a myriad of scientific concepts and techniques
had to be learned and studied, and this required an extensive survey of work
done in relevant fields, study of existing trends and technologies, and future
scope for enhancement. Brief summaries for some such topics have been pre-
sented in this section.

Topics covered:

• Compute Unified Device Architecture (CUDA)

• Single sensor CCD Camera and Alternate Color Filter Arrays

• Alternate Methods for Image Demosaicing

• Image Segmentation

• Modulation Transfer Function

45

APPENDIX A: LITERATURE REVIEW 46

A Overview

The following subsections provide a brief overview of each of the listed topics.

A.1 Compute Unified Device Architecture (CUDA)

References: [20] [21] [22] [23]

One of the main objectives of this project work was to carry out the paral-
lelization of compute-intensive tasks on general purpose Graphics Processing
Units (GPGPU). For achieving this goal, the programming model of Nvidia
CUDA was chosen.

To a CUDA programmer, the computing system consists of a host, which is
a traditional central processing unit (CPU), and one or more devices, which are
massively parallel processors equipped with a large number of arithmetic exe-
cution units. In modern software applications, program sections often exhibit a
rich amount of data parallelism, a property allowing many arithmetic operations
to be safely performed on program data structures in a simultaneous manner.
The CUDA devices accelerate the execution of these applications by harvesting
a large amount of data parallelism.

A CUDA program consists of one or more phases that are executed on either
the host (CPU) or a device such as a GPU. The phases that exhibit little or
no data parallelism are implemented in host code. The phases that exhibit rich
amount of data parallelism are implemented in the device code. A CUDA pro-
gram is a unified source code encompassing both host and device code. The
NVIDIA C compiler (nvcc) separates the two during the compilation process.
The host code is straight ANSI C code; it is further compiled with the hosts
standard C compilers and runs as an ordinary CPU process. The device code is
written using ANSI C extended with keywords for labeling data-parallel func-
tions, called kernels, and their associated data structures. The device code is
typically further compiled by the nvcc and executed on a GPU device The ker-
nel functions (or, simply, kernels) typically generate a large number of threads
to exploit data parallelism. CUDA threads are of much lighter weight than the
CPU threads. CUDA programmers can assume that these threads take very few
cycles to generate and schedule due to efficient hardware support. This is in
contrast with the CPU threads that typically require thousands of clock cycles
to generate and schedule. When a kernel is invoked, or launched, it is executed
as grid of parallel threads. Each CUDA grid typically is comprised of thousands
to millions of lightweight GPU threads per kernel invocation.

Threads in a grid are organized into a two-level hierarchy. At the top level,
each grid consists of one or more thread blocks. All blocks in a grid have the
same number of threads. Each block has a unique two dimensional coordinate
given by the CUDA specific keywords blockIdx.x and blockIdx.y. Each thread

APPENDIX A: LITERATURE REVIEW 47

Figure A.1: The CUDA thread model

block is, in turn, organized as a three-dimensional array of threads. The co-
ordinates of threads in a block are uniquely defined by three thread indices:
threadIdx.x, threadIdx.y, and threadIdx.z. This is illustrated in figure A.1.

Figure A.2 shows an overview of the CUDA device memory model for pro-
grammers to reason about the allocation, movement, and usage of the various
memory types of a device.
At the bottom of the figure, there is global memory, texture memory and con-
stant memory. These are the memories that the host code can transfer data to
and from the device, as illustrated by the bidirectional arrows between these
memories and the host. Constant memory allows read-only access by the device
code.

Registers and shared memory are on-chip memories. Variables that reside in
these types of memory can be accessed at very high speed in a highly parallel
manner. Registers are allocated to individual threads; each thread can only ac-

APPENDIX A: LITERATURE REVIEW 48

Figure A.2: CUDA device memory model

cess its own registers. Shared memory is allocated to thread blocks; all threads
in a block can access variables in the shared memory locations allocated to the
block. Shared memory is an efficient means for threads to cooperate by sharing
their input data and the intermediate results of their work.

Like constant memory, texture memory is also read-only memory with on-chip
caching and supports short-latency, high-bandwidth, read-only access by the
device when all threads simultaneously access the same location.

To summarize,

• Device code can:

APPENDIX A: LITERATURE REVIEW 49

– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory

• Host code can:
Transfer data to/from per-grid global, constant and texture memories.

