
REDUNDANT NUMBER SYSTEM BASED
CORDIC FOR FAST FOURIER TRANSFORM

Submitted in Partial Fulfillment of the Requirements for Semester III- IV

of

MASTER OF TECHNOLOGY
IN

ELECTRONICS & COMMUNICATION ENGINEERING

(VLSI Design)

By

Vishal Bamboria (03MEC02)
Under the Guidance of

Prof. N P Gajjar Mr. Sujit Bhattacharya
 EC. Department, Project Manager ASIC,

 Nirma University Scientist/ Engineer-‘SF’
 Ahmedabad SAC (ISRO), Ahmedabad

Department of Electronics & Communication Engineering

INSTITUTE OF TECHNOLOGY,

 NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,

 AHMEDABAD 382 481

Year 2004-05

Certificate

This is to certify that the Major Project Report (Part-II) entitled “Redundant Number

System Based CORDIC for Fast Fourier Transform” submitted by Mr. Vishal Bamboria

(03MEC02) towards the partial fulfillment of the requirements for Semester III-IV of Master

of Technology (Electronics & Communication Engg.) in the field of VLSI Design of Nirma

University of Science and Technology is the record of work carried out by him under our

supervision and guidance. The work submitted has in our opinion reached a level required for

being accepted for examination. The results embodied in this major project work to the best

of our knowledge have not been submitted to any other University or Institution for award of

any degree or diploma.

Date:

Dr. M D Desai Prof. N P Gajjar Dr. H V Trivedi

 HOD Project Guide Director
Dep. of Electronics
and Communication Engg.

 ii

ABSTRACT

 Digital Signal Processing (DSP) techniques find application from home appliances

to Satellite applications. DSP involves complex mathematical computations and therefore,

there is a need for high-speed mathematical processor. Trigonometric function calculation is

one of the primary tasks performed in DSP applications. For long time microprocessor-based

systems have been used to perform this task. Software algorithms used by the processor do

not meet the highly demanding needs of all DSP tasks. Using hardware systems to perform

these DSP task is a competent solution to this problem. Field Programmable Gate Arrays

(FPGAs) are often used as co-processor to perform all the high speed tasks that can not be

achieved by microprocessors. FPGAs are chosen because they are on-site programmable and

are highly suitable for hardware implementations. The software solutions adopted by the

microprocessor to implement trigonometric functions are computation intensive. They do not

suit hardware platform because they need complex circuit to perform the mathematical

operations. Among the existing hardware algorithm CO-ordinate Rotation DIgital Computer

(CORDIC) is widely adopted because of its simplicity and speed efficiency.

 CORDIC is one such iterative hardware efficient algorithm that performs high seed

mathematical operations in linear, circular and hyperbolic coordinate system and computes

various trigonometric, logarithmic and transcendental functions fast with high degree of

accuracy for DSP applications.

 The drawback of conventional CORDIC implementation, based on ripple carry

adders or subtractions, is the internal carry propagation delay. To enhance the performance of

CORDIC Redundant Arithmetic has been proposed. This arithmetic, due to its carry-free

property, avoids the carry propagation from the LSB to MSB.

 Nevertheless, its use involves several difficulties. It is not possible to detect the sign of

a redundant number without inspecting all the digits which requires a propagation from the

MSB to the LSB. Hence, the decision criteria is chosen according to several most significant

digits. Since, not all digits are examined there is the possibility that the sign is not

determined. In such a case either the digit set {-1,0,1} can be chosen leading to a non-

constant Scale factor or an arbitrary rotation has to be performed. In the first case, the scale

 iii

factor has to be computed in parallel to the CORDIC iterations to ensure the convergence. In

order to solve the problems of the redundant arithmetic based CORDIC several methods have

been proposed. All of them maintain the scale factor constant. They have been classified in

the three groups. Group I, which are based on an estimation of the sign like Double Rotation

CORDIC, Correcting Rotation CORDIC, House holder CORDIC. Group II, Differential

CORDIC algorithm. Group III, which are based on the pre-computation of the directions of

the micro-rotation.

 The CORDIC algorithm is used for various applications like the Digital Chirp

Generation, Fast Fourier Transform, Digital Filtering, etc. The main speed limiting operation

in FFT is complex multiplication. Complex multiplication is one of the most time-critical and

area-consuming operations in a FPGA implementation. The CORDIC in FFT architecture

eliminates the need of complex multiplier and the need to store the Sine/Cosine factors in the

twiddle factor ROM.

 The CORDIC based FFT architectures are well suited for the FPGAs where no

memories are available to store the Sine/Cosine terms (like Actel family). To incorporate

CORDIC a new butterfly is designed where required multiplication terms are given as input

vector to the CORDIC block as discussed in the thesis.

 This project work involves design, VHDL implementation and FPGA prototyping of

Redundant arithmetic blocks, CORDIC processor, Predicting CORDIC Processor and its

applications to Digital Chirp Generator and FFT. The project work has been carried out in

several stages. It started with the design of the architecture and its bit-accurate

implementation on MATLAB. The RTL design was carried out in VHDL. The designs were

simulated in the Modelsim, synthesized using the Xilinx synthesis Tool (XST), and finally

implemented using placing and routing Tool. Implemented design was downloaded on the

Xilinx Vertex board along with Chipscope. All the results from MATLAB simulation and

logical synthesis have been discussed.

 iv

CONTENTS
 Page No.

ACKNOWLEDGEMENT (vi)
List of Figures and Tables (vii)
ABBREVIATION (x)

CHAPTER 1: Introduction 1
 1.1 Overview 1
CHAPTER 2 : Review Of Literature 5
CHAPTER 3 : System Theory 7

3.1 Redundant Number System 7
3.2 Redundant Binary Representation 7
3.3 Carry Propagation Free Addition 10
3.4 Redundant to Binary Conversion
3.5 CORDIC Theory 14
3.6 CORDIC Iteration With Redundant Number 23
3.7 Predicting CORDIC Algorithm 33
3.8 Digital Chirp Generator 39
3.9 Fast Fourier Transform 47

CHAPTER 4 : System Design 82

 4.1 Binary To Redundant Converter 82
 4.2 Carry Free Adder 83
 4.3 Carry Selector 85
 4.4 S & D Selector 86
 4.5 Redundant To Binary Converter 87

4.6 CORDIC implementation in an FPGA 109
4.6.1 Redundant CORDIC Implementation 115

4.7 Predicting CORDIC Processor 121

CHAPTER 5 : Conclusion and Future Work 138

REFERENCES 140
Appendix A 142
Appendix B 144
Appendix C 146

 v

ACKNOWLEDGEMENT

Firstly I would like to express my profound gratitude to my project guide, Mr. Sujit

Bhattacharya, Project Manager ASIC, Space Applications Center (SAC-ISRO), Ahmedabad

for his outstanding support and guidance during my stay at SAC (ISRO). Mr. Sujit

Bhattacharya is a fascinating tutor and a thoughtful mentor; always ready to share his

expertise with his juniors. He is also a thorough, brilliant researcher and I benefited greatly

from working under his guidance. His encouragement and friendship have been invaluable

throughout my work at SAC (ISRO).

I also take this opportunity to thank, Mr. R. J.K. Jain, Head, HRDD who gave us

wonderful opportunity to work in the nation’s most premier and esteemed research institute.

Again my sincere and deep gratefulness goes to my project guide, Prof, N.P. Gajjar

for his kind support and guidance throughout my project work. He is a wonderful teacher and

an enthralling guide, spreading his knowledge and energy omni directionally. His academic

excellence continues to be a source of inspiration, but beyond that I am especially grateful for

his limitless patience and fatherly support during trying times.

I would also like to thank the professors at the Institute of technology, Nirma

University, Ahmedabad especially Dr. N.M. Devashree, Prof. D.K. Kothari, Prof. A.K.

Nigam, Prof. S.V. Pradhan, Prof. D.P. Dave, Prof. Y.N. Trivedi, Prof. Dhaval Pujara, and

Prof. T.P. Singh for providing me with very good foundations which have proved helpful

throughout my studies and project work.

Last but not the least, I express out sincere thanks to all our colleagues, friends for

their continuous support and constant encouragement for friendship, patience and collegial

help, which was so essential during my project work. Lastly I would I like to thank each and

every person who has helped me directly or indirectly in accomplishing my project.

Finally, I would like to thank my parents for their constant love and support and for

providing me with the opportunity and the encouragement to pursue my goals.

 vi

List of Figures

 Figure 2.2.1 : Example of carry propagation free addition 10.
 Figure2.2.1 : Conventional Redundant binary to binary 11
 converter
 Figure2.2.2 : Logic new serial mode binary converter 12
 Figure2.2.3 : Look ahead mode Redundant binary to binary 14
 converter
 Figure 2.3.1 : Rotation in linear coordinate system. 17
 Figure 2.3.2 : Vector rotation 18
 Figure 2..3.3 : Rotating a vector using micro rotations 18
 Figure 2.3.4 : Rotation in Hyperbolic coordinate system 22.
 Figure 2.4 .11: Diagram of branching CORDIC. 25
 Figure 2.4.12 : Architecture of a branching CORDIC 25
 processor
 Figure 2.4.1 : CORDIC dependence graph for rotation mode 28
 and vectoring mode.
 Figure 2.4.2 : Unfolded (pipelined) CORDIC signal Flow 29
 graph.
 Figure 2.4.3 : Folded (recursive) CORDIC signal flow 30
 graph.
 Figure 2.4.5 : Dependence graph for classical vector 32
 rotation
 Figure 2.6.1 Traditional DCG architecture 39
 Figure 2.6.4 : Modelsim result of Chirp generator.
 Figure 2.6.5 : RTL view of Chirp generator. 44
 Figure 2.7.1 : R2MDC(N=16) 48
 Figure 2.7.2 : R2SDF (N=16) 48
 Figure 2.7.3 : R4SDF 49
 Figure 2.7.4 : R4SDC 49
 Figure 2.7.5 : Mapping of quadrant 55
 Figure 2.7.6 : CORDIC Butterfly unit 57
 Figure 8.1 : Binary to redundant Converter 82
 Figure 8.2 : RTL view of 1 bit adder(CARADDER) 83
 Figure 8.3 : 8 bit adder (ADDER8) 84
 Figure 8.4 : Carry selector(Carry_in) 85
 Figure 8.5 : SDBREAKER86
 Figure 8.6 : Redundant to binary conversion 87
 Figure 7.1 : Binary to Redundant Converter Simulation 88
 Figure 7.2 : 10 Bit Carry free adder 89
 Figure 7.3 : Carry Selector 89
 Figure 7.4 : S & D Selector(SDBREAKER) 90
 Figure 7.5 : Redundant to Binary Converter(RENTOBIN8) 90
 Figure 7.6 : TOP Level Entity(TOP) 91
 Figure 6.1 : RTL view of 1 bit adder 92
 Figure 6.1.1 : Gate or/ nor 92
 Figure 6.1.2 : Gate or/nor 92
 Figure 6.2 : RTL view of 8 bit ADDER 93

 vii

 Figure 6.3.1 : Binary to redundant converter 95
 Figure 6.4 : RTL view of Carry selector (Carry_in) 97
 Figure 6.3 : Top level redundant to binary converter 98
 Figure 6.4.1 : Internal of redundant to binary converter 98
 Figure 6.5 : RTL of S & D selector (SDBREAKER) 100
 Figure 6.6 : RTL of Top 101
 Figure 5.1 : Sine wave(MATLAB simulation). 104
 Figure 5.7 : Angle mapping for the predicting CORDIC 107
 Figure 5.8 : Simulation result of predicting CORDIC 107
 Figure 5.9 : Chirp values vs samples 108
 Figure 5.10 : CORDIC Cosine output 108
 Figure 1 : Iterative CORDIC structure. 110
 Figure 2 : Bit serial iterative CORDIC 111
 Figure 3 : Iterative bit serial CORDIC for Xilinx 4000E. 113
 Figure 4 : Unrolled CORDIC Processor.113
 Figure 5 : Two iterations of bit serial CORDIC pipeline 114
 Figure 6 : Detail of pipelined bit serial adder/subtractor in 114
 Amtel
 Figure3.1 : RTL view of TOP of CORDIC processor 118
 Figure3.2 : Modelsim view of Sine and Cosine generation .118
 Figure3.3 : Modelsim view of pure Sine wave 119
 Figure4.1 : Proposed CORDIC architecture 116
 Figure4.2 : Post processor RTL view. 116
 Figure4.3 : Preprocessor RTL view 117

Figure4.4 : RTL View of CORDIC unrolled 117
Figure 4.5 : Single CORDIC Stage 119
Figure 4.6 : RTL view of Post Processor 120

 Figure 9.1 : Architecture of predicting CORDIC processor 121
 Figure 9.2 : Quadrant symmetry mapping of angle 123
 Figure 9.3 : Shows the π/4 multiplier 124
 Figure 9.6 : RTL view of Pi/4Multiplier
 Figure 9.4 : Modelsim results of Sign predictor 125
 Figure 9.5 : Modelsim results of predicting CORDIC 125
 Figure 2.6.6 : Chirp Modelsim results

Figure 10.1 : Chipscope result of Top Redundant conversion chain 142
Figure 10.2 : Chipscope result of Top Redundant conversion chain 142
Figure 10.3 : Chipscope result of Top Redundant conversion chain 143
Figure 11.1 : Chipscope result of Sine wave by CORDIC 144
Figure 11.2 : Chipscope result of Sine wave by CORDIC 144
Figure 11.3 : Chipscope result of Cosine wave by CORDIC 145
Figure 11.4 : Chipscope result of Cosine wave by CORDIC 145

 Figure 12.1 : Chipscope result of Sine wave by Chirp generator 146
 Figure 12 2 : Chipscope result of Sine wave by Chirp generator 146
 Figure 12 3 : Chipscope result of Cosine wave by Chirp generator 147

 viii

List of Table

 Table 2.1 : Computation rules for carry propagation free
 addition.
 Table 2.3 : For sign selection by examine 3 digit positions
 Table 2.6.1 : Control signal for the out put stage
 Table 2.6 : Angle ROM of CORDIC in chirp generator
 Table 2.4 : For sign selection by examine 3 digit positions
 Table 2.4.1 : Architecture properties for the CORDIC
 architecture
 Table 2.6.3 : Performance summery of chirp generator
 Table 3.2 : Architectural properties for three CORDIC

 architectures
Table 8.1 : Angle ROM of CORDIC

 Table 8.2 : Performance summary

 ix

ABBREVIATIONS

CPA : Carry Propagation Free Addition
DSP : Digital Signal Processing
CORDIC : Coordinate Rotation Digital Computer
DCG : Digital Chirp Generator
FPGA : Field Programmable Gate Array
DFT : Discrete Fourier Transform
FFT : Fast Fourier Transform
LUT : Look Up Table
MUX : Multiplexer
GSD : Generalized Signed Digit Number
CS : Carry Save
BSD : Binary Signed Digit
RBC : Redundant to Binary Conversion
RB : Redundant Binary
BBR : Binary To Bipolar Recoding
MAR : Micro Rotation Angle Recoding
HDL : Hardware Description Language
DCT : Discrete Cosine Transform
FIR : Finite Impulse Response Filter
RAM : Random Access Memory
R2MDC : Radix-2 Multi Path Delay Commutator
R2SDF : Radix-2 Single Path Delay Feedback
R4SDF : Radix-4 Single Path Delay Feedback
R4SDC : Radix-4 Single Path Delay Commutator
ROM : Read Only Memory
RTL : Register Transfer Logic
VHDL : VHSIC Hardware Description Language
XST : Xilinx Synthesis Tool

 x

Redundant Number System based CORDIC for FFT 1.Introduction

CHAPTER 1

INTRODUCTION

The high capability and performance that FPGAs have achieved in last few years

allow them to accelerate DSP tasks. FPGA devices have been used for implementing Custom

DSPs from the beginning of the past decade. The FPGA devices have beneficed from the

improvements in VLSI deep sub-micron technology, leading to higher speed and capability as

well as low power consumption. On the other hand digital signal processing (DSP) algorithms

exhibit an increasing need for the efficient implementation of complex arithmetic operations.

The computation of trigonometric functions, coordinate transformations or rotations of

complex valued phasors is almost naturally involved with modern DSP algorithms. Popular

application examples are algorithms used in digital communication technology and in

adaptive signal processing. While in digital communications, the straightforward evaluation

of the cited functions is important, numerous matrix based adaptive signal processing

algorithms require the solution of systems of linear equations, QR factorization or the

computation of eigen values, eigenvectors or singular values. All these tasks can be efficiently

implemented using processing elements performing vector rotations. The Coordinate Rotation

Digital Computer algorithm (CORDIC) offers the opportunity to calculate all the desired

functions in a rather simple and elegant way.

The Coordinate Rotational Digital Computer (CORDIC) algorithm is a well-known

iterative technique to perform various basic arithmetic operations. The algorithm is very

attractive for hardware implementation because it uses only elementary shift-and-add steps to

perform vector rotation in a two-dimensional (2-D) plane. Hence, the CORDIC algorithm can

be applied to many DSP applications where rotation-based arithmetic functions are heavily

utilized, such as linear system solver, digital lattice filter, singular value problems and the fast

Fourier transformation (FFT). However, the major disadvantage of the CORDIC algorithm is

its slow computational speed.

The Coordinate Rotational Digital Computer (CORDIC) was introduced in 1959 by

Jack Volder, for the computation of trigonometric functions; multiplication, division and data

type conversion, and later on generalized to hyperbolic functions by Walther. Two basic

CORDIC modes are known leading to the computation of different functions, the rotation

mode and the vectoring mode. For both modes the algorithm can be realized as an iterative

sequence of additions/ subtractions and shift operations, which are rotations by a fixed

rotation angle (sometimes called micro rotation) but with variable rotation direction. Due to

the simplicity of the involved operations the CORDIC algorithm is very well suited for VLSI

Redundant Number System based CORDIC for FFT 1.Introduction

implementation. However, the CORDIC iteration is not a perfect rotation which would

involve multiplications with sine and cosine. The rotated vector is also scaled making a scale

factor correction necessary. The CORDIC algorithms generally produce one additional bit of

accuracy for each iteration.

