
 1

VOIP OVER WIRELESS LAN

By

Upendra Patel

 (04MCE014)

Department Of Computer Science & Engineering

Institute of Technology

Nirma University of Science & Technology

Ahmedabad 382481

May 2006

 2

VOIP OVER WIRELESS LAN

A Dissertation

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science & Engineering

By

Upendra Patel

(04MCE014)

Guide

Dr. S.N. Pradhan

Department of Computer Science & Engineering

Institute of Technology

Nirma University of Science and Technology

Ahmedabad- 382481

May-2006

 3

This is to certify that the Dissertation entitled

VOIP OVER WIRELESS LAN

Presented by

Upendra Patel

(04MCE014)

has been accepted toward fulfillment of the requirements

for the degree of

Master of technology in Computer Science & Engineering

Professor In Charge Head of The Department

Dr. S. N. Pradhan Prof. D. J. Patel

Date: 29/04/06

 4

CERTIFICATE

This is to certify that the work presented here by Mr. Upendra Patel entitled “VOIP

OVER WIRELESS LAN” has been carried out at Nirma Institute Of Technology

during the period September 2005 – April 2006 is the record of the research carried out

by him under my guidance and supervision and is up to the standard in respect of the

content and presentation for being referred to the examiner. I further certify that the work

done by him is his original work and has not been submitted for award of any other

diploma or degree.

Dr. S. N. Pradhan

Date: 29/04/06

 5

Acknowledgement

"Sometimes our light goes out

but is blown into flame by another human being.

Each of us owes deepest thanks

to those who have rekindled this light"

It gives me great pleasure in expressing thanks and profound gratitude to

Dr. S. N. Pradhan, M.Tech In-Charge, Department of Computer

Engineering, Institute of Technology, Nirma University, Ahmedabad for his

valuable guidance and continual encouragement throughout the Major

project. I heartily thankful to him for his time to time suggestion and the

clarity of the concepts of the topic that helped me a lot during this study.

I would like to give my special thanks to Prof. D. J. Patel, Head ,

Department of Computer Engineering, Institute of Technology, Nirma

University for his continual kind words of encouragement and motivation

throughout the Major Project. I am also thankful to Dr. H.V. Trivedi ,

Director, Institute of Technology, Nirma University.

I am thankful to all faculty members for their special attention and

suggestion towards the project work. I extend my sincere thanks to my

colleagues for their support in my work.

I am really thankful to GOD who gives me courage to face difficulties and

overcome them. I would like to express my gratitude towards my family

members who have always been my source of inspiration and motivation.

Upendra Patel

 6

Abstract:

(VOIP) networks combine both voice and data communications networking

technologies. VOIP networks combine the best of voice and data

communications networking technologies. But that combination also creates

some challenges, as the industry attempts to meld the best of circuit

switching (from the voice side) and packet switching (from the data side)

into single technology. TCP/IP protocol stack is not sufficient for VOIP.

Seamless wireless LAN is fast becoming a reality. VOIP over WLAN as

technology enables IP voice to be sent over an (802.11) WLAN. Voice over IP

over Wireless LAN is getting great attention from the industry and the

products for VOIP OVER WLAN deployment are emerging rapidly. This

technology can bring people many benefits. It has all the advantages of

VOIP systems along with greater mobility. Mobility usually means increased

productivity since it also reduces the cost for deployment of wired phones.

Just as when introducing voice to IP networks, VOIP Over WLAN has the

same problems as VOIP regarding deployment. Some characteristics of

wireless networks cause additional difficulties. Carrying voice over wireless

networks introduces new challenges. The WLAN industry is working hard to

enable 802.11-based networks to accommodate the technical characteristics

of VOIP.

In this project, the work has been carried out is implementing SIP Soft Phone

in simputer which is a ARM based handheld device running Linux and

having wireless environment. The performance of call flow and media

streams has been also measured and analyzed.

 7

List of Tables:

Table:1 SIP Request Methods……………………………………………………

19

Table:2 Sip Response codes……………………………………………………..

19

Table:3 Simputer Specification…………………………………………………

32

List of Figures:

Figure1: Sender side: Generating and transmitting audio data.

9

Figure2: Receiver side: Receiving and playing audio data ………

11

Figure3: VOIP PROTOCOL STACK ……………………………………………..

12

Figure4: SIP base System …………………………………………………………

13

Figure5: SIP Header format ………………………………………………………

14

Figure6: Basic SIP Call Flow ………………………………………………………

16

Figure7: SIP Authentication ………………………………………………………

18

Figure8: RTP Header format ……………………………………………………..

20

Figure9: SIP Call Flow Analysis …………………………………………………

56

Figure10: RTP Stream ………………………………………………………………….

58

Figure11: RTP Stream Analysis …………………………………………………..

59

Figure12: RTP Graph Analysis ……………………………………………………

60

 8

Contents:

1.Introduction ………………………………………………………… 1

 1.1.Motivation ………………………………………………………………………… 1

 1.2 Connection-oriented/connectionless dichotomy ………………. 2

 1.3 Enhancement for TCP/IP ………………………………………………..... 3

 1.4 VOIP Over Wireless LAN ………………………………………………….. 4

2.Background …………………………………………………………. 7

 2.1 VOIP …………………………………………………………………………………….. 7

 2.2 VOIP Phone System ……………………………………………………………. 7

 2.3 Interactive Audio Over Packet based Networks ……………….. 8

 2.4 VOIP Protocol ………………………………………………………………………. 12

 2.5 SIP ………………………………………………………………………………………. 13

 2.6 RTP ………………………………………………………………………………………. 19

 2.7 OSS ……………………………………………………………………………………… 23

3.Functional specification …………………………………………. 28

4. Devices and Tools ………………………………………………… 31

 4.1 Simputer …………………………………………………………………………….. 31

 4.2 Wireless Adapter …………………………………………………………………. 32

 4.3 USB To Ethernet Adapter …………………………………………………… 33

 4.4 Ethereal ………………………………………………………………………………. 33

 4.5 Building Cross Compiling Tool Chain …………………………………. 34

5.Implementation Details ………………………………………… 40

 5.1 OSIP Library………………………………………………………………………… 40

 5.2 Speex Library………………………………………………………………………. 44

 5.3 ORTP Library……………………………………………….………………………. 50

 5.4 Ncurses Library……………………………………………………………………. 51

 5.5 Readline Library………………………………………………………………….. 54

 5.6 SIP Base Application……………………………………………………………. 54

6.Results………………………………………………………………… 56

 6.1 SIP Call Flow Analysis ……………………………………………………….. 56

 6.2 RTP Stream…………………………………………………………………………. 58

 6.3 RTP Stream Analysis…………………………………………………………… 59

 6.4 RTP Graph Analysis…………………………………………………………….. 60

7.Conclusion& Future Work ……………………………………… 61

8.References …………………………………………………………… 62

 9

Acronyms and abbreviations

VOIP: Voice Over Internet Protocol

 VOWAN: Voice Over Wireless LAN

 SIP: Session Initiation Protocol

 RTP: Real Time Protocol

 RTCP: Real Time Control Protocol

 MGCP: Media Gateway Control Protocol

 SDP: Session Description Protocol

OSS: Open Sound System

SSRC: Synchronization source

CSRC: Contributing source

 10

1.Introduction

1.1. Motivation

Good communication services and universal access are necessary for a

higher standard of living and economic growth. However the high cost of

legacy PSTN call may not be affordable to every body. Voice over IP (VOIP)

introduces voice into the packet switching world, which brings the

convergence of packet and circuit networks. Today with VOIP, we can make

economical long distance calls. IEEE 802.11 wireless local area networks

have become an increasingly popular user access technology and a flexible

alternative to wired access. WLANs are now appearing not only as wireless

extensions of private corporate networks, but also in homes and public hot

spots. Wireless Local Area Network (WLAN) gives freedom to the people from

the wired network connections and hence users now can enjoy greater

mobility.

Recently, many people begun to show interests in delivering voice over

WLAN, which promises further mobility to users. Years of experience with

wireless LAN has made this technology quite mature. However, the

introduction of voice into WLAN has brought new challenges. The WLAN

industry is working hard to enable 802.11-based networks to accommodate

the technical characteristics of VOIP. VOIP over WLAN as technology enables

IP voice to be sent over an (802.11) WLAN .

As said earlier (VOIP) networks combine both voice and data communications

networking technologies. VOIP networks combine the best of voice and data

communications networking technologies. But that combination also creates

some challenges, as the industry attempts to meld the best of circuit

switching (from the voice side) and packet switching (from the data side)

into single technology. TCP/IP protocol stack is not sufficient for VOIP.

1.2 The connection-oriented/connectionless dichotomy

Traditional voice networks are classified as connection-oriented networks, in

which a path from the source to destination is established, prior to any

 11

information transfer. When the end user takes the telephone off-hook, they

notify the network that service is requested. The network then returns dial

tone, and the end user dials the destination number. When the destination

party answers, the end-to-end connection is confirmed through the various

switching offices along the path. When the conversation is complete, the two

parties hang up, and their network resources can be re-allocated for

someone else's conversation.

One of the disadvantages of this process is the consumption of resources

spent setting up the call (a process called signaling, which we will consider in

a future tutorial). One of the advantages, however, is that once that call has

been established, and a path through the network defined, the characteristics

of that path, such as propagation delay, information sequencing, etc. should

remain constant for the duration of the call. Since these constants add to the

reliability of the system, the term reliable network is often used to describe a

connection-oriented environment. The Transmission Control Protocol

(TCP) is an example of a connection-oriented protocol.

