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ABSTRACT 
 

               Digital Signal Processing (DSP) techniques find application from home appliances 

to Satellite applications. DSP involves complex mathematical computations and therefore, 

there is a need for high-speed mathematical processor. Trigonometric function calculation is 

one of the primary tasks performed in DSP applications. For long time microprocessor-based 

systems have been used to perform this task. Software algorithms used by the processor do 

not meet the highly demanding needs of all DSP tasks. Using hardware systems to perform 

these DSP task is a competent solution to this problem. Field Programmable Gate Arrays 

(FPGAs) are often used as co-processor to perform all the high speed tasks that can not be 

achieved by microprocessors. FPGAs are chosen because they are on-site programmable and 

are highly suitable for hardware implementations. The software solutions adopted by the 

microprocessor to implement trigonometric functions are computation intensive. They do not 

suit hardware platform because they need complex circuit to perform the mathematical 

operations. Among the existing hardware algorithm CO-ordinate Rotation DIgital Computer 

(CORDIC) is widely adopted because of its simplicity and speed efficiency. 

 

            CORDIC is one such iterative hardware efficient algorithm that performs high seed 

mathematical operations in linear, circular and hyperbolic coordinate system and computes 

various trigonometric, logarithmic and transcendental functions fast with high degree of 

accuracy for DSP applications.  

 

             The drawback of conventional CORDIC implementation, based on ripple carry 

adders or subtractions, is the internal carry propagation delay. To enhance the performance of 

CORDIC Redundant Arithmetic has been proposed. This arithmetic, due to its carry-free 

property, avoids the carry propagation from the LSB to MSB. 

 

          Nevertheless, its use involves several difficulties. It is not possible to detect the sign of 

a redundant number without inspecting all the digits which requires a propagation from the 

MSB to the LSB. Hence, the decision criteria is chosen according to several most significant 

digits. Since, not all digits are examined there is the possibility that the sign is not 

determined. In such a case either the digit set {-1,0,1} can be chosen leading to a non-

constant Scale factor or an arbitrary rotation has to be performed. In the first case, the scale 

 iii



factor has to be computed in parallel to the CORDIC iterations to ensure the convergence. In 

order to solve the problems of the redundant arithmetic based CORDIC several methods have 

been proposed. All of them maintain the scale factor constant. They have been classified in 

the three groups. Group I, which are based on an estimation of the sign like Double Rotation 

CORDIC, Correcting Rotation CORDIC, House holder CORDIC. Group II, Differential 

CORDIC algorithm. Group III, which are based on the pre-computation of the directions of 

the micro-rotation.  

 

          The CORDIC algorithm is used for various applications like the Digital Chirp 

Generation, Fast Fourier Transform, Digital Filtering, etc. The main speed limiting operation 

in FFT is complex multiplication. Complex multiplication is one of the most time-critical and 

area-consuming operations in a FPGA implementation. The CORDIC in FFT architecture 

eliminates the need of complex multiplier and the need to store the Sine/Cosine factors in the 

twiddle factor ROM. 

 

         The CORDIC based FFT architectures are well suited for the FPGAs where no 

memories are available to store the Sine/Cosine   terms (like Actel family). To incorporate 

CORDIC a new butterfly is designed where required multiplication terms are given as input 

vector to the CORDIC block as discussed in the thesis. 

 

        This project work involves design, VHDL implementation and FPGA prototyping of 

Redundant arithmetic blocks, CORDIC processor, Predicting CORDIC Processor and its 

applications to Digital Chirp Generator and FFT. The project work has been carried out in 

several stages. It started with the design of the architecture and its bit-accurate 

implementation on MATLAB. The RTL design was carried out in VHDL. The designs were 

simulated in the Modelsim, synthesized using the Xilinx synthesis Tool (XST), and finally 

implemented using placing and routing Tool. Implemented design was downloaded on the 

Xilinx Vertex board along with Chipscope.  All the results from MATLAB simulation and 

logical synthesis have been discussed. 
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CHAPTER 1 
 

INTRODUCTION 
 

The high capability and performance that FPGAs have achieved in last few years 

allow them to accelerate DSP tasks. FPGA devices have been used for implementing Custom 

DSPs from the beginning of the past decade. The FPGA devices have beneficed from the 

improvements in VLSI deep sub-micron technology, leading to higher speed and capability as 

well as low power consumption. On the other hand digital signal processing (DSP) algorithms 

exhibit an increasing need for the efficient implementation of complex arithmetic operations. 

The computation of trigonometric functions, coordinate transformations or rotations of 

complex valued phasors is almost naturally involved with modern DSP algorithms. Popular 

application examples are algorithms used in digital communication technology and in 

adaptive signal processing. While in digital communications, the straightforward evaluation 

of the cited functions is important, numerous matrix based adaptive signal processing 

algorithms require the solution of systems of linear equations, QR factorization or the 

computation of eigen values, eigenvectors or singular values. All these tasks can be efficiently 

implemented using processing elements performing vector rotations. The Coordinate Rotation 

Digital Computer algorithm (CORDIC) offers the opportunity to calculate all the desired 

functions in a rather simple and elegant way. 

The Coordinate Rotational Digital Computer (CORDIC) algorithm is a well-known 

iterative technique to perform various basic arithmetic operations. The algorithm is very 

attractive for hardware implementation because it uses only elementary shift-and-add steps to 

perform vector rotation in a two-dimensional (2-D) plane. Hence, the CORDIC algorithm can 

be applied to many DSP applications where rotation-based arithmetic functions are heavily 

utilized, such as linear system solver, digital lattice filter, singular value problems and the fast 

Fourier transformation (FFT). However, the major disadvantage of the CORDIC algorithm is 

its slow computational speed. 

The Coordinate Rotational Digital Computer (CORDIC) was introduced in 1959 by 

Jack Volder, for the computation of trigonometric functions; multiplication, division and data 

type conversion, and later on generalized to hyperbolic functions by Walther. Two basic 

CORDIC modes are known leading to the computation of different functions, the rotation 

mode and the vectoring mode. For both modes the algorithm can be realized as an iterative 

sequence of additions/ subtractions and shift operations, which are rotations by a fixed 

rotation angle (sometimes called micro rotation) but with variable rotation direction. Due to 

the simplicity of the involved operations the CORDIC algorithm is very well suited for VLSI 

 



Redundant Number System based CORDIC   for FFT                                                                                           1.Introduction 
 

implementation. However, the CORDIC iteration is not a perfect rotation which would 

involve multiplications with sine and cosine. The rotated vector is also scaled making a scale 

factor correction necessary. The CORDIC algorithms generally produce one additional bit of 

accuracy for each iteration. 

  Several   CORDIC   processors   have been  designed  and  implemented  onto  

VLSI  chips. However, the   CORDIC   algorithm is relatively slow because each  

iteration requires  carry propagate  adders.   Recently,   Ercegovac  and  Lang have  

proposed  using  redundant  signed-digit  (SD) adders to replace the conventional binary 

adders in order  to reduce  the  inherent  carry  delay .   But, the redundant CORDIC 

destroys   the nice property of constant   scaling factor due to a different sign selection 

rule, and  hence  the  multiplication of  the  scaling  factor  requires   additional  

complicated hardware.  Several approaches have been proposed to overcome the 

problems. However, all these methods required either extra correcting CORDIC iterations 

or additional scaling iterations.  

An entirely new approach is based on parallelization of the original CORDIC 

algorithm by predicting all the rotation directions directly from the binary bits of the initial 

input angle. Unlike previous approaches that require complicated circuits or exponentially 

increased ROM, this algorithm provides a relatively simple prediction scheme through an 

efficient angle recording. Utilizing the predicted rotation directions to design an efficient 

multi operand carry-save addition structure also reduces the critical path delay. 

With use of above algorithm there is no need to perform the Z iterations thus proved to 

be efficient in terms of area and as well as speed. Thus one can use carry-free arithmetic 

to replace the conventional binary adder  with no further increase in area. 

This efficient Sine/Cosine generator is used for many applications like FFTs and DCG 

(Digital Chirp Generator). A DCG system consists of a phase accumulator, frequency 

accumulator and a sine/cosine generator, Simple modifications to the phase generation 

circuitry produces synthesized chirps useful in radar and electronic warfare systems and in 

implementation of continuous-phase modulators (e.g., GMSK). The details are discussed in 

the latter section. 

One can replace the complex multiplier operation by shift and add CORDIC 

algorithm. Thus ,above Sine/Cosine generator is used to implement the Fast Fourier 

Transform. Fast Fourier Transform (FFT) is one of the most utilized operations in Digital 

Signal Processing and Communications. The FFT and its inverse transform-IFFT are a key 

component in modern communication systems. Application Specific Integrated Circuit 

(ASIC) approaches have been used to achieve the high performance demands, which software 
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or general-purpose DSP implementations fail to deliver. Recently FPGAs has become a valid 

alternative as the technology has matured greatly.  Nowadays FPGAs play an important role 

in many areas due to their direct hardware solution performance as well as their inherent 

reprogram ability feature. Using FPGAs for FFT processing has now become feasible in real-

time applications. Development of the FFT in hardware is usually categorized into that of 

high throughput and that of low power.  
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CHAPTER 2 

LITERATURE REVIEW 
 

The basic design flow  of  the first module is : 

• The input binary number is first converted to redundant number.  

• The resultant RB numbers are added/subtracted using carry free adder/Subtractor to 

perform addition & subtraction. 

•  Finally the redundant number is converted back to binary number. 

Most of the literature that deals with redundant number system is referred form: 

 [1 ] “Generalized Sign Digit number system” a unifying frame work for redundant number 

representations  Behrooz  Parhami , IEEE Transaction on computers vol:39, No.1,Jan  1990. 

This paper provides enough background for   redundant numbers and discussed so called 

signed digit numbers with radix r≥3 with digit set {-α,           0,       α} where  ‘α ‘is an 

arbitrary  integer. Such a number system representation systems possess sufficient redundancy 

to allow for the annihilation of carry or borrow chains and hence result in fast propagation 

free addition and subtraction.  

 

The stuff for the carry-free addition referred from  : 

[ 2] Carry Free addition of recoded binary sign digit numbers 

 Behrooz Parhami, IEEE Transaction on computers vol:37, No.11,Nov 1988. 

and 

 [3] “High speed VLSI multiplication algorithm with a redundant binary addition 

tree”.Naofumi takagi, Hiroto yasuura, IEEE Transaction on computers vol:C34, No.9,Sep  

1985. 

Now for converting redundant number back to binary number another IEEE paper 

[4]“An efficient redundant Binary to Binary number converter 

Sung Ming Yen, Chi-Sung laih, IEEE journal of solid-state circuit vol: 27,No.1, Jan 1992. 

In this paper all the available technique for converting redundant number back to binary are 

discussed ,out of which the lookahead mode conversion algorithm is used because of its high 

speed conversion . 

For CORDIC implementation there are large numbers of papers available out of which few 

IEEE papers are referred as per our requirement. Some of them are 

[5]” The CORDIC Algorithm: New Results for Fast VLSI  Implementation” 

Jean Duprat,Jean Michel Muller,IEEE Transaction on computers vol:42, No.2,Feb 1993 
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[6]” Design of a unified arithmetic processor based on redundant constant factor CORDIC 

with merged scaling operation.” 

S.F.Hsiau,C.Y.Lau    ,IEE, proc,  comput ,digit Tech vol :147,No.4,July 2000. 

Few papers on FFT with CORDIC are referred one of them is  

[7]“FPGA realization of a CORDIC based FFT processor for biomedical signal processing.” 

IITKh paper. 

The stuff for the Predicting CORDIC algorithm is referred from the  

[8] A Memory Efficient and High- speed Sine/Cosine Generator based on Parallel CORDIC 

Rotations by Shen-Fu,Yu-Hen Hu, Tso-Bing Juang ,IEEE signal processing letters Vol.11 

Feb 2004 . 
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CHAPTER 3 

SYSTEM THEORY 
 

3.1 REDUNDANT NUMBER REPRESENTATION 
        A scheme using redundant number representation for fast multiplication was introduced 

in the late 1950’s by Aviziens.A unified description for redundant number systems was given 

by Parhami who defined Generalized Signed Digit (GSD) number systems. A GSD number 

system contains the digit set  {-α,-α+1,……….,β-1, β} with 0≤β,α and β+α+1>r  with r 

being the radix of the number system. Every suitable definition of α and β  leads to a different 

redundant number system. The value X of a W digit integer GSD number is given by: 

After N iterations, the accumulated rotation angle is   

                   W – 1 

X =   ∑   rk * xk  ,  xk = {-α, -α+1,…,β-1, β } 

                    k = 0                                                              (2.1) 
                         
An important subclass are number systems with α +β = r, which are called minimal 

redundant", since α + β = r-1 corresponds already to a conventional number system. The well-

known Carry-Save (CS) number system is defined by α  = 0; β = 2;  

r = 2. CS numbers are very attractive for VLSI implementation since the basic building block 

for arithmetic operations is a simple full adder  

With α= 1; β = 1; r = 2 the well-known Binary Signed Digit (BSD) number system results. 

BSD operations can be implemented using the same basic structures as for CS operations 

An important advantage of CS numbers is the very simple and fast implementation of the 

addition operation. 

 
     

3.2 REDUNDANT BINARY REPRESENTATION:  

Redundant Binary Representation:  
 The redundant binary representation utilized is one of the SD representations proposed 

by Avizienis . It has a fixed radix 2 and a digit set  {-1, 0, 1} where –1 denotes –1. An n-digit 

redundant binary integer y = [yn-1….y0]SD2 (yi ∈ {-1, 0, 1}) has the value ∑i=0
n-1yi x 2i. It is 

similar to an unsigned binary integer except that yi can be –1. 

 The redundant binary representation allows the existence of redundancy. There are 

several ways to represent an integer in the redundant binary representation. For example, 
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[0101]SD2, [011-1]SD2, [1-101]SD2, [1-11-1]SD2, and [10-1-1]SD2 all represent “5.” (However, 

“0” is uniquely represented). Owing to the redundancy. We can perform carry-propagation 

free addition, and therefore, parallel addition of two redundant binary numbers can be 

performed in a constant time independent of the word length of operands, as will be 

mentioned in the next subsection. 

 The negation of a redundant binary number is directly derived by changing the signs 

of all nonzero digits in the number. Since this computation can be performed in parallel for all 

digits, it requires a constant computation time independent of the word length of the number. 

 
3.3 Carry-Propagation-Free Addition:  
  Carry-propagation-free addition is performed in two steps. In the first step, we 

determine the intermediate carry ci (∈{-1, 0, 1} and the intermediate sum digit si(∈{-1, 0, 1}) 

at each position, satisfying the equation xi + yi = 2ci + si, where xi and yi are the augend and 

addend digits, respectively. In the second step, we obtain the sum digit zI(∈ {-1, 0, 1}) at each 

position by adding the intermediate sum digit si and the intermediate carry ci-1 from the next-

lower-order position, without generating a carry. 

 In the first step, at each position, we determine ci and si so that both si and ci-1 are not 

1’s, nor are they –1’s. When one of xi and yi is 1 and the other is 0, we determine ci and si as 

follows (note that both [01]SD2 and [1-1]SD2
 represent “1”).  

1) If there is a possibility of a “1”as carry (a positive carry) from the next-lower-order 

position, we let [ci, si] be 

      [1, -1]. 

2) If there is a possibility of a “–1” as carry (a negative 

            carry) from the next-lower-order position, we let [ci, si] 

            be [0, 1]. 

3) If there is no possibility of a carry from the next-lower- 

      order position, we may let [ci, si] be either [1, -1] or 

       [0, 1]. 

