
 
“2D Convolver Implementation On FPGA and 

16-pt FFT Implementation” 
 

A Major Project Report 
 

Submitted in Partial Fulfillment of the Requirements  
for the Degree of  

 

MASTER OF TECHNOLOGY 
 

IN 
 

ELECTRONICS & COMMUNICATION ENGG. 
(VLSI Design) 

By 
NAGARAJU MANCHINENI 

(03MEC08) 
 

 
 

Department of Electronics & Comm Engineering 
INSTITUTE OF TECHNOLOGY 

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY, 
AHMEDABAD 382 481 

 

MAY 2005 

 

 i



 

Certificate  

This is to certify that the Major Project Report entitled “2D Convolver Implementation Of 

FPGA and 16-pt FFT Implementation” submitted by  Mr. NAGARAJU 

MANCHINENI (03MEC08), towards the partial fulfillment of the requirements for the award of 

Degree of  Master of Technology in Electronics and Communication  Engineering (VLSI Design) 

of Nirma University of Science and Technology is the record of work carried out by him under 

my/our supervision and guidance. The work submitted has in my/our opinion reached a level 

required for being accepted for examination. The results embodied in this major project work to 

the best of our knowledge have not been submitted to any other University or Institution for award 

of any degree or diploma. 

 

Date:  

Project Guide:                                 Shri. Rakesh Mehta 
Managing Director 

BITMAPPERS 
PUNE 

 
Facilitator at Institute:                   Prof.Y.N.Trivedi 

Department of ECE 
Institute Of Technology 

Nirma University of Science and Technology 
 

HOD        Director 
Department Of ECE     Institute Of Technology 

            Institute Of Technology                              Nirma University Of Science and Technology 
Nirma University Of Science and Technology 
 
 
 
Signature of Examiners: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ii



Acknowledge 

It gives immense pleasure to express my deepest and most sincere feelings of gratitude to 

Mr. Rakesh Mehta and Assi. Prof. Y.N. Trivedi as my thesis supervisors have extensively 

helped in preparing this project work with their valuable suggestions. The various values that I 

learnt from them shall remain a source of inspiration for me forever. 

My sense of gratitude is also to Dr. N.M devashree, Prof. N. P. Gajjar,  Asst.Prof.Pujara, 

Prof. T. P. and Dr. Desai for their valuable pieces of advice and for the deepinsights given through 

the various courses they taught.I would like express my sincere thanks to Mr. Veerendra Dhakad, 

employee of Bit Mapper, who helped me a lot throughout my project period. 

Also I am thankful to Mr.Balakrishan Ahirwal, another employee for his comments which 

made more stronger for pursuing this work. I am grateful to each and every employee of Bit 

Mapper Integration Technologies Pvt. Ltd Pune, who helped me directly or indirectly for 

successful completion of my thesis. 

I am grateful to Mrs. Poornima Mehta who has given me financial support in the 

completion of this project. I received lots help from my colleagues Vibhav Shah, Bharti, Shruthi, 

Magendran. And also I am thankful to my classmates Mahesh, Abhishek, penchal Reddy, Suresh, 

Sourav, Vishal, Daval, Bavin and Sudhanshu for their cooperation. I thank everyone who made my 

stay at pune enjoyable. I thank my comp 202.141.82.83 for not crashing during my project period. 

Special thanks to my parents and my elder brother and my sisters for their tremendous support and 

love all through. Pune, April, 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iii



Contents 

Certificate       ii 

Acknowledgement      iii 

List of Figures       vi 

Nomenclature       vii 

1. Introduction      1 

1.1. High Performance Solutions for Image Processing  1  

1.2. Reconfigurable Hardware – FPGAs   3 

   1.3. Motivation and Aims of the Thesis   4 

   1.4. Organization of the report    5 

2. Literature Review      6 

   2.1. FPGA-based Image Processing Applications  6 

(i) Inspection Systems     6 

(ii)Image Compression Using FPGAs  6 

(iii)Medical Image Enhancement        7 

(iv)Real Time Image Rotation   7 

(v)Accelerating Adobe PhotoShop   8    

2.2. Spartan II FPGA Family Introduction  8 

   2.3. Features       9 

   2.4. General Overview     10 

   2.5. Spartan II Product Availability    11 

   2.5.1Ordering Information     11   

2.6. Architectural Description     13 

    2.6.1. Spartan II array     14 

2.6.2. Input/Output Block.    16 

         2.6.3. Input Path     16  

 2.6.4. Output Path     16 

         2.6.5. I/O Banking     17 

    2.7. Configurable Logic Block    18 

         2.7.1. Look-Up-Tables     19 

         2.7.2. Storage Elements    19  

 2.7.3. Additional Logic    19  

 2.7.4. Arithmetic Logic    20 

   2.8. Programmable Routing Matrix    21 

 iv



         2.8.1. Local Routing     21 

         2.8.2. General Purpose Routing   22  

 2.8.3. I/O routing     22  

 2.8.4. Dedicated Routing    22  

2.8.5. Global Routing      23 

   2.9. Clock Distribution     23 

   2.10. Delay Locked Loop     24 

   2.11. Design Implementation    24 

   2.12. Design Verification     25 

   2.13. Design Configuration     26 

3.System Review      29 

   3.1. Convolution      29 

   3.2.1D Convolution      29 

   3.3.2D Convolution      29 

   3.4. Previous Works      31 

   3.5. Symmetry Convolution Coefficients    32 

   3.6. LUT Based Convolver     34 

    3.6.1. Concept      34 

    3.6.2. Constant Coefficient LUT Based Convolver 35 

    3.6.3. DKLC LUT based Convoler (DKLC)   36 

   3.7. Distributed Arithmetic Convolver   38 

    3.7.1. Concept      38 

         3.7.2. Irregular Distributed Arithmetic Convoler  38 

4. Algorithm Implementation    42 

   4.1. Complete 3x3 Convolver    42 

   4.2.3x3 convolution implementation strategy  42 

   4.3.3x3 Convolution Architecture    44 

   4.4. Synthesis Results     47 

   4.5. wave Forms      48 

5. Conclusions and Future Work    58 

6. References        59 

7. System Review                                                                    60 

8. Algorithm Implementation                                               66 

9. Summary and Conclusions                                               73 

 v



10.References                                                                        74 

Appendix A       75 

Appendix B       80 

 

 vi



 

List Of Figures 
 
1.2 Accessing FPGA through the PCI slot   5 

2.4.Basic Spartan II FPGA Family Block Diagram  17 

2.5.Spartan 2 INPUT/OUTPUT BLOCK ( IOB)  21 

2.6.spartan II IO Banks     26 

2.7.Spartan II CLB Slice     30 

2.8. Spartan II Local Routing     31 

2.8.4BUFT connection to Dedicated Horizontal Bus Lines 34 

2.9.Global Clock Distribution Network   36 

3.7.Diagram of Distributed Arithmetic Convolver  57 

3.8.The process of applying a neighbourhood operation to an  

       image       60 

4.2.Displacement of Convolution Window   62 

4.3.Architecture for 3x3 Convolver    67 

4.3.1.Adder Tree Structure     69 

4.3.2.An  MxN image processed using an RXS convolution  

         kernal         70 

4.4.Enhanced Data Acquisition Card    76 

8.1.flow diagram of 16-pt FFT                                             102 

8.2.parallel architecture                                                         103 

8.3.Basic Radix-4 Butterfly unit                                           104 

 

 

 

 

 

 

 vii



 
 
 
 

 
 
 

Nomanclatutre 
 

FPGA  : Field Programmable Gate Array. 

CPLD : Complex Programmable Logic Devices. 

CLB : Configurable Logic Block. 

IOB : Input Output Block. 

FFT : Fast Fourier Transform. 

ASIC :Application Specific Integrated Circuits. 

DSP : Digital Signal Processors. 

XC : Xilinx Chip. 

DCT : Discrete Cosine Transform. 

DLL :Delay Locked Loop. 

PCI :peripheral  Component Interconnect. 

LUT :Look Up Table. 

RAM :Random Access Memory. 

PROM : Programmable Read Only Memory. 

CE : Clock Enable. 

GRM :General Routing Matrix. 

BUFT :Tristate Buffer. 

JTAG :Joint Test Action Group. 

CCLK :Configuration Clock 

TDI :Test Data Input. 

TAP :Test Access Port. 

TDO :Test Data Output. 

TCLK :Test Clock 

FIR :Finite Impulse Response. 

 

 

 

 

 viii



Abstract 

 
Computer manipulation of images is generally defined as Digital image processing (DIP).DIP is 

used in variety of applications, including video surveillance, target recognition, and image 

enhancement. Some of the many algorithms used in image processing include Convolution (on 

which many others are based), edge detection and contrast enhancement. These are usually 

implemented in software but may use special purpose hardware for speed. With advances in the 

VLSI technology hardware implementation has become an attractive alternative. Assigning 

complex computation tasks to hardware and exploiting  the parallelism and pipelining in 

algorithms yield significant speedup in running times. In this thesis the image processing 

algorithms like median filter, basic morphological operators, convolution and edge detection 

algorithms are implemented on FPGA. A pipelined architecture of these algorithms is presented. 
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Introduction 

 

CHAPTER 1 
 

INTRODUCTION 
 
The field of image processing has grown enormously during the past decade. People working in an 

increasing range of disciplines and application areas are using image processing technology. The 

importance of the topic can be seen from the large number of papers presented at major national 

and international conferences. These cover many application areas, including defense, 

entertainment, security systems, personal identification, medical imaging, telecommunications, 

multimedia and others. 

Generally speaking, low-level image processing operations involve performing computationally 

intensive but regular tasks on a large set of image data. So image processing application 

developers require high performance to speed up image processing applications. Over the years, 

extensive research work has been carried out to develop high performance image processing 

systems using various hardware approaches. The main approaches will first be reviewed in the 

following sections. Since this project will be based on using Xilinx Spartan II FPGA as the 

selected hardware give overviews of the Xilinx FPGA and other alternatives. 

 

1.1 High Performance Solutions for Image Processing Applications 
 

The relentless improvement in performance of mainstream microprocessors (e.g. 500Mhz Pentium 

III with MMX technology) means that it is now feasible to carry out quite a number of image 

processing applications using standard hardware. However, the research described in this thesis is 

concentrated on exploiting alternative hardware solutions for high performance image processing. 

In this section, we consider briefly three such methods: parallel processing, Digital Signal 

Processing (DSP) processors and special purpose hardware.  

 

Parallel Processing 

 
Like many other computationally intensive problems, parallel processing has been suggested as a 

possible solution for high  

performance image processing. Most solutions have tended to be 
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DSP Processors 

 

based upon pure SIMD (Single-Instruction-Multiple-Data) or 

more commonly, SPMD (Single-Program-Multiple-Data) type architectures. The typical SPMD 

approach involves distributing the image over a set of Processing Elements (PEs), with all of these 

PEs processing its own section of the image in parallel. 

However, despite the huge amount of research and the advances in parallel processing over the 

past decade, the field of parallel processing is not yet mature.  Programming a parallel machine is 

still considered difficult and the actual performance achieved on parallel computers is often only a 

fraction of their theoretical peak performance  

 

Digital Signal Processing (DSP) processors 

 

Perhaps the most common method of hardware accelerator for image processing and machine 

vision systems has been DSP-based (Digital Signal Processing) image processing boards. These 

products provide the computing power necessary to process large amounts of data in real-time. A 

DSP processor is tailored to perform repeatedly specific operations (such as MAC - multiplication 

followed by accumulation) very quickly. An advantage of the DSP approach is the more 

convenient  

programming model (provided a good optimizing compilers and libraries are available).  

 

Special purpose ASIC hardware 

 

Architectural support in the form of special purpose ASIC or VLSI hardware can provide solutions 

that are specially tailored to the image-processing algorithm in hand. This approach has been used 

in the past because of the very high performance, which it can yield. Also for large production 

volume, cost can be lower than, say, a parallel processing.   

 

There are some disadvantages to this approach however, which can be summarized as follow: 

• Special purpose hardware has a long development time, from design through to simulation 

and fabrication.  

• It can also be expensive if it is a one-off solution or if the volume required cannot justify its 

fabrication costs.  

•  
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DSP Processors 

 

• Once this special purpose hardware is built, it is not possible to change the hardware to 

accommodate slightly different needs. With such a solution a new piece of hardware is 

usually required for each new algorithm.   

A more recent approach, which aims to benefit from the advantages of special purpose. 

hardware which avoiding many of its disadvantages, is to use dynamically reprogram able 

hardware in the form of Field Programmable Gate Arrays (FPGAs). This technology is now 

overviewed.  

 

1.2 Reconfigurable Hardware – FPGAs  

 
Since the mid 1980’s, reconfigurable hardware devices in the form of Field Programmable Gate 

Arrays (FPGAs) have benefited from the same advances in IC fabrication technology as 

microprocessors. These devices aim to combine the flexibility of a programmable device (such as 

a general-purpose processor) with the performance of application specific special purpose 

hardware (such as ASICs).  

 

Reconfigurable hardware presents an alternative technology that can be reconfigured as an 

application executes. With its inherent speed and adaptability, it seems an ideal candidate for 

image processing applications.A typical simple arrangement is for an FPGA to act as part of a 

coprocessor, which communicates with  

a host processor via a bus interface and probably have shared memory (see figure 1.1) 

 

System Bus
Direct access to
Local Memory

Reconfigurable Hardware Board

FPGAs
Local

MemoryHost

MemoryCPU

 
In the past, most reconfigurable hardware boards have been realised as external boards attached to 

the system bus via an additional interface. But as FPGAs get denser, modern  
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Motivations And Aims Of Thesis 

 

reconfigurable hardware boards are realised as smaller extension boards, which can be plugged 

directly into the system bus. 

