“VERIFICATION OF SoC WITH ETHERNET
INTERFACE”

A Major Project Report

Submitted in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY
IN

ELECTRONICS & COMMUNICATION ENGG.

(VLSI Design)

By
Manish Raizada
(03BMECO013)

= NIRMA

&1/ UNIVERSITY

Department of Electronics & Communication Engineering
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,

AHMEDABAD 382 481

MAY 2005

CERTIFICATE

This is to certify that the Major Project Report (Part-1-11) entitled “Verification of SoC with
Ethernet interface” submitted by Mr. Manish Raizada (Roll No.OBMEC13) towards the partial
fulfillment of the requirements for Semester 111-IV of Master of Technology (Electronics &
Communication Engg.) in the field of VLSl Design of Nirma University of Science and
Technology is the record of work carried out by him under our supervision and guidance. The
work submitted has in our opinion reached a level required for being accepted for examination. The
results embodied in this major project work to the best of our knowledge have not been submitted

to any other Univergty or Ingtitution for award of any degree or diploma.

Date:

Project Guide:

Miss Mittal Patel
ASIC Verification Dept.
el nfochips Limited, Ahmedabad

Dr. M. D. Desai
HOD

Dept of Electronics & Comm. Engg.

Institute of Technology, Nirma University

Signature of Examiners:

Facilitator at Institute:

Prof. Y. N. Trivedi
Electronics & Comm. Engg. Dept.
Institute Of Technology,
Nirma University, Ahmedabad

Dr. H. V. Trivedi
Director

Institute of Technology
Nirma University, Ahmedabad

ACKNOWLEDGEMENT

It gives me a great pleasure to take this opportunity to thank to el nfochips Pvt. Ltd. and
Mr. Nilesh Ranpura for giving me such a great opportunity to do project in their esteemed
organization. | deem it my privilege to have carried out this dissertation work under this well-

known quality conscious organization.

| express my deep sense of gratitude to Mr. Pranav Tailor and Miss Mittal Patel for
their personal involvement in every facet of this work and readiness to resolve any point of
confuson by mutual discusson. | would aso like to thank Mr. Vijay Patel and Mr.
Dharmendra J. Patel for their co-operation and providing the necessary facilities for carrying

out thiswork.

| would like to thank Prof. Y. N. Trivedi for his help, valuable suggestions and moral
support. Finally, | would like to thank my parents for their constant love and support and for
providing me with the opportunity and the encouragement to pursue my goals.

(Manish Raizada)

Confidentiality Notice

The contents of this document constitute valuable proprietary and confidential property of
Verisity Design, Inc. and its licensors, including elnfochips, Inc. No part of this
information product may be reproduced, transmitted, or translated in any form or by any
means, electronic, mechanical, manual, optical, or otherwise without prior written
permission from Verisity Design, Inc.

Information in this product is subject to change without notice and does not represent a
commitment on the part of Verigity. The information contained herein is the proprietary
and confidential information of Verisity or its licensors, and is supplied subject to, and may
be used only by Verisity’ s customers in accordance with, a written agreement between
Verisity and its customers. Except as may be explicitly set forth in such agreement,
Verisity does not make, and expresdy disclaims, any representations or warranties as to the
completeness, accuracy, or usefulness of the information contained in this document.
Verisity does not warrant that use of such information will not infringe any third party
rights, nor does Verisity assume any liability for damages or costs of any kind that may

result from use of such information.

Restricted Rights L egend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in

subparagraphs (¢)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Destination Control Statement

All technical data contained in this product is subject to the export control laws of the
United States of America. Disclosure to nationals of other countries contrary to United
States law is prohibited. It is the reader’ s responsibility to determine the applicable

regulations and to comply with them.

Abstract

Verification is not atest bench, nor is it a series of test benches. Verification is a process used
to demongtrate the functional correctness of a design. By saying functiona correctness means the
design to be verified has to adhere with some predefined rules or standard. In other words design
under test should behave as per specified rules. We al perform verification processes throughout
our daily lives: balancing a checkbook, tasting a simmering dish, associating landmarks with
symbols on a map. These are all verification processes.

Today, in the era of multi-million gate ASICs, reusable Intellectual Property (IP), and
System-on-Chip (SoC) designs, verification consumes about 70% of the design effort. Design
teams, properly staffed to address the verification challenge, include engineers dedicated to
verification. The number of verification engineers is usualy twice the number of RTL designers.
When design projects are completed, the code that implements the test benches makes up to 80%
of the total volume. It is also the reason verification is currently the target of new tools and
methodologies. These tools and methodologies attempt to reduce the overal verification time by
enabling parallelism of effort, higher levels of abstraction and automation. Providing higher
levels of abstraction enables you to work more efficiently without worrying about low-level
details.

eVC consists of a complete set of elements for stimulating, checking and collecting
coverage information on the device under test (DUT). The eVC expedites creation of a more
efficient test bench for DUT. The eéVC can work with both Verilog and VHDL devices and with
al HDL simulators that are supported by Specman Elite. eVC can be used as full verification
environment or can be added to existing environment. The eVC interface is viewable and thus
can be the basis for user extensions.

This thesis report put some light on developing verification environment for the verification
of Ethernet eVC (e Verification Component). Architecture of eVC has been discussed. eVC
reduce verification time by atomizing the verification process. First few pages of report gives the
answers of some fundamental questions like what is verification, why it is required and
importance of verification. White Box approach has been used to verify eVC, and Coverage

Driven Verification process used to verify functionality.

Contents

List of Figures
List of Tables
Abbreviation

CHAPTER 1: Introduction
1.1 Black Box Verification
1.2 White Box Verification
1.3 Grey Box Veification
1.4 Levelsof Verification
1.5 Need of Verification languages
1.6 History and advantages of ‘€
1.7 Verification Reuse
1.8 e Verification Component
1.9 About Ethernet eVC
1.10 Ethernet Basics
1.11 Verification for Ethernet eVC

CHAPTER 2 : Review Of Literature

2.1 The IEEE 802.3 Logical relationship to the
SO Reference model

2.2 Ethernet MAC Sublayer

2.3 Media Access Control Frame Structure

2.4 Half duplex transmission

2.5 Full duplex transmission

2.6 Ethernet PHY layer

2.7 Encoding for signa transmission

2.8 The IEEE 803.2 Physical Layer relationships to
the 1SO Reference Mode

CHAPTER 3: System Review (Basic Theory)
3.1 e Verification Component
3.2 Ethernet eVC
3.3 Features of Ethernet eVC
3.4 Ethernet traffic emulation
3.5 Flow of datawithin the agents
3.6 Agent architecture
3.7 Monitor & BFM architecture
3.8 Scoreboard architecture
3.9 Scoreboard checking
3.10 Topologies for verification at the module level
3.11 Single port MAC dut for non-layered interfaces
3.12 Multi port MAC dut for non-layered interfaces
3.13 Single port PHY dut for non-layered interfaces
3.14 Multi port PHY dut for non-layered interfaces
3.15 Verification environment architecture
3.16 Isdata collected correctly?

Page No.

(vii)
(iX)
(x)

O~N~NOTWNDNDNE

B
N OO

17

17
18
19
22
25
27
28

30

39
39
39
40

42
42

45
46
47
48
48
49
49
50
52

CHAPTER 4 : System Design 54

4.1 Structure of sequence 54
4.2 Ethernet sequence structure 55
4.3 Management sequence structure 56
4.4 Injecting Ethernet packets with protocol errors 58
4.5 Monitoring Coverage and checkers 61
CHAPTER 5: Coverage Driven Verification 63
5.1 Higher Abstraction 64
5.2 Coverage requirements 65
5.3 Steps for achieving regression 67
5.4 Analyzing Bugs 74
CHAPTER 6 : Results & Discussion 80
6.1 Normal Scenario 80
6.2 Collision Scenario 82
6.3 Zeroipg check Scenario 85
6.4 Injecting RX_ER inipg phase of packet 86
6.5 Results 87
CHAPTER 7 : Conclusion & Future Scope 88
7.1 Conclusion 88
7.2 Future Scope 88
REFERENCES 89
Appendix A 90
Appendix B 109

Vi

List of Figures

Figurel.l: Design and verification flow: A typical sequence of
steps for logical

Figure 1.2: Verification process flow

Figure 1.3: Typical verification component

Figure 1.4: An Ethernet network runs CSMA/CD over coaxial
Cable

Figure 1.5: Example Point-to-Point Interconnection

Figure 1.6: Verification Environment

Figure 2.1: Ethernet's Logical Relationship to the ISO Reference

Model
Figure 2.2: MAC and Physical Layer Compatibility
Figure 2-3: MAC Frame format
Figure 2.4: Address designation
Figure 2.5: MAC Frame with Gigabit Carrier Extension
Figure 2-6: A Gigabit Frame-Burst Sequence
Figure 2.7: Full Duplex Operation Allows Simultaneous Two-
Way Transmission on the Same Link
Figure 2.8: An Overview of the |IEEE 802.3 Flow Control
Figure 2.9: A Concept Example of Baseline Wander
Sequence
Figure 2.10: Trangtion-Based Manchester Binary Encoding
Figure 2.11: The Generic Ethernet Physical Layer Reference
Model
Figure 2.12: Transmission between MAC & PHY
Figure 2.13: System level diagram of Reduced Gigabit Media
Independent Interface (RGMI1)

Figure 3.1: Architecture of Ethernet eVC
Figure 3.2: Agent Architecture
Figure 3.3: Agent Architecture for Layered Interfaces

Figure 3.4: Monitor and BFM architecture

Figure 3.5: Functioning of Scoreboard

vii

10
11
16

17
18
19
20
24
25

26
26

29
29

30
32

35

40
43

45

47

Figure3.6: Ethernet éVC in user’ s verification environment

Figure 3.7: Single Port MAC DUT

Figure 3.8: Multi-Port MAC DUT
Figure 3.9: Single Port PHY DUT

Figure 3.10: Multi Port PHY DUT

Figure 3.11: Ethernet eV C VE functiona block diagram
Figure 4.1: Ethernet Sequence Structure

Figure 4.2: Management Sequence Structure

Figure5.1: Functional coverage serves multiple simulations
Scenarios
Figure5.2: Functional coverage of Ethernet Packet
Figure5.3: Functional coverage model for Ethernet eV C
Figure 5.4: lllegal inter packet gap between two packets
Figure 6.1: Simulation of Normal Scenario
Figure 6.2: Coverage of Normal Scenario
Figure 6.3: Simulation of Normal Packet scenario (RGMI |
interface)
Figure 6.4: Simulation of Collision Scenario
Figure 6.5: Coverage of Collision Scenario (GMII Interface)
Figure 6.6: Simulating collision scenario (RGM I Interface)
Figure 6.7: Zeroipg check scenario (GMII Interface)
Figure 6.8: Coverage of Zeroipg check Scenario
Figure 6.9: TX_ER insertion in Data Phase of Ethernet Packet
(RGMII Interface)
Figure 6.10: RX_ER insertion in PG phase of Ethernet Packet
(RGMII Interface)

viii

47

49

49

50

55

56

64
66
69
77
80
81

82

R R

86

86

87

List of Tables

Table 2.1: Limitsfor Half-Duplex Operation

Table 2.2: Permissible encoding of TXD<7:0>, TX_ER, and
TX_EN

Table 2.3: Permissible encoding of RXD<7:0>, RX_ER, and
RX_DV

Table 2.4: Signal description of RGMI|

Table 2.5: Signal coding for TXD, TXERR and TX_EN

Table 2.6: Signal coding for RX_DV, RXERR and RX_ER

Table 5.1: Correlation between functiona coverage and code
Coverage

Table 5.2: Scenarios to be checked on various Ethernet

Packets

24

33

34

36

37

38

65

68

Abbreviation

VE: Veification Environment, Aggregation of the eVC along with al other required
verification components.

eVC: e Verification component, it represent complete verification environment for
DUT.

DUT: Device Under Test, It isadevice that isto be verified using eV C.

eRM: e Reusable Methodology, term used for €VC, to make €V C e Reusable in the sense it
can be integrate with other eV C on Soc.

Ethernet eVC: Complete verification environment (eVC) of Ethernet protocoal, it can be use
to verify IEEE 802.3 Std, 2000 Edition compliant devices.

CDV: Coverage Driven Verification, ease the process of verification by focusing time and
compute resources on smulations that are indicating coverage.

Agent: Top level agent, which contain active and passive agent.
Active Agent: Drives stimulusto DUT.

Passive Agent: Collect packets from DUT.

Monitor: A unit instance that passively monitors the DUT signal.

BFM: Bus Functional Modd a unit instance that interacts with the DUT and drives or
samplesthe DUT signals.

Chapter 1

| ntroduction

As the project title explains, this project work is regarding verification of Ethernet eVC in
which protocol adherence of Ethernet eV C has been checked for media independent interfaces
GMII, SGMII, RGMII. As eVC has been written in ‘€ language hence, understanding of

language and Specman Elite (tool) are prerequisite for project work.

Before going in to the detail discussion of verification of Ethernet standard let us find
answers of some basic questions like What is verification? , Why it is required? , What are the
kinds and levels of verification and importance of verification? Starting with IEEE Definition
about Verification, Verification means “Confirmation by examination and provisions of

objective evidence that specified requirements have been fulfilled.”

Verification is not a test bench, nor is it a series of test benches. Verification is a process
used to demonstrate the functional correctness of a design. By saying functional correctness
means the design to be verified has to adhere with some predefined rules or standard. In other
words design under test should behave as per specified rules. We all perform verification
processes throughout our daily lives: balancing a checkbook, tasting a simmering dish,

associating landmarks with symbols on a map. These are all verification processes.

Today, in the era of multi-million gate ASICs, reusable Intellectual Property (IP), and
System-on-Chip (SoC) designs, verification consumes about 70% of the design effort. Design
teams, properly staffed to address the verification challenge, include engineers dedicated to
verification. The number of verification engineers is usualy twice the number of RTL
designers. When design projects are completed, the code that implements the test benches
makes up to 80% of the total volume. It is also the reason verification is currently the target of
new tools and methodologies. These tools and methodologies attempt to reduce the overall
verification time by enabling paralelism of effort, higher levels of abstraction and
automation. Providing higher levels of abstraction enables you to work more efficiently

without worrying about low-level details.

Automation tools helps in reducing time but they requires standard processes with well-

defined inputs and outputs. Not all processes can be automated. It is possible to automate

Verification Of SoC with Ethernet Interface 1. Introduction

some portion of the verification process, especially when applied to a narrow application
domain. Because of the variety of functions, interfaces, protocols, and transformations that
must be verified, it is not possible to provide a general-purpose automation solution for

verification.

The main purpose of functiona verification is to ensure that a design implements intended
functionality. Functional coverage reconciles a design with its specification. It is important to
note that, unless a specification is written in a formal language with precise semantics, it is
impossible to prove that a design meets the intent of its specification. Functional verification
can be accomplished using three complementary but different approaches: black box, white-

box, and grey-box.

1.1 Black-Box Verification:

With a black-box approach, the functional verification must be performed without any
knowledge of the actual implementation of a design. All verification must be accomplished
through the available interfaces, without direct access to the internal state of the design,
without knowledge of its structure and implementation. This method suffers from an obvious
lack of visibility and controllability. A black-box functional verification approach forms a true
conformance verification that can be used to show that a particular design implements the

intent of a specification regardless of its implementation. It is mostly used approach.

1.2 White-Box Verification:

As the name suggests, a white-box approach has full visibility and controllability of the
internal structure and implementation of the design being verified. This method has the
advantage of being able to quickly set up an interesting combination of states and inputs, or
isolate a particular function. This approach is tightly integrated with a particular
implementation and cannot be used on alternative implementations or future redesigns. It also

requires detailed knowledge of the design implementation.

1.3 Grey-Box Verification:
Grey-box verification is a compromise between the aloofness of a black-box verification

and the dependence on the implementation of white-box verification.

Verification Of SoC with Ethernet Interface 1. Introduction

Verification is a necessary evil. It aways takes too long and costs too much. Verification
does not generate a profit or make money: after al, it is the design being verified that will be

sold and ultimately make money, not the verification. Y et verification is indispensable.

Verification is a process that is never truly complete. The objective of verification is to
ensure that a design is error-free, yet one cannot prove that a design is error-free. Verification

can only show the presence of errors, not their absence.

1.4 Levels of verification:

There are four levels of verification:

1.4.1 Component testing: Testing conducted to verify the implementation of the design for

one software element (unit, module) or a collection of software elements.

1.4.2 Integration testing: An orderly progression of testing in which various software
elements and/or hardware elements are integrated together and tested. This testing proceeds
until the entire system has been integrated.

1.4.3 System testing: The process of testing an integrated hardware and software system to
verify that the system meets its specified requirements.

1.4.4 Acceptance Testing: Formal testing conducted to determine whether or not a system
satisfies its acceptance criteria and to enable the customer to determine whether or not to

accept the system.

Verification Of SoC with Ethernet Interface

1. Introduction

1.4.5 Verification and design process flow:

Design

Verification

Figurel.1l: Design and verification flow: A typical sequence of stepsfor logical and physical

design, and for verification.

1.4.6 Verification Process flow:

Below figure shows the verification flow.

Specification

New Functionality

Sim

ulation

New tests

Missing test bench
support

Post analysis

Holes

Figure 1.2: Verification process flow.

Verification Of SoC with Ethernet Interface 1. Introduction

Verification flow starts with understanding specification of the chip/block under
verification. Once the specification is understood, test cases document is prepared, which
documents all the possible test cases. Once test case document is done to alevel, where 70-80
percent functionality is covered, test bench architecture document is prepared. In the past, test
bench architecture document is prepared first and test case document is prepared next. There
is a draw back with this style, if test case document show a particular functionality to be
verified and if test bench does not support as architecture document was prepared before test
cases document. If we have test cases document to refer to, then writing architecture

documented becomes much easier, as we know for sure what is expected from the test bench.

1.4.6.1 Test Cases

Identify the test cases from the design specification a simple task for simple cases.
Normally requirement in test cases becomes a test case. Anything that specification mentions,
"Can do", "will have' becomes a test case. Corner test cases normally take lot of thinking to

identify.

1.5 Need of Verification Languages:

Today, project teams build huge verification environments, where verification consumes
40-70% of the resources needed in a typical cycle. Because a verification environment
typically contains concurrent mechanisms for controlling traffic streams to device input ports,
and for checking outstanding transactions at the output ports, Verilog and VHDL have
traditionally been used for building verification environments. Unfortunately, it is widely
recognized that for more complex verification environments and problems, these languages

do not contain the necessary constructs for modeling the verification environment efficiently.

As aresult, many project teams have moved to using higher-level languages such as C and
C++ to be more efficient in creating the verification environment. Unfortunately, these
genera-purpose languages do not have any built-in constructs for modeling hardware
concepts such as concurrency, operating in simulation time, or manipulating vectors of
various bit widths. Without these constructs, handling device-specific needs such as
controlling synchronization between traffic streams, checking correct timing and formatting

traffic data are extremely difficult and time-consuming. Project teams often use a mix of HDL

Verification Of SoC with Ethernet Interface 1. Introduction

and C/C++ code to attack this verification problem, spending a good dea of time on the
interface between the languages. With these problems in mind, what should a verification
language look like? It should combine the best features of the most popular HDLs and
general-purpose languages:

Specifying the traffic and traffic parameters in the same terms as the device

specification.

Automatically generating these traffic streams with the ability to target corner cases of

the design.

Storing and checking outstanding transactions.

Checking protocol adherence.

Coallecting functional feedback on the stimulus and the device under test.

Automatically responding to feedback from the device during simulation.

With these features in place, verification engineers can focus much sooner on what needs
to be verified rather than how to do it (implementing the environment infrastructure)
One way to increase productivity is to raise the level of abstraction. High-level languages,
such as C or Pascal, raised the level of abstraction from assembly-leve, enabling engineers to
become more productive. Similarly, computer languages specifically designed for
verification are able to raise the level of abstraction compared to general-purpose simulation

languages.

Verilog was designed with a focus on describing low-level hardware structures. It does not

provide support for high-level data structures or object-oriented features. VHDL was designed
for very large design teams. It strongly encapsulates all information and communicates strictly
through well-defined interfaces. This creates an opportunity for verification languages
designed to overcome the shortcomings of Verilog and VHDL.
Some popular verification languages Verisity, OpenVera from Synopsys and RAVE from
Forte Design. Open-source solutions include the SyssemC Verification Library (SCV) from
Cadence and Jeda from Juniper Networks. There are also a plethora of homegrown solutions
based on Perl, SysemC, C++ or TCL. Veification extensions to the Verilog language are
also being added in SystemVerilog.

We have used “e/Specman” verification language for developing “Ethernet eVC” whichis
a ready made, highly configurable e verification environment suitable for verifying DUTs
supporting Ethernet protocol.

Verification Of SoC with Ethernet Interface 1. Introduction

1.6 Higory and advantages of €

The e language was developed by Verisity as part of its Specman product as a tool for
efficiently writing test benches. Like Vera, it is an imperative object-oriented language with
concurrency; the ability to generate constrained random values, mechanisms for checking
functional (variable value) coverage, and a way to check temporal properties (assertions).
Books on e include Palnitkar [41] and Iman and Joshi [30]. The syntax of e is unusual. First,
all code must be enclosed in < and > symbols; otherwise it is considered a comment. Unlike
C, e declarations are written name: type. The syntax for fields in compound types (e.g.,
structs) includes particles such as % and !, which indicate when a field is to be driven on the

device-under-test and not randomly computed respectively.

Speeds up the design verification process:

Automates manual processes

Provides higher abstraction level than HDLs

Supports modular, reusable, and extensible code

Improves usability with graphical interface and debugger

Improves design quality

Supports al ranges of tests from directed to random

Improves test base effectiveness with coverage anaysis

Supports both black box and white-box testing. (In black-box, connection to

DUT’ sinterface only. In white-box, looking into the DUT sinternals also.)

1.7 Verification Reuse:

“With verification consuming 60-80% of the manpower on complex chip projects,
improving verification productivity is an economic necessity”, said Moshe Gavrielov, Verisity
CEO.Verification reuse directly addresses higher productivity, increased chip quality and
overall verification investment. Reusable Methodology is the breakthrough technology
required to create reusable verification environments and to ensure that all verification
components effectively interoperate. Today's complex chips commonly incorporate many

different protocols, interfaces and processors. Assembling appropriate verification

Verification Of SoC with Ethernet Interface 1. Introduction

environments requires efficient integration of reusable, plug-and-play verification

components.

Achieving reusability requires that all components be built and packaged uniformly.
Reusability becomes even more chdlenging when design teams all over the world create
verification components that need to fit together seamlessly.
Every aspect of the component, including basic naming conventions and coding styles, debug
message conventions, user interfaces, and interactions between components must be
standardized in order to assure interoperability.
World leader companies in the development faces many verification challenges Verification

reuse is essential for our own productivity and to reduce time-to-market for these companies.

The capabilities introduced by Reusable methodology make a significant contribution to

meeting these requirements by enabling a framework for reuse.

1.8 eVC (e Verification Component):

One of the key factors for reusing code is arranging it as an independent and easy to use
code package. When developing verification code in e, the reusable package is typicaly
organized as an eVC (e Verification Component). An eVC is a verification component. It is
ready-to-use configurable environment, typically focusing on a specific protocol or

architecture.

Each eVC consists of a complete set of elements for simulating, checking and collecting
coverage information for a protocol or architecture. eV C expedite creation of a most efficient
test bench for design under test (DUT). They can work with both Verilog and VHDL devices
and with all HDL simulators that are supported by Specman.

eVC can be used to create an environment. The eV C interface is viewable and hence can
be the basis for user extensions. Maintaining the eVC in its origina form facilitates possible

upgrades.

eVC implementation is often partially encrypted, especialy in commercial eVCs where
authors want to protect their intellectual property. Most commercid eV C requires special

feature license to enable them. Following is the list of possible kind of eV C:

Verification Of SoC with Ethernet Interface 1. Introduction

Bus-based eV Cs (Such PCI and AHB)

Data-communication eV Cs (for example Ethernet, MAC, Data link)

CPU/DSP eVCs

Higher level protocol eVCs (TCP/IP, HTTP). These usualy sit on top of other éVCs.
Patform eVCs (that is, an eV C for a specific, reusable SoC platform, into which you
plug eV Cs of various cores).

Compliance test-suite eVCs. These are tests (and perhaps coverage definitions and
more) that demonstrate compliance to a protocol. For example, there could be a PCI
compliance eV C in addition to the basic PCI eVC.

HW/SW co-verification eVCs, such as an eVC dedicated to verifying a HW/SW

environment using a particular RTOS/CPU combination.

A complete verification component handles all the facets involved in verifying a given
protocol, interface or processor within the device under test (DUT). This minimally includes

the following items (see Figure 1.3):

Input traffic generator to create stimulus for the DUT (e.g. packets/frames, bus
transactions, etc.)

Bus functional models (BFMs) to drive that traffic, communicating directly with the
DUT

Monitors, scoreboards, and protocol checkers to examine the actual response of the
DUT relative to the expected response

Functional coverage to measure and report on whether the transactions and scenarios

defined in the test plan have been covered or not

Werlflcatlon Component

Input Functlonal
am.fmmr*{ BFA Checker | [eouooe

Dewice Undier Test

{DUT)

Figure 1.3: Typical verification component

Verification Of SoC with Ethernet Interface 1. Introduction

1.9 About Ethernet eVC:

The Ethernet eVC is aready made highly configurable e Verification Component suitable
for DUT supporting the Ethernet Protocol.

All eV C behavior complies with the IEEE Std 802.3, 2000, |EEE Draft P802.3ae/D4.0,
SGMII and SMII specification by Cisco systems-1998 and RGMII specification by Hewlet
Packard, version2.0. The Ethernet eVC iseRM compliant.

1.10 Ethernet Basics:
The term Ethernet refers to the family of local area network (LAN) implementations that

includes three principa categories.

* Ethernet and |EEE 802.3-LAN specifications that operate at 10 Mbps over coaxia cable.

» 100-Mbps Ethernet-A single LAN specifications, aso known as Fast Ethernet, that operates
at 100 Mbps over twisted-pair cable.

» 1000-Mbps Ethernet-A single LAN specifications, dso known as Gigabit Ethernet, that
operates at 1000 Mbps (1 Gbps) over fiber and twisted-pair cables.

Ethernet is a comprehensive international standard for Local Area Networks (LANS)
employing CSMA/CD as the access method. This standard encompasses several media types
and techniques for signal rates from 1 Mb/s to 1000 Mb/s. Ethernet is widely used LAN
technology, which alows multiple end stations (such as computers, servers, printers,
gateways, to other networks etc.) to exchange data anong themselves within a single building
or campus. It provides two distinct modes of operation: half duplex and full duplex. Figure 1-

1 gives the view of Ethernet network.

Ethernet Segment

Figure 1.4: An Ethernet network runs CSMA/CD over coaxial cable.

10

Verification Of SoC with Ethernet Interface 1. Introduction

1.10.1 Half duplex operation:

In half duplex mode, the CSMA/CD media access method is the means by which two or
more stations share a common transmission medium. To transmit, a station waits for a quiet
period on the medium (that is, no other station is transmitting) and then sends intended
message in bit-serial form. If after initiating a transmission, the message collides with that of
another station then each trangition station intentionally transmits for an additional predefined
period to ensure the propagation of collision throughout the system. The gation remains silent
for arandom amount of time (back off time) before attempting to transmit again. Haf duplex

operation can be used with all media and configurations alowed by this standard.

1.10.2 Full duplex operation:

Full duplex operation allows simultaneous communication between a pair of stations using
point-to-point media (dedicated channel). Full duplex operation does not require that
transmitter defer, nor they monitor or react to receive activity, as there are no contentions on
shared medium in this mode. Full duplex mode can be used when all of the following are true:
The physical medium is capable of supporting simultaneous transmission and reception

without interference.

There are exactly two stations connected with afull duplex point-to-point link. Since there
is no contention for use of a shared medium, the multiple access (i.e., CSMA/CD) algorithms

are unnecessary.

Both the stations on the LAN are capable of, and have been configured to use, full duplex

operation.

The most common configuration envisioned for full duplex operation consists of central
bridge (also known as a switch) with a dedicated LAN connecting each bridge port to a single

device. Figure 1-2 showing point-to-point link.

Figure 1.5: Example Point-to-Point Interconnection

11

Verification Of SoC with Ethernet Interface 1. Introduction

1.10.3 Ethernet Network Elements;

Ethernet LANSs consist of network nodes and interconnecting media. The network nodes

fall into two major classes:

1.10.3.1 Data terminal equipment (DTE): Devices that are either the source or the
destination of data frames. DTEs are typically devices such as PCs, workstations, file servers,

or print servers that, as agroup, are all often referred to as end stations.