 Similarly, when one of xi and yi is”–1” and the other is”0”, we let [ci, si] be [0, -1] if there is a 

possibility of a 1-carry from the next-lower-order position, and let it be [-1, 1] if there is a 

possibility of a” –1” as carry. We can know the possibility of a carry from the next-lower-

order position by examining the augend and the addend digits xi-1 and yi-1 at the next-lower-

order position. When both xi-1 and  yi-1 are 1’s or one of them is “1” and the other is “0”, there 

is a possibility of a “1”as carry. When both of them are –1’s or one of them is “–1” and the 
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other is “0”, there is a possibility of a “–1” as carry. In the other cases, there is no possibility 

of a carry. Therefore, ci and si can be determined by examining xi, yi, xi-1 and yi-1. 

 When we determine ci and si as stated in the above, no carry is generated in the 

addition of si and ci-1 in the second step. Thus, each sum digit zi can be computed from xi, yi,  

Type Augend 
Digit 
(xi) 

Addend 
Digit 
(yi) 

Digits at the next- 
lower-order position 

(xi-1, yi-1) 

Intermediate 
carry (ci) 

Intermediate 
Sum digit 

(si) 
1  1 1 ___________ 1  0 

Both are nonnegative. 1 -1 2  1 
 0 

0 
1 Otherwise.  0   1 

   3  0  0 ___________

   4  1 
-1 

-1 
 1 

___________
 

 0 
 

  0 

Both are nonnegative.  0  -1    5  0 

TABLE 2.1 

-1 
-1 
 0 Otherwise. -1   1 

   6 -1 -1 ___________ -1   0 

Computation rule for the first step in Carry-propagation free  
Addition 

 

xi-1, yi-2, and yi-2. Namely, zi depends on only these six digits. This fact is the key to the high-

speed computation. 

 

 Table-2.1 shows a computation rule in the first step. When one of xi and yi is 1 and the 

other is 0, we let [ci, si] be [1, -1] or [11] accordingly, as both xi-1 and yi-1 are nonnegative or 

not. When one of xi and yi is –1 and the other is 0, we let it be [0,-1] or [-1, 1] accordingly, as 

both xi-1 and yi-1 are non-negative or not. We assume that x-1 and y-1, i.e., the augend and 

addend digits at the next-lower-order position of the least significant position are both 0’s. 

Fig. 2.2.1 shows an example of carry-propagation-free addition in accordance with the rule. 

(Take notice of the computation at the second and the third least significant positions). 

 

 Thus, in the redundant binary number system, carry propagation can be eliminated 

from addition, and therefore, parallel addition of two numbers by a combinational circuit is 

performed in a constant time independent of the word length of operands. Namely, the depth 

of an n-digit redundant binary adder is a constant independent of n. The gate count of it is  

proportional to n. 
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 Augend [1   0  -1   0  -1    0    0    -1]SD2(87)  
                                 
 Addend [1  -1   1   0    0   1    1    -1 ]SD2 (101)                                        Step 1      ____________________________________________________           
 Intermediate sum    0   1   0   0   1    1    1     0     Si 
  

Intermediate carry      + 1  -1   0   0   0   1    0   -1           Ci                                       Step 2     ____________________________________________________ 

Sum [1  -1   1   0   0   0   -1    0    0 ]SD2     (188) 
 
 

Fig 2.2. 1 Example of carry-propagation-free addition. 
 

The addition method discussed here in an example. There are various other carry-

propagation-free addition methods in the redundant binary number system. 

 

3.4  REDUNDANT TO BINARY CONVERSION (RBC) 
 
 
A scheme using redundant number representation for fast multiplication was introduced in the 

late 1950’s by Aviziens.A computational algorithm using redundant binary number(RB) with 

digit set (-1,0,1) and Takagi proposed its application to multiplier & dividers. The RB adders 

are not popular earlier because its space complexity is twice to that of conventional adder. 

Recently this drawback is over come by vandemeulebroecke . 

 

 The redundant binary number(RB) representation properties: 

1) Its carry propagation free addition. 

2) It does not use 2’s complement method to handle the negative  

number .  

3) Require additional converter to convert the RB back to binary number.  

 

Redundant binary number to binary number conversion: 

 
Conversion of  n digit Redundant binary number to  2’s complement binary number is 

more complex. 

There  are three different approaches  to perform this operation: 

1) Conventional adder method. 

2) Serial mode converter. 

3) Look ahead mode converter.  
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Conventional adder method:  

The RB  to binary converter can be implemented by a binary adder serially as shown in 

the figure.   In RB representation we use two binary bits(S,D) to represent an RBG digit 

X.In order to simplify the conversion circuit design , the representation of one digit is 

{(0,0),(0,1),(1,1)}={0,-1,1}.In order to guarantee correct conversion , an n digit RB 

number must be converted to (n+1)-bit 2’s complement binary representation. Equation 

used is 

                                               

Y  =   Xsd+  - Xsd-                              (2.3.1) 

Where  Xsd+ and Xsd-  derived from input RB number Xsd. 

 
Fig.2.2.1 The conventional RB to binary convereter. 

 

 

2   Serial mode converters: 

     In this type of converter the conversion process is achieved by selecting a new variable 

Ci  in the ith digit position. This variable is defined as follows. 

a) Ci =1 means that, for the current RB digit position I, there is at least one –1 right to 

this position and no +1 b/w the –1s and the current position. 

b) Ci =0 otherwise. 

c) C0 =0. 

 

The serial mode converter is shown in the figure   .For each stage I, given the redundant 

digit (Si, Di) and the input variable Ci , we obtain the binary output Bi and the output 

variable Ci+1.The conversion rule is shown in the table 
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Table( 2.3) Carry selection rule 

Xi Si Di  Ci BBi  Ci+1

0 0 0 1 1 1 

0 0 0 0 0 0 

1 0 1 1 0 0 

1 0 1 0 1 0 

-1 1 1 1 0 1 

-1 1 1 0 1 1 

 

From the conversion rules shown in the table we have the Boolean equations for Bi and 

Ci+1: 

 

 

Ci+1  = Si  +   PiCi                                                            (2.3.2) 

 

BBi   = Di   xor   Ci                                                           (2.3.3) 

 

 

Where Pi=not Di., C0=0. 

 

The logic diagram in each stage I using only simple NAND gates is shown in the 

figure(2.2.2 ).Compare to conventional adder it takes less number of gates. 

 

 
Fig 2.2.2 Logic diagram of new converter Serial mode. 
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Lookahead mode converter: 

 

In serial mode converter the signal convert Ci is propagated from least significant position 

to most significant position digit by digit. To speed up the operation the concept of carry 

lookahead adder is used. The equations are: 

 

C1  = S0  +   P0C0                                                              (2.3.4) 

 

 

C2  =  S1  +   P1S0     +  P1 P0C0                                          (2.3.5) 

 

 

C3 =  S2  +   P2S1     +  P1 P2S0 + P2P1 P0C0                        (2.3.6) 

 

In general  

 

C4i+4 =  Si ‘ +   Pi’C4i     where I= 0,1,2,3,4,5………         (2.3.7) 

 

 

 

As shown in the figure the look ahead mode converter requires only one NAND gate 

delay to generate the signals S and P. This method require less chip area and it  also provide 

very fast conversion hence well suited for the application. 
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Fig.2.2.3 The  logic diagram of lookahead mode converter 

 

 

 

 

3.5 CORDIC THEORY 
The basic concepts of the CORDIC computation is to decompose the desired rotation angle 

into the weighted sum of a set of predefined elementary rotation angles such that the rotation 

through each of them can be accomplished with simple shift-and-add operations. 

 All of the trigonometric functions can be computed of derived from functions using 

vector rotations. Vector rotation can also be used for polar conversions, vector magnitude, and 

as a building block in certain transforms such as the DFT and DCT. The CORDIC algorithm 

provides an iterative method of performing vector rotation by arbitrary angles using only shift 

and adds. The algorithm is derived from the general rotation transform: 

X’ = x cos(∅) – y sin(∅)                                                   (2.3.1) 

Y’ = y cos(∅) + x sin (∅)          (2.3.2) 

Which rotates a vector in Cartesian plane by the angle θ.. These can be rearranged so 

that: 

X’ = cos(∅) [x – y tan(∅)] 

Y’ = cos(∅) [y – x tan(∅)] 

If the rotation angles are restricted so that tan(∅) = ±2-i, the multiplication by the tangent term 

is reduced to simple shift operation. If the decision at each iteration, i, is which direction to 

rotate rather than whether or not to rotate, then the cos(δI)    term becomes a constant 

(because cos(δI)  = cos(-δi)). The iterative rotation can be expressed as: 
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 xi+1 = Ki [xi - yi . di . 2-i]                                (2.3.3)  

 Yi+1 = Ki [yi + xi . di . 2-i]                                    (2.3.4) 
 

Where, 

Ki = cos(tan-1(2-i)) = 1/√1 + 2-i 

   di = ±1 
 Removing the scale constant from the iterative equation yields a shift-add algorithm 

for vector rotation. The product of the K’s can be applied elsewhere in the system or treated 

as part of a system processing gain. That product approaches 0.6073 

as the number of iterations goes to infinity. Therefore, the rotation algorithm has a gain, A of 

approximately 1.647. The exact gain depends on the number of iteration, and obeys the 

relation 

   An =  ∏√1 + 2-I                                        (2.3.5) 
                  n 

 
The angles of a composite rotation are uniquely defined by the sequence of the 

direction of the elementary rotations. That sequence of the directions of the elementary 

rotations. That sequence can be represented by a decision vector. The set of all possible 

decision vectors is an angular measurement system based on binary arctangents. Conversions 

between this angular system and any other can be accomplished using a look-up. A better 

conversion method uses an additional adder-subtractor that accumulates the elementary 

rotation angles at each iteration. The angle accumulator adds a third difference equation to the 

CORDIC algorithm: 

 Zi+1 = Zi – di . tan-1(2-i)                                         (2.3.6) 
The CORDIC rotator is normally operated in two modes. 

1. ROTATION MODE 

2. VECTOR MODE 

In the rotation mode, the angle accumulator is initialized with the desired rotation 

angle. The rotation decision at each iteration is made to diminish the magnitude of the 

residual angle in the angle accumulator. The decision at each iteration is therefore based on 

the sign of the residual angle after each step. Naturally, if the input angle is already expressed 

in the binary arctangent base, the angle accumulator may be eliminated. For rotation mode, 

the CORDIC equations are: 

  xi+1 = xi – yi . di .2-i

  yi+1 = yi + xi . di . 2-i

  Zi+1 = zi – di . tan-1(2-i) 
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Where :                   (2.3.7) 

 di = -1 if zi < 0, +1 otherwise.  

 
 Which provides the following result : 

   xn = An [x0 cosz0 – y0 sinz0] 

   yn = An [y0 sinz0 + x0 cosz0] 

   zn = 0 

   An =   ∏ √1 + 2-i

    n 
 
  

In the vectoring mode, the CORDIC rotator rotates the input vector through whatever 

angle is necessary to align the result with the x-axis. The result of the vectoring operation is a 

rotation angle and the scaled magnitude of the original vector (the x component of the result). 

The vectoring function works by seeking to minimize the y component of the residual vector 

at each rotation. The sign of the residual y component is used to determine which direction to 

rotate next.  

 

If the angle accumulator is initialized with zero, it will contain the traversed angle at 

the end of the iterations. In the vectoring mode, the CORDIC equations are: 

 

 

  xi+1 = xi – yi . di .2-i

  yi+1 = yi + xi . di . 2-i

  Zi+1 = zi – di . tan-1(2-i) 

Where                   (2.3.8) 

 

   di = +1 if yi < 0, -1 otherwise.   
Then : 

 

   xn = An √x0
2 + y0

2

   yn = 0 

   zn = z0 + di . tan-1(y0 / x0) 

   An =   ∏ √1 + 2-i

    n 
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 The CORDIC rotation and vectoring algorithms as stated are limited to rotation angles 

between – pi / 2 and + pi / 2. 

 

 This limitation is due to the use of 2° for the tangent in first iteration. For composite 

rotation angles larger than pi /2, an additional rotation is required. This gives the correction 

iteration. 
 

 

 
Figure ( 2.3.1): ROTATION IN LINEAR COORDINATE SYSTEM 

 

The CORDIC rotator described is usable to compute several trigonometric functions directly 

and others indirectly. Judicious choice of initial values and modes permits direct computation 

of sine, cosine, arctangent, vector magnitude and transformations between polar and Cartesian 

coordinates. 

 

CALCULATE THE SINE AND COSINE VALUE USING CORDIC ALGORITHM 

 

 CORDIC (COordinate Rotation Digital Calculation) finds the sine or cosine of an 

angle iteratively, using only simple math operations such as add, subtract, compare, shift, and 

table lookup. 

 17



Redundant Number System based CORDIC   for FFT                                                                                       3.System Theory 
 

VECTOR ROTATIONS  

 
 

Fig(2.3.2)Vector rotation 

 

 
Fig (2.3.3 ): Rotating a vector using micro rotations 

The diagonal blue line is angle ∅1 above the horizontal. The diagonal red line is the blue line 

rotated counter-clockwise by angle ∅. The new X and Y values are related to the old X and Y 

values as follows : 
 X2 = X1 * cos(∅) – y1 * sin(∅) 

 Y2 = X1 * sin(∅) + y1 * cos(∅)                                          (2.3.9) 
 

 

 

ITERATIVE ROTATION: 

 For CORDIC, the final angle ∅2 is the angle of interest; the angle whose sine or 

cosine we want to calculate. The initial angle ∅1 is set to a convenient value such as 0. Rather 

than rotating from ∅1 to ∅2 in one fell swoop, we move in steps. With careful choice of step 

values, the only math used is shifts and adds. The equations above can be re-written as: 
X2 = cos(∅) * [X1 – y1 * tan(∅)] 

Y2 = cos(∅) * [X1 * tan(∅) + Y1] 
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Values for ∅ are chosen such that tan (∅) is a fractional power of 2 :  

tan(∅21) = 1/1           ∅21 = 45°                cos(∅21) = 0.707107  

tan(∅32) = ½       ∅32 = 26.5650°            cos(∅32) = 0.894427 

tan(∅43) = ¼       ∅43 = 14.0362° cos(∅43) = 0.970142 

tan(∅54) = 1/8          ∅54 = 7.12502° cos(∅54) = 0.992278 

tan(∅65) = 1/16        ∅65 = 3.57633°  cos(∅65) = 0.998053 

tan(∅76) = 1/32         ∅76 = 1.78991°  cos(∅76) = 0.999512 

tan(∅87) = 1/64         ∅87 = 0.895174°  cos(∅87) = 0.999878 

tan(∅98) = 1/128      ∅98 = 0.447614° cos(∅98) = 0.999969 

 This lets us replace the multiplication by tan(∅) with a simple, fast right-shift 

operation. But what about the cos(∅) factors ? 

- First iteration (from X1, Y1 to X2, Y2) : rotate by  

                  angle∅21 

            X2 = cos(∅21) * [X1 – Y1 * tan(∅21)] 

 Y2 = cos(∅21) x [X1 * tan(∅21) + Y1] 

- Second iteration (from X2, Y2 to X3, Y3) : rotate by  

- X3  = cos(∅32) * [X2 – Y2 * tan(∅32)] 

Y3 =  cos(∅32) * [X2 *  tan(∅32) + Y2]. 

                      angle ∅32. 

- Plug in the values of X2 and Y2 from the first iteration : 

 X3 = cos(∅32) * {cos(∅21) * [X1 – Y1 * tan(∅21)] 

- cos(∅21) * [X1 * tan(∅21) + y1] * tan(∅32)} 

= cos(∅32) * cos(∅21) * {[X1 – Y1 * tan(∅21)] 

            [X1 * tan(∅21) + Y1]  * tan(∅32)} 

- The cosine factors fall out, to form an iterative product, i.e.  