FPGAs have traditionally been configured by hardware engineers using a Hardware Design 

Language  (HDL). The two principal languages being used are Verilog and VHDL. Verilog and 

VHDL are specialized design techniques that are not  

immediately accessible to software engineers, who have often been trained using 

imperative programming languages.  

 

1.3 Motivation and Aims of the Thesis 

 

The previous sections have given reasons why it is interesting and worthwhile to investigate 

further the exploitation of FPGAs for image processing applications. 

For more detail, the disadvantages of using FPGAs identified previously improve the image 

processing application developer in several ways: 

• The developer has to think very much in terms of hardware architectures rather than image 

processing algorithms. 

• The developer must be able to use some form of hardware description language. The lower the 

level of the HDL, the more detail the developer must master. 

• The design cycle, with its numerous intermediate stages, can be much slower than the 

traditional edit-compile-execute software cycle. 

These unfortunate consequences are the underlying motivation for this thesis. The general goal is 

to support the image processing application developer in exploiting FPGAs by providing more 

appropriate software tools. In particular, the main aims are: 

• To provide a high level-programming environment, this will help to bridge the gap between 

algorithms and architecture descriptions. 

• To hide as much as possible of the details of the FPGA hardware and its environment. This in 

turn will reduce the learning curve. 

• To speed up the design cycle by eliminating some of the intermediate stages, which are 

currently necessary. This is useful for rapid experimentation, which is important for developing 

image-processing applications. 

1.4       Organization of the report 
The organization of the rest of the thesis as follows 
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Organization of Report 

 

• Chapter two provides information on FPGA’s, Spartan II family since I have implemented 

on Spartan 2 (XC2S200PQ208). 

• Chapter three describes the image processing algorithms like Median Filter, convolution 

and edge detection. 

• Chapter four provides the details on the implementation of the image processing algorithms 

on a Xilinx Spartan 2 

       FPGA for a320 x 240 gray scale image.  

• Chapter five summaries the results and future work.  
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Literature Review 

 

Chapter 2 

Literature Review 
 
 

FPGAs for Image Processing 
With the emergence of reconfigurable hardware in the form of FPGAs, it is not surprising that 

there has been a considerable amount of research into the use of FPGAs to increase the 

performance of a wide range of computationally intensive applications. One such computationally 

intensive application that could greatly benefit from the advantages offered by FPGAs is image 

processing.  The regular nature of the complex computations performed repeatedly within an 

image processing operation is well suited to a hardware based implementation using FPGAs.  

In this background chapter, firstly gives a small number of examples to illustrate the 

current use of FPGAs for image processing applications. The chapter then moves on to consider 

Spartan II FPGA, the general description, features, architectural details, and finally various 

configuration modes in which FPGA can configured  for image processing . Finally, the main 

objectives of this research are summarised at the end of the chapter.  

2.1 FPGA-based Image Processing Applications 
This section illustrates the range of uses of FPGAs for imageprocessing applications by selecting 

and presenting five different examples. 

(i) Inspection Systems 

AS&E (American Science and Engineering) introduced a set of new systems  based on Univision 

technology which is a combination of a SVGA display, an image processor and a frame grabber. 

The image processor is based on FPGAs from Xilinx. These systems have been used for the 

automatic inspection of baggage, mail, cargo, people and vehicles. 

AS&E submitted function definitions to Univision which were programmed into the Xilinx FPGA 

by Univision engineers. These functions include algorithms for image and edge enhancement, and 

a zoom function. Other features, such as pan, scroll and density expand are carried out in 

Univision’s Falcon software. The image enhancement filtering specified by AS&E uses a 7x7 

convolution, and is done using the FPGA. 

 

(ii) Image Compression Using FPGAs 
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FPGA based Image Processing Applications. 

 

There are different examples of the use of FPGAs to speed up Video compression. The 2D 

Discrete Cosine Transform (2D DCT) is one of the most effective methods in image data 

compression. FPGAs are exploited for DCT implementation as mentioned in  [Chu99] presents 

how to implement a block-matching motion algorithm efficiently by FPGAs for video 

compression. Segmentation algorithms which are sometimes  used in image compression to obtain 

an image representation at different resolution levels. [Was99] shows an implementation of some 

segmentation algorithms on a single FPGA chip.  

 

(iii) Medical Image Enhancement Using FPGA Technology 

 

Features of medical images include: 

• Images are subject to noise due to the limitations placed on the method of capture (e.g. X-ray 

doses). 

• Images can lack resolution due to the fact that rays must pass through tissues of varying 

density (e.g. in MRI and Ultrasound scans). 

Data rates in the medical imaging systems can also present the system designer with a formidable 

task. Typical systems have 8 or 16-bit pixels, a 512 x 512bit to 2048 x 2048bit image size, and 7.5 

to 30 frames per second. Designing a system to enhance images in real time at these rates requires 

optimal kernel size to control costs. Therefore FPGA technology is being exploited to perform 

image processing tasks which require a large amount of computation.  

FPGAs for medical image enhancement have been used in [RDTC98]. An enhancement algorithm 

has been implemented using a 15 x 15 image filter on a single chip (Xilinx XC4000 series). The 

enhancement algorithm is partitioned into a low pass filter and image mixing cores. This work 

forms the basis  for image resizing applications, and noise reduction image filters. 

As an another example of exploiting FPGAs for medical images, rendering volumetric medical 

images is a burdensome computational task for contemporary computers due to the large size of 

the data sets. [SAHL98] presents an algorithm and  

speedup techniques for visualising volumetric medical MRI images with FPGAs. 

 

(iv) Real Time Image Rotation 
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FPGA based Image Processing Applications. 

 

Based on applying B-spline interpolation functions, [Ber98] realised an implementation of a real-

time high-quality rotation on Xilinx XC6200 series FPGAs. The rotation  

algorithm is very computationally intensive and mathematically based. The FPGA architecture is 

very specific to the algorithm. 

 

(v) Accelerating Adobe PhotoShop 
 

Adobe PhotoShop is a widely used image processing package, which provides a modular 

architecture for extending its functionality based on plug-ins. PhotoShop provides filters that can 

manipulate an image (in true-colour 24-bit) in various ways including colour manipulation and 

filtering (e.g. Gaussian blur). For large images these filters can take a long time to run. 

 

Brief Description Of Spartan-II 2.5V FPGA Family 

 

Since I am going to implement this project on the Spartan II FPGA Let us have a look at the 

details of architecture of the device. 

 

2.2 Introduction 
 

The Spartan™-II 2.5V Field-Programmable Gate Array family gives users high performance, 

abundant logic resources, and a rich feature set, all at an exceptionally low price. The six-member 

family offers densities ranging from 15,000 to200,000 system gates, as shown in Table1. System 

performance is supported up to 200 MHz. Spartan-II devices deliver more gates, I/Os, and 

features per dollar than other FPGAs by combining advanced process technology with a 

streamlined Virtex-based architecture. Features include block RAM (to 56K bits), distributed 

RAM (to 75,264 bits), 16 selectable I/O standards, and four DLLs. Fast, predictable interconnect 

means that successive design iterations continue to meet timing requirements. The Spartan-II 

family is a superior alternative to mask-programmed ASICs. The FPGA avoids the initial cost, 

lengthy development cycles, and inherent risk of conventional ASICs. Also, FPGA 

programmability permits design upgrades in the field with no hardware replacement necessary 

(impossible with ASICs). 
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features 

 

2.3 Features 

• Second generation ASIC replacement technology. 

o Densities as high as 5,292 logic cells with up to 200,000 system gates. 

o Streamlined features based on Virtex architecture. 

o Unlimited reprogrammability. 

o Very low cost. 

• System level features 

o SelectRAM+™ hierarchical memory. 

•  16 bits/LUT distributed RAM. 

•  Configurable 4K bit block RAM. 

•  Fast interfaces to external RAM. 

o Fully PCI compliant. 

o Low-power segmented routing architecture. 

o Full readback ability for verification/observability. 

o Dedicated carry logic for high-speed arithmetic. 

o Efficient multiplier support. 

o Cascade chain for wide-input functions. 

o Abundant registers/latches with enable, set, reset. 

o Four dedicated DLLs for advanced clock control. 

o Four primary low-skew global clock distribution nets. 

o IEEE 1149.1 compatible boundary scan logic. 

• Versatile I/O and packaging. 

o Pb-free package options. 

o Low-cost packages available in all densities. 

o Family footprint compatibility in common pac. 

o 16 high-performance interface standards. 

o Hot swap Compact PCI friendly. 

o Zero hold time simplifies system timing. 

• Fully supported by powerful Xilinx development system. 

o Foundation ISE Series: Fully  integrated software.  

• Alliance Series: For use with third-party tools.  

o Fully automatic mapping, placement, and routing. 
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General Overview 

 

2.4 General Overview 
The Spartan-II family of FPGAs have a regular, flexible, programmable architecture of 

Configurable Logic Blocks (CLBs), surrounded by a perimeter of programmable Input/Output 

Blocks (IOBs). There are four Delay-Locked Loops (DLLs), one at each corner of the die. Two 

columns of block RAM lie on opposite sides of the die, between the CLBs and the IOB columns. 

These functional elements are interconnected by a powerful hierarchy of versatile routing 

channels (see Figure 2.4). 

 

Table 1 

 

Device Logic 

Cells 

System 

gates 

(Logic 

and 

RAM) 

CLB 

array 

R x C 

Total 

CLBs

Maximum 

allowable 

user I/Os 

Total 

Distributed 

RAM bits 

Total  

Block 

RAM bits 

XC2S

15 

432 15,000 8  x 12   96     86   6,144       16K 

XC2S

30 

972 30,000 12 x18  216     92   13,824      24K 

XC2S

50 

1728 50,000 16 x24   384     176   24,576      32K 

XC2S

100 

2,700 100,000 20 x30  600     176   38,400      40K 

XC2S

150 

3,888 150,000 24 x36  864     260   55,296      48K 

XC2S

200 

5,292 200,000 28 x42 1,176     284   75,264      56K 

 

Spartan-II FPGAs are customized by loading configuration data into internal static 

memory cells. Unlimited  
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General Overview 

 

reprogramming cycles are possible with this approach. Stored values in these cells 

determine logic functions and interconnections implemented in the FPGA. Configuration data can 

be read from an external serial PROM (master serial mode), or  written into the FPGA in slave 

serial, slave parallel, or Boundary Scan modes. 

Spartan-II FPGAs are typically used in high-volume applications where the versatility of a 

fast programmable solution adds benefits. Spartan-II FPGAs are ideal for shortening product 

development cycles while offering a cost-effective solution for high volume production.  

Spartan-II FPGAs achieve high-performance, low-cost operation through advanced architecture 

and semiconductor technology. Spartan-II devices provide offer the most cost-effective solution 

while maintaining leading edge performance. In addition to the conventional benefits of high-

volume programmable logic solutions, Spartan-II FPGAs also offer on-chip synchronous single-

port and dual-port RAM (block and reset on all flip-flops, fast carry logic, and many other 

distributed form), DLL clock drivers, programmable set and system clock rates up to 200 MHz. 

Spartan-II FPGAs features.  

 

2.5 Spartan-II Product Availability 
 

Table 2  shows the maximum user I/Os available on the device and the number of user I/Os 

available for each device/package combination. The four global clock pins are usable as 

additional 

user I/Os when not used as a global c lock pin. These pins are not included in user I/O counts. 

 

2.5.1 Ordering Information 

 

Spartan-II devices are available in both standard and Pb-free packaging options for all 

device/package combinations. The Pb-free packages include a special "G" character in the 

ordering code. 
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Figure 2.4  Basic Spartan II FPGA Family Block Diagram 

Table 2 

 

Device Maximu

m user 

I/O 

VQ100 

VQG100 

TQ144 

TQG144 

CS144 

CSG144

PQ208 

PQG208 

 

XC2S

15 

    86      60      86     -      -  

XC2S

30 

    92      60      92     92     -  

XC2S

50 

    176      -      92     -     140  

XC2S

100 

    176      -      92      -     140  

XC2S

150 

    260      -      -     -     140  

XC2S

200 

    284      -      -      -    140  
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standard packaging 

 

Standard Packaging 

   
 

Pb-Free Packaging 

  

Device Part Marking 
 

   

2.6 Architectural Description 
2.6.1 Spartan-II Array 

The Spartan-II user-programmable gate array, shown in Figure 1, is composed of five major 

configurable elements :  

• IOBs provide the interface between the package pins and the internal logic 

• CLBs provide the functional elements for constructing most logic 

• Dedicated block RAM memories of 4096 bits each 

• Clock DLLs for clock-distribution delay compensation and clock domain control 

• Versatile multi-level interconnect structure 
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Input/Output Block 

 

As can be seen in Figure 1, the CLBs form the central logic structure with easy access to all 

support and routing structures. The IOBs are located around all the logic and memory elements 

for easy and quick routing of signals on and off the chip. 

Values stored in static memory cells control all the configurable logic elements and interconnect 

resources. These values load into the memory cells on power-up, and can reload if necessary to 

change the function of the device. Each of these elements will be discussed in detail in the 

following sections. 