 Several CORDIC processors have been designed and implemented onto

VLSI chips. However, the CORDIC algorithm is relatively slow because each

iteration requires carry propagate adders. Recently, Ercegovac and Lang have

proposed using redundant signed-digit (SD) adders to replace the conventional binary

adders in order to reduce the inherent carry delay . But, the redundant CORDIC

destroys the nice property of constant scaling factor due to a different sign selection

rule, and hence the multiplication of the scaling factor requires additional

complicated hardware. Several approaches have been proposed to overcome the

problems. However, all these methods required either extra correcting CORDIC iterations

or additional scaling iterations.

An entirely new approach is based on parallelization of the original CORDIC

algorithm by predicting all the rotation directions directly from the binary bits of the initial

input angle. Unlike previous approaches that require complicated circuits or exponentially

increased ROM, this algorithm provides a relatively simple prediction scheme through an

efficient angle recording. Utilizing the predicted rotation directions to design an efficient

multi operand carry-save addition structure also reduces the critical path delay.

With use of above algorithm there is no need to perform the Z iterations thus proved to

be efficient in terms of area and as well as speed. Thus one can use carry-free arithmetic

to replace the conventional binary adder with no further increase in area.

This efficient Sine/Cosine generator is used for many applications like FFTs and DCG

(Digital Chirp Generator). A DCG system consists of a phase accumulator, frequency

accumulator and a sine/cosine generator, Simple modifications to the phase generation

circuitry produces synthesized chirps useful in radar and electronic warfare systems and in

implementation of continuous-phase modulators (e.g., GMSK). The details are discussed in

the latter section.

One can replace the complex multiplier operation by shift and add CORDIC

algorithm. Thus ,above Sine/Cosine generator is used to implement the Fast Fourier

Transform. Fast Fourier Transform (FFT) is one of the most utilized operations in Digital

Signal Processing and Communications. The FFT and its inverse transform-IFFT are a key

component in modern communication systems. Application Specific Integrated Circuit

(ASIC) approaches have been used to achieve the high performance demands, which software

 2

Redundant Number System based CORDIC for FFT 1.Introduction

or general-purpose DSP implementations fail to deliver. Recently FPGAs has become a valid

alternative as the technology has matured greatly. Nowadays FPGAs play an important role

in many areas due to their direct hardware solution performance as well as their inherent

reprogram ability feature. Using FPGAs for FFT processing has now become feasible in real-

time applications. Development of the FFT in hardware is usually categorized into that of

high throughput and that of low power.

 3

Redundant Number System based CORDIC for FFT 2.Literature Review

CHAPTER 2

LITERATURE REVIEW

The basic design flow of the first module is :

• The input binary number is first converted to redundant number.

• The resultant RB numbers are added/subtracted using carry free adder/Subtractor to

perform addition & subtraction.

• Finally the redundant number is converted back to binary number.

Most of the literature that deals with redundant number system is referred form:

 [1] “Generalized Sign Digit number system” a unifying frame work for redundant number

representations Behrooz Parhami , IEEE Transaction on computers vol:39, No.1,Jan 1990.

This paper provides enough background for redundant numbers and discussed so called

signed digit numbers with radix r≥3 with digit set {-α, 0, α} where ‘α ‘is an

arbitrary integer. Such a number system representation systems possess sufficient redundancy

to allow for the annihilation of carry or borrow chains and hence result in fast propagation

free addition and subtraction.

The stuff for the carry-free addition referred from :

[2] Carry Free addition of recoded binary sign digit numbers

 Behrooz Parhami, IEEE Transaction on computers vol:37, No.11,Nov 1988.

and

 [3] “High speed VLSI multiplication algorithm with a redundant binary addition

tree”.Naofumi takagi, Hiroto yasuura, IEEE Transaction on computers vol:C34, No.9,Sep

1985.

Now for converting redundant number back to binary number another IEEE paper

[4]“An efficient redundant Binary to Binary number converter

Sung Ming Yen, Chi-Sung laih, IEEE journal of solid-state circuit vol: 27,No.1, Jan 1992.

In this paper all the available technique for converting redundant number back to binary are

discussed ,out of which the lookahead mode conversion algorithm is used because of its high

speed conversion .

For CORDIC implementation there are large numbers of papers available out of which few

IEEE papers are referred as per our requirement. Some of them are

[5]” The CORDIC Algorithm: New Results for Fast VLSI Implementation”

Jean Duprat,Jean Michel Muller,IEEE Transaction on computers vol:42, No.2,Feb 1993

Redundant Number System based CORDIC for FFT 2.Literature Review

[6]” Design of a unified arithmetic processor based on redundant constant factor CORDIC

with merged scaling operation.”

S.F.Hsiau,C.Y.Lau ,IEE, proc, comput ,digit Tech vol :147,No.4,July 2000.

Few papers on FFT with CORDIC are referred one of them is

[7]“FPGA realization of a CORDIC based FFT processor for biomedical signal processing.”

IITKh paper.

The stuff for the Predicting CORDIC algorithm is referred from the

[8] A Memory Efficient and High- speed Sine/Cosine Generator based on Parallel CORDIC

Rotations by Shen-Fu,Yu-Hen Hu, Tso-Bing Juang ,IEEE signal processing letters Vol.11

Feb 2004 .

 6

Redundant Number System based CORDIC for FFT 3.System Theory

CHAPTER 3

SYSTEM THEORY

3.1 REDUNDANT NUMBER REPRESENTATION
 A scheme using redundant number representation for fast multiplication was introduced

in the late 1950’s by Aviziens.A unified description for redundant number systems was given

by Parhami who defined Generalized Signed Digit (GSD) number systems. A GSD number

system contains the digit set {-α,-α+1,……….,β-1, β} with 0≤β,α and β+α+1>r with r

being the radix of the number system. Every suitable definition of α and β leads to a different

redundant number system. The value X of a W digit integer GSD number is given by:

After N iterations, the accumulated rotation angle is

 W – 1

X = ∑ rk * xk , xk = {-α, -α+1,…,β-1, β }

 k = 0 (2.1)

An important subclass are number systems with α +β = r, which are called minimal

redundant", since α + β = r-1 corresponds already to a conventional number system. The well-

known Carry-Save (CS) number system is defined by α = 0; β = 2;

r = 2. CS numbers are very attractive for VLSI implementation since the basic building block

for arithmetic operations is a simple full adder

With α= 1; β = 1; r = 2 the well-known Binary Signed Digit (BSD) number system results.

BSD operations can be implemented using the same basic structures as for CS operations

An important advantage of CS numbers is the very simple and fast implementation of the

addition operation.

3.2 REDUNDANT BINARY REPRESENTATION:

Redundant Binary Representation:
 The redundant binary representation utilized is one of the SD representations proposed

by Avizienis . It has a fixed radix 2 and a digit set {-1, 0, 1} where –1 denotes –1. An n-digit

redundant binary integer y = [yn-1….y0]SD2 (yi ∈ {-1, 0, 1}) has the value ∑i=0
n-1yi x 2i. It is

similar to an unsigned binary integer except that yi can be –1.

 The redundant binary representation allows the existence of redundancy. There are

several ways to represent an integer in the redundant binary representation. For example,

Redundant Number System based CORDIC for FFT 3.System Theory

[0101]SD2, [011-1]SD2, [1-101]SD2, [1-11-1]SD2, and [10-1-1]SD2 all represent “5.” (However,

“0” is uniquely represented). Owing to the redundancy. We can perform carry-propagation

free addition, and therefore, parallel addition of two redundant binary numbers can be

performed in a constant time independent of the word length of operands, as will be

mentioned in the next subsection.

 The negation of a redundant binary number is directly derived by changing the signs

of all nonzero digits in the number. Since this computation can be performed in parallel for all

digits, it requires a constant computation time independent of the word length of the number.

3.3 Carry-Propagation-Free Addition:
 Carry-propagation-free addition is performed in two steps. In the first step, we

determine the intermediate carry ci (∈{-1, 0, 1} and the intermediate sum digit si(∈{-1, 0, 1})

at each position, satisfying the equation xi + yi = 2ci + si, where xi and yi are the augend and

addend digits, respectively. In the second step, we obtain the sum digit zI(∈ {-1, 0, 1}) at each

position by adding the intermediate sum digit si and the intermediate carry ci-1 from the next-

lower-order position, without generating a carry.

 In the first step, at each position, we determine ci and si so that both si and ci-1 are not

1’s, nor are they –1’s. When one of xi and yi is 1 and the other is 0, we determine ci and si as

follows (note that both [01]SD2 and [1-1]SD2
 represent “1”).

1) If there is a possibility of a “1”as carry (a positive carry) from the next-lower-order

position, we let [ci, si] be

 [1, -1].

2) If there is a possibility of a “–1” as carry (a negative

 carry) from the next-lower-order position, we let [ci, si]

 be [0, 1].

3) If there is no possibility of a carry from the next-lower-

 order position, we may let [ci, si] be either [1, -1] or

 [0, 1].

 Similarly, when one of xi and yi is”–1” and the other is”0”, we let [ci, si] be [0, -1] if there is a

possibility of a 1-carry from the next-lower-order position, and let it be [-1, 1] if there is a

possibility of a” –1” as carry. We can know the possibility of a carry from the next-lower-

order position by examining the augend and the addend digits xi-1 and yi-1 at the next-lower-

order position. When both xi-1 and yi-1 are 1’s or one of them is “1” and the other is “0”, there

is a possibility of a “1”as carry. When both of them are –1’s or one of them is “–1” and the

 8

Redundant Number System based CORDIC for FFT 3.System Theory

other is “0”, there is a possibility of a “–1” as carry. In the other cases, there is no possibility

of a carry. Therefore, ci and si can be determined by examining xi, yi, xi-1 and yi-1.

 When we determine ci and si as stated in the above, no carry is generated in the

addition of si and ci-1 in the second step. Thus, each sum digit zi can be computed from xi, yi,

Type Augend
Digit
(xi)

Addend
Digit
(yi)

Digits at the next-
lower-order position

(xi-1, yi-1)

Intermediate
carry (ci)

Intermediate
Sum digit

(si)
1 1 1 ___________ 1 0

Both are nonnegative. 1 -1 2 1
 0

0
1 Otherwise. 0 1

 3 0 0 ___________

 4 1
-1

-1
 1

 0

 0

Both are nonnegative. 0 -1 5 0

TABLE 2.1

-1
-1
 0 Otherwise. -1 1

 6 -1 -1 ___________ -1 0

Computation rule for the first step in Carry-propagation free
Addition

xi-1, yi-2, and yi-2. Namely, zi depends on only these six digits. This fact is the key to the high-

speed computation.

 Table-2.1 shows a computation rule in the first step. When one of xi and yi is 1 and the

other is 0, we let [ci, si] be [1, -1] or [11] accordingly, as both xi-1 and yi-1 are nonnegative or

not. When one of xi and yi is –1 and the other is 0, we let it be [0,-1] or [-1, 1] accordingly, as

both xi-1 and yi-1 are non-negative or not. We assume that x-1 and y-1, i.e., the augend and

addend digits at the next-lower-order position of the least significant position are both 0’s.

Fig. 2.2.1 shows an example of carry-propagation-free addition in accordance with the rule.

(Take notice of the computation at the second and the third least significant positions).

 Thus, in the redundant binary number system, carry propagation can be eliminated

from addition, and therefore, parallel addition of two numbers by a combinational circuit is

performed in a constant time independent of the word length of operands. Namely, the depth

of an n-digit redundant binary adder is a constant independent of n. The gate count of it is

proportional to n.

 9

Redundant Number System based CORDIC for FFT 3.System Theory

 Augend [1 0 -1 0 -1 0 0 -1]SD2(87)

 Addend [1 -1 1 0 0 1 1 -1]SD2 (101) Step 1 __
 Intermediate sum 0 1 0 0 1 1 1 0 Si

Intermediate carry + 1 -1 0 0 0 1 0 -1 Ci Step 2 __

Sum [1 -1 1 0 0 0 -1 0 0]SD2 (188)

Fig 2.2. 1 Example of carry-propagation-free addition.

The addition method discussed here in an example. There are various other carry-

propagation-free addition methods in the redundant binary number system.

3.4 REDUNDANT TO BINARY CONVERSION (RBC)

A scheme using redundant number representation for fast multiplication was introduced in the

late 1950’s by Aviziens.A computational algorithm using redundant binary number(RB) with

digit set (-1,0,1) and Takagi proposed its application to multiplier & dividers. The RB adders

are not popular earlier because its space complexity is twice to that of conventional adder.

Recently this drawback is over come by vandemeulebroecke .

 The redundant binary number(RB) representation properties:

1) Its carry propagation free addition.

2) It does not use 2’s complement method to handle the negative

number .

3) Require additional converter to convert the RB back to binary number.

Redundant binary number to binary number conversion:

Conversion of n digit Redundant binary number to 2’s complement binary number is

more complex.

There are three different approaches to perform this operation:

1) Conventional adder method.

2) Serial mode converter.

3) Look ahead mode converter.

 10

Redundant Number System based CORDIC for FFT 3.System Theory

Conventional adder method:

The RB to binary converter can be implemented by a binary adder serially as shown in

the figure. In RB representation we use two binary bits(S,D) to represent an RBG digit

X.In order to simplify the conversion circuit design , the representation of one digit is

{(0,0),(0,1),(1,1)}={0,-1,1}.In order to guarantee correct conversion , an n digit RB

number must be converted to (n+1)-bit 2’s complement binary representation. Equation

used is

Y = Xsd+ - Xsd- (2.3.1)

Where Xsd+ and Xsd- derived from input RB number Xsd.

Fig.2.2.1 The conventional RB to binary convereter.

2 Serial mode converters:

 In this type of converter the conversion process is achieved by selecting a new variable

Ci in the ith digit position. This variable is defined as follows.

a) Ci =1 means that, for the current RB digit position I, there is at least one –1 right to

this position and no +1 b/w the –1s and the current position.

b) Ci =0 otherwise.

c) C0 =0.

The serial mode converter is shown in the figure .For each stage I, given the redundant

digit (Si, Di) and the input variable Ci , we obtain the binary output Bi and the output

variable Ci+1.The conversion rule is shown in the table

 11

Redundant Number System based CORDIC for FFT 3.System Theory

Table(2.3) Carry selection rule

Xi Si Di Ci BBi Ci+1

0 0 0 1 1 1

0 0 0 0 0 0

1 0 1 1 0 0

1 0 1 0 1 0

-1 1 1 1 0 1

-1 1 1 0 1 1

From the conversion rules shown in the table we have the Boolean equations for Bi and

Ci+1:

Ci+1 = Si + PiCi (2.3.2)

BBi = Di xor Ci (2.3.3)

Where Pi=not Di., C0=0.

The logic diagram in each stage I using only simple NAND gates is shown in the

figure(2.2.2).Compare to conventional adder it takes less number of gates.

Fig 2.2.2 Logic diagram of new converter Serial mode.

 12

Redundant Number System based CORDIC for FFT 3.System Theory

Lookahead mode converter:

In serial mode converter the signal convert Ci is propagated from least significant position

to most significant position digit by digit. To speed up the operation the concept of carry

lookahead adder is used. The equations are:

C1 = S0 + P0C0 (2.3.4)

C2 = S1 + P1S0 + P1 P0C0 (2.3.5)

C3 = S2 + P2S1 + P1 P2S0 + P2P1 P0C0 (2.3.6)

In general

C4i+4 = Si ‘ + Pi’C4i where I= 0,1,2,3,4,5……… (2.3.7)

As shown in the figure the look ahead mode converter requires only one NAND gate

delay to generate the signals S and P. This method require less chip area and it also provide

very fast conversion hence well suited for the application.

 13

Redundant Number System based CORDIC for FFT 3.System Theory

Fig.2.2.3 The logic diagram of lookahead mode converter

3.5 CORDIC THEORY
The basic concepts of the CORDIC computation is to decompose the desired rotation angle

into the weighted sum of a set of predefined elementary rotation angles such that the rotation

through each of them can be accomplished with simple shift-and-add operations.

 All of the trigonometric functions can be computed of derived from functions using

vector rotations. Vector rotation can also be used for polar conversions, vector magnitude, and

as a building block in certain transforms such as the DFT and DCT. The CORDIC algorithm

provides an iterative method of performing vector rotation by arbitrary angles using only shift

and adds. The algorithm is derived from the general rotation transform:

X’ = x cos(∅) – y sin(∅) (2.3.1)

Y’ = y cos(∅) + x sin (∅) (2.3.2)

Which rotates a vector in Cartesian plane by the angle θ.. These can be rearranged so

that:

X’ = cos(∅) [x – y tan(∅)]

Y’ = cos(∅) [y – x tan(∅)]

If the rotation angles are restricted so that tan(∅) = ±2-i, the multiplication by the tangent term

is reduced to simple shift operation. If the decision at each iteration, i, is which direction to

rotate rather than whether or not to rotate, then the cos(δI) term becomes a constant

(because cos(δI) = cos(-δi)). The iterative rotation can be expressed as:

 14

Redundant Number System based CORDIC for FFT 3.System Theory

 xi+1 = Ki [xi - yi . di . 2-i] (2.3.3)

 Yi+1 = Ki [yi + xi . di . 2-i] (2.3.4)

Where,

Ki = cos(tan-1(2-i)) = 1/√1 + 2-i

 di = ±1
 Removing the scale constant from the iterative equation yields a shift-add algorithm

for vector rotation. The product of the K’s can be applied elsewhere in the system or treated

as part of a system processing gain. That product approaches 0.6073

as the number of iterations goes to infinity. Therefore, the rotation algorithm has a gain, A of

approximately 1.647. The exact gain depends on the number of iteration, and obeys the

relation

 An = ∏√1 + 2-I (2.3.5)
 n

The angles of a composite rotation are uniquely defined by the sequence of the

direction of the elementary rotations. That sequence of the directions of the elementary

rotations. That sequence can be represented by a decision vector. The set of all possible

decision vectors is an angular measurement system based on binary arctangents. Conversions

between this angular system and any other can be accomplished using a look-up. A better

conversion method uses an additional adder-subtractor that accumulates the elementary

rotation angles at each iteration. The angle accumulator adds a third difference equation to the

CORDIC algorithm:

 Zi+1 = Zi – di . tan-1(2-i) (2.3.6)
The CORDIC rotator is normally operated in two modes.