1.10.3.2 Data communication equipment (DCE): Intermediate network devices that receive
and forward frames across the network. DCEs may be either standalone devices such as
repeaters, network switches, and routers, or communications interface units such as interface
cards and modems.

The current Ethernet media options include two genera types of copper cable: unshielded
twisted-pair (UTP) and shielded twisted-pair (STP), plus several types of optical fiber cable.

1.11 Verification Environment for Ethernet eVC:

Stepsfor building verification environment:

For building verification environment, steps which are very common and applicable to any
other verification environment as follows:
Generating traffic streams
Driving traffic into the design (stimuli)
Checking these data streams
Checking protocols and timing
Tracking progress
Modifying the environment due to spec changes or product derivatives

Writing scenarios

12

Verification Of SoC with Ethernet Interface 1. Introduction

Step 1: Generating traffic streams

When building a verification environment, the verification engineer often starts by modeling
the device input stimulus. In Verilog, the designer is limited in how to model this traffic
because of the lack of high-level data structures and the notion of dynamic lists. As a result,
sequences of traffic items are often represented as a series of task calls to initiaize the frame,
build its header, and payload. This ?cut-and-paste? code is lengthy, hard to read and hard to
maintain (if there is need to add another attribute passed to all task calls).

The verification engineer often needs constructs better suited for modeling and
manipulating frame sequences. C provides some of these. However, it becomes apparent that
C was not dev doped with hardware in mind as soon as bit vectors need to be specified on
non-four byte boundaries and manipulated. Unfortunately, the engineer till has to write the
functions to manipulate the lists and, to use memory efficiently, now has to worry about
correctly allocating and de-allocating memory and handling pointers. These memory

problems can result in hours of chasing bus errors and segmentation faults.

The e language provides constructs for modeling traffic streams with built-in functions for
generating them and automatically takes care of memory allocation and garbage collection
(memory de-allocation). Also in e, there is no need to create generation functions for each
struct. The generator is built-in, and once the structs are declared, meaningful simuli can be
generated. Defining a field (‘frames in the above example), which is a 2ist of frames?, is
enough to have a sequence of frames generated. The built in generator performs memory

allocation dynamically, and a built-in garbage collection takes care of de-allocation.

Step 2: Driving stimuli into the device

With the data structures in place, the engineer has to consider how data will flow though
the verification environment. Typically, a task or function will drive data into each of the

device's input ports and atask or function will pull datafrom each of the device's output ports.

In Verilog, the device specific synchronization for that port is fairly easy because the
engineer has direct control over the signals. However, many other functions are typicaly
needed to synchronize the basic traffic flow, format the data at each end, and print the data
structures for debugging and post-run checking.

13

Verification Of SoC with Ethernet Interface 1. Introduction

C and C++ help with organizing and formatting data, but the benefit is eaten away because
these general-purpose languages have no concept of simulation time or hardware signals.
Special code must be written t o interface with the specific Verilog Programming Language
Interface (PLI) to drive and sample simulation signals at the appropriate smulation time.
Moreover, PLI-related code often needs to be tailored for different smulators. In addition,
traffic structures built in C/C++ must be manually converted to the bit, byte or word format
the device expects to receive and send.

The e language in this case combines the benefit of both worlds. It has the knowledge of
simulation time, constructs for concurrency and built-in controllability, and observability of
the smulation sgnds, regardless of the smulator. Further, each structure in the environment
automatically has pre-defined pack and unpack functions for converting it to a bit stream, or

vice versa, from bit stream into the data structure format and fields.

Step 3: Checking data streams

To check that the device works correctly, monitoring tasks or functions need to be written.
In the case of an Ethernet device, such tasks would pull data from the output ports and
compare it with the expected data. The expected data is often determined within a self-
checking environment by storing the outstanding transactions, or through a reference model of

the device.

As with traffic streams, Verilog's lack of built-in lists makes it impossible to create
dynamic scoreboards to verify the data integrity and routing of outstanding transactions. This
inflexibility leads to built-in list sizes that use up memory and create assumptions in the code

that are difficult to maintain if this code is to be portable.
Built-in lists and list functions, recursive data structure comparison, and automatic

memory alocations are key features in the e verification language. These constructs make it

much easier to implement data integrity checking

14

Verification Of SoC with Ethernet Interface 1. Introduction

Step 4: Checking protocols and timing - using assertions

Because Verilog and VHDL are directly tied to the simulator, it is easy to interact with the
device to get timing information. Unfortunately, most of the interesting timing checks are not
straightforward and contain multiple edge dependencies. A timing check might be easy to
specify in an English specification, but it is another story to write it in procedural code, be it
Verilog, VHDL, C or C++. As a result, in the past few years, declarative assertions (in

languages such as PSL/Sugar) have become an appealing approach.

The e language includes a built-in assertion language, similar in expressiveness to
PSL/Sugar. Constructs to capture timing scenarios, automated capabilities to observe the
device and checking constructs to relate timing scenarios are al built-in. Such an assertion
language makes it easy to specify and combine complex timing scenarios that can be used for

even the most difficult protocol checking.

Step 5: Tracking progress

A key requirement in verification is having a reliable metric that shows the progress
towards hitting all the verification goals. Functional coverage, a metric that tracks which
functionality of the device was verified, is being recognized as a highly reliable measure.
Neither Verilog, VHDL nor C/C++ have the notion of functional coverage, causing many
project teams to create elaborate combinations of log files, parsed by various scripts which
then produce some summary reports. This enables very limited capabilities, and yet another

maintenance burden on the implementers of the verification environment.

The e verification language has built-in functional coverage constructs, supporting simple

value coverage, value-transition coverage and cross-coverage.

Step 6: Specification changes and product derivatives - extensibility

Once the environment is in place, the engineer might need to extend or modify it to
accommodate changes or updates to the specification. Verilog, VHDL and C clearly fall short
in this area because they provide no constructs to incorporate any changes. modifications need
to be done within the origina code. Changing the original code often results in bugs because

the intent of the original code is not clearly known.

15

Verification Of SoC with Ethernet Interface 1. Introduction

The e verification language offers the notion of extensibility, which is a key feature of an
Agpect-Oriented Programming (AOP) language, and provides the constructs necessary to
modify or change the functiondity of the environment without having to change the original
codein any form.

Step 7: Writing scenarios

Once the verification environment is in place, the project team now needs to focus on

writing scenarios to verify that the device behaves according to specification.

The problem with Verilog and C is that you have to write explicit randomization code for
each attribute the designer wants to randomize. There is also often interest in mechanisms to
weight particular attributes towards values that denote typical or corner case scenarios. Such

mechanisms in Verilog and C are typically non-obvious, maintenance burdens.

‘e provides not only the built-in capability to randomly generate any data structure -
simple or complex - automatically with weighted distribution, but it aso provides constructs
for constraining the generated values within acceptable ranges. Additionaly, e provides
mechanisms to easily layer test-specific constraints for particular tests, and take run-time
feedback from the device to focus this random test into hard-to-reach corner cases.
Combining this generation capability with the temporal assertion language gives the
verification engineer a powerful capability for identifying complex, internal corner case

scenarios and generating specific traffic to create conflicts deep within the device.

DUT Verification Environment

Specification
|
Test Plan
Generate DUT .| Collect
— Inject [Tnput Output | Output

Figure 1.6: Verification Environment

16

Chapter 2

Review of Literature

2.1 The IEEE 802.3 L ogical Relationship to the ISO Reference M odel

Figure 2-1 shows the IEEE 802.3 logical layers and their relationship to the OS| reference
model. As with al IEEE 802 protocols, the 1SO data link layer is divided into two |EEE 802
sub layers, the Media Access Control (MAC) sub layer and the MAC-client sub layer. The
IEEE 802.3 physical layer corresponds to the 1SO physical layer.

ol [EEE 8023
refarence refarance
el el
Apphcatian
Frasentation |
Session | Uipper-layar
| | probacals
Transpaort
HNetwork | WAC-clignt IEEE Bl2-specific
Data link Media Accass (MAC) I |EEE 802.3-apedcific
1 1 1
| |
Frivsical Phigzacal (PHY) | Media-spacific
| 1

Figure 2.1: Ethernet's Logical Relationship to the ISO Reference Model
The MAC-client sub layer may be one of the following:

Logical Link Control (LLC), if the unitisa DTE. This sublayer provides the interface
between the Ethernet MAC and the upper layers in the protocol stack of the end
station. The LLC sublayer is defined by IEEE 802.2 standards.

Bridge entity, if the unit is a DCE. Bridge entities provide LAN-to-LAN interfaces
between LANSsthat use the same protocol (for example, Ethernet to Ethernet) and also
between different protocols (for example, Ethernet to Token Ring). Bridge entities are
defined by |EEE 802.1 standards.

Because specifications for LLC and bridge entities are common for all IEEE 802 LAN
protocols, network compatibility becomes the primary responsibility of the particular network
protocol. Figure 2-2 shows different compatibility requirements imposed by the MAC and

physical levelsfor basic data communication over an Ethernet link.

Verification Of SoC with Ethernet Interface 2.Review of Literature

WA Cliant ; MAC Clhant
8023 MAC A02.3 MAC
i
Physical medium- Physacal medum-
indapendean| kEyer indapandan layer
Ml 1w
PHY :

Phrgsical radiurn Phy=ical madum
dapandant layers depandant layars

& 0]

| wni
i 1

Link

Link media,
sknal ancoding, and
ransTEEEn rake

Trainsmissaan raks

Ml = Medium-indapendent mtariacs
KDI = Madigm-dependent interface - the link connector

Figure 2.2 MAC and Physical Layer Compatibility Requirements for Basic Data
Communication

The MAC layer controls the node's access to the network media and is specific to the
individual protocol. All IEEE 802.3 MACs must meet the same basic set of logical
requirements, regardless of whether they include one or more of the defined optional protocol
extensions. The only requirement for basic communication (communication that does not
require optional protocol extensions) between two network nodes is that both MACs must

support the same transmission rate.

The 802.3 physical layer is specific to the transmission data rate, the signa encoding, and
the type of media interconnecting the two nodes. Gigabit Ethernet, for example, is defined to
operate over either twisted-pair or optical fiber cable, but each specific type of cable or signa-

encoding procedure requires a different physical layer implementation.

2.2 The Ethernet MAC Sublayer
The MAC sublayer has two primary responsibilities:

Data encapsulation, including frame assembly before transmisson, and frame
parsing/error detection during and after reception
Media access control, including initiation of frame transmission and recovery from

transmission failure

18

Verification Of SoC with Ethernet Interface 2.Review of Literature

2.3 Media Access Control frame structure:

This section gives the detail for the communication system using the CSMA/CD MAC. It

defines the various components of MAC frame.

2.3.1 MAC frame format:

Figure 2-3 shows the nine fields of the frame: the preamble, SFD (start frame delimiter),
the addresses of the frame’s source and destination, length or type field to indicate the length
or protocol type of the following field that containsthe MAC client data, afield that contains
padding if required, the frame check sequence field containing a cyclic redundancy check
value to detects error in received frame, and the extension field if required (for 1000 Mb/s
half duplex operation only). Of these nine fields all are of fixed size except for the data, pad
and extension fields which may contain an integer number of octets between the minimum
and maximum values that are determined by specific implementation of the CSMA/CD MAC

for aparticular interface.

7 OCTETS PREAMBLE
1 OCTET SFD
8 OCTETS DESTINATION ADDRESS
6 OCTETS SOURCE ADDRESS OCTETS WITHIN
FRAME TRANSMITTED
2 OCTETS LENGTH/TYPE TOP TO BOTTOM
X MAC CLIENT DATA :
461500 OCTETS = t----—---------—--—-——--—- 4
' PAD :
40CTETS FRAME CHECK SEQUENCE
! EXTENSION ! '
tse [[[[[T T] wss
b".] b?

‘ BITS WITHIN
FRAME TRANSMITTED ——jie=-
LEFT TO RIGHT

Figure 2-3: MAC Frame format

19

Verification Of SoC with Ethernet Interface 2.Review of Literature

2.3.2 MAC frame elements:

2.3.2.1 Preamblefield:

The preamble field is a 7-octate field that is used to achieve steady-state synchronization

with received frame's timing.

2.3.2.2 Start Frame Delimiter (SFD):

The SFD field is the sequence 10101011. It immediately follows the preamble pattern and

indicates the start of frame.

2.3.2.3 AddressFields:

Each MAC frame shall contain two address fields; the Destination address and the Source
address field, in the order. The destination address field specifies the address(s) for which the
frame is intended. The source address fidd identifies the station from which the frame was

initiated. The representation of addressfield shall be asfollows (see figure 2.4):

G LIiL 45-BIT ADDRESS

WG =0 INDIVIDUAL ADDRESS

G =1 GROUP ADDRESS

L =0 GLOBALLY ADMINISTERED ADDRESS
L =1 LOCALLY ADMINISTERED ADDRESS

Figure 2.4: Address designation

Note Individual addresses are also known as unicast addresses because they refer to asingle
MAC and are assigned by the NIC manufacturer from a block of addresses alocated by the
IEEE. Group addresses (multicast addresses) identify the end stations in aworkgroup and are
assigned by the network manager. A specia group address (all 1 the broadcast address)
indicates all stations on the network.

20

Verification Of SoC with Ethernet Interface 2.Review of Literature

Dedtination address (DA): Condsts of 6 bytes. The DA field identifies which
station(s) should receive the frame. The left-most bit in the DA field indicates whether
the address is an individual address (indicated by a 0) or a group address (indicated by
a 1). The second bit from the left indicates whether the DA is globally administered
(indicated by a 0) or locally administered (indicated by a 1). The remaining 46 bits are
a uniquely assigned value that identifies a single station, a defined group of stations, or
all stations on the network.

Source addresses (SA): Consists of 6 bytes. The SA field identifies the sending
station. The SA is aways an individual address and the left-most bit in the SA field is
always 0.

Length/Type: Consists of 4 bytes. This field indicates either the number of MAC-
client data bytes that are contained in the data field of the frame, or the frame type ID
if the frame is assembled using an optional format. If the Length/Type field value is
less than or equal to 1500, the number of LLC bytes in the Data field is equal to the
Length/Type field value. If the Length/Type field value is greater than 1536, the frame
is an optiond type frame, and the Length/Type field vaue identifies the particular type
of frame being sent or received.

Data: Is a sequence of n bytes of any value, where n is less than or equal to 1500. If
the length of the Datafield is less than 46, the Data fidd must be extended by adding a
filler (a pad) sufficient to bring the Data field length to 46 bytes.

Frame check sequence (FCS): Consigts of 4 bytes. This sequence contains a 32-bit
cyclic redundancy check (CRC) value, which is created by the sending MAC and is
recalculated by the receiving MAC to check for damaged frames. The FCS is
generated over the DA, SA, Length/Type, and Datafields.

2.3.4 Frame Transmission

Whenever an end station MAC receives a transmit-frame request with the accompanying
address and data information from the LLC sublayer, the MAC begins the transmission
sequence by transferring the LLC information into the MAC frame buffer.

The preamble and start-of-frame delimiter are inserted in the PRE and SOF fields.

The destination and source addresses are inserted into the address fields.

21

Verification Of SoC with Ethernet Interface 2.Review of Literature

The LLC data bytes are counted, and the number of bytes is inserted into the
Length/Type field.

The LLC data bytes are inserted into the Data field. If the number of LLC data bytesis
less than 46, a pad is added to bring the Data field length up to 46.

An FCS vdue is generated over the DA, SA, Length/Type, and Data fields and is
appended to the end of the Data field.

After the frame is assembled, actual frame transmission will depend on whether the MAC

is operating in half-duplex or full-duplex mode.

The IEEE 802.3 standard currently requires that all Ethernet MACs support haf-duplex
operation, in which the MAC can be either transmitting or receiving a frame, but it cannot be
doing both simultaneously. Full-duplex operation is an optional MAC capability that alows

the MAC to transmit and receive frames simultaneously.

2.4 Half-Duplex Transmission: The CSMA/CD Access Method

The CSMA/CD protocol was originally developed as a means by which two or more
stations could share a common media in a switch-less environment when the protocol does
not require central arbitration, access tokens, or assigned time dlots to indicate when a station
will be alowed to transmit. Each Ethernet MAC determines for itself when it will be alowed

to send aframe. The CSMA/CD access rules are summarized by the protocol's acronym:

Carrier sense: Each dation continuoudy listens for traffic on the medium to
determine when gaps between frame transmissions occur.

Multiple access: Stations may begin transmitting any time they detect that the
network is quiet (there is no traffic).

Collison detect: If two or more stations in the same CSMA/CD network (collision
domain) begin transmitting at approximately the same time, the bit streams from the
transmitting stations will interfere (collide) with each other, and both transmissions
will be unreadable. If that happens, each transmitting station must be capable of
detecting that a collision has occurred before it has finished sending its frame.

Each must stop transmitting as soon as it has detected the collision and then must wait

22

Verification Of SoC with Ethernet Interface 2.Review of Literature

a quasirandom length of time (determined by a back-off algorithm) before attempting

to retransmit the frame.

The worst-case situation occurs when the two most-distant stations on the network both
need to send a frame and when the second station does not begin transmitting until just before
the frame from the first station arrives. The collision will be detected aimost immediately by
the second station, but it will not be detected by the first station until the corrupted signal has
propagated all the way back to that station. The maximum time that is required to detect a
collison (the collison window, or "dlot time") is approximately equal to twice the signal

propagation time between the two most-distant stations on the network.

This means that both the minimum frame length and the maximum collision diameter are

directly related to the dot time. Longer minimum frame lengths trandate to longer slot times
and larger collision diameters, shorter minimum frame lengths correspond to shorter slot
times and smaller collision diameters.
The trade-off was between the need to reduce the impact of collision recovery and the need
for network diameters to be large enough to accommodate reasonable network sizes. The
compromise was to choose a maximum network diameter (about 2500 meters) and then to set
the minimum frame length long enough to ensure detection of al worst-case collisions.

The compromise worked well for 10 Mbps, but it was a problem for higher data-rate
Ethernet developers. Fast Ethernet was required to provide backward compatibility with
earlier Ethernet networks, including the existing IEEE 802.3 frame format and error-detection
procedures, plus al applications and networking software running on the
10-Mbps networks.

Although signd propagation velocity is essentially constant for all transmission rates, the

time required to transmit a frame isinversely related to the transmission rate.

At 100 Mbps, a minimum-length frame can be transmitted in approximately one-tenth of
the defined slot time, and the transmitting stations would not likely detect any collision that
occurred during the transmission. This, in turn, meant that the maximum network diameters
specified for 10-Mbps networks could not be used for 100-Mbps networks. The solution for
Fast Ethernet was to reduce the maximum network diameter by approximately a factor of 10
(to alittle more than 200 meters).

23

Verification Of SoC with Ethernet Interface 2.Review of Literature

The same problem aso arose during specification development for Gigabit Ethernet, but
decreasing network diameters by another factor of 10 (to approximately 20 meters) for 1000-
Mbps operation was simply not practical. This time, the developers dected to maintain
approximately the same maximum collision domain diameters as 100-Mbps networks and to
increase the gpparent minimum frame size by adding a variable-length nondata extension field
to frames that are shorter than the minimum length (the extension field is removed during

frame reception).

Figure 2.5 shows the MAC frame format with the gigabit extension field, and Table 2.1
shows the effect of the trade-off between the transmission data rate and the minimum frame
sizefor 10-Mbps, 100-Mbps, and 1000-M bps Ethernet.

416 byt for 1000Base-X
B20 byles for 10008ase-T
[Preambie |SF0 [DA | S | Lenginfypa | Data | Ped | FGS | Emension

* Thar extanision field is autcmatically
reamid during frame receplion

Figure 2.5: MAC Frame with Gigabit Carrier Extenson

Table 2.1: Limits for Half-Duplex Operation

Parameter 10 Mbps 100 Mbps 1000 Mbps
Minimum frame size 64 bytes 64 bytes 520 bytes' (with extension
field added)

Maximum collison diameter, | 100 meters | 100 meters @ 100 meters UTP
DTEto DTE UTP UTP 316 meters fiber
412 meters
fiber

Maximum collison diameter | 2500 meters | 205 meters 200 meters

with repeaters

Maximum number of repeaters | 5 2 1

in network path

24

Verification Of SoC with Ethernet Interface 2.Review of Literature

520 bytes apply to 1000Base-T implementations. The minimum frame size with extension
field for 1000Base-X is reduced to 416 bytes because 1000Base-X encodes and transmits 10
bits for each byte.

Another change to the Ethernet CSMA/CD tranamit specification was the addition of
frame bursting for gigabit operation. Burst mode is a feature that allows a MAC to send a
short sequence (a burst) of frames equa to approximately 5.4 maximum-length frames
without having to relinquish control of the medium. The transmitting MAC fills each
interframe interval with extension bits, as shown in Figure 2.6, so that other stations on the
network will see that the network is busy and will not attempt transmisson until after the

burst is complete.

p Camier duration El
M Bursl limil = 2 maximum-&ngth rameas |

| MAC rama witn sxtansicn | IFG° | MAGTEme | IFGT | A5 | MAC frame |

* Extension bits ane sanl during inferframe gaps o ansus
an urinterrupted carier during the anlire burst saquance

Figure 2-6: A Gigabit Frame-Burst Sequence

If the length of the first frame is less than the minimum frame length, an extension field is
added to extend the frame length to the value indicated in Table 2-1. Subsequent frames
in a frame-burst sequence do not need extension fields, and a frame burst may continue as
long as the burst limit has not been reached. If the burst limit is reached after a frame
transmission has begun, transmission is alowed to continue until that entire frame has been
sent. Frame extension fields are not defined, and burst mode is not allowed for 10 Mbps and

100 Mbps transmission rates.

2.5 Full-Duplex Transmisson: An Optional Approach to Higher Network
Efficiency

Full-duplex operation is an optional MAC capability that alows simultaneous two-way
transmission over point-to-point links. Full duplex transmission is functionally much simpler
than half-duplex transmission because it involves no media contention, no collisions, no need
to schedule retransmissions, and no need for extension bits on the end of short frames. The

result is not only more time available for transmission, but also an effective doubling of the

25

Verification Of SoC with Ethernet Interface 2.Review of Literature

link bandwidth because each link can now support full-rate, smultaneous, two-way
transmission.

Transmission can usually begin as soon as frames are ready to send. The only restriction is
that there must be a minimum-length inter frame gap between successive frames, as shown in
Figure 2.7, and each frame must conform to Ethernet frame format standards.

e Frame | IFG Frame | IFGi mwm | Frame
[Feame]was #o [Fame |G [Fame |
FG = ImerfFramaGap

Tranamission directicn

Figure 2.7: Full Duplex Operation Allows Simultaneous Two-Way Transmission on the Same
Link

2.5.1 Flow Control

Full-duplex operation requires concurrent implementation of the optional flow-control
capability that allows a receiving node (such as a network switch port) that is becoming
congested to request the sending node (such as a file server) to stop sending frames for a
selected short period of time. Control is MAC-to-MAC through the use of a pause frame that
is automaticaly generated by the receiving MAC. If the congestion is relieved before the
requested wait has expired, a second pause frame with a zero time-to-wait value can be sent to
request resumption of transmisson. An overview of the flow control operation is shown in

Figure 2.8.

Gagatit Exherrat
swilch

N 2. Swach bacoming congastad,
Tl" i pause frama sent

N Fia sarvar
3. End statian waits
requinad lime

Bafare resuming
Irnemission

Figure 2.8: An Overview of the |IEEE 802.3 Flow Control Sequence

1. Dalallows
1o switch

The full-duplex operation and its companion flow control capability are both options for
all Ethernet MACs and al transmisson rates. Both options are enabled on a link-by-link
basis, assuming that the associated physical layers are also capable of supporting full-duplex

operation.

26

Verification Of SoC with Ethernet Interface 2.Review of Literature

Pause frames are identified as MAC control frames by an exclusive assigned (reserved)
length/type value. They are dso assigned a reserved destination address value to ensure that
an incoming pause frame is never forwarded to upper protocol layers or to other portsin a
switch.

2.5.2 Frame Reception

Frame reception is essentially the same for both half-duplex and full-duplex operations,
except that full-duplex MACs must have separate frame buffers and data paths to allow for
simultaneous frame transmission and reception.

Frame reception is the reverse of frame transmisson. The destination address of the
received frame is checked and matched againgt the station's address list (its MAC address, its
group addresses, and the broadcast address) to determine whether the frame is destined for
that station. If an address match is found, the frame length is checked and the received FCSis
compared to the FCS that was generated during frame reception. If the frame length is okay
and there is an FCS match, the frame type is determined by the contents of the Length/Type
field. The frame is then parsed and forwarded to the appropriate upper layer.

2.6 The Ethernet Physical Layers

Because Ethernet devices implement only the bottom two layers of the OSl protocol stack,
they are typically implemented as network interface cards (NICs) that plug into the host
device's motherboard. The different NICs are identified by a three-part product name that is
based on the physical layer attributes.

The naming convention is a concatenation of three terms indicating the transmission rate, the

transmission method, and the media type/signal encoding. For example, consider this:

10Base-T = 10 Mbps, baseband, over two twisted-pair cables

100Base-T2 = 100 Mbps, baseband, over two twisted-pair cables

100Base-T4 = 100 Mbps, baseband, over four-twisted pair cables
1000Base-L X = 100 Mbps, baseband, long wavelength over optical fiber cable

A guestion sometimes arises as to why the middle term always seems to be "Base." Early
versions of the protocol also alowed for broadband transmission (for example, 10Broad), but
broadband implementations were not successful in the marketplace. All current Ethernet

implementations use baseband transmission.

27

Verification Of SoC with Ethernet Interface 2.Review of Literature

2.7 Encoding for Signal Transmission

In baseband transmission, the frame information is directly impressed upon the link as a
segquence of pulses or data symbols that are typically attenuated (reduced in size) and distorted
(changed in shape) before they reach the other end of the link. The receiver's task is to detect
each pulse as it arrives and then to extract its correct value before transferring the
reconstructed information to the receiving MAC.

Filters and pulse-shaping circuits can help restore the size and shape of the received
waveforms, but additional measures must be taken to ensure that the received signals
are sampled at the correct time in the pulse period and at same rate as the transmit
clock:

The receive clock must be recovered from the incoming data stream to alow the

receiving physical layer to synchronize with the incoming pulses.

Compensating measures must be taken for a transmission effect known as baseline wander.
Clock recovery requires level transitions in the incoming signal to identify and synchronize on
pulse boundaries. The alternating 1s and Os of the frame preamble were designed both to
indicate that a frame was arriving and to aid in clock recovery. However, recovered clocks
can drift and possibly lose synchronization if pulse levels remain constant and there are no

transitions to detect (for example, during long strings of 0s).

Baseline wanders results because Ethernet links are AC-coupled to the transceivers and
because AC coupling is incapable of maintaining voltage levels for more than a short time. As
a result, transmitted pulses are distorted by a droop effect Smilar to the exaggerated example
shown in Figure 2-9. Inlong strings of either 1s or Os, the droop can become so severe that the
voltage level passes through the decision threshold, resulting in erroneous sampled values for
the affected pulses.

28

Verification Of SoC with Ethernet Interface 2.Review of Literature

1013001000110

110001000110

Deacision thrashoid

Sugnal baseing)
Cutput bit stream with
basaling wandar

Input bit stream

Figure 2.9: A Concept Example of Basdline Wander

Fortunately, encoding the outgoing signal before transmisson can significantly reduce the
effect of both these problems, as well as reduce the possibility of transmisson errors. Early
Ethernet implementations, up to and including 10Base-T, dl used the Manchester encoding
method, shown in Figure 2-10. Each pulse is clearly identified by the direction of the

midpulse transition rather than by its sampled level vaue.

Figure 2.10: Transition-Based Manchester Binary Encoding

Unfortunately, Manchester encoding introduces some difficult frequency-related problems
that make it unsuitable for use at higher data rates. Ethernet versions subsequent to 10Base- T

all use different encoding procedures that include some or all of the following techniques:

Using data scrambling: A procedure that scrambles the bits in each byte in an orderly
(and recoverable) manner. Some Os are changed to 1s, some 1s are changed to Os, and
some bits are left the same. The result is reduced run-length of same-vaue bits,
increased transition dendty, and easier clock recovery.

Expanding the code space: A technique that allows assignment of separate codes for
data and control symbols (such as start-of-stream and end-of-stream delimiters,

extension bits, and so on) and that assists in transmission error detection.

29

Verification Of SoC with Ethernet Interface 2.Review of Literature

Using forward error-correcting codes. An encoding in which redundant information
is added to the transmitted data stream so that some types of transmission errors can be
corrected during frame reception.