In contrast, traditional data networks are classified as connectionless

networks, in which the full source and destination address is attached to a

packet of information, and then that packet is dropped into the network for

delivery to the ultimate destination. An analogy to connectionless networks is

the postal system, in which we drop a letter into the mailbox, and if all works

according to plan, the letter is transported to the destination. We do not

know the path that the packet (or letter) will take, and depending upon the

route, the delay could vary greatly. It is also possible that our packet may

get lost or be miss-delivered within the network, and therefore not reach the

destination at all. For these reasons, the terms best efforts and unreliable are

 12

often used to describe a connectionless environment. The Internet Protocol

(IP) and the User Datagram Protocol (UDP) are examples of

connectionless protocols.

Recall from your Internet History 101 class, that the Internet protocols,

including TCP, IP, and UDP were developed in the 1970s and 1980s to

support three key applications: file transfers (using the File Transfer

Protocol, or FTP), electronic mail (using the Simple Mail Transfer

Protocol, or SMTP), and remote host computer access (using the TELNET

protocol). All of these applications were data- (not voice-) oriented, and were

therefore based upon IP's connectionless network design. Layering TCP on

top of IP gave the entire system enhanced reliability (albeit with additional

protocol overhead), but the rigors of a true connection-oriented, switched

infrastructure (like the telephone network) was not necessary to support

these applications.

1.3. Enhancement for TCP/IP

Fast forward a few decades to the new millennium where visions of voice,

fax, and video over IP dominate. These applications are sensitive to

sequencing and delay issues, and the idea of a "best efforts" service which

brings us to the challenging question: How do we support connection-

oriented applications (such as voice and video) over a connectionless

environment (such as IP), without completely redesigning the network

infrastructure? The solution is to enhance IP with additional protocols that fill

in some of its data-centric gaps. These include:

• Multicast Internet Protocol (Multicast IP), defined in RFCs 1112

and 2236. Multicast allows information from a single source to be

sent to multiple destinations (as may be required for conferencing).

• Real-time Transport Protocol (RTP), defined in RFC 3350.

RTP provides functions such as payload identification, sequence

numbering, and timestamps on the information.

 13

• RTP Control Protocol (RTCP), also defined in RFC 3350.

RTCP monitors the quality of the RTP connection.

• Resource Reservation Protocol (RSVP), defined in RFC 2205.

RSVP requests the allocation of network resources, to assure

adequate bandwidth between sender and receiver.

• Real-Time Streaming Protocol (RTSP), defined in RFC 2326.

RTSP supports the delivery of real-time data, including retrieval of

information from a media server or support for conferencing.

• Session Initiation Protocol (SIP) defined in RFC 3261. Session

Initiation Protocol is a signaling protocol for Internet

conferencing, telephony, presence, events notification and instant

messaging.

• Session Description Protocol (SDP), defined in RFC 2327.

SDP conveys information about the media streams for a particular

session, including session name, time the session will be active,

what media (voice, video, etc.) is to be used, the bandwidth

required.

So SIP is used for creating, maintaining and terminating voice session on IP

based Wireless Environment. SIP and RTP stacks are used in this project.

1.4 Voice over Wireless LAN

 VOIP over WLAN refers to the provisioning of IP voice services across

wireless LANs, usually 802.11-based (also known as voice over Wi-Fi). A

VOIP over WLAN system works by translating a (PBX) telephone call to IP

packets and sends these IP packets over an 802.11 WLAN.

This technology can bring people many benefits. It has all the advantages

of VOIP systems along with greater mobility. Mobility usually means

increased productivity since it also reduces the cost for deployment of wired

phones. Just as when introducing voice to IP networks, VOIP over WLAN has

 14

the same problems as VOIP regarding deployment . Some characteristics of

wireless networks cause additional difficulties.

Generally speaking, there are several major issues need to be solved before

this technology will be fully accepted.

(1) Latency-induced VOIP performance degradation as users roam. This

latency is usually caused by re-authentication required when associating with

a new access point. ITU recommends that the total latency in a voice call

should not exceed 150 milliseconds. In VOWLAN practice, it’s agreed that the

delay of roaming and authentication needs to be kept under 50 milliseconds.

 (2) Lack of QOS (Quality of Service) mechanisms. In order to keep the real

time features of voice traffic, voice packets should be assigned higher priority

then normal data packets to maintain the quality of voice. In this sense, QOS

is needed. Although voice gets priority treatment, it cannot get a reserved

bandwidth as it is not guaranteed that low priority frames will always wait

until all higher priority frames are transmitted, so in order to provide better

service to streams with higher priority, a reserved bandwidth may be helpful.

(3) Today, VOIP handsets have less security than other data devices. This

may leave the network vulnerable to potential spoofing. Security measures

for data may introduce more latency than voice can tolerate, so a special

mechanism for voice should be developed. 802.11i is a task group that aims

to enhance security that is stronger and better suited to wireless voice.

802.11i developed algorithms for confidentiality, data integrity, and data

source authentication. It also includes a protocol for mutual authentication

and key management.

(4) Limited number of voice calls. Because of the capability of access points

for handling calls simultaneously, the number of calls is limited. Currently,

 15

when the number of calls reach 30, an access point becomes overloaded,

thus the quality degrades.

(5) Rapid drain of handset battery. To achieve true mobility, low power is

one of the key point, since users expects long battery life. This should be

improved in the future by adding sleep mode to the 802.11 phones.

Moreover, low power required low power consumption of each component of

a phone, so power saving may involve carefully design of every part.

(6) Insufficient support for video on WLAN. Most products today support only

802.11b WLAN 802.11b’s 11Mbps data rate translates into 4-5 Mbps of real

throughput. Video requires lots of bandwidth, usually between 128kbps to 2

Mbps, so video now is still restricted on WLAN. On an 802.11a WLAN, the 54

Mbps data rate translates into 20Mbps to 25Mbps of real throughput and

even this may not be enough when many users share the bandwidth. Many

WLAN vendors are developing solutions to support IP Multicast on the WLAN

through QoS to improve this.

 16

2.Background

2.1 VOIP

Many years ago we discovered that sending a signal to a remote destination

could have be done also in a digital fashion: before sending it we have to

digitalize it with an ADC (analog to digital converter), transmit it, and at the

end transform it again in analog format with DAC (digital to analog

converter) to use it.

VOIP works like that, digitalizing voice in data packets, sending them and

reconverting them in voice at destination[3]. Digital format can be better

controlled: we can compress it, route it, convert it to a new better format,

and so on; also we saw that digital signal is more noise tolerant than the

analog one .

TCP/IP networks are made of IP packets containing a header (to control

communication) and a payload to transport data: VOIP use it to go across

the network and come to destination. The packet switching technology that is

widely used for data communication was not designed for real time content

delivery, e.g. voice. But packet switching has advantages over circuit

switching as is used by normal voice systems, such as the PSTN (Public

Switching Telephone System). In circuit switching, a ‘circuit’ is maintained for

the whole duration of the conversation, thus, a large part of the telephone

network resource is wasted at any given time. In contrast, using data

networks to deliver voice not only avoids the need for two separate systems

for data and voice, but also makes better use of the network’s resources. For

these reasons, VOIP was introduced and has gained great popularity.

2.2 The VOIP Phone System: Packet Switching

Data networks do not use circuit switching. Your Internet connection would

be a lot slower if it maintained a constant connection to the web page you

were viewing at any given time. Instead, data networks simply send and

 17

retrieve data as you need it. And, instead of routing the data over a

dedicated line, the data packets flow through a chaotic network along

thousands of possible paths. This is called packet switching.

While circuit switching keeps the connection open and constant, packet

switching opens a brief connection -- just long enough to send a small chunk

of data, called a packet, from one system to another. It works like this:

• The sending computer chops data into small packets, with an address

on each one telling the network devices where to send them.

• Inside of each packet is a payload. The payload is a piece of the e-

mail, a music file or whatever type of file is being transmitted inside

the packet.

• The sending computer sends the packet to a nearby router and forgets

about it. The nearby router sends the packet to another router that is

closer to the recipient computer. That router sends the packet along to

another, even closer router, and so on.

• When the receiving computer finally gets the packets (which may have

all taken completely different paths to get there), it uses instructions

contained within the packets to reassemble the data into its original

state.

Packet switching is very efficient. It lets the network route the packets along

the least congested and cheapest lines. It also frees up the two computers

communicating with each other so that they can accept information from

other computers, as well

2.3 Interactive audio over packet based networks

The idea of using a packet based network such as the Internet for interactive

audio is not new[3]. Despite this, a commercial interest in IP based

telephony did not appear until recently, usually in the form of public

telephone operators offering public switched telephone network (PSTN) to

Internet gateway services, or as private branch exchange (PBX)

replacements at large

 18

companies. In the future it is likely that most phone calls will be carried by IP

end-to-end, at least in countries with wide spread broadband Internet and

Intranet infrastructures. When providing telephony services over a packet

based network such as the Internet the applications must be able to handle

the loss, delay, and jitter characteristics inherent in such a network. In this

chapter I describe the mechanisms developed to handle these network

characteristics, I start this chapter by providing an overview of the path of

the audio data from the generation at the sender’s lips and input to their

microphone to emission by the recipient’s speaker for perception at their ear

2.3.1 Overview of audio data processing

For a real-time application such as interactive voice it is important that the

end to- end delay bound is not rigid, but values in the range 150-400 ms are

commonly given. delays above the knee (�180 ms) have a worse impact on

the perceived quality. The components contributing to the delay are either

related to the different audio processing mechanisms at the sender and

receiver, the Coding and Decoding (CODEC), or to the process of moving the

data packets over the Internet (or Intranet).