1. ROTATION MODE

2. VECTOR MODE

In the rotation mode, the angle accumulator is initialized with the desired rotation

angle. The rotation decision at each iteration is made to diminish the magnitude of the

residual angle in the angle accumulator. The decision at each iteration is therefore based on

the sign of the residual angle after each step. Naturally, if the input angle is already expressed

in the binary arctangent base, the angle accumulator may be eliminated. For rotation mode,

the CORDIC equations are:

 xi+1 = xi – yi . di .2-i

 yi+1 = yi + xi . di . 2-i

 Zi+1 = zi – di . tan-1(2-i)

 15

Redundant Number System based CORDIC for FFT 3.System Theory

Where : (2.3.7)

 di = -1 if zi < 0, +1 otherwise.

 Which provides the following result :

 xn = An [x0 cosz0 – y0 sinz0]

 yn = An [y0 sinz0 + x0 cosz0]

 zn = 0

 An = ∏ √1 + 2-i

 n

In the vectoring mode, the CORDIC rotator rotates the input vector through whatever

angle is necessary to align the result with the x-axis. The result of the vectoring operation is a

rotation angle and the scaled magnitude of the original vector (the x component of the result).

The vectoring function works by seeking to minimize the y component of the residual vector

at each rotation. The sign of the residual y component is used to determine which direction to

rotate next.

If the angle accumulator is initialized with zero, it will contain the traversed angle at

the end of the iterations. In the vectoring mode, the CORDIC equations are:

 xi+1 = xi – yi . di .2-i

 yi+1 = yi + xi . di . 2-i

 Zi+1 = zi – di . tan-1(2-i)

Where (2.3.8)

 di = +1 if yi < 0, -1 otherwise.
Then :

 xn = An √x0
2 + y0

2

 yn = 0

 zn = z0 + di . tan-1(y0 / x0)

 An = ∏ √1 + 2-i

 n

 16

Redundant Number System based CORDIC for FFT 3.System Theory

 The CORDIC rotation and vectoring algorithms as stated are limited to rotation angles

between – pi / 2 and + pi / 2.

 This limitation is due to the use of 2° for the tangent in first iteration. For composite

rotation angles larger than pi /2, an additional rotation is required. This gives the correction

iteration.

Figure (2.3.1): ROTATION IN LINEAR COORDINATE SYSTEM

The CORDIC rotator described is usable to compute several trigonometric functions directly

and others indirectly. Judicious choice of initial values and modes permits direct computation

of sine, cosine, arctangent, vector magnitude and transformations between polar and Cartesian

coordinates.

CALCULATE THE SINE AND COSINE VALUE USING CORDIC ALGORITHM

 CORDIC (COordinate Rotation Digital Calculation) finds the sine or cosine of an

angle iteratively, using only simple math operations such as add, subtract, compare, shift, and

table lookup.

 17

Redundant Number System based CORDIC for FFT 3.System Theory

VECTOR ROTATIONS

Fig(2.3.2)Vector rotation

Fig (2.3.3): Rotating a vector using micro rotations

The diagonal blue line is angle ∅1 above the horizontal. The diagonal red line is the blue line

rotated counter-clockwise by angle ∅. The new X and Y values are related to the old X and Y

values as follows :
 X2 = X1 * cos(∅) – y1 * sin(∅)

 Y2 = X1 * sin(∅) + y1 * cos(∅) (2.3.9)

ITERATIVE ROTATION:

 For CORDIC, the final angle ∅2 is the angle of interest; the angle whose sine or

cosine we want to calculate. The initial angle ∅1 is set to a convenient value such as 0. Rather

than rotating from ∅1 to ∅2 in one fell swoop, we move in steps. With careful choice of step

values, the only math used is shifts and adds. The equations above can be re-written as:
X2 = cos(∅) * [X1 – y1 * tan(∅)]

Y2 = cos(∅) * [X1 * tan(∅) + Y1]

 18

Redundant Number System based CORDIC for FFT 3.System Theory

Values for ∅ are chosen such that tan (∅) is a fractional power of 2 :

tan(∅21) = 1/1 ∅21 = 45° cos(∅21) = 0.707107

tan(∅32) = ½ ∅32 = 26.5650° cos(∅32) = 0.894427

tan(∅43) = ¼ ∅43 = 14.0362° cos(∅43) = 0.970142

tan(∅54) = 1/8 ∅54 = 7.12502° cos(∅54) = 0.992278

tan(∅65) = 1/16 ∅65 = 3.57633° cos(∅65) = 0.998053

tan(∅76) = 1/32 ∅76 = 1.78991° cos(∅76) = 0.999512

tan(∅87) = 1/64 ∅87 = 0.895174° cos(∅87) = 0.999878

tan(∅98) = 1/128 ∅98 = 0.447614° cos(∅98) = 0.999969

 This lets us replace the multiplication by tan(∅) with a simple, fast right-shift

operation. But what about the cos(∅) factors ?

- First iteration (from X1, Y1 to X2, Y2) : rotate by

 angle∅21

 X2 = cos(∅21) * [X1 – Y1 * tan(∅21)]

 Y2 = cos(∅21) x [X1 * tan(∅21) + Y1]

- Second iteration (from X2, Y2 to X3, Y3) : rotate by

- X3 = cos(∅32) * [X2 – Y2 * tan(∅32)]

Y3 = cos(∅32) * [X2 * tan(∅32) + Y2].

 angle ∅32.

- Plug in the values of X2 and Y2 from the first iteration :

 X3 = cos(∅32) * {cos(∅21) * [X1 – Y1 * tan(∅21)]

- cos(∅21) * [X1 * tan(∅21) + y1] * tan(∅32)}

= cos(∅32) * cos(∅21) * {[X1 – Y1 * tan(∅21)]

 [X1 * tan(∅21) + Y1] * tan(∅32)}

- The cosine factors fall out, to form an iterative product, i.e.

 Cos(∅21) * cos(∅32) * cos(∅43) … * cos(∅nn)

Expressing the ∅values in terms of inverse tangents gives the equivalent product series :-

 ∞ 2N

 ∏ -------------------- = 0.607253
 N=0 √1 + 22N

 (2.3.10)
 The value to which it converges, 0.607253, is the aggregate constant. We can ignore

the cos(∅) terms and simply multiply by the aggregate constant before or after the iteration.

 19

Redundant Number System based CORDIC for FFT 3.System Theory

CORDIC EXTENSION:

A) Polar to Rectangular Transformation :

 A logical extension to the sine and cosine computer is a polar to Cartesian coordinate

transformer. The transformation from polar to Cartesian space is defined by :

 x = r cosθ

 y = r sinθ (2.3.11)

 As pointed out above, the multiplication by the magnitude comes for free using the

CORDIC rotator. The transformation is accomplished by selecting the rotation mode with x0

= polar magnitude, z0 = polar phase, and y0 = 0. The vector result represents the polar input

transformed to Cartesian space. The transform has a gain equal to the rotator gain, which

needs to be accounted for somewhere in the system. If the gain is unacceptable, the polar

magnitude may be multiplied by the reciprocal of the rotator gain before it is presented to the

CORDIC rotator.

B) Arctangent :

 The arctangent, θ=Atan(y/x), is directly computed using the vectoring mode CORDIC

rotator if the angle accumulator is initialized with zero. The argument must be provided as a

ratio expressed as a vector (x ,y). Presenting the argument as a ratio has the advantage of

being able to represent infinity (by setting x=0). Since the arctangent result is taken from the

angle accumulator, the CORDIC rotator growth does not affect the result.

 Zn = Zn + tan-1 (y0/x0).

C) Arcsine and Arccosine :

 The Arcsine can be computed by starting with a unit vector on the positive x axis, then

rotating it so that its y component is equal to the input argument. The arcsine is then the angle

subtended to cause the y component of the rotated vector to match the argument. The decision

function in this case is the result of a comparison between the input value and the y

component of the rotated vector at each iteration :

 xi+1
 = xi – yi. di . 2-i

 yi+1 = yi + xi . di . 2-i

 zi+1 = zi – di . tan-1(2-i).

where,

 20

Redundant Number System based CORDIC for FFT 3.System Theory

 di = +1 if yi < c, -1 otherwise, and

 c = input argument.

 Rotation produces the following result :

 xn = √(An . xo)2 – c2

 yn = c

 zn = z0 + arcsin (c/An.x0)

 An = ∏ √1 + 2-2i (2.3.12)
 n

 The arcsine function as stated above returns correct angles for inputs –1 < c/Anx0 < 1,

although the accuracy suffers as the input approaches ±1 (the error increases rapidly for inputs

larger than about 0.98). This loss of accuracy is due to the gain of the rotator. For angles near

the y axis, the rotator gain causes the rotated vector to be shorter than the reference (input), so

the decisions are made improperly. The gain problems can be corrected using a “double

iteration algorithm” at the cost of an increase in complexity.

 The Arccosine computation is similar, except the difference between the x component

and the input is used as the decision function. Without modification, the arccosine algorithm

works only for inputs less than 1/An, making the double iteration algorithm a necessity. The

Arccosine could also be computed by using the arcsine function and subtracting π/2 from the

result, followed by an angular reduction if the result is in the fourth quadrant.

D) Extension to Hyperbolic Functions :

 The close relationship between the trigonometric and hyperbolic functions suggests

the same architecture can be used to compute the hyperbolic functions. While, there is early

mention of using the CORDIC structure for hyperbolic coordinate transforms, the first

description of the algorithm is that by Walther. The CORDIC equations for hyperbolic

rotations are derived using the same manipulations as those used to derive the rotation in the

circular coordinate system. For rotation mode these are :

 xi+1
 = xi + yi. di . 2-i

 yi+1 = yi + xi . di . 2-i

 zi+1 = zi – di . tanh-1(2-i).

where,

 di = -1 if zi < 0, +1 otherwise.

Then :

 xn = An[x0 cosh z0 + y0 sinh z0]

 yn = An[y0 cosh z0 + x0 sinh z0]

 zn = 0

 21

Redundant Number System based CORDIC for FFT 3.System Theory

 An = ∏ √1-2-2i = 0.80 (2.3.13)
 n
In vectoring mode (di = +1 if yi < 0, -1 otherwise) the rotation

produces :

 xn = An √x0
2 – y0

2

 yn = 0

 zn = z0 + tanh-1[y0 / x0]

 An = ∏ √1-2-2i
 n

The elemental rotations in the hyperbolic coordinate system do not coverage. However, it can

be shown that convergence is achieved if certain iterations (I = 4, 13, 40, …, k, 3k + 1, …) are

repeated.

Figure (2.3.4): ROTATION IN HYPERBOLIC COORDINATE SYSTEM

 The hyperbolic equivalents of all the functions discussed for the circular coordinate

system can be computed in a similar fashion. Additionally, as Walther points out, the

following functions can be derived from the CORDIC functions :

tanα = sinα/cosα

 tanhα = sinhα/coshα

 expα = sinhα + coshα

 22

Redundant Number System based CORDIC for FFT 3.System Theory

 lnα = 2tanh-1 [y/x] where x = α + 1 and y = α - 1

 (α)½ = (x2 – y2)½ where x = α+1/4 and y = α-1/4

 It is worth noting the similarities between the CORDIC equations for circular, linear,

and hyperbolic systems. The selection of coordinate system can be made by introducing a

mode variable that takes on values 1, 0, or –1 for circular, linear and hyperbolic system

respectively. The unified CORDIC iteration equations are then :

 xi+1 = xi – m.yi. di. 2-I

 yi+1
 = yi + xi . di . 2-I

 zi+1 = zi – di . ei (2.3.14)

 Where ei is the elementary angle of rotation for iteration I in the selected coordinate

system. Specifically, ei = tan-1(2-1) for m=1, ei = 2-I for m=0, and ei = tanh-1(2-i) for m = -1.

This unification, due to Walther, permits the design of a general purpose CORDIC processor.

3.6 CORDIC iterations with redundant number system:
 In order to accelerate the CORDIC iterations , one can use redundant number systems,

which enable additions without carry propagation .For redundant implementation SD number

with digit set{-1,0,1} is used. With redundant number systems the main problem is the

evaluation of Di.. Assume that we are in rotation mode and the numbers are represented with

m digits. In classical CORDIC, Di is equal to the sign of Zi .In sign digit representation this

sign is the sign of most significant digit. This will require the examination of some number of

digits which may be close to m. Thus choice Di=sign(Zi) is not satisfactory because the

advantage of redundant number representation would be lost. An alternative to this is to

accept Di=0.

 One examine the only p most significant digits of Zi.The number Zi * constituted by the

these p digits is close to Zi.The basic idea is

• If Zi *≠0 then Zi * and Zi have the same sign , thus the choice Di =sign(Zi *) is

convenient.

 23

Redundant Number System based CORDIC for FFT 3.System Theory

• If Zi *=0, then mod(Zi) is very small .therefore one can take Di =0.

 The main drawback of this method is that the scale factor An and An’ are no longer

constants. Since An is given by

 An = ∏1 + 2-i

It is a constant only if the Di’s are all equal to –1 or +1 but it is no longer constant if

Di =0.

There are various approaches to solve the above problem:

1) Double rotation method.

2) Correcting rotation method.

3) Branching CORDIC .

1) Double rotation method:

The basic principle of this method is that at a step I one performs ,instead of a c-similarity of

angle Di arctan2-i.

If Di ±1 , two c-similarities of angle Di arctan2-i-1.

If Di = 0, a c-similarity of angle, + arctan2-i-1then a c-similarity of angle - arctan2-i-1

With such a method , the scale factor is constant. However it leads to more complicated

iterations.

2) Correcting rotation method.

The basic principle of this method is following:

One examines the number Zi * constituted by the p most significant digits of Zi .then one

takes , in rotation mode , Di = sing (Zi *) if Zi *≠0,

 Else +1 o/w.

Sometimes an error occurs , but it is possible to correct it byrepetition of iterations p,2p,3p----

---- times.

3) Branching CORDIC :

In this method a sequence defined by

 24

Redundant Number System based CORDIC for FFT 3.System Theory

Zi+1 = Zi – Di . tan-1(2-i)

Is builded.At each step , p digits of Zi are examined, in order to decide the value of Di, in

general p=3.Then

If the examination of these p digits is sufficient to be sure that Zi >0 , take Di = + 1.

If the examination of these p digits is sufficient to be sure that Zi <0 , take Di = -1.

If the examination of these p digits is not sufficient to know the sign of Zi , then two

computations in parallel s done :

a) former assuming Zi >0 (and therefore with Di = + 1).

b) Latter assuming Zi <0 (with Di = -1).

This process is called Barnching.Sign selection is shown in the table (2.4)

Fig (2.4.1 1) Diagram of branching CORDIC.

Fig (2.4.12) Architecture of a branching CORDIC processor

 25

Redundant Number System based CORDIC for FFT 3.System Theory

Fig (2.4.21) shows the global architecture for Branching CORDIC processor that implement

the branching algorithm.

Table 2.4 For sign selection by examine 3 digit positions

Zi-2 Zi-1 Zi Sign Zi-2, Zi-1, Zi mod 8

-1 -1 -1 + 1

-1 -1 0 + 2

-1 -1 1 + 3

-1 0 -1 + 3

-1 0 0 4 impossible

-1 0 1 - 5

-1 1 -1 - 5

-1 1 0 - 6

-1 1 1 - 7

0 -1 -1 - 5

0 -1 0 - 6

0 -1 1 - 7

0 0 -1 - 7

0 0 0 ?? 0 branching

0 0 1 + 1

0 1 -1 + 1

0 1 0 + 2

0 1 1 + 3

1 -1 -1 + 1

1 -1 0 + 2

1 -1 1 + 3

1 0 -1 + 3

1 0 0 4 impossible

1 0 1 - 5

1 1 -1 - 5

1 1 0 - 6

1 1 1 - 7

 26

Redundant Number System based CORDIC for FFT 3.System Theory

This method is a very fast version of the CORDIC algorithm, which makes it possible to

perform constant time elementary iteration independent of the length of the operands, with

constant scale factor.

 The main drawback of this method is the necessity of performing two conventional CORDIC

iterations in parallel, which consumes more silicon area than classical method, but on other

hand, provides fast and convenient implementation with small delay.

3.6.1 CORDIC using Redundant Number Systems

In conventional number systems, every addition or subtraction involves a carry

propagation. Independent of the adder architecture the delay of the resulting carry ripple path

is always a function of the wordlength. Redundant number systems offer the opportunity to

implement carry-free or limited carry propagation addition and subtraction with a small delay

independent of the used wordlength. Therefore they are very attractive for VLSI

implementation. Redundant number systems have been in use for a long time e.g. in advanced

parallel multiplier architectures (Booth, Carry{Save array and Wallace tree multipliers).

However, redundant number systems offer implementation advantages for many applications

containing cascaded arithmetic computations. Recent applications for dedicated VLSI

architectures employing redundant number systems include finite impulse response filter

(FIR) architectures, cryptography and the CORDIC algorithm. Since the CORDIC algorithm

consists of a sequence of additions/subtractions the use of redundant number systems seems to

be highly attractive. The main obstacle is given by the sign directed nature of the CORDIC

algorithm. As will be shown below, the calculation of the sign of a redundant number is quite

complicated in absolute contrast to conventional number systems where only the most

significant bit has to be inspected. Nevertheless, several approaches were derived recently for

the CORDIC algorithm. A brief overview of the basic ideas is given.

3.6.2 CORDIC Architectures

In this section several CORDIC architectures are presented. We start with the dependence

graph for the CORDIC which shows the operational flow in the algorithm. Note that we

restrict ourselves to the conventional CORDIC iteration scheme. The dependence graph for

 27

Redundant Number System based CORDIC for FFT 3.System Theory

extended CORDIC iterations can be easily derived based on the results. The nodes in the

dependence graph represent operations and the arcs represent the flow of intermediate

variables. Note that the dependence graph does not include any timing information, it is just a

graphical representation of the algorithmic flow. The dependence graph is transformed into a

signal flow graph by introducing a suitable projection and a time axis. The timed signal flow

graph represents a register{transfer level (RTL) architecture. Recursive and pipelined

architectures will be derived from the CORDIC dependence graph in the following. The

dependence graph for a merged implementation of rotation mode and vectoring mode is

shown in Fig. 3.1. The only difference for the two CORDIC modes is the way the control

flags are generated for steering the adders/subtractors. The signs of all three intermediate

variables are fed into a control unit which generates the control flags for the steered

adders/subtractors given the used coordinate system m and a flag indicating which mode is to

be applied.