Note Forward error-correcting codes are used in 1000Base-T to achieve an effective
reduction in the bit error rate. Ethernet protocol limits error handling to detection of bit errors
in the received frame. Recovery of frames received with uncorrectable errors or missing

frames is the responsibility of higher layersin the protocol stack.

2.8 The 802.3 Physical Layer Relationship to thel SO Reference Model

Although the specific logical model of the physical layer may vary from version to version,
all Ethernet NICs generally conform to the generic model shown in Figure 2.11.

a3
refarence
el IEEE BO2.3 refarenca modal
Agphcatbon
Upper protocnl layers
Frasentatan ,:
! MAC-chant
Session - -
WA
Transport J S . — .
.) | Reconciliation
Metwori P I Medla-indapendant
o [agre sLiblayars
Data Lirik Bl
e) I
Physical pos

Mediz-dependant

Auto-negatiation” | autlEyers

MOE |,
....... —_— ||'

MDY = Madium-dapendent mtarface | M edium .c-:‘
Ml = Media-indapendant intariaca T J
PCE = Physical coding sublayer
P, = Physical ma meng

* Bath gha ME and Aute-negoliation are oplional

Figure 2.11: The Generic Ethernet Physical Layer Reference Model

The physical layer for each transmission rate is divided into sub layers that are independent
of the particular media type and sub layers that are specific to the media type or signal
encoding.

The reconciliation sublayer and the optional media-independent interface (MIl in
10-Mbps and 100-Mbps Ethernet, GMII in Gigabit Ethernet) provide the logical
connection between the MAC and the different sets of media-dependent layers. The
MII and GMII are defined with separate transmit and receive data paths that are bit-
seria for 10-Mbps implementations, nibble-serial (4 bits wide) for 100-Mbps

30

Verification Of SoC with Ethernet Interface 2.Review of Literature

implementations, and byte-serial (8 bits wide) for 1000-Mbps implementations. The
media-independent interfaces and the reconciliation sublayer are common for their
respective transmission rates and are configured for full-duplex operation in 10Base-T
and all subsequent Ethernet versions.

The media-dependent physical coding sublayer (PCS) provides the logic for encoding,
multiplexing, and synchronization of the outgoing symbol streams as well symbol

code alignment, demultiplexing, and decoding of the incoming data.

The physical medium attachment (PMA) sublayer contains the signal transmitters and
receivers (transceivers), aswell asthe clock recovery logic for the received data streams.

The medium-dependent interface (MDI) is the cable connector between the signal
transceivers and the link.
The Auto-negotiation sublayer alows the NICs a each end of the link to exchange
information about their individual capabilities, and then to negotiate and select the
most favorable operational mode that they both are capable of supporting. Auto-
negotiation is optional in early Ethernet implementations and is mandatory in later
versions.
Depending on which type of signa encoding is used and how the links are configured,
the PCS and PMA may or may not be capable of supporting full-duplex operation.

2.9 Ethernet Interfaces:

Ethernet Interfaces basically defines the logical and electrical characteristics for the data
transmission between MAC and PHY layer. One such interface is Gigabit Media Independent
Interface (GMI1). (See Figure 2.12)

Gigabit Media Independent Interface (GMII):
Thisinterface has following characteristics:
It is capable of supporting 1000 Mb/s operation.
Data and delimiters are synchronous to clock references.
It provides independent eight-bit-wide transmit and receive data paths.
It provides a simple management interface.
It uses signal levels, compatible with common CMOS digital ASIC processes.
It provides full and haf duplex operation.
Supports 1000 Mb/s speed and clock frequency is 125 MHz.

31

Verification Of SoC with Ethernet Interface 2.Review of Literature

MAC

TXIGMIIIRX

PHY

Figure 2.12: Transmission between MAC & PHY.

2.9.1 Signal Description:

2.9.1.1 TX_EN (transmit enable):

TX_EN in combination with TX_ER indicates the Reconciliation sublayer is presenting
data on the GMII for transmission. It shal be asserted by the Reconciliation sublayer
synchronously with the first octet of the preamble and shall remain asserted while all octets to
be transmitted are presented to the GMII. TX_EN shall be negated prior to the first rising
edge of clock following the final data octet of aframe. TX_EN isdriven by the Reconciliation
sublayer and shall transition synchronously with respect to the clock.

2.9.1.2 TXD (transmit data):

TXD is a bundle of eight data signals (TXD<7:0>) that are driven by the Reconciliation
sublayer. TXD<7:0> shdl transition synchronously with respect to the clock. For each clock
period in which TX_EN is asserted and TX_ER is de-asserted, data are presented on
TXD<7:0> to the PHY for transmisson. TXD<0> is the lease significant bit. While TX_EN
and TX_ER are both de-asserted, TXD<7:0> shall have no effect upon the PHY. Table 2.2
specifies the permissible encodings of TXD<7:0>, TX_ER, and TX_EN.

32

Verification Of SoC with Ethernet Interface 2.Review of Literature

Table 2.2: Permissible encoding of TXD<7:0>, TX_ER, and TX_EN

TX_EN | TX_ER | TXD<7:0> Description

0 0 00 through FF | Normal inter-frame

0 1 00 through OE | Reserved

0 1 OF Carrier Extend

0 1 10 through 1E | Reserved

0 1 1F Carrier Extend error

0 1 20 through FF | Reserved

1 0 00 through FF | Normal data transmission
1 1 00 through FF | Transmit error propagation
NOTE- Vauesin TXD<7:0> column are in hexadecimal.

2.9.1.3 TX_ER (transmit coding error):

TX_ER is driven by the Reconciliation Sublayer and shall trangtion synchronously with
respect to the clock. When TX_ER is asserted for one or more TX_CLK periods while
TX_EN is also asserted, the PHY shall emit one or more code-groups that are not part of the
valid data or delimiter set somewhere in the frame being transmitted. The relative position of

the error within the frame need not be preserved.

2.9.1.4 RX_DV (receive data valid):

RX_DV is driven by the PHY to indicate that the PHY is presenting recovered and
decoded data on the RXD<7:0> bundle. RX_DV shall transition synchronously with respect
to the RX_CLK. RX_DV shdl be asserted continuously from the first recovered octet of the
frame through the fina recovered octet. In order for a received frame to be correctly
interpreted by the Reconciliation sublayer and the MAC sublayer, RX_DV must encompass
the frame, starting no later than Start Frame Delimiter (SFD) and excluding any End-of-

Frame delimiter.

33

Verification Of SoC with Ethernet Interface 2.Review of Literature

2.9.1.5 RXD (receive data):

RXD is a bundle of eight data signds (RXD <7:0>) that are driven by the PHY. RXD<7:0>
shall trangtion synchronously with respect to RX_CLK. For each RX_CLK period in which
RX_DV asserted, RXD<7:0> trandfer eight bits of recovered data from the PHY to the
Reconciliation sublayer. RXD<0> is the least significant bit. While RX_DV is de-asserted,
the PHY may provide a False Carrier Indication by asserting the RX_ER signal while driving
the specific value listed in Table 2.3.

Table 2.3: Permissible encoding of RXD<7:0>, RX_ER, and RX_DV

RX_DV | RX_ER | RXD<7:0>
00 through FF
00

01 through OD

Description

Normal inter-frame

Normal inter-frame

Reserved

OE

False Carrier indication

OF

Carrier Extend

10 through 1E

Reserved

1F

Carrier Extend Error

20 through FF

Reserved

00 through FF

Normal data reception

Rl R O o o o o o o o
Rl O R, R R, R R R RO

00 through FF | Datareception error
NOTE- Vauesin RXD<7:0> column are in hexadecimal.

2.9.1.6 RX_ER (receiveerror):

RX_ER isdriven by the PHY and shall transition synchronoudy with respect to RX_CLK.
When RX_DV is asserted, RX_ER shall be asserted for one or more RX_CLK periods to
indicate to the Reconciliation sublayer that an error (e.g. a coding error, or another error that
the PHY is capable of detecting that may otherwise be undetectable at the MAC sublayer) was
detected somewhere in the frame presently being transferred from the PHY to the

Reconciliation sublayer.

Verification Of SoC with Ethernet Interface 2.Review of Literature

2.9.2 Reduced Gigabit Media Independent Interface (RGMII):

RGMII is intended to be an alternative to the IEEE802.3u MII (Media Independent
Interface), the IEEE802.3z GMII. The principle objective is to reduce the number of pins
required to interconnect the MAC and the PHY from a maximum of 28 pinsto 12 pinsin a
cost effective and technology independent manner. In order to accomplish this objective, the
data paths and all associated control signas will be reduced and control signals will be
multiplexed together and both edges of the clock will be used. For Gigabit operation, the
clock will operate at 125 MHz and for 10/100 M bps operation, the clocks will operate at 2.5
MHz or 25 MHz respectively.

2.9.2.3 System Diagram:
Figure 2.13 shows system level diagram.

® TXC >

TXD<3:0>

TX_CTL

FUNCTIONAL
BLOCK

RXC

<4“—0

< RXD<3:0>

RX_CTL

e

¢ MDIO I

MDC

[
Figure 2.13: System level diagram of Reduced Gigabit Media Independent Interface (RGMII)

35

Verification Of SoC with Ethernet Interface 2.Review of Literature

2.9.4 Signal Definition:

Following table gives the signal definition:

Table 2.4: Signd description of RGMII.
Signa Name | RGMII | Description
TXC MAC | The tranamit reference clock will be 125 MHz,
25 MHz, 2.5 MHz depending on speed.
TD<3:0> MAC | InRGMII mode, bits 3:0 on positive edge of
TXC, bits 7:4 on negative edge of TXC.
TX_CTL MAC | InRGMII mode, TX_EN on positive edge of
TXC, and alogica derivative of TX_EN
and TX_ER on negative edge of TXC.
RXC PHY The transmit reference clock will be 125 MHz,
25 MHz, 2.5 MHz and shall be derived from
received data stream.
RD<3:0> PHY In RGMII mode, bits 3:0 on positive edge of
RXC, bits 7:4 on negative edge of RXC.

2.9.5 Multiplexing of Data and Control:

Multiplexing of data and control information is done by taking advantage of both edges of
the reference clocks and sending the lower 4 bits on the positive edge and the upper 4 bits on
the negative edge of clock. Control signals can be multiplexed into a single clock cycle using
the same technique.

2.9.6 TXERR and RXERR Coding:

To reduce power of this interface, TXERR and RXERR, will be encoded in a manner that
minimizes transitions during normal network operation. This is done by the following
encoding method. Note that the value of TX_ER and TX_EN are valid at the rising edge of
clock while TXERR is presented on the falling edge of the clock. RXERR coding behaves in

the same way.

36

Verification Of SoC with Ethernet Interface 2.Review of Literature

TXERR <= TX_EN (XOR) TX_ER
RXERR <= RX_DV (XOR) RX_ER

When receiving a valid frame with no errors, RX_DV=true is generated as a logic high on
the rising edge of RXC and RXERR=fdse is generated as logic high on falling edge of RXC.
When no frame is being received, RX_DV=fdseis generated as alogic low on the rising edge
of RXC and RXERR=false is generated as alogic low on the falling edge of RXC.

While receiving a valid frame with errors, RX_DV=true is generated as logic high on the
rising edge of RXC and RXERR=true is generated as alogic low on the falling edge of RXC.

TXERR is treated in a smilar manner. During normal frame transmission, the signal stays
at logic high for both edges of TXC and during the period between frames where no errors are
to be indicated, the signal stays low for both edges.

Following table shows the allowable encoding of TXD, TXERR and TX_EN. Table 2.5
shows the allowable encoding of RXD, RXERR and RX_DV.

Table 2.5: Signal coding for TXD, TXERR and TX_EN.

TX CTL | TX EN| TX ER | TXD<7:0> Description

0,0 0 0 00 through FF | Normal inter-frame

0,1 0 1 00 through OE | Reserved

0,1 0 1 OF Carrier Extend

0,1 0 1 10 through 1E | Reserved

0,1 0 1 1F Carrier Extend error

0,1 0 1 20 through FF | Reserved

11 1 0 00 through FF | Normal data transmission
1,0 1 1 00 through FF | Transmit error propagation
NOTE- Vauesin TXD<7:0> column are in hexadecimal.

37

Verification Of SoC with Ethernet Interface

2.Review of Literature

Table 2.6: Signd coding for RX_DV, RXERR and RX_ER.

RX _CTL | RX_ DV | RX ER RXD<7:0> Description PHY Status
Parameters
0,0 0 0 xxX1 or xxx0 Normal inter- | Indicateslink status
frame O=down, 1=up
0,0 0 0 X00x or x01x | Normal inter- | Indicates RXC speed
or x10x or | frame 00=2.5 MHz, 01=25
X11x MHz, 10=125 MHz,
11=reserved
0,0 0 0 Ixxx or Oxxx Normal inter- | Indicates duplex
frame status
O=half-duplex,
1=full-duplex
0,1 0 1 00 Normal inter-
frame
0,1 0 1 01 throughOD | Reserved
0,1 0 1 OE Fase Carrier
indication
0,1 0 1 OF Carrier Extend
0,1 0 1 10 through 1E | Reserved
0,1 0 1 1F Carrier Extend
Error
0,1 0 1 20 through FE | Reserved
0,1 0 1 FF Carrier Sense
1,1 1 0 00 through FF | Normal data
reception
1,0 1 1 00 through FF | Data reception
error

* NOTE- (Required Function) Valuesin RXD<7:0> column are in hexadecimal.
NOTE- (Optional) Vauesin RXD<7:0> column are in binary.

38

Chapter 3
System Review (Basic Theory)

3.1eVC (e Verification Component):

e Verification Components (eVCs) are reusable, configurable, pre-verified, plug-and-play
Verification environments. They offer the easiest to use, most complete module, and chip and
system level verification solution available. eVCs integrate automatic stimulus generation,
assertion checking, and functional coverage analysis all within in asingle,
extensible component. eVCs dragtically reduce the time needed to compose a verification
environment. The philosophy underlying €VCs differs significantly from alternative products.
Rather than use thousands of directed tests, the eVC employs automatic generation and a
coverage driven methodology. Using automated scenario generation the eVC can typically
achieve 90%+ coverage of the protocol. With the addition of a few tests the remaining corner
cases are then exercised. This approach uncovers more bugs faster and frees engineering time

to focus on testing the DUT's proprietary functionality.

3.2 Ethernet eVC:

The Ethernet eV C can be used to verify IEEE 802.3 compliance MAC and PHY devices.
The eV C can be used for the functional verification of IP cores and SoC designs incorporating
Ethernet MAC and PHY functionality. Figure 3.1 shows the architecture of Ethernet eVC.

Verification Of SoC with Ethernet Interface 3. System Review

eYVC
| o
Signd hiap
Szoreboamd
hgrt

Figure 3.1: Architecture of Ethernet eVC

The Ethernet eVC environment is represented by vr_enet_env.e. The eVC can simulate
either MAC or PHY behavior for the Media independent interfaces.

3.3 Featuresof the Ethernet eVC

Like any verification environment built with Specman Elite, the Ethernet eVC can:
- Generate traffic stimuli to the DUT
- Check that the DUT adheres to the protocol

- Collect coverage related to the DUT

3.4 Ethernet Traffic Emulation
The Ethernet traffic consists of:
- Ethernet packets coming from the MAC or PHY port to the DUT

The eVC sequences handle the generation of traffic and BFMs handle the emulation of the
traffic. The eVC can:

- Generate Ethernet packets and random data packets and drive them according to the
protocol.

Verification Of SoC with Ethernet Interface 3. System Review

- Generate and collect management interface traffic.

3.4.1 Elements of Ethernet eVC:

Overall wrapper of eVC is vr_enet_env.e. All active and passive agents are instantiated
under env. Active agents and their types can be configured according to the design under test.
As shown in the architecture DUT is having two ports one is for transmission and other is for
reception and can have some control signal as per different interfaces. Width of TX and RX

path and control signals will change according to interface being used.

3.4.1.1 Config: A group of fields that alow configuration of the agent's attributes and
behavior.

3.4.1.2 Agnets. For each port of the interface, the eVC implements an agent. These agents
can emulate the behavior of a lega device, and they have standard construction and
functionality. Each env also has a group of fields, marked in Figure as Config. This allows
configuration of the env's attributes and behavior. Agents are of two types Active and Passive
agent.

Active agent:

The active agents drive traffic to the DUT with the Ethernet sequence driver. The Ethernet
sequence driver generates various sequences and these sequences produce Ethernet packets
or random lists of data. The Ethernet packets or random lists of data are injected into the
DUT by the BFM. The BFM injects them on the Tx lines for the MAC agent and Rx lines
for the PHY agent. The active MAC or PHY agents generate Ethernet packets depending
on the constraints provided by the user on various item fields. Active agents also contain a
monitor to do the checking and collecting coverage. Active agent can generate traffic to the

DUT and can aso respond to traffic from DUT.

Passive agent: The passive agent consist of:
« A monitor, represented by vr_enet_monitor.
A scoreboard, represented by vr_enet_scoreboard.

The passive agent has both the Tx and Rx collectors in the monitor, by default. The Tx

monitor senses signals on the Tx path and the Rx collector senses signas on the Rx path. The

41

Verification Of SoC with Ethernet Interface 3. System Review

monitor collects the packets and emits events on the status of traffic to and from the DUT.
The monitor contains predefined coverage definitions and you can create additional coverage
definitions and protocol checks to meet the test bench requirements. The monitor also
contains predefined checks that verify the DUT's adherence to the Ethernet protocol. The
monitor in the passive MAC agent checks for the protocol violation on the Tx lines and
monitor in the passive PHY agent checks for protocol violation on the Rx line. You can
configure the passive agents for non-layered interfaces only. The scoreboard unit verifies the

data integrity of Ethernet packets by comparing the sent and received Ethernet packets.

3.5 Flow of Data within the Agents

The BFM initiates a new packet for transmission by calling the sequence (seq.) driver if
transmission of previous packet is over and other required conditions match. If an Ethernet
packet needs to be transmitted, then the sequence driver generates the required packet and
passes it to the Ethernet BFM. If a management packet needs to be transmitted, then the
management sequence driver generates the required management packet and passes it to the
management BFM. During reception cycle both the active and passive vr_enet_agent(s)
collect list of bits, list of di-bits, list of nibbles or list of bytes depending on the type of
interface. The agents then re-group the packet in the collector and check for packet related

errors.

3.6 Agent Architecture

Figure 3.2 displays the agent architecture at an overview level for non-layered interfaces and
Figure 3.3 shows the agent Architecture for layered interfaces, which displays each of the
units present in the agents of the Ethernet eVC in detail.

Within each Ethernet eVC agent, the following units are instantiated:

- A config block that has the signas for configuration of the agent.
- A signa map block, the eVC signals mapped to the DUT.
- /A monitor to check the DUT behavior and collect coverage information.

- A scoreboard, to check the dataitems, can be instantiated.

Additionally, the active agents consst of:

42

Verification Of SoC with Ethernet Interface 3. System Review

- An Ethernet sequence driver, represented by vr_enet_driver, and a BFM, represented by

vr_enet_bfm.

- A management sequence driver, represented by vr_enet mgmt_driver, and a BFM,
represented by vr_enet_mgmt_bfm. The management sequence driver and BFM are present
only in the active MAC agent.

The passive agents do not drive any signas. They use the monitor to check the DUT behavior

and collect coverage information.

Agent
| Signal Mapping |
I_ _____]
Active |

- -7 |

l Passive | | |
| Sequence |
Monitor | Driver |
| I
Coverage | seq |
| I
Checker | BFM |
I I

Figure 3.2: Agent Architecture

Verification Of SoC with Ethernet Interface 3. Yystem Review

MAC MAC
10/100 Mbps 1000 Mbps
RGMII
MAC
RGMII
PHY
MAC MAC
10/100 Mbps 10/100 Mbps

Figure 3.3: Agent Architecture for Layered Interface

3.7 Monitorsand BFM Architecture

The monitors of the Ethernet eVC are completely passive. The BFM drives and generates
the packets. The BFM can make use of the monitor or duplicate some of the monitor's logic.
Most passive activity is done by the monitor, while al active interactions with the DUT are
done by the BFM. For example, the monitor collects the packets and then emits an event for

each packet received. The monitor consists of two collectors as shown in Figure 3.4:

- Tx Collector: The Tx collector packets from the Tx data path. By default, the collector is
disabled for active MAC agents and enabled for passive agents.

Verification Of SoC with Ethernet Interface 3. System Review

- Rx Collector: The Rx collector packets from the Rx data path. By default, the collector is
disabled for active PHY agents and enabled for passive agents.

The monitor has predefined checks to verify protocol adherence of the DUT and
predefined coverage definitions to collect coverage. By default, the checks and coverage are
enabled in the passive agents for non-layered interfaces and enabled in the active agents for
layered interfaces. The monitor also has the hooks-has_tx_collector and has_rx_collector to

enable the Tx and Rx collectors.

w_enet_agent

w_enet_monitor

has_tx_collector=TRUE
has_rx collector=TRUE

TxCollector RxCollector
Cowerage

Checks

Figure 3.4: Monitor and BFM architecture

The monitor within the passive MAC agent checks for the protocol violation on the TX
line and the monitor within the passive PHY agent checks for the protocol violation on the Rx

line.

Similarly, the management monitor is used to collect management packets from the
management interface line and the management BFM is used to drive management packets to

the management unit of PHY .

3.8 Scoreboard Architecture

The scoreboard unit, represented by vr_enet_scoreboard, is used to check that the number
and order of dataitems collected from each DUT output agent are as expected. In the Ethernet
eVC, the scoreboard functionality is optional, and you can choose not to instantiate the

scoreboard. The scoreboard can be instantiated either a the environment or the agent level.

Verification Of SoC with Ethernet Interface 3. System Review

By default, the scoreboard is enabled at the agent level. The scoreboard can be used for

different configurations as listed below:

« A switch DUT: The scoreboard should be instantiated at the environment level.
« A repeater DUT: The scoreboard should be instantiated at the agent level.

» A single port DUT: The scoreboard can be instantiated at the agent or at the environment

level.

 User-specific: The scoreboard can be ingantiated at the agent or a the environment level
for any other user-specific configurations. In these cases, you have to write your own hooks

for adding and matching the packets in the scoreboard.

3.9 Scoreboard Checking:

One basic concern when checking data is to verify that the output data items collected
from the DUT match the corresponding data items injected into the DUT. This kind of
checking is called scoreboard checking. With scoreboard checking you verify that:

« Every input has a matching output

 Every output has a matching input

In the Ethernet eéVC, the scoreboard can be instantiated at the environment or agent level.
By default, it is enabled at the agent level. It can disable by setting the has_scoreboard field to
FALSE. The scoreboard collects the packets going in and coming out of the DUT and
compares them. It can also verify that the packet has been sent to the intended port. If any
mismatch isfound, a scoreboard error isissued. The packet comparison is done by means of a
Unique ID (UID). In case when the UID get corrupted, the packet comparison is done on the
basis of 32-bit Cyclic Redundancy Check (CRC) calculation on the whole packet.

46

Verification Of SoC with Ethernet Interface 3. Yystem Review

input DUT - 5 output

inputuid == outputuid
0 ==0
1 ==1

inputuid == outputuid
2 scoreboard ==3

inputuid outputuid
==0 ==0

inputuid outputuid
==1 ==1

inputuid
==2

XIIXIAS

outputuid
==3

Figure 3.5: Functioning of Scoreboard

3.10 Topologiesfor Verification at the Module L evel

The Ethernet éVC can smulate MAC and PHY behavior for verifying either of the device
type. Following are configurations of eVC for verifying MAC and PHY devices. Figure 3.6

shown below gives overview of Ethernet eVC in user’ s verification environment.

«VC Port (Agent)

—— Management Interface - MDIO

!

Pattern Generator Injectar
(Sequence Driver) (BFM)

¥ Port Attibutes

User Verification Environment

Monitor
Collectar

i

Protocel Checker

Coverage

E

Figure3.6: Ethernet eVC in user’ s verification environment.

47

Verification Of SoC with Ethernet Interface 3. System Review

3.11 Single Port MAC DUT for non-layered Interfaces

To verify a Single Port MAC DUT, you must have an active PHY agent to drive traffic to the
DUT and a passive MAC agent to monitor the DUT, as shown in Figure 3.7.

MAC M
DUT
A
~ ~
~ N
~
~ N
~ ~
A 4 A A
PHYMI MAC MI
ACTIVE PASSIVE
Wr_enet_ Wr_enet_
agent agent
EthemeteVC

Figure 3.7: Single Port MAC DUT

3.12 Multi-Port MAC DUT

To verify a multi-port MAC DUT, you must have equal number of active PHY agents (as the
DUT) to drive traffic to the DUT and equal number of passve MAC agents (as the DUT) to
monitor the DUT, as shown in Figure 3.8.Figure 3-7. Each port of the DUT might have same

or different interfaces.

Bhernet Switch DUT
MAC GMI MAC GMI MAC GMI
Port0 Port1 -T = Portn
~ ~ ~
~ ~ ~N 0~ ~ ~
A 4 Y A A ™
PHYGMI MAC GMI PHYGMI MC GMI PHYGMI MC GMI
ACTME PASSIVE ACTIMVE PASS\E ACTIMVE PASS\E
w_enet_ wr_enet_ wr_enet_ wr_enet_ wr_enet_ wr_enet_
agent agent agent agent agent agent
Bhernet eVC

Figure 3.8: Multi-Port MAC DUT

Verification Of SoC with Ethernet Interface 3. System Review

3.13 Single-Port PHY DUT for non-layered Interfaces

To verify a single-port PHY DUT, you must have an active MAC agent to drive traffic to the
DUT and a passive PHY agent to monitor the DUT, as shown in Figure 3.9. The active MAC
agent has the capability to generate Ethernet packets as well as random list of nibbles in case
of MII; random list of di-bits in case of RMII, and random list of bytesin case of GMII and
XGMII.

PHYMI
DUT
A
~ ~
~ N
~
~ ~
~ ~
A ~A A
MAC Ml PHYMI
ACTIVE PASSIVE
w_enet_ wr_enet_
agent agent
EtherneteVC

Figure 3.9: Single-Port PHY DUT

3.14 Multi-Port PHY DUT

To verify a multi-port PHY DUT, you must have equal number of active MAC agentsto drive
traffic to the DUT and equal number of passive PHY agents to monitor the DUT, as shown in

Figure 3.10. Each port of the DUT can have the same or different interfaces.

Ethernet Transceiver DUT

PHY Ml PHY Ml PHY Ml
Port 0 Port 1 - Portn
A A
~N ~ ~ ~ ~N ~
~N ~N ~N
~ ~N ~ ~ ~N ~
Y A ~A A A ™S A A ~A
MAC Ml PHYMI MAC Ml PHYMI MAC Ml PHY Ml
ACTIVE PASSIVE ACTIVE PASSIVE ACTIVE PASSIVE
w_enet_ w_enet_ w_enet_ w_enet_ w_enet_ w_enet_
agent agent agent agent agent agent

Ethernet eVC

Figure 3.10:Multi-Port PHY DUT

49

Verification Of SoC with Ethernet Interface 3. System Review

3.15 Verification Environment Architecture

Ethernet eV C can be used for verifying IP cores of MAC and PHY supporting IEEE 802.3
Std. It isrequiresin first place to verify this eVC. It should be carefully checked that whether
it fulfills al the requirements of Ethernet Protocol, is eV C functionally adhering to protocol or
not? So for t is required to build the mock verification environment (VE), and configuring the
eVC for different kinds of possible DUTs. The Ethernet verification environment can be set
up under system level environment. In the first half of the project, we put more wattage on
verification of Ethernet eV C itself. Our goal was to make €V C fault (bug) free and to achieve
100% coverage of Ethernet eVC with reference to IEEE protocol for Ethernet. For this
purpose, we created a verification environment (VE) for the eVC. Below figure shows VE

architecture at functional level.

A
BFM

1 1
1 1
‘ Agent | Evce MGMT tem]
AV = (Sxmcun oo i

{ eerrr | [con il
: o v v v ¢ !
1 1
| Ethernet eve MGMT ltem |1

I 1
s Sequence Sequence il
1 1
Ve l l :
1 1
s BFM MGM 1
I Mon 1
I R A !
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 3.11: Ethernet eV C VE functiona block diagram

3.15.1 Item Coverage: This module covers the item generated by the sequence. Here VE
coverage definition is different from eVC coverage. The eVC coverage defines all the rules
and items Ethernet protocol supports. The list of coverage items for eVC is as per appendix C.
For VE coverage item list, it should cover all the checkers that are introduced in the eéVC,
scoreboard items and different possibilities of eV C configuration in addition to items listed in

eVC coveragelig.