 

2.6.2 Input/Output Block 

 

The Spartan-II IOB, as seen in Figure 1, features inputs and outputs that support a wide variety of 

I/O signaling standards. These high-speed inputs and outputs are capable of supporting various 

state of the art memory and bus interfaces. Table 1 lists several of the standards which are sup-

ported along with the required reference, output and termination voltages needed to meet the 

standard. 

The three IOB registers function either as edge-triggered D-type flip-flops or as level-sensitive 

latches. Each IOB has a clock signal (CLK) shared by the three registers and independent Clock 

Enable (CE) signals for each register.  
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  Figure 2.6 Spartan 2 INPUT/OUTPUT BLOCK ( IOB) 

 

Input Block 

 

In addition to the CLK and CE control signals, the three reg isters share a Set/Reset (SR). For 

each register, this signalcan be independently configured as a synchronous Set, a synchronous 

Reset, an asynchronous Preset, or an asynchronous Clear. 

 

A feature  not shown in the block diagram, but controlled by the software, is polarity control. The 

input and output buffers and all of the IOB control signals have independent polarity controls. 

Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each 

pad. Prior to configuration all outputs not involved in configuration are forced into their high-

impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs 

may optionally be pulled up. 

 

Table  3:  Standards Suppor ted by I/O (Typical Values) 

  

IO Standared Input Reference  

Voltage ( Vref ) 

Output Source  

Voltage ( Vcco ) 

Board Termination  

Voltage ( VTT) 

LVTTL(2-24 mA)        N/A           3.3          N/A 
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LVCMOS2        N/A           2.5          N/A 

PCI(3V/5V, 

33MHz/66MHz) 

       N/A           3.3          N/A 

GTL        0.8           N/A          1.2 

GTL+        1.0           N/A          1.5 

HSTL Class I        0.75           1.5          0.75 

HSTL Class III        0.9           1.5          1.5 

HSTL Class IV        0.9           1.5          1.5 

SSTL3 Class I and 

II 

       1.5           3.3          1.5 

SSTL2 Class I and  

II 

       1.25           1.5          1.5 

CTT        1.5            3.3          1.5 

AGP-2X        1.32            3.3           N/A 

 

Input Path  

 

The activation of pull-up resistors prior to configuration is controlled on a global basis by the 

configuration mode pins. If the pull-up resistors are not activated, all the pins will float. 

Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a 

well-defined logic level prior to configuration. All pads are protected against damage from 

electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage 

protection are provided, one that permits 5V compliance, and one that does not. For 5V 

compliance, a zener-like structure connected to ground turns on when the output rises to 

approximately 6.5V. When 5V compliance is not required, a conventional clamp diode may 

connected to the output supply voltage, VCCO. The type of over-voltage protection can be 

selected independently for each pad. 

All Spartan-II IOBs s support IEEE 1149.1-compatible boundary scan testing. 

 

2.6.3 Input Path 

 

A buffer In the Spartan-II IOB input path routes the input signal either directly to internal logic or 

through an optional input flip-flop. An optional delay element at the D-input of this flip-flop 

eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of 
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the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be 

configured to conform to any of the low-voltage Signaling standards supported. In some of these 

standards the input buffer utilizes a user-supplied  threshold voltage, VREF. The need to supply 

VREF imposes constraints on which  tandards can used in close proximity Voltage  Volt age ge  

to each other. See I/O Banking,. I/O Standard (VREF) (VCCO) (VTT) There are optional pull-up 

and pull-down resistors at each input for use after configuration. 

 

2.6.4 Output Path 

 

The output path includes a 3-state output buffer that drives the output signal onto the pad. The 

output signal can be routed to  

the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state 

control of the output can also be routed directly from the internal logic or through a flip-flip that 

provides synchronous enable and disable. 

 

Output Path  

 

Each output driver can be individually programmed for a wide range of low-voltage signaling 

standards. Each output buffer can source up to 24 mA and sink up to 48 mA. Drive strength and 

slew rate controls minimize bus transients In most signaling standards, the output high voltage 

depends on an externally supplied VCCO voltage. The need to supply VCCO imposes constraints 

on which standards can be used in close proximity to each other. See I/O Banking.An optional 

weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage 

on the pad and weakly drives the pin High or Low to match the input signal. If the pin is 

connected to a multiple-source signal, the weak keeper holds the signal in its last state if all 

drivers are disabled. Maintaining a valid logic level in this way helps eliminate bus chatter. 

Because the weak-keeper circuit us es the IOB input buffer to monitor the input level, an 

appropriate VREF voltage must be provided if the signaling standard requires one. The provision 

of this voltage must comply with the I/O banking rules. 

 

2.6.5 I/O Banking 

 

Some of the I/O standards described above require VCCO and/or VREF voltages. These voltages 

are externally connected to device pins that serve groups of IOBs, called banks. Consequently, 
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restrictions exist about which I/O standards can be combined within a given bank. Eight I/O 

banks result from separating each edge of the FPGA into two banks (see Figure 2.6). Each bank 

has multiple VCCO pins which must be connected to the same voltage. Voltage is determined by 

the output standards in use. 

 

  
  

Figure 2.6. spartan 2 IO Banks 

 

Output Path  

 

Within a bank, output standards may be mixed only if they use the same VCCO. Compatible 

standards are shown in Table 4. GTL and GTL+ appear under all voltages because their open-

drain outputs do not depend on VCCO. 

Some input standards require a user-supplied threshold voltage, VREF. In this case, certain user-

I/O pins are automatically configured as inputs for the VREF voltage. About one in six of the I/O 

pins in the bank assume this role. VREF pins within a bank are interconnected internally and 

consequently only one VREF voltage can be used within each bank. All VREF pins in the bank, 

however, must be connected to the external voltage source for correct operation. In a bank, inputs 

requiring VREF can be mixed with those that do not but only one VREF voltage may be used 

within a bank. Input buffers that use VREF are not 5V tolerant. LVTTL, LVCMOS2, and PCI are 

5V tolerant. The VCCO and VREF pins for each bank appear in the device  

pinout tables. Within a given package, the number of VREF and VCCO pins can vary depending 

on the size of device. In larger devices, more I/O pins convert to VREF pins. Since these are 

always a superset of the VREF pins used for smaller devices, it is possible to design a PCB that 

 18



permits   migration to a larger device. All VREF pins for the largest device anticipated must be 

connected to the VREF voltage, and not used for I/O. 

 

        Vcco        Compatible  standareds  

   3.3V PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, 

GTL+ 

   2.5V SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ 

   1.5V HSTL 1, HSTL3 III, HSTL IV, GTL, GTL+ 

 

  Table 4 Compatible output standards 

 

2.7 Configurable Logic Block  
 

The basic building block of the Spartan-II CLB is the logic cell (LC). An LC includes a 4-input 

function generator, carry logic, and storage element. Output from the function generator in each 

LC drives the CLB output and the D input of the flip-flop. Each Spartan-II CLB contains four 

LCs, organized in two similar slices; a single slice is shown in Figure  

Configurable Logic Block  

 

2.7.In addition to the four basic LCs, the Spartan-II CLB contains logic that combines function 

generators to provide functions of five or six inputs. 

 

2.7.1 Look-Up Tables 

 

Spartan-II function generators are implemented as 4-input look-up tables (LUTs). In addition to 

operating as a function generator, each LUT c an provide a 16 x 1-bit synchronous RAM. 

Furthermore, the two LUTs within a  

slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16 x 1-bit dual-

port synchronous RAM. The Spartan-II LUT can also provide a 16-bit shift register that is ideal 

for capturing high-speed or burst-mode data. This mode can also be used to store data in 

applications such as Digital Signal Processing. 

 

2.7.2 Storage Elements 
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Storage elements in the Spartan-II slice can be configured either as edge-triggered D-type flip-

flops or as level-sensitive latches. The D inputs can be driven either by function generators within  

the slice or directly from slice inputs, bypassing the function generators. 

In addition to Clock and Clock Enable signals, each slice has synchronous set and reset signals 

(SR and BY). SR forces a storage element into the initialization state specified. 

for it in the configuration. BY forces it into the opposite state. Alternatively, these signals may be 

configured to operate asynchronously. All control signals are independently invertible, and are 

shared by the two flip-flops within the slice. 

 

2.7.3 Additional Logic 

 

The F5 multiplexer in each slice combines the function generator outputs. This combination 

provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or 

selected functions of up to nine inputs. 

Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by 

selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input 

function, an 8:1 multiplexer, or selected functions of up to 19 inputs.Each CLB has  

 

Storage Elements  

 

four direct feed through paths, one per LC. These paths provide extra data input lines or 

additional local routing that does not consume logic resources.  

 

2.7.4 Arithmetic Logic 

 

Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic 

functions. The Spartan-II CLB  supports two separate carry chains, one per slice. The height of 

the carry chains is two bits per CLB 
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 Figure 2.7 Spartan II CLB Slice ( two identical slices in each CLB) 

 

Programmable Routing Matrix 

 

The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within 

an LC. In addition, a dedicated AND gate improves the efficiency of multiplier  implementation. 

The dedicated carry path can also be used to cascade function generators for implementing wide 

logic functions. 

 

2.8 Programmable Routing Matrix 
 

It is the longest delay path that limits the speed of any worst-case design. Consequently, the 

Spartan-II routing architecture and its place-and-route software were defined in a single 
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optimization process. This joint optimization minimizes long-path delays, and consequently, 

yields the best system performance. The joint optimization also reduces design compilation times 

because the architecture is software-friendly. Design cycles are correspondingly reduced due to 

shorter design iteration times. 

2.8.1 Local Routing 

 

The local routing resources, as shown in Figure 2.8, provide the following three types of 

connections  

• Interconnections among the LUTs, flip-flops, and General Routing Matrix (GRM) 

• Internal CLB feedback paths that provide high-speed connections to LUTs within the 

same CLB, chaining.them together with minimal routing delay                       

• Direct paths that provide high-speed connections between horizontally adjacent CLBs, 

eliminating the delay of the GRM . 

 

 
Figure 2.8 Spartan II Local Routing 

 

General Purpose Routing  

 

2.8.2 General Purpose Routing 

 

Most Spartan-II signals are routed on the general purpose routing, and consequently, the majority 

of interconnect resources are associated with this level of the routing hierarchy. The general 

routing resources are located in horizontal and vertical routing channels associated with the rows 

and columns CLBs. The general-purpose routing resources are listed below 
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• Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix 

through which  

• horizontal and vertical routing resources connect, and is also the means by which the CLB 

gains access to the general purpose routing. 

• 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions. 

• 96 buffered Hex lines route GRM signals to other GRMs six blocks away in each one of 

the four directions. Organized in a staggered pattern, Hex lines may be driven only at their 

endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint 

(three blocks from the source). One third of GRM the Hex lines are bidirectional, while 

the remaining ones are unidirectional. 

• 12 Long lines are buffered, bidirectional wires that  GRM distribute signals across the 

device quickly and  

• Efficiently. Vertical Long lines span the full height of the device, and horizontal ones span 

the full width of the device. 

 

2.8.3 I/O Routing 

 

Spartan-II devices have additional routing resources around their periphery that form an interface 

between the CLB array and the IOBs. This additional routing, called the Versa Ring, facilitates 

pin-swapping and pin locking, such that logic redesigns can adapt to existing PCB layouts. Time-

to-market is reduced, since PCBs and other s ystem components can be manufactured while the 

logic design is still in progress. 

 

2.8.4 Dedicated Routing 

 

  

Dedicated Routing  

 

Some classes of signal require dedicated routing resources to maximize performance. In the 

Spartan-II architecture, dedicated routing resources are provided for two classes of signal. 

 Horizontal routing resources are provided for on-chip 3-state busses. Four partition able bus lines 

are provided per CLB row, permitting multiple busses within a row, as shown in Figure 

2.8.4.Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB. 
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Figure 2.8.4 BUFT connection to Dedicated Horizontal Bus Lines 

 

2.8.5 Global Routing 

  

Global Routing resources distribute clocks and other signals with very high fan-out throughout 

the device. Spartan-II devices include two tiers of global routing resources referred to as primary 

and secondary global routing resources. 

• The primary global routing resources are four dedicated global nets with dedicated input 

pins that are designed to distribute high-fan-out clock signals  

• with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock 

pins. The primary global nets may only be driven by global buffers. There are four global 

buffers, one for each global net. 

• The secondary global routing resources consist of 24 backbone lines, 12 across the top of 

the chip and 12  

• Across bottom. From these lines, up to 12 unique signals per column can be distributed 

via the 12 loglines in the column. These secondary resources are more flexible than the 

primary resources since they are not restricted to routing only to clock pins. 

 

2.9 Clock Distribution 

 
Clock Distribution  

 

The Spartan-II family provides high-speed, low-skew clock distribution through the primary 

global routing resources described above. A typical clock distribution net is shown in Figure 2.9. 

Four global buffers are provided, two at the top center of the device and two at the bottom center. 

These drive the four primary global nets that in turn drive any clock pin. 

Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to 

the global buffer is selected either from these pads or from signals in the general  
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purpose routing. Global clock pins do not have the option for internal, weak pull-up resistors. 

 

   
  Figure 2.9 Global Clock Distribution Network 

 

2.10 Delay-Locked Loop (DLL) 
 

 Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that 

can eliminate skew between the clock input pad and internal clock-input pins throughout the 

device. Each DLL can drive two global clock networks. The DLL monitors the input clock and 

the distributed clock, and automatically adjusts a clock delay element. Additional delay is 

introduced such that clock edges reach internal flip-flops exactly one clock period after they 

arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by 

ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at 

the input. 