The architecture of a typical CUDA-capable GPU is organized into an array of
highly threaded streaming multiprocessors (SMs). Each SM has a number of
streaming processors (SPs) that share control logic and instruction cache. Al-
though CUDA registers, shared memory, constant memory and texture memory
can be extremely effective in reducing the number of accesses to global memory,
one must be careful not to exceed the capacity of these memories. Each CUDA
device offers a limited amount of CUDA memory, which limits the number of
threads that can simultaneously reside in the streaming multiprocessors for a
given application. In general, the more memory locations each thread requires,
the fewer the number of threads that can reside in each streaming multiproces-
sor (SM) and thus the fewer number of threads that can reside in the entire
processor.

APPENDIX A: LITERATURE REVIEW 50

Figure A.3: The conventional Bayer Pattern color filter array

A.2 Single sensor CCD Camera and Alternate Color Fil-
ter Arrays

References: [8] [18]

With the advent of technology, the resolutions for single-sensor imaging devices
such as digital cameras are becoming better by the day but the core working-
principle remains the same. These cameras are based on a charge coupled device
(CCD) array and each sensor on the CCD captures only one sample of the color
spectrum.
Digital color cameras generally use a Bayer mask over the CCD. A Bayer filter
mosaic is a color filter array (CFA) for arranging Red Green Blue (RGB) color
filters on a square grid of photo-sensors, as shown in figure. Each square of four
pixels has one filtered red, one blue, and two green. This is because the human
eye is more sensitive to green than either red or blue and the Bayer CFA is
based on the knowledge of human visual perception and is consistent with the
theory of YUV color space.
Since the introduction of the Bayer color filter array in 1975 digital photography
has seen dramatic progress. This progress has converted digital photography
from an exclusive tool available only to the aerospace industry to widespread
everyday use in consumer digital photo cameras. One feature of digital pho-
tography which has remained almost unchanged throughout the decades is the
layout of color components in the photo-sensitive array. The de-facto standard
is the Bayer color filter array which is proven to be technologically feasible and
robust enough for wide variety of applications. The performance of digital cam-
eras depends not only on the accuracy of methods of restoration of missed color
samples (demosaicing) for a given color filter array, but also on the spatial con-
figuration of color sensors in the color filter array (CFA) itself. Some of such
alternate color filter array configurations where the YUV model has not been

APPENDIX A: LITERATURE REVIEW 51

assumed are described below.
These alternate CFA models are based on the following constraints

• Minimization of the atomic building block for pattern. In other words it
could be a 2x2, 3x2 or 3x3 pattern.

• The frequency of color components should be similar in horizontal and
vertical dimensions.

• The frequency of color samples should be consistent with an established
theory of human visual perceptional sensitivity.

Based on these constraints, two such patterns are shown below in Figure
A.4.

Figure A.4: Spatial distribution for alternate CFA patterns

The pattern on the left is called the 6-samples CFA pattern. It has a building
block size of 3x2. On the contrary to classic Bayer CFA the colors are mixed
here in equal proportions. One disadvantage of the 6 sample CFA is that it
is not symmetrical to permutation of vertical and horizontal dimensions. The
second pattern is called the Diagonal Bayer CFA pattern and it has a building
block size of 3x3 and the colors are mixed here in equal proportions, but unlike
the 6-sample CFA, it has symmetrical permutation in vertical and horizontal
directions. It has been shown that alternatives to classic Bayer CFA can give
good performance in some circumstances, and that there may be benefits in
using a different pattern.

APPENDIX A: LITERATURE REVIEW 52

A.3 Alternate methods for Image Demosaicing

References: [17] [19]

In the project work carried out, two methods of image demosaicing were used:
Bilinear Interpolation based demosaicing and Gradient Interpolation based de-
mosaicing. Both these techniques are used in the spatial domain. There are
other advanced techniques for image demosaicing in both spatial and frequency
domains. Some of them are explained below.

High Quality Linear Interpolation based Demosaicing : Malvar et al proposed
a method to demosaic an image using a Bayer Pattern. This is actually a set
of 8 kernels that we need to normalize and then apply to the mosaiced image
in order to demosaic it. The choice of the kernel depends on the position of the
pixel.
There are 8 cases as illustrated in Figure A.5:

• 2 cases to determine the red and green values on a blue pixel.