50

Verification Of SoC with Ethernet Interface 3. System Review

While defining coverage items, some questions related to specifications must be answered.
Below are some sample questions.
Have all packet/transaction types been tried?
Have al CPU opcodes and operand combinations been tested?
Have all legal state transitions occurred?
Have all instruction types been interrupted?
Have all cases of resource contention been tested?

Have all queue limits been stressed?

3.15.2 BFM checker: This unit checks whether the item fields (virtual fields) congtrained by
the sequence driver; is driven as per congrains through the BFM or not. Verification target:

Verify that the virtual fields of the item are driven correctly from the bfm to the monitor.

Feature Name Verification Target
Error injection Injected error corresponds to
the configuration.
Timing for error assertion
Error duration
Data length
BFM duplex mode HALF/FULL duplex
Bad CRC error injection If TRUE CRCisvalid
Short frame error injection
Long frame error injection
Sfd error injection
Alignment error injection
Pause Opcode error injection
Length error injection
Ipg Duration of ipg.
Packet kind Packet kind
Preamble Preamble length

51

Verification Of SoC with Ethernet Interface 3. System Review

3.15.3 VE Sequences. The VE sequences are built on the basic sequences provided by evVC
to generate complex scenarios. The VE has its own sequence library to simulate various
complex scenarios o that checking of the checks can be done through them. The appendix —
B list various sequence scenarios that are simulated by the VE sequences with brief

description.

3.15.4 Agent Configuration Coverage: This module covers the various fields of the agent

config struct.

3.15.5 Ethernet Error Logger: Thismoduleis used to expect errors based on packet injected
by Ethernet BFM of agent. When DUT completes its packet collection, occurred errors are
copied to this module. It compares both expected and occurred errors and gives error on

mismatch.

3.15.6 Ethernet Management Error Logger: Thismoduleis used to expect errors based on
management packet injected by MGMT BFM of agent. Rest of the functionality is same as
Ethernet Error Logger module.

3.15.7 VE Monitor: This unit checks the validity of the checkers by comparing expected and
occurred errors of error logger unit. Whether a check is fired only when there is an error

condition violating the protocol or not; is checked by the VE monitor.

3.16 IsData Collected Correctly?
Verification target: verify that the monitor collects items correctly. It use s scoreboard to

verify dataintegrity.
3.16.1 Checker Is Correct?

Verification target: verify that the checks fired are correct.

Generate the sequence to generate both erroneous/non-erroneous behavior and check against
expected behavior with a separate checker.

Whenever a sequence is intended to fire checks from €V C monitor, expected errors list is
updated with the list of expected error tag names. The errors occurred during the execution of
sequence are logged into occurred errors list. At the end of sequence both the ligs are
compared and result is indicated. If both the lists match then a message saying: “ Expected
and occurred errors are matched” is displayed else a message saying: “Errors expected

but not occurred:” or “Errorsoccurred but not expected” is displayed.

52

Verification Of SoC with Ethernet Interface 3. System Review

For checker, coverage buckets are defined for each of them with their corresponding tag

name. Whenever adut_error occurs, the bucket for that particular check isfilled.

3.16.2 Coverageis correct

Verify that following coverage definitions are exercised at least once and coverage is being

collected correctly.

3.16.3 Configuration check / coverage

This module checks and covers for the configuration of the eVC. It also checks that the
eV C is configured as per the user configuration.
It checks for the following.
§ Topologies

§ User configuration.
3.16.4 Scoreboard

The scoreboard is used to check the data integrity between the BFM of one agent on one
end and the monitor of other agent on the other end. Following is the list of scoreboard
ingtances and corresponding input items, which are to be compared.

Scoreboardl: Item 1 — Ethernet BFM item (MAC ACTIVE Agent).
Item 2 — Monitor item. (PHY ACTIVE Agent)

Scoreboard2: Item 1 — Ethernet BFM item (PHY ACTIVE Agent).
Item 2 — Monitor item. (MAC ACTIVE Agent)

53

Chapter 4
System Design

The eVC supplies a default sequence library with a predefined set of sequences that

execute typical scenarios. Sequences are made up of three main entities:

« Item: A struct that represents the basic data item to the DUT (for example, a packet).

» Sequence: A struct that represents a stream of items signifying a high-level scenario of
stimuli. This is done by generating items one &fter the other, according to some specific
rules. The sequence struct has a set of predefined fields and methods. The sequence struct

can also be extended for adding more functionality.

» Sequence Driver: Each sequence driver has a MAIN sequence, within which all other
sequences are generated. It is a unit that serves as the mediator between the sequences and
the verification environment. The sequence driver acts on the items generated through

sequences, typically passng them to the BFM (Bus Functional Modél).

For the purpose of driving the data into the DUT, the sequence driver interacts only with
the BFM. The sequence driver and the BFM work as a pair, where the sequence driver serves
as the interface upwards towards the sequences so that the sequences can aways see a
standard interface to the DUT.

The BFM serves as the interface to the DUT, pulling items from the sequence driver and

passing them to a device.
4.1 Structure of Sequences

In the Ethernet eVC, the individual Layers—PHY and MAC are responsible for generating
the packets. Both layers use a common sequence driver and have their own sets of pre-defined

seguences to generate all the sequence items as shown in:

* 4.2 Ethernet Sequence Structure

* 4.2 Management Segquence Structure

Verification Of SoC with Ethernet Interface 4.System Design

4.2 Ethernet Sequence Structure

The Ethernet eVC has a sequence driver and Figure 4.1: Ethernet Sequence Structure
displaysinternal structure of Ethernet sequences. In the sequence structure:

* sequence driver isvr_enet_seq driver
e sequence gruct isvr_enet_seq

e sequence itemisvr_enet_packet

vr_enet_seq_driver

CUST OMor
PREDEFINED
SEQUENCE

LEGEND

; Vr_enet_seq

N ;
vr_enet_seq_item

1 (pkt, random_da#)

Figure 4.1: Ethernet Sequence Structure

The Ethernet sequence driver generates packets using either MAIN, predefined, or custom
sequences. The MAIN sequence is responsible for generating al types of sequences and the
seguences generate basic data items. The items generated by sequences are passed to the
BFM, which sends them to the DUT. The MAIN sequence is started automatically upon run().
Itis used as the root for the whole sequence tree.

4.2 M anagement Sequence Structure

The Ethernet eVC has a management sequence driver. Sequence Structure displays
internal structure of management sequences as shown in Figure 4-2. In the sequence structure:

* Sequence driver isvr_enet_mgmt_seq_driver
« Sequence struct isvr_enet_mgmt_seq

« Sequence item isvr_enet_mgmt_packet

55

Verification Of SoC with Ethernet Interface 4.System Design

w_enet mgmt_seq_driver

PREDEFINED|| cusTom
I% SEQUEN SEQUENCE

LEGEND I% %
J w_enet_ mgmt_seq

w_enet_mgmt_seq_item
1 (read inc_pkt, add pkt, read_pkt, write_pki)

Figure 4.2: Management Sequence Structure

4.3 Injecting Ethernet Packetswith Packet Errors

Packet errors are common to all interfaces. This section describes methods for injecting
packet errors on different packets. The various user interfaces to inject packet errors in the

Ethernet packet are:
1. Generating Ethernet packet with any one-packet error selected randomly.

extend MAIN vr_enet_seq {
Ipkt_err : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- The packet error kind is random.
do SINGLE_PACKET_ERROR pkt_err;
H
H
2. Generating Ethernet packets with specific single packet error.
extend MAIN vr_enet_seq {
leth_pkt: ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {

-- The packet error kind is CRC error.
do crc_err eth_pkt;

56

Verification Of SOC with Ethernet Interface 4.System Design

-- The packet error kind is SFD error.
do sfd_err eth_pkt;
-- The packet error kind is short frame error.
do short_frame_err eth_pkt;
-- The packet error kind islong frame error.
do long_frame_err eth_pkt keeping {
.packet_kind '= ETHERNET_JUMBO
b
-- The packet error kind is pause OPCODE error.
do pause_opcode_err eth_pkt keeping {
.packet_kind == ETHERNET_PAUSE
H
-- The packet error kind is length error.
do len_err eth_pkt keeping {
.packet_kind in [ETHERNET_802_3,ETHERNET_MAGIC,
ETHERNET_SNAP]
b
H
H

3. Generating Ethernet packet with specific single packet error and specific value.

extend MAIN vr_enet_seq {
lerr_pkt : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- The packet error kind is CRC error with a specific vaue.
do crc_err err_pkt keeping {.crc == 32" hffffffff};
H
H

4. Generating Ethernet packet with random multiple packet errors.

extend MAIN vr_enet_seq {
lerror_pkt : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- More than two random packet errors are generated in a packet.
do MULTI_PKT_ERR error_pkt;

};

57

Verification Of SOC with Ethernet Interface 4.System Design

H
5. Generating Ethernet packet with specific multiple packet errors.

extend MAIN vr_enet_seq {
Ipkt_error : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- More than two packet errors; one being CRC error.
do crc_err MULTI_PKT_ERR error_pkt;
-- Two specific errors.
do crc_err sfd_err pkt_error;
H
H

4.4 Injecting Ethernet Packetswith Protocol Errors

Protocol errors are specific to interfaces. These errors can be injected in the various phases
of the Ethernet packet such as IPG phase, preamble phase, header phase, data phase, CRC
phase, and extension phases. There are some protocol errors that can be injected in a
particular phase only and there are some that can be injected in more than one phase. The
packet phase, the start time, the duration, and occurrences of a protocol error can be

controlled.
The various user interfaces to inject protocol errors are:
1. Generating Ethernet packets with protocol errors of single kind.

extend MAIN vr_enet_seq {
Iprot_err_pkt : ETHERNET INJECT vr_enet_packet;
body()@driver.clock is only {
-- The err_kind,err_occurrence, err_phase, error timings, and error
-- lengths are random.
do SINGLE_PROT_ERR_KIND prot_err_pkt;
H
H

2. Generating Ethernet packets with protocol errors of multiple kind.

extend MAIN vr_enet_seq {

58

Verification Of SOC with Ethernet Interface 4.System Design

leth prot_pkt: ETHERNET INJECT vr_enet_packet;
body()@driver.clock is only {
-- The err_kind, err_occurrence, err_phase, error timings, and error
-- lengths are random.
do MULTI_PROT_ERR_KIND eth_prot_pkt;
H
H

3. Generating Ethernet packets with protocol error of a specific error kind and single error

occurrence.

extend MAIN vr_enet_seq {
Ipkt : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- Generates Ethernet packet with single TX_ER error
-- The error-phase, error timing, and error length are random.
-- The error occurrence is single time.
do SINGLE_PROT_ERR_KIND pkt keeping {
for each (e) in .protocol_errs{
e.err_kind == TX_ER and e.err_occurrence ==
SINGLE_TIME;

4. Generating Ethernet packets with protocol error of a specific error kind and multiple

error occurrence.

extend MAIN vr_enet_seq {

Ipkt : ETHERNET INJECT vr_enet_packet;

body() @driver.clock isonly {
-- Generates Ethernet packets with multiple TX_ER errors.
-- The error-phase, error timings, and error lengths are random.
-- The error occurrence is multiple times.

do SINGLE_PROT_ERR_KIND pkt keeping {
for each (e) in .protocol_errs{
e.err_kind == TX_ER and e.err_occurrence == MULTI_TIME;

59

Verification Of SOC with Ethernet Interface 4.System Design

5. Generating Ethernet packets with protocol errors of two specific error kinds.

extend MAIN vr_enet_seq {
Ipkt : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- Generates Ethernet packets with TX_ER and
TX_CARRIER_EXTENSION_ERROR
-- errors.
-- The error-occurrence, error-phase, error timings, and error lengths
-- are random.
do MULTI_PROT_ERR_KIND pkt keeping {
.protocol_errs.sze()==2 and
for each (e) in .protocol_errs{
index == 0 => e.err_kind == TX_ER,;
index == 1 => e.err_kind == TX_CARRIER_EXTENSION_ERROR;

6. Generating Ethernet packets with protocol errors of specific error kind, in a specific phase,

and single error occurrence.

extend MAIN vr_enet_seq {
Ipkt : ETHERNET INJECT vr_enet_packet;
body() @driver.clock isonly {
-- Generates Ethernet packet with single TX_ER error in DATA phase.
-- The error timing and error length are random.
-- The error phase is data and error occurrence is single time.
do SINGLE_PROT_ERR_KIND pkt keeping {
for each (e) in .protocol_errs{
e.err_kind == TX_ER and e.err_phase == DATA and
e.err_occurrence == SINGLE_TIME;

60

Verification Of SOC with Ethernet Interface 4.System Design

4.5 Monitoring, Coverage and Checks:

The vr_enet_monitor and vr_enet_mgmt_monitor units are responsible for monitoring the
eVC and DUT. The monitor relies on its agent for initial setup. Thereafter, it isindependent of
the agent, only looking at signals. The monitor recognizes packets going over the line,
analyzes them, and then emits corresponding events. The checker, coverage mechanism, and
scoreboards are extensions of the monitor. They add checks and coverage groups, based

mainly on the monitor events.

4.5.1 Usng the Monitor

The Ethernet eVC has a monitor for both the Ethernet and management interfaces. By
default, both the passive and active agents have monitor instantiation. The coverage and
checkers by default are enabling in active agents for non-layred interfaces like MIl, GMII,
RMII, XGMII, and SMII. Thisis because the passive agents are not applicable for the layered

interfaces.

4.5.2 Collecting Coverage

Coverage can be implemented either as a separate unit in the agent or in a has_coverage
subtype of the monitor. By default, the has_coverage flag is TRUE in passive agent and
FALSE in active agent. If you want to verify the eVC active agent's capabilities, the
has_coverage flag can be set to TRUE.

61

Verification Of SOC with Ethernet Interface 4.System Design

Active agent’s capabilities can be verified for various scenarios at each layer by analyzing

the coverage of generated sequence items for the following:
« injected packet errors
« packets with various data lengths
* packets with different packet formats

« injected protocol errors

The Ethernet eVC has predefined coverage definitions for each interface. These definitions

include:

« Coverage of various packet fields

« Cross coverage of the required coverage items.

4.5.3 Checking the Protocol

The checkers are responsible for checking the DUT behavior. eVC contains data related
check like long frame error, short frame error, start frame delimiter error, CRC error etc
which are common to all interface. Those predefined checks can be disabled if required. To
disable al the checks for all the interfaces, constrain the has checks field of the

wr_enet_agent. For example:

extend vr_enet_agent {
keep has_checks == FAL SE;
1

Disabling checks for a specific check for a specific interface, say the MlI, as shown in the

example below:

extend sys{
setup() isalso {
set_check(“ERR_ENET017_MAC_MII_IPG_TOO_SHORT",
ignore);

};

62

Chapter 5

Coverage Driven Verification

Functional verification already consumes most of the IC logical design flow, as some
studies suggest, what's going to happen as chip complexity reaches 10 million or 100 million
gates?

The answer is sheer chaos-unless the functional-verification process can be made more
manageable. Coverage-driven verification can help today, but the long-range answer lies in
rethinking both verification and design. Some experts say as chip complexity grows, there's
an exponential increase in the number of things that could potentially go wrong, and hence
need verifying. Can that be done without hiring armies of verification engineers to churn out
directed tests?

Formal verification can provide targeted, exhaustive tests, but it doesn't cover everything.
Acceleration and emulation speed the process, but you've still got to generate and monitor the
tests. Faced with a multitude of design styles, tools and verification techniques, one point is

clear: Designers have got to have aplan.

A verification plan starts by identifying what portions of the design are going to be tested,
and how. It identifies input scenarios to apply to the design under test, and calls out tough
corner cases that might not be found by simulation. It aso does, or should, set forth a plan to

measure progress by applying coverage-driven verification.

Engineers today are most familiar with code coverage, which checks to see if there are
unexecuted areas of code. Most people would agree it is unacceptable to synthesze that is
either dead or unverified. Nevertheless, code coverage is not enough. Most functional
scenarios cannot be mapped in to lines of code. For example code coverage cannot indicate
whether we have been thorough al the legal combination of states in two orthogonal state

machines.

Another example might be whether we have tried al the possible inputs while the design
under test (DUT) was in all the different internal states. Also, code coverage does not look at

sequences of events, such as what else happened before, during, or after a line of code has

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

been executed. Thus, code coverage does not ensure completeness and does not fulfill most of
the requirements that alow expediting the verification task.

An emerging and more difficult technique is functional coverage, which can be used to

check various corner cases-making sure, for instance, that a FIFO actually empties and fills.

With functional coverage to provide feedback, random-test generation becomes more
practica and tougher bugs can be found. Findly, the growth of assertion-based verification
has given rise to assertion coverage, which, among other things, checks to see if assertions
actually fired or not. Figure 5.1, below, provides an example of functional coverage in an

environment that creates many smulation scenarios.

éﬂx ?

Simulation Scenario

i
u

=i

N
b+ DUT —< bugs -

T L Need| more
‘_
The
Plan No
3 r
3 . Z .
Func. Cow. (£) 100% Yeos

Figure5.1: Functional coverage serves multiple simulation scenarios

5.1 Higher abstraction:

But that's just a start. To really manage the verification process, some observers say, it will
be necessary to move to higher levels of abstraction, and to start with a system-level, rather
than a block-level, view. Others say the design process itself will have to be improved so

there are fewer bugsin the first place.

Functional coverage provides an excellent indication of how we're meeting the goals set by
the test plan. However, it may not correlate exactly to the actual RTL implementation, which
may have diverged over time. For example, code coverage results can find a "hol€" in the test
plan -- functionality that is implemented in the RTL, but never targeted by the test plan.

Therefore, code coverage and functional coverage are complementary. Table 5.1 illustrates

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

how functional coverage and code coverage correlate to each other, and how the combination

of both provides a much more reliable indication of complete coverage.

Table 5.1: Correlation between functiona coverage and code coverage.

Functional Coverage | Code Coverage | Indication

Low Low Early in verification

Low High Missing sequences and corner cases.
High Low Need to improve test plan

High High High confidence of quality

5.2 Coveragerequirements:

As dl types of coverage are complementary in nature, a tool or methodology that

combines approaches is extremely beneficiad. As mentioned earlier, this combined

methodology will provide a complete overview of the verification progress and a clearer

correlation between the functional coverage definitions and the actual design implementation.

The requirements for coverage can be categorized into two groups: demands for the data

gathering and analysis engine, and requirements for the surrounding test bench that will alow

efficient usage of the accumulated information. Following are the main requirements for

coverage driven verification:

Informative reports:
Getting coverage results should be readable and intuitive. Both a textual user interface
and a graphic user interface (GUI) should be provided. Usually, engineers use the GUI
since it provides an easy means to review, query and print the coverage database. The
textua interface is useful when trying to forward the results to other automatic tools or
manipulate the data into custom reports. The coverage engine in Specman Elite
collects functional coverage information based on user inputs that is easily driven
from the test plan. Below figure 5.2 shows the functional coverage of Ethernet Packet
in graphical user interface (GUI).

65

Verification Of SoC with Ethernet Interface

5.Coverage Driven Verification

File VYiew Tools Options Help

ER> E &8 8 R T HE|E @ o
Read Wirite Clear | Refresh || All Holes Full | Source | Cross | Config | Rank Lock | Close

Location: [overalljw_enet_monitar.1x_packet_ended/data_length_nan_pause_pkt

-0 [Cwss] [Overal

@[] B session.start of_test

5@ [[session end_of test

-0 [0s3] [session events

@ [L00] B vr_enet_monitor tx_packet_ended
|-@ 0] [packet kind

gth.
|- (L] @] padsize

|-@ [L50] [pause_quanta

7] [B] nacket_kind_with_cre_err
(] packet_kind_with_sfcl_err
packet_kind_with_len_err

packet_kind with_long_frame_err

o [B] packet_kind_with_short_frame_err

|-@ (L] [rag_king = S
I-@ [Lo0] [@ preamble_length | g % {i} 5;5 =
o [test_actr_kind .

o] [source aotress © [T [241 o5 4ig
-0] [B destinarion._acidress ° 0 12l 175

|-@ [T00] [B] clata_length_pause_pkt] T 43,441 16¢

g B clata p) 1 451 885

|-@ [Loo] [data | [} 1 461

"] 1 147 . 1000
] 1 1001.. 14
@ [oad] [paoey
] 1 [1497..240¢
] 1 (1499
@ o] [(1500]

Ly

|-@ [T00] @] packet_kind_with_pause_opcode_err (] 1 egal value
|-@ [Taa] [cross__data_length_non_pause_pkt__packet_kind
I-@ [£00] @ cross__packet_kind_padsize

|-@ [L0] @) cross__dest_addr_kind_packet_kind

L@ [Lot] [gmiip

@ [L00] B vr_enet_manitar.re_packet ended

|-@ [C£i0] [packet kind

- [T00] [tag_king

|-@ [T00] @] preambie_length

Laonl [Fl deat_addr kind

[Bl clata. length_non. pause._pkt

LY

Tesls 4

[&a

manishr@manis/ | X GIPMSG &) Phrase for the D: [X Coverage
T result.txt (~jregre | X gvs: fhomejmar | B Specman Elite |

[Contains: 14 Buckets [Rearly

‘):QL‘E’« oroht

7 Los Angeles

Figure5.2: Functiond coverage of Ethernet Packet.

Efficient coverage anaysis
When coverage results are less than satisfying, it should be easy to deduce the
appropriate adjustments and generate tests to improve the coverage results.

Test base ranking:
The ability to accumulate and analyze coverage reports from multiple simulation runs
is crucia. Test suites today comprise of large number of tests. This ability to analyze
cumulative coverage alows you to:

o Get an overal picture of the entire verification environment, and measure your
recent progress. Usng these measurements, you can objectively predict the
tape-out date.

o0 Avoid test redundancy. By measuring the amount of coverage added by each
test, redundant tests can be identified and removed.

Timing of analyss:
The coverage tool should alow the engineer to analyze the coverage information both
between simulations and during a test run. The first approach requires the ability to
save the collected information to be reviewed later on. The second approach requires a

run-time interface to the coverage database that allows it to be used during simulation.

66

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

Grading:

Various coverage holes may be prioritized and the overal progress can be better
represented by setting individual goals for each concern (how many times must | cover
each scenario?), and by setting weights to distinguish the relative importance of
different coverage scenarios.

Optimizing the test suite:
Ranking capabilities should allow you to create a subset of tests that verify the DUT to
a sgnificant degree, with a minimum amount of resources. Running this subset of tests
instead of your entire test suite drastically reduces the total number of cycles needed

for verification.

Open environment:
Intellectual property reuse and design complexity have turned our verification
environment into a mix of design representations and verification languages. Having

the flexibility to use the same methodology on all types of designsis critical.

5.3 Stepsfor achieving cover age:

The following flow incorporates all coverage metrics. These guidelines provide a more
complete metric and methodology that can be examined through the various phases, while

steering the verification process towards a rapid completion.

Phase one-Test plan:
A good test plan should list al the interesting test cases to verify the design. In
specific, it should include al configuration attributes, al variations of every dataitem,
interesting sequences for every DUT input port, all corner cases to be tested, all error
conditions to be created and al erroneous inputs to be injected.

An encompassing test plan is a good start to ensure complete verification. Experience
and creativity can be used to identify areas that are prone to bugs.

Note that no test plan can cover every possible bug, which highlights the importance
of directed-random test generation. However, a good test plan is still essentia to an
efficient verification strategy and becomes the basis for a functional coverage model.
Following table shows the packet related test plan:

67

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

Table 5.2: Scenarios to be checked on various Ethernet packets.

NORMAL
Fields Valid values Invalid values
Errors Errors=0 Errors>0
Preamble length Preamble_length=56 | Preamble_length!=56

PAD_FRAME
Fields Valid values Invalid values
Data_length & Data lengthin[1..45] & | Data_length>45 &
tag_kind tag kind = tag_kind =
UNTAGGED UNTAGGED
Data_length & Data lengthin[1..42] & | Data length> 42 &
tag_kind tag kind = tag_kind =
VLAN_TAG VLAN_TAG
Data_length & Data lengthin[1..38] & | Data_length > 38 &
tag_kind tag kind = tag_kind =
DOUBLE VLAN_TAG | DOUBLE VLAN_TAG
CRC_TEST
Fields Valid values Invalid values
Crc_err Crc_err = TRUE Crc_err = FALSE
LONG_FRAME_TEST
Fields Valid values Invalid values
Data length | Data_length > 1500 & Data_length <= 1500 &
& tag_kind |tag_kind = tag kind =
UNTAGGED UNTAGGED
Data_length | Data_length > 1496 & Data length <= 1496 &
& tag_kind | tag kind = tag kind =
VLAN_TAG VLAN_TAG
Data length | Data_length > 1492 & Data length <= 1492 &
& tag_kind |tag_kind = tag kind =
DOUBLE VLAN_TAG | DOUBLE VLAN TAG
SFD_TEST
Fields Valid values Invalid values
sfd_err sfd_err = TRUE Sfd_err = FALSE

SHORT_FRAME TEST
Fields Valid values Invalid values
Data_length Data length< 45 & | Data length > 45 &
pad =0 pad != 0
Short_frame_err Short_frame_err = | Short_frame_err =
TRUE FALSE

68

Verification Of SoC with Ethernet Interface

5.Coverage Driven Verification

LENGTH FRAME_ TEST

Fields

Valid values

Invalid values

Length_type

Length_type <=
1500 & length_type
I = data_length

Length_type >
1500 & length_type
= data _length

*see gppendix A for code of test_case.

Phase two-Functiona coverage

Define what should be covered. Decide on the interesting data fields/registers. Define

specification:

separate buckets for legal values, illegal values, and boundary values, such as corner
cases. Examine both interfaces and internal states. Choose the state registers and state
transitions of important state machines. Identify interesting interactions between some
of the above states or data, such as, the state of one state machine relative to another,
or to a vaue of a sgnd. The functional coverage specification is, in essence, an
executable form of test plan. Following figure shows functional coverage model for
Ethernet eVC.

fdCoverag -|E%

File View Tools Options Help

% - ;
= 5 &&R & = 8 o
Fead Write Clear | Refresh || All Holes Full | Source | Cross | Config | Rank Lock | Close
Location: [Oyeralljvr_enet_monitor. gmil_tx.prot_errorjcross _prof_errs_kind__err_length_in_header__err_timing_in_header 7|
=50 [Overall
-0 [B session.stan_of test
5@] B session.end_of test
b 0 (s3] B session events
18-@ [Tn] [w_enet_maniar 1x_packet_ended GraiEl
pro fer fer o |l | [mmsya. |
5@ [2o0] [vr_enet_monitor.rx_packet_ended —J s
@ £ vr_enet_mamt_monitor.nan_10G_mgmt_pki_ended olm Breer 11 (0.1 L 188 1y
(=26} Ewene_mnmtnr gmii_tx_prot_errar O [@meer 11 o) L 7% ik
[Zon] [pror_errs_kind e
|0 52 [e ohase o[m] [B7xer (1] (113 1332 15
|-@ (Lot [err_length.in.preambie OLm BTaer [1] (1407 1158 1g
|-@ Coa] [er_timing.in_preamble OLIm] BTxer [(821 1 45 1
|0 [aa] (B err_tength_in_headter O[] [BTEr [2.5] [0 L 204 Lgg
|-@[on] & err_timing_in_header O[] [B7xER 2.5] [2.20] 1 766 lgmmg
|-@[too] [err_length.in_data O[] [BTeEr (2.5] 1113 1 207 L
-0 Croe] [err_timing.in_data O[] [@7xR (2.5 [14.17 1 118 1)
1~ o] [erengin n.cre O [B7xr 2.5 1821 1 21 1]
@ [Loo] [err_timing in_crc
O[E@] [@TxER [6.14] [0.2] L 66 1
|-@[Lo0] [err_length.in_extension -
|-@ (0] (8] errdiming_in_extension O (i) [P TeEr 16,141 201 1 161 1
@ 2oo] [err_length in_absolwie OLIm] BTXER (6.4 1113 1 13 L
|-@ [La0] (@] err_timing.in_absalute Qo] [BTXER (6141 (1417 1 6 L
- cross. _prot_errs Kind__err_ length_in_preamble_err_timing_in_preamble @[] [B7xer (151800 1 24
I h] @[] [B7xER (15162201 1 26 1
[Cron) __mrot_errs_kind_ o[mm] [@ncer 19220011 1 25 1
I-@[oo] @) cross. _prat_errs_kind._err_length_in crc__err_timing_in_crc oW [BTeEr [19.222.10] L 25 1
|- [Cos0] @ erass. _prat_errs_kind__err_timing_in_extension__err_length_in_extension
L [Coas] @ cross_prot_errs_kind__err_length_in_zbsolute_err_titing_in_absolute
1#-0 [oze) B wr_ener_manitor. gmil_ne_prot_errar
-0 To] B v enet emv.cover confg |
1503 T3] B vr anet srarehaard cover schi fisliz | 7]
Q) cross_prat_errs_kind.__err_length.in_header__err_timing_in_header [&u [Tests; 4
manishr@manish [X GIPMSG [Phrase for the D [X Coverage

&

% result.txt (~/regre |X9cvs /home/man |;\'Ef-uel.manEh[u ‘

Figure5.3: Functional coverage model for Ethernet eV C.