In addition to eliminating clock-distribution delay, the DLL provides advanced control of 

multiple clock domains. The DLL provides four quadrater phases of the source clock,  

can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. It has six outputs. The 

DLL also operates as a clock mirror. By driving the output from a DLL off- 

Delay Locked Loop(DLL)  

 

chip and then back on again, the DLL can be used to deskew a board level clock among multiple 

Spartan-II devices. 

In order to guarantee that the system clock is operating correctly prior to the FPGA starting up 

after configuration, the DLL can delay the completion of the configuration process until after it 

has achieved lock. 
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2.11 Design Implementation 
 

The place-and-route tools (PAR) automatically provide the implementation flow described in this 

section. The practitioner takes the EDIF net list for the design and maps the logic into the 

architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines 

the best locations for these blocks based on their interconnections and the desired performance. 

Finally, the router interconnects the blocks. 

The PAR algorithms support fully automatic implementation of most designs. For demanding 

applications, however, the user can exercise various degrees of control over the process. User 

partitioning, placement, and routing information is optionally specified during the design-entry 

process. The implementation of highly structured designs can benefit greatly from basic floor 

planning. 

The implementation software incorporates Timing Wizard® Timing-driven placement and 

routing. Designers specify timing requirements along entire paths during design  

entry. The timing path analysis routines in PAR then recognize these user-specified requirements 

and accommodate them. 

Timing requirements are entered on a schematic in a form directly relating to the system 

requirements, such as the targeted clock frequency, or the maximum allowable delay between two 

registers. In this way, the overall performance of the system along entire signal paths is 

automatically tailored to user-generated specifications. Specific timing information for individual 

nets is unnecessary. 

 

2.12 Design Verification 
In addition to conventional software simulation, FPGA users can use in-circuit debugging 

techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real 

time without the need for  extensive sets of software simulation vectors.                                                             

 

Configuration 

 

The development system supports both software simulation and in-circuit debugging techniques. 

For simulation, the system extracts the post-layout timing information from the design database, 

and back-annotates this information into the net list for use by the simulator. Alternatively, the 

user can verify timing-critical portions of the design using the static timing analyzer. 
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For in-circuit debugging, the development system includes a download and read back cable, 

which connects the FPGA in the target system to a PC or workstation. After downloading the 

design into the FPGA, the designer can single-step the logic, read back the contents of the flip-

flops, and so observe the internal logic state. Simple modifications can be downloaded into the 

system in a matter of minutes. 

 

2.13 Configuration 
 

Configuration is the process by which the bits stream of a design, as generated by the Xilinx 

development software, is loaded into the internal configuration memory of the FPGA. Spartan-II 

devices support both serial configurations, using the master/slave serial and JTAG modes, as well 

as byte-wide configuration employing the Slave Parallel mode. 

 

2.13.1 Modes 

 

Spartan-II devices support the following four configuration modes: 

• Slave Serial mode. 

• Master Serial mode. 

• Slave Parallel mode. 

• Boundary-scan mode. 

The Configuration mode pins (M2, M1, M0) s elect among these configuration modes with the 

option in each case of having the IOB pins either pulled up or left floating prior to configuration. 

Configuration through the boundary-scan port is always available, independent of the mode 

selection. Selecting the boundary-scan mode simply turns off the other modes. The  

three mode pins have internal pull-up resistors, and default to a logic High if left unconnected. 

 

Configuration 

 

2.13.1.1Serial Modes 

 

There are two serial configuration modes: In Master Serial mode, the FPGA controls the 

configuration process by driving CCLK as an output. In Slave Serial mode, the FPGA  
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passively receives CCLK as an input from an external agent (e.g., a microprocessor, CPLD, or 

second FPGA in master mode) that is controlling the configuration process. In both modes, the 

FPGA is configured by loading one bit per CCLK  

cycle. The MSB of each configuration data byte is always written to the DIN pin first. 

 

2.13.1.2 Slave Parallel Mode 

 

The Slave Parallel mode is the fastest configuration option. Byte-wide data is written into the 

FPGA. A BUSY flag is provided for controlling the flow of data at a clock frequency FCCNH 

above 50 MHz. 

 

2.13.1.3 Boundary-Scan Mode 

 

In the boundary-scan mode, no nondedicated pins are required, configuration being done entirely 

through the IEEE 1149.1 Test Access Port. 

Configuration through the TAP uses the special CFG_IN instruction. This instruction allows data 

input on TDI to be converted into data packets for the internal configuration bus. 

The following steps are required to configure the FPGA through the boundary-scan port. 

1. Load the CFG_IN instruction into the boundary-scan instruction register (IR) 

2. Enter the Shift-DR (SDR) state 

3. Shift a standard configuration bitstream into TDI 

4. Return to Run-Test-Idle (RTI)  

5. Load the JSTART ins truction into IR  

6. Enter the SDR state  

7. Clock TCK through the sequence (the length is programmable) 

8. Return to RTI. 

Configuration and read back via the TAP is always available. The boundary-scan mode simply 

locks out the other modes. The boundary-scan mode is selected by a <10x> on the mode pins 

(M0, M1, M2). 

 

Objective Of Proposed Project  

 

2.13.1.4 Readback 
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The configuration data stored in the Spartan-II configuration memory can be readback for 

verification. Along with the configuration data it is possible to readback the contents of all flip-

flops/latches, LUT RAMs, and block RAMs. This capability is used for real-time debugging. For 

more detailed information see XAPP176, Spartan-II FPGA Family Configuration and Readback. 

 

2.14 Objectives of the Proposed Project 

 

• It should enable the definition of scaleable and parameterisable architectures and building 

blocks (e.g. to allow experimentation with different word lengths, or use different template 

window sizes). 

• It should be easy to use and easy to learn, and should not appear overly mathematical. 

• It should enable first-time-right place and route, but without requiring the architecture 

designer to be responsible for placement and routing. The environment should apply ‘common 

sense’ placement and routing rules. 

• It should be convenient for image processing operations, which shields the user from using 

low level details of hardware description. 

• The description notation should be closer to the application domain to bridge the gap between 

hardware and image processing application. 

• The image processing application developer should be able to experiment with different image 

algebra-based operations. 

• The design cycle should be a rapid and convenient as possible. 
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Convolution 

Chapter 3 

System Review 

3.1 Convolution 
Convolution is a simple mathematical operation, which is fundamental to many common image-

processing operators. Convolution is a way of multiplying together two arrays of numbers of 

different sizes to produce a third array of numbers. In image processing the convolution is used to 

implement operators whose output pixel values are simple linear combination of certain input 

pixels values of the image. Convolution belongs to a class of algorithms called spatial filters. 

Spatial filters use a wide variety of masks, also known as kernels, to calculate different results, 

depending on the desired function 

 

3.2 1 -D Convolution 
 

The convolution operation is a mathematical operation which takes two functions f(x) and g(x) and 

produces a third function h(x). Mathematically, convolution is defined as:  

   
g(x) is referred to as the filter. 

 

3.3 2D-Convolution 

 

2D-Convolution is most important to modern image processing. The basic idea is that a window of 

some finite size and shape is scanned over an image. The output pixel value is the weighted sum of 

the input pixels within the window where the weights are the values  

of the filter assigned to every pixel of the window. The window with its weights is called the 

convolution mask. Mathematically, convolution on image can be represented by the 

following equation.  

31image the is y and filter the is h image input the is x where 
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2D-Convolution 

 

An important aspect of convolution algorithm is that it supports a virtually infinite variety of 

masks, each with its own feature. This flexibility allows many powerful applications. 3x3 

convolution masks are most commonly used, For example the derivative operators, which are 

mostly, used in edge detection use 3x3 window kernels. They operate only a pixel and its directly 

adjacent neighbors. Figure 3.5 shows a 3x3 convolution mask operated on an image. The center 

pixel is replaced with the output of the algorithm; this is carried for the entire image. Similarly 

larger size convolution masks can be operated on an image. 

 

The convolution basically consists of sum of (delayed) products; therefore multiplication is an 

essential operation. Consequently, each multiplier can be implemented separately, and then the 

addition applied. Nevertheless, disregarding the multiplier entities allows for further optimizations. 

For example, for the LM, instead of considering separately additions within the multipliers and 

then the final addition, a single adders block can be formed, which allows for better grouping the 

adders, and therefore for implementing a more hardware-efficient circuit. This design approach to 

the group of the LMs is further denoted as LUT based Convolution (LC). 

 

In addition, a (parallel) Distributed Arithmetic Convoler (DAC) – a completely different 

architectural solution can be implemented. This solution is similar to the LM, nevertheless, the 

order of multiplications and additions is disregarded, which allows for memory data width 

reduction, in comparison to the LC. This chapter presents also a novel approach: an Irregular 

Distributed Arithmetic Convolver (IDAC) which is a combination of the DAC and LC. 

Unlike for multiplier less multiplication (MM), for convolution common substructure is not 

considered separately within each multiplier, but substructure sharing is applied for all coefficient 

altogether. Therefore a term, Multiplier less Convolution (MC), instead of the MM, is introduced. 

This causes that trading-off between the (LUT based) IDAC versus the MC is more complex  than 

it is the case for the multiplication and the LM vs. MM. Consequently a sophisticated algorithm 

has been developed to confront the problem. 

 

For convolution interdependence between coefficients is often very strong, as symmetric filters are 

often implemented. Consequently, additional algorithm for automatic detecting and grouping 

similar coefficients is also implemented. 
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Previous works 

 

3.4. Previous Works 
 

For ASICs, several FIR filter silicon compilers have been developed. Nevertheless, FPGA designs 

differ significantly from the ASICs, as FPGAs usually incorporate dedicated ripple-carry logic, 

which makes that the different adders approach is adopted. Furthermore, FPGAs implement logic 

employing Look-Up Tables and therefore LUT-based multiplication or convolution is an 

alternative solution to be taken into account. 

An automatic implementation of FIR filters on FPGAs has been presented in .This tool employs 

inverted form 1D FIR filters  and techniques adopted for ASICs, such as power-of-two coefficient 

space (denoted hereby as the multiplierless multiplication), carry-save adders for XC3000 family 

[Xil93] (XC3000 family does not incorporate dedicated ripple-carry logic) and dedicated ripple-

carry adders for XC4000 . Up to the author’s knowledge, the SS has not been implemented in , 

only CSD representation is used. Employing inverted form FIR filters  

instead of direct form filters (implemented by the AuToCon) excludes implementation of 

distributed arithmetic. Furthermore, adders operate on wider arguments in comparison to the 

direct-form filters.Besides inverted form filters are not recommended for 2D filters as wider line 

buffers are required.  

 

Nevertheless, a 2D filter can be constructed from several inverted form 1D filters. Conversely, the 

structure of inverted form filters is more modular. Furthermore, a lot of design effort in has been 

put into mapping (optimising placment and routing) to increment clock frequency. Pipelining is 

(somehow) built-in the structure of the inverted form filters, therefore, in comparison to the 

pipeline architecture of the direct-form filter, it might seem that less flip-flops are required. 

However inverted-form filters require wider pipelining registers. Summing up, direct-form filters 

allow more architectural solutions to be adopted  and more design parameters to be specified in 

comparison to the  

inverted-form filters. Therefore, the direct-form solution has been adopted in the AuToCon, 

nevertheless more thorough research is required to compare these two different architectural 

solutions. Besides direct form filters can be employed as a sum of products, etc. 

Core Generator, program distributed by Xilinx Inc., automatically generates FIR filters employing 

only (parallel) distributed arithmetic. Nevertheless, implementation results obtained for the 
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AuToCon outperform the results obtained for  Core Generator, as the AuToCon considers different 

architectural solutions and applies more sophisticated  

Symmetry of Convolution Co-efficient 

 

optimisation techniques. The Core Generator takes into account mapping of element into the 

FPGA. Conversely, the AuToCon generates circuits on higher level using VHDL-approach, 

therefore it might seem that the throughput for the Core Generator circuit is 

greater.Implementation results proved that this is not the case. 

 

Xilinx Inc. also provides a VHDL-based FIR filter description employing inverted-form and KCM 

approach . Nevertheless, the input width is fixed and only number of taps and coefficient values 

can be changed. Besides, the KCM LUTs operate on 4 times the input clock frequency, therefore 

comparison with the AuToCon is impossible. It should be noted that there is a tendency for FPGAs 

to describe systems on high level (e.g. VHDL) and disregard relative placement of elements. This 

allows for reducing design time and/or implementing more sophisticated optimisation techniques. 

 

3.5  Symmetry of Convolution Coefficients 
 

Values of coefficients, in general, can be selected without any restrictions, however filters with 

symmetry are usually implemented, e.g. to obtain linear phase filters  The filters given in Figure 1-

1 are also with symmetry (or asymmetry in the case  
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of Sobel gradient filter). Table 5-1 gives possible 3x3 convolution kernels for different 

symmetries.