Figure 2.4.1 CORDIC dependence graph for rotation mode and vectoring mode.

 In a one to one projection of the dependence graph every node is implemented by a

dedicated unit in the resulting signal flow graph. In Fig. 2.4.2, the signal flow graph for this

projection is shown together with the timing for the cascaded additions/subtractions (the fixed

shifts are assumed to be hard wired, hence they do not represent any propagation delay).

Besides having a purely combinatorial implementation, pipeline registers can be introduced

between successive stages as indicated in Fig. (2.4.2).

 In the following we characterize three different CORDIC architectures by their clock

period TClock, throughput in rotations per second and latency in clock cycles. The delay for

 28

Redundant Number System based CORDIC for FFT 3.System Theory

calculating the rotation direction Di is neglected due to the simplicity of this operation, as well

as flip flop setup and hold times. As shown in Fig. (2.4.2) every addition/subtraction involves

a carry propagation from least significant bit (LSB) to most significant bit (MSB) if

conventional number systems are used. The length of this ripple path is a function of the

wordlength W, e.g. TAdd ~ W holds for a Carry{Ripple addition. The sign of the calculated

sum or difference is known only after computation of the MSB. Therefore, the clock period

for the unfolded architecture without pipelining is given by n * TAdd as shown in Fig. (2.4.2).

The throughput is equal to 1 /n*Tadd rotations/s. The pipelined version has a latency of n clock

cycles and a clock period TClock = Tadd. The throughput is 1/ Tadd rotations/s. It is obvious that

the dependence graph in Fig. 3.1 can alternatively be projected in horizontal direction onto a

recursive signal flow graph. Here, the successive operations are implemented sequentially on

a recursive shared processing

element as shown in Fig. 2.4.3.

Figure 2.4.2 Unfolded (pipelined) CORDIC signal Flow graph.

 Note that due to the necessity to implement a number of different shifts according to the

chosen shift sequence, variable shifters (i.e. so called barrel shifters) have to be used in the

recursive processing element.. The propagation delay associated with the variable shifters is

comparable to the adders, hence the clock period is given by

TClock = TAdd + TShift.

 The total latency for n recursive iterations is given by n clock cycles and the throughput is

given by 1/ n*(TAdd+TShift) since new input data can be processed only every n clock cycles.

 29

Redundant Number System based CORDIC for FFT 3.System Theory

Figure 2.4.3 Folded (recursive) CORDIC signal flow graph.

The properties of the three architectures are summarized in Table 2.4.1.

Table 2.4.1 Architectural properties for three CORDIC architectures.

Architecture Clock peroid Throughput

Rotations/s

Latency Area

Unfolded N* Tadd 1/ n*Tadd l 3nadd,lreg

Unfolded

pipelined

Tadd 1/ Tadd n 3nadd,3reg

Folded

recursive

Tadd +Tshift 1/n(Tadd+ Tshift) n 3add,3+nregs

2shifters

Pipelined CORDIC architectures

In contrast to a universal CORDIC processing element the dominating motivation for

a pipelined architecture is a high throughput constraint. Additionally, it is advantageous if

relatively long streams of data have to be processed in the same manner since it takes a

number of clock cycles to fill the pipeline and also to push the pipeline if e.g. the control flow

changes (a different function is to be calculated). Although pipeline registers are usually

 30

Redundant Number System based CORDIC for FFT 3.System Theory

inserted in between the single CORDIC iterations as shown in Fig. 2.9 they can principally be

placed everywhere since the unfolded algorithm is purely feed forward. A formalism to

introduce pipelining is given by the well known cut{set retiming method The main advantage

of pipelined CORDIC architectures compared to recursive implementations is the possibility

to implement hard{wired shifts rather than area and time consuming barrel shifters. However,

the shifts can be hard wired only for a single fixed shift sequence. Nevertheless, a small

number of different shifts can be implemented using multiplexers which are still much faster

and less area consuming than barrel shifters as necessary for the folded recursive architecture.

A similar consideration holds for the rotation angles. If only a single shift sequence is

implemented the angles can be hard wired into the adders/subtractors. A small number of

alternative rotation angles per stage can be implemented using a small combinatorial logic

steering the selection of a particular rotation angle. ROMs or register files as necessary for

the recursive CORDIC architecture are not necessary.

1.1) CORDIC Architectures for Vector Rotation

 It was already noted that the CORDIC implementation of multiplication and division (m =

0) is not competitive. We further restrict consideration here to the circular mode m = 1since

much more applications exist than for the hyperbolic mode (m = - 1).

Traditionally, vector rotations are realized as shown by the dependence graph given in Fig.

2.4.5. The sine and cosine values are generated by some table-lookup method (or another

function evaluation approach) and the multiplications and additions are implemented using

the corresponding arithmetic units as shown in Fig.2.4.5. Below, we consider high throughput

applications with one rotation per clock cycle, and low throughput applications, where several

clock cycles are available per rotation. High throughput applications: For high throughput

applications, a one to one mapping of the dependence graph in Fig. 2.4.5 to a possibly

pipelined signal flow graph is used. While only requiring a few multiplications and additions,

the main drawback of this approach is the necessity to provide the sine and cosine values. A

table-lookup may be implemented using ROMs or combinatorial logic. Since one ROM

access is necessary per rotation, the throughput is limited by the access time of the ROMs.

The throughput can not be increased beyond that point by pipelining.If even higher

throughputs are needed, the ROMs have e.g. to be doubled and accessed alternatingly every

other clock cycle. If on the other hand combinatorial logic is used for calculation of the sine

and cosine values, pipelining is possible in principle. However, the cost for the pipelining can

be very high due to the low regularity of the combinatorial logic which typically leads to a

very high pipeline register count.

 31

Redundant Number System based CORDIC for FFT 3.System Theory

Figure 2.4.5 Dependence graph for the classical vector rotation.

Additionally, the effort for a CORDIC pipeline grows only linearly with the wordlength W

and the number of stages n, hence about quadratically with the wordlength if n = W + 1 is

used. In contrast the effort to implement the sine and cosine tables as necessary for the

classical method grows exponentially with the required angle resolution or wordlength. Hence

there is

a distinct advantage in terms of throughput and implementation complexity for the CORDIC

at least for relatively large wordlengths. Due to the n pipelining stages in the CORDIC the

classical solution can be advantageous in terms of latency. Low throughput applications:: A

single resource shared multiplier and adder is sufficient to implement the classical method in

several clock cycles as given for low throughput applications. However, at least one table

shared for sine and cosine

Calculation is still necessary, occupying in the order of (2W-1)

*W bits of memory for a required word length of W bits for the sine and cosine values and the

angle Φ In contrast, a folded sequential CORDIC architecture can be implemented using three

adders, two barrel shifters and three registers.

If n = W + 1 iterations are used, the storage for the n rotation angles amounts to (W +1)*W

bits only. Therefore, the CORDIC algorithm is highly competitive in terms of area

consumption for low throughput applications.

 The CORDIC vectoring mode can be used for fast and efficient computation of magnitude

and phase of a given input vector. In many cases, only the phase of a given input vector is

required, which can of course be implemented using a table lookup solution. However, the

same drawbacks as already mentioned for the sine and cosine tables hold in terms of area

consumption and throughput, hence the CORDIC vectoring mode represents an attractive

alternative.

 32

Redundant Number System based CORDIC for FFT 3.System Theory

3.7 PREDICTING CORDIC ALGORITHM

 The sine/cosine function generator is based on parallelization of the original CORDIC

algorithm by predicting all the rotation directions directly from the binary bits of the initial

input angle. Unlike previous approaches that require complicated circuits or exponentially

increased ROM, this algorithm provides a relatively simple prediction scheme through an

efficient angle recording. The critical path delay is also reduced by utilizing the predicted

rotation directions to design an efficient multi operand carry-save addition structure.

 One of the key components in direct frequency synthesizer (DDFS) system is the

sine/cosine function generator that computes binary representation of sinθ and cosineθ to a

precision of N fractional bits. CORDIC is an arithmetic algorithm developed to compute

various elementary functions through a series of iterations of a unified micro rotations

operation. In particular, in a circular rotation mode, N micro operations as illustrated below

will be executed for i = 1, 2, … , N.

 xi+1 = xi + σi2-iyi

 yi+1 = yi - σi2-ixi

 zi+1 = zi - σItan-1(2-i)

σI = sign(zi) ∈ {1, -1}.

 = zi - σiαI (2.5.1)

After N iterations, the accumulated rotation angle is

θ = zi – zN+1 = σ∑
=

N

1i
Itan-1(2-i) ≡ ∑

=

N

1i
σiαi.

Using the definition of αI, one has (note that cosσiαI = cosαI)

 33

Redundant Number System based CORDIC for FFT 3.System Theory

 xi+1 1 σi2i xi

 =

 yi+1 -σi2-i 1 yi

 cosσiαi sinσiαI Xi

=
iα cos

1

-sinσiαi cosσiαi Yi

Then, it can be easily deduced that

 xN+1 cosθ sinθ xi

 =
K
1

 yN+1 - sinθ cosθ yi

Where K = ∏ cosα=
N

1i i = ∏ =
N

1i (1+ 2-2i)-1\2 is a constant that can be precomputed in

advance. Set x1 = K, y1 = 0, z1 = θ, then xN+1 = cosθ, yN+1 = sinθ can be easily computed after

N iterations. In conventional CORDIC, the direction σI = sign(zi) is determined sequentially

since it depends on the sign of zi calculated at the previous iteration. This dependence relation

makes it difficult to execute multiple micro rotations in parallel. In this letter, we proposed a

new method to quickly select the rotation directions {σI} in order to speed up the calculation.

Angle Recording

 Consider an arbitrary positive angle θ (<1 rad), which can be represented as θ =

b∑ =
N
k 1 kθk. the bk are the bits corresponding to the (N + 1)-bit fractional binary

representation of the angle θ (sign bit and N fractional bit and θk are the positional power-of-

two weights. In other words, bk ∈ {0, 1} and θk = 2-k, since the angle θ constrained to be

 34

Redundant Number System based CORDIC for FFT 3.System Theory

positive, b0 = 0 does not appear in the above summation. The binary bk ∈ {0, 1} can be

recoded into signed digit rk ∈ {-1, 1} such that

θ = ∑
=

N

k 1
bk2-k = φ0 + r∑

+

=

1

2

N

k
k2-k (2.5.2)

 Where φ0 is a constant. The recording can be understood intuitively if we visualize a

positive sub rotation by 2-k rad as the sum of the two equal but opposite half rotations by 2-k-1

rad and zero rotation as two equal but half rotations by 2-k-1 rad. It is quit easy to see from

the binary representation of the angle θ that a binary bit bk = 1 result in a rotation by 2-k rad,

where as a bk = 0 results in zero rotation. Thus, the kth sub rotation stage consist of fixed

rotation by 2-k-1 rad followed by a positive or negative rotation by 2-k-1 rad that is controlled

by the bit bk. combining all the fixed rotations, we obtained the initial fixed rotations φ0 = ¼

+ 1/8 + … + 1/2n+1 rad. Thus, the rotation after recoding can be represented as a fixed initial

rotation φ0 followed by a sequence of positive or negative rotation whose directional are

controlled by the binary bits bk. a bit bk = 1 corresponding to a positive (or counterclockwise)

rotation by 2-k-1 rad, and a bit bk = 0 corresponding to a negative (or clockwise) rotation by 2-

k-1 rad, thus rk = (2bk-1 –1) for k = 2,…,N+1 . The recoding need not be performed explicitly

since it corresponds to simply replacing all “0” value in the binary representation by “-1”.

The recoding maintains a constant scale factor K in the data path. The scaling by K and the

initial rotation by φ0 are most efficient accounted for in the implementation by starting each

sequence of angle rotations from the initial point (X0, Y0) = (K cos φ0, K sin φ0).

 One of the major benefits of recoding over CORDIC is that the direction of rotation at

each stage is immediately obtained from the binary representation of the angle θ, thereby

dominating the need for comparing angles at each stage. This possible because the sub angles

θk = 2-k used in recoding are different from the sub angle θk = a tan 2-k used in CORDIC. The

penalty for using different sub angles is that the tan θk multipliers used in the first few sub

rotation stages cannot be implemented as simple shift-and-add operations. However, as will

be shown subsequently, this limitation can be overcome by implementing these stages as a

small ROM. Thus, recoding results in reducing chip area and higher operating speed.

 35

Redundant Number System based CORDIC for FFT 3.System Theory

PREDICTIONS OF ROTATION DIRECTIONS:

Binary to bipolar recoding (BBR)

The initial input angle θ = (-θ0) + θ∑ =
N

1j j2-j with θj ∈ {0, 1} is assumed to be in the range

│θ│ < π/4 as in the application example of DDFS. It has been shown in [3] that tan-12-i to N-

bit precision if i ≥ m = [(N – log23)/3]. Thus, the last 2N/3 rotation directions (from σm to σN)

can be obtained in parallel after completing the first N/3 iterations. As proposed above in

angle recoding, we divide the angle into two parts (the higher part and the lower part)

θ = θH + θL = (-θ0) + ∑
−

=

1m

1j
 θj2-j + θ∑

=

N

mj
j2-j

 θH θL

The binary bits θj ∈ {0, 1} in the higher part θH can be recoded into bipolar digits as follows:

θH = (-θ0) + ∑
−

=

1m

1j
θj2-j

 = (-θ0) + ∑
−

=

1m

1j
[2-j-1 + (2θj – 1) 2-j-1]

 = (-θ0) + 2-1 + ∑
=

m

2j
rk2-k – 2-m (2.5.3)

where rk = (2θk – 1) ∈ {1, -1}.

Equation (3) is called BBR for θj, j = 0, 1,…, m-1.

Microrotation Angle Recoding (MAR)

 Since tan-1(2-i) ≠ 2-i for I = 1,…, m-1, we decompose each positional binary weighting

2-i, I = 1,…,m-1 into the combination of significant tan-1(2-j) terms plus an error term ei

collecting all the other insignificant values of tan-1(2-j), j > m. for simplicity, we take N = 24

as an example were m = [(N-log23)/3] = 8. The Microrotation angle recording from 2-i to tan-

1(2-i), I = 1,…, 7 is

2-1=tan-1(2-1)+tan-1(2-5)+tan-1(2-8)+ 0000000001001111000011102

 e1

2-2 = tan-1(2-2) + tan-1(2-8) + 0.0000000001001001001000101002

e2

 36

Redundant Number System based CORDIC for FFT 3.System Theory

2-3 = tan-1(2-3) + 0.0000000000101010010001012

e3

2-4 = tan-1(2-4) + 0.0000000000000101010100102

 e4

2-5 = tan-1(2-5) + 0.0000000000000000101010102

 e5

2-6 = tan-1(2-6) + 0.0000000000000000000101012

 e6

2-7 = tan-1(2-7) + 0.0000000000000000000000102

 e7 (2.5.4)

The BBR for θH with N = 24 is

θH = (1-2θ0)2-1 + ∑
=

8

2k
rk2-k – 2-8. (2.5.5)

The first eight rotation directions are selected concurrently as

σk = (1 - 2θ0)

σk = rk = (2θk-1 – 1), k = 2,…,8. (2.5.6)

Then, all the signed error terms σiei, i = 1,…, 7 and the last term –2-8 in (5) are added to θl,

generating the corrected lower part represented in twos compliment format, i.e., Lθ̂

Lθ̂ = θL + σ∑
=

7

1i
iei – 2-8

 = (-)27θ̂ -7 + 2∑
=

24

8k
kθ̂ -k, ∈ { , 1}, k = 8,…, 24. (2.5.7) Lθ̂ kθ̂

 37

Redundant Number System based CORDIC for FFT 3.System Theory

 It can be shown that │ │ < 2Lθ̂ -7. Since tan-12-i = 2-i, I ≥ 8 within precision of 24

fractional bits, the algorithm converges after the above selection of directions for the

remaining microrotation can be derived immediately from (7) using again the BBR

Lθ̂ = (-)27θ̂ -7 + ∑
=

24

8k
kθ̂ 2-k

 = (-)27θ̂ -7 + (2 - 1)2∑
=

25

9k
1-kθ̂ -k + 2-8 – 2-25

 = (1 - 2) 27θ̂ -8 + ∑
=

25

9k
kr̂ 2-k – 2-25

kr̂ = (2 - 1) ∈ {1, -1}

(2.5.8)

kθ̂

leading to the parallel prediction

8σ̂ = (1 – 2) 7θ̂

kσ̂ = kr̂ = (2 - 1), k = 9,…,25 kθ̂

for the last 2N/3 microrotations.

 38

Redundant Number System based CORDIC for FFT 3.System Theory

3.8 DIGITAL CHIRP GENERATOR

 Digital Chirp Generator (DCG) system are characterized by fast switching, fine frequency

discrimination, low phase noise, and transient-free frequency changes. Frequency changes are

phase continuous, which is describe in phase or frequency modulation. The fast frequency

switching is useful in frequency-agile and spread-spectrum systems. Depending on the

particular application, there exist tradeoffs among the power, IC area, size, and spectral purity

of the implementation. For example, output resolution and spectral purity are of primary

importance in instrumentation applications. Area and power are of considerable importance

for digital mobile radio and cellular telephony. Simple modifications to the phase generation

circuitry produces synthesized chirps useful in radar and electronic warfare systems and in

implementation of continuous-phase modulators (e.g., GMSK).

 A DCG consists of a phase accumulator, frequency accumulator and a sine/cosine

generator, as shown in the shaded portion of fig.1. The phase accumulator is an overflowing

M-bit accumulator whose value specifies the instantaneous phase. The M-bit value may be

truncated to another L-bit value, which is fed as the argument θ to a sine/cosine generator that

computes the digital sin θ and cosθ value to a precision of p bits.

 M

fig2.6.1. Traditional DCG architecture.

A. Output frequency

In fig.1, Fcw denotes an external input to the phase accumulator called the “frequency control

word”. At each clock cycle (clock frequency Fclk = 1/Tclk), the phase accumulator increments

itself by the value Fcw until it overflows and wrap around. Each overflow of the accumulator

 39

Redundant Number System based CORDIC for FFT 3.System Theory

corresponds to cos period of a sine (or cosine) wave. Thus, Fcw control the rate at which the

accumulator overflows, thereby controlling the frequency of the sine or cosine waveform.
 The value of the M-bit accumulator is mapped to an angle (or phase value) in the

interval [-π, π].