Sender side: Generating and transmitting audio data

Figure:1 Generating and transmitting audio data

Read

Mixer A/D

Buffer

Network Interface Card

Kernel
Space

User Space

Codec

RTP

Kernel

Buffer

IP

Process
Buffer

Queue

Mic

Line in

Network

 19

In this section an overview will be given for the mechanisms contributing to

delay at the sender and receiver. Consider an analog audio signal captured

by a microphone and encoded as pulse code modulation (PCM) samples in

the audio hardware, as shown in Fig. 2.1. In this analog-to-digital (A/D)

conversion process the signal first passes through a low pass filter (to avoid

aliasing), a sampler (converting it to a time discrete signal), and a quantized

(creating an amplitude discrete signal) where upon the signal can be encoded

usually with 8, 16 or 24 bits of resolution Also, in the path there is usually an

input mixer to allow for multiple audio sources to be mixed or simply

selected, although for IP telephony applications only a single source (the

microphone) is commonly used. Each of these inputs might be stereo,

although for IP telephony we generally use only one channel. The audio

samples are first stored in a small buffer/queue inside the audio hardware,

from where the audio data is subsequently moved to a kernel space buffer in

main memory using direct memory access (DMA) under control of the audio

driver. The audio driver provides a software interface allowing applications

to read (one or more) samples for further audio processing in user space1.

The audio CODEC usually processes audio in blocks (here referred to as audio

frames). Hence, to improve efficiency it is desirable if the application can

read the PCM samples from kernel space a frame at a time rather than a

sample at a time. In the audio CODEC a frame with a set of code words are

processed and encoded using a suitable audio format, as selected by the

session description The sum of the (frame) buffering delay and the look-

ahead delay is referred to as the Codec’s algorithmic delay, and is the

minimum delay added by a CODEC. This is in contrast to the processing

delay of the CODEC, which varies depending on the CODEC implementation

and the processing environment. The CODEC may also perform voice activity

detection (VAD), whereby frames with speech are encoded as usual,

otherwise frames are either encoded as noise or simply not sent at all. VAD

could lead to delay at the sender when the CODEC does look-ahead .Now

that voice frames is sent on RTP and goes for IP processing and enters into

NIC.

 20

Receiver side: Receiving and playing audio data

At the receiver the inverse process occurs[3]. In addition the receiver has

mechanisms to handle loss and jitter experienced by the audio stream during

the traversal of the Internet. When receiving an audio packet first the regular

IP/UDP processing is performed, then based upon the packet type and port

number the RTP packet is delivered to the application. The RTP payload type

specifies the format of the payload, and

Figure:2 Receiving and playing audio data

the receiving application passes the payload to the appropriate CODEC for

decoding .As audio packets traverse the Internet they will experience

different delays .In order to smooth out the effect of the delay variation

(jitter) the receiver implements a play out (de-jitter) buffer. The goal is that

audio data should be played with the same relative timing as it was

generated (using timestamp information provided by RTP). Furthermore, the

play out delay (Tplayout) should be set long enough so that most audio

packets will arrive before their scheduled play out time. However, this play

out delay increases the mouth-to ear delay, and using too large a value will

not be acceptable for interactive applications such as telephony – this leads

to a trade-off between delay and packet loss. Many audio applications make

Read

Mixer A/D

Buffer

Network Interface Card

Kernel
Space

User Space

Buffer

Play

Out

RTP

Kernel

Buffer

IP

Process
Buffer

Queue

Speaker

Head Phone

Network

Codec

 21

use of an adaptive play out buffer management algorithm, in which the play

out point adapts to changes in network delay jitter.

2.4 VOIP PROTOCOL STACK:

 There is a VOIP stack for Voice Over IP communication[5]. There are

different protocol that can be classified in three main categories namely

Signaling, Gateway Control, and Media protocol. H.323 and SIP are the main

protocols which are used for signaling .MGCP is used for Media Gateway

control. RTP, RTCP,RSCP are used for transferring media whether it is audio

or video.

 Signaling Gateway Control Media

Figure 3: VOIP Protocol

 H.450X H.235 MGCP

Audio

codec

Video

Codecc

H..255 RSA SIP SGCP PDC H.gcp RTP RTCP RTSP H.245

TCP UDP

IP

 22

2.5 SIP

2.5.1 SIP base System:

 Following diagram illustrates the overall system network. Such a

network would allow seamless multiple access options for most of the more

prevalent voice and data services.

Figure:4 SIP based System Network

The SIP architecture begins by building upon two other Internet application

protocols, the Simple Mail Transfer Protocol (SMTP), which is defined in RFC

2821, and specifies the format for electronic mail messages, and the

Hypertext Transfer Protocol (HTTP), which is defined in RFC 2616, and

specifies the format for web-based multimedia communication. In addition,

SIP uses functions defined by the Real Time Transport Protocol/Real Time

Control Protocol (RTP/RTCP), defined in RFC 3550, which specifies the

formats for multimedia packets over Internet Protocol (IP) networks, and the

Session Description Protocol (SDP), defined in RFC 2327, which specifies the

characteristics and parameters of a multimedia session. Thus, SIP builds

upon other IETF-developed protocols.

SIP is an application layer signaling protocol for session establishment. The

main functions of this protocol are to establish a session, modifying the

session, and terminate it when the call is to be finished. The sessions can be

established with single or multiple participants. SIP is a simple text based

protocol similar to HTTP (Hyper Text Transfer Protocol) and follows the client-

 23

server architecture. The transport protocol for SIP can be Transmission

Control Protocol (TCP) or User Datagram Protocol (UDP) or Stream Control

Transmission Protocol (SCTP). Because of its simplicity, it is scalable in terms

of the number of sessions and compatible with different protocol

architectures. These are the reasons that SIP is becoming the industry

standard for Voice over IP applications and products.

2.5.2 SIP Header format
32 bits

Version Flow Label

Payload Lenth PlayLoad Type Hop Limit

Source Address

Destination Address

Figure:5 SIP Header Format

Version

The version field in SIP distinguishes SIP from IP and any other

internet protocol that uses the same link layer frame as IP such as

Stream Protocol.

Flow Label

The Flow Label is an expansion of the IP Service field. It is used to label

packets as belonging to a particular traffic flow for which the server requires

specific handling , for example real time service or non default quality of

service

Payload Length

 24

This specifies the length of the SIP packet. It does not include the header.

This is a change from IP , where the receiver had to check that the payload

length was not less than the header size , this is not necessary in SIP , and

results in one less thing to be checked.

Payload Type

This uses the same values as the IP Protocol field. It specifies the type of the

header immediately following the SIP header , such as TCP or UDP. It has

been renamed to avoid confusion as to what is being referred to as the IP

protocol - the protocol field or IP itself

Hop Limit
The Hop Limit is set to some nonzero value, and decremented by one by

each system that forwards the packet. The packet is discarded if the hop

limit reaches zero. This is to prevent the packet getting stuck in a forwarding

loop.

Other uses include limiting the propagation of multicast packets, and it can

also be used for diagnostic purposes. The "time to live" field in IP provided

the same function, plus one extra one. This was to limit the amount of time

that a packet spent in transit. This was discarded because it proved too

costly to implement, and in some cases impossible to implement, for

example in large subnets whose transit time is unpredictable. In practice

many IP routers implemented time to live as hop limit, SIP legitimized this.

Any higher level functions that cannot tolerate delivery delays, must provide

their own method of recognizing old packets.

Source Address

This is the 64 bit address of the sender. SIP addressing does not impose any

strict class structure on addresses.

 25

Destination Address

This is the 64 bit address of the destination. SIP addressing does not impose

any strict class structure on addresses.

2.5.2 SIP call Flow

As discussed earlier SIP is Signaling Protocol. following diagram illustrate

the basic sip call flow .first user agent A sends Invite message to the User

Agent B. Then Trying message is replied by User Agent B .Ringing messages

are sent until user B answers. It is followed by OK message. Now multimedia

session has been established so real time communication using RTP

protocol follows. For terminating the session bye message is invoked by any

user. Bye message is followed by OK message

. Figure:6 SIP Call Flow

 26

There are five types of services that SIP offers,

User Location : To find the location of the end system for communication.

User Availability: To find if the called party is willing to communicate.

User Capabilities: To negotiate and determine the media capabilities, e.g. a

voice codec that is supported by both calling party and the called party.

Call (session) Setup: Ringing and establishing call parameters at both

called and calling party.

Session Management: The transfer and termination of the calls

SIP basically has two components

1. SIP User Agents

2. SIP Network Servers

The User agent is the component in the end system and consists of two

parts:

(a) The client element called User Agent Client (UAC) used for call initiation;

(b) The server element called the User Agent Server (UAS) that is used to

answer calls.

The SIP servers’ functions include resolving the name and providing user

locations, as end users usually don’t know the IP address or the hostname of

the called party.

 27

Following are several examples of SIP servers:

Registrar server The registrar server receives Register requests from the

users. The Register request associates the user’s SIP address called a SIP

URI (Uniform Resource Identifier) with the current machine where they are

located. This association is stored by the Registrar in the Location Service

(LS). Authentication Of SIP user is required in case of registrar server

system. How authentication is accomplished is shown in the following

diagram.

SIP Authentication

Figure:7 SIP Authentication

Proxy Server Users send their SIP requests to the Proxy Server, which

forwards the requests to the next hop proxy server or to a proxy server close

to the called user. The proxy server can also modify and add information in

some parts of the SIP requests if required. A Domain Name System (DNS)

Server can be used to find the location of the Proxy server.