W 0,0

W 2,2W 2,0

W 1,2

W 2,1

W 1,1W 1,0

W 0,2W 0,1 W 0,0

W 0,2W 0,0

W 1,2

W 0,1

W 1,1W 1,0

W 0,2W 0,1

W 0,0
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W 0,0W 0,0

W 1,0

W 0,1

W 1,1W 1,0

W 0,0W 0,1

W 0,0

W 0,0W 0,0

W 0,1

W 0,1

W 1,1W 0,1

W 0,0W 0,1

a) c)

b) d)

e)

 

Table Different Filter Symmetries a) with out symmetry b) horizontal c) vertical d) horizontal-

vertical e) point symmetry 

 

The symmetry of the filter allows further optimisation of the circuit. The same coefficient inputs 

should be at first added, and then the common multiplication performed. Figure 5-1 shows the 

circuit simplifications, and Table 5-2 number of adders and multipliers after symmetry has been 

taken into account. It can be seen that for horizontal and vertical symmetry the number of 

multipliers is the same. However the number of adders and pixel delay elements is reduced for 

vertical symmetry because for this symmetry, only a single adder is needed for every common 

line. For the point symmetry, the number of multipliers is further reduced. It should be noted that 

for 3�3 convolution kernels, savings are less significant than for large kernel sizes, for which the 

number of multipliers is halved for horizontal or vertical symmetry, quartered for horizontal-

vertical symmetry and reduced to 1/8 for point symmetry. It should be noted that for some 2D 

filters with the point symmetry, it  
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LUT Based Convolver 

 

may be beneficial to implement two independent vertical and horizontal 1D filtering. This is often 

the case for wavelet transforms. 

 

3.6  LUT based Convoler (LC) 
3.6.1.  Concept 

The structure of the LUT based Convoler (LC) is similar to the sum of products. owever to 

optimise the structure of the adders, all additions are performed within a single adders block, 

therefore multiplier entities are disregarded. To illustrate savings obtained by the use of the LC 

instead of the sum of the LMs, an  example is given in Figure 5-2, for  convolution kernel size 

equal 1�2 and 8�8 multipliers. Let consider savings obtained by disregarding the multiplier 

bounds, for LUT output width equal w= 12 and LUT address width (shift between the same 

multiplier LUTs) s= 4. For the LM, the adder width within  a multiplier equals roughly w. The 

final adder width equals roughly w+s. Therefore total adders width for the sum of the LM is equal  

 wLM= 3 �w+s. 

For the LC, three adders of width equal w are employed, and therefore total number of Full /Half 

Adders is equal  

wLC= 3 �w. 

Consequently, a penalty factor, a result of employing sum of LMs instead of the LC, is roughly 

  
The above penalty factor is further employed for substructure sharing adders when two arguments 

are shifted by s. It should be also noted that employing the LC rather than the sum of LMs reduces 

the maximum width of the adder from roughly w+s to w, and therefore reduces maximum 

propagation time. 

 

3.6.2. Constant coefficients LUT based Convoler (KLC) 

 

The KLC employs the same optimisation techniques as the KCM: LSB Address Width Reduction 

(LAWR), Don’t Care  Address Width Reduction (DAWR) and Memory  Sharing (MS). In 

addition, optimisation techniques characteristic only for convolers are employed . 
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Similar Co-efficient Optimization 

 

Similar Coefficients Optimisation (SCO) 

 

Section 5.2 describes the symmetries of filters. However, also different symmetries and coefficient 

combinations can be used [Lu92]. Therefore, the AuToCon compares all coefficients and groups 

them into similar coefficients blocks. Coefficients grouped together can be shifted and negated. 

Grouped inputs are shifted in respect to the coefficient value and then added (subtracted). Finally, 

a single multiplier is only implemented. This method allows for reducing the number of 

multipliers. For example, for the filter: 

  
similar coefficient inputs are added: 

 
and the final result is: 

 

  
In this example the number of multipliers has been reduced by3. 

 

Pipelining Optimisation 

 

additional parameter p defines maximum number of  

logic elements between pipelining registers. Figure 5-3a shows an example of a convoler with 

straightforward pipelining architecture. For this method, however, additional pipelining registers 

are often required to compensate different pipelining delays. To reduce this drawback, pipelining 

optimisation is implemented, for which feeding points of arithmetic units are relocated in order to 

reduce unnecessary registers (similar optimisation is implemented in [Har96]). A result of the . It 

should be noted that the total convoler pipelining delay is often reduced in this method. This 

optimisation technique is implemented for every architecture described in this chapter. 

 

3.6.3. Dynamic Constant coefficients LUT based Convoler (DKLC) 

For the DKLC, the value of coefficients can be changed in similar way, as it is in the case for the 

DKCM; rearranging the order of adders does not influence the LUTs programming schedule. For 

the DKCM, address multiplexing is performed on the input of the multiplier.  
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Dynamic Constant Coefficient LUT Based  Convolver 

 

Similarly for the DKLC, the multiplexer can be placed on the input of each multiplier. Let denote 

this option as DKLC-M. An alternative solution, denoted as DKLC-C, is to place the multiplexer 

on the convoler input and so the address sequence for programming LUTs will  propagate through 

the convolution delay elements to the input of the LUTs. The drawback of this method is more 

sophisticated control logic. Besides, the number of programming cycles increases because of 

additional propagation time through the filter delay elements. In order to reduce this time the 

multiplexers should be rather placed at the beginning of each line. Therefore the programming 

sequence will propagate only through pixel delay elements. Summing up, M ,N (M- horizontal; N- 

vertical kernel size) convoler requires N multiplexers and M-1 additional programming cycles for 

dynamic reconfiguration. In this option, however, similar coefficient adders (for symmetric filters, 

etc.) distract memory addressing and make the approach more complicated.  

 

It should be noted that the LUTs can be programmed either in serial: a single multiplier is 

programmed at the time, or in parallel, when all multipliers are programmed simultaneously. The 

serial option has longer programming time but a single RAM Programming Unit (RPU) is 

required. The parallel option has short programming time but each multiplier requires its own RPU 

and therefore this option occupies more hardware. The choice between the serial and parallel 

option should be taken after considering the average time between coefficients changes in similar 

way as it was described in Section 4.6. 

 

It should be noted that so far only self-programming architecture of the DKCM and DKLC has 

been considered. However, the LUTs can be programmed using an off-chip interface. In this  case 

new LUT contents can be pre-calculated by a system processor and then written to the LUT 

memories. In this case the RPU is not required. Conversely, off-chip transfers are slower than 

internal ones and involve the system processor, which may not be accepted in some designs. 

 

The DKLC can be implement with many different options. This is one of the reasons that the 

AuToCon cannot generate automatically any DKLC. Consequently including the DKLC to the 

AuToCon might be a suggestion for further work. Nevertheless Virtex II  

incorporates built-in fully functional multipliers, which makes the DKLC option less attractive. 

 

Distributed Arithmetic Convolver 
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3.7  Distributed Arithmetic Convoler (DAC) 
 

3.7.1. Concept 

 

The idea behind the DAC [Bur77, Min92, Do98] is to compute the convolution in different order 

than for the LC. The following mathematical transformation has been employed: 

  
where: N- size of the convolution kernel, L- width of the input argument a (in bits), hi- ith 

coefficient of the convolution, ai,j- -j-th bit of the i-th input argument. 

 

 
 Figure 3.7 Diagram of Distributed Arithmetic Convolver 

In comparison with the LC, the LUT data bus width of the DAC is smaller, as it can be seen from 

eq. 5-8. 

  
where: WDAC - data width of LUTs for the DAC, WLC - data width of LUTs for the LC, WIN 

width of the input of the LUTs, K- width of the coefficients of the convolution, N- the size of the 

convolution kernel. 

 The data width of the LUTs is a direct sum for the LC, and is a sum of the logarithm of the 

number of inputs to the LUT for the DAC. This is a consequence that input bits are at the same 

significance for the DAC. The lower output width of the LUTs causes substantial FPGAs area 

savings, because not only smaller memory modules but also shorter adders are required. As a 

result, the DAC is preferable to the LC. The drawback of the DAC solution is that the dynamic 

change of the coefficient is much more difficult in comparison to the LC, which makes this 

approach rather impractical for dynamic systems. 
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Irregular Distributed Arithmetic Convolver 

 

A diagram of the DAC is shown in Figure 5-4. Similarly as for the LM, the size of the LUT 

memory grows rapidly with the size of the convolution kernel N. Therefore the LUT 

memory should be split into two or more independent LUTs, and then adders employed similarly 

like for the LM. The split of the memory should be implemented with respect to the cost relation 

between different memory modules and adders. 

Consequently, in some cases the LUT based Hybrid Convoler (LHC) [Wia00c, Wia00d] - the 

hybrid of the LM and DAC, may be implemented, as the optimum memory split issue is 

concerned. For example, for the 3�3 convolution N=9=3 �3, coefficient width K=8 and input 

width L=8, two different memory modules should be used: four and five input  

memory blocks (4+5=9), but the 32�1 memory module occupies twice the area of the 16�1 

module. Therefore the alternative LHC may employ the DAC for N=8 and a single LM. The cost 

for the pure DAC is 226 XC4000 CLBs and 209 CLBs for the LHC [Wia00c]. Therefore 17 CLBs 

are saved by the use of the LHC. 

 

3.7.2 .Irregular Distributed Arithmetic Convoler (IDAC) 

 

The previous solution assumes that the structure of the DAC is the same for different significance 

of input bits. However, this need not be the case, and bits of different significance can be grouped 

together in the same LUT. Therefore more or less a  combination of the LC and DAC is obtained. 

This novel, introduced by the author of this thesis, design approach is denoted as Irregular 

Distributed Arithmetic Convoler (IDAC). An IDAC optimisation algorithm should optimise rather 

the address and data widths of memories and adder widths, and the bit-significance of inputs is 

only an input parameter which influences the LUT data widths. 

 

A greedy algorithm for IDAC is proposed. This algorithm optimises a partial solution, i.e. 

determines the LUT address width and the LUT inputs, according to the algorithm given in Listing 

5-1. Before the optimisation algorithm is applied, every coefficient is shifted to the left until it is 

made odd. This reduces the data width of the LUT as the LSB of an even coefficient is fixed to 

zero. The input bit for which the coefficient is shifted is further treated as the input bit with 

significance increased by the number of shifts. 

 

3.8 2-D Convolver 
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2D- Convolver operation 

 

In image processing, a 2-D neighbourhood operation forms the basis of most low level image 

processing algorithms. Any neighbourhood image operation involves passing a 2-D window over 

an image, and carrying out a calculation at each window position, as illustrated in figure 3.8. 
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 ` Figure 3.8.The process of applying a neighborhood operation to an image 

The result image is defined as follows: 
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which can be rewritten as:  
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where c(l) are coefficient column vectors.  For example, a 3 by 3 window may be reorganised as 

follows: 
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and x(i,j+l) are input image column vectors and where 
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This has split the overall convolution into a sum of scalar-products. Each of these vectors of 

coefficients c(l) and column vectors x(i,j+l) produces a partial result. These can be calculated 

independently of the column l and finally added to produce the result value Ri,j. 

 

To allow each pixel to be supplied only once to the FPGA, internal line buffers are required. This 

is a common approach used in many hardware realisation such as  SH. The idea is that these 

internal line buffers (or line delays) are used to synchronies the supply  of input values to the MAC 

units (multiply-and-accumulate) ensuring that all the pixel values involved in a particular 

neighbourhood operation are processed at the same instance. Figure 2.7 shows the architecture for 

a 2-D convolution operation with a 3 by 3 window kernel. It should be noted that several other 

architectures, such as Systolic Arrays, are available which also are capable of implementing such 

algorithms.  
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Contd 

 

Each of the Processing Elements (PEs) stores a template weight (or coefficient) internally and 

performs the basic multiply and accumulate operations as defined in equation 2.3  

above. The line buffer units are used to synchronise the 3 separate sets of PEs. The word buffer 

(wb) in each of the PEs is used to synchronise the supply of the pixels. 

 

The Processing Element (PE) distinguishes a convolver from any of the other neighbourhood 

operations. Indeed, the initial structure of a PE has essentially only two varying components: a 

local operation (for convolution, a multiplier, a multiplier) and a global operation (for 

convolution, an accumulator). To implement the entire instruction set of the coprocessor, only a 

small set of (five) components blocks is required 
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Algorithm Implementation 
 

Chapter 4 

ALGORITHM IMPLEMENTATION 
 
4.1 COMPLETE 3X3 CONVOLVER 

The FPGAs dominates the DSP market with an over 50% market share . This processor was designed to handle the most computation intensive 
applications. However, even with single- cycle multiply-and-accumulate capability, certain low level operations, by their very nature, require 
several cycles to complete. The 2-D convolution, one of the most common image processing operations, belongs to this class of applications. In fact, 
a highly optimized VHDL language program, written to reform 3x3 convolution.  even with the use of high performance features of the FPGA such 
as parallel instructions and delayed repeat blocks. With an accelerator targeting a throughput of one convolved pixel per cycle or more, this 
application offers a good potential for acceleration. The following section describes the implementation strategy chosen for a 3x3 convolution 
coprocessor. 

4.2 3x3 convolution implementation strategy 

The 3x3 convolution of an image is defined by equation 1: 

  

where P'm,n is the convolved pixel, Pm,n is the image's actual pixel value, and Wi,j is the 

convolution kernel weight. Equation 1 indicates that the 3x3 convolution P'm,n of each pixel Pm,n 

requires knowledge of the values of its 8 immediate neighbors. Similar to the Cytocomputer 

machine , a strategy to extract windows of pixels from a single data stream has been adopted. Pixel 

values are fed line by line, from top to bottom, until 2 complete lines and the first 3 pixels of a 

third line are contained within a series of shift registers. At that point, all the pixels belonging to 

the first 3x3 convolution window are available inside the coprocessor.  

Convolver Implementation Stratagy 
 

From that moment on, each new pixel value inserted into the chain of shift registers effectively 

displaces the convolution window to a new adjacent position until the whole image has been 

visited (see figure 4.2). 
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Evidently, storing 2 complete 320 pixel lines within a chain of shift registers would be very 

expensive in an ASIC or FPGA based implementation. .. The problem with this scheme is that to 

compute 3x3 convolutions on band borders requires having access to pixel values belonging to 

adjacent bands. Hence, a certain amount of overlap must be allowed between bands. A number of 

pixel columns must then be transmitted more than once, thereby degrading the coprocessor's 

overall performance.  

