
“VERIFICATION OF SoC WITH ETHERNET
INTERFACE”

A Major Project Report

Submitted in Partial Fulfillment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGG.
(VLSI Design)

By
Manish Raizada

(03MEC013)

Department of Electronics & Communication Engineering
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY OF SCIENCE & TECHNOLOGY,
AHMEDABAD 382 481

MAY 2005

ii

CERTIFICATE

This is to certify that the Major Project Report (Part-I-II) entitled “Verification of SoC with

Ethernet interface” submitted by Mr. Manish Raizada (Roll No.03MEC13) towards the partial

fulfillment of the requirements for Semester III-IV of Master of Technology (Electronics &

Communication Engg.) in the field of VLSI Design of Nirma University of Science and

Technology is the record of work carried out by him under our supervision and guidance. The

work submitted has in our opinion reached a level required for being accepted for examination. The

results embodied in this major project work to the best of our knowledge have not been submitted

to any other University or Institution for award of any degree or diploma.

Date:

Project Guide: Facilitator at Institute:

Miss Mittal Patel Prof. Y. N. Trivedi
ASIC Verification Dept. Electronics & Comm. Engg. Dept.
eInfochips Limited, Ahmedabad Institute Of Technology,
 Nirma University, Ahmedabad

Dr. M. D. Desai Dr. H. V. Trivedi

HOD Director

Dept of Electronics & Comm. Engg. Institute of Technology

Institute of Technology, Nirma University Nirma University, Ahmedabad

Signature of Examiners:

iii

ACKNOWLEDGEMENT

It gives me a great pleasure to take this opportunity to thank to eInfochips Pvt. Ltd. and

Mr. Nilesh Ranpura for giving me such a great opportunity to do project in their esteemed

organization. I deem it my privilege to have carried out this dissertation work under this well-

known quality conscious organization.

 I express my deep sense of gratitude to Mr. Pranav Tailor and Miss Mittal Patel for

their personal involvement in every facet of this work and readiness to resolve any point of

confusion by mutual discussion. I would also like to thank Mr. Vijay Patel and Mr.

Dharmendra J. Patel for their co-operation and providing the necessary facilities for carrying

out this work.

 I would like to thank Prof. Y. N. Trivedi for his help, valuable suggestions and moral
support. Finally, I would like to thank my parents for their constant love and support and for
providing me with the opportunity and the encouragement to pursue my goals.

(Manish Raizada)

iv

Confidentiality Notice

The contents of this document constitute valuable proprietary and confidential property of

Verisity Design, Inc. and its licensors, including eInfochips, Inc. No part of this

information product may be reproduced, transmitted, or translated in any form or by any

means, electronic, mechanical, manual, optical, or otherwise without prior written

permission from Verisity Design, Inc.

Information in this product is subject to change without notice and does not represent a

commitment on the part of Verisity. The information contained herein is the proprietary

and confidential information of Verisity or its licensors, and is supplied subject to, and may

be used only by Verisity’s customers in accordance with, a written agreement between

Verisity and its customers. Except as may be explicitly set forth in such agreement,

Verisity does not make, and expressly disclaims, any representations or warranties as to the

completeness, accuracy, or usefulness of the information contained in this document.

Verisity does not warrant that use of such information will not infringe any third party

rights, nor does Verisity assume any liability for damages or costs of any kind that may

result from use of such information.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in

subparagraphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at

DFARS 252.227-7013.

Destination Control Statement
All technical data contained in this product is subject to the export control laws of the

United States of America. Disclosure to nationals of other countries contrary to United

States law is prohibited. It is the reader’s responsibility to determine the applicable

regulations and to comply with them.

v

Abstract

Verification is not a test bench, nor is it a series of test benches. Verification is a process used

to demonstrate the functional correctness of a design. By saying functional correctness means the

design to be verified has to adhere with some predefined rules or standard. In other words design

under test should behave as per specified rules. We all perform verification processes throughout

our daily lives: balancing a checkbook, tasting a simmering dish, associating landmarks with

symbols on a map. These are all verification processes.

 Today, in the era of multi-million gate ASICs, reusable Intellectual Property (IP), and

System-on-Chip (SoC) designs, verification consumes about 70% of the design effort. Design

teams, properly staffed to address the verification challenge, include engineers dedicated to

verification. The number of verification engineers is usually twice the number of RTL designers.

When design projects are completed, the code that implements the test benches makes up to 80%

of the total volume. It is also the reason verification is currently the target of new tools and

methodologies. These tools and methodologies attempt to reduce the overall verification time by

enabling parallelism of effort, higher levels of abstraction and automation. Providing higher

levels of abstraction enables you to work more efficiently without worrying about low-level

details.

 eVC consists of a complete set of elements for stimulating, checking and collecting

coverage information on the device under test (DUT). The eVC expedites creation of a more

efficient test bench for DUT. The eVC can work with both Verilog and VHDL devices and with

all HDL simulators that are supported by Specman Elite. eVC can be used as full verification

environment or can be added to existing environment. The eVC interface is viewable and thus

can be the basis for user extensions.

 This thesis report put some light on developing verification environment for the verification

of Ethernet eVC (e Verification Component). Architecture of eVC has been discussed. eVC

reduce verification time by atomizing the verification process. First few pages of report gives the

answers of some fundamental questions like what is verification, why it is required and

importance of verification. White Box approach has been used to verify eVC, and Coverage

Driven Verification process used to verify functionality.

v

Contents
Page No.

List of Figures (vii)
List of Tables (ix)
Abbreviation (x)

CHAPTER 1: Introduction 1
1.1 Black Box Verification 2
1.2 White Box Verification 2
1.3 Grey Box Verification 2
1.4 Levels of Verification 3
1.5 Need of Verification languages 5
1.6 History and advantages of ‘e’ 7
1.7 Verification Reuse 7
1.8 e Verification Component 8
1.9 About Ethernet eVC 10
1.10 Ethernet Basics 10
1.11 Verification for Ethernet eVC 12

CHAPTER 2 : Review Of Literature 17
 2.1 The IEEE 802.3 Logical relationship to the
 ISO Reference model 17
 2.2 Ethernet MAC Sublayer 18
 2.3 Media Access Control Frame Structure 19
 2.4 Half duplex transmission 22
 2.5 Full duplex transmission 25
 2.6 Ethernet PHY layer 27
 2.7 Encoding for signal transmission 28
 2.8 The IEEE 803.2 Physical Layer relationships to
 the ISO Reference Model 30

CHAPTER 3 : System Review (Basic Theory) 39
3.1 e Verification Component 39
3.2 Ethernet eVC 39
3.3 Features of Ethernet eVC 40
3.4 Ethernet traffic emulation 40
3.5 Flow of data within the agents 42
3.6 Agent architecture 42
3.7 Monitor & BFM architecture 44
3.8 Scoreboard architecture 45
3.9 Scoreboard checking 46
3.10 Topologies for verification at the module level 47
3.11 Single port MAC dut for non-layered interfaces 48
3.12 Multi port MAC dut for non-layered interfaces 48
3.13 Single port PHY dut for non-layered interfaces 49
3.14 Multi port PHY dut for non-layered interfaces 49
3.15 Verification environment architecture 50
3.16 Is data collected correctly? 52

vi

CHAPTER 4 : System Design 54
 4.1 Structure of sequence 54
 4.2 Ethernet sequence structure 55
 4.3 Management sequence structure 56
 4.4 Injecting Ethernet packets with protocol errors 58
 4.5 Monitoring Coverage and checkers 61

CHAPTER 5 : Coverage Driven Verification 63
 5.1 Higher Abstraction 64
 5.2 Coverage requirements 65
 5.3 Steps for achieving regression 67
 5.4 Analyzing Bugs 74

CHAPTER 6 : Results & Discussion 80
 6.1 Normal Scenario 80
 6.2 Collision Scenario 82
 6.3 Zeroipg check Scenario 85
 6.4 Injecting RX_ER in ipg phase of packet 86
 6.5 Results 87

CHAPTER 7 : Conclusion & Future Scope 88
 7.1 Conclusion 88
 7.2 Future Scope 88

REFERENCES 89
Appendix A 90
Appendix B 109

vii

List of Figures

Figure1.1: Design and verification flow: A typical sequence of

 steps for logical 4

Figure 1.2: Verification process flow 4

Figure 1.3: Typical verification component 9

Figure 1.4: An Ethernet network runs CSMA/CD over coaxial

 Cable 10

Figure 1.5: Example Point-to-Point Interconnection 11

Figure 1.6: Verification Environment 16

Figure 2.1: Ethernet's Logical Relationship to the ISO Reference

 Model 17

Figure 2.2: MAC and Physical Layer Compatibility 18

Figure 2-3: MAC Frame format 19

Figure 2.4: Address designation 20

Figure 2.5: MAC Frame with Gigabit Carrier Extension 24

Figure 2-6: A Gigabit Frame-Burst Sequence 25

Figure 2.7: Full Duplex Operation Allows Simultaneous Two-

 Way Transmission on the Same Link 26

Figure 2.8: An Overview of the IEEE 802.3 Flow Control 26

Figure 2.9: A Concept Example of Baseline Wander

 Sequence 29

Figure 2.10: Transition-Based Manchester Binary Encoding 29

Figure 2.11: The Generic Ethernet Physical Layer Reference

 Model 30

Figure 2.12: Transmission between MAC & PHY 32

Figure 2.13: System level diagram of Reduced Gigabit Media

 Independent Interface (RGMII) 35

Figure 3.1: Architecture of Ethernet eVC 40

Figure 3.2: Agent Architecture 43

Figure 3.3: Agent Architecture for Layered Interfaces 44

Figure 3.4: Monitor and BFM architecture 45

Figure 3.5: Functioning of Scoreboard 47

viii

Figure3.6: Ethernet eVC in user’s verification environment 47

Figure 3.7: Single Port MAC DUT 48

Figure 3.8: Multi-Port MAC DUT 48

Figure 3.9: Single Port PHY DUT 49

Figure 3.10: Multi Port PHY DUT 49

Figure 3.11: Ethernet eVC VE functional block diagram 50

Figure 4.1: Ethernet Sequence Structure 55

Figure 4.2: Management Sequence Structure 56

Figure5.1: Functional coverage serves multiple simulations

 Scenarios 64

Figure5.2: Functional coverage of Ethernet Packet 66

Figure5.3: Functional coverage model for Ethernet eVC 69

Figure 5.4: Illegal inter packet gap between two packets 77

Figure 6.1: Simulation of Normal Scenario 80

Figure 6.2: Coverage of Normal Scenario 81

Figure 6.3: Simulation of Normal Packet scenario (RGMII

 interface) 82

Figure 6.4: Simulation of Collision Scenario 83

Figure 6.5: Coverage of Collision Scenario (GMII Interface) 84

Figure 6.6: Simulating collision scenario (RGMII Interface) 84

Figure 6.7: Zeroipg check scenario (GMII Interface) 85

Figure 6.8: Coverage of Zeroipg check Scenario 86

Figure 6.9: TX_ER insertion in Data Phase of Ethernet Packet

 (RGMII Interface) 86

Figure 6.10: RX_ER insertion in IPG phase of Ethernet Packet

 (RGMII Interface) 87

ix

List of Tables

Table 2.1: Limits for Half-Duplex Operation 24

Table 2.2: Permissible encoding of TXD<7:0>, TX_ER, and

 TX_EN 33

Table 2.3: Permissible encoding of RXD<7:0>, RX_ER, and

 RX_DV 34

Table 2.4: Signal description of RGMII 36

Table 2.5: Signal coding for TXD, TXERR and TX_EN 37

Table 2.6: Signal coding for RX_DV, RXERR and RX_ER 38

Table 5.1: Correlation between functional coverage and code

 Coverage 65

Table 5.2: Scenarios to be checked on various Ethernet

 Packets 68

x

Abbreviation

VE: Verification Environment, Aggregation of the eVC along with all other required
verification components.

eVC: e Verification component, it represent complete verification environment for
DUT.

DUT: Device Under Test, It is a device that is to be verified using eVC.

eRM: e Reusable Methodology, term used for eVC, to make eVC e Reusable in the sense it
can be integrate with other eVC on Soc.

Ethernet eVC: Complete verification environment (eVC) of Ethernet protocol, it can be use
to verify IEEE 802.3 Std, 2000 Edition compliant devices.

CDV: Coverage Driven Verification, ease the process of verification by focusing time and
compute resources on simulations that are indicating coverage.

Agent: Top level agent, which contain active and passive agent.

Active Agent: Drives stimulus to DUT.

Passive Agent: Collect packets from DUT.

Monitor: A unit instance that passively monitors the DUT signal.

BFM: Bus Functional Model a unit instance that interacts with the DUT and drives or
samples the DUT signals.

Chapter 1

Introduction

 As the project title explains, this project work is regarding verification of Ethernet eVC in

which protocol adherence of Ethernet eVC has been checked for media independent interfaces

GMII, SGMII, RGMII. As eVC has been written in ‘e’ language hence, understanding of

language and Specman Elite (tool) are prerequisite for project work.

 Before going in to the detail discussion of verification of Ethernet standard let us find

answers of some basic questions like What is verification? , Why it is required? , What are the

kinds and levels of verification and importance of verification? Starting with IEEE Definition

about Verification, Verification means “Confirmation by examination and provisions of

objective evidence that specified requirements have been fulfilled."

 Verification is not a test bench, nor is it a series of test benches. Verification is a process

used to demonstrate the functional correctness of a design. By saying functional correctness

means the design to be verified has to adhere with some predefined rules or standard. In other

words design under test should behave as per specified rules. We all perform verification

processes throughout our daily lives: balancing a checkbook, tasting a simmering dish,

associating landmarks with symbols on a map. These are all verification processes.

 Today, in the era of multi-million gate ASICs, reusable Intellectual Property (IP), and

System-on-Chip (SoC) designs, verification consumes about 70% of the design effort. Design

teams, properly staffed to address the verification challenge, include engineers dedicated to

verification. The number of verification engineers is usually twice the number of RTL

designers. When design projects are completed, the code that implements the test benches

makes up to 80% of the total volume. It is also the reason verification is currently the target of

new tools and methodologies. These tools and methodologies attempt to reduce the overall

verification time by enabling parallelism of effort, higher levels of abstraction and

automation. Providing higher levels of abstraction enables you to work more efficiently

without worrying about low-level details.

 Automation tools helps in reducing time but they requires standard processes with well-

defined inputs and outputs. Not all processes can be automated. It is possible to automate

Verification Of SoC with Ethernet Interface 1. Introduction

2

some portion of the verification process, especially when applied to a narrow application

domain. Because of the variety of functions, interfaces, protocols, and transformations that

must be verified, it is not possible to provide a general-purpose automation solution for

verification.

 The main purpose of functional verification is to ensure that a design implements intended

functionality. Functional coverage reconciles a design with its specification. It is important to

note that, unless a specification is written in a formal language with precise semantics, it is

impossible to prove that a design meets the intent of its specification. Functional verification

can be accomplished using three complementary but different approaches: black box, white-

box, and grey-box.

1.1 Black-Box Verification:
 With a black-box approach, the functional verification must be performed without any

knowledge of the actual implementation of a design. All verification must be accomplished

through the available interfaces, without direct access to the internal state of the design,

without knowledge of its structure and implementation. This method suffers from an obvious

lack of visibility and controllability. A black-box functional verification approach forms a true

conformance verification that can be used to show that a particular design implements the

intent of a specification regardless of its implementation. It is mostly used approach.

1.2 White-Box Verification:
 As the name suggests, a white-box approach has full visibility and controllability of the

internal structure and implementation of the design being verified. This method has the

advantage of being able to quickly set up an interesting combination of states and inputs, or

isolate a particular function. This approach is tightly integrated with a particular

implementation and cannot be used on alternative implementations or future redesigns. It also

requires detailed knowledge of the design implementation.

1.3 Grey-Box Verification:
 Grey-box verification is a compromise between the aloofness of a black-box verification

and the dependence on the implementation of white-box verification.

Verification Of SoC with Ethernet Interface 1. Introduction

3

 Verification is a necessary evil. It always takes too long and costs too much. Verification

does not generate a profit or make money: after all, it is the design being verified that will be

sold and ultimately make money, not the verification. Yet verification is indispensable.

 Verification is a process that is never truly complete. The objective of verification is to

ensure that a design is error-free, yet one cannot prove that a design is error-free. Verification

can only show the presence of errors, not their absence.

1.4 Levels of verification:

There are four levels of verification:

1.4.1 Component testing: Testing conducted to verify the implementation of the design for

one software element (unit, module) or a collection of software elements.

1.4.2 Integration testing: An orderly progression of testing in which various software

elements and/or hardware elements are integrated together and tested. This testing proceeds

until the entire system has been integrated.

1.4.3 System testing: The process of testing an integrated hardware and software system to

verify that the system meets its specified requirements.

1.4.4 Acceptance Testing: Formal testing conducted to determine whether or not a system

satisfies its acceptance criteria and to enable the customer to determine whether or not to

accept the system.