Most practical DCG designs reported during the last two decades rely on some variant

of the basic pioneering table-lookup algorithm, wherein the phase accumulator provides an

address to a CORDIC module that generates the sine and cosine values. One of our main

objectives is to describe an approach that will permit the implementation of high-speed DCG

designs with high-precision spectrally pure sine and cosine output. As a result, simple

tradeoffs among the power, IC area, sample rate, resolution, and spectral purity of the

implementation can be preformed. Our approach is based on an architecture that evaluates the

projections of a pharos rotating the unit circle onto the X and Y-axes by the CORDIC

algorithm it is not based on a table-lookup architecture. It will be shown that overall

architecture can be implemented as a simple multiplier less feed-forward data path , which

allows for easy pipelining and limits the accumulation of round off errors. A prototype DCG

has been designed, for vertex 300pq240 FPGA and tested. The design produces 10-b sine and

cosine output at 99.33 MHz.

II. Sine/Cosine Generation

Let us consider the computation of the sine and cosine of an angle θ specified in new

angle format.. For the given angle θ, the computation of sinθ and cosθ can be viewed as the

computation of the X –axis and Y-axis coordinates (Xθ, Yθ) of a point on the unit circle, as in

circular CORDIC rotation algorithm.

The CORDIC Algorithm

A well-known iterative technique for computing rotations θk is the CORDIC

algorithm. In the CORDIC algorithm, σk ∈ {-1, 1} and θk at a 2-k, the multiplication by tan θk

in the above equation can be implemented as a simple sub-and-add operation, resulting in a

multiplier less data path. Since cos θ = cos (-θ), the product K = cos σ0θ0 … cos σNθN become

a constant, independent of the specific direction of the sub rotations. (This is true as long as a

positive negative sub rotation is actually performed at each iteration. Usually, the scale factor

K is simply introduced into the conditions as (X0, Y0) = (K, 0).

 40

Redundant Number System based CORDIC for FFT 3.System Theory

 The σk values determine whether a positive or negative sub rotation by angle θk is

required. The σk values determined iteratively by the method of successive approximation. If,

at the Kth iteration, the current approximation is larger (smaller) than the input angle θ, its

value is adjusted by subtracting (adding) the angle θk. the CORDIC algorithm required

hardware that a) computer σk and update the current approximation by the angle θk and b)

performs the rotation by θk. roughly one-third of the total CRODIC hardware is required for

computing the σk and updating the current approximation.

The throughput of the CORDIC data path can be improved by using redundant carry-free

arithmetic, which eliminates the carry-propagate delay in the adders.

 ARCHITECTURE FOR CHIRP GENERATOR

 For frequently synthesis, the argument fed to the sine and cosine generators is derived

from an overflowing two’s compliment accumulator. The contents of second accumulator

represent a frequency. Therefore, the normalized angle must be converted to an appropriate

value θ in the interval [-π/2, π/2], which is input to the sine/cosine generator. The N binary

bits representing the angle that control the directions of the sub rotations that compute the sin

θ and cos θ values at a precision of N bits. An output stage is required to generate the correct

sin θ and cos θ from the computed sin θ and cos θ values. Thus, the overall architecture

consists of the following blocks:

1) A phase accumulator that generates the normalized angle φ .

2) A frequency accumulator.

3) A sine/cosine generator that compute sin θ and cos θ, i.e.:(CORDIC module)

4) A preprocessor stage that processed the angle input to the CORDIC unit.

5) A delay that stores the quadrant information for the final decision.

6) A postprocessor stage that finally decide the sign based on quadrant information.

A. Phase Accumulator

The phase accumulator, shown in fig. 5, is an M-bit adder that repeatedly increments the

phase angle. That is, its output increases by Fcw at each clock cycle. At time n, the output of

the phase accumulator is φ = nFcw/2M, and the sine/cosine generator must compute sin

(2θnFcw/2M) and cos (2θnFcw/2M).

 A load control signal loads the frequency control word, and a reset signal initializes

the contents of the phase accumulator to zero.

 41

Redundant Number System based CORDIC for FFT 3.System Theory

B. Preprocessor

The two most significant bits of the normalized angle φ, MSB1 and MSBB2 determined

the quadrant occupied by φ. These bits determined whether this angle is in third, second,

fourth or first of the quadrant. These two most significant bits are stored and used later to

control an interchange/negation operation in the output stage. The xor of two bits are stored in

the delay.

The value of φ is first modified by setting its MSB value equal to the next most

significant bit value. This maps any angle in the normalized second, third to fourth and first

quadrant respectively to a corresponding angle φ’ in the fourth and first quadrant

respectively, as shown in fig. 6(a). If angle lies in the second quadrant whenever delay = 1

because MSB1 MSB2=”01”. The sine and cosine of any angle γ above π/2 can be obtained

from those of an angle equally below π/2, as shown in fig. 6(b).

C. Sine/Cosine generator

The CORDIC module does Sine/Cosine generation, which is the heart of the whole

system. This module accepts 13 bit of normalized preprocessed angle and computed sin θ and

cos θ values to 10 bits precession. This CORDIC module is designed using carry-free adder

trees; with pipelined registers are inserted b/w adders. Here both arithmetic as well as logical

shifting is done using the shifter designed specifically for this purpose.

TABLE 2.6.Angle ROM

k θk θk(13-bit binary)

1 45° 0010000000000

2 26.5650° 0001001011110

3 14.0362° 0000101000000

4 7.12502° 0000010100010

5 3.57633° 0000001010001

6 1.78991° 0000000101001

7 0.895174° 0000000010100

8 0.447614° 0000000001010

9 0.223807° 0000000000101

10 0.111905° 0000000000010

 42

Redundant Number System based CORDIC for FFT 3.System Theory

D. Output Stage

 The output stage, show in fig. 10, maps the computed sin θ and cos θ values to the

desired sin θ and cos θ values, where φ, lies in the correct interval within

 [-π/2, π/2]. As mentioned previously, this can be accomplished by simple negation and/or

interchanging operations. The control signals xinvert and yinvert control the negation of cos θ

= XN+1 and sin θ = YN+1, respectively. The control signal, derived from the two most

significant bits of the normalized angle φ, are generated as shown in table II. The negation is

assumed to occur before the interchange. Since the control signals are generated from φ, they

must be suited delayed until the sin θ and cos θ values are computed. This delay is determined

by the latency of the sine/cosine-generating datapath and can be implemented as a simple

register chain.

TABLE 2.6.1

CONTROL SIGNALS FOR THE OUTPUT STAGE

MSB’s of φ φ Delay cos φ

 0 0 0<φ<π/2 0 cosθ

 0 1 π/2<φ<π 1 sinθ

 1 0 π<φ<3π/2 1 -sinθ

 1 1 3π/2<φ<2π 0 cosθ

 The two most significant bits MSB are extracted from the truncated phase accumulator

and used to control the conditional interchange/negation operations in the output stage. The

residual angle with its one most-significant bits set equal to next MSB value represent the

normalized angle φ’, which is fed to the CORDIC..

The overall architecture is shown in fig.(2.6.2).

 Since our prototype design produces 10-bit sine and cosine output, the data path

consists of a cascade of ten CORDIC stages. Simulations indicate that 10-bit accuracy can be

retained on the sine and cosine output.

 43

Redundant Number System based CORDIC for FFT 3.System Theory

TABLE 2.6.3

PERFORMANCE SUMMARY

Technology Vertex 300

Maximum clock frequency 99.493MHz

Output Resolution 10-bits for sine and cosine

Latency 12 clock cycle

Gate Count 13,172

 Sufficient pipelining was employed to achieve this clock rate. Each stage has a pipeline

register at its output. Adder stages were implemented using carry-free adders with three

pipeline registers..

 Our design testing using the chipscope tester and a customer board has found

the design to be fully functional.

clk_divide_by_2

divide1

delay_gen

delay1

post_processor_cor

post1

pre_processor_cor

p1

chirp_angle_generation

a1

cordic_unrolled

a2

sin_final[9:0][9:0]
cos_final[9:0][9:0]

start
clk clk

reset clk_half_freq

negate
clk delayed_negate

negate
clk
reset

[9:0] cos_val[9:0]
[9:0] sin_val[9:0]

[9:0]cos_final[9:0]
[9:0]sin_final[9:0]

[12:0] angle_ip[12:0] negate
[12:0]angle_op[12:0]

clk
start
cordic_clk

0011010110010 angle_constant[12:0]

control
tff_clk

sampling_clk
[12:0]acc2_out[12:0]
[12:0]angle_out_to_cordic[12:0]

clk
RESET_N

[12:0] angle_in[12:0]

[9:0]cos_val[9:0]
[9:0]sin_val[9:0]

Fig(2.6.5) RTL view of chirp generator

chirp_angle_generation

a1

clk
start
cordic_clk

] angle_constant[12:0]

control
tff_clk

sampling_clk

acc2_out[12:0]

angle_out_to_cordic[12:0]

Fig(2.6.7)Chirp Angle Generation

 44

Redundant Number System based CORDIC for FFT 3.System Theory

Fig(2.6.4) ModelSim results of the Chirp generator.

Fig(2.6.6)Chirp ModelSim Results

 45

Redundant Number System based CORDIC for FFT 3.System Theory

adder_seq

AD1

adder_seq

AD2

reg_genZ1

reg3

dff_2

condff1

sampling_clk_1 sampling_clk

p1.un1_acc1_out

tff_clk_2

0

1

angle_out_to_cordic[12:0][12:0]

acc2_out[12:0][12:0]

sampling_clk

tff_clk

control

cordic_clk

start

clk

angle_constant[12:0] [12:0]

control
clk
reset

[12:0] a[12:0]
[12:0] b[12:0]

[12:0]sum[12:0]

control
clk
reset

[12:0] a[12:0]
[12:0] b[12:0]

[12:0]sum[12:0]

clk
reset

[12:0] datain[12:0]

[12:0]dataout[12:0]

clk
1 din

reset
en

q

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]

0

1

Fig(2.6.8)RTL view of Angle generation unit

Chirp Report

Device utilization summary:

Selected Device : v300pq240-4

Number of Slices : 577 out of 3072 18%

Number of Slice Flip Flops : 529 out of 6144 8%

Number of 4 input LUTs : 1017 out of 6144 16%

Number of bonded IOBs : 34 out of 170 20%

Number of GCLKs : 1 out of 4 25%

Timing Summary:

Speed Grade : -5

Minimum period: 10.051ns (Maximum Frequency: 99.493MHz)

Minimum input arrival time before clock: 5.764ns

Maximum output required time after clock: 8.289ns

Maximum combinational path delay: No path found

fig(2.6.5)Top view of Sine/Cosine generator

 46

Redundant Number System based CORDIC for FFT 3.System Theory

3.9 Fast Fourier Transform

 Fast Fourier Transform(F F T) has been used in a wide range of applications, such as

wide-band mobile digital communication system based on Orthogonal Frequency Division

Multiplexing (OFDM) principle, where the system implementation is only feasible when

the equipment complexity and power consumption are greatly reduced by utilizing a real-

time FFT transformer to replace the bank of (de)modulators for each individual sub-carriers.

FFT operation has been proven to be both computational intensive, in terms of arithmetic

operations, and communicational intensive, in terms of data swapping/exchanging in the

storage. For real-time processing of EFT transform, O(10gN) arithmetic operations are

required per sample cycle, where N is the length of the transform. High speed real-time

processing can be accomplished in two different ways. In a conventional, general purpose

processor approach, a single processor driven to a very high clock frequency, which is O (1og

N) times the sampling frequency, is used to carry out the operation. While in an application

specific approach, parallel or concur- rend pipelined processors, operating on a clock

frequency close or equivalent to the sampling frequency, are used to attain the performance.

Analysis has shown that the second approach is more preferable when the application

environment limits power consumption, such as in mobile communication.

 Pipeline FFT processor is a class of architectures for application specific real-time

DIT computation utilizing fast algorithms. It is characterized by non-stopping processing

on a clock frequency of the input data sampling. A lower clock frequency is a clear

advantage for pipeline architectures, when either a high speed processing or a low power

solution is sought. In addition, pipeline structure is highly regular, which can be easily

scaled and parameterized when Hardware Description Language (HDL) is used in the

design. It is also more flexible when transforms of different lengths are to be computed

with the same chip.

. In the following section, pipeline FFT processors are briefly reviewed.

3.9.1 PIPELINED FFT ARCHITECTURE.

 The architecture design for pipeline FFT processor had been the subject of intensive

research as early as in 70’s when real- time processing was demanded in such

applications as radar signal processing . Several architectures have been proposed

over the last 2 decades. Here different approaches are put into functional blocks with

unified terminology. The additive butterfly has been separated from multiplier to show the

hardware requirement distinctively, as in Fig. 1. The control and twiddle factor reading

 47

Redundant Number System based CORDIC for FFT 3.System Theory

mechanism have been also omitted for clarity. All data and arithmetic operations are

complex, and a constraint that N is a power of 4 applies.

R2MDC: Radix-2 Multi-path Delay Commutator was probably the most classical

approach for pipeline implementation of radix-2 FFT algorithm. The input sequence has

been broken into two parallel data stream flowing forward, with correct “distance”

between the data elements entering the butterfly scheduled by proper delays. Both

butterflies and multipliers are in 50% utilization. Log2 N-2 multipliers, log2N radix-2

butterflies and 3/2N - 2 registers (delay elements) are required.

Fig(2.7.1) R2MDC(N=16)

R2SDF: Radix-2 Single-path Delay Feedback uses the registers more efficiently by

storing the one butterfly out- put in feedback shift registers. A single data stream goes

through the multiplier at every stage. It has same number of butterfly units and

multipliers as in R2MDC approach, but with much reduced memory requirement:

 (N – 1)registers. Its memory requirement is minimal.

Fig(2.7.2) R2SDF(N=16)

R4SDF: Radix-4 Single-path Delay Feedback was proposed as a radix-4 version

of R2SDF, employing CORDIC iterations. The utilization of multipliers has been

increased to 7.5% by storing 3 out of 4 radix-4 butterfly outputs. However,

the utilization of the radix-4 butterfly, which is fairly complicated and contains at

least 8 complex adders, is, dropped to only 25%. It requires log, N - 1multipliers,

log, N full radix-4 butter- flies and storage of size N - 1.

 48

Redundant Number System based CORDIC for FFT 3.System Theory

Fig(2.7.3)R4SDF

R4MDC: Radix-4 Multi-path Delay Commutator is a radix-4 version of R2MDC. It

has been used as the architecture for the initial VLSI implementation of pipeline FFT

processor and massive wafer scale integration However, it suffers from low, 25%,

utilization of all components, which can be compensated only in some special

applications where four FFTs are being processed simultaneously. It requires 3 log,

N multipliers, log, N full radix-4 butterflies and 5/2N - 4 registers.

R4SDC: Radix-4 Single-path Delay Commutator uses a modified radix-4 algorithm

with programmable 1/4 radix-4 butterflies to achieve higher, 7.5% utilization of

multipliers. A multiplexed Delay-Commutator also reduces the memory requirement to

2N - 2 from 5/2N - 1, that ofR4MDC. The butterfly and delay-commutator be- come

relatively complicated due to programmability requirement. R4SDC has been used

recently in building the largest ever single chip pipeline FFT processor for HDTV

application.

Fig(2.7.4) R4SDC

A swift skimming through of the architectures listed above reveals the distinctive merits of

the different approaches: First, the delay-feedback approaches are always more efficient

than corresponding delay- commutator approaches in terms of memory utilization since the

butterfly output share the same storage with its input. Second, radix-4 algorithm based

 49

Redundant Number System based CORDIC for FFT 3.System Theory

single-path architectures have higher multiplier utilization, however, radix-2 algorithm

based architectures have simpler butterflies which are better utilized.

3.9.2 CORDIC FFT
BASIC FFT

 The discrete Fourier transform (DFT) of N complex samples f (k), k = 0, 1,, N - 1

is defined as

 N – 1

F (r) = ∑ f (k) Wrk, r = 0, 1,2,3,... ., N - 1, (2.7.1)

 k = 0

Where W = exp (⎯ 2πj/N).

 The fast Fourier transform (FFT) is a clever efficient method of computing the DFT of

N number of discrete data samples in O(Nlog2N) time as opposed to that O(N2) in the direct

method. The FFT algorithm starts with splitting the input data set f(k) into odd-and even-

numbered points, d(k) and e(k), respectively, as follows :

e(k) = f (2k),

(2.7.2)

d(k) = f (2k+1), where k = 0, 1,....N/2 - 1.

 Now, Eq. (1) may be rewritten as

 N/2 – 1

F (r) = ∑ e (k) W2rk, r = 0, 1,2,3,... ., N/2 - 1, (2.7.3)

 k = 0

F(r) = E (r) + Wr D(r), (2.7.4)

where

 N/2 – 1

E (r) = ∑ e (k) W2rk, r = 0, 1,2,3,... ., N/2 - 1, (2.7.5)

 k = 0

 50

Redundant Number System based CORDIC for FFT 3.System Theory

and

 N/2 – 1

D (r) = ∑ d (k) W2rk, r = 0, 1,2,3,... ., N/2 - 1, (2.7.5)

 k = 0

 E(r) and D (r) may be viewed as the DFT of N/2 point sequences e(k) and d(k),

respectively. The FFT algorithm in which the input data samples are split into odd-and even

numbered ones, is called decimation in time, while in the other form of FFT, known as

decimation in frequency, the discrete data samples f(k) are split two equal parts g(k) and h(k)

with the first one having the first N/2 samples and the other having the last N/2 data samples

such as

g(k) = f (k), (2.7.6)

and

h(k) = f (k=N/2), k = 0, 1,...... N/2 - 1.

 The N point DFT of f(k) as depicted in Eq. (2.7.1) may be rewritten as

 N/2 – 1

F (r) = ∑{g(k) Wrk, h(k)wrk+rN/2}. (2.7.7)

 K=0

 If B (r) and C (r) are the even-numbered and odd numbered transform points,

respectively, such as

B (r) = F (2r),

and (2.7.8)

C (r) = F (2r + 1), r = 0, 1,.... N/2 - 1

then they can be represented by the following equations :

 N/2 – 1

B (r) = ∑ [g(k) + h(k)] W2rk

 K=0

and

 51

Redundant Number System based CORDIC for FFT 3.System Theory

 N/2 – 1

C (r) = ∑ [g(k) + h(k)] Wk W2rk

 K=0

B (r) and C (r) are nothing but N/2 point DFTs of the functions g(k) + h(k) and h(k)Wk,

respective. Therefore, either in decimation in time or in decimation m frequency, a DFTs,

each of which may again be computed through two N/4 point DFTs and so on. This is

illustrated in the form of a signal flow graph is a two-point DFT butterfly, depicted in Fig. 3,

having the following form :

R = P + Q, (2.7.10)

 S = (P-Q)Wk.