 28

Redirect Server The Redirect server receives the request from the clients,

but unlike Proxy Servers, it does not forward the request to another server or

the user. Rather, it sends back a response to the calling user with the

information about the destination.

SIP Methods & Response Codes:

Methods:

INVITE Initiate Call
ACK Confirm final response
BYE Terminate and transfer call
CANCEL Cancel searches and “ringing”
OPTIONS Features support by other side
REGISTER Register with location service

Table:1 SIP Methods

 Response Codes:

1xx Searching ,ringing ,queuing
2xx Success
3xx Forwarding
4xx Client mistakes
5xx Server failures
6xx Busy, refuse, not available

anywhere

Table:2 Response Codes

2.6 RTP

RTP [2] is the Internet-standard protocol for the transport of real-time data,

including audio and video. It can be used for media-on-demand as well as

interactive services such as Internet telephony. RTP consists of a data and a

control part. The latter is called RTCP.

The data part of RTP is a thin protocol providing support for applications with

real-time properties such as continuous media (e.g., audio and video),

including timing reconstruction, loss detection, security and content

 29

identification. RTCP provides support for real-time conferencing of groups of

any size within an internet. This support includes source identification and

support for gateways like audio and video bridges as well as multicast-to-uni

cast translators. It offers quality-of-service feedback from receivers to the

multicast group as well as support for the synchronization of different media

streams.

Following figure shows how the real time data is being wrapped when

transported using RTP protocol.

MAC Header

IP Header

UDP Header

RTP Header

Payload

First the data is wrapped by RTP header then it is consider as payload for
UDP .UDP Packet is then consider as payload of IP packet which is then
wrapped by data link layer frame.

2.6.1 RTP Header format
32 bits

VER

P X CC M PT Sequence Number

Timestamp

SSRC

CSRC[0..15]

Figure:8 RTP Header

Ver, Version. 2 bits.

RTP version number. Always set to 2.

P, Padding. 1 bit.

If set, this packet contains one or more additional padding bytes at the end

which are not part of the payload. The last byte of the padding contains a

 30

count of how many padding bytes should be ignored. Padding may be needed

by some encryption algorithms with fixed block sizes or for carrying several

RTP packets in a lower-layer protocol data unit.

X, Extension. 1 bit.

If set, the fixed header is followed by exactly one header extension.

CC, CSRC count. 4 bits.

The number of CSRC identifiers that follow the fixed header.

M, Marker. 1 bit.

The interpretation of the marker is defined by a profile. It is intended to allow

significant events such as frame boundaries to be marked in the packet

stream. A profile may define additional marker bits or specify that there is no

marker bit by changing the number of bits in the payload type field.

PT, Payload Type. 7 bits.

Identifies the format of the RTP payload and determines its interpretation by

the application. A profile specifies a default static mapping of payload type

codes to payload formats. Additional payload type codes may be defined

dynamically through non-RTP means

Sequence Number. 16 bits.

The sequence number increments by one for each RTP data packet sent, and

may be used by the receiver to detect packet loss and to restore packet

sequence. The initial value of the sequence number is random

(unpredictable) to make known-plaintext attacks on encryption more difficult,

even if the source itself does not encrypt, because the packets may flow

through a translator that does.

 31

Timestamp. 32 bits.

The timestamp reflects the sampling instant of the first octet in the RTP data

packet. The sampling instant must be derived from a clock that increments

monotonically and linearly in time to allow synchronization and jitter

calculations. The resolution of the clock must be sufficient for the desired

synchronization accuracy and for measuring packet arrival jitter (one tick per

video frame is typically not sufficient).

SSRC, Synchronization source. 32 bits.

Identifies the synchronization source. The value is chosen randomly, with the

intent that no two synchronization sources within the same RTP session will

have the same SSRC. Although the probability of multiple sources choosing

the same identifier is low, all RTP implementations must be prepared to

detect and resolve collisions. If a source changes its source transport

address, it must also choose a new SSRC to avoid being interpreted as a

looped source.

CSRC, Contributing source. 32 bits.

An array of 0 to 15 CSRC elements identifying the contributing sources for

the payload contained in this packet. The number of identifiers is given by

the CC field. If there are more than 15 contributing sources, only 15 may be

identified. CSRC identifiers are inserted by mixers, using the SSRC identifiers

of contributing sources. For example, for audio packets the SSRC identifiers

of all sources that were mixed together to create a packet are listed, allowing

correct talker indication at the receiver

Following are the challenges for RTP

• Multicast address allocation:

Eventually, many thousands of multicast sessions may exist

concurrently. Currently, the IPv4 multicast address space is very

limited and thus requires careful global allocation to avoid collisions.

 32

The IPv6 multicast address space is very much larger, supports

administrative scoping and may allow random allocation.

• Scalable multicast routing:

Multicast routing needs to work for both a very large number of small

groups and a smaller number of large groups, without routers not on

the multicast tree having to know about groups.

• Compensating for packet loss:

For the foreseeable future, the Internet will have areas and times of

high packet loss (1% to 10% and higher).

• Play out delay compensation:

End systems need to compensate for network delay variations.

• Synchronization of different media:

Several audio and video streams coming from one or, less commonly,

several sources need to be synchronized (lip sync).

2.7 OSS:

The Open Sound System (OSS) is a device driver for sound cards and other

sound devices under various UNIX and UNIX-compatible operating systems.

OSS was derived from the sound driver written for the Linux operating

system kernel. The current version now runs on more than a dozen operating

system platforms and supports most popular sound cards and sound devices

integrated on computer motherboards. Sound cards normally have several

different devices or ports which produce or record sound.

There are differences between various cards, but most have the devices

described in this section.

 The digitized voice device (also referred to as a codec, PCM, DSP or

ADC/DAC device) is used for recording and playback of digitized sound.

 33

The mixer device is used to control various input and output volume levels.

The mixer device also handles switching of the input sources from

microphone, line-level input and CD input.

The synthesizer device is used mainly for playing music. It is also used to

generate sound effects in games. The OSS driver currently supports two

kinds of synthesizer devices. The first is the Yamaha FM synthesizer chip

which is available on most sound cards. The second types of synthesizer

devices are the so-called wave table synthesizers. These devices produce

sound by playing back pre-recorded instrument samples. This method makes

it possible to produce extremely realistic instrument timbres. The Gravis

Ultrasound (GF1) is an example of a wave table synthesizer.

A MIDI interface is a used to communicate with devices, such as

synthesizers, that use the industry standard MIDI protocol. MIDI uses a

serial interface running at 31.5 kbps which is similar to (but not compatible

with) standard PC serial ports. The MIDI interface is designed to work with

on-stage equipment like synthesizers, keyboards, stage props, and lighting

controllers. MIDI devices communicate by sending messages through a MIDI

cable. Most sound cards also provide a joystick port and some kind of

interface (IDE, SCSI, or proprietary) for a CD-ROM drive. These devices are

not controlled by OSS but there are typically separate drivers available.

2.7.1 OSS API Basics

The application programming interface (API) of the OSS driver is defined in

the C language header file <soundcard.h> .

The OSS software ships with a copy of the header file in the include/sys

subdirectory. You may have older versions of the include file that are

included with your operating system (Linux distributions typically include the

older OSS/Free driver, for example). It usually causes no harm to use the

older header file but you will not be able to use some of the newer features

 34

only provided in OSS. Very old versions may also cause compatibility

problems. To avoid this, you can either point to the OSS header files when

compiling applications (use the compile option "-I/usr/lib/oss/include") or

install the header file in a standard system header file location (e.g.

/usr/include/sys).

If you get compile errors when building an application, verify that you are

using the version of <soundcard.h> supplied with OSS.

2.7.2 Device Files Supported by OSS

The OSS driver supports several different types of devices. These are

described in the following sections.

/dev/mixer

The mixer device files are used primarily for accessing the built-in mixer

circuits of sound cards. A mixer makes it possible to adjust playback and

recording levels of various sound sources. This device file is also used for

selecting recording sources. Typically a mixer will control the output levels of

the digital audio and FM synthesizer and also mix it with the CD input, line

level input and microphone input sources. The OSS driver supports several

mixers on the same system. The mixer devices are named /dev/mixer0,

/dev/mixer1, etc. The device file /dev/mixer is a symbolic link to one of these

device files (usually the first mixer, /dev/mixer0).

/dev/sndstat

This device file is provided for diagnostic purposes, and unlike all of the other

sound devices, produces its output in human readable format. The device

prints out information about all of the ports and devices detected by the OSS

driver. Running the command "cat /dev/sndstat" will display useful

information about the driver configuration. It should be noted that the output

 35

of /dev/sndstat is not intended to be machine readable and may change

without notice in future Versions of OSS.

/dev/dsp and /dev/audio

These are the main device files for digitized voice applications. Any data

written to this device is played back with the DAC/PCM/DSP device of the

sound card. Reading the device returns the audio data recorded from the

current input source (the default is the microphone input). The /dev/audio

and /dev/dsp device files are very similar. The difference is that /dev/audio

uses logarithmic mu-law encoding by default while /dev/dsp uses 8-bit

unsigned linear encoding. With mu-law encoding a sample recorded with 12

or 16-bit resolution is represented by one 8-bit byte. Note that the initial

sample format is the only difference between these device files. Both devices

behave similarly after a program selects a specific sample encoding by calling

ioctl. .

The OSS driver supports several codec devices on the same system. The

audio devices are named /dev/dsp0, /dev/dsp1, etc. The file /dev/dsp is a

symbolic link to one of these device files (usually /dev/dsp0). A similar

naming scheme is used for /dev/audio devices.