69

Verification Of SoC with Ethernet Interface

5.Coverage Driven Verification

Phase

three-Build

the

test bench:

Build environment parameterized in a way that each test can direct it to a specific area

of concern. This enables us to use the coverage results and translate coverage holes

into new tests. At this point functional coverage and assertion coverage code should be

written. It should be sure that the verification strategy we have chosen is suitable for

the entire verification needs. Following table shows the sequences for various

interface of Ethernet eV C.

TX_ER (only M1l and GMI1)

Fidds Valid Values Invalid Values
Errors erors> 0 errors=0
Length length > 0 length=10
Err_kind | er kind=TX_ER err_kind I=TX_ER
Err_phase | err_phase I=CARRIER_EXTENSION | err_phase= CARRIER_EXTENSION
TX_CARRIER_EXTENSION_ERROR (only GMI1 and
RGMII)
Fields Valid values Invalid values
Errors Errors> 0 Errors=0
Length Length>0 Length=0
Data length | Data length < 512 Data length > 512
Err_kind Err_kind = Err_kind !=
TX_CARRIER_ TX_CARRIER_
EXTENSION_ EXTENSION_
ERROR ERROR
Err_phase | Err_phase= Err_phase!=
CARRIER EXTENSION | CARRIER EXTENSION
RX_ER(only MII,RMII and GMI1)
Fidds Valid Values Invalid Values
Errors erors> 0 errors=0
Length length > 0 length=10
Err_kind | Err_kind =RX_ER | err_kind '=RX_ER
Err_phase | Err_phase |=IPG err_phase =IPG

70

Verification Of SoC with Ethernet Interface

5.Coverage Driven Verification

CRS_DOWN_INJECT (only MI1 and GMI1)

Fidds Valid Values Invalid Values

Errors errors> 0 errors=0

Length length>0 length=0

Err_kind | err_kind = CRS_DOWN_INJECT | err_kind '= CRS_DOWN_INJECT

Err_phase | err_phasel=IPG err_phase=IPG
IPG_RX_ER (only MI1, GMII and RMI1)

Fidds Valid Values Invalid Values

Errors erors=0 Errors> 0

Length length>0 Length=0

Err_kind | err_kind =I1PG_RX_ER | er_kind '=IPG_RX_ER

Err_phase | err_phase= IPG err_phase |=IPG

FALSE_CARRIER_INDICATION (only MII, RMII, GMII and

RGMII)

Fields Valid values Invalid values
Errors Errors> 0 Errors=0
Length Length>0 Length=0
Err_kind Err_kind = Err_kind !=

FALSE CARRIER FALSE CARRIER

INDICATION INDICATION
Err_phase | Err_phase=1PG Err_phase != IPG

RX_CARRIER_EXTENSION_ERROR (only GMII & RGMI1)

Fields Valid values Invalid values

Errors Errors> 0 Errors=0

Length Length>0 Length=0

Data length | Data length < 512 Data length > 512

Err_kind Err_kind = Err_kind !=
RX_CARRIER _ RX_CARRIER _
EXTENSION_ EXTENSION_
ERROR ERROR

Err_phase | Err_phase= Err_phase!=

CARRIER_EXTENSION

CARRIER_EXTENSION

71

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

Below table shows the management interface related scenarios for GMII, RGMII.

MGMT_RESET
Fields | Valid Values Invalid Values
addrl | addrl=5"b00000 to5'b11111 | none
addr2 | addr2 = 5'b00000 addr2 '=5'b00000
Data | Bit 15 of data=1 Bit 15 of data=0

SPEED_SELECT_10 (only M1, RMI1)

Fields | Valid Values Invalid Values
addrl | addrl = 5'b00000 to 5'b11111 | None
addr2 | addr2 = 5’ b00000 addr2 '=5'b00000

Data | Bit 15 =0, bit 13=0 and bit 6 =0 | Bit 15= 1 or bit 13=1 or bit 6 =1

SPEED_SELECT_100 (only M11, RMI1)

Fields | Valid Values Invalid Values
addrl | addrl = 5'b00000 to 5'b11111 | None
addr2 | addr2 = 5’ b00000 addr2 '=5'b00000

Data | Bit 15 =0, bit 13=1 and bit 6 =0 | Bit 15 =1 or bit 13=0 or bit 6 =1

SPEED_SELECT_1000 (GMI1)

Fields | Valid Values Invalid Values

addrl | addrl = 5'b00000 to 5'b11111 | None

addr2 | addr2 = 5 b00000 addr2 !=5"b00000

Data | Bit 15 =0, bit 13=0 and bit 6 =1 | Bit 15= 1 or bit 13=1 or bit 6 =0

LOOPBACK (only M11 and GMI1)

Fields | Valid Values Invalid Values

addrl | addrl =5"b00000 to5'b11111 | None

addr2 | addr2 = 5 b00000 addr2 !=5"b00000

Data | bit 15=0and bit 14=1 bit 15=1 or bit 14=0

72

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

POWERDOWN

Fields

Valid Values Invalid Values

addrl

addr1l =5"b00000 to5'b11111 | None

addr2

addr2 = 5 b00000 addr2 !=5"b00000

Data

bit 15 = 0 and bit 11=1 bit15=1 or bit11=0

ISOLATION

Fields

Valid Values Invalid Values

addrl

addr1l =5"b00000 to5'b11111 | None

addr2

addr2 = 5" b00000 addr2 !=5"b00000

Data

bit 15 = 0 and bit 10=1 bit15=1 or bit10=0

READ PHY _MGMT

Fields

Valid Values Invalid Values

addrl

addrl =5'b00000 to 5 b11111 | None

addr2

addr2 = 5" b00000 addr2 '=5'b00000

*see gppendix A for code of test case.

Phase four- Writing tests and simulation:
Write tests and run them. Try to enhance the test suite by using the iterative process of
analyzing coverage reports and adding additional tests to fill the uncovered areas.
From time to time, update and optimize regression suite using the ranking capabilities.
There is no need to frequently run tests that have only margina contribution to the
verification process.

Note that from the beginning, the best tests are directed-random tests. In other words,
tests should be targeted at a specific area, but anything that need not be specified
should be randomized. By changing the random seed, each test can become thousands
of tests, each testing the same target from different paths and randomizing data. Thisis
the mogt efficient way to increase coverage and find bugs!

Phase five-Code coverage integration:
Once RTL code is mature enough, add in code coverage. Start with block coverage.
Unreachable code should be carefully analyzed; it may save time to ask the
implementer to identify the code's functionality. Dead code should be removed. In
cases of reachable non-exercised logic, identify the untested scenario and write tests or

constrain the test generator to fill coverage holes.

73

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

At the same time identify the untested functionality. Once identified, review of test
plan should be done and make sureit is not an overlooked area in the test plan. Update
the test plan and functional and assertion coverage code as necessary.

Phase Six-Regresson testing:
Throughout the process, regression suites that maximize code, functional and assertion
coverage should be created. Regressions can be created per functional area or to fit
timedots, such as overnight or weekly regressions than may run 60 hours, potentially
on multiple servers. It is critica to leverage compute and simulation resources to

maximize coverage and find bugs faster.

5.4 Running and Tracking Regression:

In a coverage-driven verification program, typically there is a 10X or greater increase in
the amount of simulations run on a daily basis. The increase in simulations is usually an
optimization of existing resources so that they are more fully utilized. This way, tool licenses
and computers which have grown accustomed to having nights and weekends off are
exercised around the clock. This increase, while providing deeper coverage of the design and
high quality bugs, also creates a whole bunch of information that needs to be managed. In
order to track completion of test suites, parse and distribute failures, and verify the failures are
fixed.

After regression is over we have to generate a list of failure types using Unix Shell scripts.
This means that either based on error type or test name, test failures are assgned, and we have

to analyze and find the bugs in eéVC.

Following a nightly regression, al failures will be categorized by failure type, sorted by
cycles-to-failure, and we have to debug and fix test bench problems, eVC bugs, VE bugs or if
bug is critical we assign them to the eV C design team. When fixes are completed we change
the status of that the fix was made. Then we have to validate each fix by rerunning the

simulation in the subsequent regression and finally bug will be closed using bug tracking
system.

74

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

5.4.1 Analyzing cover age:

As the project progresses, the focus shifts to analyzing the coverage in order to both focus
effort on the coverage holes and in order to produce weekly indicators to increase accuracy.
Coverage analysis is done on following basis:

Defining priorities and weights per feature

Defining perspective views for intermediate milestones and users interested in specific
features

I dentifying the constraints that cause functionality not to be achieved

Specman Elite tool, facilitating a system where coverage can be prioritized, masked or
viewed in different perspectives, will open up a whole new array of possibilities in managing
phased projects. For example, if the first spin of the design is just for a demo, a smaller
percentage of the functionality of the design needs to be validated to release the eV C. In that
case 100% coverage can be defined by choosing just the coverage points are needed.

If the subsequent spin is defined to be more sensitive to time than features, the coverage
set can defined to include only the priority-1 features, leaving the subsequent features to the
next spin. Overdl, the coverage can be monitored by different stakeholders based on their
priorities and perspectives, while the verification team can focus on the goa at hand without

having to design severa separate plans.

5.4.2 Optimizing regressions

One of the bottlenecks toward the end of a coverage-driven program is the amount of
computer time and license resources required to produce the coverage. A management
automation tool should provide a means to identify optimal tests for achieving the coverage.
This way the cycles that are run can be focused to help reach goals faster and more efficiently.
Functional coverage is the best indicator of the efficiency of arandom test. Therefore, running
hundreds or thousands of tests which do not contribute to the coverage is likely not the best
use of resources. To find optimal test suite, key tests are graded for their efficiency in

providing coverage.

Redundant tests can be eliminated and certain tests can be marked for running only once,

or for running multiple times. This enables finding the optimal regression for running in

75

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

random, a regression, which covers the broadest feature, base in the fewest tests. Running that

regression in random is likely to be a significant savings in resources.

A tool which enables identification of the optimal test suite, based on the coverage
perspectives described above, will also alow creation of several smaller regressions which
can be used for multiple purposes. A feature-regression is a subset of all the tests, which
covers an entire feature in a minimum number of runs.

This regression is run before a check-in of files modifying a feature's code. A mini-
regresson is a subset of highly stable tests that establish that each of the featuresis till alive.
This is used before any top-level or modeling change. Also, like in the example from the
previous section, a spin-1 regression can be defined to retain 100% of spin-1 coverage in case
the team decides to re-release the eVC at a later date and wants to maintain the a consistent
level of quality. Overdl, the use of a management automation tool should drive many of the
manual tasks done by the verification team and managers as well as open the doors to new

possibilities in managing verification projects efficiently.

5.5 Analyzing bugs:

5.5.1 Manual Bug Analysis

In this process, the ssmulation results are checked with waveform viewer. The waveforms
of output from dut will be regoursly checked for any of the protocol violence or any mismatch
with expected output with reference to input. Figure shows the waveform for an illegal inter
packet gap between two packets.

76

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

ile Edft Contn

Figure 5.4: lllegal inter packet gap between two packets.

5.5.2 Automated bug analysis

When test scenarios are fired to eV C, the VE will expect some errors to be occurred as
these errors are designed in test case itself and log the list of expected errors for further use.
Now the output is observed for all the errors occurred. Then there is one matching mechanism
which will match the occurred error with list of expected error and discard the error if it
matches otherwise it gives message "error occurred but not expected” For the error which are
expected but didn't occurred are displayed with message "error expected but not occurred”
From this information of occurred and expected error, further analysis must be done to find

out any bug in system or reason of unexpected behavior.
Once the bug is found, one should correct that bug locally and verify the behavior of

corrected code and then it must be notified with GCVS Graphical Concurrent System
Version. And this way that bug will be removed from entire system.

77

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

5.5.3 Checkers

To automate the bug analyss process, it is required to add more and more checkers.
Checkers will give warning or error message when some predefined conditions are not
satisfied or protocol violence happens, and from this message, the bug analysis can be done.
But precise care should be taken while defining checkers otherwise checker itself will cause

some misinterpretation.

5.5.3.1 Checking

Checking of adesign can be done againg:
A set of rules: Here in this case we are checking DUT againg a set of rules,
specification. In our case we are following | EEE standards.
A reference model (written in e, C, etc.), synchronized with a simulator.: for this
purpose, we have designed a mock DUT in Verilog language which follows the rules
defined by | EEE standard for Ethernet.

Generally Specman Elite can perform two types of checks:
Data checks verifying data correctness

Temporal checks verifying timing protocols

5.5.4 When to Check

Checking can be done:
Pogt-run: After smulation is over, in the check phase
On the fly: During the simulation run phase. This method is more fruitful as it alows
analysis with full state of DUT, saves memory because less data is accumulated and

also avoids wasted simulation time, because simulation stops on error.

5.5.5 Data Checking

To check the data coming out of the DUT the procedure is asfollow:
1. Collect DUT output.
2. Convert the raw output data to a higher abstraction. (This step is optiona but
usually preferable.)
3. Check the converted data

78

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

The first and third steps are obvious. Before you check, you must collect the output.
Converting the raw data is in accordance with one of Specman s basic ideas - to work on a
higher level of abgtraction. We generate packets but inject bytes. Conversely, we collect bytes
but check packets. Checking is easier when comparing on a higher abstraction leve. It is

easier to understand from error messages when the error occurred.

5.5.6 Data Check Constructs
Check action Syntax:

check that bool-sxp [else dut error (stringl];

Example:
check that "~/tep/data_out’ == "~/top/data_in’
alse dut error("DATA MISMATIZH: ",
"Expected : ", ‘-/top/data_in‘);

dut_error is a predefined method that specifies a DUT error with a message string. It also
updates predefined corresponding fields: 1. num_of_dut_errors 2. num_of _dut_warnings. It
should be noted that the check’s effect on simulation is controllable.
1. check that: like an if statement, with the addition that:
Y ou can control the effect of afailure on the smulation run.
Globa error counters and flags are set by Specman.
2. dut_error(): like append(), accepts any number of parameters that are converted to
strings and concatenated to form the error message

5.5.7 Data Checking Using Scor eboar d

For comparing output to input, the scoreboard technique is recommended.:
1. Keepinput in ascoreboard.
2. Compare collected output to matching input.
Following are examples of scoreboard checking for:
Comparing raw data (byte by byte)
Comparing at a higher abstraction level (struct fields)

We follow data checking at a higher abstraction level. We are using it at packet level. The
architecture of scoreboard checking is asfollowed. A uid number isinserted into a packet .
The packet is stored in scoreboard with a given uid and inserted to DUT also. The output
from DUT is matched for the same uid in scoreboard. If output uid matches with input uid
then that packet and uid is discarded from scoreboard otherwise it gives scoreboard error.

79

Chapter 6

Results and Discussion

This chapter provides the simulation of some basic scenarios like normal, collision and
zeroipg between two packets.

6.1 Normal Scenario:

Test case “test_gmii_normal” is able to generate normal scenario by firing packets of
different lengths, types for Ethernet packets and Random data. As per the standard |IEEE
802.3 data length of packet can be varied from 46 bytes to 1500 bytes. Number of packets to
be fired can be varied by constraining count variable. All the information regarding which
bfm has fired the packet, packet no., packet type, duplex mode, length of data, start time of
packet, end time of packet etc. will be sored in alog file. Figure 6.1 shows the waveform for

normal packet.

Figure 6.1: Simulation of Normal Scenario.

Verification Of SoC with Ethernet Interface 6.Results and Discussion

Only MAC bfm can fire packets on ‘tx’ line. It can be seen in above figure signal ‘tx_en’
will go high and data on txd line will be 55h (i.e. 10101010) for 7 clock cycles. Carrier sense
signal will go high after one cycle if ‘tx_en’ signal is high. Monitor will collect these packets
and coverage will be collected on event defined insde monitor. Figure 6.2 shows the

collected coverage.

A Coverage

File View Tools Options Help

& o & &R = 8
Read Write Clear | Refresh | All Holes Full Rank. Lock
Location: | 7

-0 [Coe] (3 Overal

15-@ [B session.stant_of test

=0 [B session.end_of_test

(-0 (046] [session.events

+-@ [0| [vr_enet_monitor.tx_packet _ended

@ [0 | B w_enet_manitor.rx_packet_ended

7@ [0 B vr_enet_mgmt_manitor.non_10G_mgmt_pki_ended
vr_enet_manitar. gmii_te_prot_error

vr_enet_monitor. gmii_rx_prot_error

VE_Enet _env. cover_config

“r_enet scoreboard. cover_schd fields

wr_enet _seq, gmii_packet_generated

w_enet_sed, gmii_packet_generated(agent_kind==MAC)

§ wr_enet_seq..gmil_packet_generated(agem_kind = =PH1}

i wr_enet_seq,.gmil_random_data.generated

1#-@ o] B vr_enet_seq. amii_random_data_generatediagent_kind = =MAC)

(=@ [0 B vr_enet_seq.amii_randorm_ciata_generateciagent _kind ==PHYy

o= [a4] {l vr_enet agent_config amii_agent_config

5@ [0 Bl vr_enet_seq.gmii_ethernet_error_generated

B8 vr_enet_seq.amii_ethernet_error_generated(agent_kind = =MAC)

B8 vr_enet_seqy ami_ethernet_error_generated(agent_kind = =PHY)

BB w_enet_seq gmii_random_data_error_generated

(=@ [0 B vr_enet_seq.amii_random_cata_error_generated(agent_kind= =MAC)

+-@ 0] [l vr_enet_secr.amii_random_clata_error_generated(agemt_kinc= =PH1y

5@ [0 | [vr_enet_packet.gmi_prot_errs

5@ [0 [w_enet_packet.gmii_directed_prot_err

1#-@ [0 B v_enet_mgmt_seq.gmil_mamt_pki_generated

wr_enet_gmii_check _status. GMI|_ERR_ENET001_firect

wr_enet_gmii_check _status. GMIl_ERR_ENET002_firect

=@ [0 B vr_enet_gmi_check_status.GMI_ERR_ENET003 _firect

Lar— v cnn cneTang s

E)

Config

&

Close

v

[&a = [Tests: 1 [
et i @)

Figure 6.2: Coverage of Normal Scenario.

| Reacy

In above figure yellow fields shows partial collection with grades in percentage. Red fields
show the hole, and green field shows full collection with 100% coverage.

81

Verification Of SoC with Ethernet Interface

6.Results and Discussion

Ad5imVision: Waveform 1

File Edit View Explore Fomal Windows
¢ -~[innxeath ROLOHETE

I, A‘!Searc;w Tines: | Marker =/ _v;r4 ﬁ

Search Names: | Signal + [

-

m§ ¢~ SEOEIER

Help

Tire Range: .U 100003 |

manishr@manis| | & [Fwd: Re: [Fwd: © | test_rgmil_nom

X SimVision: Wav

X gevs: homejma |X GIPMSG

|X simVision: Desig |

 Los Angeles|

Figure 6.3: Simulation of Normal Packet scenario (RGMII interface).

6.2 Collision Scenario:

As per standard collision will occur if both the stations start transmission simultaneously.

If we fire packets simultaneously through MAC and PHY bfm’s then collision scenarios could

be smulated. If collison occur in preamble phase of the packet then both station will

complete preamble and then transmit 32-bit jam sequence (i.e. 4 bytes of data with pattern

11110010) to ensure occurrence of collision and then they wait for random time and start

transmission again. Figure 6.4 shows waveform for collision condition.

82

Verification Of SoC with Ethernet Interface

6.Results and Discussion

X GIF

M sign:

% ve_hi

SR

‘%Gvin -

)

Figure 6.4: Simulation of Collision Scenario.

Figure 6.4 shows the fired check and collected coverage from test case simulating collision. It

can be seen from the figure that checks 26,27,28 and 29, which are related to collision, has

been covered.

83

Verification Of SoC with Ethernet Interface

File Wiew Tools Options Help

ol e NG [O & = 8 &
| Read Write Clear | Refresh | All Holes Full Cross | Confiy Lock | Clase
Lntannn"‘ 7

[O[II Eﬂ Vr_enet_mamt_seq.gmii_mamt_pki_generated

@ [Con] [vr ener_gmil_check status. GMILLERR_ENET 001 fired
_L.oo] Bﬂw_ene_gmn_thenk_s\a\us GMII_ERR_ENET 002 fired
(2@ 0] [vr enet_grmii_check_status, GMILLERR_ENET 003 fired
Eﬂw enet_gmii_check_status GMII_ERR_ENET 004 _fired
Eavr enet_gmii_check_status. GMII_ERR_ENET 005 fired
Lo BB vr_enet_amii_check_status. GMIl_ERR_ENET 006 _fired
@ (0| [vr_enet_omil_check_status. GMI_ERR_ENET008_fired
@ (2| B vr_enet_gmii_check_status GMII_ERR_ENET009_fired
1~@ 100] B vr_enet_gmil. check_status GMI_ERR_ENET 010 fired
@0 B vr_enet_gmii_check_status, GMII_ERR_ENET 011 fired
@0 | Bl vr_enet_gmi_check_status GMI_ERR_ENET 012 fired
5@ 2] B vr_enet_gmii_check_status. GMII_ERR_ENET 013 _fired
@[0] Bl vr_enet_gmil_check_status, GMIL_ERR_ENET 014 fired
(@[2] BB vr_enet_gmii_check_status GMI_ERR_ENET 015 fired
@[0 | Bl vr_enet_amil_check_status GMI_ERR_ENET 016 fired
(@[2] Bl vr_enet_gmii_check_status, GMI_ERR_ENET 017 _fired
,—Olil IEw_enet_gmi_theck_slams GMII_ERR_ENET018_fired
(@[] B vr_enet_amii_check_status GMI_ERR_ENET 019 _fired
~@ (0| B vr_enet_gmil_check _status GMI_ERR_ENET020_fired
(@[] B vr_enet_gmii_check_status GMI_ERR_ENET 02 1_fired
1@ 1] B vr_enet_amii_check_status GMI_ERR_ENET 022 _fired
5@ o] B vr_enet_gmil_check_status. GMI_ERR_ENET023_fired
@0 | [vr_enet_gmii_check_status GMILERR_ENET 024_fired
1e-@ 0] B vr_enet_amii_check_status GMI_ERR_ENET 025 fired
Ea vr_enet_gmii_check_status. CMII_ERR_ENET 026 _fired
Eﬂvr enet_gmil_check_status, GMIl_ERR_ENET 027 fired
Om [vr_enet_amii.check_status GMII_ERR_ENET 028 fired
Eﬁvr enet_gmil_check_status. GMIl_ERR_ENET 029 fired
¥ om EE r_enet_gmii_check_status. GMIl_ERR_ENET 030_fired

Lar—m Vel el T R AP

ITests‘ 1 f [Ready -

1)

Figure 6.5: Coverage of Collision Scenario (GMII Interface).

7E\Ie Edit View Explore Format Windows
B X% H”wﬁﬁﬂirﬂ@ﬂm g4 “HERA
Search Names:| Signal v h M' &, ‘Seavch Tirmes: | Warker + ’—15 r4 r’

6.Results and Discussion

r; Timed v =[232 s =] e | o Time Renge:[211ns 711ns JMQ&

Easehne = Bidns
Cursor-Baseline = -392ns

Cursor ~

|U umects selected

Py

7 Las Angeles|

{% test_rgmil_norma | X SimVision: Wav

|XSim\/\s\unTDeShr | ,G?E

Figure 6.6: Simulating collision scenario (RGMII Interface).

Sy

Verification Of SoC with Ethernet Interface 6.Results and Discussion

6.3 Zeroipg check Scenario:

Test case “test_gmii_zeroipg check” fires packets with zero inter frame gap. As per
standard minimum inter frame gap between two packets should be 96-bit. We can fire packets
with zero inter frame gap by constraining ipg field of packet to zero value or any vaue less

then 96-bits. Figure 6.7 shows coverage of zeroipg scenario.

RaSignalscan Waveform:l

LACESSUSEY, | e — 2

Figure 6.7: Zeroipg check scenario (GMII Interface).

85

Verification Of SoC with Ethernet Interface

6.Results and Discussion

File VYiew Tools Options Help

= 5
Read Wite Clear

B @

Cross

)

Config

=
Rank

ﬁ EHOHS Full

8

Lock

&

Close

Location: |

Refresh
@[__o [B vw_enet_sen gmii_random_data_generatediagent_kind==PH)
[vr_enet_agent_config gmii_agent_config
@ lI[E Ww_enet_sed gmii_ethernet_error_generated
@ [0] [vr_enet_seq.gmil_etherner_error_generated(agent_kind==MAC)
@ o | FH vr_enet_seq.omii_ethernet_error_generated(agent_kind==PHY)
i@ [0] [vr_enet_seq gmii_random_data_error_generated
- B vr_enet_seq gmii_random_cata_errar_generated{agent_kind==MAC)
II[Bﬁ Wr_enet_sed.omii_random_ciata_error_generateciagent_kind==PHY}
@ [0] B3 vr_enet_packer gmii_prot_errs
@ [0] B vr_enet_packet gmii_directed_prot_err
i@ 1] [vr_enet_marmt_seq gmil_mamt_pke_generated
o] B wr_enet_gmii_check_status. GMII_ERR_ENET 001 fired
B vr_enet_gmil_check_staws. GMILERR_ENET 002 _fired!
@ [0 [vr_enet_gmil_check_status. GMII_ERR_ENET 003 _fired
@ 0] [vr_enet_gmi_check_status GMI_ERR_ENET004_fired
~@ [0] B w_enet_gmil_check_staws, GMILERR_ENETO0S fired!
] B8 vr_enet_amil_check_staws. GMII_ERR._ENET 006 _fired
(e~@ 0] [vr_enet_gmi_check_status. GMII_LERR_ENET 008 _fired
(#-@ 2] [vr_enet_gmi_check_status. GMILERR_ENET009_fired
@ (0] B v _enet_gmii_check_status, GMILERR_ENET010 fired
-9 El BB wr_enet_gmii_check_statys, GMILLERR_EMETOL1 firedt
5@ [0] [vr_enet_gmii_check_status. GMI_ERR_ENET012 _fired
[BB v _enet_gmil_check_staws GMILERR_ENETO13 firedt
B} wr_enet_gmii_check_status, CMII_ERR_ENETO L4 firec
@0 | B vr_enet_gmi_check_staws, GMILERR_ENETO1S fired
@0 | [vr_enet_gmil_check_status GMI_ERR_ENET016_fired
@ (0] B8 wr_enet_gmii_cherk_status GMILERR_ENETO17 fired
-0 [w_enet_gmil_check_staws, GMIILERR_ENET 018 fired
=@ [vr_enet_amil_check_staws, GMILERR_ENET0LO_fired
(e~@ o] [vr_enet_gmii_check_status. GMII_LERR_ENET 020 _fired

1 A 3w aner nesil_chncl_restne CMIEDD EMETA21 firard

v

[&m

[Tests 1 T

TS B

P e

Figure 6.8: Coverage of Zeroipg check Scenario.

6.4 Injecting RX_ER in ipg phase of packet:

File Edit View Explore Format Windows

F| o = 2

2| i e

% B8 0,080
Search Names:[Signal = |+ @&, @, Search Times Marker + gl

ﬁ:@ ,Qf S T

TineA v =[440 [rs =] - | o s

Baseline = 452ns
Cursor-Baseline = -12ns

R [Fwd: Re: [Fwd

12 test_rgmii_nom;

X simvision: Wav

X gcvs: jhome/mar |X GIPMSG

| X simVision: Desia |

‘ 0 ohjects selectad

@ M5

* Los Angeles

Figure 6.9: TX_ER insertion in Data Phase of Ethernet Packet (RGMII Interface).

86

Verification Of SoC with Ethernet Interface

6.Results and Discussion

&

n' Tine ¥

A ek

o

[SimVision: Waveform |

Search Names:| Signal » J

Baseline = 196ns

File Edit View Explore Format Windows
8xewt b RAGIGHEE B + ~QERES
A "Sear:h Times: Marker=|[=% [

<[z f[ns 0 | 4 @,

|l |

Cursor-Baseline = -84ns

Cursar v

‘ 0 ohjects selected

a9

£

-

2| # manishr@manis/

&) [Fwd: Re: [Fwd

EQ test_rgmii_norm

2Ff

7| X gevs: fhome/mar

X GIPMSG

X SimVision: Desic

RS

* Las Angeles

Figure 6.10: RX_ER insertion in IPG phase of Ethernet Packet (RGMII Interface).