 Cos(∅21) * cos(∅32) * cos(∅43) … * cos(∅nn) 

 

Expressing the ∅values in terms of inverse tangents gives the equivalent product series :- 

     ∞   2N

     ∏ -------------------- = 0.607253 
   N=0      √1 + 22N

                                                                       (2.3.10) 
 The value to which it converges, 0.607253, is the aggregate constant. We can ignore 

the cos(∅) terms and simply multiply by the aggregate constant before or after the iteration. 
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CORDIC EXTENSION:  

A) Polar to Rectangular Transformation : 

 A logical extension to the sine and cosine computer is a polar to Cartesian coordinate 

transformer. The transformation from polar to Cartesian space is defined by : 

 x = r cosθ 

 y = r sinθ                                                                (2.3.11) 

 As pointed out above, the multiplication by the magnitude comes for free using the 

CORDIC rotator. The transformation is accomplished by selecting the rotation mode with x0 

= polar magnitude, z0 = polar phase, and y0 = 0. The vector result represents the polar input 

transformed to Cartesian space. The transform has a gain equal to the rotator gain, which 

needs to be accounted for somewhere in the system. If the gain is unacceptable, the polar 

magnitude may be multiplied by the reciprocal of the rotator gain before it is presented to the 

CORDIC rotator. 

 

B) Arctangent : 

 

 The arctangent, θ=Atan(y/x), is directly computed using the vectoring mode CORDIC 

rotator if the angle accumulator is initialized with zero. The argument must be provided as a 

ratio expressed as a vector (x ,y). Presenting the argument as a ratio has the advantage of 

being able to represent infinity (by setting x=0). Since the arctangent result is taken from the 

angle accumulator, the CORDIC rotator growth does not affect the result. 

   Zn = Zn + tan-1 (y0/x0). 

 

 
C) Arcsine and Arccosine : 

 
 The Arcsine can be computed by starting with a unit vector on the positive x axis, then 

rotating it so that its y component is equal to the input argument. The arcsine is then the angle 

subtended to cause the y component of the rotated vector to match the argument. The decision 

function in this case is the result of a comparison between the input value and the y 

component of the rotated vector at each iteration : 

   xi+1
 = xi – yi. di . 2-i

   yi+1 = yi + xi . di . 2-i 

   zi+1 = zi – di . tan-1(2-i). 

where, 
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   di = +1 if yi < c, -1 otherwise, and 

   c = input argument. 

 Rotation produces the following result : 

   xn = √(An . xo)2 – c2

   yn = c 

   zn = z0 + arcsin (c/An.x0) 

   An =    ∏  √1 + 2-2i                                   (2.3.12) 
    n 
 
 The arcsine function as stated above returns correct angles for inputs –1 < c/Anx0 < 1, 

although the accuracy suffers as the input approaches ±1 (the error increases rapidly for inputs 

larger than about 0.98). This loss of accuracy is due to the gain of the rotator. For angles near 

the y axis, the rotator gain causes the rotated vector to be shorter than the reference (input), so 

the decisions are made improperly. The gain problems can be corrected using a “double 

iteration algorithm” at the cost of an increase in complexity.  

 The Arccosine computation is similar, except the difference between the x component 

and the input is used as the decision function. Without modification, the arccosine algorithm 

works only for inputs less than 1/An, making the double iteration algorithm a necessity. The 

Arccosine could also be computed by using the arcsine function and subtracting π/2 from the 

result, followed by an angular reduction if the result is in the fourth quadrant. 

 

D) Extension to Hyperbolic Functions : 

 The close relationship between the trigonometric and hyperbolic functions suggests 

the same architecture can be used to compute the hyperbolic functions. While, there is early 

mention of using the CORDIC structure for hyperbolic coordinate transforms, the first 

description of the algorithm is that by Walther. The CORDIC equations for hyperbolic 

rotations are derived using the same manipulations as those used to derive the rotation in the 

circular coordinate system. For rotation mode these are : 

   xi+1
 = xi + yi. di . 2-i

   yi+1 = yi + xi . di . 2-i 

   zi+1 = zi – di . tanh-1(2-i). 

where, 

   di = -1 if zi < 0, +1 otherwise. 

Then :  

   xn = An[x0 cosh z0 + y0 sinh z0]   

   yn = An[y0 cosh z0 + x0 sinh z0] 

   zn = 0 
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   An =  ∏ √1-2-2i = 0.80                   (2.3.13) 
                n 
In vectoring mode (di = +1 if yi < 0, -1 otherwise) the rotation  

 

 

produces : 

   xn = An √x0
2 – y0

2  

   yn = 0 

   zn = z0 + tanh-1[y0 / x0] 

   An =  ∏ √1-2-2i   
                n  
 

The elemental rotations in the hyperbolic coordinate system do not coverage. However, it can 

be shown that convergence is achieved if certain iterations (I = 4, 13, 40, …, k, 3k + 1, …) are 

repeated. 

 

 

 
Figure (2.3.4 ): ROTATION IN HYPERBOLIC COORDINATE SYSTEM 

 

 

 The hyperbolic equivalents of all the functions discussed for the circular coordinate 

system can be computed in a similar fashion. Additionally, as Walther points out, the 

following functions can be derived from the CORDIC functions : 

 

tanα = sinα/cosα 

   tanhα = sinhα/coshα 

   expα = sinhα + coshα 
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 lnα = 2tanh-1 [y/x] where x = α + 1 and y = α - 1 

 (α)½ = (x2 – y2)½ where x = α+1/4 and y = α-1/4 

 

 

 It is worth noting the similarities between the CORDIC equations for circular, linear, 

and hyperbolic systems. The selection of coordinate system can be made by introducing a 

mode variable that takes on values 1, 0, or –1 for circular, linear and hyperbolic system 

respectively. The unified CORDIC iteration equations are then : 

 

   xi+1 = xi – m.yi. di. 2-I

   yi+1
 = yi + xi . di . 2-I

   zi+1 = zi – di . ei                            (2.3.14) 

 

 

 Where ei is the  elementary angle of rotation for iteration  I in the selected coordinate 

system. Specifically, ei = tan-1(2-1) for m=1, ei = 2-I for m=0, and ei = tanh-1(2-i) for m = -1. 

This unification, due to Walther, permits the design of a general purpose CORDIC processor. 

 

3.6  CORDIC iterations with redundant number system: 
     In order to accelerate the CORDIC iterations , one can use redundant number  systems, 

which enable additions without carry propagation .For redundant implementation SD number 

with digit set{-1,0,1} is used. With redundant number systems the main problem is the 

evaluation of Di.. Assume that  we are in rotation mode and the numbers are represented with 

m digits. In classical CORDIC, Di is equal to the sign of Zi .In sign digit representation this 

sign is the sign of most significant digit. This will require the examination of some number of 

digits which may be close to m. Thus choice Di=sign(Zi) is not satisfactory  because the 

advantage of redundant number representation would be lost. An alternative to this is to 

accept Di=0. 

 

     One examine the only p most significant digits of Zi.The number Zi * constituted by the 

these p digits is close to Zi.The basic idea is  

 

• If Zi *≠0 then Zi * and Zi  have the same sign , thus the choice Di =sign(Zi *) is 

convenient. 
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• If Zi *=0, then mod(Zi ) is very small .therefore one can take Di =0. 

 

 

     The main drawback of this method is that the scale factor   An and An’ are no longer 

constants. Since An is given by               

 

 An =  ∏1 + 2-i 

 

It is a constant only if the Di’s are all equal to –1 or  +1 but it is no longer constant if  

Di =0. 

There are various approaches to solve the above problem: 

 

1) Double rotation method. 

 

2) Correcting rotation method. 

 

3) Branching CORDIC  . 

 

1) Double rotation method: 

The basic principle of this method is that at a step I one performs ,instead of a c-similarity of 

angle Di arctan2-i. 

If   Di ±1 , two c-similarities of angle  Di arctan2-i-1. 

If   Di = 0, a c-similarity of angle, + arctan2-i-1then a c-similarity of angle  - arctan2-i-1

With such a method , the scale factor is constant. However it leads to more complicated 

iterations. 

 

2) Correcting rotation method. 

The basic principle of this method is following: 

One examines the number Zi * constituted by the  p most significant digits of Zi .then one 

takes , in rotation mode , Di = sing (Zi *) if Zi *≠0, 

  Else +1 o/w. 

Sometimes an error occurs , but it is possible to correct it byrepetition of iterations p,2p,3p----

---- times. 

3) Branching CORDIC  : 

In this method a sequence defined by  
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Zi+1 = Zi – Di . tan-1(2-i) 

Is builded.At each step , p digits of Zi are examined, in order to decide the value of Di, in 

general p=3.Then 

If the examination of these p digits is sufficient to be sure that Zi >0 , take Di = + 1. 

If the examination of these p digits is sufficient to be sure that Zi <0 , take Di = -1. 

If the examination of these p digits is not sufficient to know the sign of  Zi  , then two 

computations in parallel s done : 

a) former assuming Zi >0 ( and therefore with Di = + 1). 

b) Latter assuming Zi <0 ( with Di = -1). 

This process is called Barnching.Sign selection is shown in the table ( 2.4 ) 

 
 

Fig (2.4.1 1) Diagram of branching CORDIC. 

 

 
Fig (2.4.12 ) Architecture of a branching CORDIC processor 
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Fig (2.4.21) shows the global architecture for Branching CORDIC processor that implement 

the branching algorithm. 

 

Table 2.4 For sign selection by examine 3 digit positions 

Zi-2 Zi-1 Zi Sign Zi-2, Zi-1, Zi mod 8

-1 -1 -1 + 1 

-1 -1 0 + 2 

-1 -1 1 + 3 

-1 0 -1 + 3 

-1 0 0  4 impossible 

-1 0 1 - 5 

-1 1 -1 - 5 

-1 1 0 - 6 

-1 1 1 - 7 

0 -1 -1 - 5 

0 -1 0 - 6 

0 -1 1 - 7 

0 0 -1 - 7 

0 0 0 ?? 0 branching 

0 0 1 + 1 

0 1 -1 + 1 

0 1 0 + 2 

0 1 1 + 3 

1 -1 -1 + 1 

1 -1 0 + 2 

1 -1 1 + 3 

1 0 -1 + 3 

1 0 0  4 impossible 

1 0 1 - 5 

1 1 -1 - 5 

1 1 0 - 6 

1 1 1 - 7 
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This method is a very fast version of the CORDIC algorithm, which makes it possible to 

perform constant time elementary iteration independent of the length of the operands, with 

constant scale factor. 

 

 The main drawback of this method is the necessity of performing two conventional CORDIC 

iterations in parallel, which consumes more silicon area than classical method, but on other 

hand, provides fast and convenient implementation with small delay. 

 

3.6.1 CORDIC using Redundant Number Systems 
 

In conventional number systems, every addition or subtraction involves a carry 

propagation. Independent of the adder architecture the delay of the resulting carry ripple path 

is always a function of the wordlength. Redundant number systems offer the opportunity to 

implement carry-free or limited carry propagation addition and subtraction with a small delay 

independent of the used wordlength. Therefore they are very attractive for VLSI 

implementation. Redundant number systems have been in use for a long time e.g. in advanced 

parallel multiplier architectures (Booth, Carry{Save array and Wallace tree multipliers ). 

However, redundant number systems offer implementation advantages for many applications 

containing cascaded arithmetic computations. Recent applications for dedicated VLSI 

architectures employing redundant number systems include finite impulse response filter 

(FIR) architectures, cryptography and the CORDIC algorithm. Since the CORDIC algorithm 

consists of a sequence of additions/subtractions the use of redundant number systems seems to 

be highly attractive. The main obstacle is given by the sign directed nature of the CORDIC 

algorithm. As will be shown below, the calculation of the sign of a redundant number is quite 

complicated in absolute contrast to conventional number systems where only the most 

significant bit has to be inspected. Nevertheless, several approaches were derived recently for 

the CORDIC algorithm. A brief overview of the basic ideas is given. 

 

3.6.2 CORDIC Architectures 

 

In this section several CORDIC architectures are presented. We start with the dependence 

graph for the CORDIC which shows the operational flow in the algorithm. Note that we 

restrict ourselves to the conventional CORDIC iteration scheme. The dependence graph for 
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extended CORDIC iterations can be easily derived based on the results. The nodes in the 

dependence graph represent operations  and the arcs represent the flow of intermediate 

variables. Note that the dependence graph does not include any timing information, it is just a 

graphical representation of the algorithmic flow. The dependence graph is transformed into a 

signal flow graph by introducing a suitable projection and a time axis. The timed signal flow 

graph represents a register{transfer level (RTL) architecture. Recursive and pipelined 

architectures will be derived from the CORDIC dependence graph in the following. The 

dependence graph for a merged implementation of rotation mode and vectoring mode is 

shown in Fig. 3.1. The only difference for the two CORDIC modes is the way the control 

flags are generated for steering the adders/subtractors. The signs of all three intermediate 

variables are fed into a control unit which generates the control flags for the steered 

adders/subtractors given the used coordinate system m and a flag indicating which mode is to 

be applied. 

 

 

 

 

 
 

Figure 2.4.1 CORDIC dependence graph for rotation mode and vectoring mode. 

 

 

     In a one to one projection of the dependence graph every node is implemented by a 

dedicated unit in the resulting signal flow graph. In Fig.  2.4.2, the signal flow graph for this 

projection is shown together with the timing for the cascaded additions/subtractions (the fixed 

shifts are assumed to be hard wired, hence they do not represent any propagation delay). 

Besides having a purely combinatorial implementation, pipeline registers can be introduced 

between successive stages as indicated in Fig. (2.4.2 ). 

 

     In the following we characterize three different CORDIC architectures by their clock 

period TClock, throughput in rotations per second and latency in clock cycles. The delay for 
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calculating the rotation direction Di is neglected due to the simplicity of this operation, as well 

as flip flop setup and hold times. As shown in Fig. (2.4.2 ) every addition/subtraction involves 

a carry propagation from least significant bit (LSB) to most significant bit (MSB) if 

conventional number systems are used. The length of this ripple path is a function of the 

wordlength W, e.g. TAdd ~ W holds for a Carry{Ripple addition. The sign of the calculated 

sum or difference is known only after computation of the MSB. Therefore, the clock period 

for the unfolded architecture without pipelining is given by n * TAdd as shown in Fig. (2.4.2 ).  

 

The throughput is equal to 1 /n*Tadd rotations/s. The pipelined version has a latency of n clock 

cycles and a clock period TClock = Tadd. The throughput is 1/ Tadd rotations/s. It is obvious that 

the dependence graph in Fig. 3.1 can alternatively be projected in horizontal direction onto a 

recursive signal flow graph. Here, the successive operations are implemented sequentially on 

a recursive shared processing 

element as shown in Fig. 2.4.3. 

 

 
 

Figure 2.4.2 Unfolded (pipelined) CORDIC signal Flow graph. 

 

     Note that due to the necessity to implement a number of different shifts according to the 

chosen shift sequence, variable shifters (i.e. so called barrel shifters) have to be used in the 

recursive processing element.. The propagation delay associated with the variable shifters is 

comparable to the adders, hence the clock period is given by 

TClock = TAdd + TShift. 

 The total latency for n recursive iterations is given by n clock cycles and the throughput is 

given by 1/ n*(TAdd+TShift) since new input data can be processed only every n clock cycles. 
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Figure 2.4.3  Folded (recursive) CORDIC signal flow graph. 

 

The properties of the three architectures are summarized in Table 2.4.1. 

 

 

 

 

 

 

Table 2.4.1 Architectural properties for three CORDIC architectures. 

Architecture Clock peroid Throughput 

Rotations/s 

Latency Area 

Unfolded N* Tadd 1/ n*Tadd l 3nadd,lreg 

Unfolded 

pipelined 

Tadd 1/ Tadd n 3nadd,3reg 

Folded 

recursive 

Tadd +Tshift 1/n(Tadd+ Tshift ) n 3add,3+nregs 

2shifters 

 

 

Pipelined CORDIC architectures 

In contrast to a universal CORDIC processing element the dominating motivation for 

a pipelined architecture is a high throughput constraint. Additionally, it is advantageous if 

relatively long streams of data have to be processed in the same manner since it takes a 

number of clock cycles to fill the pipeline and also to push the pipeline if e.g. the control flow 

changes (a different function is to be calculated). Although pipeline registers are usually 
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inserted in between the single CORDIC iterations as shown in Fig. 2.9 they can principally be 

placed everywhere since the unfolded algorithm is purely feed forward. A formalism to 

introduce pipelining is given by the well known cut{set retiming method  The main advantage 

of pipelined CORDIC architectures compared to recursive  implementations is the possibility 

to implement hard{wired shifts rather than area and time consuming barrel shifters. However, 

the shifts can be hard wired only for a single fixed shift sequence. Nevertheless, a small 

number of different shifts can be implemented using multiplexers which are still much faster 

and less area consuming than barrel shifters as necessary for the folded recursive architecture. 