/dev/sequencer

This device file is intended for electronic music applications. It can also be

used for producing sound effects in games. The /dev/sequencer device

provides access to any internal synthesizer devices of the sound cards. In

addition, this device file can be used for accessing any external music

synthesizer devices connected to the MIDI port of the sound card as well as

General MIDI daughter cards connected to the Wave Blaster connector of

many sound cards. The /dev/sequencer interface permits control of up to 15

synthesizer chips and up to 16 MIDI ports at the same time.

 36

/dev/midi

These are low level interfaces to MIDI bus ports that work much like TTY

(character terminal) devices in raw mode. The device files are not intended

for real-time use % there is no timing capability so everything written to the

device file will be sent to the MIDI port immediately. These devices are

suitable for use by applications such as MIDI SysEx and sample librarians.

There device files are named /dev/midi00, /dev/midi01, etc. (note the two

digit device numbering). The device /dev/midi is a symbolic link to one of the

actual device files (typically /dev/midi00).

 37

3. Functional Specification:

For getting functional Specification for SIP soft phone in Simputer different

open source soft phone were studied.

 Minisip:

Minisip is a SIP User Agent ("Internet telephone").

It can be used to make phone calls, instant message and video calls to your

buddies connected to the same SIP network.

Features:

• SIP compliant (RFC 3261 and more)

• Multiple lines (users) on the same phone

• Multiple incoming/outgoing calls simultaneously

• Runs on multiple Operating Systems (Linux PC, Linux familiar IPAQ

PDA, Windows XP and soon Windows Mobile 2003 SE)

• Instant Messaging

• Video conferencing

• Call Logging

The source code is available as a number of libraries under the GNU Lesser

General Public License (LGPL) and applications under the GNU General Public

License (GPL).

 SipXPhone:

The sipXphone project, formerly known as Pingtel's instant xpressa

softphone, is a fully functional SIP softphone that runs on Microsoft Windows

and Linux. The sipXphone project includes the Java Application Layer, C++

embedded web server, and a C/C++ JNI API.

Features:

• The SIP softphone leverages a well tested RFC 3261
compliant.

• Offers rich configuration abilities

 38

• A java-based application framework

• Message Waiting Indication to on-phone bridged conferences

 Linphone

Linphone is a web phone: it let you phone to your friends anywhere in the

whole world, freely, simply by using the internet. The cost of the phone call

is the cost that you spend connected to the internet.

Features:

Works with the Gnome Desktop under Linux,

• Works as simply as a cellular phone. Two buttons and one more to

chat.

• Linphones includes a large variety of codecs (G711-ulaw, G711-

alaw, LPC10-15, GSM, SPEEX and iLBC). The Speex codec it is able

to provide high quality talks even with slow internet connections,

like 28k modems.

• Understands the SIP protocol.

• Other technical functionalities include DTMF (dial tones) support

though RFC2833 and ENUM support (to use SIP numbers instead of

SIP addresses).

• Linphone is free software, released under the General Public

License.

• Linphone includes a sip test server called "sipomatic" that

automatically answers to calls by playing a pre-recorded message.

By above Study I found that Linphone has been better suitable for simputer

which is linux based PDA. Linphone is purely in c/c++ and for Linux

platform .

 39

The Soft phone should provides the following capabilities:

• Determines the location of the target endpoint—SIP supports

address resolution, name mapping, and call redirection.

• Determines the availability of the target endpoint—If a call

cannot be completed because the target endpoint is unavailable,

SIP determines whether the called party is connected to a call

already or did not answer in the allotted number of rings. SIP then

returns a message indicating why the target endpoint was

unavailable.

• Establishes a session between the originating and target

endpoints—If the call can be completed, SIP establishes a session

between the endpoints.

• User Capabilities: To negotiate and determine the media

capabilities, e.g. a voice codec that is supported by both calling

party and the called party.

 40

4. Devices and Tools:

4.1. Simputer

I have used Amida Simputer as my target device which has been designed

and developed by PicoPeta, and manufactured by Bharat Electronics Limited.

Simputer was configured to become part of our LAN.

Technical Specification

Hardware Specification

processor Intel StrongArm 206MHz SA-1100

Permanent Storage Memory Intel Strata Flash 32MB

Synchronous DRAM 64MB RAM

Physical Dimension 142mm*72mm*20mm

Weight 206grms

Display Option 3.8 inch 240*320 color LCD Display

Audio Interface Interface for headphone/microphone

built-in microphone and speaker

Input Interface 3 Functional Key ,touch sensitive LCD
display operated with Stylus

USB Interface 2 USB Ports, one in Master mode
only, one with Master/Slave option

Connectivity Optional external dial-up modem
over serial port, connect through USB
to select Wireless/Wired connectivity
options, Bi-directional Infrared

Serial Interface 4-pin serial port interface

Smartcard Interface Built-in reader/writer supports
asynchronous

Power Specification 4.2V built-in lithium-ion battery,built-
in charger 100-300V AC adapter with
5V/1A output

 41

Software Specification

Operation System Linux Kernel 2.4.18 Device drivers,
Customized boot loader

Environment X Windows
Libraries C libraries, Alchemy libraries

Simputer Application Interface Alchemy
Application (optional) Address Book, Notebook, Calculator,

Clock, Calendar, Khatha, Voice
recorder, Web browser

Table:3 Simputer Specification

4.2 Wireless Adapter:

Linksys WUSB54G has been used as Wireless Adapter. Linksys Wireless-G

USB Network Adapter (WUSB54G) connects your USB-equipped desktop,

PDA or notebook computer to a wireless network at incredible speeds. By

incorporating two new, blazing fast technologies -- USB 2.0 and Wireless-G

(802.11g) -- the Adapter delivers data rates up to 54Mbps (5 times as fast as

802.11b), without the trouble of opening up the case of your desktop

computer.

The Wireless-G USB Network Adapter's high-gain antenna lets you put your

computer almost anywhere in the building, without the cost and hassle of

running cables.

WUSB54G Features:

• Standards IEEE 802.11b, 802.11g, USB 1.1, USB 2.0

• Port USB Port

• Channels 802.11b/802.11g

• LEDs Power, Link

• Transmit Power 15-17 dBm (Typical) @ 11Mbps

• Receive Sensitivity -65 dBm @ 54Mbps, -80 dBm @ 11Mbps

• Security Features WEP Encryption

• WEP Key Bits 64, 128-bit

• Operating Temp. 32ºF to 104ºF (0ºC to 40ºC)

 42

4.3 USB to Ethernet Adapter:

It provides the way to add Ethernet network connectivity to your PC with this

USB 10/100 Ethernet Adapter. With the simple, plug-and-play design, you

don’t have to bother with a difficult installation or worry whether or not you

have an available expansion slot. It automatically transforms the USB port on

your PC into a 10/100 Ethernet port.

General Features:

• Plug and Play Ethernet connectivity through USB port

• Bus/Interface Type: USB 1.1 USB 2.0

• Max USB Operation Speed : Full Speed USB

• Network Type: Ethernet

• LAN Connectors: Fast Ethernet 10/100BaseTX-RJ45

• Form Factor: External

• Native Transmit Speed(s): 10 Mbps

• Native Transmit Speed(s): 100 Mbps

• Single LED

• Bus powered

4.4 Ethereal:

Ethereal is the world’s most popular network Analyzer. Ethereal is used by

network professionals around the world for troubleshooting, analysis,

software and protocol development, and education. Its open source allows

talented experts in the networking community to add enhancements. It runs

on all popular computing platforms, including UNIX, Linux, and Windows.

Features:

Ethereal has a comprehensive feature as listed below.

• Data can be captured "off the wire" from a live network connection,

or read from a capture file.

• Ethereal can read capture files from tcpdump (libpcap), NAI's

Sniffer™ (compressed and uncompressed), Sniffer™ Pro,

NetXray™, Sun snoop and atmsnoop, Shomiti/Finisar Surveyor,

 43

AIX's iptrace, Microsoft's Network Monitor, Novell's LANalyzer,

RADCOM's WAN/LAN Analyzer, Live data can be read from Ethernet,

FDDI, PPP, Token-Ring, IEEE 802.11, Classical IP over ATM.

• Captured network data can be browsed via a GUI, or via the TTY-

mode "tethereal" program.

• Capture files can be programmatically edited or converted via

command-line switches to the "editcap" program.

• 750 protocols can currently be dissected

• Output can be saved or printed as plain text or PostScript.

• Data display can be refined using a display filter.

• Display filters can also be used to selectively highlight and color

packet summary information.

• All or part of each captured network trace can be saved to disk.

4.5 Building cross-compiling tool chain

I have been working on the Linux Base Workstation so I need to cross

compile everything like libraries, device drivers, sip system code .So first of

all I have to build the cross compiler tool chain. We have different types of

build-in tool chains available .But in build-in tool chain there are chance of

incompatibly with our target system environment . So I have built my own

tool chain as follows

Required sources

How to build a cross compiling tool chain from the ground up is explained

below. .You need the following source packages to go on:

Packages:

• binutils

• Linux Kernel

• ARM Kernel patch

 44

• gcc

• glibc

binutils:

Unpack the binutils tarball into a temporary directory, change to the

unpacked binutils directory and run the following commands:

./configure --target=arm-linux

make

make install

You have now some arm-linux-* binaries in /usr/local/bin. These are the

binutils used by the cross-compiling tool chain. And you'll find the new

directory /usr/local/arm-linux/. This is where the cross-compiling tool chain

will be installed.

You can check if the binutils are compiled correctly by calling arm-linux-ar.