 

Furthermore, the 3x3 convolution kernel weights have been restricted to the values -4, -2, -1, 0, 1, 

2 and 4. This set of values was chosen because it allowed several useful image enhancement filters 

to be implemented (average, Sobel, Prewiitt, Laplace, etc.), especially in the area of edge detection 

, while reducing by half the multipliers' overall size and complexity  

 

 

   

Figure.4.2  Displacement of Convolution Window 

The reception of the pixel values is made through an  FIFO of depth equals row size of the image 

that is 320  The input port's communication interface generates the necessary handshaking signals 
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required to complete data transfers. The control unit, composed of a finite state machine coupled 

with a counter and a comparator, keeps track of events and identifies each byte before it is read 

from the input FIFO according to a predetermined sequence. 

4.3 3 x 3 Convolution Architecture 
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  Figure 4.3  Architecture for 3x3 Convolver. 

To compute a full 3x3 convolution in a single cycle, 9 multipliers were needed. With the supported 

kernel weights having been restricted to the aforementioned set of values, each  

multiplier's task could be reduced to single cycle shifts, resets to zero and two's complement 

conversions. A summation unit composed of carry-save adders in a Wallace-tree configuration 

tallies up the 9 pixel-weight products for each convolution window. The result produced by the 
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summation unit is then fed to a saturation module, which converts it back to an unsigned 8-bit 

value. A set of pipeline registers was inserted between the multipliers and the summation unit to 

preserve a 40 ns clock cycle. 

Every element in this design was obtained through synthesis of VHDL behavioral descriptions. 

The Mentor Graphics 8.2.5 design environment provided all the compilation, simulation and 

synthesis tools required for the tasks . The synthesized netlist of the  

Adder Tree Structure 
 

convolution processor was  mapped subsequently to Xilinx FPGA devices. Transistors and 

configurable logic block (CLB) counts for both mappings are provided . 

Adder AdderAdderAdder

Adder Adder

Adder

Adder

Prod 1 Prod 2 Prod 6Prod 5 Prod 7Prod 8 Prod 9Prod 3 Prod 4

 

  Figure 4.3.1 Adder Tree Structure 
 
We included the  and Xilinx Spartan II CLBs. The entire convolution coprocessor uses up 955 

Slices and fits within  Xilinx XC2S200 device,. A novel property of Xilinx Spartan II devices is 

the ability to use the look-up tables inside their CLBs as RAM. shift registers with RAM instead of 
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flip-flops. This implementation specific optimization, however, would not have eliminated the 

need for  XC2S200 devices, and was not included  in the present version of the convolution 

coprocessor for lack of time. Taking into account the communication ports' throughput and the 

effect of vertical band processing, a speed-up of over 14 can be expected compared to a software 

implementation. 

 
With the experience gained from the design of the 3x3 convolver, we will see how an arbitrary-

size 2-D convolver can be obtained. The object of this study is to find the most  

 

 

Synthesis Results 
 

convenient way of including a generalized 2-D convolver in a library of reconfigurable hardware 

accelerators. 

 

 
 
 

   
 
 Figure 4.3.2  An  MxN image processed using an RXS convolutional kernal  
 
 
4.4 Synthesis Results: 
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Number of Slices: 955  out of   2352    40%   
 
Number of Slice Flip Flops:  1689 out of   4704    35%   
 
Number of 4 input LUTs: 1306 out of   4704    27%   
 
Number of bonded IOBs: 109 out of    144    75%   
 
Number of BRAMs: 2 out of     14    14%   
 
Number of GCLKs  :         1  out of      4    25%   
 
 
 
 
 
 
 
Test bench waveforms 
 
The following are the Test Bench waveforms of modelsim simulator 
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Test bench waveforms 
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PCI Based Data Acquisition Card 
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  Figure 4.4 Enhanced Data Acquisition Card 
 
After designing and verifying the 2D-Convolver now its needs made available for real time 

applications. The above figure shows arrangement for how it is implemented The above  figure  is 

the PCI based Data Acquisition Card, in this there are three Spartan II FPGAs  which are used 

three different functionality. It is basically used for image processing applications as Capturing of 

image and FPGAs are used further processing such  as image enhancement.   

After designing of Convolver take the image of  320 x 240 stored in any one of the SRAMs  

provided on the  board. From the SRAM read the image to FIFO inside the FPGA  and the  

 

Image Waveforms 
 

resultant image pixel is again stored back into the SRAM. From the SRAM  we read the image 

through the PCI to PC. 

The following are input and output images  
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Input Image 

 
 

  Figure 6  Input Image 
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Vertical Edge Detection 

 
 

Vertical Edge Detection 
 

    
 
  Figure 7 Vertival Edge Detected Image 
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Horizontal Edge Detection 
 
 

Horizontal Edge Detection 
 

    
 
  Figure 8  Horizontal Edge Detected Image 
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Input Image 
 

   
  Figure 9  Lina Input Image 
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PCI Based Data Acquisition Card 
 

    
   
Figure 10 Edge Detected Image 
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Input  Image 
 
 
 
 
 
 

    
  Figure 11  Input Image 
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  Figure 12 Enhanced Image 
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Conclusions 

 

Chapter 5 

Conclusions And Future Work 

 

Conclusions 
In this paper, the design of a new high-speed energy efficient FPGA-based 2-D 3x3 variable-

precision convolver has been presented. The new architecture is extremely flexible. In fact, it can 

run-time adapt itself to perform two dimensional convolutions between variable bit-resolution 

image pixels and kernel weights avoiding time and power consuming reconfiguration processes. 

This is a very nice feature, which makes the new circuit particularly useful to support modern 

image processing algorithms that require adaptive filtering also for variable bit-resolution image 

pixels. 

 

Future Work 

The performance of the image processing algorithms in this work is achieved by implementing the 

algorithm on Field-Programmable Gate Arrays (FPGAs). Hardware implementation  

accelerates the designs by performing the operations concurrently. On  the other hand, 

reprogrammability of the FPGAs allows for faster and cheaper design  cycle of the system 

compared to Application Specific Integrated Circuit (ASIC) design. This work can be further 

extended to for real time implementation of object detection. The implementation of the  

whole design on FPGA is tedious and time consuming. With  The advances in the software tools 

and growing functionality and capabilities of the FPGAs, hardware software co-design can be 

done, that drastically reduces the design  time for high speed applications. 

 

One of the current shortcomings of the designs presented in this thesis is the resource utilization of 

FPGAs. This is mainly due to the FIFO units being used in the design.  FPGA resource utilization 

can be greatly reduced by creating FIFO buffers on external  RAM. A large part of the 

improvement possible in this design lies in the algorithms  themselves. If the kernel for the 

convolution design were to be changed, the convolution  algorithms would have increased 

functionality for changing the convolution kernels on  the fly. 
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Chapter7                                            System review 

 

   Chapter 7 
System Review 

FFTs are very common, computationally intensive signal processing functions found in a large 

number of signal processing systems. Orthogonal frequency division multiplexing (OFDM) 

systems, for example, require large amounts of FFT computing ability to handle the required data 

rate of all transmit and receive channels passing through the network. Typically, designers 

building OFDM transmitters and receivers have relied on digital signal processors as their device 

of choice for implementing these signal processing functions. DSPs typically come with a range of 

basic,assembly-optimized signal algorithms like FFTs and finite impulse response (FIR) filters, 

making these functions easier to implement compared to an ASIC or FPGA hardware-based 

approach. Unfortunately, the evolution in performance of DSPs has not been able to keep up with 

the demands of current and future communication system requirements, forcing designers to 

implement arrays of digital signal processors simply to satisfy the data rates and vast number of 

channels needed by the system. A common challenge arising from this approach involves handling 

shared memory between the processors and ensuring that data does not get overwritten from one 

processor to another. These arrays also tend to take up a lot of board real estate, and the large 

number of  digital signal processors required can dramatically increase overall system cost. 

 

An alternative approach to address this computational burden is to implement co-processors to 

speed up the computation of these functions using hardware accelerators. DSP vendors like Texas 

Instruments have started to add dedicated hardware co-rocessors to their DSP device offerings as 

seen in the C6416 DSP, which has dedicated on-chip Turbo and Viterbi co-processor hardware, 

primarily targeted at 3G wireless applications [1]. While this approach is beneficial for 3G 

applications, other users may not find these co-processors particularly suitable for their needs. DSP 

vendors, on the other hand, are driven to implement co- processors suitable for a broad-based 

market that is relatively mature. 
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Altera’s approach is to provide designers the flexibility to implement their co-processor on an 

FPGA [2]. These coprocessors can be suitably designed to fit virtually any function or application 

the user is targeting owing to the flexible nature of the FPGA’s device fabric. Additionally, 

designers are able to customize and construct their function in a way that fully  
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exploits the parallel nature of a hardware implementation within the FPGA, enabling better 

canalization (useful in communication systems), and ultimately, greater data throughput. 

A large variety of FFT algorithms are available to the scientists that use the conventional serial or 

vector computers. However for parallel machines, the choice of FFT algorithms is very limited. In 

applications such as the pseudospectral methods for solving partial differential equations (PDE's), 

a number of multidimensional FFT's are computed per time step. The speed of the FFT 

computation is therefore very critical to any large application using the pseudospectral method. 

Since such very large computations are feasible mostly on only parallel machines, there is a need 

for fast multidimensional FFT algorithms for parallel machines.  

The approach to computing multidimensional FFT's on parallel machines is currently under 

debate. There are two methods that are possible. One of the approaches is the ``Transpose 

Method''. In this method, data are divided by planes between nodes. For example, in the three 

dimensional transform, each node has a number of planes on which it computes two dimensional 

FFT's. Next, a distributed transpose rearranges the data in such a way that the FFT along the third 

dimension can be computed locally. The parallel aspect of this approach is limited to the 

distributed transpose, which is equilvalent to a standard exchange problem [1]. Here, each node 

sends data to and receives data from all other nodes during distributed transpose. This method is 

fairly easy and has been implemented for a number of applications .  

The second approach is to design a distributed FFT algorithm which operates without collecting 

planes or rows on a single node. Here the internode communications are interspersed with the 

computation at different stages of the FFT. Such an algorithm is more difficult to design and 

implement since the parallelization is an integral part of the algorithm. It gives a clear advantage of 

flexibilty in data distribution, since parallelization is possible along more than one dimension. In 

this article we present an algorithm which takes the second approach. The algorithm is based on 

the single dimensional distributed FFT  and is designed to run efficiently for block scattered data 
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distributions. A three dimensional block scattered data distribution is defined by a data size 

, a block size distributed over processors. The data 

are divided into equal sized blocks which are distributed over the processors in a wrap around 

fashion. An example of a block scattered data distribution is shown in Figure 1. The algorithm 

described here can compute FFT in one,  

Chapter7                                            System review 

two or three dimensions for different blocksizes along different directions. The data could be 

parallel along one or more dimensions in any combination. A real-to complex FFT (RFFT) can be 

computed as a special case of this algorithm, where at least one dimension is non parallel. The non 

parallel dimension of the RFFT is computed within the node, and the computations for the 

remaining dimensions are similar to those in the CFFT algorithm.  

Distributed Algorithm 

The distributed multidimensional FFT algorithm described here computes forward and inverse 

Fourier Transforms. It is most suited for applications such as the pseudospectral method where the 

data are repeatedly transformed back and forth between configuration and phase space. This is 

because, the forward FFT redistributes the data across processors such that the final data 

distribution is completely different from the original one. Two factors contribute to the 

rearrangement of data in the forward transform. One factor is the reordering inherent in the basic 

FFT algorithm itself, and the other factor is reordering introduced by the parallelism. To get the 

original distribution back, extensive (possibly long range ) data exchange is necessary, which 

would introduce significant communication overheads [2]. However, the inverse FFT is designed 

such that it restores the original distribution without introducing any overheads. Hence, a complete 

cycle of forward and inverse transform has identical data distribution at input and output. The 

reordering inherent in the FFT algorithm is countered by using different classes of FFT algorithms 

as the basis for each direction. The forward transform uses the Decimation in Frequency (DIF) 

algorithm and the inverse transform uses the Decimation in Time (DIT) algorithm. The two classes 

of the FFT algorithm are described here briefly. 

DIF-FFTAlgorithm  
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For the DIF-FFT algorithm the N-point sequence  x(r)is divided into two halves,  x1(r)and  x2(r)so 

that the the transformed sequence can be written as  

  

  

These equations represent two  N/2 point DFT's of sequences x1(r) + x2(r) and. {x1(r) - x2(r)]  W 

N rThe process is then repeatedly applied to the two subsequences. 

DIF-FFT Algorithm  

For the DIT-FFT algorithm the N-point sequence  x (r)is divided into two  N/2-point sequences  

x1(r) and  x2(r) as the odd and even elements of  x(r) respectively; i.e.  