• 2 cases to determine the blue and green values on a red pixel.

• 4 cases to determine the red and blue values on a green pixel.

To determine a color, we calculate the average of the neighbor with the same
color, but we also incorporate the green channel into each of them. This cre-
ates a link between the channels, and thus the rendering of the edges should be
better than a basic linear interpolation (nearest neighbor or bilinear).

Frequency Domain Methods for Image Demosaicing : The color filter array
(CFA) image can be represented as the combination of an achromatic or luma
component at baseband and two chrominance components modulated at high
spatial frequency. CFA demultiplexing methods must try to exploit signal char-
acteristics and correlations as much as possible to obtain the best signal quality.
Let fCFA[n1,n2] represent the output of the CFA sensor, sampled on a rectan-
gular sampling lattice Λ. The horizontal and vertical sample spacings are equal,
and this sample spacing X is used as the unit of length, called the pixel height
(px). Thus, the lattice Λ is simply the integer lattice Z2.

In the Bayer CFA, Λ is partitioned into three disjoint subsets that are each
shifted sub-lattices of Λ, referred to as ΛR, ΛG and ΛB illustrated in Figure.
A.6. The origin is set at the upper left corner of the image on a green sample
with a red sample to the right and a blue sample below.

APPENDIX A: LITERATURE REVIEW 53

Figure A.5: Filter Coefficients for High Quality Linear Interpolation

Figure A.6: Bayer CFA sampling structure

APPENDIX A: LITERATURE REVIEW 54

A.4 Image Segmentation

References: [16]

Segmentation subdivides an image into its constituent regions or objects. The
level to which the subdivision is carried depends on the problem being solved.
Image segmentation algorithms generally are based on one of two basic proper-
ties of intensity values: discontinuity and similarity.

• Image segmentation techniques based on the discontinuity-approach par-
tition an image based on abrupt changes in intensity, such as points, lines
or edges in an image.

• The principal approaches in the second category are based on partitioning
an image into regions that are similar according to a set of pre-defined
criteria. Thresholding, region growing, region splitting and merging are
examples of methods in this category.

For detecting points in an image, the idea is that an isolated point will be quite
different from its surroundings, and thus be easily detectable by running the
type of mask shown below throughout the image:

Using the mask shown, we say that a point has been detected at the location on
which the mask is centered if —R— ≥ T, where T is a pre-defined thresholding
value.
For detecting one-pixel thick lines in an image, varieties of masks can be used
for detecting lines at varying angles such as those shown in Figure A.7.
The first mask will respond most to horizontal lines in an image. The next mask
is used for detecting lines inclined at positive 45 degrees in an image, the third
mask gives maximum response to vertical lines in an image and the last mask
is used for lines inclined at negative 45 degrees in an image.

APPENDIX A: LITERATURE REVIEW 55

Figure A.7: Line detection masks

Thresholding: Because of its intuitive properties and simplicity of implemen-
tation, image thresholding enjoys a central position in applications of image
segmentation. One way to extract the objects from the background is to select
a threshold T that separates the background from the region of interest. Then
any point (x,y) for which f(x,y) ≥ T is called an object point ; otherwise, the
point is called a background point. Here f(x,y) is the image on which threshold-
ing is to be carried out. Thresholding using single and multiple threshold-levels
is shown in the Figure A.8.

Figure A.8: Gray-level histrograms that can be partitioned by a (a) a single
threshold (b) by multiple thresholds

Thresholding may be viewed as an operation that involves tests against a func-
tion T of the form where f(x,y) is the gray level of point (x,y) and p(x,y) denotes
some local property of this point. When T depends only on f(x,y) (that is, only
on graylevel values) the threshold is called global. If T depends on both f(x,y)
and p(x,y), the threshold is called local. If, in addition, T depends on the spatial
coordinates x and y, the threshold is called dynamic or adaptive.

Region Growing: Region growing is a procedure that groups pixels or sub-
regions into larger regions based on predefined criteria. The basic approach is

APPENDIX A: LITERATURE REVIEW 56

to start with a set of seed points and from these grow regions by appending
to each seed those neighboring pixels that have properties similar to the seed
(such as specific ranges of gray level or color). The selection of similarity criteria
depends not only on the problem under consideration, but also on the type of
image data available. Another problem in region growing is the formulation of
a stopping rule.