Linux Kernel header files:

To compile gcc we need some header files from the linux kernel source.

Unpack the kernel source code in a temporary directory and change to the

unpacked source directory. You'll need to patch the kernel with the ARM

kernel patch. You do this by running this command:

zcat path-to-arm-patch/patch-2.4.17-rmk4.gz | patch -p1

Now you need to configure the kernel by calling this command:

make menuconfig ARCH=arm

Notice that you need to specify ARCH=arm otherwise you are going to

configure the kernel for your host architecture which maybe a x86 machine.

You don't need to do a complete configuration unless you want to compile

the kernel now. Up to now you don't have a cross compiler so you can't

compile it anyway. All you need to do is to select the correct processor type.

In my case I have selected SA1100-based in ARM system type

Implementations. Now save the configuration and call the following command

to finish the kernel configuration:

 45

make dep

Now copy the include files from the kernel source to the tool chain directory:

mkdir /usr/local/arm-linux/include

cp -dR include/asm-arm /usr/local/arm-linux/include/asm

cp -dR include/linux /usr/local/arm-linux/include/linux

Finally change to the toolchain directory and create a symbolic link from

include to sys-include:

cd /usr/local/arm-linux/

ln -s include sys-linux

gcc, which we will compile now, is searching for the include files in sys-linux

by default. You can use the --with-headers configure-option to specify an

other directory but this results in copying the specified directory to sys-linux.

So I think it's better to create a symbolic link to avoid redundant files.

gcc

Unpack the gcc source code and change to the unpacked source directory.

We currently don't have a running glibc so we can't compile the whole

compiler suite. But for now it is enough to compile only the C compiler. Later

we can compile the glibc with this cross compiler and after that we can

compile the whole compiler suite.

It may be necessary to modify the gcc source a little bit. I have done this

because otherwise I was not able to compile, I got these error messages:

./libgcc2.c:41: stdlib.h: No such file or directory

./libgcc2.c:42: unistd.h: No such file or directory

.make[3]: *** [libgcc2.a] Error 1

There are rumors that it is not always needed. If you think (or know, or

learn) that you need it, edit the file gcc/config/arm/t-linux, search this line:

TARGET_LIBGCC2_CFLAGS = -fomit-frame-pointer -fPIC

 46

And change it to this:

TARGET_LIBGCC2_CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -
D__gthr_posix_h

Now configure the source code, compile and install:

./configure --target=arm-linux --disable-threads --enable-languages=c

make

make install

You have now a running cross compiler (/usr/local/bin/arm-linux-gcc) but

without glibc it is not really useful. So let's cross-compile glibc.

glibc

Unpack the glibc tarball in a temporary directory as usual. Then switch to the

unpacked source directory and unpack the linuxthreads add-on into it:

tar xvfz glibc-2.2.4.tar.gz

cd glibc-2.2.4

tar xvfz ../glibc-linuxthreads-2.2.4.tar.gz

Now set the environment variable CC to arm-linux-gcc because we want the

glibc to be cross-compiled for the ARM platform. Then configure, compile and

install the beast:

export CC=arm-linux-gcc

./configure arm-linux --target=arm-linux --prefix=/usr/local/arm-linux --enable-
add-ons

make

make install

Be sure you use the --prefix parameter correctly, otherwise you mess up

your hosts glibc installation.

You'll now find a lot of new files and directories in /usr/local/arm-linux. These

are the glibc headers, libraries and utitilies.

Notice that you can't use this compiled glibc on the target machine because

of the specified prefix. If you want to compile a glibc which you can copy to

 47

your target machine, use an empty prefix (--prefix=) instead and use the

install_root parameter to specify the installation directory:

make install install_root=/path/to/target/root

Finally, make sure you unset the CC environment variable (with unset CC),

because in the next step we are going to recompile the cross compiler and

we don't want to cross-compile the cross-compiler. ;-)

gcc (Second time)

Now we have a cross compiled glibc so we can now go on and compile the

whole gcc compiler suite.

You can use the already unpacked source code of gcc but you have to

remove the changes you have made and you should call make distclean to

clean up the source. To be sure to do it right I suggest you delete the old

source directory and unpack the gcc sources again. Whatever, after you have

a clean gcc source directory, change into it, configure the source, compile

and install it:

./configure --target=arm-linux –enable-languages=c,c++

make

make install

If compilation fails because PATH_MAX is undeclared in basicio.c then add

the following line to the file libchill/basicio.c somewhere between all the other

includes at the top of the file:

#include <linux/limits.h>

Call make again and it should compile fine.

Now We have a working cross-compile tool chain for the ARM platform.

 48

5. Implementation Details:

Host System: i686- based Linux workstation

Target System: SA1100- Based Simputer

The tool chain was tested by simple client-server program but there was a

error regarding c++ shared libraries. So the stdlibc++.so was replaced in

/usr/lib directory of simputer by compatible version from cross compiled

libraries. Now we could run simple client-server program successfully.

For development of sip based system as discussed in background we

required signaling, codec, real-time communication session establishment .so

for that I have used downloaded, optimized and configure following libraries.

First of all set up the build environment:

#export PATH=$PATH:/root/usr/local/arm/bin

#export LD=/root/usr/local/arm/bin/arm-linux-ld

#export LDFLAGS=-L/root/usr/local/arm/arm-linux/lib

5.1 OSIP LIBRARY:

OSIP stands for Open Session Initiation Protocol .OSIP is an implementation

of SIP protocol stack. This library aims to provide multimedia and telecom

software developers an easy and powerful interface to initiate and control SIP

based sessions. OSIP is little in size and code and thus could be use to

implement IP soft-phone as well as embedded SIP software. OSIP can also

be used to implement "SIP proxy".

 Cross -compiling libosip2-2.2.2

 #cd libosip2-2.2.2

 #./configure --prefix=/root/armbuild -host=i686-pc-linux

 --target=arm-linux --disable-static

 #make

 #make install DESTDIR=$ARM_INSTALL

 49

1.Initialize Osip2

When using osip, your first task is to initialize the parser and the state

machine. This must be done prior to any use of libosip2.

 #include <sys/time.h>
 #include <osip2/osip.h>
 int i;
 osip_t *osip;
 i=osip_init(&osip);
 if (i!=0)
 return -1;

For the URI parser, the API is documented in osip_uri.h

How to parse URI

Here is the sequence needed to parse a given buffer containing a sip URI:

 osip_uri_t *uri;
 int i;
 i=osip_uri_init(&uri);
 if (i!=0) { fprintf(stderr, "cannot allocate\n"); return -1; }
 i=osip_uri_parse(uri, buffer);
 if (i!=0) { fprintf(stderr, "cannot parse uri\n"); }
 osip_uri_free(uri);

How to Parse SIP message

SIP parser, the API is documented in osip_message.h

Here is the sequence needed to parse a given buffer containing a sip request

or response. Because the SIP message can contains binary data in its body

part, the length of the buffer must be given to the API.

 osip_message_t *sip;

 int i;

 i=osip_message_init(&sip);

 50

 if (i!=0) { fprintf(stderr, "cannot allocate\n"); return -1; }

 i=osip_message_parse(sip, buffer, length_of_buffer);

 if (i!=0) { fprintf(stderr, "cannot parse sip message\n"); }

 osip_message_free(sip);

How to Manage Trasaction

As soon as you have build the SIP message, you are ready to start a new

transaction. Here is the code:

 osip_t *osip = your_global_osip_context;

 osip_transaction_t *transaction;

 osip_message_t *sip_register_message;

 osip_event_t *sipevent;

 application_build_register(&sip_register_message);

 osip_transaction_init(&transaction,

 ICT, //a REGISTER is an Invite-Client-Transaction

 osip,

 sip_register_message);

How to Manage Dialogs

There is two ways of creating a dialog. In one case, you are the CALLER and

in the other case, you will be the CALLEE.

Creating a dialog as a CALLER.

In this case, you have to create a dialog each time you receive an answer

with a code between 101 and 299. The best place in OSIP to actually create a

dialog is of course in the callback that announce such SIP messages. Of

course, each time you receive a response, you have to check for an existing

dialog associated to this INVITE that can have been created by earlier SIP

answer coming from the same User Agent. The code in the callback will look

like the following:

void cb_rcv1xx(osip_transaction_t *tr,osip_message_t *sip)
 {

 51

 osip_dialog_t *dialog;

 if (MSG_IS_RESPONSEFOR(sip,

"INVITE")&&!MSG_TEST_CODE(sip, 100))

 {

 dialog =

my_application_search_existing_dialog(sip);

 if (dialog==NULL) //NO EXISTING DIALOG

 {

 i = osip_dialog_init_as_uac(&dialog, sip);

 my_application_add_existing_dialog(dialog);

 }

 }

 else

 {

 // no dialog establishment for other REQUEST

 }

 }

Creating a dialog as a CALLEE

In this case, you will have to create a dialog upon receiving the first

transmission of the INVITE request. The correct place to do that is inside the

callback previously registered to announce new INVITE.

 You will build a SIP answer like 180 or 200 and you'll be able to create a

dialog by calling the following code:

 osip_dialog_t *dialog;

 osip_dialog_init_as_uas(&dialog, original_invite, response_that_you_build);

How to Use SDP Negotiator.