A similar consideration holds for the rotation angles. If only a single shift sequence is 

implemented the angles can be hard wired into the adders/subtractors. A small number of 

alternative rotation angles per stage can be implemented using a small combinatorial logic 

steering the selection of a particular rotation angle. ROMs or register  files as necessary for 

the recursive CORDIC architecture are not necessary. 

1.1) CORDIC Architectures for Vector Rotation  

     It was already noted that the CORDIC implementation of multiplication and division (m = 

0) is not competitive. We further restrict consideration here to the circular mode m = 1since 

much more applications exist than for the hyperbolic mode (m = - 1). 

Traditionally, vector rotations are realized as shown by the dependence graph given in Fig. 

2.4.5. The sine and cosine values are generated by some table-lookup method (or another 

function evaluation approach) and the multiplications and additions are implemented using 

the corresponding arithmetic units as shown in Fig.2.4.5. Below, we consider high throughput 

applications with one rotation per clock cycle, and low throughput applications, where several 

clock cycles are available per rotation. High throughput applications: For high throughput 

applications, a one to one mapping of the dependence graph in Fig. 2.4.5 to a possibly 

pipelined signal flow graph is used. While only requiring a few multiplications and additions, 

the main drawback of this approach is the necessity to provide the sine and cosine values. A 

table-lookup may be implemented using ROMs or combinatorial logic. Since one ROM 

access is necessary per rotation, the throughput is limited by the access time of the ROMs. 

The throughput can not be increased beyond that point by pipelining.If even higher 

throughputs are needed, the ROMs have e.g. to be doubled and accessed alternatingly every 

other clock cycle. If on the other hand combinatorial logic is used for calculation of the sine 

and cosine values, pipelining is possible in principle. However, the cost for the pipelining can 

be very high due to the low regularity of the combinatorial logic which typically leads to a 

very high pipeline register count. 
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Figure 2.4.5 Dependence graph for the classical vector rotation. 

      

Additionally, the effort for a CORDIC pipeline grows only linearly with the wordlength W 

and the number of stages n, hence about quadratically with the wordlength if  n = W + 1 is 

used. In contrast the effort to implement the sine and cosine tables as necessary for the 

classical method grows exponentially with the required angle resolution or wordlength. Hence 

there is  

a distinct advantage in terms of throughput and implementation complexity for  the CORDIC 

at least for relatively large wordlengths. Due to the n pipelining stages in the CORDIC the 

classical solution can be advantageous in terms of latency. Low throughput applications:: A 

single resource shared multiplier and adder is sufficient to implement the classical method in 

several clock cycles as given for low throughput applications. However, at least one table 

shared for sine and cosine 

Calculation is still necessary, occupying in the order of (2W-1) 

*W bits of memory for a required word length of W bits for the sine and cosine values and the 

angle Φ In contrast, a folded sequential CORDIC architecture can be implemented using three 

adders, two barrel shifters and three registers. 

If n = W + 1 iterations are used, the storage for the n rotation angles amounts to (W +1)*W 

bits only. Therefore, the CORDIC algorithm is highly competitive in terms of area 

consumption for low throughput applications. 

     

 The CORDIC vectoring mode can be used for fast and efficient computation of magnitude 

and phase of a given input vector. In many cases, only the phase of a given input vector is 

required, which can of course be implemented using a table lookup solution. However, the 

same drawbacks as already mentioned for the sine and cosine tables hold in terms of area 

consumption and throughput, hence the CORDIC vectoring mode represents an attractive 

alternative. 
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3.7 PREDICTING CORDIC ALGORITHM 
 

        The sine/cosine function generator is based on parallelization of the original CORDIC 

algorithm by predicting all the rotation directions directly from the binary bits of the initial 

input angle. Unlike previous approaches that require complicated circuits or exponentially 

increased ROM, this algorithm provides a relatively simple prediction scheme through an 

efficient angle recording. The critical path delay is also reduced by utilizing the predicted 

rotation directions to design an efficient multi operand carry-save addition structure. 

 

  One of the key components in direct frequency synthesizer (DDFS) system  is the 

sine/cosine function generator that computes binary representation of sinθ and cosineθ to a 

precision of N fractional bits. CORDIC is an arithmetic algorithm developed to compute 

various elementary functions through a series of iterations of a unified micro rotations 

operation. In particular, in a circular rotation mode, N micro operations as illustrated below 

will be executed for i = 1, 2, … , N. 

 

 xi+1 = xi + σi2-iyi

 yi+1 = yi - σi2-ixi

 zi+1 = zi - σItan-1(2-i)   

σI = sign(zi) ∈ {1, -1}. 

    = zi - σiαI                                                      (2.5.1) 

 

 
After N iterations, the accumulated rotation angle is   

θ = zi – zN+1 = σ∑
=

N

1i
Itan-1(2-i) ≡ ∑

=

N

1i
σiαi. 

Using the definition of αI, one has (note that cosσiαI = cosαI) 
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         xi+1             1        σi2i     xi 

          = 

         yi+1            -σi2-i     1              yi

                                      

 cosσiαi sinσiαI                        Xi     

=
iα cos

1
  

-sinσiαi cosσiαi         Yi 

 

 

 
Then, it can be easily deduced that 

  xN+1     cosθ  sinθ  xi

    =   
K
1  

 yN+1     - sinθ cosθ  yi

  

Where K = ∏ cosα=
N

1i i = ∏ =
N

1i (1+ 2-2i)-1\2 is a constant that can be precomputed in 

advance. Set x1 = K, y1 = 0, z1 = θ, then xN+1 = cosθ, yN+1 = sinθ can be easily computed after 

N iterations. In conventional CORDIC, the direction σI = sign(zi) is determined sequentially 

since it depends on the sign of zi calculated at the previous iteration. This dependence relation 

makes it difficult to execute multiple micro rotations in parallel. In this letter, we proposed a 

new method to quickly select the rotation directions {σI} in order to speed up the calculation.  

 

 
Angle Recording 

 Consider an arbitrary positive angle θ (<1 rad), which can be represented as θ = 

b∑ =
N
k 1 kθk. the bk are the bits corresponding to the (N + 1)-bit fractional binary 

representation of the angle θ (sign bit and N fractional bit and θk are the positional power-of-

two weights. In other words, bk ∈ {0, 1} and θk = 2-k, since the angle θ constrained to be 
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positive, b0 = 0 does not appear in the above summation. The binary bk ∈ {0, 1} can be 

recoded into signed digit rk ∈ {-1, 1} such that 

 

θ = ∑
=

N

k 1
bk2-k = φ0 + r∑

+

=

1

2

N

k
k2-k                                    (2.5.2) 

 

  Where φ0 is a constant. The recording can be understood intuitively if we visualize a 

positive sub rotation by 2-k rad as the sum of the two equal but opposite half rotations by 2-k-1 

rad and zero rotation as two equal but half rotations by 2-k-1 rad. It is quit easy to see from 

the binary representation of the angle θ that a binary bit bk = 1 result in a rotation by 2-k rad, 

where as a bk = 0 results in zero rotation. Thus, the kth sub rotation stage consist of fixed 

rotation by 2-k-1 rad followed by a positive or negative rotation by 2-k-1 rad that is controlled 

by the bit bk. combining all the fixed rotations, we obtained the initial fixed rotations φ0  = ¼ 

+ 1/8 + … + 1/2n+1 rad. Thus, the rotation after recoding can be represented as a fixed initial 

rotation φ0 followed by a sequence of positive or negative rotation whose directional are 

controlled by the binary bits bk. a bit bk = 1 corresponding to a positive (or counterclockwise) 

rotation by 2-k-1 rad, and a bit bk = 0 corresponding to a negative (or clockwise) rotation by 2-

k-1 rad, thus rk = (2bk-1 –1) for k = 2,…,N+1 . The recoding need not be performed explicitly 

since it corresponds to simply replacing all “0” value in the binary representation by “-1”. 

The recoding maintains a constant scale factor K in the data path. The scaling by K and the 

initial rotation by φ0 are most efficient accounted for in the implementation by starting each 

sequence of angle rotations from the initial point (X0, Y0) = (K cos φ0, K sin φ0).  
 

 One of the major benefits of recoding over CORDIC is that the direction of rotation at 

each stage is immediately obtained from the binary representation of the angle θ, thereby 

dominating the need for comparing angles at each stage. This possible because the sub angles 

θk = 2-k used in recoding are different from the sub angle θk = a tan 2-k used in CORDIC. The 

penalty for using different sub angles is that the tan θk multipliers used in the first few sub 

rotation stages cannot be implemented as simple shift-and-add operations. However, as will 

be shown subsequently, this limitation can be overcome by implementing these stages as a 

small ROM. Thus, recoding results in reducing chip area and higher operating speed. 
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PREDICTIONS OF ROTATION DIRECTIONS: 

 
Binary to bipolar recoding (BBR) 

The initial input angle θ = (-θ0) + θ∑ =
N

1j j2-j with θj ∈ {0, 1} is assumed to be in the range 

│θ│ < π/4 as in the application example of DDFS. It has been shown in [3] that tan-12-i to N-

bit precision if i ≥ m = [(N – log23)/3]. Thus, the last 2N/3 rotation directions (from σm to σN) 

can be obtained in parallel after completing the first N/3 iterations. As proposed above in 

angle recoding, we divide the angle into two parts (the higher part and the lower part) 

θ = θH + θL = (-θ0) + ∑
−

=

1m

1j
 θj2-j  + θ∑

=

N

mj
j2-j          

      θH   θL

The binary bits θj ∈ {0, 1} in the higher part θH can be recoded into bipolar digits as follows: 

θH = (-θ0) +   ∑
−

=

1m

1j
θj2-j  

    = (-θ0) +  ∑
−

=

1m

1j
[2-j-1 + (2θj – 1) 2-j-1] 

    = (-θ0) + 2-1 + ∑
=

m

2j
rk2-k – 2-m                                     (2.5.3) 

where rk = (2θk – 1) ∈ {1, -1}. 

Equation (3) is called BBR for θj, j = 0, 1,…, m-1. 

Microrotation Angle Recoding (MAR) 

           Since tan-1(2-i) ≠ 2-i for I = 1,…, m-1, we decompose each positional binary weighting 

2-i, I = 1,…,m-1 into the combination of significant tan-1(2-j) terms plus an error term ei 

collecting all the other insignificant values of tan-1(2-j), j > m. for simplicity, we take N = 24 

as an example were m = [(N-log23)/3] = 8. The Microrotation angle recording from 2-i to tan-

1(2-i), I = 1,…, 7 is  

2-1=tan-1(2-1)+tan-1(2-5)+tan-1(2-8)+ 0000000001001111000011102

        e1 

 

2-2 = tan-1(2-2) + tan-1(2-8) + 0.0000000001001001001000101002

e2
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2-3 = tan-1(2-3) + 0.0000000000101010010001012       

e3

 

2-4 = tan-1(2-4) + 0.0000000000000101010100102   

    e4

2-5 = tan-1(2-5) + 0.0000000000000000101010102   

                                                   e5

2-6 = tan-1(2-6) + 0.0000000000000000000101012

 e6

2-7 = tan-1(2-7) + 0.0000000000000000000000102    

 e7                                           (2.5.4) 

 

 

The BBR for θH with N = 24 is  

θH = (1-2θ0)2-1 + ∑
=

8

2k
rk2-k – 2-8.           (2.5.5) 

 

The first eight rotation directions are selected concurrently as 

σk = (1 - 2θ0) 

σk = rk = (2θk-1 – 1), k = 2,…,8.           (2.5.6) 

 

Then, all the signed error terms σiei, i = 1,…, 7 and the last term –2-8 in (5) are added to θl, 

generating the corrected lower part  represented in twos compliment format, i.e., Lθ̂
 

Lθ̂  = θL + σ∑
=

7

1i
iei – 2-8

     = (- )27θ̂ -7 + 2∑
=

24

8k
kθ̂ -k,  ∈ { , 1}, k = 8,…, 24.             (2.5.7) Lθ̂ kθ̂
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               It can be shown that │ │ < 2Lθ̂ -7. Since tan-12-i = 2-i, I ≥ 8 within precision of 24 

fractional bits, the algorithm converges after the above selection of directions for the 

remaining microrotation can be derived immediately from (7) using again the BBR 

 

Lθ̂  = (- )27θ̂ -7 +  ∑
=

24

8k
kθ̂ 2-k 

     = (- )27θ̂ -7 + (2  - 1)2∑
=

25

9k
1-kθ̂ -k + 2-8 – 2-25 

     = (1 - 2 ) 27θ̂ -8 + ∑
=

25

9k
kr̂ 2-k – 2-25

kr̂  = (2 - 1) ∈ {1, -1}                                               

(2.5.8) 

kθ̂

 

leading to the parallel prediction 

8σ̂ = (1 – 2 ) 7θ̂

kσ̂  = kr̂ = (2 - 1), k = 9,…,25 kθ̂
 

for the last 2N/3 microrotations. 
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3.8  DIGITAL CHIRP GENERATOR  
 

       Digital Chirp Generator (DCG) system are characterized by fast switching, fine frequency 

discrimination, low phase noise, and transient-free frequency changes. Frequency changes are 

phase continuous, which is describe in phase or frequency modulation. The fast frequency 

switching is useful in frequency-agile and spread-spectrum systems. Depending on the 

particular application, there exist tradeoffs among the power, IC area, size, and spectral purity 

of the implementation. For example, output resolution and spectral purity are of primary 

importance in instrumentation applications. Area and power are of considerable importance 

for digital mobile radio and cellular telephony. Simple modifications to the phase generation 

circuitry produces synthesized chirps useful in radar and electronic warfare systems and in 

implementation of continuous-phase modulators (e.g., GMSK). 

 A DCG consists of a phase accumulator, frequency accumulator and a sine/cosine 

generator, as shown in the shaded portion of fig.1. The phase accumulator is an overflowing 

M-bit accumulator whose value specifies the instantaneous phase. The M-bit value may be 

truncated to another L-bit value, which is fed as the argument θ to a sine/cosine generator that 

computes the digital sin θ and cosθ value to a precision of p bits.  

 

 

                        M                                                                                       

                                                               

 
fig2.6.1. Traditional DCG architecture. 

 

 

A. Output frequency 

In fig.1, Fcw denotes an external input to the phase accumulator called the “frequency control 

word”. At each clock cycle (clock frequency Fclk = 1/Tclk), the phase accumulator increments 

itself by the value Fcw until it overflows and wrap around. Each overflow of the accumulator 

 39



Redundant Number System based CORDIC   for FFT                                                                                       3.System Theory 
 

corresponds to cos period of a sine (or cosine) wave. Thus, Fcw control the rate at which the 

accumulator overflows, thereby controlling the frequency of the sine or cosine waveform. 
 The value of the M-bit accumulator is mapped to an angle (or phase value) in the 

interval [-π, π].           

   

Most practical DCG designs reported during the last two decades rely on some variant 

of the basic pioneering table-lookup algorithm, wherein the phase accumulator provides an 

address to a CORDIC module that generates the sine and cosine values. One of our main 

objectives is to describe an approach that will permit the implementation of high-speed DCG 

designs with high-precision spectrally pure sine and cosine output. As a result, simple 

tradeoffs among the power, IC area, sample rate, resolution, and spectral purity of the 

implementation can be preformed. Our approach is based on an architecture that evaluates the 

projections of a pharos rotating the unit circle onto the X and Y-axes by the CORDIC 

algorithm it is not based on a table-lookup architecture. It will be shown that overall 

architecture can be implemented as a simple multiplier less feed-forward data path , which 

allows for easy pipelining and limits the accumulation of round off errors. A prototype DCG 

has been designed, for vertex 300pq240 FPGA and tested. The design produces 10-b sine and 

cosine output at 99.33 MHz. 