APPENDIX A: LITERATURE REVIEW 57

A.5 Modulation Transfer Function

References: [14] [15] [16]

The quality of satellite camera images is regularly verified in flight. The modu-
lation transfer function (MTF) is one of the criteria of image quality. The MTF
is used to assess the aptitude of the imager to distinguish details contained in
a scene. The knowledge of the MTF makes possible estimation or comparison
of the in-flight performances of different satellites, and is useful for calculating
deconvolution filters.

For linear and spatially invariant systems, the relation between the real im-
age s(x,y) and the perfect image, in the radiometric sense, e(x,y), is of the form:

that is , the convolution of the perfect image by the impulse response h(x,y).

Let H, S, E be the Fourier transforms of h, s, e.
We obtain the relation: S(fx , fy) = E(fx , fy)H(fx , fy)

The function H(fx , fy) is called the system transfer function. This trans-
fer function is usually normalized such that H(0,0) = 1, which is equivalent to:

This results from an energy conservation hypothesis between the systems input
and output. The transfer function is a complex function of real variables. It
can then be expressed by its modulus and its phase and is called the optical
transfer function (OTF). The modulus is called the modulation transfer func-
tion (MTF). If we consider perfectly centered optical instruments, the impulse
response is even and the OTF is real. In this case, MTF and impulse response
are two equivalent representations of the quality of an optical instrument. Sev-
eral methods can be used to measure the MTF. The most intuitive one involves
calculating the Fourier transform of an impulse using a point source as an ob-
ject. A variant of this method is the step edge method. It consists of observing,

APPENDIX A: LITERATURE REVIEW 58

using the system being tested, a radiometric step edge whose luminance is a
Heaviside function in the direction perpendicular to the edge. The system MTF
is deduced from the Fourier transform of the image of the step edge. The utiliza-
tion of artificial patterns should also be mentioned. The MTF can be calculated
by measuring the contrast of periodic pattern images at different frequencies.
Last, the MTF can easily be estimated from an image of any landscape if the
reference landscape is known. Nevertheless, all these methods are bivariate, be-
cause they need a reference landscape. For all these methods, the main problem
is the specific nature of the landscape being viewed to be able to assess the
MTF correctly: point, step edge, periodic patterns, or known real landscape
(bivariate method).

In the edge method, after the selection of some suitable edges in the image,
at first the algorithm determines edge locations with sub-pixel accuracy; under
the assumption that the chosen edges are on a straight line, the alignment of
all edge locations is estimated with a least squares fitting technique.

The edge profiles, which are centered at each edge pixel and have the direction
perpendicular to the edge, are interpolated with cubic spline functions. These
cubic spline functions are averaged and interpolated with an analytical function
in order to obtain an empirical Edge Spread Function (ESF). The ESF is then
differentiated to obtain the Line Spread Function (LSF). Finally the LSF is
Fourier-transformed and normalized to obtain the corresponding MTF. Finally,
after the Fourier transformation, the computed MTF is scaled in the frequency
axis in order to represent the calculated MTF in terms of the Nyquist frequency
of the image. In addition, the Full Width at Half Maximum (FWHM) value is
also computed from the estimated LSF. This process is illustrated schematically
in Figure A.9.

Figure A.9: Edge Based Estimation of MTF

Appendix B: Plagiarism
Report

Here the plagiarism report will come.

59

References

Research Papers and Books

1. Gow-Hsing King, Jan-Jan Wu. ”A High-Performance Multi-user Service
System for Financial Analytics Based on Web Service and GPU Compu-
tation”. International Symposium on Parallel and Distributed Processing
with Applications, May 2009.

2. Yihan Guo, Meiping Shi, Yan Li, and Duoneng Liu. ”Research on Fast
Image Mosaic Based on CUDA”. Fourth International Symposium on
Computational Intelligence and Design, 2011.

3. Nicolas Seiller, Nitin Singhal, Kyu Park. ”Object Oriented Framework For
Real-Time Image Processing On GPU”. Proceedings of 2010 IEEE 17th
International Conference on Image Processing September 26-29, 2010,
Hong Kong.

4. Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone.
”Optimization Principles and Application Performance Evaluation of a
Multithreaded GPU Using CUDA”. Proceedings of 13th ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming, Pages
73-82, 2008.