 Eq. (2.7.10) may be written in its expanded form in terms of the real and the imaginary

parts of the signals as follows :

Rre = Pre + Qre, (2.7.11)

Rim = Pim + Qim,

Sre= (Pre - Qre) cos (kθ) + (Pim - Qim) sin (kθ),

Sim = - (Pre - Qre) sin (kθ) + (Pim - Qim) cos (kθ).

The last two in the set of Eqs. (2.7.11) essentially represent a plane rotation operation which

can be efficiently computed by applying the CORDIC algorithm.

 In the CORDIC technique, the plane rotation through an angle α is achieved by

decomposing the target angle into several elementary angles and carrying out rotations

through each of these as follows :

 M – 1

 α= ∑ δiθi, where θi = tan-1(2-i)

 i=0

 with M being the wordlength and δi = + 1 or -1,

 since θi/2 < θi+1 <θi, any arbitrary angle can be expressed in terms of elementary

angles (θis) with their signs (δis) properly chosen. Now an elementary plane rotation in two

dimension can be expressed as

 52

Redundant Number System based CORDIC for FFT 3.System Theory

xi+1 = xi cos (θi) + δiyi sin(θi), (2.7.13)

yi+1 = δixi sin(θi) + yi cos (θi)

with the value of δi deciding the direction of rotation.

 Applying the condition tan (θi) = 2-i, as stated in Eq. (2.7.12), for elementary angles,

Eq. (2.7.13) may be rewritten as

xi+1= cos (θi) (xi+δiyi2
-i), (2.7.14)

yi+1= cos (θi) (-δixi2
-i+yi),

xi+1 = xi cos (θi) + δiyi sin(θi),

yi+1 = δixi sin(θi) + yi cos (θi)

with the value of δi deciding the direction of rotation.

Applying the condition tan (θi) = 2-i, as stated in Eq. (2.7.12), for elementary angles, Eq.

(2.7.13) may be rewritten as

xi+1= cos (θi) (xi + δi yi 2
-i),

yi+1= cos (θi) (-δi xi 2
-i + yi), (2.7.14)

Let us consider a second set of iterative equations similar to Eq. (2.7.14) but dropping the

cosine terms as follows :

x'i+1 =x’i+ di y’i2
-i,

y’i+1 = - δi x’i 2
-i + y’ii, (2.7.15)

 If M number of iteration steps are carried out with the same starting co-ordinate

(x0,y0) = (x’0,y’0), then the end results provided by Eq. (2.7.14) and (2.7.15) are related as

follows:

X’M = ζMxM, (2.7.16)

 and

 y’M = ζMyas, where

 M-1

 ζM = 1/ (∏ cos θi)

 i=0

 53

Redundant Number System based CORDIC for FFT 3.System Theory

 The scaling factor ζM depends only on the word length and approaches asymptotically

a constant value of 1/0.607252935. The iterations depicted in Eq. (2.7.15) can be easily

implemented in digital hardware since multiplication with the term

 2-i is nothing but a shifting of the operand through i-bit position towards right. Thus, a plane

rotation by an arbitrary angle can be accomplished by to and fro elementary rotations where

the direction of next elementary rotation is determined by the sign of the present error as

follows :

di - Sing (εi), (2.7.17)

εi+1 = εi - δiθi with ε0 = α.

 Starting with co-ordinate (Pre - Qre, Pim - Qim) as (x′0, y′0) and target angle α = kθ,

running iterations (2.7.15) on the same for M times yields the following results.

y′M = ζM (Pre - Qre) sin (kθ) + ζM (Pim - Qim) cos (kθ).

 Expressions in Eq. (2.7.18) are identical to the last two equations in the set of Eq.

(2.7.11)

depicting the butterfly operation excepting the scaling factor ζM which may be thought of as

a constant gain factor, but in the case, the first two equations in (2.7.11) must also include the

same scaling terms. Since, ζM>1, a further scaling is carried out in the actual implementation

by shifting the result to one bit position right (which is equivalent to a division by two) to

reduce the chance of overflow. With this scheme, the butterfly operation having a constant

gain term becomes as follows :

R′re = ζ′M (Pre + Qre), (2.7.19)

R′m = ζ′M(Pim + Qim),

S′re = ζ′M(Pre - Qre) cos (kθ) + ζ′M (Pim - Qim) sin (kθ),

S′im = ζ′M(Pre - Qre) sin (kθ) + ζ′M (Pim - Qim) cos (kθ),

where ζ′M = ζM/2.

Finally, The binary format for the representation of the error angle ε is chosen in a novel way

which offers two special advantage - the first one being the ease of extending the range of

rotation / vectoring from ± π/2 to ± π covering all the quadrants completely, and secondly the

scope of representing the rotation angle kθ for any butterfly stage terms of the multiplier k

 54

Redundant Number System based CORDIC for FFT 3.System Theory

only, thereby relieving the burden of multiplication operation for the purpose. The

representation of ε may be thought of as a normalized angle in two's complement format,

since the weights chosen from the MSB side are - π, π/2, π/4,....,

π/2M-1;M being the word length. This form of angle representation rather than in the

conventional radians makes it possible to readily identify the quadrant pertaining to the

amount of rotation simply by observing the first two bits from the MSB side. Since the

CORDIC algorithm can easily accommodate rotation in the range ± π/2 only, so whenever the

required rotation α is beyond that range, that is either π/2 ≤ α < π (second quadrant) or - π ≤

α < - π/2 (third quadrant, as the case may be, is considered by adding/subtracting an amount

equal to π from the actual angle α which can be carried out by complementing the MSB, and

that value is used instead. To have proper results, the signs of the x and y components are

changed while outputting their final values, to incorporate .the effect of reflections about the

axes. This is illustrated in Fig. 2.7.5

 For having implementation advantages, certain variations are incorporated during

the realization of the actual architecture. One such modification is in choosing the directional

parameter δi during vectoring, Instead of deriving the direction of rotation from the sign of yi

alone, an XNOR function of the signs of xi and yi used to accommodate vectoring in all the

four quadrants as illustrated in Fig. 2.7.5

Fig(2.7.5) :Mapping of quadrant

 55

Redundant Number System based CORDIC for FFT 3.System Theory

/*Algorithm for the adders generation to compute N=2n point FFT*/

For stage=n-1 down to 0

Ncluster=2^(n-1 – stage)

Npair=2^stage

For cluster=ncluster –1 down to 0

Index=cluster * 2^(stage+1)

Rot=0

For pair=npair –1 down to 0

Call Butterfly(index,index+npair,rot)

Index=index+1

Rot=rot + ncluster

Next pair

Next cluster

Next stage

End

3.9.3 THE ADDRESS GENERATION UNIT

 The address generation unit implements the following algorithm to realize the signal

flow graph for the computation of FFT. It generates the address where from the data is to be

fetched to the butterfly unit and where the result is to be written too. It also computes the

angle multiplier k (under the variable name 'rot') required for the butterfly operation.

 The novel angle representation scheme, i.e. choosing the weights as π, π/2, π/4,...,

π/2M-1 (M being the wordlength), offers the tremendous advantage of relieving the designer

for the requirement of having a multiplier for computing kθ as required by the CORDIC unit

to evaluate Eq. (2.7.12) from the value of the multiplier k (which is stored as the variable 'rot'

in the address computation algorithm). As the value of θ equals 2π/N or π/2 n-1, it is

represented by a string of zeroes except a one at the nth bit position from left hand side, while

k is a n-bit number with the MSB being zero (since k ranges from 0 to N/2 -1). Therefore,

multiplying k with θ yields a M bit number having the least significant n - 1 bits of k as the

first n - 1 (most signifcant) bits with the rest of the bits equal to zero.

 56

Redundant Number System based CORDIC for FFT 3.System Theory

3.9.4 Butterfly unit

 The butterfly unit implements Eq. (2.7.19) whose flow graph is shown in Fig. 2.7.6.

The CORDIC module is the heart of the butterfly unit which accepts (Pre-Qre) and (Pim-

Qim) as the two components of the input vector and provides the output vector after rotating

the input by an amount of kθ. However, the output is scaled by a factor of 1/0.607252935

=1.646759 as indicated in Eq. (2.7.16). Instead of multiplying the result by 0.607252935 to

restore the proper value of the output vector, the other output of the butterfly is also scaled by

the same factor of 1.646759 to keep the uniformity which maintains the correct phase

relationship between the output components but alters the magnitude of the output vector.

This is permissible in digital

text

text

SCALE

CORDIC

+

+

-

P
R

S

Fig(2.7.6):Butterfly with CORDIC

signal processing applications since relative amplitude of the components and not their

absolute magnitudes are of primary concern and the scale factor appears as a fixed gain term

in such context. To reduce the chances of overflow, however, a further scaling by a factor of

“0.5” is carried out by shifting the result through one bit position towards right at both the

output R and S. All the variables are represented in 16 bit two's complement format, therefore

the CORDIC unit takes 16 clock cycles to compute the result and the block finishes its

computation within that period adding on extra overhead for its operation.

 First computes P - Q and passes the result to the CORDIC unit and then computes P +

Q and passes the same to the unit while the CORDIC unit remains busy processing the

 57

Redundant Number System based CORDIC for FFT 3.System Theory

 P - Q value.

 The CORDIC block consists of ten add/subtract units implemented by carry-free

adders and two shifters performing logical shift as well as arithmetic shifting along with the

associated registers for implementing the iterative operation depicted in Eq. (2.7.15). The

multiplexed registers can be loaded externally or can be updated with internal results. The

combinatorial block is designed to serve as a lookup table ROM for storing the values of tan-

1(2-i) required for computing Eq. (2.7.12). Two extra add/subtract unit are employed as

controlled two's complement negator for implementing rotations in second and third

quadrants through reflections about the axes as has already been discussed in the previous

section. Two extra unit one for binary to redundant conversion and other for converting

redundant number back to binary 2’s complement number . On completion of a butterfly

rotation, it issues a termination signal which updates the parameter passing buffers at the

address computation unit and also serves as an indication to itself to prepare for starting a

fresh operation. The control line decides the mode of operation for the CORDIC unit with the

help of two multiplexers - one governing the direction of rotation and another one driving the

controller two's complementer for changing the signs of the outputs as per the tables. In the

rotation mode, the direction of rotation is derived from the sign of the instantaneous error in

angle computation, that is the difference between the target angle and the achieved angle.

However, at the time of loading the target angle, the specially designed register copies 12-th

bit as the MSB (13th bit) instead of the original value of MSB which has got an weight age

equals to-π. This is carried out in order to keep the target angle a within that limit -π/≤a<π/2.

If the target angle is beyond that limit, i.e. if it lies either in the second or the third quadrant,

then its 13th bit (MSB) and 12th bit disagree with each other and in that case, the signs of the

output variables X and Y are changed to incorporate the reflections about the axes, as

described in the previous section. During vectoring, the direction of rotation is determined

depending upon the current position of the subject vector in terms of the quadrant which is

decided by checking the signs of X and Y. Here also, as in rotation, a change in the sign of the

final output is required, if the vector lies either in the second or in the third quadrant which is

indicated by the sign bit of X.

 58

Redundant Number System based CORDIC for FFT 4.System Design

CHAPTER 4

SYSTEM DESIGN

4.1 Binary to redundant conversion
 Binary to redundant conversion is simple and direct. If input number is in 2’s

complement form and the number is negative the only thing is to change most significant bit

ie: MSB from ‘1’ to ‘-1’.For a positive number no need to perform the conversion because in

SD number system with digit set {-1,0,1} the value of binary as well as redundant number for

a positive number is same. To realize negative numbers, coding is done. Below example

shows the coding scheme for the all three possible digits of the digit set {-1,0,1}.

-1 by “01”

 1 by “10”

 0 by “00”.

This binary to redundant conversion is performed by the entity “BINTOREND8”.

 Fig(8.1) BINTOREND8

Name Type Description

datain

In (9 down to 0)

std_logic_vector

Input binary number

zip out (9 down to 0)

std_logic_vector

Redundant binary number

zim out (9 down to 0)

std_logic_vector

Redundant binary number

Table 8.1

Redundant Number System based CORDIC for FFT 4.System Design

Fig 8.1 shows the top level (RTL view) for the entity BINTOREND8 which performs binary

to redundant conversion. It takes eight bit input binary number in the 2’s complement form

and provides three eight bit outputs, zip, zim, nzip respectively.

For eg: If datain=”01000000” then

 Zip=”01000000”.

 Zim=”00000000”.

 NZip =”10111111”.

Here complement of Zip is generated because of its requirement to perform carry-free-

addition.Table8.1 shows the specifications of the entity “BINTOREND8”.

4.2 CARRY FREE ADDER:

The algorithm as explained in earlier section is used to implement the adder. First a 1 bit

adder is designed under the entity name CARADDER using 4-input NOR/OR gate. Then by

cascading this 1 bit adder 10 bit adder under entity name ADDER8 is designed. Fig(8.2)

shows the RTL view of the one bit adder.

caradder

gen1.4.ader1

xip
xim
yip
yim
nxip
nyip
pipv
npipv
uipv
nuipv

zip
zim

nzip
ui

nui
pi

npi

Fig(8.2) RTL view of 1 bit adder(CARADDER)

Here Xip, Xim, Nxip and Yip, Yim, NYip are two input redundant numbers. Initially

“Pipv” and “Uipv” both are taken to be equal to ‘1’ while their complements “npipv”,

”nuipv” both taken to be equal to ‘0’.

 83

Redundant Number System based CORDIC for FFT 4.System Design

addsubbg

gen1.6.ady_array

[5] D_i
:0] ip1[9:0]

ip2[9:0]
:0] im1[9:0]

im2[9:0]

[9re_xp[9:0]
[9im_xm[9:0]

Fig(8.3) 10 bit adder (ADDER8)

Name Type Description

Xip In (9 down to 0)

std_logic_vector

I/P Redundant binary

number

Xim In (9 down to 0)

std_logic_vector

I/P Redundant binary

number

NXip In (9 down to 0)

std_logic_vector

I/P Redundant binary

number

Yip In (9 down to 0)

std_logic_vector

I/P Redundant binary

number

Yim In (9 down to 0)

Std_logic_vector

I/P Redundant binary

number

NYip In (9 down to 0)

Std_logic_vector

I/P Redundant binary

number

Popv Std_logic I/P taken to be ‘1’

Uopv Std_logic I/P taken to be ‘1’

NPopv Std_logic I/P taken to be ‘0’

NUopv Std_logic I/P taken to be ‘0’

Zip Out (9 down to 0)

Std_logic_vector

O/P Redundant binary

number

Zim Out (9 down to 0)

Std_logic_vector

O/P Redundant binary

number

 84

Redundant Number System based CORDIC for FFT 4.System Design

NZip Out (9 down to 0)

Std_logic_vector

O/P Redundant binary

number

P8 Std_logic O/P

U8 Std_logic O/P

NP8 Std_logic O/P

NU8 Std_logic O/P

4.3 CARRY SELECTOR:

Carry selector will provide carry ‘Ci’ while inspecting the input S &D form the previous stage

“SDbreak”. Algorithm has already explained in the previous section.

carry_ing1

Carr_X

0 c0
[9:0] S[9:0]
[9:0] D[9:0]

[9:0]Ci[9:0]

Fig (8.4) Carry_in

Fig(8.4) shows the RTL view for the entity “Carry_in” that performs the carry selection.

As per the algorithm it takes two eight bit S and D along with C0 =’0’ as inputs and provides

eight bit carry Ci as output. This carry Ci is used for redundant to binary conversion.

Name Type Description

S In (9 down to 0)

std_logic_vector

S obtained for

previous stage

SDbreaker

D In (9 down to 0)

std_logic_vector

D obtained for

previous stage

SDbreaker

C0 In std_logic C0=’0’;

Ci out (9 down to 0) Carry Ci out goes to

 85

Redundant Number System based CORDIC for FFT 4.System Design

std_logic_vector input redundant to

binary converter

Table :8.4

Table :8.4 shows the specifications for the entity “Carry_in” .

4.4 S & D selector:

With given redundant number ‘Z’ represented in terms of Zip and Zim , we compute S,D

form it. After extracting S ,D we can compute carry Ci, in the stage carry_in.

SDbreakg

SDsel_X

[9:0] zip[9:0]
[9:0] zim[9:0]

[9:0]S[9:0]
[9:0]D[9:0]

Fig (8.5) SDbreaker

Name Type Description

zip In (9 down to 0)

std_logic_vector

I/p redundant

number

zim In (9 down to 0)

std_logic_vector

I/p redundant number

D In (9 down to 0)

std_logic_vector

O/p ,8 bit

S In (9 down to 0)

std_logic_vector

O/p ,8 bit

Table:8.5

Fig(8.5) shows the RTL view of the entity “SDBreak”. The S and D selection from the given

Zip,Zim will takes place as shown below in the Table 8.5.1:

 86

Redundant Number System based CORDIC for FFT 4.System Design

Zip Zim S D

0 1 1 1

0 0 0 0

1 0 0 1

Table 8.5.1

4.5 Redundant to binary converter:

Redundant to binary converter will take C_8 (Carry_in) ,S ,D ,as input and provide eight bit

binary output. The algorithm is already explained in earlier section.Fig(8.6) shows the RTL

view for the entity “REND2BIN8” that performs the conversion of given redundant number to

equivalent binary number.

The Binary out put B_out is

B_out = D_8 ⊕ C_8.

rentobin8g

bin_X11

9:0] S_8[9:0]
9:0] D_8[9:0]
9:0] C_8[9:0]

[9:0]S_1[9:0]
[9:0]P_1[9:0]
[9:0]B_out[9:0]

Fig(8.6) redundant to binary conversion

Name Type Description

C_8 In (9 down to 0)

std_logic_vector

10 bit carry input

S_8 In (9 down to 0)

std_logic_vector

10 bit S i/p form previous

stage

D-8 In (9 down to 0)

std_logic_vector

10 bit D i/p form previous

stage

B_out out (9 down to 0) 10 bit binary o/p

 87

Redundant Number System based CORDIC for FFT 4.System Design

std_logic_vector

S_1 Out (9 down to 0)

std_logic_vector

Complement of S

P_1 out (9 down to 0)

std_logic_vector

Complement of D

Table:8.6

Table 8.6 shows the specifications of the entity “REND2BIN8”.