Here is the way to initialize the new negotiator:

 struct osip_rfc3264 *cnf;

 52

 int i;

 i = osip_rfc3264_init(&cnf);

 if (i!=0)

 {

 fprintf(stderr, "Cannot Initialize Negotiator feature.\n");

 return -1;

 }

5.3 Speex Library:

Speex is open source speech codec. Speex is not targeted at cell phones but

rather at voice over IP (VOIP) and file-based compression. As design goals,

we wanted to have a codec that would allow both very good quality speech

and low bit-rate (unfortunately not at the same time!), which led us to

developing a codec with multiple bit-rates. Of course very good quality also

meant we had to do wideband (16 kHz sampling rate) in addition to

narrowband (telephone quality, 8 kHz sampling rate).

Designing for VOIP means that Speex must be robust to lost packets, but not

to corrupted ones since packets either arrive unaltered or don't arrive at all.

Also, the idea was to have a reasonable complexity and memory requirement

without compromising too much on the efficiency of the codec.

All this led us to the choice of CELP as the encoding technique to use for

Speex. One of the main reasons is that CELP has long proved that it could do

the job and scale well to both low bit-rates.

Introduction to CELP Coding

Speex is based on CELP, which stands for Code Excited Linear Prediction..

Linear Prediction (LPC)

Linear prediction is at the base of many speech coding techniques, including

CELP. The idea behind it is to predict the signal x[n] using a linear

combination of its past samples:

 53

where y[n]is the linear prediction of y[n]. The prediction error is thus given
by:

 The main characteristics can be summarized as follows:

Speex Library features description

This section explains the main Speex features, as well as some concepts in

speech coding

Sampling rate

Speex is mainly designed for 3 different sampling rates: 8 kHz, 16 kHz, and

32 kHz. These are respectively referred to as narrowband, wideband and

ultra-wideband.

Quality

Speex encoding is controlled most of the time by a quality parameter that

ranges from 0 to 10. In constant bit-rate (CBR) operation, the quality

parameter is an integer, while for variable bit-rate (VBR), the parameter is a

float.

Complexity (variable)

With Speex, it is possible to vary the complexity allowed for the encoder.

This is done by controlling how the search is performed with an integer

ranging from 1 to 10 in a way that's similar to the -1 to -9 options to gzip

and bzip2 compression utilities. For normal use, the noise level at complexity

1 is between 1 and 2 dB higher than at complexity 10, but the CPU

requirements for complexity 10 is about 5 times higher than for complexity

1. In practice, the best trade-off is between complexity 2 and 4, though

higher settings are often useful when encoding non-speech sounds like DTMF

tones.

 54

Variable Bit-Rate (VBR)

Variable bit-rate (VBR) allows a codec to change its bit-rate dynamically to

adapt to the ``difficulty'' of the audio being encoded. In the example of

Speex, sounds like vowels and high-energy transients require a higher bit-

rate to achieve good quality, while fricatives (e.g. s,f sounds) can be coded

adequately with less bits. For this reason, VBR can achieve lower bit-rate for

the same quality, or a better quality for a certain bit-rate. Despite its

advantages, VBR has two main drawbacks: first, by only specifying quality,

there's no guaranty about the final average bit-rate. Second, for some real-

time applications like voice over IP (VoIP), what counts is the maximum bit-

rate, which must be low enough for the communication channel.

Average Bit-Rate (ABR)

Average bit-rate solves one of the problems of VBR, as it dynamically adjusts

VBR quality in order to meet a specific target bit-rate. Because the

quality/bit-rate is adjusted in real-time (open-loop), the global quality will be

slightly lower than that obtained by encoding in VBR with exactly the right

quality setting to meet the target average bit-rate.

Voice Activity Detection (VAD)

When enabled, voice activity detection detects whether the audio being

encoded is speech or silence/background noise. VAD is always implicitly

activated when encoding in VBR, so the option is only useful in non-VBR

operation. In this case, Speex detects non-speech periods and encode them

with just enough bits to reproduce the background noise. This is called

“comfort noise generation'' (CNG).

Discontinuous Transmission (DTX)

Discontinuous transmission is an addition to VAD/VBR operation, that allows

to stop transmitting completely when the background noise is stationary. In

file-based operation, since we cannot just stop writing to the file, only 5 bits

are used for such frames (corresponding to 250 bps).

 55

Perceptual enhancement

Perceptual enhancement is a part of the decoder which, when turned on,

tries to reduce (the perception of) the noise produced by the coding/decoding

process. In most cases, perceptual enhancement make the sound further

from the original objectively (if you use SNR), but in the end it still sounds

better (subjective improvement).

Algorithmic delay

Every speech codec introduces a delay in the transmission. For Speex, this

delay is equal to the frame size, plus some amount of ``look-ahead''

required to process each frame. In narrowband operation (8 kHz), the delay

is 30 ms, while for wideband (16 kHz), the delay is 34 ms. These values

don't account for the CPU time it takes to encode or decode the frames.

speexenc

The speexenc utility is used to create Speex files from raw PCM or wave files.

It can be used by calling:

 speexenc [options] input_file output_file

The value '-' for input_file or output_file corresponds respectively to stdin

and stdout. The valid options are:

-narrowband (-n)

Tell Speex to treat the input as narrowband (8 kHz). This is the default

-wideband (-w)

Tell Speex to treat the input as wideband (16 kHz)

-ultra-wideband (-u)

Tell Speex to treat the input as ``ultra-wideband'' (32 kHz)

-quality n

Set the encoding quality (0-10), default is 8

-bitrate n

Encoding bit-rate (use bit-rate n or lower)

-vbr

Enable VBR (Variable Bit-Rate), disabled by default

 56

-abr n

Enable ABR (Average Bit-Rate) at n kbps, disabled by default

-vad

Enable VAD (Voice Activity Detection), disabled by default

-dtx

Enable DTX (Discontinuous Transmission), disabled by default

Raw input options
-rate n

Sampling rate for raw input

-le

Raw input is little-endian

-be

Raw input is big-endian

-8bit

Raw input is 8-bit unsigned

-16bit

Raw input is 16-bit signed

speexdec

The speexdec utility is used to decode Speex files and can be used by calling:

speexdec [options] speex_file [output_file]

The value for input_file or output_file corresponds respectively to stdin and

stdout. Also, when no output_file is specified, the file is played to the

soundcard. The valid options are:

-enh

enable post-filter (default)

-no-enh

disable post-filter

-force-nb

Force decoding in narrowband

-force-wb

Force decoding in wideband

-force-uwb

 57

 Force decoding in ultra-wideband

-mono

Force decoding in mono

-stereo

Force decoding in stereo

-rate n

Force decoding at n Hz sampling rate

Here Ogg audio compression library is used with Speex .So it is

required to cross compile libogg first.

Cross -compiling libogg-1.1.0

 #cd ../libogg-1.1.0

 #./configure --prefix=/root/armbuild --host=i686-pc-linux

 --target=arm-linux --disable-static --enable-fixed-point

 #make

 #make install DESTDIR=$ARM_INSTALL

Now I needed to cross compiling Speex.

Cross -compiling speex-1.1.11.1

 #cd ../speex-1.1.11.1

 #./configure --prefix=/root/armbuild --host=i686-pc-linux

 --target=arm-linux --disable-static

 --enable-fixed-point --enable-arm-asm

 --with-ogg=/root/armbuild/usr

 --with-ogg-ibraries=/roo/armbuild/usr/lib

 --with-ogg-headers=/root/armbuild/usr/include/ogg

 58

 #make

 #make install DESTDIR=$ARM_INSTALL

 Copy "libspeex.so.2.0.0" to your arm-tools.

 #cp /root/armbuild/usr/lib/libspeex.so.2.0.0

 /root/usr/local/arm/3.4.1/arm-linux/lib

 #cd /root/usr/local/arm/3.4.1/arm-linux/lib

 #ln -s libspeex.so.2.0.0 libspeex.so

 #ln -s libspeex.so.2.0.0 libspeex.so.2

5.4 ORTP Library:

ORTP stands for Open Real Time Protocol. ORTP Implements the RFC3550

(RTP) with easy to use API with high and low level access. It provides

blocking and non blocking IO for RTP sessions.

 ORTP API:

• Initialize the oRTP library. You should call this function first before

using oRTP API

 void ortp_init ();

• Initialize the oRTP scheduler. You only have to do that if you intend to

use the scheduled mode of the RtpSession in your application.

 void ortp_scheduler_init ();

• Uninitialize the library, including shutdowning the scheduler if it was

started.

 void ortp_exit ();

 59

• for creating new Rtp Session following function is used

 RtpSession* rtp_session_new (int mode) //create new rtp session;

• There are different mode for rtp session as below.

 enum RtpSessionMode

 typedef enum {

 RTP_SESSION_RECVONLY,

 RTP_SESSION_SENDONLY,

 RTP_SESSION_SENDRECV

 } RtpSessionMode

• for setting jitter value following function is used.

 void rtp_session_set_jitter_compensation (RtpSession *session,

 int milisec);

 cross compiling the ORTP library.

 #cd oRTP

 #./configure --prefix=/root/armbuild --host=i686-pc-linux
 --target=arm-linux --disable-static --enable-fixed-point

 #make

 #make install DESTDIR=$ARM_INSTALL

5.5 Ncurses Library:

Ncurses library is a library of functions that manage an application's

display on character-cell terminals. It provides terminal emulators. Readline

library uses Ncureses. The Curses library forms a wrapper over working with

raw terminal codes, and provides highly flexible and efficient API. We have to

include this library by ncurses.h file. To link the program with ncurses the

flag -lncurses should be added.

 gcc <program file> -lncurses

 60

The Ncurses library was downloaded and configured as follows.