5. Naga K. Govindaraju, Jim Gray, Ritesh Kumar, Dinesh Manocha. ”GPUT-
eraSort: High Performance Graphics Coprocessor Sorting for Large Database
Management.” Microsoft Research, SIGMOD Publications, Pages 325-336,
December 2006.

6. Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-Stover. ”GPU Clus-
ter for High Performance Computing”. ACM / IEEE Supercomputing
Conference 2004, November 06-12, Pittsburgh, PA.

7. Nicolas SeillerComputer. ”Architectures for Spatially distributed Data”.
NATO ASI Proceedings, Centraro Holly, Italy, 1985.

8. Remi Jean. ”Demosaicing with the Bayer Pattern”. Department of Com-
puter Science, University of North Carolina, 2006.

60

REFERENCES 61

9. Rastislav Lukac, Karl Martin, Konstantinos N. Plataniotis. ”Demosaicked
Image Post-processing Framework”. Bell Canada Multimedia Laboratory,
2009.

10. K.Gorokhovvskiy, J. A. Flint, S. Datta. ”Alternative Color Filter Array
Layouts For Digital Photography”. IEEE 2006 Conference Publications.

11. David B. Kirk, Wen-mei W. Hwu. ”Programming Massively Parallel Pro-
cessors - A Hands-on Approach”. Morgan Kaufman Publishers, 2010.

12. Giorgia Zucchelli , Marieke van Geffe. ”Speed up numerical analysis with
MATLAB”. 2011 Technology Trend Seminar, MathWorks Inc.

13. S. S Sastry. ”Introductory Methods of Numerical analysis”. PHI Publi-
cations, 2007.

14. Jean-Marc DELVIT, Dominique LEGER, Sylvie ROQUES , Christophe
VALORGE. ”Modulation Transfer Function Measurement Using Non Spe-
cific Views”. Image and Signal Processing for Remote Sensing, Proceed-
ings of SPIE, Vol. 4885, 2003.

15. Mattia Crespi , Laura De Vendictis. ”A Procedure for High Resolution
Satellite Imagery Quality Assessment”. Open Access Sensors Journal,
2009.

16. Rafael C. Gonzalez, Richard E. Woods. ”Digital Image Processing”. 3rd
Edition, Prentice Hall Publications, 2009.

17. Henrique S. Malvar, Li-wei He, Ross Cutler. ”High Quality Linear In-
terpolation for Demosaicing of Bayer-Patterned Color Images”. IEEE In-
ternational conference on Acoustics, Speech and Signal Processing, Vol-3,
Pages 485-8, 2004.

18. K. Gorokhovskiy, J.A. Flint and S. Datta. ”Alternative color filter array
layouts for digital photography.” Research in Microelectronics and Elec-
tronics, Pages 265-268, IEEE Conference Publications, 2006.

19. Eric Dubois. ”Frequency-Domain Methods for Demosaicking of Bayer-
Sampled Color Images”. IEEE Signal Processing Letters, VOL 12, No.12,
December 2005.

20. NVIDIA CUDA C Programming Guide. NVIDIA Corp.

21. NVCC CUDA Compiler Driver Guide. NVIDIA Corp.

22. NVIDIA GPU Computing Webinars Introduction to CUDA. NVIDIA
Corp.

23. NVIDIA CUDA Toolkit 4.1 CUBLAS Library Documentation

REFERENCES 62

Web Based References

• Calling Linux Commands from Java Applications - www.sitepoint.com

• Introduction to CORBA - www.ois.com

• Tesla C1060 board Specifications v03 - www.nvidia.com

• Remote Procedure Calls (RPC) XDR Datatypes - www.hp.com/open-
vms-systems

• Passing complex data structures through XDR - www.oracle.com/onc-
developers-guide

• Linux GUI Programming - http://ubuntuforums.org/index.php

• Java Native Code Programming - www.machtech.com/jni

• Socket Programming - www.thegeekstuff.com/c-socket-programming/

• Cuda Programming with Java - www.TheServerSide.com/jcuda

• Indian Space Research Organisation (ISRO)
http://www.isro.org/scripts/Aboutus.aspx

• Space Applications Center (SAC)
http://www.sac.gov.in/sacwebi/sacHomePage.iface