Verification Of SoC with Ethernet Interface 1. Introduction

4

1.4.5 Verification and design process flow:

Figure1.1: Design and verification flow: A typical sequence of steps for logical and physical

design, and for verification.

1.4.6 Verification Process flow:
Below figure shows the verification flow.

Spec if ica tion

T est benc h Test Cases

Test bench and tes t case cod ing

S imu la t ion

Post ana lys is

New Func tionali ty

Miss ing tes t bench
supp ort Holes

New tes ts

Figure 1.2: Verification process flow.

Verification Of SoC with Ethernet Interface 1. Introduction

5

 Verification flow starts with understanding specification of the chip/block under

verification. Once the specification is understood, test cases document is prepared, which

documents all the possible test cases. Once test case document is done to a level, where 70-80

percent functionality is covered, test bench architecture document is prepared. In the past, test

bench architecture document is prepared first and test case document is prepared next. There

is a draw back with this style, if test case document show a particular functionality to be

verified and if test bench does not support as architecture document was prepared before test

cases document. If we have test cases document to refer to, then writing architecture

documented becomes much easier, as we know for sure what is expected from the test bench.

1.4.6.1 Test Cases

 Identify the test cases from the design specification a simple task for simple cases.

Normally requirement in test cases becomes a test case. Anything that specification mentions,

"Can do", "will have" becomes a test case. Corner test cases normally take lot of thinking to

identify.

1.5 Need of Verification Languages:

 Today, project teams build huge verification environments, where verification consumes

40-70% of the resources needed in a typical cycle. Because a verification environment

typically contains concurrent mechanisms for controlling traffic streams to device input ports,

and for checking outstanding transactions at the output ports, Verilog and VHDL have

traditionally been used for building verification environments. Unfortunately, it is widely

recognized that for more complex verification environments and problems, these languages

do not contain the necessary constructs for modeling the verification environment efficiently.

 As a result, many project teams have moved to using higher-level languages such as C and

C++ to be more efficient in creating the verification environment. Unfortunately, these

general-purpose languages do not have any built-in constructs for modeling hardware

concepts such as concurrency, operating in simulation time, or manipulating vectors of

various bit widths. Without these constructs, handling device-specific needs such as

controlling synchronization between traffic streams, checking correct timing and formatting

traffic data are extremely difficult and time-consuming. Project teams often use a mix of HDL

Verification Of SoC with Ethernet Interface 1. Introduction

6

and C/C++ code to attack this verification problem, spending a good deal of time on the

interface between the languages. With these problems in mind, what should a verification

language look like? It should combine the best features of the most popular HDLs and

general-purpose languages:

• Specifying the traffic and traffic parameters in the same terms as the device

specification.

• Automatically generating these traffic streams with the ability to target corner cases of

the design.

• Storing and checking outstanding transactions.

• Checking protocol adherence.

• Collecting functional feedback on the stimulus and the device under test.

• Automatically responding to feedback from the device during simulation.

 With these features in place, verification engineers can focus much sooner on what needs

to be verified rather than how to do it (implementing the environment infrastructure)

One way to increase productivity is to raise the level of abstraction. High-level languages,

such as C or Pascal, raised the level of abstraction from assembly-level, enabling engineers to

become more productive. Similarly, computer languages specifically designed for

verification are able to raise the level of abstraction compared to general-purpose simulation

languages.

 Verilog was designed with a focus on describing low-level hardware structures. It does not

provide support for high-level data structures or object-oriented features. VHDL was designed

for very large design teams. It strongly encapsulates all information and communicates strictly

through well-defined interfaces. This creates an opportunity for verification languages

designed to overcome the shortcomings of Verilog and VHDL.

Some popular verification languages Verisity, OpenVera from Synopsys and RAVE from

Forte Design. Open-source solutions include the SystemC Verification Library (SCV) from

Cadence and Jeda from Juniper Networks. There are also a plethora of homegrown solutions

based on Perl, SystemC, C++ or TCL. Verification extensions to the Verilog language are

also being added in SystemVerilog.

 We have used “e/Specman” verification language for developing “Ethernet eVC” which is

a ready made, highly configurable e verification environment suitable for verifying DUTs

supporting Ethernet protocol.

Verification Of SoC with Ethernet Interface 1. Introduction

7

1.6 History and advantages of e:

 The e language was developed by Verisity as part of its Specman product as a tool for

efficiently writing test benches. Like Vera, it is an imperative object-oriented language with

concurrency; the ability to generate constrained random values, mechanisms for checking

functional (variable value) coverage, and a way to check temporal properties (assertions).

Books on e include Palnitkar [41] and Iman and Joshi [30]. The syntax of e is unusual. First,

all code must be enclosed in < and > symbols; otherwise it is considered a comment. Unlike

C, e declarations are written name: type. The syntax for fields in compound types (e.g.,

structs) includes particles such as % and !, which indicate when a field is to be driven on the

device-under-test and not randomly computed respectively.

• Speeds up the design verification process:

• Automates manual processes

• Provides higher abstraction level than HDLs

• Supports modular, reusable, and extensible code

• Improves usability with graphical interface and debugger

• Improves design quality

• Supports all ranges of tests from directed to random

• Improves test base effectiveness with coverage analysis

• Supports both black box and white-box testing. (In black-box, connection to

• DUT’s interface only. In white-box, looking into the DUT s internals also.)

1.7 Verification Reuse:

 “With verification consuming 60-80% of the manpower on complex chip projects,

improving verification productivity is an economic necessity", said Moshe Gavrielov, Verisity

CEO.Verification reuse directly addresses higher productivity, increased chip quality and

overall verification investment. Reusable Methodology is the breakthrough technology

required to create reusable verification environments and to ensure that all verification

components effectively interoperate. Today's complex chips commonly incorporate many

different protocols, interfaces and processors. Assembling appropriate verification

Verification Of SoC with Ethernet Interface 1. Introduction

8

environments requires efficient integration of reusable, plug-and-play verification

components.

 Achieving reusability requires that all components be built and packaged uniformly.

Reusability becomes even more challenging when design teams all over the world create

verification components that need to fit together seamlessly.

Every aspect of the component, including basic naming conventions and coding styles, debug

message conventions, user interfaces, and interactions between components must be

standardized in order to assure interoperability.

World leader companies in the development faces many verification challenges Verification

reuse is essential for our own productivity and to reduce time-to-market for these companies.

 The capabilities introduced by Reusable methodology make a significant contribution to

meeting these requirements by enabling a framework for reuse.

1.8 eVC (e Verification Component):

 One of the key factors for reusing code is arranging it as an independent and easy to use

code package. When developing verification code in e, the reusable package is typically

organized as an eVC (e Verification Component). An eVC is a verification component. It is

ready-to-use configurable environment, typically focusing on a specific protocol or

architecture.

 Each eVC consists of a complete set of elements for simulating, checking and collecting

coverage information for a protocol or architecture. eVC expedite creation of a most efficient

test bench for design under test (DUT). They can work with both Verilog and VHDL devices

and with all HDL simulators that are supported by Specman.

 eVC can be used to create an environment. The eVC interface is viewable and hence can

be the basis for user extensions. Maintaining the eVC in its original form facilitates possible

upgrades.

 eVC implementation is often partially encrypted, especially in commercial eVCs where

authors want to protect their intellectual property. Most commercial eVC requires special

feature license to enable them. Following is the list of possible kind of eVC:

Verification Of SoC with Ethernet Interface 1. Introduction

9

• Bus-based eVCs (Such PCI and AHB)

• Data-communication eVCs (for example Ethernet, MAC, Data link)

• CPU/DSP eVCs

• Higher level protocol eVCs (TCP/IP, HTTP). These usually sit on top of other eVCs.

• Platform eVCs (that is, an eVC for a specific, reusable SoC platform, into which you

plug eVCs of various cores).

• Compliance test-suite eVCs. These are tests (and perhaps coverage definitions and

more) that demonstrate compliance to a protocol. For example, there could be a PCI

compliance eVC in addition to the basic PCI eVC.

• HW/SW co-verification eVCs, such as an eVC dedicated to verifying a HW/SW

environment using a particular RTOS/CPU combination.

 A complete verification component handles all the facets involved in verifying a given

protocol, interface or processor within the device under test (DUT). This minimally includes

the following items (see Figure 1.3):

• Input traffic generator to create stimulus for the DUT (e.g. packets/frames, bus

transactions, etc.)

• Bus functional models (BFMs) to drive that traffic, communicating directly with the

DUT

• Monitors, scoreboards, and protocol checkers to examine the actual response of the

DUT relative to the expected response

• Functional coverage to measure and report on whether the transactions and scenarios

defined in the test plan have been covered or not

Figure 1.3: Typical verification component

Verification Of SoC with Ethernet Interface 1. Introduction

10

1.9 About Ethernet eVC:
 The Ethernet eVC is a ready made highly configurable e Verification Component suitable

for DUT supporting the Ethernet Protocol.

 All eVC behavior complies with the IEEE Std 802.3, 2000, IEEE Draft P802.3ae/D4.0,

SGMII and SMII specification by Cisco systems-1998 and RGMII specification by Hewlet

Packard, version2.0. The Ethernet eVC is eRM compliant.

1.10 Ethernet Basics:
 The term Ethernet refers to the family of local area network (LAN) implementations that

includes three principal categories.

• Ethernet and IEEE 802.3-LAN specifications that operate at 10 Mbps over coaxial cable.

• 100-Mbps Ethernet-A single LAN specifications, also known as Fast Ethernet, that operates

at 100 Mbps over twisted-pair cable.

• 1000-Mbps Ethernet-A single LAN specifications, also known as Gigabit Ethernet, that

operates at 1000 Mbps (1 Gbps) over fiber and twisted-pair cables.

 Ethernet is a comprehensive international standard for Local Area Networks (LANs)

employing CSMA/CD as the access method. This standard encompasses several media types

and techniques for signal rates from 1 Mb/s to 1000 Mb/s. Ethernet is widely used LAN

technology, which allows multiple end stations (such as computers, servers, printers,

gateways, to other networks etc.) to exchange data among themselves within a single building

or campus. It provides two distinct modes of operation: half duplex and full duplex. Figure 1-

1 gives the view of Ethernet network.

Figure 1.4: An Ethernet network runs CSMA/CD over coaxial cable.

Verification Of SoC with Ethernet Interface 1. Introduction

11

1.10.1 Half duplex operation:

 In half duplex mode, the CSMA/CD media access method is the means by which two or

more stations share a common transmission medium. To transmit, a station waits for a quiet

period on the medium (that is, no other station is transmitting) and then sends intended

message in bit-serial form. If after initiating a transmission, the message collides with that of

another station then each transition station intentionally transmits for an additional predefined

period to ensure the propagation of collision throughout the system. The station remains silent

for a random amount of time (back off time) before attempting to transmit again. Half duplex

operation can be used with all media and configurations allowed by this standard.

1.10.2 Full duplex operation:

 Full duplex operation allows simultaneous communication between a pair of stations using

point-to-point media (dedicated channel). Full duplex operation does not require that

transmitter defer, nor they monitor or react to receive activity, as there are no contentions on

shared medium in this mode. Full duplex mode can be used when all of the following are true:

The physical medium is capable of supporting simultaneous transmission and reception

without interference.

 There are exactly two stations connected with a full duplex point-to-point link. Since there

is no contention for use of a shared medium, the multiple access (i.e., CSMA/CD) algorithms

are unnecessary.

 Both the stations on the LAN are capable of, and have been configured to use, full duplex

operation.

 The most common configuration envisioned for full duplex operation consists of central

bridge (also known as a switch) with a dedicated LAN connecting each bridge port to a single

device. Figure 1-2 showing point-to-point link.

Figure 1.5: Example Point-to-Point Interconnection

Verification Of SoC with Ethernet Interface 1. Introduction

12

1.10.3 Ethernet Network Elements:

 Ethernet LANs consist of network nodes and interconnecting media. The network nodes

fall into two major classes:

1.10.3.1 Data terminal equipment (DTE): Devices that are either the source or the

destination of data frames. DTEs are typically devices such as PCs, workstations, file servers,

or print servers that, as a group, are all often referred to as end stations.

1.10.3.2 Data communication equipment (DCE): Intermediate network devices that receive

and forward frames across the network. DCEs may be either standalone devices such as

repeaters, network switches, and routers, or communications interface units such as interface

cards and modems.

The current Ethernet media options include two general types of copper cable: unshielded

twisted-pair (UTP) and shielded twisted-pair (STP), plus several types of optical fiber cable.

1.11 Verification Environment for Ethernet eVC:

Steps for building verification environment:

 For building verification environment, steps which are very common and applicable to any

other verification environment as follows:

• Generating traffic streams

• Driving traffic into the design (stimuli)

• Checking these data streams

• Checking protocols and timing

• Tracking progress

• Modifying the environment due to spec changes or product derivatives

• Writing scenarios

Verification Of SoC with Ethernet Interface 1. Introduction

13

Step 1: Generating traffic streams

When building a verification environment, the verification engineer often starts by modeling

the device input stimulus. In Verilog, the designer is limited in how to model this traffic

because of the lack of high-level data structures and the notion of dynamic lists. As a result,

sequences of traffic items are often represented as a series of task calls to initialize the frame,

build its header, and payload. This ?cut-and-paste? code is lengthy, hard to read and hard to

maintain (if there is need to add another attribute passed to all task calls).

 The verification engineer often needs constructs better suited for modeling and

manipulating frame sequences. C provides some of these. However, it becomes apparent that

C was not dev eloped with hardware in mind as soon as bit vectors need to be specified on

non-four byte boundaries and manipulated. Unfortunately, the engineer still has to write the

functions to manipulate the lists and, to use memory efficiently, now has to worry about

correctly allocating and de-allocating memory and handling pointers. These memory

problems can result in hours of chasing bus errors and segmentation faults.

 The e language provides constructs for modeling traffic streams with built-in functions for

generating them and automatically takes care of memory allocation and garbage collection

(memory de-allocation). Also in e, there is no need to create generation functions for each

struct. The generator is built-in, and once the structs are declared, meaningful stimuli can be

generated. Defining a field ('frames' in the above example), which is a ?list of frames?, is

enough to have a sequence of frames generated. The built in generator performs memory

allocation dynamically, and a built-in garbage collection takes care of de-allocation.

Step 2: Driving stimuli into the device

 With the data structures in place, the engineer has to consider how data will flow though

the verification environment. Typically, a task or function will drive data into each of the

device's input ports and a task or function will pull data from each of the device's output ports.

 In Verilog, the device specific synchronization for that port is fairly easy because the

engineer has direct control over the signals. However, many other functions are typically

needed to synchronize the basic traffic flow, format the data at each end, and print the data

structures for debugging and post-run checking.

Verification Of SoC with Ethernet Interface 1. Introduction

14

 C and C++ help with organizing and formatting data, but the benefit is eaten away because

these general-purpose languages have no concept of simulation time or hardware signals.

Special code must be written t o interface with the specific Verilog Programming Language

Interface (PLI) to drive and sample simulation signals at the appropriate simulation time.

Moreover, PLI-related code often needs to be tailored for different simulators. In addition,

traffic structures built in C/C++ must be manually converted to the bit, byte or word format

the device expects to receive and send.

 The e language in this case combines the benefit of both worlds. It has the knowledge of

simulation time, constructs for concurrency and built-in controllability, and observability of

the simulation signals, regardless of the simulator. Further, each structure in the environment

automatically has pre-defined pack and unpack functions for converting it to a bit stream, or

vice versa, from bit stream into the data structure format and fields.

Step 3: Checking data streams

 To check that the device works correctly, monitoring tasks or functions need to be written.

In the case of an Ethernet device, such tasks would pull data from the output ports and

compare it with the expected data. The expected data is often determined within a self-

checking environment by storing the outstanding transactions, or through a reference model of

the device.

 As with traffic streams, Verilog's lack of built-in lists makes it impossible to create

dynamic scoreboards to verify the data integrity and routing of outstanding transactions. This

inflexibility leads to built-in list sizes that use up memory and create assumptions in the code

that are difficult to maintain if this code is to be portable.

 Built-in lists and list functions, recursive data structure comparison, and automatic

memory allocations are key features in the e verification language. These constructs make it

much easier to implement data integrity checking

Verification Of SoC with Ethernet Interface 1. Introduction

15

Step 4: Checking protocols and timing - using assertions

 Because Verilog and VHDL are directly tied to the simulator, it is easy to interact with the

device to get timing information. Unfortunately, most of the interesting timing checks are not

straightforward and contain multiple edge dependencies. A timing check might be easy to

specify in an English specification, but it is another story to write it in procedural code, be it

Verilog, VHDL, C or C++. As a result, in the past few years, declarative assertions (in

languages such as PSL/Sugar) have become an appealing approach.

 The e language includes a built-in assertion language, similar in expressiveness to

PSL/Sugar. Constructs to capture timing scenarios, automated capabilities to observe the

device and checking constructs to relate timing scenarios are all built-in. Such an assertion

language makes it easy to specify and combine complex timing scenarios that can be used for

even the most difficult protocol checking.