  
II. Sine/Cosine Generation 

Let us consider the computation of the sine and cosine of an angle θ specified in new 

angle format.. For the given angle θ, the computation of sinθ and cosθ can be viewed as the 

computation of the X –axis and Y-axis coordinates (Xθ, Yθ) of a point on the unit circle, as in 

circular CORDIC rotation algorithm.     
 
The CORDIC Algorithm 

A well-known iterative technique for computing rotations θk is the CORDIC 

algorithm. In the CORDIC algorithm, σk ∈ {-1, 1} and θk at a 2-k, the multiplication by tan θk 

in the above equation can be implemented as a simple sub-and-add operation, resulting in a 

multiplier less data path. Since cos θ = cos (-θ), the product K = cos σ0θ0 … cos σNθN become 

a constant, independent of the specific direction of the sub rotations. (This is true as long as a 

positive negative sub rotation is actually performed at each iteration. Usually, the scale factor 

K is simply introduced into the conditions as (X0, Y0) = (K, 0). 
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 The σk values determine whether a positive or negative sub rotation by angle θk is 

required. The σk values determined iteratively by the method of successive approximation. If, 

at the Kth iteration, the current approximation is larger (smaller) than the input angle θ, its 

value is adjusted by subtracting (adding) the angle θk. the CORDIC algorithm required 

hardware that a) computer σk and update the current approximation by the angle θk and b) 

performs the rotation by θk. roughly one-third of the total CRODIC hardware is required for 

computing the σk and updating the current approximation. 

The throughput of the CORDIC data path can be improved by using redundant carry-free 

arithmetic, which eliminates the carry-propagate delay in the adders.  

 
 ARCHITECTURE FOR CHIRP GENERATOR 

       For frequently synthesis, the argument fed to the sine and cosine generators is derived 

from an overflowing two’s compliment accumulator. The contents of second accumulator 

represent a frequency.  Therefore, the normalized angle must be converted to an appropriate 

value θ in the interval [-π/2, π/2], which is input to the sine/cosine generator. The N binary 

bits representing the angle that control the directions of the sub rotations that compute the sin 

θ and cos θ values at a precision of N bits. An output stage is required to generate the correct 

sin θ and cos θ from the computed sin θ and cos θ values. Thus, the overall architecture 

consists of the following blocks: 

1) A phase accumulator that generates the normalized angle φ .

2) A frequency accumulator. 

3) A sine/cosine generator that compute sin θ and cos θ, i.e.:(CORDIC module) 

4) A preprocessor stage that processed the angle input to the CORDIC unit. 

5) A delay that stores the quadrant information for the final decision. 

6) A postprocessor stage that finally decide the sign based on quadrant information. 

 

A. Phase Accumulator 

The phase accumulator, shown in fig. 5, is an M-bit adder that repeatedly increments the 

phase angle. That is, its output increases by Fcw at each clock cycle. At time n, the output of 

the phase accumulator is φ = nFcw/2M, and the sine/cosine generator must compute sin 

(2θnFcw/2M) and cos (2θnFcw/2M). 

 A load control signal loads the frequency control word, and a reset signal initializes 

the contents of the phase accumulator to zero. 
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B. Preprocessor 

The two most significant bits of the normalized angle φ, MSB1 and MSBB2 determined 

the quadrant occupied by φ. These bits determined whether this angle is in third, second, 

fourth or first of the quadrant. These two most significant bits are stored and used later to 

control an interchange/negation operation in the output stage. The xor of two bits are stored in 

the delay. 

The value of φ is first modified by setting its MSB value equal to the next most 

significant bit value. This maps any angle in the normalized second, third to fourth  and first 

quadrant respectively to a corresponding angle φ’ in the fourth  and first quadrant 

respectively, as shown in fig. 6(a). If angle lies in the second quadrant whenever delay = 1 

because MSB1 MSB2=”01”. The sine and cosine of any angle γ above π/2 can be obtained 

from those of an angle equally below π/2, as shown in fig. 6(b).  

 
C. Sine/Cosine generator 

The CORDIC module does Sine/Cosine generation, which is the heart of the whole 

system. This module accepts 13 bit of normalized preprocessed angle and computed sin θ and 

cos θ values to 10 bits precession. This CORDIC module is designed using carry-free adder 

trees; with pipelined registers are inserted b/w adders. Here both arithmetic as well as logical 

shifting is done using the shifter designed specifically for this purpose.   

 

 

 

TABLE 2.6.Angle ROM 

k θk θk(13-bit binary) 

1 45°     0010000000000 

2 26.5650°     0001001011110 

3 14.0362°     0000101000000 

4 7.12502°     0000010100010 

5 3.57633°     0000001010001 

6 1.78991°     0000000101001 

7 0.895174°     0000000010100 

8 0.447614°     0000000001010 

9 0.223807°     0000000000101 

10 0.111905°     0000000000010 
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D. Output Stage 

 The output stage, show in fig. 10, maps the computed sin θ and cos θ values to the 

desired sin θ and cos θ values, where φ, lies in the correct interval within 

 [-π/2, π/2]. As mentioned previously, this can be accomplished by simple negation and/or 

interchanging operations. The control signals xinvert and yinvert control the negation of cos θ 

= XN+1 and sin θ = YN+1, respectively. The control signal, derived from the two most 

significant bits of the normalized angle φ, are generated as shown in table II. The negation is 

assumed to occur before the interchange. Since the control signals are generated from φ, they 

must be suited delayed until the sin θ and cos θ values are computed. This delay is determined 

by the latency of the sine/cosine-generating datapath and can be implemented as a simple 

register chain. 

 
TABLE 2.6.1 

CONTROL SIGNALS FOR THE OUTPUT STAGE 

 

MSB’s of φ φ Delay cos φ 

 0 0 0<φ<π/2 0 cosθ 

 0 1 π/2<φ<π 1 sinθ 

 1 0 π<φ<3π/2 1 -sinθ 

 1 1 3π/2<φ<2π 0 cosθ 

 

 

 The two most significant bits MSB are extracted from the truncated phase accumulator 

and used to control the conditional interchange/negation operations in the output stage. The 

residual angle with its one most-significant bits set equal to next MSB value represent the 

normalized angle φ’, which is fed to the CORDIC.. 

The overall architecture is shown in fig.( 2.6.2).  

 

    Since our prototype design produces 10-bit sine and cosine output, the data path 

consists of a cascade of ten CORDIC stages. Simulations indicate that 10-bit accuracy can be 

retained on the sine and cosine output. 
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TABLE 2.6.3 

 

PERFORMANCE SUMMARY 

 

Technology Vertex 300 

Maximum clock frequency 99.493MHz 

Output Resolution 10-bits for sine and cosine 

Latency 12 clock cycle 

Gate Count 13,172 

 

    

     Sufficient pipelining was employed to achieve this clock rate. Each stage has a pipeline 

register at its output. Adder stages were implemented using carry-free adders with three 

pipeline registers.. 

  Our design testing using the chipscope tester and a customer board has found 

the design to be fully functional.  
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Fig(2.6.5) RTL view of chirp generator 

 

chirp_angle_generation

a1

clk
start
cordic_clk

] angle_constant[12:0]

control
tff_clk

sampling_clk

acc2_out[12:0]

angle_out_to_cordic[12:0]
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Fig(2.6.4 ) ModelSim results of the Chirp generator. 

 

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

Fig(2.6.6)Chirp ModelSim Results 
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Fig(2.6.8 )RTL view of Angle generation unit 

 

 

 

Chirp Report 

Device utilization summary: 

Selected Device                        :                  v300pq240-4  

Number of Slices                      :                   577   out of   3072    18%   

Number of Slice Flip Flops      :                   529   out of   6144     8%   

Number of 4 input LUTs          :                   1017  out of   6144    16%   

Number of bonded IOBs          :                     34   out of    170    20%   

Number of GCLKs                   :                     1   out of      4    25%   

Timing Summary: 

Speed Grade                             :                      -5 

Minimum period: 10.051ns (Maximum Frequency: 99.493MHz) 

Minimum input arrival time before clock: 5.764ns 

Maximum output required time after clock: 8.289ns 

Maximum combinational path delay: No path found 

 

 
fig(2.6.5 )Top view of Sine/Cosine generator 

 46



Redundant Number System based CORDIC   for FFT                                                                                       3.System Theory 
 

3.9 Fast Fourier Transform 
 

       Fast Fourier Transform( F F T  ) has been used in a wide range of applications, such as 

wide-band mobile digital communication system based on Orthogonal Frequency Division 

Multiplexing (OFDM) principle, where the system implementation is only feasible when 

the equipment complexity and power consumption are greatly reduced by utilizing a real-

time FFT transformer to replace the bank of (de)modulators for each individual sub-carriers. 

FFT operation has been proven to be both computational intensive, in terms of arithmetic 

operations, and communicational intensive, in terms of   data swapping/exchanging in the 

storage. For real-time processing of EFT transform, O(10gN ) arithmetic operations are 

required per sample cycle, where N is the length of the transform.  High speed real-time 

processing can be accomplished in two different ways.  In a conventional, general purpose 

processor approach, a single processor driven to a very high clock frequency, which is O (1og 

N ) times the sampling frequency, is used to carry out the operation. While in an application 

specific approach, parallel or concur- rend pipelined processors, operating on a clock 

frequency close or equivalent to the sampling frequency, are used to attain the performance. 

Analysis has shown that the second approach is more preferable when the application 

environment limits power consumption, such as in mobile communication. 

     Pipeline FFT processor is a class of architectures for application specific real-time 

DIT computation utilizing fast algorithms.   It is characterized by non-stopping processing 

on  a clock frequency of the input data sampling. A lower clock frequency is a clear 

advantage for pipeline architectures, when either a high speed processing or a low power 

solution is sought. In addition, pipeline structure is highly regular, which can be easily   

scaled   and parameterized when Hardware Description Language (HDL) is used in the 

design. It is also more flexible when transforms of different lengths are to be computed 

with the same chip. 

.   In the   following section, pipeline FFT processors are briefly   reviewed.  

 

3.9.1 PIPELINED FFT ARCHITECTURE. 

         The architecture design for pipeline FFT processor had   been the subject of intensive 

research as early  as  in 70’s when real- time  processing was demanded in  such 

applications as radar signal  processing  .   Several   architectures   have   been   proposed 

over the last 2 decades.  Here different approaches are put into functional blocks with 

unified terminology.  The   additive butterfly has been separated from multiplier to show the 

hardware requirement distinctively, as in Fig.  1.  The control and twiddle factor reading 
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mechanism have been also omitted for clarity. All data and arithmetic operations are 

complex, and a constraint that N  is a power of 4 applies. 

 

R2MDC:  Radix-2 Multi-path Delay Commutator   was probably the most classical 

approach for pipeline implementation of radix-2 FFT algorithm. The input sequence has 

been   broken   into two parallel data  stream flowing forward, with correct “distance” 

between  the data elements entering the butterfly scheduled by proper delays. Both 

butterflies and multipliers are in   50% utilization. Log2 N-2 multipliers, log2N radix-2  

butterflies and  3/2N  - 2 registers (delay elements) are required. 

 

 

Fig( 2.7.1) R2MDC(N=16) 

R2SDF:  Radix-2   Single-path  Delay  Feedback  uses  the registers more efficiently by 

storing the one butterfly out- put in feedback shift registers. A single data stream goes 

through the multiplier at every stage. It has same number of butterfly units and 

multipliers as in R2MDC approach, but with much reduced memory requirement: 

        (N – 1 )registers. Its memory requirement is minimal. 

 

 
Fig(2.7.2 ) R2SDF(N=16) 

 

 

R4SDF:  Radix-4   Single-path   Delay   Feedback   was   proposed   as   a   radix-4   version   

of   R2SDF, employing CORDIC   iterations.  The utilization of multipliers has been   

increased   to   7.5% by   storing   3   out   of   4   radix-4 butterfly outputs.  However, 

the utilization of the radix-4 butterfly, which is fairly complicated and contains at 

least   8 complex adders, is, dropped to only 25%.  It requires log, N - 1multipliers, 

log, N  full radix-4 butter- flies and storage of size N  - 1. 
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Fig( 2.7.3)R4SDF 

 

R4MDC:  Radix-4   Multi-path   Delay   Commutator    is   a radix-4 version of R2MDC. It 

has been used as the architecture for the initial VLSI implementation of pipeline FFT 

processor   and massive   wafer   scale integration However, it suffers from low, 25%, 

utilization of all components, which   can   be   compensated   only in  some special  

applications  where  four  FFTs  are  being  processed simultaneously. It requires 3 log, 

N  multipliers, log,  N  full radix-4 butterflies and 5/2N - 4 registers. 

 

 

 

 

R4SDC:  Radix-4  Single-path Delay  Commutator   uses  a modified radix-4 algorithm 

with  programmable 1/4 radix-4 butterflies to achieve higher, 7.5% utilization  of 

multipliers. A multiplexed Delay-Commutator also reduces the memory   requirement  to  

2N  - 2  from  5/2N  - 1, that ofR4MDC. The butterfly and delay-commutator be- come 

relatively complicated due to programmability requirement.  R4SDC has been   used 

recently in building the  largest ever  single chip pipeline  FFT processor for HDTV 

application. 

 

 
Fig(2.7.4 ) R4SDC 

 

 

A swift skimming through of the architectures listed above reveals the distinctive merits of  

the different approaches:  First, the delay-feedback approaches are always more efficient 

than corresponding delay- commutator approaches in terms of memory utilization since the 

butterfly output share the same storage with its input. Second, radix-4 algorithm based 
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single-path architectures have higher multiplier utilization, however, radix-2 algorithm 

based architectures have simpler butterflies which are better utilized.  

 

 

3.9.2 CORDIC FFT  
BASIC FFT 
 

 The discrete Fourier transform (DFT) of N complex samples f (k), k = 0, 1, ...., N - 1 

is defined as 

             N – 1 

F (r) =   ∑   f (k) Wrk, r = 0, 1,2,3,...    ., N - 1,                                                             (2.7.1) 

            k = 0 

Where W = exp (⎯ 2πj/N). 

 The fast Fourier transform (FFT) is a clever efficient method of computing the DFT of 

N number of discrete data samples in O(Nlog2N) time as opposed to that O(N2) in the direct 

method. The FFT algorithm starts with splitting the input data set f(k) into odd-and even-

numbered points, d(k) and e(k), respectively, as follows : 

e(k) = f (2k),                                                 

(2.7.2) 

d(k) = f (2k+1), where k = 0, 1,....N/2 - 1. 

 Now, Eq. (1) may be rewritten as 

 

            N/2 – 1 

F (r) =   ∑   e (k) W2rk, r = 0, 1,2,3,...    ., N/2 - 1,                                                          (2.7.3) 

            k = 0 

 

F(r) = E (r) + Wr D(r),            (2.7.4) 

                                                

where 

 

          N/2 – 1 

E (r) =   ∑   e (k) W2rk, r = 0, 1,2,3,...    ., N/2 - 1,                                                          (2.7.5) 

          k = 0 
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and 

                                    

            N/2 – 1 

D (r) =   ∑   d (k) W2rk, r = 0, 1,2,3,...    ., N/2 - 1,                                         (2.7.5) 

            k = 0 

 E(r) and D (r) may be viewed as the DFT of N/2 point sequences e(k) and d(k), 

respectively. The FFT algorithm in which the input data samples are split into odd-and even 

numbered ones, is called decimation in time, while in the other form of FFT, known as 

decimation in frequency, the discrete data samples f(k) are split two equal parts g(k) and h(k) 

with the first one having the first N/2 samples and the other having the last N/2 data samples 

such as  

g(k) = f (k),                                                                                        (2.7.6) 

and 

h(k) = f (k=N/2),        k = 0, 1,...... N/2 - 1. 