FIG(7.1)BINARY TO REDUNDANT CONVERTOR SIMULATION

 88

Redundant Number System based CORDIC for FFT 4.System Design

FIG(7.2)10 BIT CARRY FREE ADDER

FIG(7.3)CARRY SELECTOR

 89

Redundant Number System based CORDIC for FFT 4.System Design

FIG(7.4) S & D SELECTOR(SDBREAKER)

FIG(7.5) REDUNDANT TO BINARY CONVERTER(RENTOBIN8)

 90

Redundant Number System based CORDIC for FFT 4.System Design

FIG(7.6) TOP LEVEL ENTITY(TOP)

1Bit Carry free adder

 Entity name:CARADDER:

Device utilization summary:

Selected Device : 2v4000bf957-6

 Number of Slices: 6 out of 23040 0%

 Number of 4 input LUTs: 10 out of 46080 0%

 Number of bonded IOBs: 17 out of 684 2%

 Timing report:

Speed Grade: -6

Minimum period: No path found

Minimum input arrival time before clock: No path found

Maximum output required time after clock: No path found

Maximum combinational path delay: 7.273ns

Design Summary:

Number of errors: 0

Number of warnings: 0

Logic Utilization:

Number of 4 input LUTs: 10 out of 46,080 1%

Logic Distribution:

 91

Redundant Number System based CORDIC for FFT 4.System Design

Number of occupied Slices: 6 out of 23,040 1%

Number of Slices containing only related logic: 6 out of 6 100%

Number of Slices containing unrelated logic: 0 out of 6 0%

Total Number 4 input LUTs: 10 out of 46,080 1%

Number of bonded IOBs: 17 out of 684 2%

Total equivalent gate count for design: 60

Fig (6.1):RTL of 1 bit adder

Fig (6.1.1):Gate or/ nor

Fig (6.1.2):Gate or/nor

 92

Redundant Number System based CORDIC for FFT 4.System Design

4.2 10 BIT CARRY FREE ADDER

Entity name :ADDER8

Device utilization summary:

Selected Device : 2v4000bf957-6

 Number of Slices: 33 out of 23040 0%

 Number of 4 input LUTs: 59 out of 46080 0%

 Number of bonded IOBs: 80 out of 684 11%

Timing report:

Speed Grade: -6

 Maximum combinational path delay: 8.071ns

Fig (6.2.):RTL of 10 bit ADDER

 93

Redundant Number System based CORDIC for FFT 4.System Design

HDL Synthesis Report

Macro Statistics

Multiplexers : 1

 8-bit 2-to-1 multiplexer : 1

Device utilization summary:

Selected Device : 2v4000bf957-6

 Number of Slices: 2 out of 23040 0%

 Number of 4 input LUTs: 4 out of 46080 0%

 Number of bonded IOBs: 24 out of 684 3%

Timing report:

Speed Grade: -6

 Maximum combinational path delay: 7.239ns

BINARY TO REDUNDANT CONVERTER:

Entity name :BINTOREND

HDL Synthesis Report

Macro Statistics

Multiplexers : 2

 10-bit 2-to-1 multiplexer : 2

 94

Redundant Number System based CORDIC for FFT 4.System Design

Fig(6.3.1)Binary to redundant converter

Design Summary:

Number of errors: 0

Number of warnings: 0

Logic Utilization:

 Number of 4 input LUTs: 5 out of 46,080 1%

Logic Distribution:

 Number of occupied Slices: 3 out of 23,040 1%

 Number of Slices containing only related logic: 3 out of 3 100%

 Number of Slices containing unrelated logic: 0 out of 3 0%

 Total Number 4 input LUTs: 5 out of 46,080 1%

 Number of bonded IOBs: 32 out of 684 4%

Total equivalent gate count for design: 30

CARRY SELECT LOGIC:

Entity name :CARRY_IN

Selected Device : 2v4000bf957-6

 Number of Slices: 6 out of 23040 0%

 Number of 4 input LUTs: 10 out of 46080 0%

 Number of bonded IOBs: 23 out of 684 3%

Timing report

 95

Redundant Number System based CORDIC for FFT 4.System Design

Speed Grade: -6

Minimum period: No path found

Minimum input arrival time before clock: No path found

Maximum output required time after clock: No path found

Maximum combinational path delay: 9.004ns

Device utilization summary:

 Number of External IOBs 23 out of 684 3%

 Number of LOCed External IOBs 0 out of 23 0%

 Number of SLICEs 6 out of 23040 1%

Design Summary:

Number of errors: 0

Number of warnings: 0

Logic Utilization:

 Number of 4 input LUTs: 10 out of 46,080 1%

Logic Distribution:

 Number of occupied Slices: 6 out of 23,040 1%

 Number of Slices containing only related logic: 6 out of 6 100%

Number of Slices containing unrelated logic: 0 out of 6 0%

 Total Number 4 input LUTs: 10 out of 46,080 1%

 Number of bonded IOBs: 23 out of 684 3%

Total equivalent gate count for design: 60

 96

Redundant Number System based CORDIC for FFT 4.System Design

Fig(6.4) RTL of Carry selector (Carry_in)

REDUNDANT TO BINARY NUMBER CONVERTER:

Entity name :RENTOBIN8

Device utilization summary:

Selected Device : 2v4000bf957-6

 Number of Slices: 9 out of 23040 0%

 Number of 4 input LUTs: 16 out of 46080 0%

 Number of bonded IOBs: 48 out of 684 7%

TIMING REPORT

Timing Summary:

Speed Grade: -6

 Minimum period: No path found

 Minimum input arrival time before clock: No path found

 Maximum output required time after clock: No path found

 Maximum combinational path delay: 5.644ns

 97

Redundant Number System based CORDIC for FFT 4.System Design

Fig (6.3):Top level redundant to binary converter

Fig(6.4.1):Internal of redundant to binary converter

Design Summary:

Number of errors: 0

Number of warnings: 0

Logic Utilization:

Number of 4 input LUTs: 8 out of 46,080 1%

Logic Distribution:

Number of occupied Slices: 8 out of 23,040 1%

Number of Slices containing only related logic: 8 out of 8 100%

Number of Slices containing unrelated logic: 0 out of 8 0%

 98

Redundant Number System based CORDIC for FFT 4.System Design

Total Number 4 input LUTs: 8 out of 46,080 1%

 Number of bonded IOBs: 48 out of 684 7%

Total equivalent gate count for design: 48

S AND D SELECTOR

Entity name :SDBREAK

HDL Synthesis Report

Macro Statistics

Multiplexers : 8

 1-bit 2-to-1 multiplexer : 8

Device utilization summary:

Selected Device : 2v4000bf957-6

 Number of Slices: 9 out of 23040 0%

 Number of 4 input LUTs: 16 out of 46080 0%

 Number of bonded IOBs: 32 out of 684 4%

Timing Summary:

Speed Grade: -6

 Minimum period: No path found

 Minimum input arrival time before clock: No path found

 Maximum output required time after clock: No path found

 Maximum combinational path delay: 5.644ns

Design Summary:

Number of errors: 0

Number of warnings: 0

Logic Utilization:

 Number of 4 input LUTs: 16 out of 46,080 1%

Logic Distribution:

 Number of occupied Slices: 8 out of 23,040 1%

 Number of Slices containing only related logic: 8 out of 8 100%

 Number of Slices containing unrelated logic: 0 out of 8 0%

 Total Number 4 input LUTs: 16 out of 46,080 1%

 Total equivalent gate count for design: 96

 99

Redundant Number System based CORDIC for FFT 4.System Design

coupler

CC1

mux2

M1

mux2

M2

mux2

M3

mux2

M4

mux2

M5

mux2

M6

mux2

M7

mux2

M8

mux2

M9

mux2

M10

D[9:0]

S[9:0]

zim[9:0] [9:0]
zip[9:0] [9:0] [9:0] a[9:0]

[9:0] b[9:0]

[1:0]a1[1:0]
[1:0]a2[1:0]
[1:0]a3[1:0]
[1:0]a4[1:0]
[1:0]a5[1:0]
[1:0]a6[1:0]
[1:0]a7[1:0]
[1:0]a8[1:0]
[1:0]a9[1:0]
[1:0]a10[1:0]

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

0 a
0 b
1 c
1 d

[1:0] s[1:0]

o1
o2

Fig(6.5) RTL of S & D selector (SD Breaker)

 100

Redundant Number System based CORDIC for FFT 4.System Design

TOP LEVEL ENTITY:

Entity name :TOP

selected Device : 2v4000bf957-6

 Number of Slices: 24 out of 23040 0%

 Number of 4 input LUTs: 43 out of 46080 0%

 Number of bonded IOBs: 44 out of 684 6%

Timing Summary:

Speed Grade: -6

 Minimum period: No path found

 Minimum input arrival time before clock: No path found

 Maximum output required time after clock: No path found

 Maximum combinational path delay: 10.820ns

Fig (6.6) RTL of Top

Design Summary:

Number of errors: 0

Number of warnings: 0

Logic Utilization:

 Number of 4 input LUTs: 43 out of 46,080 1%

Logic Distribution:

 Number of occupied Slices: 23 out of 23,040 1%

 Number of Slices containing only related logic: 23 out of Number of Slices

containing unrelated logic: 0 out of Total Number 4 input LUTs: 43 out of

46,080 1%

 Number of bonded IOBs: 44 out of 684 6%

Total equivalent gate count for design: 258

 101

Redundant Number System based CORDIC for FFT 4.System Design

MATLAB SIMULATION RESULTS

 102

Redundant Number System based CORDIC for FFT 4.System Design

Fig (5.1) Sine wave.

Fig(5.7)Angle mapping for the predicting CORDIC algorithm.

 103

Redundant Number System based CORDIC for FFT 4.System Design

Fig(5.8) Simulation result of predicting CORDIC

Fig(5.9)Chirp values vs samples

 104

Redundant Number System based CORDIC for FFT 4.System Design

4.6 CORDIC IMPLEMENTATION IN AN FPGA:
 There are a number of ways to implement a CORDIC processor. The ideal architecture

depends on the speed versus area tradeoffs in the intended application. First we will examine

an iterative architecture that is a direct translation from the CORDIC equations. From there,

we will look at a minimum hardware solution and a maximum performance solution.

Iterative CORDIC Processors:
 An iterative CORDIC architecture can be obtained simply by duplicating each of the

three difference equations in hardware as shown in figure 1. The decision function, di is

driven by the sign of the y or z register depending on whether it is operated in rotation or

vectoring mode. In operation, the initial values are loaded via multiplexers into the x, y and z

registers. Then on each of the next n clock cycles, the values from the registers are passed

through the shifters and adder-subtractors and the results placed back in the registers. The

shifters are modified on each iteration to cause the desired shift for the iteration. Likewise, the

ROM address is incremented on each iteration so that the appropriate elementary angle value

is presented to the z adder-subtractor. On the last iteration, the results are read directly from

the adder-subtractors. Obviously, a simple state machine is required keep track of the current

iteration, and to select the degree of shift and ROM address for each iteration.

 The design depicted in Figure 1 uses word-wide data paths (called bit-parallel design).

The bit-parallel variable shift shifters do not map well to FPGA architectures because of the

high fan-in required. If implemented, those shifters will typically require several layers of

logic (i.e., the signal will need to pass through a number of FPGA cells). The result is a slow

design that uses a large number of logic cells.

 105

Redundant Number System based CORDIC for FFT 4.System Design

 A considerably more compact design is possible using bit serial arithmetic. The

simplified interconnect and logic in a bit serial design allows it to work at a much higher

clock rate than the equivalent bit parallel design. Of course, the design also needs to clocked

w times for each iteration (w is the width of the data word). The bit serial design consists of

three bit serial adder-subtractors, three shift registers and a serial Read Only Memory (ROM).

Each shift register has a length equal to the word width. There is also some gating or

multiplexers to select taps off the shift registers for the right shifted cross terms (shifting is

accomplished using bit delays in bit serial systems). The bit serial CORDIC architecture is

shown in Figure 2. In this design, w clocks are required for each of the n iterations, where w

is precision of the adders. In operation, the load multiplexers on the left are opened for w

clock periods to initialize the x, y and z registers (these registers could also be parallel loaded

to initialize). Once loaded, the data is shifted right through the serial adder-subtractors and

returned to the left end of the register. Each iteration requires w clocks to return the result to

the register. At the beginning of each iteration, the control state machine reads the sign of the

y (or z) register and sets the add/subtract controls accordingly. The appropriate tap off the

register for the cross terms is also selected at the beginning of each iteration. During the nth

iteration, the results can be read from the outputs of the serial adders while the next

initialization data is shifted into the registers.

 106

Redundant Number System based CORDIC for FFT 4.System Design

The simplicity of the bit serial designs in apparent from figure 2. Even in this case, the wiring

of the shift tap multiplexers can present problems in some FPGAs (this is one place where tri-

state long lines can come in handy). Even so, the interconnect is minimal and the logic

between registers is simple. This combination permits bit clock rates near the maximum

toggle frequency of the FPGA. The possibility of using extreme bit clock frequencies makes

up for the large number of clock cycles required to complete each rotation.

 Now, if the design is in a Xilinx 4000E series part, the shift registers can be

implemented in the CLB RAM. The RAM emulates a shift register by incrementing the

read/write address after each access. The dual port capability of the CLB RAM provides the

capability to read two locations in the 16x1 RAM simultaneously. By properly sequencing the

second address, the effect of the shift tap multiplexer is achieved without a physical

multiplexer. The result is the shift register and multiplexer for word lengths up to 16 bits are

implemented in a single CLB (plus 8 CLBs for the 2 address sequencers and iteration counter,

which are shared by the three shifters). The serial ROM also uses the CLB for data storage.

One CLB is required for every two iterations. The 16 bit, 8 iteration CORDIC processor

shown in figure 3 uses only 21 CLBs, and will run at bit rates up to about 90 MHz (mainly

limited by the RAM write cycle). This translates to about a 1.5 µS processing time, which is

only about three and a half times longer than the best one could expect from the much larger

bit parallel iterative solution.

 107

Redundant Number System based CORDIC for FFT 4.System Design

ON-LINE CORDIC PROCESSORS:

 The CORDIC processors discussed so far are iterative, which means the processor has

to perform iterations at n times the data rate. The iteration process can unrolled so that each of

n processing elements always performs the same iteration. An unrolled CORDIC processor is

shown in Figure 4. Unrolling the processor results in two significant simplifications. First the

shifters are each a fixed shift, which means that they can be implemented in the wiring.

Second, the lookup values for the angle accumulator are distributed as constants to each adder

in the angle accumulator chain. Those constants can be hardwired instead of requiring storage

space. The entire CORDIC processor is reduced to an array of interconnected adder-

subtractors. The need for registers is also eliminated, making the unrolled processor strictly

combinatorial. The delay through the resulting circuit would be substantial, but the processing

time is reduced from that required by the iterative circuit (if by nothing else than the set-up

and hold times of the register). Most times, especially in an FPGA, it does not make sense to

use such a large combinatorial circuit. The unrolled processor is easily pipelined by inserting

registers between the adder-subtractors. In the case of most FPGA architectures there are

already registers present in each logic cell, so the addition of the pipeline registers has no

hardware cost.

The unrolled processor can also be converted to a bit serial design. Each adder subtractor is

replaced by a serial adder-subtractor, separated by w bit shift registers. The shift registers are

necessary to extract the sign of the y or z element before the first bits (1sbs) reach the next

adder-subtractors.

The right shifted cross terms are taken from fixed taps in the shift registers. Some

method of sign extension for the shifted terms is required too. Figure 5 shows two iterations

of a bit serial CORDIC processors implemented in an Atmel 6005 or NSC Clay31 FPGA.

Notice the cross term is taken from different taps off the shift register at each iteration.

This particular processor is used to compute vector magnitude. Since this is a vector

mode process and the result angle is not required, there is no need for an angle accumulator.

Figure 6 shows the detail of the adder-subtractor for that design.

 108

Redundant Number System based CORDIC for FFT 4.System Design

The adder subtractor in this case includes logic to extend the sign of the shifted cross

term and to reset the adder subtractor between words. The entire 7-iteration design occupies

approximately 20% of the FPGA and runs at bit rates up to 125 MHz.

 109

Redundant Number System based CORDIC for FFT 4.System Design

 110

Redundant Number System based CORDIC for FFT 4.System Design

4.6.1 REDUNDANT CORDIC IMPLEMENTATION ON AN FPGA:

 There are a number of ways to implement a CORDIC processor. The ideal architecture

depends on the speed versus area tradeoffs in the intended application. We have used an

iterative architecture that is a direct translation from the CORDIC equations. From there, we

will look at a minimum hardware solution and a maximum performance solution by our

proposed architecture.

 The iteration process can unrolled so that each of n processing elements always performs the

same iteration. An unrolled CORDIC processor is shown in Figure.4 .. The entire CORDIC

processor is reduced to an array of interconnected adder-sub tractors.

 The delay through the resulting circuit would be substantial, but the processing time is

reduced from that required by the iterative circuit (if by nothing else than the set-up and hold

times of the register). Most times, especially in an FPGA, it does not make sense to use such a

large combinatorial circuit. Inserting registers between the adder-sub tractors easily pipelines

the unrolled processor.