Step 5: Tracking progress

 A key requirement in verification is having a reliable metric that shows the progress

towards hitting all the verification goals. Functional coverage, a metric that tracks which

functionality of the device was verified, is being recognized as a highly reliable measure.

Neither Verilog, VHDL nor C/C++ have the notion of functional coverage, causing many

project teams to create elaborate combinations of log files, parsed by various scripts which

then produce some summary reports. This enables very limited capabilities, and yet another

maintenance burden on the implementers of the verification environment.

 The e verification language has built-in functional coverage constructs, supporting simple

value coverage, value-transition coverage and cross-coverage.

Step 6: Specification changes and product derivatives - extensibility

 Once the environment is in place, the engineer might need to extend or modify it to

accommodate changes or updates to the specification. Verilog, VHDL and C clearly fall short

in this area because they provide no constructs to incorporate any changes: modifications need

to be done within the original code. Changing the original code often results in bugs because

the intent of the original code is not clearly known.

Verification Of SoC with Ethernet Interface 1. Introduction

16

 The e verification language offers the notion of extensibility, which is a key feature of an

Aspect-Oriented Programming (AOP) language, and provides the constructs necessary to

modify or change the functionality of the environment without having to change the original

code in any form.

Step 7: Writing scenarios

 Once the verification environment is in place, the project team now needs to focus on

writing scenarios to verify that the device behaves according to specification.

 The problem with Verilog and C is that you have to write explicit randomization code for

each attribute the designer wants to randomize. There is also often interest in mechanisms to

weight particular attributes towards values that denote typical or corner case scenarios. Such

mechanisms in Verilog and C are typically non-obvious, maintenance burdens.

 ‘e’ provides not only the built-in capability to randomly generate any data structure -

simple or complex - automatically with weighted distribution, but it also provides constructs

for constraining the generated values within acceptable ranges. Additionally, e provides

mechanisms to easily layer test-specific constraints for particular tests, and take run-time

feedback from the device to focus this random test into hard-to-reach corner cases.

Combining this generation capability with the temporal assertion language gives the

verification engineer a powerful capability for identifying complex, internal corner case

scenarios and generating specific traffic to create conflicts deep within the device.

Figure 1.6: Verification Environment

Chapter 2

Review of Literature

2.1 The IEEE 802.3 Logical Relationship to the ISO Reference Model
 Figure 2-1 shows the IEEE 802.3 logical layers and their relationship to the OSI reference

model. As with all IEEE 802 protocols, the ISO data link layer is divided into two IEEE 802

sub layers, the Media Access Control (MAC) sub layer and the MAC-client sub layer. The

IEEE 802.3 physical layer corresponds to the ISO physical layer.

Figure 2.1: Ethernet's Logical Relationship to the ISO Reference Model

The MAC-client sub layer may be one of the following:

• Logical Link Control (LLC), if the unit is a DTE. This sublayer provides the interface

between the Ethernet MAC and the upper layers in the protocol stack of the end

station. The LLC sublayer is defined by IEEE 802.2 standards.

• Bridge entity, if the unit is a DCE. Bridge entities provide LAN-to-LAN interfaces

between LANs that use the same protocol (for example, Ethernet to Ethernet) and also

between different protocols (for example, Ethernet to Token Ring). Bridge entities are

defined by IEEE 802.1 standards.

 Because specifications for LLC and bridge entities are common for all IEEE 802 LAN

protocols, network compatibility becomes the primary responsibility of the particular network

protocol. Figure 2-2 shows different compatibility requirements imposed by the MAC and

physical levels for basic data communication over an Ethernet link.

Verification Of SoC with Ethernet Interface 2.Review of Literature

18

Figure 2.2: MAC and Physical Layer Compatibility Requirements for Basic Data

Communication

 The MAC layer controls the node's access to the network media and is specific to the

individual protocol. All IEEE 802.3 MACs must meet the same basic set of logical

requirements, regardless of whether they include one or more of the defined optional protocol

extensions. The only requirement for basic communication (communication that does not

require optional protocol extensions) between two network nodes is that both MACs must

support the same transmission rate.

 The 802.3 physical layer is specific to the transmission data rate, the signal encoding, and

the type of media interconnecting the two nodes. Gigabit Ethernet, for example, is defined to

operate over either twisted-pair or optical fiber cable, but each specific type of cable or signal-

encoding procedure requires a different physical layer implementation.

2.2 The Ethernet MAC Sublayer
The MAC sublayer has two primary responsibilities:

• Data encapsulation, including frame assembly before transmission, and frame

parsing/error detection during and after reception

• Media access control, including initiation of frame transmission and recovery from

transmission failure

Verification Of SoC with Ethernet Interface 2.Review of Literature

19

2.3 Media Access Control frame structure:

 This section gives the detail for the communication system using the CSMA/CD MAC. It

defines the various components of MAC frame.

2.3.1 MAC frame format:

 Figure 2-3 shows the nine fields of the frame: the preamble, SFD (start frame delimiter),

the addresses of the frame’s source and destination, length or type field to indicate the length

or protocol type of the following field that contains the MAC client data, a field that contains

padding if required, the frame check sequence field containing a cyclic redundancy check

value to detects error in received frame, and the extension field if required (for 1000 Mb/s

half duplex operation only). Of these nine fields all are of fixed size except for the data, pad

and extension fields which may contain an integer number of octets between the minimum

and maximum values that are determined by specific implementation of the CSMA/CD MAC

for a particular interface.

Figure 2-3: MAC Frame format

Verification Of SoC with Ethernet Interface 2.Review of Literature

20

2.3.2 MAC frame elements:

2.3.2.1 Preamble field:

 The preamble field is a 7-octate field that is used to achieve steady-state synchronization

with received frame's timing.

2.3.2.2 Start Frame Delimiter (SFD):

 The SFD field is the sequence 10101011. It immediately follows the preamble pattern and

indicates the start of frame.

2.3.2.3 Address Fields:

 Each MAC frame shall contain two address fields: the Destination address and the Source

address field, in the order. The destination address field specifies the address(s) for which the

frame is intended. The source address field identifies the station from which the frame was

initiated. The representation of address field shall be as follows (see figure 2.4):

Figure 2.4: Address designation

Note Individual addresses are also known as unicast addresses because they refer to a single

MAC and are assigned by the NIC manufacturer from a block of addresses allocated by the

IEEE. Group addresses (multicast addresses) identify the end stations in a workgroup and are

assigned by the network manager. A special group address (all 1 the broadcast address)

indicates all stations on the network.

Verification Of SoC with Ethernet Interface 2.Review of Literature

21

• Destination address (DA): Consists of 6 bytes. The DA field identifies which

station(s) should receive the frame. The left-most bit in the DA field indicates whether

the address is an individual address (indicated by a 0) or a group address (indicated by

a 1). The second bit from the left indicates whether the DA is globally administered

(indicated by a 0) or locally administered (indicated by a 1). The remaining 46 bits are

a uniquely assigned value that identifies a single station, a defined group of stations, or

all stations on the network.

• Source addresses (SA): Consists of 6 bytes. The SA field identifies the sending

station. The SA is always an individual address and the left-most bit in the SA field is

always 0.

• Length/Type: Consists of 4 bytes. This field indicates either the number of MAC-

client data bytes that are contained in the data field of the frame, or the frame type ID

if the frame is assembled using an optional format. If the Length/Type field value is

less than or equal to 1500, the number of LLC bytes in the Data field is equal to the

Length/Type field value. If the Length/Type field value is greater than 1536, the frame

is an optional type frame, and the Length/Type field value identifies the particular type

of frame being sent or received.

• Data: Is a sequence of n bytes of any value, where n is less than or equal to 1500. If

the length of the Data field is less than 46, the Data field must be extended by adding a

filler (a pad) sufficient to bring the Data field length to 46 bytes.

• Frame check sequence (FCS): Consists of 4 bytes. This sequence contains a 32-bit

cyclic redundancy check (CRC) value, which is created by the sending MAC and is

recalculated by the receiving MAC to check for damaged frames. The FCS is

generated over the DA, SA, Length/Type, and Data fields.

2.3.4 Frame Transmission

Whenever an end station MAC receives a transmit-frame request with the accompanying

address and data information from the LLC sublayer, the MAC begins the transmission

sequence by transferring the LLC information into the MAC frame buffer.

• The preamble and start-of-frame delimiter are inserted in the PRE and SOF fields.

• The destination and source addresses are inserted into the address fields.

Verification Of SoC with Ethernet Interface 2.Review of Literature

22

• The LLC data bytes are counted, and the number of bytes is inserted into the

Length/Type field.

• The LLC data bytes are inserted into the Data field. If the number of LLC data bytes is

less than 46, a pad is added to bring the Data field length up to 46.

• An FCS value is generated over the DA, SA, Length/Type, and Data fields and is

appended to the end of the Data field.

 After the frame is assembled, actual frame transmission will depend on whether the MAC

is operating in half-duplex or full-duplex mode.

 The IEEE 802.3 standard currently requires that all Ethernet MACs support half-duplex

operation, in which the MAC can be either transmitting or receiving a frame, but it cannot be

doing both simultaneously. Full-duplex operation is an optional MAC capability that allows

the MAC to transmit and receive frames simultaneously.

2.4 Half-Duplex Transmission: The CSMA/CD Access Method

 The CSMA/CD protocol was originally developed as a means by which two or more

stations could share a common media in a switch-less environment when the protocol does

not require central arbitration, access tokens, or assigned time slots to indicate when a station

will be allowed to transmit. Each Ethernet MAC determines for itself when it will be allowed

to send a frame. The CSMA/CD access rules are summarized by the protocol's acronym:

• Carrier sense: Each station continuously listens for traffic on the medium to

determine when gaps between frame transmissions occur.

• Multiple access: Stations may begin transmitting any time they detect that the

network is quiet (there is no traffic).

• Collision detect: If two or more stations in the same CSMA/CD network (collision

domain) begin transmitting at approximately the same time, the bit streams from the

transmitting stations will interfere (collide) with each other, and both transmissions

will be unreadable. If that happens, each transmitting station must be capable of

detecting that a collision has occurred before it has finished sending its frame.

Each must stop transmitting as soon as it has detected the collision and then must wait

Verification Of SoC with Ethernet Interface 2.Review of Literature

23

a quasirandom length of time (determined by a back-off algorithm) before attempting

to retransmit the frame.

 The worst-case situation occurs when the two most-distant stations on the network both

need to send a frame and when the second station does not begin transmitting until just before

the frame from the first station arrives. The collision will be detected almost immediately by

the second station, but it will not be detected by the first station until the corrupted signal has

propagated all the way back to that station. The maximum time that is required to detect a

collision (the collision window, or "slot time") is approximately equal to twice the signal

propagation time between the two most-distant stations on the network.

 This means that both the minimum frame length and the maximum collision diameter are

directly related to the slot time. Longer minimum frame lengths translate to longer slot times

and larger collision diameters; shorter minimum frame lengths correspond to shorter slot

times and smaller collision diameters.

The trade-off was between the need to reduce the impact of collision recovery and the need

for network diameters to be large enough to accommodate reasonable network sizes. The

compromise was to choose a maximum network diameter (about 2500 meters) and then to set

the minimum frame length long enough to ensure detection of all worst-case collisions.

 The compromise worked well for 10 Mbps, but it was a problem for higher data-rate

Ethernet developers. Fast Ethernet was required to provide backward compatibility with

earlier Ethernet networks, including the existing IEEE 802.3 frame format and error-detection

procedures, plus all applications and networking software running on the

10-Mbps networks.

 Although signal propagation velocity is essentially constant for all transmission rates, the

time required to transmit a frame is inversely related to the transmission rate.

 At 100 Mbps, a minimum-length frame can be transmitted in approximately one-tenth of

the defined slot time, and the transmitting stations would not likely detect any collision that

occurred during the transmission. This, in turn, meant that the maximum network diameters

specified for 10-Mbps networks could not be used for 100-Mbps networks. The solution for

Fast Ethernet was to reduce the maximum network diameter by approximately a factor of 10

(to a little more than 200 meters).

Verification Of SoC with Ethernet Interface 2.Review of Literature

24

 The same problem also arose during specification development for Gigabit Ethernet, but

decreasing network diameters by another factor of 10 (to approximately 20 meters) for 1000-

Mbps operation was simply not practical. This time, the developers elected to maintain

approximately the same maximum collision domain diameters as 100-Mbps networks and to

increase the apparent minimum frame size by adding a variable-length nondata extension field

to frames that are shorter than the minimum length (the extension field is removed during

frame reception).

 Figure 2.5 shows the MAC frame format with the gigabit extension field, and Table 2.1

shows the effect of the trade-off between the transmission data rate and the minimum frame

size for 10-Mbps, 100-Mbps, and 1000-Mbps Ethernet.

Figure 2.5: MAC Frame with Gigabit Carrier Extension

Table 2.1: Limits for Half-Duplex Operation

Parameter 10 Mbps 100 Mbps 1000 Mbps

Minimum frame size 64 bytes 64 bytes 520 bytes1 (with extension

field added)

Maximum collision diameter,

DTE to DTE

100 meters

UTP

100 meters

UTP

412 meters

fiber

100 meters UTP

316 meters fiber

Maximum collision diameter

with repeaters

2500 meters 205 meters 200 meters

Maximum number of repeaters

in network path

5 2 1

Verification Of SoC with Ethernet Interface 2.Review of Literature

25

520 bytes apply to 1000Base-T implementations. The minimum frame size with extension

field for 1000Base-X is reduced to 416 bytes because 1000Base-X encodes and transmits 10

bits for each byte.

 Another change to the Ethernet CSMA/CD transmit specification was the addition of

frame bursting for gigabit operation. Burst mode is a feature that allows a MAC to send a

short sequence (a burst) of frames equal to approximately 5.4 maximum-length frames

without having to relinquish control of the medium. The transmitting MAC fills each

interframe interval with extension bits, as shown in Figure 2.6, so that other stations on the

network will see that the network is busy and will not attempt transmission until after the

burst is complete.

Figure 2-6: A Gigabit Frame-Burst Sequence

 If the length of the first frame is less than the minimum frame length, an extension field is

added to extend the frame length to the value indicated in Table 2-1. Subsequent frames

in a frame-burst sequence do not need extension fields, and a frame burst may continue as

long as the burst limit has not been reached. If the burst limit is reached after a frame

transmission has begun, transmission is allowed to continue until that entire frame has been

sent. Frame extension fields are not defined, and burst mode is not allowed for 10 Mbps and

100 Mbps transmission rates.

2.5 Full-Duplex Transmission: An Optional Approach to Higher Network

Efficiency

 Full-duplex operation is an optional MAC capability that allows simultaneous two-way

transmission over point-to-point links. Full duplex transmission is functionally much simpler

than half-duplex transmission because it involves no media contention, no collisions, no need

to schedule retransmissions, and no need for extension bits on the end of short frames. The

result is not only more time available for transmission, but also an effective doubling of the

Verification Of SoC with Ethernet Interface 2.Review of Literature

26

link bandwidth because each link can now support full-rate, simultaneous, two-way

transmission.

Transmission can usually begin as soon as frames are ready to send. The only restriction is

that there must be a minimum-length inter frame gap between successive frames, as shown in

Figure 2.7, and each frame must conform to Ethernet frame format standards.

Figure 2.7: Full Duplex Operation Allows Simultaneous Two-Way Transmission on the Same

Link

2.5.1 Flow Control

 Full-duplex operation requires concurrent implementation of the optional flow-control

capability that allows a receiving node (such as a network switch port) that is becoming

congested to request the sending node (such as a file server) to stop sending frames for a

selected short period of time. Control is MAC-to-MAC through the use of a pause frame that

is automatically generated by the receiving MAC. If the congestion is relieved before the

requested wait has expired, a second pause frame with a zero time-to-wait value can be sent to

request resumption of transmission. An overview of the flow control operation is shown in

Figure 2.8.

Figure 2.8: An Overview of the IEEE 802.3 Flow Control Sequence

 The full-duplex operation and its companion flow control capability are both options for

all Ethernet MACs and all transmission rates. Both options are enabled on a link-by-link

basis, assuming that the associated physical layers are also capable of supporting full-duplex

operation.

Verification Of SoC with Ethernet Interface 2.Review of Literature

27

 Pause frames are identified as MAC control frames by an exclusive assigned (reserved)

length/type value. They are also assigned a reserved destination address value to ensure that

an incoming pause frame is never forwarded to upper protocol layers or to other ports in a

switch.

2.5.2 Frame Reception

 Frame reception is essentially the same for both half-duplex and full-duplex operations,

except that full-duplex MACs must have separate frame buffers and data paths to allow for

simultaneous frame transmission and reception.

 Frame reception is the reverse of frame transmission. The destination address of the

received frame is checked and matched against the station's address list (its MAC address, its

group addresses, and the broadcast address) to determine whether the frame is destined for

that station. If an address match is found, the frame length is checked and the received FCS is

compared to the FCS that was generated during frame reception. If the frame length is okay

and there is an FCS match, the frame type is determined by the contents of the Length/Type

field. The frame is then parsed and forwarded to the appropriate upper layer.