 The N point DFT of f(k) as depicted in Eq. (2.7.1) may be rewritten as 

 

 

           N/2 – 1 

F (r) =   ∑{g(k) Wrk,    h(k)wrk+rN/2}.                                                                (2.7.7) 

            K=0 

 If B (r) and C (r) are the even-numbered and odd numbered transform points, 

respectively, such as  

B (r) = F (2r),                                                                    

and                                                                                                                           (2.7.8) 

C (r) = F (2r + 1),   r = 0, 1,.... N/2 - 1 

then they can  be represented by the following equations : 

 

          N/2 – 1 

B (r) =   ∑     [g(k) + h(k)] W2rk 

            K=0 

 

 

and  
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             N/2 – 1 

C (r) =       ∑     [g(k) + h(k)] Wk W2rk 

               K=0 

B (r) and C (r) are nothing but N/2 point DFTs of the functions g(k) + h(k) and h(k)Wk, 

respective. Therefore, either in decimation in time or in decimation m frequency, a DFTs, 

each of which may again be computed through two N/4 point DFTs and so on. This is 

illustrated in the form of a signal flow graph is a two-point DFT butterfly, depicted in Fig. 3, 

having the following form : 

R = P + Q,                                                                                                  (2.7.10) 

        S = (P-Q)Wk. 

 Eq. (2.7.10) may be written in its expanded form in terms of the real and the imaginary 

parts of the signals as follows : 

Rre = Pre + Qre,                                                                                                (2.7.11) 

Rim = Pim + Qim, 

Sre= (Pre - Qre) cos (kθ) + (Pim - Qim) sin (kθ), 

Sim = - (Pre - Qre) sin (kθ) + (Pim - Qim) cos (kθ). 

 

The last two in the set of Eqs. (2.7.11) essentially represent a plane rotation operation which 

can be efficiently computed by applying the CORDIC algorithm. 

 In the CORDIC technique, the plane rotation through an angle α is achieved by 

decomposing the target angle into several elementary angles and carrying out rotations 

through each of these as follows : 

                          M – 1 

                α=       ∑   δiθi,     where θi = tan-1(2-i) 

                           i=0 

 

 

 with M being the wordlength and δi = + 1 or -1, 

 since θi/2 < θi+1 <θi, any arbitrary angle can be expressed in terms of elementary 

angles (θis) with their signs (δis) properly chosen. Now an elementary plane rotation in two 

dimension can be expressed as 
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xi+1 = xi cos (θi) + δiyi sin(θi),                                                                   (2.7.13) 

yi+1 = δixi sin(θi) + yi cos (θi) 

with the value of δi deciding the direction of rotation.  

 Applying the condition tan (θi) = 2-i, as stated in Eq. (2.7.12), for elementary angles, 

Eq. (2.7.13) may be rewritten as  

xi+1= cos (θi) (xi+δiyi2
-i),                                                                                (2.7.14) 

yi+1= cos (θi) (-δixi2
-i+yi),  

 

xi+1 = xi cos (θi) + δiyi sin(θi), 

yi+1 = δixi sin(θi) + yi cos (θi) 

with the value of δi deciding the direction of rotation. 

Applying the condition tan (θi) = 2-i, as stated in Eq. (2.7.12), for elementary angles, Eq. 

(2.7.13) may be rewritten as  

xi+1= cos (θi) (xi  +  δi yi 2
-i ),                                                             

yi+1= cos (θi) (-δi  xi 2
-i  +   yi   ),                                                                               (2.7.14) 

 

Let us consider a second set of iterative equations similar to Eq. (2.7.14) but dropping the 

cosine terms as follows : 

x'i+1 =x’i+ di  y’i2
-i, 

y’i+1 = - δi   x’i  2
-i +  y’ii,                                                                                            (2.7.15) 

 If M number of iteration steps are carried out with the same starting co-ordinate 

(x0,y0) = (x’0,y’0), then the end results provided by Eq. (2.7.14) and (2.7.15) are related as 

follows: 

X’M = ζMxM,                                                                                                  (2.7.16)                        

                                           and 

        y’M = ζMyas,                                          where 

                          M-1 

       ζM = 1/      ( ∏  cos θi) 

                            i=0 
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 The scaling factor ζM depends only on the word length and approaches asymptotically 

a constant value of 1/0.607252935. The iterations depicted in Eq. (2.7.15) can be easily 

implemented in digital hardware since multiplication with the term 

 2-i is nothing but a shifting of the operand through i-bit position towards right. Thus, a plane 

rotation by an arbitrary angle can be accomplished by to and fro elementary rotations where 

the direction of next elementary rotation is determined by the sign of the present error as 

follows : 

di - Sing (εi),                                                                                                         (2.7.17) 

εi+1 = εi - δiθi  with ε0 = α. 

 Starting with co-ordinate (Pre - Qre, Pim - Qim) as (x′0, y′0) and target angle α = kθ, 

running iterations (2.7.15) on the same for M times yields the following results. 

y′M = ζM (Pre - Qre) sin (kθ) + ζM (Pim - Qim) cos (kθ). 

 

 Expressions in Eq. (2.7.18) are identical to the last two equations in the set of Eq. 

(2.7.11) 

 

depicting the butterfly operation excepting the scaling factor ζM which may be thought of as 

a constant gain factor, but in the case, the first two equations in (2.7.11) must also include the 

same scaling terms. Since, ζM>1, a further scaling is carried out in the actual implementation 

by shifting the result to one bit position right (which is equivalent to a division by two) to 

reduce the chance of overflow. With this scheme, the butterfly operation having a constant 

gain term becomes as follows : 

R′re = ζ′M (Pre + Qre),                                                                                        (2.7.19) 

R′m = ζ′M(Pim + Qim), 

S′re = ζ′M(Pre - Qre) cos (kθ) + ζ′M (Pim - Qim) sin (kθ), 

S′im = ζ′M(Pre - Qre) sin (kθ) + ζ′M (Pim - Qim) cos (kθ), 

where ζ′M = ζM/2. 

 

Finally, The binary format for the representation of the error angle ε is chosen in a novel way 

which offers two special advantage - the first one being the ease of extending the range of 

rotation / vectoring from ± π/2 to ± π covering all the quadrants completely, and secondly the 

scope of representing the rotation angle kθ for any butterfly stage terms of the multiplier k 
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only, thereby relieving the burden of multiplication operation for the purpose. The 

representation of ε may be thought of as a normalized angle in two's complement format, 

since the weights chosen from the MSB side are - π, π/2, π/4,...., 

π/2M-1;M being the word length. This form of angle representation rather than in the 

conventional radians makes it possible to readily identify the quadrant pertaining to the 

amount of rotation simply by observing the first two bits from the MSB side. Since the 

CORDIC algorithm can easily accommodate rotation in the range ± π/2 only, so whenever the 

required rotation α is beyond that range, that is either π/2 ≤ α < π (second quadrant) or - π ≤ 

α < - π/2 (third quadrant, as the case may be, is considered by adding/subtracting an amount 

equal to π from the actual angle α which can be carried out by complementing the MSB, and 

that value is used instead. To have proper results, the signs of the x and y components are 

changed while outputting their final values, to incorporate .the effect of reflections about the 

axes. This is illustrated in Fig. 2.7.5  

  

               For having implementation advantages, certain variations are incorporated during 

the realization of the actual architecture. One such modification is in choosing the directional 

parameter δi during vectoring, Instead of deriving the direction of rotation from the sign of yi 

alone, an XNOR function of the signs of xi and yi used to accommodate vectoring in all the 

four quadrants as illustrated in Fig. 2.7.5 

 

 

 

 

 
Fig(2.7.5) :Mapping of quadrant 
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/*Algorithm for the adders generation to compute N=2n point FFT*/ 

For stage=n-1 down to  0 

Ncluster=2^(n-1 – stage) 

Npair=2^stage 

For cluster=ncluster –1 down to 0 

Index=cluster * 2^(stage+1) 

Rot=0 

For pair=npair –1 down to 0 

Call Butterfly(index,index+npair,rot) 

Index=index+1 

Rot=rot + ncluster 

Next pair 

Next cluster 

Next stage 

End 

 

 

3.9.3  THE ADDRESS GENERATION UNIT 

 
 The address generation unit implements the following algorithm to realize the signal 

flow graph for the computation of FFT. It generates the address where from the data is to be 

fetched to the butterfly unit and where the result is to be written too. It also computes the 

angle multiplier k (under the variable name 'rot') required for the butterfly operation. 

 The novel angle representation scheme, i.e. choosing the weights as π, π/2, π/4,..., 

π/2M-1 (M being the wordlength), offers the tremendous advantage of relieving the designer 

for the requirement of having a multiplier for computing kθ as required by the CORDIC unit 

to evaluate Eq. (2.7.12) from the value of the multiplier k (which is stored as the variable 'rot' 

in the address computation algorithm). As the value of θ equals 2π/N or π/2 n-1, it is 

represented by a string of zeroes except a one at the nth bit position from left hand side, while 

k is a n-bit number with the MSB being zero (since k ranges from 0 to N/2 -1). Therefore, 

multiplying k with θ yields a M bit number having the least significant n - 1 bits of k as the 

first n - 1 (most signifcant) bits with the rest of the bits equal to zero.  
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3.9.4    Butterfly unit 

 

 The butterfly unit implements Eq. (2.7.19) whose flow graph is shown in Fig. 2.7.6. 

The CORDIC module is the heart of the butterfly unit which accepts (Pre-Qre) and (Pim-

Qim) as the two components of the input vector and provides the output vector after rotating 

the input by an amount of kθ.  However, the output is scaled by a factor of 1/0.607252935 

=1.646759 as indicated in Eq. (2.7.16). Instead of multiplying the result by 0.607252935 to 

restore the proper value of the output vector, the other output of the butterfly is also scaled by 

the same factor of 1.646759 to keep the uniformity which maintains the correct phase 

relationship between the output components but alters the magnitude of the output vector. 

This is permissible in digital  
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Fig( 2.7.6):Butterfly with CORDIC 

 

signal processing applications since relative amplitude of the components and not their 

absolute magnitudes are of primary concern and the scale factor appears as a fixed gain term 

in such context. To reduce the chances of overflow, however, a further scaling by a factor of 

“0.5” is carried out by shifting the result through one bit position towards right at both the 

output R and S. All the variables are represented in 16 bit two's complement format, therefore 

the CORDIC unit takes 16 clock cycles to compute the result and the block finishes its 

computation within that period adding on extra overhead for its operation. 

 First computes P - Q  and passes the result to the CORDIC unit and then computes P + 

Q and passes the same to the unit while the CORDIC unit remains busy processing  the 
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 P - Q value. 

 The CORDIC block consists of ten add/subtract units implemented by carry-free 

adders and two shifters performing logical shift as well as arithmetic shifting    along with the 

associated registers for implementing the iterative operation depicted in Eq. (2.7.15). The 

multiplexed registers can be loaded externally or can be updated with internal results. The 

combinatorial block is designed to serve as a lookup table ROM for storing the values of tan-

1(2-i) required for computing Eq. (2.7.12). Two extra add/subtract unit are employed as 

controlled two's complement negator for implementing rotations in second and third 

quadrants through reflections about the axes as has already been discussed in the previous 

section. Two extra unit one for binary to redundant conversion and other for converting 

redundant number back to binary 2’s complement number . On completion of a butterfly 

rotation, it issues a termination signal which updates the parameter passing buffers at the 

address computation unit and also serves as an indication to itself to prepare for starting a 

fresh operation. The control line decides the mode of operation for the CORDIC unit with the 

help of two multiplexers - one governing the direction of rotation and another one driving the 

controller two's complementer for changing the signs of the outputs as per the tables. In the 

rotation mode, the direction of rotation is derived from the sign of the instantaneous error in 

angle computation, that is the difference between the target angle and the achieved angle. 

However, at the time of loading the target angle, the specially designed register copies 12-th 

bit as the MSB (13th bit) instead of the original value of MSB which has got an weight age 

equals to-π. This is carried out in order to keep the target angle a within that limit -π/≤a<π/2. 

If the target angle is beyond that limit, i.e. if it lies either in the second or the third quadrant, 

then its 13th bit (MSB) and 12th bit disagree with each other and in that case, the signs of the 

output variables X and Y are changed to incorporate the reflections about the axes, as 

described in the previous section. During vectoring, the direction of rotation is determined 

depending upon the current position of the subject vector in terms of the quadrant which is 

decided by checking the signs of X and Y. Here also, as in rotation, a change in the sign of the 

final output is required, if the vector lies either in the second or in the third quadrant which is 

indicated by the sign bit of X. 
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CHAPTER 4 
 

SYSTEM DESIGN 
 
4.1 Binary to redundant conversion 
        Binary to redundant conversion is simple and direct. If input number is in 2’s 

complement form and the number is negative the only thing is to change most significant bit 

ie: MSB from ‘1’ to ‘-1’.For a positive number no need to perform the conversion because in 

SD number system with digit set {-1,0,1} the value of binary as well as redundant number for 

a positive number is same. To realize negative numbers, coding is done. Below example 

shows the coding scheme for the all three possible digits of the digit set  {-1,0,1}. 

-1  by  “01” 

 1  by  “10” 

 0  by  “00”.  

This binary to redundant conversion is performed by the entity “BINTOREND8”. 

 

 
                  Fig(8.1)  BINTOREND8 

 

 

 

Name Type Description 

datain  

 

In ( 9 down to 0) 

std_logic_vector 

Input binary number 

zip out ( 9 down to 0) 

std_logic_vector 

Redundant binary number 

zim out ( 9 down to 0) 

std_logic_vector 

Redundant binary number 

Table 8.1 

 

 



Redundant Number System based CORDIC   for  FFT                                  4.System Design 
 
 
Fig 8.1 shows the top level (RTL view) for the entity BINTOREND8 which performs binary 

to redundant conversion. It takes eight bit input binary number in the 2’s complement form 

and provides three eight bit outputs, zip, zim, nzip respectively. 

For eg: If datain=”01000000” then 

         Zip=”01000000”. 

  Zim=”00000000”. 

                        NZip =”10111111”. 

Here complement of Zip is generated because of its requirement  to perform carry-free-

addition.Table8.1 shows the specifications of the entity “BINTOREND8”. 

 

 

4.2  CARRY FREE ADDER: 

 

The algorithm as explained in earlier section is used to implement the adder. First a 1 bit 

adder is designed under the entity name CARADDER using 4-input NOR/OR gate. Then by 

cascading this 1 bit adder 10 bit adder under entity name ADDER8 is designed.  Fig(8.2) 

shows the RTL view of the  one bit  adder. 

 

caradder

gen1.4.ader1

xip
xim
yip
yim
nxip
nyip
pipv
npipv
uipv
nuipv

zip
zim

nzip
ui

nui
pi

npi

 
Fig(8.2) RTL view of 1 bit adder( CARADDER) 

 

Here Xip, Xim, Nxip and Yip, Yim, NYip are two input redundant numbers. Initially  

“Pipv” and “Uipv” both are taken to be equal to ‘1’ while their complements “npipv”, 

”nuipv” both taken to be equal to ‘0’.  
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addsubbg

gen1.6.ady_array

[5] D_i
:0] ip1[9:0]

ip2[9:0]
:0] im1[9:0]

im2[9:0]

[9re_xp[9:0]
[9im_xm[9:0]

 
Fig(8.3) 10 bit adder ( ADDER8) 

 

 

 

Name Type Description 

Xip In ( 9 down to 0) 

std_logic_vector 

I/P Redundant binary 

number 

Xim In ( 9 down to 0) 

std_logic_vector 

I/P Redundant binary 

number 

NXip In ( 9 down to 0) 

std_logic_vector 

I/P Redundant binary 

number 

Yip In ( 9 down to 0) 

std_logic_vector 

I/P Redundant binary 

number 

 

 

Yim In ( 9 down to 0) 

Std_logic_vector 

I/P Redundant binary 

number 

NYip In ( 9 down to 0) 

Std_logic_vector 

I/P Redundant binary 

number 

Popv Std_logic I/P taken to be ‘1’ 

Uopv Std_logic I/P taken to be ‘1’ 

NPopv Std_logic I/P taken to be ‘0’ 

NUopv Std_logic I/P taken to be ‘0’ 

Zip Out (9 down to 0) 

Std_logic_vector 

O/P Redundant binary 

number 

Zim Out ( 9 down to 0) 

Std_logic_vector 

O/P Redundant binary 

number 
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NZip Out ( 9 down to 0) 

Std_logic_vector 

O/P Redundant binary 

number 

P8 Std_logic O/P 

U8 Std_logic O/P 

NP8 Std_logic O/P 

NU8 Std_logic O/P 

 

 

4.3     CARRY SELECTOR: 

Carry selector will provide carry ‘Ci’ while inspecting the input S &D form the previous stage 

“SDbreak”. Algorithm has already explained in the previous section. 