  

  

We then recursively compute  X1(k)and X2(k), the DFT's of x1(r) and  x2(r)respectively. The 

recursion stops when the DFT  

of a 1-point sequence, which is the element itself, is required. The two sequences  X1(k)and  X2(k) 

are then merged to generate  X (k)using the following expressions  

  

The graphical representation of Equations  and Equations  is referred to as butteflies, and are 

shown in Figure . They are the basic unit of computation is an FFT algorithm. The sequence of 

data computations in an FFT algorithm can be shown graphically by a combination of butterflies, 

known as the flowgraph. The flowgraphs for the DIT-FFT and DIF-FFT for input sequence of 

length 8 are shown in Figure . Notice that the input and output data ordering of the two classes of 

FFT algorithm are complimentary to each other. DIF-FFT requires the input sequence to be in-
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order and generates the output sequence in bit-reversed order while the DIT-FFT takes the input in 

bit-reversed order and generates the output in-order. 
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Figure 2: Butterflies for decimation in frequency and decimation in time FFT's. 

    
Figure 3: Flowgraphs for 8-point FFT's. 

 

The data rearrangement due to parallelism is introduced by the butterfly computation. At any stage 

in the FFT, internode  communication is required when the two data points forming a butterfly are 

at different nodes. In such a situation, to avoid rearrangement, the computation of butterflies would 

have to be done as shown in Figure . However, this approach has several disadvantages, pointed 
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out in fig. These are : high communication volume (all the data from one node sent to another 

one), unbalanced load (half the nodes have a multiplication and an addition per butterfly, while the 

other half have only one addition) and extra storage (the receiving buffer size is the same as the 

data size). By moving the data prior to computation as per Figure 4(b) these disadvantages are 

overcome at the cost of causing some data  
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rearrangement. However, since the data are already rearranged due to the inherent characteristic of 

the FFT algorithm, this is an insignificant cost. The section on data movement explains how the 

reordering introduced by parallelism is countered in the reverse transform. 
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Algorithm implementation 

 

Chapter 8 

Algorithm Implementation 

In this, for the implementation of 16-point FFT  I have used the radix-4 as Basic Butterfly 

structure. The VHDL implementation for the basic butterfly structure is given below. In this I have 

used the parallel architecture. Since I have used the radix-4 as a basic butterfly unit so there are 

only two stages. The advantage of using the parallel architecture is when we process the operation 

on the second stage the first stage remains idle, so this drawback can overcome by using this 

parallel architecture. 

Initially the 16-point data is stored in the RAM, and we require 4 clock cycles to read the four data 

items, and we have to apply all the inputs to basic butterfly structure simultaneously. For that 

demux and register arrangement is required.    

As mentioned previously, our aim was to design/implement a lightweight and fast FFT processor 

targeting Virtex-II FPGA. The high-level schematic of the processor is We initially wanted to use 

ISE for synthesis. ISE is a high-level synthesis framework that into a VHDL description However, 

as can be seen from the schematic, our core will accept streaming input. Therefore, it must have 

pipelined READ, EXECUTE and OUTPUT stages.However, we could not find a way to express 

streaming  in C. This is because of no support for concurrency. So, we revised our project goal 

downwards and instead decided to write the FFT code in VHDL. Since, the FFT code was to be 

written in VHDL, we also had to change our design flow from using ISE for synthesis to using 

Xilinx ISE instead.  
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Architecture of the 16-point parallel FFT architecture using Radix-4 as a basic butterfly unit is 

given below. 
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Figure8.1 flow diagram of 16-point FFT 
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Algorithm implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure8.2 parallel archirecture 
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figure8.3 : basic radix-4 butterfly unit 
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Synthesis Results 
 

Number of Slices:                    1261  out of  19392     6% 

Number of Slice Flip Flops:           510  out of  38784     1%   

Number of 4 input LUTs:              2106  out of  38784     5%    

Number of bonded IOBs:                 29  out of    692     4%    

Number of TBUFs:                        4  out of  10208     0%    
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Number of BRAMs:                        4  out of    192     2%    

Algorithm implementation 

 

Number of GCLKs:                        1  out of     16     6%  

 

RTL schematic resulting from the Xilinx Synthesis Tool 
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Algorithm implementation 
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Summary and conclusions 

 

Chapter 9 

SUMMARY & CONCLUSIONS 

DSP and FPGA co-processor solutions provide designers with a myriad of implementation options 

and solutions for today’s system designers. Along with these solutions comes a variety of design 

factors and considerations that need to be evaluated to select the best approach, depending on 

system requirements like ease of implementation, cost and performance as well as power 

consumption. Digital signal processors can provide the simplest implementation for a wide range 

of DSP algorithms and applications, but the cost/performance, implementation flexibility and 

hardware parallelism provided by an FPGA co-processor cannot be overlooked. A simple example 

of this is a basic OFDM communication system, which requires many FFT operations to be 

computed for a large number of channels at once.  

 

Today’s digital signal processors are unable to keep up with the load required of these systems 

unless an approach requiring large arrays of digital signal processors is employed. Integration of 

these digital signal processors within the system is not a trivial task, as the coordination of shared 

memory between processors is especially complex. FPGAs, on the other hand, are capable of 

parallelizing the operation of these functions, reducing the overall computation time of each 

operation and are, therefore, able to support a larger number of channels within a single device. 

Additionally, the densities of FPGAs have grown  significantly over the last two years to the point 

that multiple instantiations of these functions can be implemented within a single FPGA, reducing 

the total number of devices required and ultimately board real estate. From a price/performance 

comparison, FPGA co-processors provide better performance for lower cost compared to a  single 

digital signal processor approach. Additionally, because the FPGA is not fully utilized, more 

 75



functionality and arallelism could be added to the FPGA co-processor to increase the mount of 

processing the FPGA is capable of without impacting the cost of the system. Also, from a 

function-to-function power comparison, we see that for the same function, an FPGA 

implementation is capable of consuming less power than a digital signal processor. For 

comparable performance to an FPGA, a designer may be required to implement an array of 

multiple digital signal processors, something which could possibly increase the cost and power 

consumption of a system beyond that of an FPGA co-processor implementation.  
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    Appendix A 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
--  Uncomment the following lines to use the declarations that are 
--  provided for instantiating Xilinx primitive components. 
library UNISIM; 
use UNISIM.VComponents.all; 
 
entity Convolution_2d is 
    generic(width : integer:=8); 
 Port (   
      clk        :  in std_logic; 
          rst       :  in std_logic; 
          COEF_REG1          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG2          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG3          :  in STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG4          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG5          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG6          :  in STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG7          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG8          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG9          :  in STD_LOGIC_VECTOR(width DOWNTO 0); 
  start       :  in std_logic; 
          sram_wr        :  out std_logic; 
  data_in       :  in std_logic_vector(7 downto 0); 
          data_out       :  out std_logic_vector(15 downto 0); 
          valid       :  out std_logic); 
 
end Convolution_2d; 
 
architecture Behavioral of Convolution_2d is 
----------------Signals for first FSM1------ 
signal  rd_done  : std_logic;           
signal  wr_fifo1  : std_logic; 
--signal  sh1_done  : std_logic; 
signal  sh1_reg  : std_logic; 
------------------------------Signals for fifo1------------- 
       
signal  dout1 :  std_logic_VECTOR(7 downto 0); 
signal  full1 :  std_logic; 
signal  empty1:  std_logic; 
 
-------------------------------- SIGNALS FOR fsm2 
signal  fifo1_count  : std_logic_vector(8 downto 0);           
signal  rd_fifo1   :  std_logic; 
signal  sh2_done   :  std_logic; 
signal  sh2_reg   :  std_logic; 
signal  wr_fifo2   :  std_logic; 
------------------------------------------Fifo2--- 
          
 
signal  dout2 :  std_logic_VECTOR(7 downto 0); 
signal  full2 :  std_logic; 
signal  empty2:  std_logic; 
 
-------------------------------SIGNALS FOR FSM3 
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signal  fifo2_count  : std_logic_vector(8 downto 0);           
signal  rd_fifo2   :  std_logic; 
signal  sh3_reg   :  std_logic; 
signal  sh3_done   :  std_logic; 
 
----------------------------------SIGNALS FOR MAC 
 
signal  Reg1 : std_logic_vector(7 downto 0); 
signal  Reg2 : std_logic_vector(7 downto 0); 
signal  Reg3 : std_logic_vector(7 downto 0); 
signal  Reg4 : std_logic_vector(7 downto 0); 
signal  Reg5 : std_logic_vector(7 downto 0); 
signal  Reg6 : std_logic_vector(7 downto 0); 
signal  Reg7 : std_logic_vector(7 downto 0); 
signal  Reg8 : std_logic_vector(7 downto 0); 
signal  Reg9 : std_logic_vector(7 downto 0);           
--signal  Mac_out :  std_logic_vector(15 downto 0) 
-------------------------------------First FSM --- 
 
 COMPONENT sh_fifo1_write 
 PORT( 
  clk   : IN std_logic; 
  rst   : IN std_logic; 
  rd_done  : IN std_logic;           
  wr_fifo1  : OUT std_logic; 
 -- sh1_done  : OUT std_logic; 
  sh1_reg  : OUT std_logic 
  ); 
 END COMPONENT; 
------------------------fifo1------------------ 
component fifo IS 
 port ( 
 clk : IN std_logic; 
 sinit: IN std_logic; 
 din  : IN std_logic_VECTOR(7 downto 0); 
 wr_en: IN std_logic; 
 rd_en: IN std_logic; 
 dout : OUT std_logic_VECTOR(7 downto 0); 
 full : OUT std_logic; 
 empty: OUT std_logic; 
data_count: OUT std_logic_VECTOR(8 downto 0)); 
END component; 
-------------------FSM2---------------------- 
 COMPONENT fifo1_rd_sh2 
 Generic(N   :integer:=322); ---------No of columns in Frame 
 PORT( 
  clk    : IN std_logic; 
  rst    : IN std_logic; 
  rd_done  : in std_logic; 
  fifo1_count  : IN std_logic_vector(8 downto 0);           
  rd_fifo1   : OUT std_logic; 
  sh2_done   : OUT std_logic; 
  sh2_reg   : OUT std_logic; 
  wr_fifo2   : OUT std_logic 
  ); 
 END COMPONENT; 
 
  ------------------------------FSM3---- 
   COMPONENT fifo2_rd_sh3 
 Generic(N   :integer:=322); ---------No of columns in Frame 
 PORT( 
  clk    : IN std_logic; 
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  rd_done  : in std_logic; 
  rst    : IN std_logic; 
  fifo2_count  : IN std_logic_vector(8 downto 0);           
  rd_fifo2   : OUT std_logic; 
  sh3_reg   : OUT std_logic; 
  sh3_done   : OUT std_logic 
  ); 
 END COMPONENT; 
-------------------------MAC--------- 
 COMPONENT reg_mac 
 Generic(width:integer:=8); 
 PORT( 
  clk     : IN std_logic; 
  rst     : IN std_logic; 
  rd_done    : IN std_logic; 
  sram_wr    : out std_logic; 
   
  COEF_REG1          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG2          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG3          :  in STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG4          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG5          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG6          :  in STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG7          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG8          :  IN STD_LOGIC_VECTOR(width DOWNTO 0); 
  COEF_REG9          :  in STD_LOGIC_VECTOR(width DOWNTO 0); 
  Reg1       :  IN std_logic_vector(7 downto 0); 
  Reg2       :  IN std_logic_vector(7 downto 0); 
  Reg3       :  IN std_logic_vector(7 downto 0); 
  Reg4       :  IN std_logic_vector(7 downto 0); 
  Reg5       :  IN std_logic_vector(7 downto 0); 
  Reg6       :  IN std_logic_vector(7 downto 0); 
  Reg7       :  IN std_logic_vector(7 downto 0); 
  Reg8       :  IN std_logic_vector(7 downto 0); 
  Reg9          :  IN std_logic_vector(7 downto 0);           
  Mac_out      :  OUT std_logic_vector(15 downto 0) 
  ); 
 END COMPONENT; 
 
begin 
 
 rd_done<=start;     
 valid<= start; 
 Inst_sh_fifo1_write: sh_fifo1_write PORT MAP( 
  clk   => clk, 
  rst   => rst, 
  rd_done  => rd_done, 
  wr_fifo1  => wr_fifo1, 
 -- sh1_done  => sh1_done, 
  sh1_reg  => sh1_reg 
 ); 
 
process(clk,rst,sh1_reg) 
begin 
if rst ='1' then 
  Reg1<=(others=>'0'); 
  Reg2<=(others=>'0'); 
  Reg3<=(others=>'0'); 
elsif clk'event and clk ='1' then 
 if sh1_reg ='1' then 
   Reg1<= data_in; 
   Reg2<= Reg1; 
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   Reg3<= Reg2; 
  end if; 
end if; 
end process; 
 
Inst_fifo1:fifo port Map( 
     clk => clk, 
     sinit=> rst, 
     din  => Reg3, 
     wr_en=> wr_fifo1, 
     rd_en=> rd_fifo1, 
     dout => dout1, 
     full => full1, 
     empty=> empty1, 
    data_count => fifo1_count 
 ); 
  
process(clk,rst,sh2_reg) 
begin 
if rst ='1' then 
  Reg4<=(others=>'0'); 
  Reg5<=(others=>'0'); 
  Reg6<=(others=>'0'); 
elsif clk'event and clk ='1' then 
 if sh2_reg ='1' then 
   Reg4<= dout1; 
   Reg5<= Reg4; 
   Reg6<= Reg5; 
  end if; 
end if; 
end process; 
 
 Inst_fifo1_rd_sh2: fifo1_rd_sh2 PORT MAP( 
  clk    => clk, 
  rd_done  =>rd_done, 
  rst    => rst, 
  fifo1_count  => fifo1_count, 
  rd_fifo1   => rd_fifo1, 
  sh2_done   => sh2_done, 
  sh2_reg   => sh2_reg, 
  wr_fifo2   => wr_fifo2 
 ); 
 