6.5 Resaults

1. No. of Bugsfound in Verification Environment 21
2. No. of Bugsfound inevVC

3. No. of test cases written

4. Coverage achieved in each interface

GMII 98%
RMII 97%
SGMII 98%
XSBI 94%
RGMII 92%
5. Automization done in each interface
GMII 90%
RGMII 70%
SGMII 80%
XSBI 70%

43
31

87

Chapter 7

Conclusion and Future Scope

7.1 Conclusion:

This project work has helped me in understanding Ethernet protocol and various interfaces
used by it. | learned Unix operating system and e/Specman verification language during the
training, which is prerequisite for verification.

Project work maorly focused on verification and designing of eVC (e Veification
Component) using eRM (e Reusable Methodology). As we al know verification takes 70% of
the whole design cycle, so using these kinds of ready-made verification component bugs can
be found on early stages of design and hence can be fixed in same stages. This can increase
probability of first time success of chip and also the time to market which is very stringent

now-a-days.

7.2 Future Scope:

Ethernet protocol supports lot many interfaces, layered as well as non-layered interfaces. Now
layered interface are evolving at speed of light so possibility of adding new interface to
Ethernet eV C will always be there.

Also the methodology followed to implement the Ethernet eVC can be implemented in
other environment too. It can be implemented using other Hardware Verification Languages
like System C, Open Vera Assertion, and System Verilog etc.

Refer ences

|EEE Std 802.3, 2000 Edition “ Carrier sense multiple access collision detection
(CSMA/CD) access method and physical layer specification”.

ANSI/IEEE Std 802.3, “ Carrier sense multiple access collision detection (CSMA/CD)
access method and physical layer specification”, Fifth Edition, 1996.

|EEE Draft P802.32/D4, “Media access control (MAC) parameters, physical layer,
repeater and management parameters for 1000 Mbps operation”, December 1997.

R. M. Metcalfe and D. R. Boggs, “ Ethernet: Distributed Packet Switching for Local
Computer Networks, Communications of the ACM” vol. 19, pp. 395-404, July 1976.
IEEE 802.1Q-in-Q VLAN Tag Termination

6. |EEE Std 802-1990 |IEEE Standards for Local and Metropolitan Area Networks:

10.

11.
12.

Overview and Architecture

|EEE P802.32e 10 Gigabit Ethernet Task Force
http://grouper.ieee.org/groups/802/3/aef
Ethernet in the First Mile Alliance

http://www.efmalliance.org/

Gigabit Networking: High-Speed Routing and Switching,
http://www.cse.ohio-state.edu/~jain/cis788-97/gigabit_nets/index.htm
IEEE 802.3 CSMA/CD (ETHERNET) Working Group

Web site, http://grouper.ieee.org/groups/802/3/

Computer Networks by Tennanbaum.

Rich Seifert, “ Gigabit Ethernet: Technology and
Applications for High-Speed LAN’S” Addison-Wesley,
May 1988.

http://grouper.ieee.org/groups/802/3/ae/
http://www.efmalliance.org/
http://www.cse.ohio-state.edu/~jain/cis788-97/gigabit_nets/index.htm
http://grouper.ieee.org/groups/802/3/

Appendix A Test Cases

File name : test_gmi_nornal.e
Title :

Pr oj ect . G gabit Ethernet eVC
Created On :

Devel opers . elnfochips Ltd

Pur pose :

Description :This testcase is used to fire normal packets
Assunptions : none

Limtations : none

Known Errors : none

Not es :

Copyri ght (c) 2000- 2003 el nfochips. - Al rights reserved

This software is authored by elnfochips and is elnfochips intellectua

property, including the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
i ncl udi ng ownership rights, being retained by elnfochips. This file may not
be distributed, copied, or reproduced in any nanner,

El ectronic or otherwi se, without the express witten consent of elnfochips.

o Sone specific sequences:

<
i mport vr_enet_vel/tests/vr_enet_gmi_ve_config;

extend vr_enet _env {
crs_active_in_full _duplex : bool

}

extend vr_enet _agent {
keep config.crs_active_in_full _duplex ==

get _encl osing_unit(vr_enet_env).crs_active_in_full_dupl ex;
keep config.has_|l og.reset_soft();

keep soft config.has_|og == select {
50: TRUE
50: FALSE
b
H
extend ETHERNET vr_enet _packet {
keep soft data | ength == select {
25: [0, 1, 1499, 1500] ;
25: [43,44,45,46,47,2..6];
20: [7..40, 48..1495];
40: [41, 447, 448, 449, 42, 1496, 1497. . 1498] ;
b
H

extend ETHERNET vr_enet _packet {
keep pause_quanta.reset_soft();
keep soft pause_quanta == sel ect {
33: [0,1..10];

Verification Of SoC with Ethernet Interface Appendix A Test Cases

33: [11..50];
33: [51..65536];
H
b
ext end RANDOM DATA vr_enet _packet {
keep soft data | ength == select {
33: [0, 1, 1499, 1500];
33: [45, 46, 47];
33: [2..44,48..1498];
b
b

extend MAIN vr_enet _mgnt_seq {
keep soft count == 0;

};

extend MAIN FALSE random data_nbde vr_enet _seq {

keep count ==20;

keep sequence. ki nd i n [NO ERRORS, PAD_FRAME, NORVAL] ;
b

extend MAIN TRUE random data_nbde vr_enet _seq {
keep count ==20;
keep sequence. ki nd == GM | _RANDOM _NORMAL ;

Copyright (c) 2000-2003 elnfochips. - Al rights reserved. This software is
aut hored by el nfochips and is elnfochips intellectual property, including
the copyrights in all countries in the world. This

software is provided under a license to use only with all other rights,

i ncl udi ng ownership rights, being retained by el nfochi ps.

This file may not be distributed, copied, or reproduced in any nmanner

el ectronic or otherw se, without the express witten consent of elnfochips.

Fil e name . test_gmi_error.e
Title :

Pr oj ect . G gabit Ethernet eVC
Created On :

Devel opers . elnfochips Ltd

Pur pose :

Description :This testcase is used to fire erroneous
packet s

Assunptions : none

Limtations : none

Known Errors : none

Not es :

Copyright (c) 2000-2003 elnfochips. - Al rights reserved. This software is
aut hored by elnfochips and is elnfochips intellectual property, including
the copyrights in all countries in the world. This

software is provided under a license to use only with all other rights,

i ncl udi ng ownership rights, being retained by elnfochips. This file may not
be distributed, copied, or reproduced in any nmanner,

el ectronic or otherw se, without the express witten consent of elnfochips.

91

Verification Of SoC with Ethernet Interface Appendix A Test Cases

o Sone specific sequences:

<
i mport vr_enet_ve/tests/vr_enet_gmi_ve_config;

extend vr_enet _packet {
keep packet _kind.reset_soft();
b
extend vr_enet _agent {
keep config.retry limt.reset_soft();
keep soft config.retry limt == select {
25: 0;
25: 1;
25: [2..15];
25: 16;
b

keep config.jamlength.reset_soft();
keep soft config.jamlength == select {
33: 0;
33: [1..7];
33: 8;
b
H

extend PHY MAI N FALSE random dat a_node vr_enet_seq {

keep count ==20;

keep soft sequence. kind == select {

20:

[CRC_TEST, SHORT_FRAME_TEST, | LLEGAL_PAUSE_OPCCDE,
SFD_TEST, GM | _PHY_RX_ER, GM | _PHY_CRS_DOMN | NJECT, GM | _LONG FRAME _TEST, GM | _
FRAVE_LENGTH TEST, GM | _PHY_RX_CARRI ER_EXT_ERR, GM | _PHY_| PG_RX_ER
GM | _PHY_FALSE_CARRI ER | NDI CATI ON, GM | _M N_RECEI VED | PG TEST] ;

40:
[GM | _ILLEGAL_I PG GM | _| LLEGAL_PHY_PREAMBLE, GM | | LLEGAL_FCI,GM | _| PG RX ER
RS, GM | _| LLEGAL_SQURCE_ADDRESS, GM | _| LLEGAL_EXTENSI ON,
GM | _| LLEGAL_FI RST_BYTE_PREAMBLE] ;

20:
[GM | _RX ERRS, GM | _ERR DOUBLE_VLAN HEADER, GM | _ERR VLAN HEADER] ;

20: [ALI GNVENT_ERR,
PAUSE_OPCODE_ERR | N_NON_PAUSE_PKT, LONG_SHORT_FRAME,
LENGTH ERR W TH_ALL, NO_BOOL_CONSTRI NT,
LONG_SHORT_ALI GNVENT, ALI GNVENT_ERR W TH_LENGTH_ERR
ALI GNVENT_ERR W TH_| LLEGAL_PAUSE_CPCODE, ALL_ERRS_TOGATHER] ;

b
};

extend MAC MAI N FALSE' random dat a_node vr_enet_seq {
keep count ==20;
keep soft sequence. kind == sel ect {
20:
[CRC_TEST, SHORT_FRAME_TEST, | LLEGAL_PAUSE_OPCCODE, SFD TEST, GM | _LONG _FRAMVE_TE
ST, GM | _FRAME_LENGTH TEST, GM | _MAC TX ER,
GM | _MAC TX_CARRI ER_EXT_ERR, GM | _M N_RECEI VED | PG TEST] ;

40:
[GM | _ILLEGAL I PG GM | _| LLEGAL_NMAC PREAMBLE, GM | _PCST_TX ER, GM | _PCST_TX ER

92

Verification Of SoC with Ethernet Interface Appendix A Test Cases

RS, GM | _| LLEGAL_EXTENSI ON, GM | _| LLEGAL_SOURCE_ADDRESS,
GM | _| LLEGAL_FI RST_BYTE_PREAMBLE] ;

20:
[GM | _TX ERRS, GM | _NO DATA, GM | _MAX DATA,
GM | _ERR DOUBLE_VLAN HEADER, GM | _ERR VLAN HEADER] ;

20: [ALI GNVENT_ERR,
PAUSE_OPCODE_ERR | N_NON_PAUSE_PKT, LONG_SHORT_FRAME,
LENGTH_ERR W TH_ALL, NO_BOOL_CONSTRI NT, LONG_SHORT_ALI GNVENT, ALI GNVENT_ERR W
TH_LENGTH_ERR,
ALI GNVENT_ERR W TH_| LLEGAL_PAUSE_OPCODE, ALL_ERRS_TOGATHER] ;

I
};

extend MAC MAI N random dat a_node vr_enet _seq {

keep count == 5;

keep sequence.kind in
[GM | _RANDOM TX_ER, GM | _RANDOM TX_CARRI ER_EXTENSI ON_ERROR, GM | _ RANDOM NORVA
L];

extend PHY MAI N random data_node vr_enet _seq {
keep count == 5;
keep sequence.kind in
[GM | _RANDOM RX_ER, GM | _RANDOM RX_CARRI ER_EXTENSI ON_ERROR, GM | _ RANDOM CRS D
OWN_| NJECT, GM | _RANDOM RX_ER FCI] ;
b

">

<
extend vr_enet _agent {
keep config. dupl ex_ki nd == HALF
H
extend GM | vr_enet_systemuve {
keep soft random data_node == sel ect {60: FALSE;
40: TRUE;

Copyright (c) 2000-2003 elnfochips. - Al rights reserved. This software is
aut hored by elnfochips and is elnfochips intellectual property, including
the copyrights in all countries in the world. This

software is provided under a license to use only with all other rights,

i ncl udi ng ownership rights, being retained by el nfochi ps.

This file may not be distributed, copied, or reproduced in any nmanner

el ectronic or otherw se, without the express witten consent of elnfochips.

package vr_enet;
i mport vr_enet_ve/tests/vr_enet_gmi_ve_config;
">

<
ext end RANDOM PROT_ERR vr _enet _packet {
change_zero_timng() is {
for each (e) in directed_prot_errs {
if (e.timng == 0) {
e.timng = 1;

93

Verification Of SoC with Ethernet Interface Appendix A Test Cases

b
b
b
post _generate() is also {
change_zero_timng();

b
};

extend vr_enet _systemve {
keep random dat a_node == FALSE;
H

extend vr_enet _agent{
keep config. dupl ex_ki nd == HALF;
H

extend MAIN vr_enet _seq {

keep count == 50;

keep sequence.kind in
[TX_RX_I N_I PG EXTENSI ON_ERR | N_ALL, | LLEGAL_ERR FROM MAC PHY, FCl _I N_ALL, HALF
_DUPLEX_ERR I N_FULL,

NO_ERROR, SI NGLE_ERROR, MULTI PLE_ERROR, MULTI _TI ME_SI NGLE_ERRCR,
SI NGLE_TI ME_SI NGLE_ERROR_PHASE,

SI NGLE_TI ME_SI NGLE_ERROR, MULTI _TI ME_SI NGLE_ERROR_PHASE

, SINGLE_TI ME_TWD_ERROR, MULTI _TI ME_TWD_ERRCR,

MILTI _TI ME_TWO ERROR_PHASE, SI NGLE_TI ME_TWO_ERROR PHASE] ;

};

">

<
extend vr_enet _seq_kind : [NO_ERROR, SI NGLE_ERROR, MJLTI PLE_ERROR,

MULTI _TI ME_SI NGLE_ERROR,

SI NGLE_TI ME_SI NGLE_ERROR _PHASE, SI NGLE_TI ME_SI NGLE_ERROR, MULTI _TI ME_SI NGLE_E
RROR_PHASE, SI NGLE_TI ME_TWD ERROR, MULTI _TI ME_TWD ERROR, MULTI _TI ME_TWD ERROR
PHASE, SI NGLE_TI ME_TWD ERROR PHASE] ;

extend SI NGLE_ERROR vr_enet_seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt ;
H

};

extend NO ERROR vr_enet _seq {
body() @river.clock is only {
do NO _PROT_ERR pkt;
H

};

extend MULTI PLE_ERROR vr_enet _seq {
body() @river.clock is only {
do MULTI _PROT_ERR KI ND pkt ;
b
H

extend MULTI _TI ME_SI NGLE_ERROR MAC vr _enet_seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == TX ER;
e.err_occurrence == MILTI _TI Mg

extend MULTI _TI ME_SI NGLE_ERROR PHY vr_enet_seq {

Verification Of SoC with Ethernet Interface Appendix A Test Cases

body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == RX_ER;
e.err_occurrence == MILTI _TI Mg

extend SINGLE_TI ME_SI NGLE_ERROR MAC vr_enet _seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == TX ER
e.err_occurrence == SI NGE_TI Mg
H
H
H
H

extend SINGLE _TI ME_SI NGLE_ERROR PHY vr_enet _seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == RX_ER;
e.err_occurrence == SI NGE_TI Mg
H
H
H
H

extend MULTI _TI ME_SI NGLE_ERROR PHASE MAC vr_enet _seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == TX ER;
e.err_occurrence == MILTI _TI Mg
e.err_phase not in [ABSOLUTE, CARRI ER_EXTENSI ON] ;

};
};

extend MULTI _TI ME_SI NGLE_ERROR PHASE PHY vr_enet _seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == RX_ER;
e.err_occurrence == MILTI _TI Mg
e.err_phase not in [ABSOLUTE, CARRI ER_EXTENSI ON] ;

};
};

extend SINGLE_TI ME_SI NGLE_ERROR_PHASE MAC vr _enet_seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == TX ER;
e.err_occurrence == SI NGE_TI Mg
e.err_phase not in [ABSOLUTE, CARRI ER_EXTENSI QN] ;

95

Verification Of SoC with Ethernet Interface Appendix A Test Cases

I
};

extend SINGLE_TI ME_SI NGLE_ERROR _PHASE PHY vr_enet_seq {
body() @river.clock is only {
do SING.E_PROT_ERR KIND pkt keeping {
for each (e) in .protocol _errs {
e.err_kind == RX_ER
e.err_occurrence == SINGE_TI ME
e. err_phase not in [ABSOLUTE, CARRI ER_EXTENSI QN] ;

extend SINGLE_TI ME_TWO ERROR MAC vr_enet _seq {
body() @river.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == TX ER and e. err_occurrence ==
SI NGLE_TI ME
i ndex == => e.err_kind == TX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME
H
H
i
H

extend SI NGLE_TI ME_TWO ERROR PHY vr_enet _seq {
body() @river.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == RX_ER and e. err_occurrence ==
SI NGLE_TI ME
i ndex == => e. err_kind == RX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME
H

I
I
};

extend MULTI _TI ME_TWO ERROR MAC vr_enet _seq {
body() @river.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == TX ER and e. err_occurrence ==
SI NGLE_TI ME
i ndex == => e.err_kind == TX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME
H

I
I
};

extend MULTI _TI ME_TWO ERROR PHY vr_enet_seq {
body() @river.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == RX_ER and e. err_occurrence ==
SI NGLE_TI ME

96

Verification Of SoC with Ethernet Interface Appendix A Test Cases

i ndex == => e. err_kind == RX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME
b
b
b
H

extend SI NGLE Tl ME_TWO ERROR PHASE MAC vr _enet_seq {
body() @iriver.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == TX ER and e. err_occurrence ==

SI NG&LE_TI ME and
e.err_phase not in
[1 PG ABSOLUTE, RANDOM CARRI ER_EXTENSI QV] ;
i ndex == => e.err_kind == TX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME

b
b
b
b
extend SI NGLE Tl ME_TWO ERROR _PHASE PHY vr_enet_seq {

body() @iriver.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == RX_ER and e. err_occurrence ==

SI NG&LE_TI ME and
e.err_phase not in
[1 PG ABSOLUTE, RANDOM CARRI ER_EXTENSI QV] ;
i ndex == => e. err_kind == RX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME

b
b
b
b
extend MULTI _TI ME_TWO ERROR PHASE MAC vr_enet_seq {

body() @river.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == TX ER and e. err_occurrence ==

SI NG&LE_TI ME and
e.err_phase not in
[1 PG ABSOLUTE, RANDOM CARRI ER_EXTENSI QV] ;
i ndex == => e.err_kind == TX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SINGE_TI ME

b
b
b
b
extend MULTI _TI ME_TWO ERROR PHASE PHY vr_enet_seq {

body() @iriver.clock is only {
do MUILTI _PROT_ERR KI ND pkt keeping {

.protocol _errs.size() == 2 and
for each (e) in .protocol _errs {
i ndex == => e.err_kind == RX_ER and e. err_occurrence ==

SI NGLE_TI ME and
e.err_phase not in
[1 PG ABSOLUTE, RANDOM CARRI ER_EXTENSI ON] ;

97

Verification Of SoC with Ethernet Interface Appendix A Test Cases

i ndex == => e. err_kind == RX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence == SI NGE_TI Mg
b
b
b
H

-- 1 LLEGAL SCENARI OS- -

extend vr_enet _seq_kind :
[TX_RX_I N_I PG EXTENSI ON_ERR | N_ALL, | LLEGAL_ERR FROM MAC PHY, FCl _I N_ALL, HALF
_DUPLEX_ERR I N_FULL];

extend TX RX_IN_I PG MAC vr_enet_seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
i ndex == => e.err_kind == TX ER and
e.err_occurrence.reset_soft() and
e.err_phase in [|I PG CARRI ER_EXTENSI QN ;

H
H
H
extend TX RX_ I N_I PG PHY vr_enet_seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
i ndex == => e.err_kind == RX_ER and
e.err_occurrence.reset_soft() and
e.err_phase in [| PG CARRI ER_EXTENSI Q\ ;

extend EXTENSI ON_ERR I N_ALL MAC vr_enet_seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
i ndex == => e.err_kind == TX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence.reset_soft() and
e.err_phase not in [RANDOV CARRI ER_EXTENSI O\ ;

I
I
};

extend EXTENSI ON_ERR I N_ALL PHY vr_enet_seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
i ndex == => e. err_kind == RX_CARRI ER_EXTENSI ON_ERROR and
e.err_occurrence.reset _soft() and
e.err_phase not in [RANDOV CARRI ER_EXTENSI QN] ;

extend FCl _I N ALL PHY vr_enet _seq {

98

Verification Of SoC with Ethernet Interface Appendix A Test Cases

body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
i ndex == => e. err_kind == FALSE_CARRI ER_| NDI CATI ON and
e.err_occurrence.reset_soft() and
e. err_phase not in [RANDOM | PG ;

extend | LLEGAL_ERR FROM MAC _PHY MAC vr_enet _seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
index == 0 => e.err_kind not in
[TX_ER, TX_CARRI ER_EXTENSI ON_ERROR, | NVALI D_SYNC HEADER, | NVALI D BLOCK_TYPE_F
ELD) ;

I
};

extend | LLEGAL_ERR FROM MAC _PHY PHY vr_enet _seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
index == 0 => e.err_kind in
[TX_ER, TX_CARRI ER_EXTENSI ON_ERROR, | NVALI D_SYNC HEADER, | NVALI D BLOCK_TYPE_F
ELD) ;

I
};

extend HALF_DUPLEX ERR I N FULL MAC vr_enet _seq {
body() @river.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {
index == 0 => e.err_kind in
[TX_CARRI ER_EXTENSI ON_ERROR, CRS_DOMN_| NJECT, CRS_DOAN_COLLECT, COLLI SI O\ ;
H
H
} H
extend HALF_DUPLEX ERR I N FULL PHY vr_enet _seq {
body() @iriver.clock is only {
do SI NGLE_PROT_ERR KI ND pkt keeping {
for each (e) in .protocol _errs {

index == 0 => e.err_kind in
[RX_CARRI ER_EXTENSI ON_ERROR, CRS_DOWN_| NJECT, CRS_DOWN_COLLECT

FALSE_CARRI ER_| NDI CATI ON, COLLI SI ON] ;
I
I
I
};

">

99

Verification Of SoC with Ethernet Interface Appendix A Test Cases

Fil e name : test_gmi_collision.e
Title :

Pr oj ect . G gabit Ethernet eVC
Created On :

Devel opers . elnfochips Ltd

Pur pose :

Description :This testcase is used to fire normal packets
Assunptions : none

Limtations : none

Known Errors : none

Not es :

Copyright (c) 2000-2003 elnfochips. - Al rights reserved. This software is
aut hored by elnfochips and is elnfochips intellectual property, including
the copyrights in all countries in the world. This

software is provided under a license to use only with all other rights,

i ncl udi ng ownership rights, being retained by el nfochi ps.

This file may not be distributed, copied, or reproduced in any nmanner

el ectronic or otherw se, without the express witten consent of elnfochips.

package vr_enet;
">
o Sone specific sequences:

<
i mport vr_enet_ve/tests/vr_enet_gmi_ve_config;

--Always configure kind to MAC DUT for collision testing
extend vr_enet _systemve {

keep ki nd == MAC_DUT;

b
extend vr_enet _agent_ve {

keep check_col lision == TRUE
b

--As collision is possible in HALF dupl ex node only.
-- Random data node is off.
extend vr_enet _agent{

keep confi g. dupl ex_ki nd == HALF

keep config.random data_node == FALSE;

keep config.jamlength == 8;

keep config.retransm ssi on_enabl e ==FALSE

};

--Firing 5 normal ethernet packets from MAC agent.
extend MAC MAIN vr_enet_seq {
keep count ==30;
body() @river.clock is only {
for i froml to count {
do pkt keeping {
.data_length == 46 and
. preanbl e. preanbl e_| ength == 56
b

100

Verification Of SoC with Ethernet Interface Appendix A Test Cases

--jamlength is tine in cycle.

--TX ENw Il go low after jamlength time when COL is asserted.

--1f jamlength value is zero then TX ENwll go | ow before jambits are
sent.

--1f it is 1 then TX ENwill go low after 1 byte of jam

--This is true when COL is not in preanble.

--Firing collision from PHY agent.

extend PHY MAIN vr_enet_seq {

--Method in bf mw Il be called depending upon value of this flag
-- If TRUE , preanble_collision() nethod will be called upon
-- If FALSE, tx_er_collision() method will be called upon

sel ect _nmethod : bool;

keep count ==30;
body() @river.clock is only {
for i froml to count {
do pkt keeping {
.directed_prot_errs.size()==1 and
. preanbl e. preanbl e_| ength == 56 and
for each (e) in .directed _prot_errs {
e.err_kind == COLLI SION and
e.timng == i-1 and
e. err_phase == ABSOLUTE;

m d_do(s: any_sequence_item is also {
for each (e) in pkt.directed prot_errs {
if(e.err_kind == COLLI SI ON) {

gen sel ect _net hod ;

i f(select_nmethod == TRUE) {
start driver.as_a(GVM|_FAMLY
vr_enet _driver). parent_agent.as_a(ACTI VE
vr_enet _agent).bfmas_a(GVM|_FAM LY PHY
vr_enet _bfm.preanble_collision(e.timng);
}
el se {
start driver.as_a(GVM1_FAMLY
vr_enet _driver). parent_agent.as_a(ACTI VE
vr_enet _agent).bfmas_a(GVM|_FAM LY PHY
vr_enet_bfm.tx_er_collision(e.timng);
};
}i--if
};--for
}i--md_do()
}

extend vr_enet _bfm {

l'jamlength : uint;
lcollision_timng : uint;

H
--They are used for only setting flags on which particular sets of errors
will be expected by VE

extend PHY GM | _FAM LY vr_enet _bfm{
preanble_collision(d : uint) @lk is {

collision_timng = d+1;

101

Verification Of SoC with Ethernet Interface Appendix A Test Cases

gen jamlength keeping {it < parent_agent.config.jam.length/2};
wait rise(gmii_snp.sig GMI_RX DV$);
preanbl e_col | i sion_expect_error();
wait [jam.|ength]*cycle;
force gmi_snmp.sig GM|_TX EN$ = O;
sync
@ys.vr_enet _gmi_ve_env.systemves[0].system active_nac_agent s[0] . bf m pack
et _started;
force gmi_snmp.sig GM|_TX EN$ = O;
rel ease gmi_snp.sig GM I _TX EN ;
H
tx_er_collision(d : uint) @lk is {
collision_timng = d+1
wait rise(gmi_snp.sig GMI_COS);

trans_conti nues_expect _error();

if(d <7) {
wait [11-(d+1)]*cycle
el se {
wait [4] *cycle
H
force gmi_smp.sig GMI|_TX EN$ = 1,
wait [1] *cycle;
force gmi_smp.sig GM|_TX EN$ = O;

sync
@ys.vr_enet_gmi_ve_env.systemves[0].system active_nac_agent s[0] . bf m pack
et _started;

rel ease gmi_snp.sig GM I _TX EN ;

}; /lextend

extend GM | _FAM LY vr_enet _bfm{
preanbl e_col | ision_expect_error() is {

if collision_timng <=7 {
if(collision_timng <7 and jamlength == 0) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET025") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET010");

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET005") ;

else if (collision_timng + jamlength <= 7) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET026") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET010");

102

Verification Of SoC with Ethernet Interface Appendix A Test Cases

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET005") ;

else if (collision_timng == 7 and jamlength != 0) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET029") ;
}

el se {
if(collision_timng + jamlength > 7) {

get _encl osing_unit(vr_enet_systemve).nac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET026") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET001");
}

el se {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET002");
H
H

el se {
if jam.length==0 {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET028") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET004") ;

el se {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET029") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET002") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET001");

I

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET004") ;

H
trans_conti nues_expect _error() is {
if(collision_timng <7) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET027");

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET002") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET001");

103

Verification Of SoC with Ethernet Interface Appendix A Test Cases

el se {

get _encl osing_unit(vr_enet_systemve).nac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET030") ;

get _encl osing_unit(vr_enet_systemve).nac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET002");

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET001");

I

Copyright (c) 2000-2003 elnfochips. - Al rights reserved. This software is
aut hored by elnfochips and is elnfochips intellectual property, including
the copyrights in all countries in the world. This

software is provided under a license to use only with all other rights,

i ncl udi ng ownership rights, being retained by el nfochi ps.

This file may not be distributed, copied, or reproduced in any nmanner

el ectronic or otherw se, without the express witten consent of elnfochips.

Fil e name : test_gmi_collision.e
Title :

Pr oj ect . G gabit Ethernet eVC
Created On :

Devel opers . elnfochips Ltd

Pur pose :

Description :This testcase is used to fire normal packets
Assunptions : none

Limtations : none

Known Errors : none

Not es :

Copyright (c) 2000-2003 elnfochips. - Al rights reserved. This software is
aut hored by elnfochips and is elnfochips intellectual property, including
the copyrights in all countries in the world. This

software is provided under a license to use only with all other rights,

i ncl udi ng ownership rights, being retained by el nfochi ps.