 111

Redundant Number System based CORDIC for FFT 4.System Design

Proposed Architecture of redundant CORDIC processor:

Fig(4.1) CORDIC architecture

Fig(4.1) shows the architecture of the CORDIC processor having ‘Xin’ ,’Yin’ as input binary

10 bit number. For computation of sine and cosine, value of Yin should be equal to zero and

value of Xin should be equal to the scale factor K introduced during CORDIC iterations. Xin

and Yin 10 bits binary number is first converted to redundant number using binary to

redundant converter .The Xpath and Ypath are the standard CORDIC iterations in terms of X

and Y. Here both arithmetic as well as logical shifting is done using the shifters R/S and L/S

respectively.. The Xpath and Y path are implemented in similar fashion as shown in the figure

4 using Carry propagation free adders. We have designed a 10 bit CORDIC processor where

Xin and Yin each are 10 bits inputs. The input angle i.e. “angle in” is taken to be of 13 bits

binary number. First angle is processed using preprocessor. The Zpath performs the iteration

for the third variable ie:”angle in”

Finally redundant to binary conversion is done at the last stage. Redundant to binary

conversion is complex process done in three steps: firstly the S and D are extracted from

given binary number, secondly the carry is decided and finally redundant to binary conversion

is done as per the algorithm discussed in the earlier section. Postprocessor finally decides the

sign of the final Sine and Cosine values as per the quadrant information stored in ‘negation’.

Postprocessor is implemented using the two 10 bits binary adder. The negation is

implemented using the flip-flops that stored the quadrant information decided from the first

two MSBs of input angle till the CORDIC processor gives the Sine and Cosine values.

 112

Redundant Number System based CORDIC for FFT 4.System Design

CORDIC processor takes 11 clock cycles to give the final output, so quadrant decision is done

after 11 clock cycles till this value is stored in the register.

adder_seq_2

sin_add

reset
clk

negate

sin_final[9:0][9:0]

cos_final[9:0][9:0]

sin_val[9:0] [9:0]

cos_val[9:0] [9:0]

adder_seq_2

 cos_add

control
clk
reset

0*10 a[9:0]
[9:0] b[9:0]

[9:0]sum[9:0]

control
clk
reset

0*10 a[9:0]
[9:0] b[9:0]

[9:0]sum[9:0]

Fig(4.2) RTL view of Postprocessor

negate

negate

angle_op[12:0]

angle_ip[12:0]

[11]
[11]

[10:0]

[12:11]
[10:0]

[11]
[12]

Fig(4.3):RTL view of preprocessor

cordic_unrolled

 a2

clk
RESET_N

] angle_in[12:0]

[cos_val[9:0]
[sin_val[9:0]

Fig(4.4):CORDIC unrolled

 113

Redundant Number System based CORDIC for FFT 4.System Design

Fig(3.1) RTL Top view of CORDIC

Fig(3.2) Modelsim result shows pure Sine and Cosine wave generated by the CORDIC processor.

 114

Redundant Number System based CORDIC for FFT 4.System Design

Fig(3.3) Modelsim result shows pure Sine wave generated by the CORDIC processor.

baddsub

gen1.9.add_sub_z

reg_genZ1

gen1.9.regz_array

addsubbg

gen1.10.adx_array

reg_genZ0

gen1.10.RES_x1

reg_genZ0

gen1.10.RES_x2

addsubbg

gen1.10.ady_array

addsubbg

gen1.9.ady_array

reg_genZ0

gen1.10.RES_y1

reg_genZ0

gen1.9.RES_y1

reg_genZ0

gen1.9.RES_y2

reg_genZ0

gen1.10.RES_y2

[9]
[11:0]

[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]

=0*9
[9]

[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]
[9]

=0*9
[9]

[8] control

a[12:0]
101 b[12:0]

[12:0]sum[12:0]

clk
reset

[12:0] datain[12:0]

dataout[12:0]
[9] D_i

[9:0] ip1[9:0]

ip2[9:0]
[9:0] im1[9:0]

im2[9:0]

[9:0]re_xp[9:0]
[9:0]im_xm[9:0]

clk
reset

[9:0] datain[9:0]

[9:0]dataout[9:0]

clk
reset

[9:0] datain[9:0]

[9:0]dataout[9:0]

[9] D_i
[9:0] ip1[9:0]

ip2[9:0]
[9:0] im1[9:0]

im2[9:0]

[9:0]re_xp[9:0]
[9:0]im_xm[9:0]

[8] D_i
[9:0] ip1[9:0]

ip2[9:0]
[9:0] im1[9:0]

im2[9:0]

[9:0]re_xp[9:0]
[9:0]im_xm[9:0]

clk
reset

[9:0] datain[9:0]

[9:0]dataout[9:0]

clk
reset

[9:0] datain[9:0]

[9:0]dataout[9:0]

clk
reset

[9:0] datain[9:0]

[9:0]dataout[9:0]

clk
reset

[9:0] datain[9:0]

[9:0]dataout[9:0]

Fig(4.5):CORDIC one Stage

 Cordic360

Device utilization summary:

 Selected Device : v300pq240-5

 Number of Slices : 641 out of 3072 20%

 Number of Slice Flip Flops : 540 out of 6144 8%

 Number of 4 input LUTs : 1182 out of 6144 19%

 Number of bonded IOBs : 34 out of 170 20%

 115

Redundant Number System based CORDIC for FFT 4.System Design

 Number of GCLKs : 1 out of 4 25%

 Speed Grade : -5

 Minimum period: 11.376ns (Maximum Frequency: 87.904MHz)

 Minimum input arrival time before clock: 7.264ns

 Maximum output required time after clock: 7.511ns

 Maximum combinational path delay: No path found

 Total equivalent gate count for design: 12,221

 Table (8.1) : Angle ROM of CORDIC

k θk θk(13-bit binary)
1 45° 0010000000000
2 26.5650° 0001001011110
3 14.0362° 0000101000000
4 7.12502° 0000010100010
5 3.57633° 0000001010001
6 1.78991° 0000000101001
7 0.895174° 0000000010100
8 0.447614° 0000000001010
9 0.223807° 0000000000101
10 0.111905° 0000000000010

Table (8.2): Performance summary

Technology Vertex 300
Maximum clock frequency 87.904MHz

Output Resolution 10-bits for sine and cosine
Latency 12 clock cycle

Gate Count 1 12,221

post_processor_cor

post1

negate
clk
reset

] cos_val[9:0]
] sin_val[9:0]

[cos_final[9:0]
[sin_final[9:0]

Fig(4.6)RTL view of Post Processor

 116

Redundant Number System based CORDIC for FFT 4.System Design

4.8 PREDICTING CORDIC IMPLEMENTATION

ARCHITECTURE.

The input angle is in special binary format with weights -π,π/2, π/4---- π/2^m-

1.However the sequence of rotations described in the previous section requires binary

representation of an angle measured in radian. Therefore , the normalized angle must be

converted to an appropriate radian value θ in the interval (-π/4, π/4).,which is the input to the

Sine/Cosine generator .An output stage is required to generate the correct Sinπφ and Cosπφ

from the computed Sinθ and Cosθ values. Thus overall architecture consist of

following blocks:

1)Preprocessor

2) π/4 multiplier.

3)Sine/Cosine generator that computes Sinθ and Cosθ values.

4)Post processor that converts Sinθ and Cosθ values to correct Sinπφ and Cosπφ values.

Fig(9.1)Architecture of predicting CORDIC processor

Preprocessor:

The most two significant bits of the normalized angle φ MSB1 and MSB2 determine

the quadrant occupied by πφ. The third most significant bit MSB3 determines whether this

angle is in the upper or lower half of the quadrant. These three most significant bits are stored

and used later to control an interchange/negation operation in the output stage.

The value φ is first modified by setting its two most significant bits to zero. This maps any

angle in the normalized second, third, fourth quadrant to a corresponding angle φ’ in the first

quadrant as shown in the figure().This angle lies in the upper half of the quadrant whenever

 117

Redundant Number System based CORDIC for FFT 4.System Design

MSB3=1.The sine and cosine of angle γ above π/4 can be obtained from those of an angle

equally below π/4 as shown in the figure(),since Cos(γ)=Sin(π/2 -γ) and Sin(γ)=Cos(π/2 -

γ).thus ,whenever MSB3=1 , the normalized angle below π/4 is obtained by simply replacing

φ’ by φ’’=0.5 - φ’.

If MSB3=0 then φ’’=φ’.The normalized angle is then converted to its value θ=πφ’’ by a

multiplication by π.

Table(9.1) Control signals for the output stage

MSBs φ Cosπφ Sinπφ
0 0 0 0< πφ < π/4 Cosθ Sinθ
0 0 1 π/4< πφ < π/2 Sinθ Cosθ
0 1 0 π/2< πφ < 3π/4 -Sinθ Cosθ
0 1 1 3π/4< πφ < π -Cosθ Sinθ
1 0 0 -π < πφ < -3π/4 -Cosθ -Sinθ
1 0 1 -3π/4< πφ < -π/2 -Sinθ -Cosθ
1 1 0 -π/2< πφ < -π/4 Sinθ -Cosθ
1 1 1 -π/4< πφ < 0 Cosθ -Sinθ

 118

Redundant Number System based CORDIC for FFT 4.System Design

Fig(9.2) Quadrant6 symmetry maps an angle in second ,third ,fourth quadrants to an angle γ
in the first quadrant.(b) π/4 mirror maps an angle γ above π/4 to an angle π/2- γ equally
below π/4.

Postprocessor:
 This stage maps the computed Sinθ and Cosθ values to desired Sinπφ and Cosπφ

where πφ lies in the correct π/4 interval within [-π π].As mentioned earlier ,this can be

accomplished by simple negation and /or interchange operation. The control signals are

shown in the table().The control signals are derived from the three most significant bits of the

normalized angle.

π/4 Multiplier:
 The multiplication by π/4 is achieved by simple shift and add operation. The fig()

shows the stages of π/4 Multiplier .The input is first shifted then addition is performed.

 119

Redundant Number System based CORDIC for FFT 4.System Design

Fig(9.3)Shows the π/4 multiplier

baddsub_comb

add_1

baddsub_comb

add_2

baddsub_comb

add_5

baddsub_comb

add_8

baddsub_comb

add_9

baddsub_comb

add_15

baddsub_comb

add_17

baddsub_comb

add_18

baddsub_comb

add_19

baddsub_comb

add_21

baddsub_comb

add_22

baddsub_comb

add_24

ang_cor[24:0][24:0]

ang_in[24:0] [24:1]

=00
[24:2]

=0
[24:1]

=0*8
[24:8]

=00000
[24:5]

=0*19
[24:19]

=0*22
[24:22]

=0*14
[24:14]

=0*15
[24:15]

=0*17
[24:17]

=0*16
[24:16]

=0*21
[24:21]

=0*18
[24:18]

=0*24
[24]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]

b[24:0]

[24:0]sum_out[24:0]

Fig(9.6) RTL view of Pi/4Multiplier

 120

Redundant Number System based CORDIC for FFT 4.System Design

Fig(9.4)Modelsim results of Signpredictor

Fig(9.5) Modelsim results of predicting CORDIC

 121

Redundant Number System based CORDIC for FFT 4.System Design

 122

Redundant Number System based CORDIC fo r FFT 5.Conclusion

CHAPTER 5

CONCLUSION
In order to accelerate the CORDIC iterations , one can use redundant number

systems, which enable additions without carry propagation .For redundant implementation SD

number with digit set{-1,0,1} is used. There are various other algorithm available for the

carry free addition, out of which the efficient algorithm as per the digit set {-1,0,1} is used.

There are few options for the conversion of redundant to binary converter out of which the

look ahead mode converter, which provides fast conversion, is used.

As a result the whole conversion process i.e. form binary to redundant followed by

carry free addition and then converted back to binary is operating at high frequency.

These designed blocks are used for implementation of redundant CORDIC processor,

where the iterations of X and Y are performed by redundant arithmetic.At the final stage

redundant sine and cosine values are converted back to binary by redundant to binary

converter. The angle ROM is designed using the new angle format with weights -π , π/2 ,

π/4 ,

 π/2 m-1 .This new format helps to increase the CORDIC valid range from [-π/2 π/2] to [- π

π],thus covering all the four quadrant .The postprocessor is designed that finally decides the

sign of computed sine and cosine values

With slight modification one can eliminate the Z iterations form the normal CORDIC

iteration by predicting the sign for X an Y iterations directly form the given input angle.

The algorithm known as predicting CORDIC algorithm is based on parallelization of the

original CORDIC algorithm by predicting all the rotation directions directly from the binary

bits of the initial input angle. Unlike previous approaches that require complicated circuits or

exponentially increased ROM, this algorithm provides a relatively simple prediction scheme

through an efficient angle recording. This algorithm reduces the area and with use of

redundant arithmetic will be the best implementation of redundant CORDIC.

Fast Fourier transform is one of the most widely use DSP algorithm. The need of

complex multiplier is replace by introducing the Sine/Cosine generator. One can use radix-4

algorithm instead of radix-2 algorithm to decrease the number of multiplication. This

CORDIC based FFT architecture is well suits for the FPGAs where no memory for storing the

twiddle factors is available.

Redundant Number System based CORDIC for FFT 5.Conclusion

FUTURE WORK

Redundant number system with digit set {-1,0,1} has its own advantages, as addition

performed is carry-free thus free from carry ripple phenomenon as in normal binary addition.

One can use the carry save arithmetic instead of generalized sign digit number with digit set

{-1,0,1}.

The predicting CORDIC processor performance can be further improved by

incorporating carry-save adders in place of carry-free adders. The pi/4 multiplier designed

using normal binary adder will be efficiently designed using the carry-save adder. This will

add additional speed advantage.

 139

Redundant Number System based CORDIC for FFT 5.Conclusion

REFERENCES

 [1] Generalised Sign Digit number system, a unifying frame work for redundant number

 representations by Behrooz Parhami , IEEE Transaction on computers volume:39,

 No.1,Jan 1990

 [2] Carry Free addition of recoded binary sign digit numbers

 Behrooz Parhami, IEEE Transaction on computers volume:37, No.11,Nov 1988.

 [3] “High speed VLSI multiplication algorithm with a redundant binary addition

 tree”.Naofumi takagi, Hiroto yasuura, IEEE Transaction on computers vol:C34,

 No.9,Sep 1985.

 [4] An efficient redundant Binary to Binary number converter

 Sung Ming Yen, Chi-Sung laih, IEEE journal of solid-state circuit vol: 27,No.1, Jan

 1992.

 [5] The CORDIC Algorithm: New Results for Fast VLSI

 Implementation

 Jean Duprat,Jean Michel Muller,IEEE Transaction on computers Volume:42,

 No.2,Feb 1993

 [6] ” Design of a unified arithmetic processor based on redundant constant factor CORDIC

 with merged scaling operation.”

 S.F.Hsiau,C.Y.Lau ,IEE, proc, comput ,digit Tech vol :147,No.4,July 2000

 [7] “FPGA realization of a CORDIC based FFT processor for biomedical signal

 processing.” IITKh paper.

 [8] A CORDIC Processor for FFT Computation and its Implementation using Gallium

 Arsenide Technology.

Roberto Sarmiento, , Member IEEE, Felix Tobajas, Valentýn deArmas, Roberto

Esper-Chaýn, Jose F.Lopez, , Member IEEE, Juan A. Montiel-Nelson, , Member, IEEE,

and Antonio Nunez IEEE Transaction on very large integration (VLSI) System,

Volume. 6, NO. 1, March 1998

[9] Double Step Branching CORDIC: A New Algorithm for

 Fast Sine & Cosine Generation.

 Dhananjay S. Phatak, IEEE Transaction on Computers, Volume:. 47, NO. 5, MAY

 1998

[10] Design of a unified arithmetic processor based on

redundant constant factor CORDIC with merged scaling operation.

 140

Redundant Number System based CORDIC for FFT 5.Conclusion

 S.F.Hsiau,C.Y.Lau ,IEE, proc, computer ,digit Tech volume :147,No.4,July 2000.

 [11] Comparison of CORDIC Algorithm Implementations on

 FPGA families.

 Srikala Vadlamani , Dr. Wagdy Mahmoud, Dep. Electrical & computer engg.

 Tennesse Technological University Cookeville,TN

 [12] A Memory-Efficient and High –Speed Sine/Cosine Generator Based on Parallel

CORDIC Rotations by Shen-Fu,Yu-Hen Hu, Tso-Bing Juang ,IEEE signal processing

letters Vol.11 Feb 2004 .

 [13] CORDIC Algorithms and Architectures (Chapter-24)

 [14] FPGA realization of a CORDIC based FFT processor for

 biomedical signal processing. IITKh paper.

 [15] FPGA Implementation of Sine and Cosine Generators

 Using the CORDIC algorithm by Tanya Vladimirova and Hans Tiggeler

 Surrey Space Centre University of Surrey, Guildford, Surrey, GU2 5XH

 141

	01 firstpage1.pdf
	REDUNDANT NUMBER SYSTEM BASED CORDIC FOR FAST FOURIER TRANSFORM
	Submitted in Partial Fulfillment of the Requirements for Semester III- IV
	of
	In
	Electronics & Communication Engineering
	By

	Prof. N P Gajjar Mr. Sujit Bhattacharya
	 EC. Department, Project Manager ASIC,
	 Ahmedabad SAC (ISRO), Ahmedabad
	
	
	
	Certificate
	
	
	
	
	Date:

	
	ABSTRACT
	CHAPTER 1: Introduction 1
	 1.1 Overview 1
	CHAPTER 2 : Review Of Literature 5
	CHAPTER 3 : System Theory 7
	CHAPTER 4 : System Design 82
	 4.1 Binary To Redundant Converter 82
	
	
	REFERENCES 140
	List of Figures

	
	
	
	
	
	
	
	
	ABBREVIATIONS

	02 CHAPTER1.pdf
	03 CHAPTER2.pdf
	04 CHAPTER3.pdf
	CHAPTER 3
	SYSTEM THEORY
	3.5 CORDIC THEORY
	
	CALCULATE THE SINE AND COSINE VALUE USING CORDIC ALGORITHM
	VECTOR ROTATIONS
	Angle Recording
	A. Output frequency
	II. Sine/Cosine Generation
	The CORDIC Algorithm
	 ARCHITECTURE FOR CHIRP GENERATOR

	C. Sine/Cosine generator
	D. Output Stage
	TABLE 2.6.1
	CONTROL SIGNALS FOR THE OUTPUT STAGE

	MSB’s of (
	
	
	
	
	
	
	
	
	Fig(2.6.6)Chirp ModelSim Results
	

	3.9.3 THE ADDRESS GENERATION UNIT
	
	3.9.4 Butterfly unit

	05 CHAPTER4.pdf
	SYSTEM DESIGN
	MATLAB SIMULATION RESULTS
	
	
	
	 Cordic360
	 Maximum combinational path delay: No path found
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	06 CHAPTER5.pdf
	CONCLUSION
	FUTURE WORK
	
	REFERENCES