2.6 The Ethernet Physical Layers

 Because Ethernet devices implement only the bottom two layers of the OSI protocol stack,

they are typically implemented as network interface cards (NICs) that plug into the host

device's motherboard. The different NICs are identified by a three-part product name that is

based on the physical layer attributes.

The naming convention is a concatenation of three terms indicating the transmission rate, the

transmission method, and the media type/signal encoding. For example, consider this:

• 10Base-T = 10 Mbps, baseband, over two twisted-pair cables

• 100Base-T2 = 100 Mbps, baseband, over two twisted-pair cables

• 100Base-T4 = 100 Mbps, baseband, over four-twisted pair cables

• 1000Base-LX = 100 Mbps, baseband, long wavelength over optical fiber cable

 A question sometimes arises as to why the middle term always seems to be "Base." Early

versions of the protocol also allowed for broadband transmission (for example, 10Broad), but

broadband implementations were not successful in the marketplace. All current Ethernet

implementations use baseband transmission.

Verification Of SoC with Ethernet Interface 2.Review of Literature

28

2.7 Encoding for Signal Transmission

 In baseband transmission, the frame information is directly impressed upon the link as a

sequence of pulses or data symbols that are typically attenuated (reduced in size) and distorted

(changed in shape) before they reach the other end of the link. The receiver's task is to detect

each pulse as it arrives and then to extract its correct value before transferring the

reconstructed information to the receiving MAC.

• Filters and pulse-shaping circuits can help restore the size and shape of the received

waveforms, but additional measures must be taken to ensure that the received signals

are sampled at the correct time in the pulse period and at same rate as the transmit

clock:

• The receive clock must be recovered from the incoming data stream to allow the

receiving physical layer to synchronize with the incoming pulses.

 Compensating measures must be taken for a transmission effect known as baseline wander.

Clock recovery requires level transitions in the incoming signal to identify and synchronize on

pulse boundaries. The alternating 1s and 0s of the frame preamble were designed both to

indicate that a frame was arriving and to aid in clock recovery. However, recovered clocks

can drift and possibly lose synchronization if pulse levels remain constant and there are no

transitions to detect (for example, during long strings of 0s).

 Baseline wanders results because Ethernet links are AC-coupled to the transceivers and

because AC coupling is incapable of maintaining voltage levels for more than a short time. As

a result, transmitted pulses are distorted by a droop effect similar to the exaggerated example

shown in Figure 2-9. In long strings of either 1s or 0s, the droop can become so severe that the

voltage level passes through the decision threshold, resulting in erroneous sampled values for

the affected pulses.

Verification Of SoC with Ethernet Interface 2.Review of Literature

29

Figure 2.9: A Concept Example of Baseline Wander

 Fortunately, encoding the outgoing signal before transmission can significantly reduce the

effect of both these problems, as well as reduce the possibility of transmission errors. Early

Ethernet implementations, up to and including 10Base-T, all used the Manchester encoding

method, shown in Figure 2-10. Each pulse is clearly identified by the direction of the

midpulse transition rather than by its sampled level value.

Figure 2.10: Transition-Based Manchester Binary Encoding

 Unfortunately, Manchester encoding introduces some difficult frequency-related problems

that make it unsuitable for use at higher data rates. Ethernet versions subsequent to 10Base- T

all use different encoding procedures that include some or all of the following techniques:

• Using data scrambling: A procedure that scrambles the bits in each byte in an orderly

(and recoverable) manner. Some 0s are changed to 1s, some 1s are changed to 0s, and

some bits are left the same. The result is reduced run-length of same-value bits,

increased transition density, and easier clock recovery.

• Expanding the code space: A technique that allows assignment of separate codes for

data and control symbols (such as start-of-stream and end-of-stream delimiters,

extension bits, and so on) and that assists in transmission error detection.

Verification Of SoC with Ethernet Interface 2.Review of Literature

30

• Using forward error-correcting codes: An encoding in which redundant information

is added to the transmitted data stream so that some types of transmission errors can be

corrected during frame reception.

Note Forward error-correcting codes are used in 1000Base-T to achieve an effective

reduction in the bit error rate. Ethernet protocol limits error handling to detection of bit errors

in the received frame. Recovery of frames received with uncorrectable errors or missing

frames is the responsibility of higher layers in the protocol stack.

2.8 The 802.3 Physical Layer Relationship to the ISO Reference Model

Although the specific logical model of the physical layer may vary from version to version,

all Ethernet NICs generally conform to the generic model shown in Figure 2.11.

Figure 2.11: The Generic Ethernet Physical Layer Reference Model

 The physical layer for each transmission rate is divided into sub layers that are independent

of the particular media type and sub layers that are specific to the media type or signal

encoding.

• The reconciliation sublayer and the optional media-independent interface (MII in

10-Mbps and 100-Mbps Ethernet, GMII in Gigabit Ethernet) provide the logical

connection between the MAC and the different sets of media-dependent layers. The

MII and GMII are defined with separate transmit and receive data paths that are bit-

serial for 10-Mbps implementations, nibble-serial (4 bits wide) for 100-Mbps

Verification Of SoC with Ethernet Interface 2.Review of Literature

31

implementations, and byte-serial (8 bits wide) for 1000-Mbps implementations. The

media-independent interfaces and the reconciliation sublayer are common for their

respective transmission rates and are configured for full-duplex operation in 10Base-T

and all subsequent Ethernet versions.

• The media-dependent physical coding sublayer (PCS) provides the logic for encoding,

multiplexing, and synchronization of the outgoing symbol streams as well symbol

code alignment, demultiplexing, and decoding of the incoming data.

 The physical medium attachment (PMA) sublayer contains the signal transmitters and

receivers (transceivers), as well as the clock recovery logic for the received data streams.

• The medium-dependent interface (MDI) is the cable connector between the signal

transceivers and the link.

• The Auto-negotiation sublayer allows the NICs at each end of the link to exchange

information about their individual capabilities, and then to negotiate and select the

most favorable operational mode that they both are capable of supporting. Auto-

negotiation is optional in early Ethernet implementations and is mandatory in later

versions.

• Depending on which type of signal encoding is used and how the links are configured,

the PCS and PMA may or may not be capable of supporting full-duplex operation.

2.9 Ethernet Interfaces:

 Ethernet Interfaces basically defines the logical and electrical characteristics for the data

transmission between MAC and PHY layer. One such interface is Gigabit Media Independent

Interface (GMII). (See Figure 2.12)

Gigabit Media Independent Interface (GMII):

This interface has following characteristics:

• It is capable of supporting 1000 Mb/s operation.

• Data and delimiters are synchronous to clock references.

• It provides independent eight-bit-wide transmit and receive data paths.

• It provides a simple management interface.

• It uses signal levels, compatible with common CMOS digital ASIC processes.

• It provides full and half duplex operation.

• Supports 1000 Mb/s speed and clock frequency is 125 MHz.

Verification Of SoC with Ethernet Interface 2.Review of Literature

32

Figure 2.12: Transmission between MAC & PHY.

2.9.1 Signal Description:

2.9.1.1 TX_EN (transmit enable):

 TX_EN in combination with TX_ER indicates the Reconciliation sublayer is presenting

data on the GMII for transmission. It shall be asserted by the Reconciliation sublayer

synchronously with the first octet of the preamble and shall remain asserted while all octets to

be transmitted are presented to the GMII. TX_EN shall be negated prior to the first rising

edge of clock following the final data octet of a frame. TX_EN is driven by the Reconciliation

sublayer and shall transition synchronously with respect to the clock.

2.9.1.2 TXD (transmit data):

 TXD is a bundle of eight data signals (TXD<7:0>) that are driven by the Reconciliation

sublayer. TXD<7:0> shall transition synchronously with respect to the clock. For each clock

period in which TX_EN is asserted and TX_ER is de-asserted, data are presented on

TXD<7:0> to the PHY for transmission. TXD<0> is the lease significant bit. While TX_EN

and TX_ER are both de-asserted, TXD<7:0> shall have no effect upon the PHY. Table 2.2

specifies the permissible encodings of TXD<7:0>, TX_ER, and TX_EN.

MAC

PHY
GMIITx Rx

Verification Of SoC with Ethernet Interface 2.Review of Literature

33

Table 2.2: Permissible encoding of TXD<7:0>, TX_ER, and TX_EN

TX_EN TX_ER TXD<7:0> Description

0 0 00 through FF Normal inter-frame

0 1 00 through 0E Reserved

0 1 0F Carrier Extend

0 1 10 through 1E Reserved

0 1 1F Carrier Extend error

0 1 20 through FF Reserved

1 0 00 through FF Normal data transmission

1 1 00 through FF Transmit error propagation

NOTE- Values in TXD<7:0> column are in hexadecimal.

2.9.1.3 TX_ER (transmit coding error):

 TX_ER is driven by the Reconciliation Sublayer and shall transition synchronously with

respect to the clock. When TX_ER is asserted for one or more TX_CLK periods while

TX_EN is also asserted, the PHY shall emit one or more code-groups that are not part of the

valid data or delimiter set somewhere in the frame being transmitted. The relative position of

the error within the frame need not be preserved.

2.9.1.4 RX_DV (receive data valid):

 RX_DV is driven by the PHY to indicate that the PHY is presenting recovered and

decoded data on the RXD<7:0> bundle. RX_DV shall transition synchronously with respect

to the RX_CLK. RX_DV shall be asserted continuously from the first recovered octet of the

frame through the final recovered octet. In order for a received frame to be correctly

interpreted by the Reconciliation sublayer and the MAC sublayer, RX_DV must encompass

the frame, starting no later than Start Frame Delimiter (SFD) and excluding any End-of-

Frame delimiter.

Verification Of SoC with Ethernet Interface 2.Review of Literature

34

2.9.1.5 RXD (receive data):

RXD is a bundle of eight data signals (RXD <7:0>) that are driven by the PHY. RXD<7:0>

shall transition synchronously with respect to RX_CLK. For each RX_CLK period in which

RX_DV asserted, RXD<7:0> transfer eight bits of recovered data from the PHY to the

Reconciliation sublayer. RXD<0> is the least significant bit. While RX_DV is de-asserted,

the PHY may provide a False Carrier Indication by asserting the RX_ER signal while driving

the specific value listed in Table 2.3.

Table 2.3: Permissible encoding of RXD<7:0>, RX_ER, and RX_DV

RX_DV RX_ER RXD<7:0> Description

0 0 00 through FF Normal inter-frame

0 1 00 Normal inter-frame

0 1 01 through 0D Reserved

0 1 0E False Carrier indication

0 1 0F Carrier Extend

0 1 10 through 1E Reserved

0 1 1F Carrier Extend Error

0 1 20 through FF Reserved

1 0 00 through FF Normal data reception

1 1 00 through FF Data reception error

NOTE- Values in RXD<7:0> column are in hexadecimal.

2.9.1.6 RX_ER (receive error):

 RX_ER is driven by the PHY and shall transition synchronously with respect to RX_CLK.

When RX_DV is asserted, RX_ER shall be asserted for one or more RX_CLK periods to

indicate to the Reconciliation sublayer that an error (e.g. a coding error, or another error that

the PHY is capable of detecting that may otherwise be undetectable at the MAC sublayer) was

detected somewhere in the frame presently being transferred from the PHY to the

Reconciliation sublayer.

Verification Of SoC with Ethernet Interface 2.Review of Literature

35

2.9.2 Reduced Gigabit Media Independent Interface (RGMII):

 RGMII is intended to be an alternative to the IEEE802.3u MII (Media Independent

Interface), the IEEE802.3z GMII. The principle objective is to reduce the number of pins

required to interconnect the MAC and the PHY from a maximum of 28 pins to 12 pins in a

cost effective and technology independent manner. In order to accomplish this objective, the

data paths and all associated control signals will be reduced and control signals will be

multiplexed together and both edges of the clock will be used. For Gigabit operation, the

clock will operate at 125 MHz and for 10/100 Mbps operation, the clocks will operate at 2.5

MHz or 25 MHz respectively.

2.9.2.3 System Diagram:

Figure 2.13 shows system level diagram.

FUNCTIONAL
BLOCK

TXD<3:0>

TX_CTL

TXC

RXC

RXD<3:0>

RX_CTL

MDIO

MDC

Figure 2.13: System level diagram of Reduced Gigabit Media Independent Interface (RGMII)

Verification Of SoC with Ethernet Interface 2.Review of Literature

36

2.9.4 Signal Definition:

Following table gives the signal definition:

Table 2.4: Signal description of RGMII.

Signal Name RGMII Description

TXC MAC The transmit reference clock will be 125 MHz,

25 MHz, 2.5 MHz depending on speed.

TD<3:0> MAC In RGMII mode, bits 3:0 on positive edge of

TXC, bits 7:4 on negative edge of TXC.

TX_CTL MAC In RGMII mode, TX_EN on positive edge of

TXC, and a logical derivative of TX_EN

and TX_ER on negative edge of TXC.

RXC PHY The transmit reference clock will be 125 MHz,

25 MHz, 2.5 MHz and shall be derived from

received data stream.

RD<3:0> PHY In RGMII mode, bits 3:0 on positive edge of

RXC, bits 7:4 on negative edge of RXC.

2.9.5 Multiplexing of Data and Control:

 Multiplexing of data and control information is done by taking advantage of both edges of

the reference clocks and sending the lower 4 bits on the positive edge and the upper 4 bits on

the negative edge of clock. Control signals can be multiplexed into a single clock cycle using

the same technique.

2.9.6 TXERR and RXERR Coding:

 To reduce power of this interface, TXERR and RXERR, will be encoded in a manner that

minimizes transitions during normal network operation. This is done by the following

encoding method. Note that the value of TX_ER and TX_EN are valid at the rising edge of

clock while TXERR is presented on the falling edge of the clock. RXERR coding behaves in

the same way.

Verification Of SoC with Ethernet Interface 2.Review of Literature

37

TXERR <= TX_EN (XOR) TX_ER

RXERR <= RX_DV (XOR) RX_ER

 When receiving a valid frame with no errors, RX_DV=true is generated as a logic high on

the rising edge of RXC and RXERR=false is generated as logic high on falling edge of RXC.

When no frame is being received, RX_DV=false is generated as a logic low on the rising edge

of RXC and RXERR=false is generated as a logic low on the falling edge of RXC.

 While receiving a valid frame with errors, RX_DV=true is generated as logic high on the

rising edge of RXC and RXERR=true is generated as a logic low on the falling edge of RXC.

 TXERR is treated in a similar manner. During normal frame transmission, the signal stays

at logic high for both edges of TXC and during the period between frames where no errors are

to be indicated, the signal stays low for both edges.

Following table shows the allowable encoding of TXD, TXERR and TX_EN. Table 2.5

shows the allowable encoding of RXD, RXERR and RX_DV.

Table 2.5: Signal coding for TXD, TXERR and TX_EN.

TX_CTL TX_EN TX_ER TXD<7:0> Description

0,0 0 0 00 through FF Normal inter-frame

0,1 0 1 00 through 0E Reserved

0,1 0 1 0F Carrier Extend

0,1 0 1 10 through 1E Reserved

0,1 0 1 1F Carrier Extend error

0,1 0 1 20 through FF Reserved

1,1 1 0 00 through FF Normal data transmission

1,0 1 1 00 through FF Transmit error propagation

NOTE- Values in TXD<7:0> column are in hexadecimal.

Verification Of SoC with Ethernet Interface 2.Review of Literature

38

Table 2.6: Signal coding for RX_DV, RXERR and RX_ER.

RX_CTL RX_DV RX_ER RXD<7:0> Description PHY Status

Parameters

0,0 0 0 # xxx1 or xxx0 Normal inter-

frame

Indicates link status

0=down, 1=up

0,0 0 0 # x00x or x01x

or x10x or

x11x

Normal inter-

frame

Indicates RXC speed

00=2.5 MHz, 01=25

MHz, 10=125 MHz,

11=reserved

0,0 0 0 # 1xxx or 0xxx Normal inter-

frame

Indicates duplex

status

0=half-duplex,

1=full-duplex

0,1 0 1 * 00 Normal inter-

frame

0,1 0 1 * 01 through 0D Reserved

0,1 0 1 * 0E False Carrier

indication

0,1 0 1 * 0F Carrier Extend

0,1 0 1 * 10 through 1E Reserved

0,1 0 1 * 1F Carrier Extend

Error

0,1 0 1 * 20 through FE Reserved

0,1 0 1 * FF Carrier Sense

1,1 1 0 * 00 through FF Normal data

reception

1,0 1 1 * 00 through FF Data reception

error

* NOTE- (Required Function) Values in RXD<7:0> column are in hexadecimal.

NOTE- (Optional) Values in RXD<7:0> column are in binary.

Chapter 3

System Review (Basic Theory)

3.1 eVC (e Verification Component):

 e Verification Components (eVCs) are reusable, configurable, pre-verified, plug-and-play

Verification environments. They offer the easiest to use, most complete module, and chip and

system level verification solution available. eVCs integrate automatic stimulus generation,

assertion checking, and functional coverage analysis all within in a single,

 extensible component. eVCs drastically reduce the time needed to compose a verification

environment. The philosophy underlying eVCs differs significantly from alternative products.