#./configure --prefix=/root/armbuild -host=i686-pc-linux --target=arm-linux

--enable-shared

#make

#make install DESTDIR=$ARM_INSTALL

Initialization functions

initscr()

The function initscr() initializes the terminal in curses mode. In some

implementations, it clears the screen and presents a blank screen. To do any

screen manipulation using curses package this has to be called first. This

function initializes the curses system and allocates memory for our present

window and some other data-structures

raw() and cbreak()

Normally the terminal driver buffers the characters a user types until a new

line or carriage return is encountered. But most programs require that the

characters be available as soon as the user types them. The above two

functions are used to disable line buffering. The difference between these two

functions is in the way control characters like suspend (CTRL-Z), interrupt

and quit (CTRL-C) are passed to the program. In the raw() mode these

characters are directly passed to the program without generating a signal. In

the cbreak() mode these control characters are interpreted as any other

character by the terminal driver. I personally prefer to use raw() as I can

exercise greater control over what the user does.

 echo() and noecho()

These functions control the echoing of characters typed by the user to the

terminal. noecho() switches off echoing. The reason you might want to do

this is to gain more control over echoing or to suppress unnecessary echoing

while taking input from the user through the getch() etc. functions. Most of

 61

the interactive programs call noecho() at initialization and do the echoing of

characters in a controlled manner. It gives the programmer the flexibility of

echoing characters at any place in the window without updating current (y,x)

co-ordinates.

keypad()

This is my favorite initialization function. It enables the reading of function

keys like F1, F2, arrow keys etc. Almost every interactive program enables

this, as arrow keys are a major part of any User Interface. Do keypad(stdscr,

TRUE) to enable this feature for the regular screen (stdscr).

endwin()

And finally don't forget to end the curses mode. Otherwise your terminal

might behave strangely after the program quits. endwin() frees the memory

taken by curses sub-system and its data structures and puts the terminal in

normal mode. This function must be called after you are done with the curses

mode .

5.6 Readline Library:

The GNU Readline library provides a set of functions for use by applications

that allow users to edit command lines as they are typed in. Both Emacs and

vi editing modes are available. The Readline library includes additional

functions to maintain a list of previously-entered command lines, to recall

and perhaps reedit those lines, and perform csh-like history expansion on

previous commands. The history facilites are also placed into a separate

library, the History library, as part of the build process.

There is a support for building shared versions of the Readline and History

libraries. The configure script creates a Makefile in the shlib' subdirectory,

and typing `make shared'will cause shared versions of the Readline and

History libraries to be built on supported platforms.

 62

If `configure' is given the `--enable-shared' option, it will attempt to build

the shared libraries by default on supported platforms. I have configured and

built as follow.

#./configure --prefix=/root/armbuild --host=i686-pc-linux

 --target=arm-linux enable-shared

make

make install DESTDIR=$ARM_INSTALL

5.7 SIP Based Application:

Linphone has been used as a sip based softphone. The code has been

optimized ,configured and cross complied . The console mode has been used

so Gnome supported GUI was remove from it and added console mode

support because Standard Gnome based is not supported in Simputer. If we

want GUI support for softphone in simputer then Amida Software

Development Kit will be required but It is not freely available. I have written

the configuration script required for configuring softphone for Simputer. The

configured script is simputer-config.site

#export CONFIG_SITE=~/simputer-config.site

There are two type of sound card device drivers ALSA and OSS .But in

simputer OSS device driver is there. SO configured soft phone to use OSS

device driver.

#cd /root/arm/linphone-1.2.0

#./configure --prefix=/root/armbuild

--host=i686-pc-linux --target=arm-linux

--disable-static --disable-glib

--enable-gnome_ui=no --disable-manual

--enable-oss

 63

--with-readline=$ARM_INSTALL_TREE/usr

--with-osip=/root/armbuild/usr

--with-speex=/root/armbuild/usr

#make

#make install DESTDIR=$ARM_INSTALL

So this way whole required libraries and sip soft phone were build in Linux

work station. After that whole build code was ported in the simputer. Sip soft

phones were run between a Simputer and a Linux work station successfully.

 64

6 . Results:

To run the soft phone application between a simputer and a pc.

 in Pc give the command:

./linphonec answer //application is in receiving mode.

in simputer I gave:

 ./linphonec –s sip:root@222.222.3.9

Then the call flow is analyzed using Ethereal. SIP by default is running on

port 5060.

6.1 SIP Call Flow Analysis

Figure:9 Sip Call Flow

INVITE Message Header

Request-Line: INVITE sip:root@222.222.3.9 SIP/2.0

 Via: SIP/2.0/UDP 222.222.3.10:5060; branch=z9hG4bK776asdhds

 To: sip:root@222.222.3.9

 From:sip:root@222.222.3.10;tag=1928301774

 Call-ID: 221583024@222.222.3.10

 65

 CSeq: 20 INVITE

 Max-forward:5

 Contact: <sip:root@222.222.3.10:5060

 Content-Type: application/sdp

 Content-Length: 142

 User-Agent:Linphone-1.3

The first line of the text-encoded message contains the method

name(INVITE).

• Via contains the address at which sip:root is expecting to receive

responses to this request. It also contains a branch parameter that

identifies this transaction

• To contains a display name (Bob) and a SIP or SIPS URI From also

contains a display name (Alice) and a SIP or SIPS URI

• Call-ID contains a globally unique identifier for this call, generated

by the combination of a random string and the softphone's host

name or IP address. The combination of the To tag, From tag, and

Call-ID completely defines a peer-to-peer SIP relationship .

• CSeq or Command Sequence contains an integer and a method name.

The CSeq number is incremented for each new request within a

dialog and is a traditional sequence number.

• Max-Forwards serves to limit the number of hops a request can make

on the way to its destination. It consists of an integer that is

decremented by one at each hop.

• Contact contains a SIP or SIPS URI that represents a direct route to

Sip:root@222.222.3.9, usually composed of a username at a fully

 66

qualified domain name (FQDN). While an FQDN is preferred, many end

systems do not have registered domain names, so IP addresses are

permitted. While the Via header field tells other elements where to send

the response, the Contact header field tells other elements where to

send future requests.

• Content-Type contains a description of the message body (not shown).

• Content-Length contains an octet (byte) count of the message body.

Other messages Trying, Ringing, Dialog establishment, OK are status

Messages. So only Status-line instead of Request-line in Message is changed

. ACK message is also Request Line type. Others field except content length

are rarely changed.

6.2 RTP Streams :

It is two ways communication so here I have detected two RTP streams one

from 222.222.3.10 to 222.222.3.9 and other from 222.222.3.9 to

222.222.3.10.I got Mean jitter around 15 ms. Here RTP is running on port

7078.

Figure:10

 67

6.3 RTP Stream Analysis

Figure:11

In above figure shows the RTP stream analysis from 222.222.3.9 to

222.222.3.10. There is zero percent packet loss. Here Jitter might be

reached up to max value set of delay buffer.

 68

6.4 RTP Graph Analysis

Above figure shows the jitter values at different time values. Here average

jitter experience is 15 msec. Average Fwd Difference is about 4 to 5 msec.

 69

7. Conclusion:

VOIP for wireless LAN brings economical and roaming advantages to the

users. The WLAN industry is working hard to enable 802.11-based networks

to accommodate the technical characteristics of VOIP. Technical challenges

were faced because of different environments. SIP stack, RTP stack and

other libraries were cross compiled and ported. The sip soft phone was

optimized, configured, cross compiled and ported in the Simputer. There was

no device driver for wireless adapter in Simputer having Linux 2.4.18 kernel.

Device driver for 2.6.x kernel were configure and installed in linux work

station and this way wireless environment was created. The performance

was also analyzed. The delay jitter was in range of 14 to 16 ms. It was

found that delay jitter between cross platform was 4 to 5 ms greater than

between two Workstation .

Future Work:

Latency-induced VOIP performance degrades as users roam. When both the

nodes are roaming in wireless network, the network is temporarily

unavailable for sometime and no packets are transmitted or received, it will

be interesting to monitor the status AP using Simple Network Management

Protocol (SNMP) to verify if AP is working properly during this period. So

improvement for roaming in VOWAN is required.

 70

8.References :

[1] RFC 3261 ‘SIP: Session Initiation Protocol’.

http://www.ietf.org/rfc/rfc3261.txt

[2] RFC 3550 ’RTP:Real Time Protocol’.

www.ietf.org/rfc/rfc3550.txt

[3] Marco Zibull, André Riedel, Dieter Hogrefe. Voice over wireless LAN:

a fine-scalable channel-adaptive speech coding scheme: Proceedings of the

3rd ACM international workshop on Wireless mobile applications and services

on WLAN hotspots WMASH '05

[4] A. Koepsel and A. Wolisz. Voice transmission in an IEEE 802.11 WLAN

based access network. In WOWMOM ’01: Proceedings of the 4th ACM

international workshop on Wireless mobile multimedia, New York, USA, 2001

[5] Rakesh Arora, ‘Voice over IP: Protocols and Standards’.

http://www.cse.ohio-state.edu /~jain/cis788-99/ftp/voip_protocols

/index.html#3.-Session-Initiation- Protocol (SIP)> (May 20, 2004)

[6] Kundan Singh and Henning Schulzrinne. Peer-to-Peer Internet

Telephony using SIP: Proceedings of the international workshop on Network

and operating systems support for digital audio and video NOSSDAV '05

[7] Speex Codec information

http//www.speex.org

[8] Linphone Information

http://www.linphone.org

[9] SIPshare: SIP Beyond Voice and Video.

 http//:research.earthlink.net/p2p/

 71

[10] Linksys product information.

http://www.linksys.com

[11] WUSB54Gv4 device driver in linux

http://rt2x00.serialmonkey.com