This file may not be distributed, copied, or reproduced in any nmanner

el ectronic or otherw se, without the express witten consent of elnfochips.

<
package vr_enet;
">

104

Verification Of SoC with Ethernet Interface Appendix A Test Cases

o Sone specific sequences:

<
i mport vr_enet_ve/tests/vr_enet_gmi_ve_config;

--always configure kind to MAC DUT for collision testing.
extend vr_enet _systemve {

keep ki nd == MAC_DUT;

b
extend vr_enet _agent_ve {

keep check_collision == TRUE
b

--As collision is possible in HALF dupl ex node only.
--Random data nmode is off.
extend vr_enet _agent{

keep confi g. dupl ex_ki nd == HALF

keep config.random data_node == FALSE;

keep config.jamlength == 8;

keep config.retransm ssi on_enabl e ==FALSE

};

--Firing 5 normal ethernet packets from MAC agent.
extend MAC MAIN vr_enet_seq {

keep count ==30;

body() @river.clock is only {

for i froml to count {
do pkt keeping {
.data_length == 46 and
. preanbl e. preanbl e_| ength == 56

H
H

b
H
--jamlength is tine in cycle.
--TX ENwll go low after jamlength tinme when COL is asserted
--1f jamlength value is zero then TX ENw Il go | ow before jambits are
sent.

--1f it is 1 then TX ENwll go |low after 1 byte of jam
--This is true when COL is not in preanble.

--Firing collision from PHY agent.

extend PHY MAIN vr_enet_seq {

--Method in bf mw Il be called depending upon value of this flag
-- If TRUE , preanble_collision() nethod will be called upon
-- If FALSE,tx_er_collision() method will be called upon

sel ect _nmethod : bool;

keep count ==30;
body() @iriver.clock is only {
for i froml to count {
do pkt keeping {
.directed_prot_errs.size()==1 and
. preanbl e. preanbl e_| ength == 56 and
for each (e) in .directed _prot_errs {

e.err_kind == COLLI SION and
e.timng == i-1 and
e. err_phase == ABSOLUTE;
b
1
b

105

Verification Of SoC with Ethernet Interface Appendix A Test Cases

m d_do(s: any_sequence_item is also {
for each (e) in pkt.directed prot_errs {
if(e.err_kind == COLLI SI ON) {

gen sel ect _net hod ;

i f(select_nmethod == TRUE) {
start driver.as_a(GVM|_FAMLY
vr_enet _driver). parent_agent.as_a(ACTI VE
vr_enet _agent).bfmas_a(GVM|_FAM LY PHY
vr_enet _bfm.preanble_collision(e.timng);
}
el se {
start driver.as_a(GVM|_FAMLY
vr_enet _driver). parent_agent.as_a(ACTI VE
vr_enet _agent).bfmas_a(GM|_FAM LY PHY
vr_enet_bfm.tx_er_collision(e.timng);
}s
}i--if
};--for
}i--md_do()
}

extend vr_enet _bfm {

l'jamlength : uint;
Icollision_timng : uint;

}

--They are used for only setting flags on which particular sets of errors
wi Il be expected by VE
extend PHY GM | _FAM LY vr_enet _bfm{

preanble_collision(d : uint) @lk is {

collision_timng = d+1;
gen jamlength keeping {it < parent_agent.config.jam.length/2};

wait rise(gmii_snp.sig GMI_RX DV$);
preanbl e_col | i sion_expect_error();
wait [jam.|ength]*cycle;
force gmi_smp.sig GM|_TX EN$ = O;
sync

@ys.vr_enet _gmi_ve_env.systemves[0].system active_nac_agent s[0] . bf m pack

et _started;
force gmi_snmp.sig GM|_TX EN$ = O;
rel ease gmi_snp.sig GM I _TX EN ;

b
tx_er_collision(d : uint) @lk is {

collision_timng = d+1;
wait rise(gmi_snp.sig GMI_COS);

trans_conti nues_expect _error();

if(d <7 {
wait [11-(d+1)]*cycl e;

el se {
wait [4] *cycl e;

106

Verification Of SoC with Ethernet Interface Appendix A Test Cases

H

force gmi_smp.sig GM|_TX EN$ = 1,
wait [1] *cycle;

force gmi_smp.sig GM|_TX EN$ = O;

sync
@ys.vr_enet _gmi_ve_env.systemves[0].system active_nac_agent s[0] . bf m pack
et _started;

rel ease gmi_snp.sig GM | _TX EN ;

}s
}; /lextend

extend GMI_FAMLY vr_enet_bfm{
preanbl e_col | ision_expect_error() is {

if collision_timng <=7 {
if(collision_timng <7 and jamlength == 0) {

get _encl osing_unit(vr_enet_systemve).nac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET025") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET010");

get _encl osing_unit(vr_enet_systemve).nac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET005") ;

else if (collision_timng + jamlength <= 7) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET026") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET010");

get _encl osing_unit(vr_enet_systemve).nac_active_agents[0].error_| ogger. exp
ected_errors. add(" ERR_ENET005") ;

else if (collision_timng == 7 and jamlength != 0) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET029") ;
}

el se {
if(collision_timng + jamlength > 7) {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET026") ;

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET001");
}

el se {

get _encl osing_unit(vr_enet_systemve).nmac_active_agents[0].error_| ogger. exp
ected_errors. add("ERR_ENET002") ;

I
I
}

el se {
if jam.length==0 {

107

Verification Of SoC with Ethernet Interface

Appendix A Test Cases

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET028") ;

get _encl osing_unit(vr_enet_systemve).

ected_errors. add(" ERR_ENET004") ;
}

el se {

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET029") ;

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET002") ;

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET001");

I

get _encl osing_unit(vr_enet_systemve).

ected_errors. add(" ERR_ENET004") ;

H
trans_conti nues_expect _error()

is {

if(collision_timng <7) {

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET027");

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET002") ;

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET001");

el se {

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET030") ;

get _encl osing_unit(vr_enet_systemve).

ected_errors. add(" ERR_ENET002") ;

get _encl osing_unit(vr_enet_systemve).

ected_errors. add("ERR_ENET001");

Copyright (c) 2000-2003 elnfochips. -

the copyrights in all

All
aut hored by el nfochips and is elnfochips intellectua
countries in the world. This

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

nmac_acti ve_agent s[0] .

ri ghts reserved.

software is provided under a license to use only with al

i ncl udi ng ownership rights,
This file may not be distributed
el ectronic or otherw se,

copi ed,

bei ng retai ned by el nfochi ps.
or reproduced in any nanner,
wi t hout the express witten consent of elnfochips.

property,

ot her

error_|l ogger.

error_|l ogger.

error_|l ogger.

error_| ogger.

error_|l ogger.

error_|l ogger.

error_|l ogger.

error_|l ogger.

error_| ogger.

error_| ogger.

error_|l ogger.

error_|l ogger.

Thi s sof t war
i ncl udi

ri ghts,

exp

exp

exp

exp

exp

exp

exp

exp

exp

exp

exp

exp

eis
ng

108

Verification Of SoC with Ethernet Interface Appendix B Log Report

Appendix B L og Report

Normal test case log report:

Initializing Specman Elite (4.3.4) - Linked on Sun Aug 29 21:15:26 2004
1. break on error

Br eakpoi nt al ready exists: 1. break on error

Loadi ng

/ hore/ mani shr/ mani sh/test _cases/rgmi/test_rgmi_normal/test_rgmi_nornal.
e

read...parse...update...patch...h code...code...clean...

Doi ng setup ...

191 checks were nodifi ed.

Generating the test using seed 1974560108. ..

[0] ENET_0O A RGM | _MAC 0 MAC. Checking DUT signal connectivity in
RGM | _MAC O

enet _evc_top.rgmi_0O

[0] ENET_O A RGM | _PHY_O PHY: Checking DUT signal connectivity in
RGM | _PHY O

enet _evc_top.rgmi_0O

-------------- ENET_O: vr_enet _env- @
Verisity Ethernet eVC - version 2.0

of ACTIVE MAC AGENTS : 1

of PASSI VE MAC AGENTS : 0

of ACTIVE PHY AGENTS : 1

of PASSI VE PHY AGENTS : 0

-------------- E path: sys.vr_enet_rgmi_env

668

Al'l sequence drivers:

driver sent pendi ng current
0. vr_enet _driver-@ 0 0 -
1. vr_enet_driver-@ 0 0 -

Starting the test

Runni ng the test

[0] ENET_O: Checking DUT reset signal connectivity in environment ENET_O
[0] ENET_O: Checking signal RESET Environnent nane ENET_O with val ue
reset

[0] ENET_ 0O A RGMI_MAC 0 MAC. SEQQO0) Starting MAIN vr_enet_seq- @

[0] ENET_O A RGM I _PHY_0O PHY: SEQ0) Starting MAIN vr_enet_seq- @

Runni ng shoul d now be initiated fromthe sinulator side

To conpl ete waveform setup, execute in sinulator pronpt the command file
sn_wave_si nvi si on. sv

Pl ease |load the file: 'sn_wave_test_rgmi_nornmal.sv' into the viewer after
t he

sinmulation is conpleted.

Doi ng garbage collection: current size is 85337136 bytes ...

Done - new size is 66636012 bytes.

[0] ENET_O: Reset was asserted

[0] ENET_ 0O A RGMI_MAC 0 MAC. SEQQ0) MAIN vr_enet_seq-@ quit

[0] ENET_0O A RGM I _PHY_O0 PHY: SEQ(0) MAIN vr_enet_seq-@ quit

[4] ENET_ O A RGMI_MAC 0 MAC. SEQ Q) rerunning drvr O
[4] ENET_ 0O A RGMI_MAC 0 MAC. SEQQO) Starting MAIN vr_enet_seq- @9
[4] ENET_O A RGM I PHY 0 PHY: SEQ0) rerunning drvr 1
[4] ENET_O A RGM I _PHY_O0 PHY: SEQO0) Starting MAIN vr_enet_seq- @0

[100] ENET_O: Reset was deasserted

Verification Of SoC with Ethernet Interface Appendix B Log Report

[104] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _SPEED MODE_M SMATCH:

Det ect ed speed node fromthe bus is SPEED MODE 10MBPS

whi | e expected speed node is SPEED MODE_1GBPS

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 Indi cates RXC cl ock speed

[104] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _DUPLEX_STATUS_M SMATCH:

Det ect ed dupl ex status fromthe bus is HALF

whi |l e expected duplex status is FULL

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 | ndicates dupl ex status

[108] ENET_O A RGM | _PHY_0 PHY: SEQ0) MAIN vr_enet_seq- @O0: Executing
def aul t

body() nethod: doing 2 sequences

[108] ENET_O A RGM | _PHY_ 0 PHY: SEQ 1) NORMAL_PHY vr_enet _seq- @1 created
[108] ENET_O0O A RGM I _MAC 0 MAC. SEQ0) MAIN vr_enet_seq- @9: Executing
def aul t

body() nethod: doing 2 sequences

[108] ENET_O0 A RGM 1 _NMAC 0 MAC. SEQ(1) NORMAL_MAC vr_enet _seq- @2 created
[108] ENET_O A RGM | _PHY O PHY: O error validation rules violated...

[108] ENET_O A RGM | _PHY_ 0 PHY: SEQ2) vr_enet_packet- @3 created

[108] ENET_O A RGMI_MAC O MAC. O error validation rules violated...

[108] ENET_O0 A RGM | _NMAC 0 MAC. SEQ2) vr_enet _packet- @4 created

[196] ENET_O A RGM | _PHY 0 PHY BFM : Started sendi ng packet #0 ETHERNET

| NJECT

vr _enet _packet - @3

[196] ENET_O A RGM | _NMAC 0 MAC BFM : Started sendi ng packet #0 ETHERNET
| NDECT

vr _enet _packet - @4

[212] ENET_O0O A RGM |1 _MAC 0 MAC RX MONI TOR: Started col |l ecti ng packet #0
ETHERNET COLLECT vr_enet _packet - @5

[212] ENET_O0O A RGM | _PHY 0 PHY TX MONI TOR: Started coll ecti ng packet #0
ETHERNET COLLECT vr_enet _packet - @6

[772] ENET_O A RGM 1 _PHY_0 PHY BFM : Fini shed sendi ng packet #0 U D:
0xc8100000 ETHERNET | NJECT vr_enet _packet - @3

[772] ENET_O A RGM | _PHY 0 PHY BFM:

—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : VLAN_TAG

Dupl ex node : FULL

Packet nunber 10

Length of data : 20

Start tine 1196

End_time 1772

IPGin bit tine 1 96

Preanble size in bits :56

SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : Oxdabef 190392
Tag Protocol 1D : 33024

User Priority :0

Canoni cal Indicator ;0

VLAN | dentifier 12

Lengt h/ Type val ue : 20

Pad Size 122

Actual crc : Ox9f cb09e5

[772] ENET_O A RGM | _PHY_0 PHY: SEQ(2) vr_enet_packet- @3 sent by drvr 1
[772] ENET_O A RGM |1 _MAC 0 MAC BFM : Fini shed sendi ng packet #0 U D:
0x48000000 ETHERNET | NJECT vr_enet _packet - @4
[772] ENET_O0 A RGM|_NMAC 0 MAC BFM:
—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3

Tag ki nd : UNTAGGED

110

Verification Of SoC with Ethernet Interface

Appendix B Log Report

Dupl ex node
Packet nunber
Length of data
Start tine
End_time

IPGin bit tine
Preanble size in bits
SFD

Dest. Address
Src. Address
Lengt h/ Type val ue
Pad Size

Actual crc

[772] ENET_0 A RGMI|_NMAC O
t he

value : 1

[772] ENET_0 A RGMI|_NMAC O
updated to

the value : 1

[772] ENET_0 A RGMI|_NMAC O
updat ed

to the value : 1

[772] ENET_0 A RGMI|_NMAC O
[772] ENET_O0 A RGM | _PHY 0O
[772] ENET_O0 A RGM | _PHY 0O
[772] ENET_0 A RGMI|_NMAC O
[772] ENET_0 A RGMI|_NMAC O
[772] ENET_O0 A RGM | _PHY 0O
[772] ENET_O0 A RGM | _PHY 0O
[772] ENET_0 A RGMI|_NMAC O
[772] ENET_0 A RGMI|_NMAC O

: FULL

:0

: 20

1196

2772

: 96

: 56
210101011
COxfFfffffffffef
: 0x243b421a5646
: 20

: 26

: 0x22d1llele

MAC. MAC attribute

MAC. MAC attribute

MAC. MAC attribute

frmtx ok _get is updated to

is

brd_frmtx_ok_get

multi _frmtx ok get is

MAC.
PHY:
PHY:
MAC.
MAC.

SEQ(2)
SEQ(1)
SEQ(1)
SEQ(1)
SEQ(1)

vr_enet _packet- @4 sent by
NORMAL_PHY vr_enet _seq- @1
NORMAL_PHY vr_enet _seq- @7
NORMAL_MAC vr_enet _seq- @2
NORMAL_MAC vr_enet _seq- @8

drvr O
done
created
done
created

PHY:
PHY:
MAC.
MAC.

O error validation rules violated...
SEQ(2) vr_enet _packet- @9 created
O error validation rules violated...
SEQ(2) vr_enet _packet- @0 created

*** Dut warning at tinme
Checked at

776

In MONITOR GM | _FAM LY
vr_enet_rgmi _layer-@.sn__ _phy status_in_ipg_eval () (unit:
sys.vr_enet_rgmi _env.active_mac_agents[O].nonitor.GM|I_FAMLY RGM | "' rgmi i

_nmonitor):

ERR_ENET044_PHY_RGM | _DUPLI

CATI ON_M SNMATCH:

line 96 in @r_enet _rgmi_checker

Data is not duplicated at positive and negative cycl es.

Data on positive edge RXO 3
whil e data on negative edge

Specs(HP-RGM |, Ver si on2. 0 Specs):

:0] is 0x05
RXD[7: 4] is OxOe

Tabl e-4 I ndi cates RXC cl ock speed

conti nue execution (ch

eck effect

i s WARNI NG)

[788] ENET_O0 A RGM | _MAC 0 MAC RX MONI TOR: Fi ni shed col | ecti ng packet #0

U D

0xc8100000 ETHERNET COLLECT vr_enet _packet - @5

[788] ENET_O0 A RGMI_MAC O
==========Packet Informatio

Packet type

Tag ki nd

Dupl ex node

Packet nunber

Length of data

Start time

End_time

MAC RX MONI TOR:
n::::::::::::::
: ETHERNET_802_3
: VLAN_TAG

: FULL

:0

: 20

1212

. 788

111

mailto:vr_enet_rgmii_layer-@6.sn___phy_status_in_ipg_eval

Verification Of SoC with Ethernet Interface

Appendix B Log Report

IPGin bit tine
Preanble size in bits

1104
: 56

SFD 10101011
Dest. Address COxfFfffffffffef

Src. Address : Oxdabef 190392

Tag Protocol 1D : 33024

User Priority :0

Canoni cal Indicator ;0

VLAN | dentifier 12

Lengt h/ Type val ue : 20

Pad Size 122

Actual crc : Ox9f cb09e5

[788] ENET_O0 A RGM | _PHY 0 PHY TX MONI TOR: Fini shed col | ecti ng packet #0

U D
0x48000000 ETHERNET COLLECT

vr_enet _packet - @6

[788] ENET_O0 A RGM | _PHY 0 PHY TX MONI TOR:

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : FULL
Packet nunber :0
Length of data : 20
Start tine 1212
End_time . 788
IPGin bit tine 1104
Preanble size in bits :56
SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : 0x243b421a5646
Lengt h/ Type val ue : 20
Pad Size : 26
Actual crc : 0x22d1llele

[788] ENET_O0O A RGM I _NMAC 0 MAC. MAC attribute
to

the value : 1

[788] ENET_O0O A RGM I _MAC 0 MAC. MAC attribute
updat ed

to the value : 1

[868] ENET_O A RGM | _PHY 0 PHY BFM : Started sendi ng packet #1 ETHERNET
| NJECT

vr _enet _packet - @9

[868] ENET_O0 A RGM I _MAC 0 MAC BFM : Started sendi ng packet #1 ETHERNET
| NJECT

vr _enet _packet - @0

[884] ENET_O0 A RGM I _NMAC 0 MAC RX MONI TOR: Started col |l ecti ng packet #1
ETHERNET COLLECT vr_enet _packet - @1

[884] ENET_O0 A RGM I _PHY 0 PHY TX MONI TOR. Started col |l ecti ng packet #1
ETHERNET COLLECT vr_enet _packet - @2

[1444] ENET_O A RGM | _PHY_O PHY BFM : Finished sendi ng packet #1 U D:
0xc8100001 ETHERNET | NJECT vr_enet _packet - @9

[1444] ENET_O A RGM | _PHY_ 0 PHY BFM :

frmrcd_ok _get is updated

brd frmrcd_ok _get is

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : FULL
Packet nunber 01
Length of data : 20
Start tine : 868
End_time : 1444
IPGin bit tine 1 96
Preanble size in bits :56
SFD 10101011
Dest. Address COxfFfffffffffef

112

Verification Of SoC with Ethernet Interface Appendix B Log Report

Src. Address : 0x1497b445d806
Lengt h/ Type val ue : 20

Pad Size : 26

Actual crc : O0xe021ebd?2

[1444] ENET_O A RGM | _PHY_O0 PHY: SEQ2) vr_enet_packet- @9 sent by drvr 1
[1444] ENET_O A RGMI_MAC 0O MAC BFM : Finished sendi ng packet #1 U D:
0x48000001 ETHERNET | NJECT vr_enet _packet - @0

[1444] ENET_O0 A RGM|_MAC 0 MAC BFM:

—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED

Dupl ex node : FULL

Packet nunber 01

Length of data : 20

Start tine : 868

End_time : 1444

IPGin bit tine 1 96

Preanble size in bits :56

SFD 10101011
Dest. Address : 0x54c1e2508d68
Src. Address : Ox4edb4a8239d4
Lengt h/ Type val ue : 20

Pad Size 26

Actual crc : 0x87a37b48

[1444] ENET_O A RGMI_MAC O MAC. MAC attribute frmtx_ok get is updated
to

the value : 2

[1444] ENET_O A RGM I 0 MAC. SEQ(2) vr_enet_packet- @0 sent by drvr O
[1444] ENET_O A RGM | _PHY_O PHY: SEQ 1) NORVAL_PHY vr_enet _seq- @7 done
[1444] ENET_O A RGM I 0 MAC. SEQ(1) NORMAL_MAC vr_enet_seq- @8 done

*** Dut warning at tinme 1448
Checked at line 96 in @r_enet_rgmi_checker
In MONITOR GM | _FAM LY
vr_enet_rgmi _layer-@.sn__ _phy status_in_ipg_eval () (unit:
sys.vr_enet_rgmi _env.active_mac_agents[O].nonitor.GM|I_FAMLY RGM | "' rgmi i
_nmonitor):

ERR _ENET044_PHY_RGM | _DUPLI CATI ON_M SNMATCH:

Data is not duplicated at positive and negative cycl es.

Data on positive edge RXD[3:0] is 0x02

whil e data on negative edge RXD[7:4] is 0OxOd

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 Indi cates RXC cl ock speed

W1l continue execution (check effect is WARNI NG

[1460] ENET_O A RGM | _MAC 0 MAC RX MONI TOR: Fi ni shed col | ecting packet #1
u D

0xc8100001 ETHERNET COLLECT vr_enet _packet - @1

[1460] ENET_O0 A RGM | _MAC 0 MAC RX MONI TOR:

—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED

Dupl ex node : FULL

Packet nunber 01

Length of data : 20

Start tine : 884

End_time : 1460

113

mailto:vr_enet_rgmii_layer-@6.sn___phy_status_in_ipg_eval

Verification Of SoC with Ethernet Interface

Appendix B Log Report

IPGin bit tine 1 96

Preanble size in bits :56

SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : 0x1497b445d806
Lengt h/ Type val ue : 20

Pad Size : 26

Actual crc : O0xe021ebd?2

[1460] ENET_O A RGM | _PHY_O0 PHY TX MONI TOR: Fi ni shed col | ecting packet #1
Ul D:

0x48000001 ETHERNET COLLECT vr_enet _packet - @2

[1460] ENET_O A RGM | _PHY 0 PHY TX MONI TOR:

—=========Packet
Packet type
Tag ki nd
Dupl ex node
Packet nunber
Length of data
Start tine
End_time
IPGin bit tine
Preanble size in bits
SFD
Dest. Address
Src. Address
Lengt h/ Type val ue
Pad Size
Actual crc

[1460] ENET_0 A RGM | _MAC O
to

the value : 2

[1460] ENET_0 A RGMI|_MAC O
updat ed

to the value : 2

[4644] ENET_0 A RGM | _PHY_ O
[4644] ENET_0 A RGM | _MAC O

| nf or mati on
: ETHERNET_802_3
: UNTAGGED

: FULL

01

: 20

: 884

: 1460

: 96

: 56
10101011
: 0x54c1e2508d68
: Ox4edb4a8239d4
: 20

: 26

: 0x87a37b48

MAC. MAC attribute

frmrcd_ok _get is updated

MAC. MAC attribute brd frmrcd ok get is

PHY: SEQ(0) MAIN vr_enet _seq- @0 ended
MAC. SEQ(0) MAIN vr_enet _seqg- @9 ended

Last specman tick - stop_run() was called

Normal stop - stop_run() is

Checki ng the test

conpl et ed

[4644] ENET 0 A RGM | _MAC 0 MAC SCOREBOARD:

Total nunber of errors are O

T L R o o = o

[4644] ENET_O A RGM | _PHY 0 PHY SCOREBOARD:

Total nunber of errors are O

o o

Checking is conplete - 0 DUT errors, 2 DUT warnings.
khkkhkkhkhkkhkhkhkhkkhkhhkhkhhhkhhhdhkhhhdhhhhkhhhdhhdhdhhdrhdhdhhdkhhhdhhrdddddrhdkhhx*k
Fi ni shed an Ethernet test with stop condition
OBJ_MECH | DLE_CYCLES_TOGETHER
khkkhkkhkhkkhkhkhkhkkhkhhkhkhhhdhhhdhkrhhdhhhdhhhhdhhkdhdhhddhdhdhhdkhhhdhhrdrhddrhdkhhx*x
eVC nane: ENET_O

Test tine: 4644

kkhkkhkhhkkkhkkhkkhkhhhkhkkhkkhkhkhhhkhkkhkhkhhhhkkhkhk hhhkhkkhkk k hhhkkkhk khhhkhkkhk k k hkkkk,* * kkkx*k**x*%

[4644] ENET_O0O A RGM | _MAC 0 MAC RX MONI TOR: Nunber of packets collected

114

Verification Of SoC with Ethernet Interface Appendix B Log Report

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE t ype packets
0==> ETHERNET_VI| type packets
0==> ETHERNET_MAG C type packets
0==> ETHERNET_JUMBO t ype packets
0==> ETHERNET_SNAP type packets
0==> RANDOM DATA type packets

[4644] ENET_O A RGM | _MAC 0 MAC BFM : Nunmber of packets injected
2==> ETHERNET_802_3 type packets

0==> ETHERNET_PAUSE t ype packets

0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets

0==> ETHERNET_JUMBO t ype packets

0==> ETHERNET_SNAP type packets

0==> RANDOM DATA type packets

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE t ype packets
0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets
0==> ETHERNET_JUMBO t ype packets
0==> ETHERNET_SNAP type packets
0==> RANDOM DATA type packets

[4644] ENET_O A RGM | _PHY_O PHY BFM : Nunmber of packets injected
2==> ETHERNET_802_3 type packets

0==> ETHERNET_PAUSE t ype packets

0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets

0==> ETHERNET_JUMBO t ype packets

0==> ETHERNET_SNAP type packets

0==> RANDOM DATA type packets

Wote 1 cover_struct to test_rgmi_nornmal _1974560108. ecov

Al'l sequence drivers:

driver sent pendi ng current
0. vr_enet _driver-@ 2 0 -
1. vr_enet_driver-@ 2 0 -

**** Specman - finishing session:
config run -exit_on == normal _stop (or all); exiting...

Collision test caselog report:

Initializing Specman Elite (4.3.4) - Linked on Sun Aug 29 21:15:26 2004

115

Verification Of SoC with Ethernet Interface Appendix B Log Report

1. break on error
Br eakpoi nt al ready exists: 1. break on error
Loadi ng
/ hore/ mani shr/ mani sh/test _cases/rgmi/test_rgmi_normal /test_rgm i _nornal
e

read...parse...update...patch...h code...code...clean...

Doi ng setup ...

191 checks were nodifi ed.

Generating the test using seed 1110103410. ..

[0] ENET_0O A RGM | _MAC 0 MAC. Checking DUT signal connectivity in
RGM | _MAC O

enet _evc_top.rgmi_0O

[0] ENET_O A RGM | _PHY_O PHY: Checking DUT signal connectivity in
RGM | _PHY 0O

enet _evc_top.rgmi_0O

-------------- ENET_O: vr_enet _env- @
Verisity Ethernet eVC - version 2.0

of ACTIVE MAC AGENTS : 1

of PASSI VE MAC AGENTS : 0

of ACTIVE PHY AGENTS : 1

of PASSI VE PHY AGENTS : 0

-------------- E path: sys.vr_enet_rgmi_env

666

Al'l sequence drivers:

driver sent pendi ng current
0. wvr_enet _driver-@ 0 0 -
1. vr_enet_driver-@ 0 0 -

Starting the test

Runni ng the test

[0] ENET_O: Checking DUT reset signal connectivity in environment ENET_O
[0] ENET_O: Checking signal RESET Environnent nane ENET_O with val ue
reset

[0] ENET_ 0O A RGMI_MAC 0 MAC. SEQQO0) Starting MAIN vr_enet_seq- @

[0] ENET_O A RGM I _PHY_O0 PHY: SEQ0) Starting MAIN vr_enet_seq- @

Runni ng shoul d now be initiated fromthe sinulator side

To conpl ete waveform setup, execute in sinulator pronpt the command file
sn_wave_si nvi si on. sv

Pl ease |load the file: 'sn_wave_test _rgmi_nornmal.sv' into the viewer after
t he

sinmulation is conpleted.

Doi ng garbage collection: current size is 85531036 bytes ...

Done - new size is 66671040 bytes.