Rather than use thousands of directed tests, the eVC employs automatic generation and a

coverage driven methodology. Using automated scenario generation the eVC can typically

achieve 90%+ coverage of the protocol. With the addition of a few tests the remaining corner

cases are then exercised. This approach uncovers more bugs faster and frees engineering time

to focus on testing the DUT's proprietary functionality.

3.2 Ethernet eVC:

 The Ethernet eVC can be used to verify IEEE 802.3 compliance MAC and PHY devices.

The eVC can be used for the functional verification of IP cores and SoC designs incorporating

Ethernet MAC and PHY functionality. Figure 3.1 shows the architecture of Ethernet eVC.

Verification Of SoC with Ethernet Interface 3. System Review

40

Figure 3.1: Architecture of Ethernet eVC

 The Ethernet eVC environment is represented by vr_enet_env.e. The eVC can simulate

either MAC or PHY behavior for the Media independent interfaces.

3.3 Features of the Ethernet eVC

 Like any verification environment built with Specman Elite, the Ethernet eVC can:

• Generate traffic stimuli to the DUT

• Check that the DUT adheres to the protocol

• Collect coverage related to the DUT

3.4 Ethernet Traffic Emulation

The Ethernet traffic consists of:

• Ethernet packets coming from the MAC or PHY port to the DUT

 The eVC sequences handle the generation of traffic and BFMs handle the emulation of the

traffic. The eVC can:

• Generate Ethernet packets and random data packets and drive them according to the

protocol.

Verification Of SoC with Ethernet Interface 3. System Review

41

• Generate and collect management interface traffic.

3.4.1 Elements of Ethernet eVC:

 Overall wrapper of eVC is vr_enet_env.e. All active and passive agents are instantiated

under env. Active agents and their types can be configured according to the design under test.

As shown in the architecture DUT is having two ports one is for transmission and other is for

reception and can have some control signal as per different interfaces. Width of TX and RX

path and control signals will change according to interface being used.

3.4.1.1 Config: A group of fields that allow configuration of the agent's attributes and

behavior.

3.4.1.2 Agnets: For each port of the interface, the eVC implements an agent. These agents

can emulate the behavior of a legal device, and they have standard construction and

functionality. Each env also has a group of fields, marked in Figure as Config. This allows

configuration of the env's attributes and behavior. Agents are of two types Active and Passive

agent.

• Active agent:

The active agents drive traffic to the DUT with the Ethernet sequence driver. The Ethernet

sequence driver generates various sequences and these sequences produce Ethernet packets

or random lists of data. The Ethernet packets or random lists of data are injected into the

DUT by the BFM. The BFM injects them on the Tx lines for the MAC agent and Rx lines

for the PHY agent. The active MAC or PHY agents generate Ethernet packets depending

on the constraints provided by the user on various item fields. Active agents also contain a

monitor to do the checking and collecting coverage. Active agent can generate traffic to the

DUT and can also respond to traffic from DUT.

• Passive agent: The passive agent consist of:

• A monitor, represented by vr_enet_monitor.

• A scoreboard, represented by vr_enet_scoreboard.

 The passive agent has both the Tx and Rx collectors in the monitor, by default. The Tx

monitor senses signals on the Tx path and the Rx collector senses signals on the Rx path. The

Verification Of SoC with Ethernet Interface 3. System Review

42

monitor collects the packets and emits events on the status of traffic to and from the DUT.

The monitor contains predefined coverage definitions and you can create additional coverage

definitions and protocol checks to meet the test bench requirements. The monitor also

contains predefined checks that verify the DUT’s adherence to the Ethernet protocol. The

monitor in the passive MAC agent checks for the protocol violation on the Tx lines and

monitor in the passive PHY agent checks for protocol violation on the Rx line. You can

configure the passive agents for non-layered interfaces only. The scoreboard unit verifies the

data integrity of Ethernet packets by comparing the sent and received Ethernet packets.

3.5 Flow of Data within the Agents

 The BFM initiates a new packet for transmission by calling the sequence (seq.) driver if

transmission of previous packet is over and other required conditions match. If an Ethernet

packet needs to be transmitted, then the sequence driver generates the required packet and

passes it to the Ethernet BFM. If a management packet needs to be transmitted, then the

management sequence driver generates the required management packet and passes it to the

management BFM. During reception cycle both the active and passive vr_enet_agent(s)

collect list of bits, list of di-bits, list of nibbles or list of bytes depending on the type of

interface. The agents then re-group the packet in the collector and check for packet related

errors.

3.6 Agent Architecture

Figure 3.2 displays the agent architecture at an overview level for non-layered interfaces and

Figure 3.3 shows the agent Architecture for layered interfaces, which displays each of the

units present in the agents of the Ethernet eVC in detail.

Within each Ethernet eVC agent, the following units are instantiated:

• A config block that has the signals for configuration of the agent.

• A signal map block, the eVC signals mapped to the DUT.

• A monitor to check the DUT behavior and collect coverage information.

• A scoreboard, to check the data items, can be instantiated.

Additionally, the active agents consist of:

Verification Of SoC with Ethernet Interface 3. System Review

43

• An Ethernet sequence driver, represented by vr_enet_driver, and a BFM, represented by

vr_enet_bfm.

• A management sequence driver, represented by vr_enet_mgmt_driver, and a BFM,

represented by vr_enet_mgmt_bfm. The management sequence driver and BFM are present

only in the active MAC agent.

The passive agents do not drive any signals. They use the monitor to check the DUT behavior

and collect coverage information.

Sequence
Driver

seq

Checker

Coverage

BFM

Agent

Passive

Active

Monitor

Config

Signal Mapping

Figure 3.2: Agent Architecture

Verification Of SoC with Ethernet Interface 3. System Review

44

Figure 3.3: Agent Architecture for Layered Interface

3.7 Monitors and BFM Architecture

 The monitors of the Ethernet eVC are completely passive. The BFM drives and generates

the packets. The BFM can make use of the monitor or duplicate some of the monitor's logic.

Most passive activity is done by the monitor, while all active interactions with the DUT are

done by the BFM. For example, the monitor collects the packets and then emits an event for

each packet received. The monitor consists of two collectors as shown in Figure 3.4:

• Tx Collector: The Tx collector packets from the Tx data path. By default, the collector is

disabled for active MAC agents and enabled for passive agents.

MAC
10/100 Mbps

MAC
1000 Mbps

R
G

M
II

In
te

rfa
ce

RGMII
 MAC

RGMII
PHY

MAC
10/100 Mbps

MAC
10/100 Mbps

GMII InterfaceMII Interface

GMII InterfaceMII Interface

Verification Of SoC with Ethernet Interface 3. System Review

45

• Rx Collector: The Rx collector packets from the Rx data path. By default, the collector is

disabled for active PHY agents and enabled for passive agents.

 The monitor has predefined checks to verify protocol adherence of the DUT and

predefined coverage definitions to collect coverage. By default, the checks and coverage are

enabled in the passive agents for non-layered interfaces and enabled in the active agents for

layered interfaces. The monitor also has the hooks-has_tx_collector and has_rx_collector to

enable the Tx and Rx collectors.

Checks

Coverage

vr_enet_agent

vr_enet_monitor

has_tx_collector=TRUE
has_rx_collector=TRUE

Rx CollectorTx Collector

Figure 3.4: Monitor and BFM architecture

 The monitor within the passive MAC agent checks for the protocol violation on the TX

line and the monitor within the passive PHY agent checks for the protocol violation on the Rx

line.

 Similarly, the management monitor is used to collect management packets from the

management interface line and the management BFM is used to drive management packets to

the management unit of PHY.

3.8 Scoreboard Architecture

 The scoreboard unit, represented by vr_enet_scoreboard, is used to check that the number

and order of data items collected from each DUT output agent are as expected. In the Ethernet

eVC, the scoreboard functionality is optional, and you can choose not to instantiate the

scoreboard. The scoreboard can be instantiated either at the environment or the agent level.

Verification Of SoC with Ethernet Interface 3. System Review

46

By default, the scoreboard is enabled at the agent level. The scoreboard can be used for

different configurations as listed below:

• A switch DUT: The scoreboard should be instantiated at the environment level.

• A repeater DUT: The scoreboard should be instantiated at the agent level.

• A single port DUT: The scoreboard can be instantiated at the agent or at the environment

level.

• User-specific: The scoreboard can be instantiated at the agent or at the environment level

for any other user-specific configurations. In these cases, you have to write your own hooks

for adding and matching the packets in the scoreboard.

3.9 Scoreboard Checking:

 One basic concern when checking data is to verify that the output data items collected

from the DUT match the corresponding data items injected into the DUT. This kind of

checking is called scoreboard checking. With scoreboard checking you verify that:

• Every input has a matching output

• Every output has a matching input

 In the Ethernet eVC, the scoreboard can be instantiated at the environment or agent level.

By default, it is enabled at the agent level. It can disable by setting the has_scoreboard field to

FALSE. The scoreboard collects the packets going in and coming out of the DUT and

compares them. It can also verify that the packet has been sent to the intended port. If any

mismatch is found, a scoreboard error is issued. The packet comparison is done by means of a

Unique ID (UID). In case when the UID get corrupted, the packet comparison is done on the

basis of 32-bit Cyclic Redundancy Check (CRC) calculation on the whole packet.

Verification Of SoC with Ethernet Interface 3. System Review

47

in p u t u id
= = 0

o u tp u t u id
= = 0

in p u t u id
= = 1

o u tp u t u id
= = 1

in p u t u id
= = 2

o u tp u t u id
= = 3

in p u t o u tp u t

s c o re b o a rd

o u tp u t u id
= = 0

o u tp u t u id
= = 1

o u tp u t u id
= = 3

in p u t u i d = =
0

in p u t u i d = =
1

in p u t u i d = =
2

a d d () m a tc h ()

D U T

Figure 3.5: Functioning of Scoreboard

3.10 Topologies for Verification at the Module Level

 The Ethernet eVC can simulate MAC and PHY behavior for verifying either of the device

type. Following are configurations of eVC for verifying MAC and PHY devices. Figure 3.6

shown below gives overview of Ethernet eVC in user’s verification environment.

Figure3.6: Ethernet eVC in user’s verification environment.

Verification Of SoC with Ethernet Interface 3. System Review

48

3.11 Single Port MAC DUT for non-layered Interfaces

To verify a Single Port MAC DUT, you must have an active PHY agent to drive traffic to the

DUT and a passive MAC agent to monitor the DUT, as shown in Figure 3.7.

MAC MII
DUT

PHY MII
ACTIVE
vr_enet_
agent

MAC MII
PASSIVE
vr_enet_

agent

EtherneteVC

Figure 3.7: Single Port MAC DUT

3.12 Multi-Port MAC DUT

To verify a multi-port MAC DUT, you must have equal number of active PHY agents (as the

DUT) to drive traffic to the DUT and equal number of passive MAC agents (as the DUT) to

monitor the DUT, as shown in Figure 3.8.Figure 3-7. Each port of the DUT might have same

or different interfaces.

PHY GMII
ACTIVE
vr_enet_
agent

MAC GMII
Port 0

MAC GMII
PASSIVE
vr_enet_

agent

PHY GMII
ACTIVE
vr_enet_

agent

MAC GMII
Port 1

MAC GMII
PASSIVE
vr_enet_

agent

PHY GMII
ACTIVE
vr_enet_
agent

MAC GMII
Port n

MAC GMII
PASSIVE
vr_enet_

agent

Ethernet eVC

Ethernet Switch DUT

Figure 3.8: Multi-Port MAC DUT

Verification Of SoC with Ethernet Interface 3. System Review

49

3.13 Single-Port PHY DUT for non-layered Interfaces

To verify a single-port PHY DUT, you must have an active MAC agent to drive traffic to the

DUT and a passive PHY agent to monitor the DUT, as shown in Figure 3.9. The active MAC

agent has the capability to generate Ethernet packets as well as random list of nibbles in case

of MII; random list of di-bits in case of RMII, and random list of bytes in case of GMII and

XGMII.

PHY MII
DUT

MAC MII
ACTIVE
vr_enet_
agent

PHY MII
PASSIVE
vr_enet_

agent

EtherneteVC

Figure 3.9: Single-Port PHY DUT

3.14 Multi-Port PHY DUT

To verify a multi-port PHY DUT, you must have equal number of active MAC agents to drive

traffic to the DUT and equal number of passive PHY agents to monitor the DUT, as shown in

Figure 3.10. Each port of the DUT can have the same or different interfaces.

MAC MII
ACTIVE
vr_enet_

agent

PHY MII
Port 0

PHY MII
PASSIVE
vr_enet_

agent

MAC MII
ACTIVE
vr_enet_

agent

PHY MII
Port 1

PHY MII
PASSIVE
vr_enet_

agent

MAC MII
ACTIVE
vr_enet_

agent

PHY MII
Port n

PHY MII
PASSIVE
vr_enet_

agent

Ethernet eVC

Ethernet Transceiver DUT

Figure 3.10:Multi-Port PHY DUT

Verification Of SoC with Ethernet Interface 3. System Review

50

3.15 Verification Environment Architecture:

 Ethernet eVC can be used for verifying IP cores of MAC and PHY supporting IEEE 802.3

Std. It is requires in first place to verify this eVC. It should be carefully checked that whether

it fulfills all the requirements of Ethernet Protocol, is eVC functionally adhering to protocol or

not? So for t is required to build the mock verification environment (VE), and configuring the

eVC for different kinds of possible DUTs. The Ethernet verification environment can be set

up under system level environment. In the first half of the project, we put more wattage on

verification of Ethernet eVC itself. Our goal was to make eVC fault (bug) free and to achieve

100% coverage of Ethernet eVC with reference to IEEE protocol for Ethernet. For this

purpose, we created a verification environment (VE) for the eVC. Below figure shows VE

architecture at functional level.

Figure 3.11: Ethernet eVC VE functional block diagram

3.15.1 Item Coverage: This module covers the item generated by the sequence. Here VE

coverage definition is different from eVC coverage. The eVC coverage defines all the rules

and items Ethernet protocol supports. The list of coverage items for eVC is as per appendix C.

For VE coverage item list, it should cover all the checkers that are introduced in the eVC,

scoreboard items and different possibilities of eVC configuration in addition to items listed in

eVC coverage list.

Passive

DUT

Item
coverageAgent

eVC
Sequence

EVC &
VE

BFM

Con
fig
&

Cov

Mon
itor

MGMT
Sequence

MGMT
Sequence

MGM

BFM
checke

Item
checker

Ethernet
manageme

Ethernet

VE

Verification Of SoC with Ethernet Interface 3. System Review

51

 While defining coverage items, some questions related to specifications must be answered.

Below are some sample questions.

• Have all packet/transaction types been tried?

• Have all CPU opcodes and operand combinations been tested?

• Have all legal state transitions occurred?

• Have all instruction types been interrupted?

• Have all cases of resource contention been tested?

• Have all queue limits been stressed?

3.15.2 BFM checker: This unit checks whether the item fields (virtual fields) constrained by

the sequence driver; is driven as per constrains through the BFM or not. Verification target:

Verify that the virtual fields of the item are driven correctly from the bfm to the monitor.

Feature Name Verification Target

Error injection Injected error corresponds to

the configuration.

Timing for error assertion

Error duration

Data length

BFM duplex mode HALF/FULL duplex

Bad CRC error injection If TRUE CRC is valid

Short frame error injection

Long frame error injection

Sfd error injection

Alignment error injection

Pause Opcode error injection

Length error injection

Ipg Duration of ipg.

Packet kind Packet kind

Preamble Preamble length

Verification Of SoC with Ethernet Interface 3. System Review

52

3.15.3 VE Sequences: The VE sequences are built on the basic sequences provided by eVC

to generate complex scenarios. The VE has its own sequence library to simulate various

complex scenarios so that checking of the checks can be done through them. The appendix –

B list various sequence scenarios that are simulated by the VE sequences with brief

description.

3.15.4 Agent Configuration Coverage: This module covers the various fields of the agent

config struct.

3.15.5 Ethernet Error Logger: This module is used to expect errors based on packet injected

by Ethernet BFM of agent. When DUT completes its packet collection, occurred errors are

copied to this module. It compares both expected and occurred errors and gives error on

mismatch.

3.15.6 Ethernet Management Error Logger: This module is used to expect errors based on

management packet injected by MGMT BFM of agent. Rest of the functionality is same as

Ethernet Error Logger module.

3.15.7 VE Monitor: This unit checks the validity of the checkers by comparing expected and

occurred errors of error logger unit. Whether a check is fired only when there is an error

condition violating the protocol or not; is checked by the VE monitor.

3.16 Is Data Collected Correctly?
Verification target: verify that the monitor collects items correctly. It use s scoreboard to

verify data integrity.

3.16.1 Checker Is Correct?

 Verification target: verify that the checks fired are correct.

Generate the sequence to generate both erroneous/non-erroneous behavior and check against

expected behavior with a separate checker.