 

carry_ing1

Carr_X

0 c0
[9:0] S[9:0]
[9:0] D[9:0]

[9:0]Ci[9:0]

 
Fig (8.4) Carry_in 

 

Fig(8.4) shows the RTL view for the entity “Carry_in” that performs the carry selection. 

As per the algorithm it takes two eight bit   S and D along with C0 =’0’ as inputs and provides 

eight bit carry Ci  as output. This carry Ci is used for redundant to binary conversion.  
 

Name Type  Description 

S In ( 9 down to 0) 

std_logic_vector 

S obtained for 

previous stage 

SDbreaker  

D In ( 9 down to 0) 

std_logic_vector 

D obtained for 

previous stage 

SDbreaker 

C0 In std_logic C0=’0’; 

Ci out ( 9 down to 0) Carry Ci out goes to 
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std_logic_vector input redundant to 

binary converter 

Table :8.4 

 

Table :8.4 shows the specifications for the entity “Carry_in” . 

 

4.4    S & D selector: 

 

With given redundant number ‘Z’ represented in terms of Zip and Zim , we compute S,D 

form it. After extracting  S ,D we can compute carry Ci, in the stage carry_in. 

 

SDbreakg

SDsel_X

[9:0] zip[9:0]
[9:0] zim[9:0]

[9:0]S[9:0]
[9:0]D[9:0]

 
Fig (8.5) SDbreaker 

 

Name Type Description 

zip In ( 9 down to 0) 

std_logic_vector 

I/p redundant 

number 

zim In ( 9 down to 0) 

std_logic_vector 

I/p redundant number 

D In ( 9 down to 0) 

std_logic_vector 

 

O/p ,8 bit  

S In ( 9 down to 0) 

std_logic_vector 

O/p ,8 bit 

Table:8.5 

 

 

 

Fig(8.5) shows the RTL view of the entity “SDBreak”. The S and D selection from the given 

Zip,Zim will takes place as shown below in the Table 8.5.1: 
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Zip Zim S D 

0 1 1 1 

0 0 0 0 

1 0 0 1 

Table 8.5.1 

 

4.5    Redundant to binary converter: 

Redundant to binary converter will take C_8 (Carry_in) ,S ,D ,as input and provide  eight  bit 

binary output. The algorithm is already explained in earlier section.Fig(8.6) shows the RTL 

view for the entity “REND2BIN8” that performs the conversion of given redundant number to 

equivalent binary number. 

The Binary out put B_out is  

 

B_out =  D_8  ⊕   C_8. 

 

 

 

rentobin8g

bin_X11

9:0] S_8[9:0]
9:0] D_8[9:0]
9:0] C_8[9:0]

[9:0]S_1[9:0]
[9:0]P_1[9:0]
[9:0]B_out[9:0]

 
Fig(8.6) redundant to binary conversion 

Name Type Description 

C_8 In ( 9 down to 0) 

std_logic_vector 

10 bit carry input 

S_8 In ( 9 down to 0) 

std_logic_vector 

10 bit S i/p form previous 

stage 

D-8 In ( 9 down to 0) 

std_logic_vector 

10 bit D i/p form previous 

stage 

B_out out ( 9 down to 0) 10 bit binary o/p 
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std_logic_vector 

S_1 Out ( 9 down to 0) 

std_logic_vector 

Complement of S 

P_1 out ( 9 down to 0) 

std_logic_vector 

Complement of D 

Table:8.6 

Table 8.6 shows the specifications of the entity “REND2BIN8”.  

 

 

 

 
 
 

FIG(7.1)BINARY TO REDUNDANT CONVERTOR SIMULATION 
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FIG(7.2)10 BIT CARRY FREE ADDER 
 
 
 
 
 

 
 

FIG(7.3)CARRY SELECTOR 
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FIG(7.4) S & D SELECTOR(SDBREAKER) 
 
 
 

 
 

FIG(7.5) REDUNDANT TO BINARY CONVERTER(RENTOBIN8) 
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FIG(7.6) TOP LEVEL ENTITY(TOP) 
 
 
 
 
1Bit Carry free adder 

 Entity name:CARADDER: 

Device utilization summary: 

Selected Device : 2v4000bf957-6  

 Number of Slices:                       6  out of  23040     0%   

 Number of 4 input LUTs:                10  out of  46080     0%   

 Number of bonded IOBs:                 17  out of    684     2%   

 Timing report: 

Speed Grade: -6 

Minimum period: No path found 

Minimum input arrival time before clock: No path found 

Maximum output required time after clock: No path found 

Maximum combinational path delay: 7.273ns 

Design Summary: 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

Number of 4 input LUTs:              10 out of  46,080    1% 

Logic Distribution: 
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Number of occupied Slices:            6 out of  23,040    1% 

Number of Slices containing only related logic:       6 out of       6  100% 

Number of Slices containing unrelated logic:          0 out of   6    0% 

Total Number 4 input LUTs:             10 out of  46,080    1% 

Number of bonded IOBs:               17 out of     684    2% 

Total equivalent gate count for design:  60 

 

 
 

Fig (6.1):RTL of 1 bit adder 

 

 

 
 

Fig (6.1.1):Gate or/ nor 

 
Fig (6.1.2):Gate or/nor 
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4.2      10 BIT CARRY FREE ADDER  

Entity name :ADDER8 

Device utilization summary: 

Selected Device : 2v4000bf957-6  

 Number of Slices:                      33  out of  23040     0%   

 Number of 4 input LUTs:                59  out of  46080     0%   

 Number of bonded IOBs:                 80  out of    684    11%   

 

Timing report: 

Speed Grade: -6   

   Maximum combinational path delay: 8.071ns 

 

 

 

 

Fig (6.2.):RTL of 10 bit ADDER 
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HDL Synthesis Report 

 

Macro Statistics 

# Multiplexers                     : 1 

 8-bit 2-to-1 multiplexer          : 1 

 

Device utilization summary: 

Selected Device : 2v4000bf957-6  

 Number of Slices:                       2  out of  23040     0%   

 Number of 4 input LUTs:                 4  out of  46080     0%   

 Number of bonded IOBs:                 24  out of    684     3%   

 

Timing report: 

Speed Grade: -6 

   Maximum combinational path delay: 7.239ns 

 

BINARY TO REDUNDANT CONVERTER: 

Entity name :BINTOREND 

 

HDL Synthesis Report 

Macro Statistics 

# Multiplexers                     : 2 

 10-bit 2-to-1 multiplexer          : 2 
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Fig(6.3.1)Binary to redundant converter 

 

 

 

Design Summary: 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

  Number of 4 input LUTs:               5 out of  46,080    1% 

Logic Distribution: 

  Number of occupied Slices:            3 out of  23,040    1% 

  Number of Slices containing only related logic:       3 out of       3  100% 

  Number of Slices containing unrelated logic:          0 out of       3    0% 

   Total Number 4 input LUTs:              5 out of  46,080    1% 

  Number of bonded IOBs:               32 out of     684    4% 

Total equivalent gate count for design:  30 

 

CARRY SELECT LOGIC: 

Entity name :CARRY_IN 

 

Selected Device : 2v4000bf957-6  

 Number of Slices:                       6  out of  23040     0%   

 Number of 4 input LUTs:                10  out of  46080     0%   

 Number of bonded IOBs:                 23  out of    684     3%  

 

Timing report 
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Speed Grade: -6 

Minimum period: No path found 

Minimum input arrival time before clock: No path found 

Maximum output required time after clock: No path found 

Maximum combinational path delay: 9.004ns 

 

Device utilization summary: 

 

   Number of External IOBs            23 out of 684     3% 

  Number of LOCed External IOBs    0 out of 23      0% 

  Number of SLICEs                    6 out of 23040   1% 

 

 

Design Summary: 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

  Number of 4 input LUTs:              10 out of  46,080    1% 

Logic Distribution: 

  Number of occupied Slices:            6 out of  23,040    1% 

  Number of Slices containing only related logic:       6 out of       6  100% 

Number of Slices containing unrelated logic:          0 out of       6    0% 

  Total Number 4 input LUTs:             10 out of  46,080    1% 

  Number of bonded IOBs:               23 out of     684    3% 

Total equivalent gate count for design:  60 
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Fig(6.4) RTL of Carry selector (Carry_in) 

 

REDUNDANT TO BINARY NUMBER CONVERTER: 

Entity name :RENTOBIN8 

 

Device utilization summary: 

Selected Device : 2v4000bf957-6  

 Number of Slices:                       9  out of  23040     0%   

 Number of 4 input LUTs:                16  out of  46080     0%   

 Number of bonded IOBs:                 48  out of    684     7%  

 

 

TIMING REPORT 

Timing Summary: 

Speed Grade: -6 

   Minimum period: No path found 

   Minimum input arrival time before clock: No path found 

   Maximum output required time after clock: No path found 

   Maximum combinational path delay: 5.644ns 
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Fig (6.3):Top level redundant to binary converter 

 

 

 
Fig(6.4.1):Internal of redundant to binary converter 

 

 

 
 

 

Design Summary: 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

Number of 4 input LUTs:               8 out of  46,080    1% 

Logic Distribution: 

Number of occupied Slices:            8 out of  23,040    1% 

Number of Slices containing only related logic:       8 out of       8  100% 

Number of Slices containing unrelated logic:          0 out of       8    0%         
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Total Number 4 input LUTs:              8 out of  46,080    1% 

 Number of bonded IOBs:               48 out of     684    7% 

Total equivalent gate count for design:  48 

 

S AND D SELECTOR 

Entity name :SDBREAK 

 

HDL Synthesis Report 

Macro Statistics 

# Multiplexers                     : 8 

 1-bit 2-to-1 multiplexer          : 8 

 

Device utilization summary: 

Selected Device : 2v4000bf957-6  

 Number of Slices:                       9  out of  23040     0%   

 Number of 4 input LUTs:                16  out of  46080     0%   

 Number of bonded IOBs:                 32  out of    684     4%   

 

Timing Summary: 

Speed Grade: -6 

   Minimum period: No path found 

   Minimum input arrival time before clock: No path found 

   Maximum output required time after clock: No path found 

   Maximum combinational path delay: 5.644ns 

Design Summary: 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

  Number of 4 input LUTs:              16 out of  46,080    1% 

Logic Distribution: 

  Number of occupied Slices:            8 out of  23,040    1% 

  Number of Slices containing only related logic:       8 out of       8  100% 

  Number of Slices containing unrelated logic:          0 out of       8    0% 

   Total Number 4 input LUTs:             16 out of  46,080    1% 

  Total equivalent gate count for design:  96    
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Fig(6.5) RTL of S & D selector (SD Breaker) 
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TOP LEVEL ENTITY: 

Entity name :TOP 

selected Device : 2v4000bf957-6  

 Number of Slices:                      24  out of  23040     0%   

 Number of 4 input LUTs:                43  out of  46080     0%   

 Number of bonded IOBs:                 44  out of    684     6%   

Timing Summary: 

Speed Grade: -6 

   Minimum period: No path found 

   Minimum input arrival time before clock: No path found 

   Maximum output required time after clock: No path found 

   Maximum combinational path delay: 10.820ns 

 

 

 
Fig (6.6) RTL of Top 

Design Summary: 

Number of errors:      0 

Number of warnings:    0 

Logic Utilization: 

  Number of 4 input LUTs:              43 out of  46,080    1% 

Logic Distribution: 

  Number of occupied Slices:           23 out of  23,040    1% 

  Number of Slices containing only related logic:      23 out of        Number of Slices 

containing unrelated logic:          0 out of      Total Number 4 input LUTs:             43 out of  

46,080    1% 

  Number of bonded IOBs:               44 out of     684    6% 

Total equivalent gate count for design:  258 
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MATLAB  SIMULATION  RESULTS 
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Fig (5.1) Sine wave. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig(5.7)Angle mapping   for the predicting CORDIC algorithm. 
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Fig(5.8) Simulation result of predicting CORDIC 

 

 

 

 

 

 
Fig(5.9 )Chirp values vs samples 
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4.6    CORDIC IMPLEMENTATION IN AN FPGA: 
 There are a number of ways to implement a CORDIC processor. The ideal architecture 

depends on the speed versus area tradeoffs in the intended application. First we will examine 

an iterative architecture that is a direct translation from the CORDIC equations. From there, 

we will look at a minimum hardware solution and a maximum performance solution. 

Iterative CORDIC Processors: 
 An iterative CORDIC architecture can be obtained simply by duplicating each of the 

three difference equations in hardware as shown in figure 1. The decision function, di is 

driven by the sign of the y or z register depending on whether it is operated in rotation or 

vectoring mode. In operation, the initial values are loaded via multiplexers into the x, y and z 

registers. Then on each of the next n clock cycles, the values from the registers are passed 

through the shifters and adder-subtractors and the results placed back in the registers. The 

shifters are modified on each iteration to cause the desired shift for the iteration. Likewise, the 

ROM address is incremented on each iteration so that the appropriate elementary angle value 

is presented to the z adder-subtractor. On the last iteration, the results are read directly from 

the adder-subtractors. Obviously, a simple state machine is required keep track of the current 

iteration, and to select the degree of shift and ROM address for each iteration. 

 The design depicted in Figure 1 uses word-wide data paths (called bit-parallel design). 

The bit-parallel variable shift shifters do not map well to FPGA architectures because of the 

high fan-in required. If implemented, those shifters will typically require several layers of 

logic (i.e., the signal will need to pass through a number of FPGA cells). The result is a slow 

design that uses a large number of logic cells. 
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 A considerably more compact design is possible using bit serial arithmetic. The 

simplified interconnect and logic in a bit serial design allows it to work at a much higher 

clock rate than the equivalent bit parallel design. Of course, the design also needs to clocked 

w times for each iteration (w is the width of the data word). The bit serial design consists of 

three bit serial adder-subtractors, three shift registers and a serial Read Only Memory (ROM). 

Each shift register has a length equal to the word width. There is also some gating or 

multiplexers to select taps off the shift registers for the right shifted cross terms (shifting is 

accomplished using bit delays in bit serial systems). The bit serial CORDIC architecture is 

shown in Figure 2. In this design, w clocks are required for each of the n iterations, where w 

is precision of the adders. In operation, the load multiplexers on the left are opened for w 

clock periods to initialize the x, y and z registers (these registers could also be parallel loaded 

to initialize). Once loaded, the data is shifted right through the serial adder-subtractors and 

returned to the left end of the register. Each iteration requires w clocks to return the result to 

the register. At the beginning of each iteration, the control state machine reads the sign of the 

y (or z) register and sets the add/subtract controls accordingly. The appropriate tap off the 

register for the cross terms is also selected at the beginning of each iteration. During the nth 

iteration, the results can be read from the outputs of the serial adders while the next 

initialization data is shifted into the registers. 
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The simplicity of the bit serial designs in apparent from figure 2. Even in this case, the wiring 

of the shift tap multiplexers can present problems in some FPGAs (this is one place where tri-

state long lines can come in handy). Even so, the interconnect is minimal and the logic 

between registers is simple.  This combination permits bit clock rates near the maximum 

toggle frequency of the FPGA. The possibility of using extreme bit clock frequencies makes 

up for the large number of clock cycles required to complete each rotation. 