[0] ENET_O: Reset was asserted

[0] ENET_ 0O A RGMI_MAC 0 MAC. SEQQ0) MAIN vr_enet_seq-@ quit

[0] ENET_0O A RGM I _PHY_O0 PHY: SEQ0) MAIN vr_enet_seq-@ quit

[4] ENET_ O A RGMI_MAC 0 MAC. SEQ Q) rerunning drvr O
[4] ENET_ 0O A RGMI_MAC 0 MAC. SEQQO0) Starting MAIN vr_enet_seq- @9
[4] ENET_O A RGM | _PHY_O PHY: SEQO) rerunning drvr 1
[4] ENET_O A RGM | _PHY_O0 PHY: SEQ0) Starting MAIN vr_enet_seq- @0

[100] ENET_O: Reset was deasserted
[104] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _LI NK_STATUS_M SMATCH:
Li nk status indicated as down by RGM | PHY.
Specs(HP-RGM |, Versi on2. 0 Specs): Table-4 Indicates |ink status

[104] ENET_O0 A RGM | _MAC 0 MAC

PHY_RGM | _SPEED MODE_M SMATCH:
Det ect ed speed node fromthe bus is SPEED MODE 10MBPS

116

Verification Of SoC with Ethernet Interface Appendix B Log Report

whi | e expected speed node is SPEED MODE_100MBPS
Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 Indi cates RXC cl ock speed

[108] ENET_O A RGM | _PHY_0 PHY: SEQ0) MAIN vr_enet_seq- @O0: Executing
def aul t

body() nethod: doing 2 sequences

[108] ENET_O A RGM 1 _PHY_ 0 PHY: SEQ 1) NORMAL_PHY vr_enet _seq- @1 created
[108] ENET_O0O A RGM I _NMAC 0 MAC. SEQ0) MAIN vr_enet_seq- @9: Executing
def aul t

body() nethod: doing 2 sequences

[108] ENET_O0 A RGM 1 _NMAC 0 MAC. SEQ(1) NORMAL_MAC vr_enet _seq- @2 created
[108] ENET_O A RGM | _PHY O PHY: O error validation rules violated...

[108] ENET_O A RGM | _PHY_ 0 PHY: SEQ2) vr_enet_packet- @3 created

[108] ENET_O A RGMI_MAC O MAC. O error validation rules violated...

[108] ENET_O0 A RGM | _NMAC 0 MAC. SEQ2) vr_enet_packet- @4 created

[108] ENET_O A RGM I _PHY 0O PHY BFM: Injecting RX_ER

vr_enet _directed_prot_err

[112] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _SPEED MODE_M SMATCH:

Det ect ed speed node fromthe bus is SPEED MODE 1GBPS

whi | e expected speed node is SPEED MODE_100MBPS

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 Indi cates RXC cl ock speed

[112] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _DUPLEX_STATUS_M SMATCH:

Det ect ed dupl ex status fromthe bus is FULL

whi | e expected duplex status is HALF

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 | ndicates dupl ex status

[120] ENET_O A RGM I _MAC 0 MAC:

PHY_RGM | _SPEED MODE_M SMATCH:

Det ect ed speed node fromthe bus is SPEED MODE 1GBPS

whi | e expected speed node is SPEED MODE_100MBPS

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 Indi cates RXC cl ock speed

[120] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _DUPLEX_STATUS_M SNMATCH:

Det ect ed dupl ex status fromthe bus is FULL

whi | e expected duplex status is HALF

Specs(HP-RGM |, Versi on2. 0 Specs): Tabl e-4 | ndicates dupl ex status

*** Dut warning at tinme 124
Checked at line 152 in @r_enet_rgmi_checker
In vr_enet_nonitor-@e6.sn___phy mi_rx_er_chk_eval () (unit:
sys.vr_enet_rgmi _env.active_nmac_agents[0].nonitor):

ERR _ENET031_PHY_M | _FALSE CRS_| NDI CATI ON:

RX_ER si gnal has been asserted when RX DV signal was de-asserted by MI
PHY,

wi thout indicating False Carrier I|ndication.

Specs(| EEE- 802. 3, 2000) : 22.2.2.8

W1l continue execution (check effect is WARNI NG

*** Dut warning at tinme 132
Checked at line 152 in @r_enet_rgmi_checker

117

mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

In vr_enet_monitor-@e6.sn___phy mi_rx_er_chk_eval () (unit:
sys.vr_enet_rgmi _env.active_nmac_agents[0].nonitor):

ERR _ENET031_PHY_M | _FALSE CRS_| NDI CATI ON:

RX_ER si gnal has been asserted when RX DV signal was de-asserted by MI
PHY,

wi thout indicating False Carrier Indication.

Specs(| EEE- 802. 3, 2000) : 22.2.2.8

W1l continue execution (check effect is WARNI NG

[292] ENET_O A RGM | _PHY 0 PHY BFM : Started sendi ng packet #0 ETHERNET
| NDJECT

vr_enet _packet - @3

[292] ENET_O0O A RGM I _NMAC 0 MAC BFM : Started sendi ng packet #0 ETHERNET
| NJECT

vr _enet _packet - @4

[308] ENET_0O A RGM 1 _NMAC 0 MAC RX MONI TOR: Started col |l ecti ng packet #0
ETHERNET COLLECT vr_enet _packet - @5

[308] ENET_O0 A RGM 1 _PHY 0 PHY TX MONI TOR: Started coll ecti ng packet #0
ETHERNET COLLECT vr_enet _packet - @6

[316] ENET_O A RGM I _PHY O PHY: Collision is detected on the bus

[484] ENET_O A RGM 1 _PHY_0 PHY BFM : Fini shed sendi ng packet #0 U D:
0xc8100000 ETHERNET | NJECT vr_enet _packet - @3

[484] ENET_O0 A RGM | _PHY 0 PHY BFM:

—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber :0
Length of data : 20
Start tine 1292
End_time 1484
IPGin bit tine 1 96
Preanble size in bits :56
SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : Oxf 4d6e69b2c41
Lengt h/ Type val ue : 20
Pad Size : 26
Actual crc : Ox4al2a3b
==========Packet Error |nformati on==========
Error type : RX_ER
Error phase ;1 PG
Start tine 0
Error length ;2

[484] ENET_O A RGM | _PHY_ 0 PHY: SEQ2) vr_enet_packet- @3 sent by drvr 1
[484] ENET_O A RGM 1 _MAC 0 MAC BFM : Fini shed sendi ng packet #0 U D:
0x48000000 ETHERNET | NJECT vr_enet _packet - @4

[484] ENET_O0 A RGM|_MAC 0 MAC BFM:

—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED

Dupl ex node : HALF

Packet nunber :0

Length of data : 20

Start tine 1292

End_time 1484

IPGin bit tine 1 96

Preanble size in bits :56

SFD 10101011
Dest. Address COxfFfffffffffef

118

mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

Src. Address : Oxeede3f 148e91
Lengt h/ Type val ue : 20
Pad Size : 26
Actual crc : Ox36e8alae
==========Packet Error |nfornation==========
Error type : TX_ER
Error phase . DATA
Start time 0
Error length ;2
[484] ENET_O A RGM | _PHY_ 0 PHY: SEQ 1) NORMAL_PHY vr_enet _seq- @1 done
[484] ENET_O A RGM 1 _PHY_ 0 PHY: SEQ 1) NORMAL_PHY vr_enet _seq- @7 created
[484] ENET_O A RGM 1 _PHY O PHY: O error validation rules violated...
[484] ENET_O A RGM | _PHY_ 0 PHY: SEQ2) vr_enet_packet- @8 created
[484] ENET_O0 A RGM | _PHY 0 PHY BFM: Injecting RX ER

vr_enet _directed_prot _erF
[488] ENET_O A RGMI_MAC 0 MAC:

PHY_RGM | _LI NK_STATUS_M SMATCH:
Li nk status indicated as down by RGM | PHY.
Specs(HP-RGM |, Versi on2. 0 Specs): Table-4 Indicates |ink status

[496] ENET_O0 A RGM|_MAC 0 MAC:

PHY_RGM | _LI NK_STATUS_M SMATCH:
Li nk status indicated as down by RGM | PHY.
Specs(HP-RGM |, Versi on2. 0 Specs): Table-4 Indicates |ink status

*** Dut warning at tinme 500
Checked at line 152 in @r_enet_rgmi_checker
In vr_enet_nonitor-@e6.sn___phy mi_rx_er_chk_eval () (unit:
sys.vr_enet_rgmi _env.active_nmac_agents[0].nonitor):

ERR _ENET031_PHY_M | _FALSE CRS_| NDI CATI ON:

RX_ER si gnal has been asserted when RX DV signal was de-asserted by MI
PHY,

wi thout indicating False Carrier Indication.

Specs(| EEE- 802. 3, 2000) : 22.2.2.8

W1l continue execution (check effect is WARNI NG

[500] ENET_O0 A RGM 1 _NMAC 0 MAC RX MONI TOR: WARNI NG : The Source address
coul d

not be unpacked due to lack of bits

[500] ENET_O0O A RGM I _NMAC 0 MAC RX MONI TOR: WARNI NG : The Length/ Type
field

coul d not be unpacked due to |ack of bits

[500] ENET_O0O A RGM 1 _MAC 0 MAC RX MONI TOR: WARNING : The CRC coul d not be
unpacked due to lack of bits

[500] ENET_O0O A RGM | _MAC 0 MAC RX MONI TOR: Fi ni shed col | ecti ng packet #0
CRC:

0xc49b92d9 ETHERNET COLLECT vr_enet _packet - @5

[500] ENET_O0 A RGM|_NMAC 0 MAC RX MONI TOR

—=========Packet | nformati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED

Dupl ex node : HALF

Packet nunber :0

Length of data :0

119

mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface

Appendix B Log Report

Cal cul ated CRC : 0x9d64c953
Start tine : 308
End_time : 500
IPGin bit tine :0
Preanble size in bits :56
SFD 210101011
Dest. Address : 0x000000000000
Src. Address : 0x000000000000
Lengt h/ Type val ue :0
Pad Si ze ;0
Actual crc : 0x0
==========Packet Error |nformati on==========
Error type : CRC_ERROR
Error type : SHORT_FRAME_ERROR
Error type : COLLI SI ON
Error phase : ABSOLUTE
Start tine 0

[500] ENET_O A RGM | _PHY 0 PHY TX MONI TOR:
coul d

not be unpacked due to lack of bits

[500] ENET_O A RGM | _PHY 0 PHY TX MONI TOR:
field

coul d not be unpacked due to |ack of bits
[500] ENET_O A RGM I _PHY 0 PHY TX MONI TOR:
unpacked due to lack of bits

[500] ENET_O A RGM | _PHY 0 PHY TX MONI TOR:
CRC:

WARNI NG@ : The Source address

WARNI NG : The Length/ Type

WARNI NG@ : The CRC coul d not be

Fi ni shed col |l ecti ng packet #0

0xc49b92d9 ETHERNET COLLECT vr_enet _packet - @6
[500] ENET_O0 A RGM | _PHY_0 PHY TX MONI TOR:
—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber 10
Length of data :0
Cal cul ated CRC : 0x9d64c953
Start tine : 308
End_time : 500
IPGin bit tine 10
Preanble size in bits :56
SFD 10101011
Dest. Address : 0x000000000000
Src. Address : 0x000000000000
Lengt h/ Type val ue :0
Pad Si ze 10
Actual crc : 0x0
==========Packet Error |nformati on==========
Error type : CRC_ERROR
Error type : SHORT_FRAME_ERROR
Error type : COLLI SI ON
Error phase : ABSOLUTE
Start tine 0

[500] ENET_O A RGMI_MAC 0O MAC. MAC attribute frmchk seq_err_get is

updat ed
to the value : 1

120

Verification Of SoC with Ethernet Interface Appendix B Log Report

*** Dut warning at time 500
Checked at line 41 in @r_enet_data_check
In vr_enet _nonitor-@b5. check_tx_packet() (unit:
sys.vr_enet_rgmi _env.active_phy_agents[0].nonitor):

ERR_ENET001_MAC BAD CRC:
MAC has transmitted a packet with BAD CRC
Specs(| EEE-802. 3,2000): 3.4

W1l continue execution (check effect is WARNI NG

*** Dut warning at time 500
Checked at line 46 in @r_enet_data_check
In vr_enet _nonitor-@b5. check_tx_packet() (unit:
sys.vr_enet_rgmi _env.active_phy_agents[0].nonitor):

ERR_ENET002_MAC SHORT_FRAME:
MAC has transmitted a packet with SHORT FRAME.
Specs(| EEE-802. 3,2000): 4.2.3.3

W1l continue execution (check effect is WARNI NG

*** Dut warning at tine 508
Checked at line 152 in @r_enet_rgmi_checker
In vr_enet_nonitor-@e6.sn___phy mi_rx_er_chk_eval () (unit:
sys.vr_enet_rgmi _env.active_nmac_agents[0].nonitor):

ERR _ENET031_PHY_M | _FALSE CRS_| NDI CATI ON:

RX_ER si gnal has been asserted when RX DV signal was de-asserted by MI
PHY,

wi thout indicating False Carrier Indication.

Specs(| EEE- 802. 3, 2000) : 22.2.2.8

W1l continue execution (check effect is WARNI NG

[684] ENET_O A RGM | _PHY 0 PHY BFM: Started sendi ng packet #1 ETHERNET
| NJECT
vr_enet _packet - @8
[684] ENET_O0O A RGM I _MAC 0 MAC BFM : Started sendi ng packet #0 ETHERNET
| NDJECT
vr_enet _packet - @4
[700] ENET_O A RGM I _NMAC 0 MAC RX MONI TOR: Started col |l ecti ng packet #1
ETHERNET COLLECT vr_enet _packet - @9
[700] ENET_O A RGM | _PHY 0 PHY TX MONI TOR. Started col |l ecti ng packet #1
ETHERNET COLLECT vr_enet _packet - @0
[708] ENET_O A RGM | _PHY O PHY: Collision is detected on the bus
[876] ENET_O A RGM 1 _PHY_0 PHY BFM : Fini shed sendi ng packet #1 U D:
0xc8100001 ETHERNET | NJECT vr_enet _packet - @8
[876] ENET_O0 A RGM | _PHY 0 PHY BFM:
—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3

Tag ki nd : UNTAGGED

121

mailto:vr_enet_monitor-@15.check_tx_packet
mailto:vr_enet_monitor-@15.check_tx_packet
mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface

Appendix B Log Report

Dupl ex node : HALF
Packet nunber 01
Length of data : 20
Start tine : 684
End_time : 876
IPGin bit tine 1 96
Preanble size in bits :56

SFD 210101011
Dest. Address : Oxbd55f b832377
Src. Address : 0x7826a4b48198
Lengt h/ Type val ue : 20
Pad Size . 26
Actual crc :0x728911e4
==========Packet Error |nformati on==========
Error type RX_ER
Error phase | PG
Start tine 0
Error length ;2

[876] ENET_O A RGM | _PHY_ 0 PHY: SEQ2) vr_enet_packet- @8 sent by drvr 1
[876] ENET_O A RGM |1 _MAC 0 MAC BFM : Fini shed sendi ng packet #0 U D:
0x48000000 ETHERNET | NJECT vr_enet _packet - @4

[876] ENET_O A RGM I _MAC 0O MAC BFM :

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber :0
Length of data : 20
Start tine : 684
End_time : 876
IPGin bit tine 1 96
Preanble size in bits :56
SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : Oxeede3f 148e91
Lengt h/ Type val ue : 20
Pad Size : 26
Actual crc : Ox36e8alae

==========Packet Error |nformati on==========

Error type TX_ER
Error phase DATA
Start tine 0
Error length ;2

[876] ENET_O A RGM I _PHY_ 0 PHY: SEQ1) NORMAL_PHY vr_enet _seq- @7 done
[892] ENET_O0 A RGM I _MAC 0 MAC RX MONI TOR: WARNI NG The Source address
coul d

not be unpacked due to lack of bits

[892] ENET_0 A RGMI_NMAC 0 MAC RX MONI TOR WARNI NG
field

coul d not be unpacked due to |ack of bits

[892] ENET_0 A RGMI_NMAC 0 MAC RX MONI TOR WARNI NG
unpacked due to lack of bits

[892] ENET_O0 A RGM I _MAC 0 MAC RX MONI TOR: Fi ni shed col | ecti ng packet #1
CRC:

0xc49b92d9 ETHERNET COLLECT vr_enet _packet - @9

[892] ENET_O0 A RGMI_NMAC 0 MAC RX MONI TOR

The Lengt h/ Type

The CRC coul d not be

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber 01

122

Verification Of SoC with Ethernet Interface

Appendix B Log Report

Length of data :0
Cal cul ated CRC : 0x9d64c953
Start tine : 700
End_time : 892
IPGin bit tine 10
Preanble size in bits :56
SFD 210101011
Dest. Address : 0x000000000000
Src. Address : 0x000000000000
Lengt h/ Type val ue :0
Pad Si ze ;0
Actual crc : 0x0
==========Packet Error |nformati on==========
Error type : CRC_ERROR
Error type : SHORT_FRAME_ERROR
Error type : COLLI SI ON
Error phase : ABSOLUTE

[892] ENET_O0 A RGM | _PHY 0 PHY TX MONI TOR WARNI NG

coul d
not be unpacked due to lack of bits

[892] ENET_O0 A RGM | _PHY 0 PHY TX MONI TOR WARNI NG

field
coul d not be unpacked due to |ack of bits

[892] ENET_O0 A RGM | _PHY 0 PHY TX MONI TOR WARNI NG

unpacked due to lack of bits

The Source address

The Lengt h/ Type

The CRC coul d not be

[892] ENET_O A RGM I _PHY 0 PHY TX MONI TOR: Fini shed col |l ecti ng packet #1

CRC

0xc49b92d9 ETHERNET COLLECT vr_enet _packet - @0
[892] ENET 0 A RGM | _PHY 0 PHY TX MONI TOR
—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber 01
Length of data :0
Cal cul ated CRC : 0x9d64c953
Start tine : 700
End_time : 892
IPGin bit tine 10
Preanble size in bits :56
SFD 10101011
Dest. Address : 0x000000000000
Src. Address : 0x000000000000
Lengt h/ Type val ue :0
Pad Si ze 10
Actual crc : 0x0
==========Packet Error |nformati on==========
Error type : CRC_ERROR
Error type : SHORT_FRAME_ERROR
Error type : COLLI SI ON
Error phase : ABSOLUTE
Start tine 0

[892] ENET_O0 A RGM I _NMAC 0 MAC. MAC attribute
updat ed
to the value : 2

123

frmchk_seq_err_get is

Verification Of SoC with Ethernet Interface

Appendix B Log Report

*** Dut warning at tine 892
Checked at line 41 in @r_enet_data_check
In vr_enet _nonitor-@b5. check_tx_packet() (unit:
sys.vr_enet_rgmi _env.active_phy_agents[0].nonitor):

ERR_ENET001_MAC BAD CRC:
MAC has transmitted a packet with BAD CRC
Specs(| EEE-802. 3,2000): 3.4

conti nue execution (check effect i s WARNI NG

*** Dut warning at tine 892
Checked at line 46 in @r_enet_data_check
In vr_enet _nonitor-@b5. check_tx_packet() (unit:
sys.vr_enet_rgmi _env.active_phy_agents[0].nonitor):

ERR_ENET002_MAC SHORT_FRAME:
MAC has transmitted a packet with SHORT FRAME.
Specs(| EEE-802. 3,2000): 4.2.3.3

W1l continue execution (check effect is WARNI NG

[2924] ENET_O0O A RGMI_MAC 0 MAC BFM : Started sendi ng packet #0 ETHERNET
I NJECT vr _enet _packet - @4

[2940] ENET_O A RGM | _PHY_O PHY TX MONITOR: Started coll ecti ng packet #2
ETHERNET COLLECT vr_enet _packet - @1
[3276] ENET_O A RGM | _MAC 0 MAC BFM :
vr_enet _directed_prot_err

[4076] ENET_O A RGM | _PHY_O PHY: SEQ 0) MAIN vr_enet_seq- @0 ended
[4076] ENET_O A RGMI_MAC 0O MAC BFM : Finished sendi ng packet #0 U D:
0x48000000 ETHERNET | NJECT vr_enet _packet - @4

[4076] ENET_O A RGM | _MAC 0 MAC BFM :

I njecting TX_ER

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber :0
Length of data : 20
Start tine 12924
End_time : 4076
IPGin bit tine : 1016
Preanble size in bits :56
SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : Oxeede3f 148e91
Lengt h/ Type val ue : 20
Pad Size . 26
Actual crc : Ox36e8alae
==========Packet Error |nformati on==========
Error type TX_ER
Error phase DATA

Start time
Error length

124

mailto:vr_enet_monitor-@15.check_tx_packet
mailto:vr_enet_monitor-@15.check_tx_packet

Verification Of SoC with Ethernet Interface Appendix B Log Report

[4076] ENET_O A RGMI_MAC 0 MAC. MAC attribute frmtx_ok get is updated
to

the value : 1

[4076] ENET_O A RGMI_MAC O MAC. MAC attribute brd_frmtx ok get is
updat ed

to the value : 1

[4076] ENET_O A RGMI_MAC O MAC. MAC attribute nulti _frmtx_ok_get is
updat ed

to the value : 1
[4076] ENET_O A RGM I _
updat ed

to the value : 1

Z

MAC. MAC attribute multi_coll_frmget is

[4076] ENET_O A RGMI_MAC 0 MAC. SEQ2) vr_enet_packet- @4 sent by drvr O
[4076] ENET_O A RGM | _MAC 0 MAC. SEQ1) NORVAL_NAC vr_enet _seq- @2 done
[4076] ENET_O A RGM I _MAC 0 MAC. SEQ1) NORVAL_NMAC vr_enet _seq- @2 created
[4076] ENET_O A RGMI_MAC O MAC. O error validation rules violated.

[4076] ENET_O A RGM I _MAC 0 MAC. SEQ2) vr_enet_packet- @3 created

[4092] ENET_O0 A RGM | _PHY_O PHY TX MONI TOR Fini shed col | ecti ng packet #2

Ul D:

0x48000000 ETHERNET COLLECT vr_enet _packet - @1
[4092] ENET O A RGM | _PHY 0 PHY TX MONI TOR
—=========Packet | nfornmati on==============

Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber 12
Length of data : 20
Start tine : 2940
End_time : 4092
IPGin bit tine : 1024
Preanble size in bits :56
SFD 10101011
Dest. Address COxfFfffffffffef
Src. Address : Oxee4de3f 148e91
Lengt h/ Type val ue : 20
Pad Size 1 26
Actual crc : Ox36e8alae
==========Packet Error |nformati on==========
Error type : TX_ER
Error phase . DATA
Start tine 0
Error length ;2

[4260] ENET_O A RGMI_MAC 0 MAC BFM : Started sendi ng packet #1 ETHERNET
I NDJECT vr _enet _packet - @3

*** Dut warning at tinme 4276
Checked at line 40 in @r_enet_m i _checker
In vr_enet_nonitor-@>5 (unit:
sys.vr_enet_rgmi _env.active_phy_agents[0].nonitor):

mi _i pg_chk_btn_tx_pkts: ERR ENETO17_MAC M _|I PG TOO_ SHORT:

Inter packet gap (I PG between two Tx packets is shorter than 96 bit tine.
Specs(| EEE-802. 3,2000): 4.2.3.2.2 & 22.2.3.1

W1l continue execution (check effect is WARNI NG

[4276] ENET_O A RGM | _PHY_O PHY TX MONITOR. Started coll ecti ng packet #3
ETHERNET COLLECT vr_enet _packet - @4

125

Verification Of SoC with Ethernet Interface Appendix B Log Report

[4612] ENET_O A RGM | _MAC 0 MAC BFM :
vr_enet _directed_prot_err

[5412] ENET_O0 A RGMI_MAC 0 MAC BFM : Finished sendi ng packet #1 U D:
0x48000001 ETHERNET | NJECT vr_enet _packet - @3

[5412] ENET_O A RGM | _MAC 0 MAC BFM :

I njecting TX_ER

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber 01
Length of data : 20
Start tine : 4260
End_time : 5412
IPGin bit tine 1 96
Preanble size in bits :56
SFD 10101011
Dest. Address : 0x18957307¢c120
Src. Address : Oxac2b44ac6769
Lengt h/ Type val ue : 20
Pad Size 26
Actual crc : Ox8755daef
==========Packet Error |nformati on==========
Error type TX_ER
Error phase DATA

Start time
Error length

to
the value : 2

[5412] ENET_O A RGMI_MAC O MAC. MAC attribute

frmtx_ok_get is updated

[5412] ENET_O0 A RGM I _MAC 0 MAC. SEQ2) vr_enet_packet- @3 sent by drvr O
[5412] ENET_O0 A RGM | _MAC 0 MAC. SEQ1) NORVAL_NAC vr_enet _seq- @2 done
[5428] ENET_O0 A RGM | _PHY_O0 PHY TX MONI TOR: Fi ni shed col | ecti ng packet #3

U D

0x48000001 ETHERNET COLLECT vr_enet _packet - @4
[5428] ENET_O A RGM | _PHY 0 PHY TX MONI TOR:

—=========Packet | nfornmati on==============
Packet type : ETHERNET_802_3
Tag ki nd : UNTAGGED
Dupl ex node : HALF
Packet nunber]
Length of data : 20
Start tine 14276
End_time : 5428
IPGin bit tine 192
Preanble size in bits :56
SFD 10101011
Dest. Address : 0x18957307c120
Src. Address : Oxac2b44ac6769
Lengt h/ Type val ue : 20
Pad Size 1 26
Actual crc : Ox8755daef
==========Packet Error |nformati on==========
Error type TX_ER
Error phase DATA

Start time
Error length

[8612] ENET_O0 A RGMI_MAC 0 MAC. SEQ 0O) MAIN vr_enet _seq- @9 ended
Last specman tick - stop_run() was called

Normal stop - stop_run() is conpleted

Checking the test ...

[8612] ENET_O A RGM | _MAC 0 MAC SCOREBQARD:

126

Verification Of SoC with Ethernet Interface Appendix B Log Report

Total nunber of errors are O

T L R o o = o

[8612] ENET_0 A RGM | _PHY_0 PHY SCOREBOARD:
Total nunber of errors are O

T L R o o = o

Checking is conplete - 0 DUT errors, 9 DUT warni ngs.

R R b I R R I S I I R S R I I S S S I I R R I S I S I S I S
Fi ni shed an Ethernet test with stop condition

OBJ_MECH | DLE_CYCLES_TOGETHER

R R S b I R I R I I I R S S I I S S I I R I S I I I
eVC nane: ENET_O

Test tine: 8612

kkhkkhkkhhkkkkhkkhkhhhkhkkhkkhkhhhhkhkkhkhkhhhhkkhkhk dhhhhkkhkkhk hhhkhkkdk khhhkhkkhk k k hkhkkk,*,* kkkx*k***%

[8612] ENET_O0 A RGM I _MAC 0 MAC RX MONI TOR: Nunber of packets collected
2==> ETHERNET_802_3 type packets

0==> ETHERNET_PAUSE t ype packets

0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets

0==> ETHERNET_JUMBO t ype packets

0==> ETHERNET_SNAP type packets

0==> RANDOM DATA type packets

[8612] ENET_O0O A RGM | _MAC 0O MAC BFM : Number of packets injected
2==> ETHERNET_802_3 type packets

0==> ETHERNET_PAUSE t ype packets

0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets

0==> ETHERNET_JUMBO t ype packets

0==> ETHERNET_SNAP type packets

0==> RANDOM DATA type packets

4==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE t ype packets
0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets
0==> ETHERNET_JUMBO t ype packets
0==> ETHERNET_SNAP type packets
0==> RANDOM DATA type packets

[8612] ENET_O A RGM | _PHY_O PHY BFM : Nunmber of packets injected
2==> ETHERNET_802_3 type packets

0==> ETHERNET_PAUSE type packets

0==> ETHERNET_VI| type packets

0==> ETHERNET_MAG C type packets

0==> ETHERNET_JUMBO t ype packets

0==> ETHERNET_SNAP type packets

0==> RANDOM DATA type packets

Wote 1 cover_struct to test_rgmi_normal _1110103410. ecov

127

Verification Of SoC with Ethernet Interface

Appendix B Log Report

Al'l sequence drivers:

driver sent pendi ng
0. vr_enet _driver-@ 2
1. vr_enet_driver-@ 2 0

**** Specman - finishing session:

current

config run -exit_on == normal _stop (or all); exiting...

128

	01 cover_page_final.pdf
	02 content.pdf
	03 chap_1.pdf
	04 chap_2.pdf
	05 chap_3.pdf
	06 chap_4.pdf
	07 chap_5.pdf
	08 Chap_6.pdf
	09 chap_7.pdf
	10 References.pdf
	11 Appendix_A.pdf
	12 Appendix_B.pdf