 Whenever a sequence is intended to fire checks from eVC monitor, expected errors list is

updated with the list of expected error tag names. The errors occurred during the execution of

sequence are logged into occurred errors list. At the end of sequence both the lists are

compared and result is indicated. If both the lists match then a message saying: “Expected

and occurred errors are matched” is displayed else a message saying: “Errors expected

but not occurred:” or “Errors occurred but not expected” is displayed.

Verification Of SoC with Ethernet Interface 3. System Review

53

 For checker, coverage buckets are defined for each of them with their corresponding tag

name. Whenever a dut_error occurs, the bucket for that particular check is filled.

3.16.2 Coverage is correct

Verify that following coverage definitions are exercised at least once and coverage is being

collected correctly.

3.16.3 Configuration check / coverage

 This module checks and covers for the configuration of the eVC. It also checks that the

eVC is configured as per the user configuration.

It checks for the following.

§ Topologies

§ User configuration.

3.16.4 Scoreboard

 The scoreboard is used to check the data integrity between the BFM of one agent on one

end and the monitor of other agent on the other end. Following is the list of scoreboard

instances and corresponding input items, which are to be compared.

Scoreboard1: Item 1 – Ethernet BFM item (MAC ACTIVE Agent).

 Item 2 – Monitor item. (PHY ACTIVE Agent)

Scoreboard2: Item 1 – Ethernet BFM item (PHY ACTIVE Agent).

 Item 2 – Monitor item. (MAC ACTIVE Agent)

Chapter 4

System Design

 The eVC supplies a default sequence library with a predefined set of sequences that

execute typical scenarios. Sequences are made up of three main entities:

• Item: A struct that represents the basic data item to the DUT (for example, a packet).

• Sequence: A struct that represents a stream of items signifying a high-level scenario of

stimuli. This is done by generating items one after the other, according to some specific

rules. The sequence struct has a set of predefined fields and methods. The sequence struct

can also be extended for adding more functionality.

• Sequence Driver: Each sequence driver has a MAIN sequence, within which all other

sequences are generated. It is a unit that serves as the mediator between the sequences and

the verification environment. The sequence driver acts on the items generated through

sequences, typically passing them to the BFM (Bus Functional Model).

 For the purpose of driving the data into the DUT, the sequence driver interacts only with

the BFM. The sequence driver and the BFM work as a pair, where the sequence driver serves

as the interface upwards towards the sequences so that the sequences can always see a

standard interface to the DUT.

The BFM serves as the interface to the DUT, pulling items from the sequence driver and

passing them to a device.

4.1 Structure of Sequences

In the Ethernet eVC, the individual Layers—PHY and MAC are responsible for generating

the packets. Both layers use a common sequence driver and have their own sets of pre-defined

sequences to generate all the sequence items as shown in:

• 4.2 Ethernet Sequence Structure

• 4.2 Management Sequence Structure

Verification Of SoC with Ethernet Interface 4.System Design

55

4.2 Ethernet Sequence Structure

 The Ethernet eVC has a sequence driver and Figure 4.1: Ethernet Sequence Structure

displays internal structure of Ethernet sequences. In the sequence structure:

• sequence driver is vr_enet_seq_driver

• sequence struct is vr_enet_seq

• sequence item is vr_enet_packet

vr_enet_seq_driver

NO_ERRORS

NORMAL

MAIN:

CUST OM or
PREDEFINED
SEQUENCE

vr_enet_seq

vr_enet_seq_item

LEGEND

(pkt, random_data)

Figure 4.1: Ethernet Sequence Structure

 The Ethernet sequence driver generates packets using either MAIN, predefined, or custom

sequences. The MAIN sequence is responsible for generating all types of sequences and the

sequences generate basic data items. The items generated by sequences are passed to the

BFM, which sends them to the DUT. The MAIN sequence is started automatically upon run().

It is used as the root for the whole sequence tree.

4.2 Management Sequence Structure

 The Ethernet eVC has a management sequence driver. Sequence Structure displays

internal structure of management sequences as shown in Figure 4-2. In the sequence structure:

• Sequence driver is vr_enet_mgmt_seq_driver

• Sequence struct is vr_enet_mgmt_seq

• Sequence item is vr_enet_mgmt_packet

Verification Of SoC with Ethernet Interface 4.System Design

56

vr_enet_mgmt_seq_driver

PREDEFINED
SEQUENCE

MAIN:

CUSTOM
SEQUENCE

vr_enet_mgmt_seq

vr_enet_mgmt_seq_item

LEGEND

(read_inc_pkt, add_pkt, read_pkt, write_pkt)

Figure 4.2: Management Sequence Structure

4.3 Injecting Ethernet Packets with Packet Errors

 Packet errors are common to all interfaces. This section describes methods for injecting

packet errors on different packets. The various user interfaces to inject packet errors in the

Ethernet packet are:

1. Generating Ethernet packet with any one-packet error selected randomly.

extend MAIN vr_enet_seq {

 !pkt_err : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- The packet error kind is random.

 do SINGLE_PACKET_ERROR pkt_err;

 };

};

2. Generating Ethernet packets with specific single packet error.

extend MAIN vr_enet_seq {

 !eth_pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- The packet error kind is CRC error.

 do crc_err eth_pkt;

Verification Of SoC with Ethernet Interface 4.System Design

57

-- The packet error kind is SFD error.

 do sfd_err eth_pkt;

-- The packet error kind is short frame error.

 do short_frame_err eth_pkt;

-- The packet error kind is long frame error.

 do long_frame_err eth_pkt keeping {

 .packet_kind != ETHERNET_JUMBO

 };

-- The packet error kind is pause OPCODE error.

 do pause_opcode_err eth_pkt keeping {

 .packet_kind == ETHERNET_PAUSE

 };

-- The packet error kind is length error.

 do len_err eth_pkt keeping {

 .packet_kind in [ETHERNET_802_3,ETHERNET_MAGIC,

 ETHERNET_SNAP]

 };

 };

};

3. Generating Ethernet packet with specific single packet error and specific value.

extend MAIN vr_enet_seq {

 !err_pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- The packet error kind is CRC error with a specific value.

 do crc_err err_pkt keeping {.crc == 32’hffffffff};

 };

};

4. Generating Ethernet packet with random multiple packet errors.

extend MAIN vr_enet_seq {

 !error_pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- More than two random packet errors are generated in a packet.

 do MULTI_PKT_ERR error_pkt;

 };

Verification Of SoC with Ethernet Interface 4.System Design

58

};

5. Generating Ethernet packet with specific multiple packet errors.

extend MAIN vr_enet_seq {

 !pkt_error : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- More than two packet errors; one being CRC error.

 do crc_err MULTI_PKT_ERR error_pkt;

-- Two specific errors.

 do crc_err sfd_err pkt_error;

 };

};

4.4 Injecting Ethernet Packets with Protocol Errors

 Protocol errors are specific to interfaces. These errors can be injected in the various phases

of the Ethernet packet such as IPG phase, preamble phase, header phase, data phase, CRC

phase, and extension phases. There are some protocol errors that can be injected in a

particular phase only and there are some that can be injected in more than one phase. The

packet phase, the start time, the duration, and occurrences of a protocol error can be

controlled.

The various user interfaces to inject protocol errors are:

1. Generating Ethernet packets with protocol errors of single kind.

extend MAIN vr_enet_seq {

 !prot_err_pkt : ETHERNET INJECT vr_enet_packet;

 body()@driver.clock is only {

-- The err_kind,err_occurrence, err_phase, error timings, and error

-- lengths are random.

 do SINGLE_PROT_ERR_KIND prot_err_pkt;

 };

};

2. Generating Ethernet packets with protocol errors of multiple kind.

extend MAIN vr_enet_seq {

Verification Of SoC with Ethernet Interface 4.System Design

59

 !eth_prot_pkt : ETHERNET INJECT vr_enet_packet;

 body()@driver.clock is only {

-- The err_kind, err_occurrence, err_phase, error timings, and error

-- lengths are random.

 do MULTI_PROT_ERR_KIND eth_prot_pkt;

 };

};

3. Generating Ethernet packets with protocol error of a specific error kind and single error

occurrence.

extend MAIN vr_enet_seq {

 !pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- Generates Ethernet packet with single TX_ER error

-- The error-phase, error timing, and error length are random.

-- The error occurrence is single time.

 do SINGLE_PROT_ERR_KIND pkt keeping {

 for each (e) in .protocol_errs {

 e.err_kind == TX_ER and e.err_occurrence ==

 SINGLE_TIME;

 };

 };

 };

};

4. Generating Ethernet packets with protocol error of a specific error kind and multiple

error occurrence.

extend MAIN vr_enet_seq {

 !pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- Generates Ethernet packets with multiple TX_ER errors.

-- The error-phase, error timings, and error lengths are random.

-- The error occurrence is multiple times.

 do SINGLE_PROT_ERR_KIND pkt keeping {

 for each (e) in .protocol_errs {

 e.err_kind == TX_ER and e.err_occurrence == MULTI_TIME;

Verification Of SoC with Ethernet Interface 4.System Design

60

 };

 };

 };

};

5. Generating Ethernet packets with protocol errors of two specific error kinds.

extend MAIN vr_enet_seq {

 !pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- Generates Ethernet packets with TX_ER and

TX_CARRIER_EXTENSION_ERROR

-- errors.

-- The error-occurrence, error-phase, error timings, and error lengths

-- are random.

 do MULTI_PROT_ERR_KIND pkt keeping {

 .protocol_errs.size()==2 and

 for each (e) in .protocol_errs {

 index == 0 => e.err_kind == TX_ER;

 index == 1 => e.err_kind == TX_CARRIER_EXTENSION_ERROR;

 };

 };

 };

};

6. Generating Ethernet packets with protocol errors of specific error kind, in a specific phase,

and single error occurrence.

extend MAIN vr_enet_seq {

 !pkt : ETHERNET INJECT vr_enet_packet;

 body() @driver.clock is only {

-- Generates Ethernet packet with single TX_ER error in DATA phase.

-- The error timing and error length are random.

-- The error phase is data and error occurrence is single time.

 do SINGLE_PROT_ERR_KIND pkt keeping {

 for each (e) in .protocol_errs {

 e.err_kind == TX_ER and e.err_phase == DATA and

 e.err_occurrence == SINGLE_TIME;

Verification Of SoC with Ethernet Interface 4.System Design

61

 };

 };

 };

};

4.5 Monitoring, Coverage and Checks:

 The vr_enet_monitor and vr_enet_mgmt_monitor units are responsible for monitoring the

eVC and DUT. The monitor relies on its agent for initial setup. Thereafter, it is independent of

the agent, only looking at signals. The monitor recognizes packets going over the line,

analyzes them, and then emits corresponding events. The checker, coverage mechanism, and

scoreboards are extensions of the monitor. They add checks and coverage groups, based

mainly on the monitor events.

4.5.1 Using the Monitor

 The Ethernet eVC has a monitor for both the Ethernet and management interfaces. By

default, both the passive and active agents have monitor instantiation. The coverage and

checkers by default are enabling in active agents for non-layred interfaces like MII, GMII,

RMII, XGMII, and SMII. This is because the passive agents are not applicable for the layered

interfaces.

4.5.2 Collecting Coverage

 Coverage can be implemented either as a separate unit in the agent or in a has_coverage

subtype of the monitor. By default, the has_coverage flag is TRUE in passive agent and

FALSE in active agent. If you want to verify the eVC active agent’s capabilities, the

has_coverage flag can be set to TRUE.

Verification Of SoC with Ethernet Interface 4.System Design

62

 Active agent’s capabilities can be verified for various scenarios at each layer by analyzing

the coverage of generated sequence items for the following:

• injected packet errors

• packets with various data lengths

• packets with different packet formats

• injected protocol errors

The Ethernet eVC has predefined coverage definitions for each interface. These definitions

include:

• Coverage of various packet fields

• Cross coverage of the required coverage items.

4.5.3 Checking the Protocol

 The checkers are responsible for checking the DUT behavior. eVC contains data related

check like long frame error, short frame error, start frame delimiter error, CRC error etc

which are common to all interface. Those predefined checks can be disabled if required. To

disable all the checks for all the interfaces, constrain the has_checks field of the

vr_enet_agent. For example:

extend vr_enet_agent {

 keep has_checks == FALSE;

};

Disabling checks for a specific check for a specific interface, say the MII, as shown in the

example below:

extend sys {

 setup() is also {

 set_check(“ERR_ENET017_MAC_MII_IPG_TOO_SHORT”,

ignore);

 };
};

Chapter 5
Coverage Driven Verification

 Functional verification already consumes most of the IC logical design flow, as some

studies suggest, what's going to happen as chip complexity reaches 10 million or 100 million

gates?

 The answer is sheer chaos-unless the functional-verification process can be made more

manageable. Coverage-driven verification can help today, but the long-range answer lies in

rethinking both verification and design. Some experts say as chip complexity grows, there's

an exponential increase in the number of things that could potentially go wrong, and hence

need verifying. Can that be done without hiring armies of verification engineers to churn out

directed tests?

 Formal verification can provide targeted, exhaustive tests, but it doesn't cover everything.

Acceleration and emulation speed the process, but you've still got to generate and monitor the

tests. Faced with a multitude of design styles, tools and verification techniques, one point is

clear: Designers have got to have a plan.

 A verification plan starts by identifying what portions of the design are going to be tested,

and how. It identifies input scenarios to apply to the design under test, and calls out tough

corner cases that might not be found by simulation. It also does, or should, set forth a plan to

measure progress by applying coverage-driven verification.

 Engineers today are most familiar with code coverage, which checks to see if there are

unexecuted areas of code. Most people would agree it is unacceptable to synthesize that is

either dead or unverified. Nevertheless, code coverage is not enough. Most functional

scenarios cannot be mapped in to lines of code. For example code coverage cannot indicate

whether we have been thorough all the legal combination of states in two orthogonal state

machines.

 Another example might be whether we have tried all the possible inputs while the design

under test (DUT) was in all the different internal states. Also, code coverage does not look at

sequences of events, such as what else happened before, during, or after a line of code has

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

64

been executed. Thus, code coverage does not ensure completeness and does not fulfill most of

the requirements that allow expediting the verification task.

 An emerging and more difficult technique is functional coverage, which can be used to

check various corner cases-making sure, for instance, that a FIFO actually empties and fills.

 With functional coverage to provide feedback, random-test generation becomes more

practical and tougher bugs can be found. Finally, the growth of assertion-based verification

has given rise to assertion coverage, which, among other things, checks to see if assertions

actually fired or not. Figure 5.1, below, provides an example of functional coverage in an

environment that creates many simulation scenarios.

Figure5.1: Functional coverage serves multiple simulation scenarios

5.1 Higher abstraction:

 But that's just a start. To really manage the verification process, some observers say, it will

be necessary to move to higher levels of abstraction, and to start with a system-level, rather

than a block-level, view. Others say the design process itself will have to be improved so

there are fewer bugs in the first place.

 Functional coverage provides an excellent indication of how we're meeting the goals set by

the test plan. However, it may not correlate exactly to the actual RTL implementation, which

may have diverged over time. For example, code coverage results can find a "hole" in the test

plan -- functionality that is implemented in the RTL, but never targeted by the test plan.

Therefore, code coverage and functional coverage are complementary. Table 5.1 illustrates

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

65

how functional coverage and code coverage correlate to each other, and how the combination

of both provides a much more reliable indication of complete coverage.

Table 5.1: Correlation between functional coverage and code coverage.

Functional Coverage Code Coverage Indication

Low Low Early in verification

Low High Missing sequences and corner cases.

High Low Need to improve test plan

High High High confidence of quality

5.2 Coverage requirements:

 As all types of coverage are complementary in nature, a tool or methodology that

combines approaches is extremely beneficial. As mentioned earlier, this combined

methodology will provide a complete overview of the verification progress and a clearer

correlation between the functional coverage definitions and the actual design implementation.

 The requirements for coverage can be categorized into two groups: demands for the data

gathering and analysis engine, and requirements for the surrounding test bench that will allow

efficient usage of the accumulated information. Following are the main requirements for

coverage driven verification:

• Informative reports:

Getting coverage results should be readable and intuitive. Both a textual user interface

and a graphic user interface (GUI) should be provided. Usually, engineers use the GUI

since it provides an easy means to review, query and print the coverage database. The

textual interface is useful when trying to forward the results to other automatic tools or

manipulate the data into custom reports. The coverage engine in Specman Elite

collects functional coverage information based on user inputs that is easily driven

from the test plan. Below figure 5.2 shows the functional coverage of Ethernet Packet

in graphical user interface (GUI).

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

66

Figure5.2: Functional coverage of Ethernet Packet.

• Efficient coverage analysis:

When coverage results are less than satisfying, it should be easy to deduce the

appropriate adjustments and generate tests to improve the coverage results.

• Test base ranking:

The ability to accumulate and analyze coverage reports from multiple simulation runs

is crucial. Test suites today comprise of large number of tests. This ability to analyze

cumulative coverage allows you to:

o Get an overall picture of the entire verification environment, and measure your

recent progress. Using these measurements, you can objectively predict the

tape-out date.

o Avoid test redundancy. By measuring the amount of coverage added by each

test, redundant tests can be identified and removed.