 Now, if the design is in a Xilinx 4000E series part, the shift registers can be 

implemented in the CLB RAM. The RAM emulates a shift register by incrementing the 

read/write address after each access. The dual port capability of the CLB RAM provides the 

capability to read two locations in the 16x1 RAM simultaneously. By properly sequencing the 

second address, the effect of the shift tap multiplexer is achieved without a physical 

multiplexer. The result is the shift register and multiplexer for word lengths up to 16 bits are 

implemented in a single CLB (plus 8 CLBs for the 2 address sequencers and iteration counter, 

which are shared by the three shifters). The serial ROM also uses the CLB for data storage. 

One CLB is required for every two iterations. The 16 bit, 8 iteration CORDIC processor 

shown in figure 3 uses only 21 CLBs, and will run at bit rates up to about 90 MHz (mainly 

limited by the RAM write cycle). This translates to about a 1.5 µS processing time, which is 

only about three and a half times longer than the best one could expect from the much larger 

bit parallel iterative solution. 
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ON-LINE CORDIC PROCESSORS: 

 

 

 The CORDIC processors discussed so far are iterative, which means the processor has 

to perform iterations at n times the data rate. The iteration process can unrolled so that each of 

n processing elements always performs the same iteration. An unrolled CORDIC processor is 

shown in Figure 4. Unrolling the processor results in two significant simplifications. First the 

shifters are each a fixed shift, which means that they can be implemented in the wiring. 

Second, the lookup values for the angle accumulator are distributed as constants to each adder 

in the angle accumulator chain. Those constants can be hardwired instead of requiring storage 

space. The entire CORDIC processor is reduced to an array of interconnected adder-

subtractors. The need for registers is also eliminated, making the unrolled processor strictly 

combinatorial. The delay through the resulting circuit would be substantial, but the processing 

time is reduced from that required by the iterative circuit (if by nothing else than the set-up 

and hold times of the register). Most times, especially in an FPGA, it does not make sense to 

use such a large combinatorial circuit. The unrolled processor is easily pipelined by inserting 

registers between the adder-subtractors. In the case of most FPGA architectures there are 

already registers present in each logic cell, so the addition of the pipeline registers has no 

hardware cost. 

 

The unrolled processor can also be converted to a bit serial design. Each adder subtractor is 

replaced by a serial adder-subtractor, separated by w bit shift registers. The shift registers are 

necessary to extract the sign of the y or z element before the first bits (1sbs) reach the next 

adder-subtractors.  

 

The right shifted cross terms are taken from fixed taps in the shift registers. Some 

method of sign extension for the shifted terms is required too. Figure 5 shows two iterations 

of a bit serial CORDIC processors implemented in an Atmel 6005 or NSC Clay31 FPGA. 

Notice the cross term is taken from different taps off the shift register  at each iteration.  

 

This particular processor is used to compute vector magnitude. Since this is a vector 

mode process and the result angle is not required, there is no need for an angle accumulator. 

Figure 6 shows the detail of the adder-subtractor for that design.  
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The adder subtractor in this case includes logic to extend the sign of the shifted cross 

term and to reset the adder subtractor between words. The entire 7-iteration design occupies 

approximately 20% of the FPGA and runs at bit rates up to 125 MHz. 

 

 
 

 

 109



Redundant Number System based CORDIC   for  FFT                                  4.System Design 
 
 

 
 

 

 

 

 

 

 

 

 

 110



Redundant Number System based CORDIC   for  FFT                                  4.System Design 
 
 
4.6.1  REDUNDANT CORDIC IMPLEMENTATION ON AN FPGA: 
 

 There are a number of ways to implement a CORDIC processor. The ideal architecture 

depends on the speed versus area tradeoffs in the intended application.  We have used an 

iterative architecture that is a direct translation from the CORDIC equations. From there, we 

will look at a minimum hardware solution and a maximum performance solution by our 

proposed architecture. 

 The iteration process can unrolled so that each of n processing elements always performs the 

same iteration. An unrolled CORDIC processor is shown in Figure.4 .. The entire CORDIC 

processor is reduced to an array of interconnected adder-sub tractors. 

 

          The delay through the resulting circuit would be substantial, but the processing time is 

reduced from that required by the iterative circuit (if by nothing else than the set-up and hold 

times of the register). Most times, especially in an FPGA, it does not make sense to use such a 

large combinatorial circuit. Inserting registers between the adder-sub tractors easily pipelines 

the unrolled processor.  
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Proposed Architecture of redundant CORDIC  processor: 
 

 
Fig(4.1) CORDIC architecture 

 
Fig(4.1) shows the architecture of the CORDIC processor having ‘Xin’ ,’Yin’  as input binary 

10 bit number. For computation of sine and cosine, value of Yin should be equal to zero and 

value of Xin should be equal to the scale factor K introduced during CORDIC iterations. Xin 

and Yin 10 bits binary number is first converted to redundant number using binary to 

redundant converter .The Xpath and Ypath are the standard CORDIC iterations in terms of X 

and Y. Here both arithmetic as well as logical shifting is done using the shifters R/S and L/S 

respectively.. The Xpath and Y path are implemented in similar fashion as shown in the figure 

4 using Carry propagation free adders. We have designed a 10 bit CORDIC processor where 

Xin and Yin each are 10 bits inputs. The input angle i.e. “angle in” is taken to be of 13 bits 

binary number. First angle is processed using preprocessor. The Zpath performs the iteration 

for the third variable ie:”angle in” 

Finally redundant to binary conversion is done at the last stage. Redundant to binary 

conversion is complex process done in three steps: firstly the S and D are extracted from 

given binary number, secondly the carry is decided and finally redundant to binary conversion 

is done as per the algorithm discussed in the earlier section. Postprocessor finally decides the 

sign of the final Sine and Cosine values as per the quadrant information stored in ‘negation’. 

Postprocessor is implemented using the two 10 bits binary adder. The negation is 

implemented using the flip-flops that stored the quadrant information decided from the first 

two MSBs of input angle till the CORDIC processor gives the Sine and Cosine values. 
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CORDIC processor takes 11 clock cycles to give the final output, so quadrant decision is done 

after 11 clock cycles till this value is stored in the register. 
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cos_final[9:0][9:0]
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adder_seq_2

 cos_add 

control
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[9:0]sum[9:0]

control
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reset
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Fig(4.2 ) RTL view of Postprocessor 
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angle_op[12:0]

angle_ip[12:0]
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Fig( 4.3):RTL view of preprocessor 

 
 
 
 

cordic_unrolled

 a2 

clk
RESET_N

] angle_in[12:0]

[cos_val[9:0]
[sin_val[9:0]

 
 

Fig( 4.4):CORDIC unrolled 
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Fig(3.1 )      RTL Top view of CORDIC 

 
 
 
 

 
Fig(3.2 ) Modelsim result shows  pure Sine and Cosine wave generated by the CORDIC processor. 
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Fig( 3.3) Modelsim result shows  pure Sine wave generated by the CORDIC processor. 
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Fig(4.5 ):CORDIC one Stage 

 

 

 Cordic360 

 

Device utilization summary: 

 Selected Device                      :           v300pq240-5  

 Number of Slices                    :           641  out of   3072    20%   

 Number of Slice Flip Flops    :           540  out of   6144     8%   

 Number of 4 input LUTs        :           1182  out of   6144    19%   

 Number of bonded IOBs        :            34  out of    170    20%   
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 Number of GCLKs                 :            1  out of      4    25%   

 Speed Grade                           :          -5 

 Minimum period: 11.376ns (Maximum Frequency: 87.904MHz) 

 Minimum input arrival time before clock: 7.264ns 

 Maximum output required time after clock: 7.511ns 

 Maximum combinational path delay: No path found 

 Total equivalent gate count for design:  12,221 

 
 

          Table (8.1 ) : Angle ROM of CORDIC 
 

k θk θk(13-bit binary) 
1 45°     0010000000000 
2 26.5650°     0001001011110 
3 14.0362°     0000101000000 
4 7.12502°     0000010100010 
5 3.57633°     0000001010001 
6 1.78991°     0000000101001 
7 0.895174°     0000000010100 
8 0.447614°     0000000001010 
9 0.223807°     0000000000101 
10 0.111905°     0000000000010 

 
  

Table ( 8.2 ): Performance summary 
 

Technology Vertex 300 
Maximum clock frequency 87.904MHz 

Output Resolution 10-bits for sine and cosine 
Latency            12 clock cycle 

Gate Count 1              12,221 
 
 

post_processor_cor

post1

negate
clk
reset

] cos_val[9:0]
] sin_val[9:0]

[cos_final[9:0]
[sin_final[9:0]

 
Fig(4.6 )RTL view of Post Processor 
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4.8    PREDICTING CORDIC    IMPLEMENTATION 
 
ARCHITECTURE. 

The input angle is in special binary format with weights -π,π/2, π/4---- π/2^m-

1.However the sequence of rotations described in the previous section requires binary 

representation of an angle measured in radian. Therefore , the normalized angle must be 

converted to an appropriate radian value θ in the interval  (-π/4, π/4).,which is the input to the 

Sine/Cosine generator .An output stage is required to generate the correct Sinπφ and Cosπφ 

from the computed Sinθ and Cosθ values. Thus overall architecture consist of  

following blocks: 

1)Preprocessor 

2) π/4 multiplier. 

3)Sine/Cosine generator that computes Sinθ and Cosθ values. 

4)Post processor that converts Sinθ and Cosθ values to correct Sinπφ and Cosπφ values. 

 

 
 

Fig( 9.1)Architecture of predicting CORDIC processor 

 

Preprocessor: 

The most two significant bits of the normalized angle φ MSB1 and MSB2 determine 

the quadrant occupied by πφ. The third most significant bit MSB3 determines whether this 

angle is in the upper or lower half of the quadrant. These three most significant bits are stored 

and used later to control an interchange/negation operation in the output stage. 

The value φ is first modified by setting its two most significant bits to zero. This maps any 

angle in the normalized second, third, fourth quadrant to a corresponding angle φ’ in the first 

quadrant as shown in the figure(  ).This angle lies in the upper half of the quadrant whenever 
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MSB3=1.The sine and cosine of angle γ above  π/4 can be obtained from those of an angle 

equally below  π/4 as shown in the figure(  ),since Cos(γ)=Sin(π/2 -γ) and Sin(γ)=Cos(π/2 -

γ).thus ,whenever MSB3=1 , the normalized angle below π/4 is obtained by simply replacing 

φ’ by φ’’=0.5 - φ’. 

If MSB3=0 then φ’’=φ’.The normalized angle is then converted to its value θ=πφ’’ by a 

multiplication by π. 

 
 
 
 
 

 
 
 
 
 

Table(9.1)  Control signals for the output stage 
 

MSBs φ Cosπφ Sinπφ 
0 0 0 0< πφ < π/4 Cosθ Sinθ 
0 0 1 π/4< πφ < π/2 Sinθ Cosθ 
0 1 0 π/2< πφ < 3π/4 -Sinθ Cosθ 
0 1 1 3π/4< πφ < π -Cosθ Sinθ 
1 0 0 -π < πφ < -3π/4 -Cosθ -Sinθ 
1 0 1 -3π/4< πφ < -π/2 -Sinθ -Cosθ 
1 1 0 -π/2< πφ < -π/4 Sinθ -Cosθ 
1 1 1 -π/4< πφ < 0 Cosθ -Sinθ 
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Fig(9.2 ) Quadrant6 symmetry maps an angle in second ,third ,fourth quadrants to an angle γ 
in the first quadrant.(b) π/4 mirror maps an angle γ above  π/4 to an angle π/2- γ equally 
below π/4. 
 
 
Postprocessor:  
 This stage maps the computed Sinθ and Cosθ values to desired Sinπφ and Cosπφ 

where πφ lies in the correct π/4 interval within [-π    π].As mentioned earlier ,this can be 

accomplished by simple negation and /or interchange operation. The control signals are 

shown in the table( ).The control signals are derived from the three most significant bits of the 

normalized angle. 

 

π/4 Multiplier: 
  The multiplication by π/4 is achieved by simple shift and add operation. The fig( ) 

shows the stages of π/4 Multiplier .The input is first shifted then addition is performed.  
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Fig( 9.3  )Shows the π/4  multiplier 

 
 
 

 
 
 

baddsub_comb

add_1

baddsub_comb

add_2

baddsub_comb

add_5

baddsub_comb

add_8

baddsub_comb

add_9

baddsub_comb

add_15

baddsub_comb

add_17

baddsub_comb

add_18

baddsub_comb

add_19

baddsub_comb

add_21

baddsub_comb

add_22

baddsub_comb

add_24

ang_cor[24:0][24:0]

ang_in[24:0] [24:1]

=00
[24:2]

=0
[24:1]

=0*8
[24:8]

=00000
[24:5]

=0*19
[24:19]

=0*22
[24:22]

=0*14
[24:14]

=0*15
[24:15]

=0*17
[24:17]

=0*16
[24:16]

=0*21
[24:21]

=0*18
[24:18]

=0*24
[24]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl

a[24:0]

b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]
[24:0] b[24:0]

[24:0]sum_out[24:0]

0 crtl
[24:0] a[24:0]

b[24:0]

[24:0]sum_out[24:0]

 
Fig(9.6 ) RTL view of Pi/4Multiplier 
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Fig(9.4 )Modelsim results of Signpredictor 

 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

Fig( 9.5) Modelsim results of predicting CORDIC 
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CHAPTER 5 

CONCLUSION 
In order to accelerate the CORDIC iterations , one can use redundant number  

systems, which enable additions without carry propagation .For redundant implementation SD 

number with digit set{-1,0,1} is used. There are various other algorithm available for the 

carry free addition, out of which the efficient algorithm as per the digit set {-1,0,1} is used. 

There are few options for the conversion of redundant to binary converter out of which the 

look ahead mode converter, which provides fast conversion, is used. 

 

As a result the whole conversion process i.e. form binary to redundant followed by 

carry free addition and then converted back to binary is operating at high frequency. 

 

These designed blocks are used for implementation of redundant CORDIC processor, 

where the iterations of X and Y are performed by redundant arithmetic.At the final stage 

redundant sine and cosine values are converted back to binary by redundant to binary 

converter. The angle ROM is designed using the new angle format with weights  -π ,  π/2 , 

π/4 , 

 π/2 m-1  .This new format helps to increase the CORDIC valid range from [-π/2  π/2] to [- π    

π],thus covering all the four quadrant .The postprocessor is designed that finally decides the 

sign of computed sine and cosine values 

With slight modification one can eliminate the Z iterations form the normal CORDIC 

iteration by predicting the sign for X an Y iterations directly form the given input angle.  

The algorithm known as predicting CORDIC algorithm is based on parallelization of the 

original CORDIC algorithm by predicting all the rotation directions directly from the binary 

bits of the initial input angle. Unlike previous approaches that require complicated circuits or 

exponentially increased ROM, this algorithm provides a relatively simple prediction scheme 

through an efficient angle recording. This algorithm reduces the area and with use of 

redundant arithmetic will be the best implementation of redundant CORDIC. 

 

Fast Fourier transform is one of the most widely use DSP algorithm. The need of 

complex multiplier is replace by introducing the Sine/Cosine generator. One can use radix-4 

algorithm instead of radix-2 algorithm to decrease the number of multiplication. This 

CORDIC based FFT architecture is well suits for the FPGAs where no memory for storing the 

twiddle factors is available. 
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FUTURE WORK 
 

Redundant number system with digit set {-1,0,1} has its own advantages, as addition 

performed is carry-free thus free from carry ripple phenomenon as in normal binary addition. 

One can use the carry save arithmetic instead of generalized sign digit number with digit set 

{-1,0,1}. 

The predicting CORDIC processor performance can be further improved by 

incorporating carry-save adders in place of carry-free adders. The pi/4 multiplier designed 

using normal binary adder will be efficiently designed using the carry-save adder. This will 

add additional speed advantage. 
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