 Inst_fifo2:fifo port Map( 
  clk => clk, 
  sinit=> rst, 
  din  => Reg6, 
  wr_en=> wr_fifo2, 
  rd_en=> rd_fifo2, 
  dout => dout2, 
  full => full2, 
  empty=> empty2, 
     data_count => fifo2_count 
 ); 
 
process(clk,rst,sh3_reg) 
begin 
if rst ='1' then 
  Reg7 <=(others=>'0'); 
  Reg8 <=(others=>'0'); 
  Reg9 <=(others=>'0'); 
elsif clk'event and clk ='1' then 

 81



 if sh3_reg ='1' then 
   Reg7 <= dout2; 
   Reg8 <= Reg7; 
   Reg9 <= Reg8; 
  end if; 
end if; 
end process; 
    Inst_fifo2_rd_sh3: fifo2_rd_sh3 PORT MAP( 
  clk    =>  clk, 
  rd_done  => start, 
  rst    =>  rst, 
  fifo2_count  =>  fifo2_count, 
  rd_fifo2   =>  rd_fifo2, 
  sh3_reg   => sh3_reg , 
  sh3_done   =>  sh3_done 
 ); 
 
 Inst_reg_mac: reg_mac PORT MAP( 
  clk    =>  clk, 
  rst    =>  rst, 
  rd_done   =>  rd_done, 
  sram_wr   =>  sram_wr, 
  COEF_REG1  =>   COEF_REG1,  
  COEF_REG2  =>   COEF_REG2,  
  COEF_REG3  =>   COEF_REG3,  
  COEF_REG4  =>   COEF_REG4,  
  COEF_REG5  =>   COEF_REG5,  
  COEF_REG6  =>   COEF_REG6,  
  COEF_REG7  =>   COEF_REG7,  
  COEF_REG8  =>   COEF_REG8,  
  COEF_REG9  =>   COEF_REG9,  
      Reg1   => Reg1 ,  
  Reg2   =>  Reg2 ,  
  Reg3   =>  Reg3 ,  
  Reg4   =>  Reg4 ,  
  Reg5   =>  Reg5 ,  
  Reg6   =>  Reg6 ,  
  Reg7   =>  Reg7 ,  
  Reg8   =>  Reg8 ,  
  Reg9   =>  Reg9 ,  
  Mac_out   =>  data_out  
 ); 
 
end Behavioral;   
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    Appendix B 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
--Uncomment the following lines to use the declarations that are 
--provided for instantiating Xilinx primitive components. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity main_16 is 
    Port (  clk     : in  std_logic; 
            rst     : in  std_logic; 
    dout_real  : out std_logic_vector(12  downto 
 0); 
    dout_imag  : out std_logic_vector(12  downto 
 0); 
    starting_data : out std_logic; 
    Ending_data  : out std_logic 
     ); 
     
end main_16; 
 
architecture Behavioral of main_16  is 
type state is (start,count1_en_gen,count1_en_gen_hold0, 
  count1_en_gen_hold1,count1_en_gen_hold2,count1_en_dis0, 
  count1_en_dis1,dly,dly1,count1_en_dis2,dly2,dly3,dly0,dly4,dly6); 
signal ps,ns:state; 
 
signal counter1    : std_logic_vector(3  downto  0); 
signal count_out1   : std_logic_vector(3  downto  0); 
signal counter2    : std_logic_vector(3  downto  0); 
signal count_out2   : std_logic_vector(3  downto  0); 
signal counter3    : std_logic_vector(3  downto  0); 
signal count_out3   : std_logic_vector(3  downto  0); 
signal count2     : std_logic_vector(8  downto  0); 
signal address_s_1   : std_logic_vector(3  downto  0); 
signal address_s_2  : std_logic_vector(3  downto  0); 
signal wr_en_s    : std_logic; 
signal done     :  std_logic; 
 
signal sel_mux,sel_mux_s :  std_logic_vector(1 downto  0); 
signal sel_mux_2,sel_mux_s_2 :  std_logic_vector(1  downto  0); 
signal reg_real_0,reg_real_1,reg_real_2,reg_real_3 : std_logic_vector(8   
downto  0); 
signal reg_imag_0,reg_imag_1,reg_imag_2,reg_imag_3:std_logic_vector(8   
downto  0); 
signal data_out_re_lut,data_out_im_lut:std_logic_vector(10   
downto  0); 
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signal real_out_s_1,imag_out_s_1       :
 std_logic_vector(10  downto   
0); 
signal real_out_s_s,imag_out_s_s  : std_logic_vector(10  downto   
0); 
signal Mux_real_out,Mux_imag_out :std_logic_vector(8  downto   
0); 
signal Mux_real_out_2,Mux_imag_out_2     :
 std_logic_vector(10  downto   
0); 
signal imag_out_s_s_2,real_out_s_s_2     : 
 std_logic_vector(12  downto   
0); 
signal X0_real_s,X1_real_s,X2_real_s,X3_real_s  : std_logic_vector(8   
downto  0); 
signal X0_Imag_s,X1_Imag_s,X2_Imag_s,X3_Imag_s  : std_logic_vector(8   
downto  0); 
signal counter1_s           
 : std_logic_vector(3  downto  0); 
signal counter2_s           
 : std_logic_vector(8  downto  0);  
signal dina_real_s            :
 std_logic_vector(8  downto  0); 
signal dina_imag_s           : 
 std_logic_vector(8  downto  0); 
signal we_a            
  :  std_logic; 
signal counter1_en           : 
 std_logic; 
signal we_real,we_imag          : 
 std_logic; 
signal done_s             
 : std_logic; 
signal count1_en,reg_en          :
 std_logic; 
SIGNAL count2_en,wr_en,count3_en       :
 std_logic; 
signal wr_en_2_s,WR_EN_2          :
 std_logic; 
 
type state1 is (start,dly,stop); 
signal ps1,ns1 : state1; 
 
signal flag,flag_1      :  std_logic_vector(1  downto 
 0); 
signal reg_real_3_2,reg_real_2_2 :  std_logic_vector(10  downto  0); 
signal reg_real_1_2,reg_real_0_2 :  std_logic_vector(10  downto  0); 
signal reg_imag_3_2,reg_imag_2_2 :  std_logic_vector(10  downto  0); 
signal reg_imag_1_2,reg_imag_0_2 :  std_logic_vector(10  downto  0); 
signal count_out3_2,count_out2_2 : std_logic_vector(3  downto  0); 
signal real_out_s_2,imag_out_s_2 : std_logic_vector(12  downto  0); 
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signal data_out_imag_lut_2,data_out_real_lut_2     :   
std_logic_vector(10  downto  0); 
signal x3_real_s_2,x2_real_s_2,x1_real_s_2,x0_real_s_2  :  
std_logic_vector(10  downto  0); 
signal x0_imag_s_2,x1_imag_s_2,x2_imag_s_2,x3_imag_s_2  :  
std_logic_vector(10  downto  0); 
signal counter1_2,count_out1_2,counter2_2,counter3_2   :  
std_logic_vector(3  downto  0); 
signal count1_en_2,reg_en_2,count2_en_2,count3_en_2   :  std_logic; 
 
signal count1_en_2_s  : std_logic; 
signal flag_s,flag_s_1  :  std_logic; 
 
COMPONENT radix4_butterfly_10 PORT( 
  X0_Real   : IN  std_logic_vector(8  downto  0); 
  X0_Imag   : IN  std_logic_vector(8  downto  0); 
  X1_Real   : IN  std_logic_vector(8  downto  0); 
  X1_Imag   : IN  std_logic_vector(8  downto  0); 
  X2_Real   : IN  std_logic_vector(8  downto  0); 
  X2_Imag   : IN  std_logic_vector(8  downto  0); 
  X3_Real   : IN  std_logic_vector(8  downto  0); 
  X3_Imag   : IN  std_logic_vector(8  downto  0); 
  W0_real   : IN  std_logic_vector(10 downto  0); 
  W0_imag   : IN  std_logic_vector(10 downto  0); 
  Clk    : IN  std_logic; 
  Rst    : IN  std_logic;           
  Real_Out   : OUT std_logic_vector(10  downto  0); 
  Imag_Out   : OUT std_logic_vector(10  downto  0)); 
END COMPONENT; 
COMPONENT rom_16_10 PORT( 
    clk   : in  std_logic; 
  rst   : in  std_logic; 
  address   : IN  std_logic_vector(3 downto 0);           
  dout1   : OUT std_logic_vector(10 downto 0); 
  dout2   : OUT std_logic_vector(10 downto 0)); 
END COMPONENT; 
COMPONENT register1 
 PORT( 
  Reg_in   : IN  std_logic_vector(8 downto 0); 
  Clk    : IN  std_logic; 
  Rst    : IN  std_logic; 
  reg_en   : IN  std_logic;           
  Reg_out   : OUT std_logic_vector(8 downto 0)); 
END COMPONENT; 
COMPONENT de_mux PORT( 
  d_in    : IN  std_logic_vector(8 downto 0); 
  sel    : IN  std_logic_vector(1 downto 0);           
  out1     : OUT std_logic_vector(8 downto 0); 
  out2    : OUT std_logic_vector(8 downto 0); 
  out3    : OUT std_logic_vector(8 downto 0); 
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  out4    : OUT std_logic_vector(8 downto 0)); 
END COMPONENT; 
component  ram_s  port ( 
 addr    : IN  std_logic_VECTOR(3 downto 0); 
 clk    : IN  std_logic; 
 din    : IN  std_logic_VECTOR(8 downto 0); 
 dout    : OUT std_logic_VECTOR(8 downto 0); 
 we     : IN  std_logic); 
END component; 
 
--=================================================================== 
 
signal real_final_s,imag_final_s  : std_logic_vector(12 downto 0); 
signal full_r_final,empty_r_final  : std_logic; 
signal full_i_final,empty_i_final  : std_logic; 
signal rd_en_final,rd_en_final_s  : std_logic; 
 
type state3 is (start,rd_en_gen,stop); 
signal ps3,ns3 : state3; 
 
--=================================================================== 
--===========FIRST STAGE COMPONENT 
DECLARATION======================= 
 
COMPONENT rom_2nd_stage PORT( 
    clk   : in  std_logic; 
  rst   : in  std_logic; 
  address   : IN  std_logic_vector(3 downto 0);           
  dout1   : OUT std_logic_vector(10 downto 0); 
  dout2   : OUT std_logic_vector(10 downto 0)); 
END COMPONENT; 
 
--=================================================================== 
--======SECOND STAGE COMPONENT 
DECLARATION=========================== 
 
COMPONENT de_mux_2 
 PORT( 
  d_in    : IN  std_logic_vector(10 downto 0); 
  sel    : IN  std_logic_vector(1 downto 0);           
  out1    : OUT std_logic_vector(10 downto 0); 
  out2    : OUT std_logic_vector(10 downto 0); 
  out3    : OUT std_logic_vector(10 downto 0); 
  out4    : OUT std_logic_vector(10 downto 0)); 
END COMPONENT; 
COMPONENT radix4_for_2nd_stage 
 PORT( 
  X0_Real   : IN std_logic_vector(10 downto 0); 
  X0_Imag   : IN std_logic_vector(10 downto 0); 
  X1_Real   : IN std_logic_vector(10 downto 0); 
  X1_Imag   : IN std_logic_vector(10 downto 0); 
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  X2_Real   : IN std_logic_vector(10 downto 0); 
  X2_Imag   : IN std_logic_vector(10 downto 0); 
  X3_Real   : IN std_logic_vector(10 downto 0); 
  X3_Imag   : IN std_logic_vector(10 downto 0); 
  W0_real   : IN std_logic_vector(10 downto 0); 
  W0_imag   : IN std_logic_vector(10 downto 0); 
  Clk    : IN std_logic; 
  Rst    : IN std_logic;           
  Real_Out  : OUT std_logic_vector(12 downto 0); 
  Imag_Out  : OUT std_logic_vector(12 downto 0)); 
END COMPONENT; 
COMPONENT register1_2 PORT( 
  Reg_in   : IN std_logic_vector(10 downto 0); 
  Clk    : IN std_logic; 
  Rst    : IN std_logic; 
  Reg_En   : IN std_logic;           
  Reg_Out   : OUT std_logic_vector(10 downto 0)); 
END COMPONENT; 
 
--=================================================================== 
--=================FINAL STAGE SPRAM================================= 
 
component ram_s_2 port ( 
 addr    : IN std_logic_VECTOR(3 downto 0); 
 clk    : IN std_logic; 
 din    : IN std_logic_VECTOR(10 downto 0); 
 dout    : OUT std_logic_VECTOR(10 downto 0); 
 we     : IN std_logic); 
end component; 
component fifo_final 
 port ( 
 clk    : IN std_logic; 
 sinit    : IN std_logic; 
 din    : IN std_logic_VECTOR(12 downto 0); 
 wr_en    : IN std_logic; 
 rd_en    : IN std_logic; 
 dout    : OUT std_logic_VECTOR(12 downto 0); 
 full    : OUT std_logic; 
 empty    : OUT std_logic); 
end component; 
 
type state2 is (start,rd_en_gen,count1_en_gen_hold0, 
  count1_en_gen_hold1,count1_en_gen_hold2,count1_en_dis0, 
  count1_en_dis1,dly,dly1,count1_en_dis2,dly2,dly3,dly0,dly4,dly6); 
signal ps2,ns2:state2; 
 
--====================== MAIN ARCHICTECTUTE BEGINS=================== 
begin 
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