• Timing of analysis:

The coverage tool should allow the engineer to analyze the coverage information both

between simulations and during a test run. The first approach requires the ability to

save the collected information to be reviewed later on. The second approach requires a

run-time interface to the coverage database that allows it to be used during simulation.

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

67

• Grading:

Various coverage holes may be prioritized and the overall progress can be better

represented by setting individual goals for each concern (how many times must I cover

each scenario?), and by setting weights to distinguish the relative importance of

different coverage scenarios.

• Optimizing the test suite:

Ranking capabilities should allow you to create a subset of tests that verify the DUT to

a significant degree, with a minimum amount of resources. Running this subset of tests

instead of your entire test suite drastically reduces the total number of cycles needed

for verification.

• Open environment:

Intellectual property reuse and design complexity have turned our verification

environment into a mix of design representations and verification languages. Having

the flexibility to use the same methodology on all types of designs is critical.

5.3 Steps for achieving coverage:

 The following flow incorporates all coverage metrics. These guidelines provide a more

complete metric and methodology that can be examined through the various phases, while

steering the verification process towards a rapid completion.

• Phase one-Test plan:

A good test plan should list all the interesting test cases to verify the design. In

specific, it should include all configuration attributes, all variations of every data item,

interesting sequences for every DUT input port, all corner cases to be tested, all error

conditions to be created and all erroneous inputs to be injected.

An encompassing test plan is a good start to ensure complete verification. Experience

and creativity can be used to identify areas that are prone to bugs.

Note that no test plan can cover every possible bug, which highlights the importance

of directed-random test generation. However, a good test plan is still essential to an

efficient verification strategy and becomes the basis for a functional coverage model.

Following table shows the packet related test plan:

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

68

Table 5.2: Scenarios to be checked on various Ethernet packets.

NORMAL
Fields Valid values Invalid values
Errors Errors=0 Errors>0
Preamble length Preamble_length=56 Preamble_length!=56

PAD_FRAME
Fields Valid values Invalid values
Data_length &
tag_kind

Data_length in [1..45] &
tag_kind =
UNTAGGED

Data_length>45 &
tag_kind =
UNTAGGED

Data_length &
tag_kind

Data_length in [1..42] &
tag_kind =
VLAN_TAG

Data_length > 42 &
tag_kind =
VLAN_TAG

Data_length &
tag_kind

Data_length in [1..38] &
tag_kind =
DOUBLE_VLAN_TAG

Data_length > 38 &
tag_kind =
DOUBLE_VLAN_TAG

CRC_TEST
Fields Valid values Invalid values
Crc_err Crc_err = TRUE Crc_err = FALSE

LONG_FRAME_TEST
Fields Valid values Invalid values
Data_length
& tag_kind

Data_length > 1500 &
tag_kind =
UNTAGGED

Data_length <= 1500 &
tag_kind =
UNTAGGED

Data_length
& tag_kind

Data_length > 1496 &
tag_kind =
VLAN_TAG

Data_length <= 1496 &
tag_kind =
VLAN_TAG

Data_length
& tag_kind

Data_length > 1492 &
tag_kind =
DOUBLE_VLAN_TAG

Data_length <= 1492 &
tag_kind =
DOUBLE_VLAN_TAG

SFD_TEST
Fields Valid values Invalid values
sfd_err sfd_err = TRUE Sfd_err = FALSE

SHORT_FRAME_TEST
Fields Valid values Invalid values
Data_length Data_length < 45 &

pad = 0
Data_length > 45 &
pad != 0

Short_frame_err Short_frame_err =
TRUE

Short_frame_err =
FALSE

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

69

LENGTH_FRAME_TEST
Fields Valid values Invalid values
Length_type Length_type <=

1500 & length_type
! = data_length

Length_type >
1500 & length_type
= data_length

*see appendix A for code of test_case.

• Phase two-Functional coverage specification:

Define what should be covered. Decide on the interesting data fields/registers. Define

separate buckets for legal values, illegal values, and boundary values, such as corner

cases. Examine both interfaces and internal states. Choose the state registers and state

transitions of important state machines. Identify interesting interactions between some

of the above states or data, such as, the state of one state machine relative to another,

or to a value of a signal. The functional coverage specification is, in essence, an

executable form of test plan. Following figure shows functional coverage model for

Ethernet eVC.

Figure5.3: Functional coverage model for Ethernet eVC.

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

70

• Phase three-Build the test bench:

Build environment parameterized in a way that each test can direct it to a specific area

of concern. This enables us to use the coverage results and translate coverage holes

into new tests. At this point functional coverage and assertion coverage code should be

written. It should be sure that the verification strategy we have chosen is suitable for

the entire verification needs. Following table shows the sequences for various

interface of Ethernet eVC.

TX_ER (only MII and GMII)

Fields Valid Values Invalid Values

Errors errors > 0 errors = 0

Length length > 0 length = 0

Err_kind err_kind = TX_ER err_kind != TX_ER

Err_phase err_phase !=CARRIER_EXTENSION err_phase= CARRIER_EXTENSION

TX_CARRIER_EXTENSION_ERROR (only GMII and
RGMII)

Fields Valid values Invalid values
Errors Errors > 0 Errors = 0
Length Length > 0 Length = 0
Data_length Data_length < 512 Data_length > 512
Err_kind Err_kind =

TX_CARRIER_
EXTENSION_
ERROR

Err_kind !=
TX_CARRIER_
EXTENSION_
ERROR

Err_phase Err_phase =
CARRIER_EXTENSION

Err_phase !=
CARRIER_EXTENSION

RX_ER(only MII,RMII and GMII)

Fields Valid Values Invalid Values

Errors errors > 0 errors = 0

Length length > 0 length = 0

Err_kind Err_kind = RX_ER err_kind != RX_ER

Err_phase Err_phase !=IPG err_phase =IPG

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

71

CRS_DOWN_INJECT (only MII and GMII)

Fields Valid Values Invalid Values

Errors errors > 0 errors = 0

Length length > 0 length = 0

Err_kind err_kind = CRS_DOWN_INJECT err_kind != CRS_DOWN_INJECT

Err_phase err_phase!=IPG err_phase=IPG

IPG_RX_ER (only MII, GMII and RMII)

Fields Valid Values Invalid Values

Errors errors = 0 Errors > 0

Length length > 0 Length = 0

Err_kind err_kind = IPG_RX_ER err_kind != IPG_RX_ER

Err_phase err_phase= IPG err_phase !=IPG

FALSE_CARRIER_INDICATION (only MII, RMII, GMII and
RGMII)

Fields Valid values Invalid values
Errors Errors > 0 Errors = 0
Length Length > 0 Length = 0
Err_kind Err_kind =

FALSE_CARRIER_
INDICATION

Err_kind !=
FALSE_CARRIER_
INDICATION

Err_phase Err_phase = IPG Err_phase != IPG

RX_CARRIER_EXTENSION_ERROR (only GMII & RGMII)
Fields Valid values Invalid values
Errors Errors > 0 Errors = 0
Length Length > 0 Length = 0
Data_length Data_length < 512 Data_length > 512
Err_kind Err_kind =

RX_CARRIER_
EXTENSION_
ERROR

Err_kind !=
RX_CARRIER_
EXTENSION_
ERROR

Err_phase Err_phase =
CARRIER_EXTENSION

Err_phase !=
CARRIER_EXTENSION

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

72

Below table shows the management interface related scenarios for GMII, RGMII.

MGMT_RESET

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 none

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data Bit 15 of data = 1 Bit 15 of data = 0

SPEED_SELECT_10 (only MII, RMII)

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data Bit 15 = 0, bit 13=0 and bit 6 =0 Bit 15 = 1 or bit 13=1 or bit 6 =1

SPEED_SELECT_100 (only MII, RMII)

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data Bit 15 = 0, bit 13=1 and bit 6 =0 Bit 15 = 1 or bit 13=0 or bit 6 =1

SPEED_SELECT_1000 (GMII)

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data Bit 15 = 0, bit 13=0 and bit 6 =1 Bit 15 = 1 or bit 13=1 or bit 6 =0

LOOPBACK (only MII and GMII)

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data bit 15 = 0 and bit 14=1 bit 15 = 1 or bit 14=0

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

73

POWERDOWN

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data bit 15 = 0 and bit 11=1 bit 15 = 1 or bit 11=0

ISOLATION

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

Data bit 15 = 0 and bit 10=1 bit 15 = 1 or bit 10=0

READ_PHY_MGMT

Fields Valid Values Invalid Values

addr1 addr1 = 5’b00000 to 5’b11111 None

addr2 addr2 = 5’b00000 addr2 !=5’b00000

*see appendix A for code of test case.

• Phase four- Writing tests and simulation:

Write tests and run them. Try to enhance the test suite by using the iterative process of

analyzing coverage reports and adding additional tests to fill the uncovered areas.

From time to time, update and optimize regression suite using the ranking capabilities.

There is no need to frequently run tests that have only marginal contribution to the

verification process.

Note that from the beginning, the best tests are directed-random tests. In other words,

tests should be targeted at a specific area, but anything that need not be specified

should be randomized. By changing the random seed, each test can become thousands

of tests, each testing the same target from different paths and randomizing data. This is

the most efficient way to increase coverage and find bugs!

• Phase five-Code coverage integration:

Once RTL code is mature enough, add in code coverage. Start with block coverage.

Unreachable code should be carefully analyzed; it may save time to ask the

implementer to identify the code's functionality. Dead code should be removed. In

cases of reachable non-exercised logic, identify the untested scenario and write tests or

constrain the test generator to fill coverage holes.

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

74

At the same time identify the untested functionality. Once identified, review of test

plan should be done and make sure it is not an overlooked area in the test plan. Update

the test plan and functional and assertion coverage code as necessary.

• Phase six-Regression testing:

Throughout the process, regression suites that maximize code, functional and assertion

coverage should be created. Regressions can be created per functional area or to fit

timeslots, such as overnight or weekly regressions than may run 60 hours, potentially

on multiple servers. It is critical to leverage compute and simulation resources to

maximize coverage and find bugs faster.

5.4 Running and Tracking Regression:

 In a coverage-driven verification program, typically there is a 10X or greater increase in

the amount of simulations run on a daily basis. The increase in simulations is usually an

optimization of existing resources so that they are more fully utilized. This way, tool licenses

and computers which have grown accustomed to having nights and weekends off are

exercised around the clock. This increase, while providing deeper coverage of the design and

high quality bugs, also creates a whole bunch of information that needs to be managed. In

order to track completion of test suites, parse and distribute failures, and verify the failures are

fixed.

 After regression is over we have to generate a list of failure types using Unix Shell scripts.

This means that either based on error type or test name, test failures are assigned, and we have

to analyze and find the bugs in eVC.

 Following a nightly regression, all failures will be categorized by failure type, sorted by

cycles-to-failure, and we have to debug and fix test bench problems, eVC bugs, VE bugs or if

bug is critical we assign them to the eVC design team. When fixes are completed we change

the status of that the fix was made. Then we have to validate each fix by rerunning the

simulation in the subsequent regression and finally bug will be closed using bug tracking

system.

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

75

5.4.1 Analyzing coverage:

 As the project progresses, the focus shifts to analyzing the coverage in order to both focus

effort on the coverage holes and in order to produce weekly indicators to increase accuracy.

Coverage analysis is done on following basis:

• Defining priorities and weights per feature

• Defining perspective views for intermediate milestones and users interested in specific

features

• Identifying the constraints that cause functionality not to be achieved

 Specman Elite tool, facilitating a system where coverage can be prioritized, masked or

viewed in different perspectives, will open up a whole new array of possibilities in managing

phased projects. For example, if the first spin of the design is just for a demo, a smaller

percentage of the functionality of the design needs to be validated to release the eVC. In that

case 100% coverage can be defined by choosing just the coverage points are needed.

 If the subsequent spin is defined to be more sensitive to time than features, the coverage

set can defined to include only the priority-1 features, leaving the subsequent features to the

next spin. Overall, the coverage can be monitored by different stakeholders based on their

priorities and perspectives, while the verification team can focus on the goal at hand without

having to design several separate plans.

5.4.2 Optimizing regressions

 One of the bottlenecks toward the end of a coverage-driven program is the amount of

computer time and license resources required to produce the coverage. A management

automation tool should provide a means to identify optimal tests for achieving the coverage.

This way the cycles that are run can be focused to help reach goals faster and more efficiently.

Functional coverage is the best indicator of the efficiency of a random test. Therefore, running

hundreds or thousands of tests which do not contribute to the coverage is likely not the best

use of resources. To find optimal test suite, key tests are graded for their efficiency in

providing coverage.

 Redundant tests can be eliminated and certain tests can be marked for running only once,

or for running multiple times. This enables finding the optimal regression for running in

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

76

random, a regression, which covers the broadest feature, base in the fewest tests. Running that

regression in random is likely to be a significant savings in resources.

 A tool which enables identification of the optimal test suite, based on the coverage

perspectives described above, will also allow creation of several smaller regressions which

can be used for multiple purposes. A feature-regression is a subset of all the tests, which

covers an entire feature in a minimum number of runs.

 This regression is run before a check-in of files modifying a feature's code. A mini-

regression is a subset of highly stable tests that establish that each of the features is still alive.

This is used before any top-level or modeling change. Also, like in the example from the

previous section, a spin-1 regression can be defined to retain 100% of spin-1 coverage in case

the team decides to re-release the eVC at a later date and wants to maintain the a consistent

level of quality. Overall, the use of a management automation tool should drive many of the

manual tasks done by the verification team and managers as well as open the doors to new

possibilities in managing verification projects efficiently.

5.5 Analyzing bugs:

5.5.1 Manual Bug Analysis
 In this process, the simulation results are checked with waveform viewer. The waveforms

of output from dut will be regoursly checked for any of the protocol violence or any mismatch

with expected output with reference to input. Figure shows the waveform for an illegal inter

packet gap between two packets.

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

77

Figure 5.4: Illegal inter packet gap between two packets.

5.5.2 Automated bug analysis

 When test scenarios are fired to eVC, the VE will expect some errors to be occurred as

these errors are designed in test case itself and log the list of expected errors for further use.

Now the output is observed for all the errors occurred. Then there is one matching mechanism

which will match the occurred error with list of expected error and discard the error if it

matches otherwise it gives message "error occurred but not expected" For the error which are

expected but didn't occurred are displayed with message "error expected but not occurred"

From this information of occurred and expected error, further analysis must be done to find

out any bug in system or reason of unexpected behavior.

 Once the bug is found, one should correct that bug locally and verify the behavior of

corrected code and then it must be notified with GCVS Graphical Concurrent System

Version. And this way that bug will be removed from entire system.

rx_pa
cket_s

rx_pa
cket_e

tx_pac
ket_st

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

78

5.5.3 Checkers

 To automate the bug analysis process, it is required to add more and more checkers.

Checkers will give warning or error message when some predefined conditions are not

satisfied or protocol violence happens, and from this message, the bug analysis can be done.

But precise care should be taken while defining checkers otherwise checker itself will cause

some misinterpretation.

 5.5.3.1 Checking

Checking of a design can be done against:

• A set of rules: Here in this case we are checking DUT against a set of rules,

specification. In our case we are following IEEE standards.

• A reference model (written in e, C, etc.), synchronized with a simulator.: for this

purpose, we have designed a mock DUT in Verilog language which follows the rules

defined by IEEE standard for Ethernet.

 Generally Specman Elite can perform two types of checks:

• Data checks verifying data correctness

• Temporal checks verifying timing protocols

5.5.4 When to Check

Checking can be done:

• Post-run: After simulation is over, in the check phase

• On the fly: During the simulation run phase. This method is more fruitful as it allows

analysis with full state of DUT, saves memory because less data is accumulated and

also avoids wasted simulation time, because simulation stops on error.

5.5.5 Data Checking

To check the data coming out of the DUT the procedure is as follow:

1. Collect DUT output.

2. Convert the raw output data to a higher abstraction. (This step is optional but

usually preferable.)

3. Check the converted data.

Verification Of SoC with Ethernet Interface 5.Coverage Driven Verification

79

 The first and third steps are obvious. Before you check, you must collect the output.

Converting the raw data is in accordance with one of Specman s basic ideas - to work on a

higher level of abstraction. We generate packets but inject bytes. Conversely, we collect bytes

but check packets. Checking is easier when comparing on a higher abstraction level. It is

easier to understand from error messages when the error occurred.

5.5.6 Data Check Constructs

Check action Syntax:

dut_error is a predefined method that specifies a DUT error with a message string. It also

updates predefined corresponding fields: 1. num_of_dut_errors 2. num_of_dut_warnings. It

should be noted that the check’s effect on simulation is controllable.

1. check that: like an if statement, with the addition that:

• You can control the effect of a failure on the simulation run.

• Global error counters and flags are set by Specman.

2. dut_error(): like append(), accepts any number of parameters that are converted to

 strings and concatenated to form the error message

5.5.7 Data Checking Using Scoreboard

 For comparing output to input, the scoreboard technique is recommended.:

1. Keep input in a scoreboard.

2. Compare collected output to matching input.

Following are examples of scoreboard checking for:

• Comparing raw data (byte by byte)

• Comparing at a higher abstraction level (struct fields)

 We follow data checking at a higher abstraction level. We are using it at packet level. The
architecture of scoreboard checking is as followed. A uid number is inserted in to a packet .
The packet is stored in scoreboard with a given uid and inserted to DUT also. The output
from DUT is matched for the same uid in scoreboard. If output uid matches with input uid
then that packet and uid is discarded from scoreboard otherwise it gives scoreboard error.

Chapter 6

Results and Discussion

 This chapter provides the simulation of some basic scenarios like normal, collision and

zeroipg between two packets.

6.1 Normal Scenario:

 Test case “test_gmii_normal” is able to generate normal scenario by firing packets of

different lengths, types for Ethernet packets and Random data. As per the standard IEEE

802.3 data length of packet can be varied from 46 bytes to 1500 bytes. Number of packets to

be fired can be varied by constraining count variable. All the information regarding which

bfm has fired the packet, packet no., packet type, duplex mode, length of data, start time of

packet, end time of packet etc. will be stored in a log file. Figure 6.1 shows the waveform for

normal packet.

Figure 6.1: Simulation of Normal Scenario.

Verification Of SoC with Ethernet Interface 6.Results and Discussion

81

 Only MAC bfm can fire packets on ‘tx’ line. It can be seen in above figure signal ‘tx_en’

will go high and data on txd line will be 55h (i.e. 10101010) for 7 clock cycles. Carrier sense

signal will go high after one cycle if ‘tx_en’ signal is high. Monitor will collect these packets

and coverage will be collected on event defined inside monitor. Figure 6.2 shows the

collected coverage.

Figure 6.2: Coverage of Normal Scenario.

 In above figure yellow fields shows partial collection with grades in percentage. Red fields

show the hole, and green field shows full collection with 100% coverage.

Verification Of SoC with Ethernet Interface 6.Results and Discussion

82

Figure 6.3: Simulation of Normal Packet scenario (RGMII interface).

6.2 Collision Scenario:

 As per standard collision will occur if both the stations start transmission simultaneously.

If we fire packets simultaneously through MAC and PHY bfm’s then collision scenarios could

be simulated. If collision occur in preamble phase of the packet then both station will

complete preamble and then transmit 32-bit jam sequence (i.e. 4 bytes of data with pattern

11110010) to ensure occurrence of collision and then they wait for random time and start

transmission again. Figure 6.4 shows waveform for collision condition.

Verification Of SoC with Ethernet Interface 6.Results and Discussion

83

Figure 6.4: Simulation of Collision Scenario.

Figure 6.4 shows the fired check and collected coverage from test case simulating collision. It

can be seen from the figure that checks 26,27,28 and 29, which are related to collision, has

been covered.

Verification Of SoC with Ethernet Interface 6.Results and Discussion

84

Figure 6.5: Coverage of Collision Scenario (GMII Interface).

Figure 6.6: Simulating collision scenario (RGMII Interface).

Verification Of SoC with Ethernet Interface 6.Results and Discussion

85

6.3 Zeroipg check Scenario:

 Test case “test_gmii_zeroipg_check” fires packets with zero inter frame gap. As per

standard minimum inter frame gap between two packets should be 96-bit. We can fire packets

with zero inter frame gap by constraining ipg field of packet to zero value or any value less

then 96-bits. Figure 6.7 shows coverage of zeroipg scenario.

Figure 6.7: Zeroipg check scenario (GMII Interface).

Verification Of SoC with Ethernet Interface 6.Results and Discussion

86

Figure 6.8: Coverage of Zeroipg check Scenario.

6.4 Injecting RX_ER in ipg phase of packet:

Figure 6.9: TX_ER insertion in Data Phase of Ethernet Packet (RGMII Interface).

Verification Of SoC with Ethernet Interface 6.Results and Discussion

87

Figure 6.10: RX_ER insertion in IPG phase of Ethernet Packet (RGMII Interface).

6.5 Results
1. No. of Bugs found in Verification Environment 21

2. No. of Bugs found in eVC 43

3. No. of test cases written 31

4. Coverage achieved in each interface

 GMII 98%

 RMII 97%

 SGMII 98%

 XSBI 94%

 RGMII 92%

5. Automization done in each interface

 GMII 90%

 RGMII 70%

 SGMII 80%

 XSBI 70%

Chapter 7

Conclusion and Future Scope

7.1 Conclusion:

 This project work has helped me in understanding Ethernet protocol and various interfaces

used by it. I learned Unix operating system and e/Specman verification language during the

training, which is prerequisite for verification.

 Project work majorly focused on verification and designing of eVC (e Verification

Component) using eRM (e Reusable Methodology). As we all know verification takes 70% of

the whole design cycle, so using these kinds of ready-made verification component bugs can

be found on early stages of design and hence can be fixed in same stages. This can increase

probability of first time success of chip and also the time to market which is very stringent

now-a-days.

7.2 Future Scope:
Ethernet protocol supports lot many interfaces, layered as well as non-layered interfaces. Now

layered interface are evolving at speed of light so possibility of adding new interface to

Ethernet eVC will always be there.

 Also the methodology followed to implement the Ethernet eVC can be implemented in

other environment too. It can be implemented using other Hardware Verification Languages

like System C, Open Vera Assertion, and System Verilog etc.

References

1. IEEE Std 802.3, 2000 Edition “Carrier sense multiple access collision detection

(CSMA/CD) access method and physical layer specification”.

2. ANSI/IEEE Std 802.3, “Carrier sense multiple access collision detection (CSMA/CD)

access method and physical layer specification”, Fifth Edition, 1996.

3. IEEE Draft P802.3z/D4, “Media access control (MAC) parameters, physical layer,

repeater and management parameters for 1000 Mbps operation”, December 1997.

4. R. M. Metcalfe and D. R. Boggs, “ Ethernet: Distributed Packet Switching for Local

Computer Networks, Communications of the ACM” vol. 19, pp. 395-404, July 1976.

5. IEEE 802.1Q-in-Q VLAN Tag Termination

6. IEEE Std 802-1990 IEEE Standards for Local and Metropolitan Area Networks:

Overview and Architecture

7. IEEE P802.3ae 10 Gigabit Ethernet Task Force

http://grouper.ieee.org/groups/802/3/ae/

8. Ethernet in the First Mile Alliance

http://www.efmalliance.org/

9. Gigabit Networking: High-Speed Routing and Switching,

http://www.cse.ohio-state.edu/~jain/cis788-97/gigabit_nets/index.htm

 10. IEEE 802.3 CSMA/CD (ETHERNET) Working Group

 Web site, http://grouper.ieee.org/groups/802/3/

 11. Computer Networks by Tennanbaum.

 12. Rich Seifert, “Gigabit Ethernet: Technology and

 Applications for High-Speed LAN’s” Addison-Wesley,

 May 1988.

http://grouper.ieee.org/groups/802/3/ae/
http://www.efmalliance.org/
http://www.cse.ohio-state.edu/~jain/cis788-97/gigabit_nets/index.htm
http://grouper.ieee.org/groups/802/3/

Appendix A Test Cases

File name : test_gmii_normal.e
Title :
Project : Gigabit Ethernet eVC
Created On :
Developers : eInfochips Ltd
Purpose :
Description :This testcase is used to fire normal packets
Assumptions : none
Limitations : none
Known Errors : none
Notes :

Copyright(c)2000-2003 eInfochips. - All rights reserved
This software is authored by eInfochips and is eInfochips intellectual
property, including the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips. This file may not
be distributed, copied, or reproduced in any manner,
Electronic or otherwise, without the express written consent of eInfochips.

Revision History :

o Some specific sequences:

<'
import vr_enet_ve/tests/vr_enet_gmii_ve_config;
==
extend vr_enet_env {
 crs_active_in_full_duplex : bool;
};

extend vr_enet_agent {
 keep config.crs_active_in_full_duplex ==
get_enclosing_unit(vr_enet_env).crs_active_in_full_duplex;
 keep config.has_log.reset_soft();
 keep soft config.has_log == select {
 50: TRUE;
 50: FALSE;
 };
};

extend ETHERNET vr_enet_packet {
 keep soft data_length == select {
 25: [0,1,1499,1500];
 25: [43,44,45,46,47,2..6];
 20: [7..40,48..1495];
 40: [41,447,448,449,42,1496,1497..1498];
 };
};

extend ETHERNET vr_enet_packet {
 keep pause_quanta.reset_soft();
 keep soft pause_quanta == select {
 33: [0,1..10];

Verification Of SoC with Ethernet Interface Appendix A Test Cases

91

 33: [11..50];
 33: [51..65536];
 };
};
extend RANDOM_DATA vr_enet_packet {
 keep soft data_length == select {
 33: [0,1,1499,1500];
 33: [45,46,47];
 33: [2..44,48..1498];
 };
};

==
extend MAIN vr_enet_mgmt_seq {
 keep soft count == 0;
};
==
extend MAIN FALSE'random_data_mode vr_enet_seq {
 keep count ==20;
 keep sequence.kind in [NO_ERRORS,PAD_FRAME,NORMAL];
};

extend MAIN TRUE'random_data_mode vr_enet_seq {
 keep count ==20;
 keep sequence.kind == GMII_RANDOM_NORMAL;
};
'>

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips.
This file may not be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

--

File name : test_gmii_error.e
Title :
Project : Gigabit Ethernet eVC
Created On :
Developers : eInfochips Ltd
Purpose :
Description :This testcase is used to fire erroneous
packets
Assumptions : none
Limitations : none
Known Errors : none
Notes :

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips. This file may not
be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

Revision History :

Verification Of SoC with Ethernet Interface Appendix A Test Cases

92

o Some specific sequences:

<'
import vr_enet_ve/tests/vr_enet_gmii_ve_config;
===
extend vr_enet_packet {
 keep packet_kind.reset_soft();
};
extend vr_enet_agent {
 keep config.retry_limit.reset_soft();
 keep soft config.retry_limit == select {
 25: 0;
 25: 1;
 25: [2..15];
 25: 16;
 };

 keep config.jam_length.reset_soft();
 keep soft config.jam_length == select {
 33: 0;
 33: [1..7];
 33: 8;
 };
};
===
extend PHY MAIN FALSE'random_data_mode vr_enet_seq {
 keep count ==20;
 keep soft sequence.kind == select {
 20:
[CRC_TEST,SHORT_FRAME_TEST,ILLEGAL_PAUSE_OPCODE,
SFD_TEST,GMII_PHY_RX_ER,GMII_PHY_CRS_DOWN_INJECT,GMII_LONG_FRAME_TEST,GMII_
FRAME_LENGTH_TEST,GMII_PHY_RX_CARRIER_EXT_ERR,GMII_PHY_IPG_RX_ER,
GMII_PHY_FALSE_CARRIER_INDICATION,GMII_MIN_RECEIVED_IPG_TEST];

 40:
[GMII_ILLEGAL_IPG,GMII_ILLEGAL_PHY_PREAMBLE,GMII_ILLEGAL_FCI,GMII_IPG_RX_ER
RS,GMII_ILLEGAL_SOURCE_ADDRESS,GMII_ILLEGAL_EXTENSION,
GMII_ILLEGAL_FIRST_BYTE_PREAMBLE];

 20:
[GMII_RX_ERRS,GMII_ERR_DOUBLE_VLAN_HEADER,GMII_ERR_VLAN_HEADER];

 20: [ALIGNMENT_ERR,
PAUSE_OPCODE_ERR_IN_NON_PAUSE_PKT,LONG_SHORT_FRAME,
LENGTH_ERR_WITH_ALL, NO_BOOL_CONSTRINT,
LONG_SHORT_ALIGNMENT,ALIGNMENT_ERR_WITH_LENGTH_ERR,
ALIGNMENT_ERR_WITH_ILLEGAL_PAUSE_OPCODE,ALL_ERRS_TOGATHER];

 };
};

extend MAC MAIN FALSE'random_data_mode vr_enet_seq {
 keep count ==20;
 keep soft sequence.kind == select {
 20:
[CRC_TEST,SHORT_FRAME_TEST,ILLEGAL_PAUSE_OPCODE,SFD_TEST,GMII_LONG_FRAME_TE
ST, GMII_FRAME_LENGTH_TEST,GMII_MAC_TX_ER,
GMII_MAC_TX_CARRIER_EXT_ERR,GMII_MIN_RECEIVED_IPG_TEST];

 40:
[GMII_ILLEGAL_IPG,GMII_ILLEGAL_MAC_PREAMBLE,GMII_POST_TX_ER,GMII_POST_TX_ER

Verification Of SoC with Ethernet Interface Appendix A Test Cases

93

RS,GMII_ILLEGAL_EXTENSION,GMII_ILLEGAL_SOURCE_ADDRESS,
GMII_ILLEGAL_FIRST_BYTE_PREAMBLE];

 20:
[GMII_TX_ERRS,GMII_NO_DATA,GMII_MAX_DATA,
GMII_ERR_DOUBLE_VLAN_HEADER,GMII_ERR_VLAN_HEADER];

 20: [ALIGNMENT_ERR,
PAUSE_OPCODE_ERR_IN_NON_PAUSE_PKT,LONG_SHORT_FRAME,
LENGTH_ERR_WITH_ALL,NO_BOOL_CONSTRINT,LONG_SHORT_ALIGNMENT,ALIGNMENT_ERR_WI
TH_LENGTH_ERR,
ALIGNMENT_ERR_WITH_ILLEGAL_PAUSE_OPCODE,ALL_ERRS_TOGATHER];
 };

};

extend MAC MAIN random_data_mode vr_enet_seq {
 keep count == 5;
 keep sequence.kind in
[GMII_RANDOM_TX_ER,GMII_RANDOM_TX_CARRIER_EXTENSION_ERROR,GMII_RANDOM_NORMA
L];
};

extend PHY MAIN random_data_mode vr_enet_seq {
 keep count == 5;
 keep sequence.kind in
[GMII_RANDOM_RX_ER,GMII_RANDOM_RX_CARRIER_EXTENSION_ERROR,GMII_RANDOM_CRS_D
OWN_INJECT,GMII_RANDOM_RX_ER_FCI];
};
'>
===
<'
extend vr_enet_agent {
 keep config.duplex_kind == HALF;
};
extend GMII vr_enet_system_ve {
 keep soft random_data_mode == select {60:FALSE;
 40:TRUE;
 };
};
'>

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips.
This file may not be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

<'
package vr_enet;
import vr_enet_ve/tests/vr_enet_gmii_ve_config;
'>

<'
extend RANDOM_PROT_ERR vr_enet_packet {
 change_zero_timing() is {
 for each (e) in directed_prot_errs {
 if (e.timing == 0) {
 e.timing = 1;

Verification Of SoC with Ethernet Interface Appendix A Test Cases

94

 };
 };
 };
 post_generate() is also {
 change_zero_timing();
 };
};
extend vr_enet_system_ve {
 keep random_data_mode == FALSE;
};
extend vr_enet_agent{
 keep config.duplex_kind == HALF;
};

extend MAIN vr_enet_seq {
 keep count == 50;
 keep sequence.kind in
[TX_RX_IN_IPG,EXTENSION_ERR_IN_ALL,ILLEGAL_ERR_FROM_MAC_PHY,FCI_IN_ALL,HALF
_DUPLEX_ERR_IN_FULL,

NO_ERROR,SINGLE_ERROR, MULTIPLE_ERROR, MULTI_TIME_SINGLE_ERROR,
SINGLE_TIME_SINGLE_ERROR_PHASE,
SINGLE_TIME_SINGLE_ERROR,MULTI_TIME_SINGLE_ERROR_PHASE
,SINGLE_TIME_TWO_ERROR,MULTI_TIME_TWO_ERROR,
MULTI_TIME_TWO_ERROR_PHASE,SINGLE_TIME_TWO_ERROR_PHASE];
};

'>
===
<'
extend vr_enet_seq_kind : [NO_ERROR,SINGLE_ERROR, MULTIPLE_ERROR,
MULTI_TIME_SINGLE_ERROR,
SINGLE_TIME_SINGLE_ERROR_PHASE,SINGLE_TIME_SINGLE_ERROR,MULTI_TIME_SINGLE_E
RROR_PHASE,SINGLE_TIME_TWO_ERROR,MULTI_TIME_TWO_ERROR,MULTI_TIME_TWO_ERROR_
PHASE, SINGLE_TIME_TWO_ERROR_PHASE];

extend SINGLE_ERROR vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt;
 };
};

extend NO_ERROR vr_enet_seq {
 body()@driver.clock is only {
 do NO_PROT_ERR pkt;
 };
};

extend MULTIPLE_ERROR vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt;
 };
};
extend MULTI_TIME_SINGLE_ERROR MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == TX_ER;
 e.err_occurrence == MULTI_TIME;
 };
 };
};
};

extend MULTI_TIME_SINGLE_ERROR PHY vr_enet_seq {

Verification Of SoC with Ethernet Interface Appendix A Test Cases

95

 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == RX_ER;
 e.err_occurrence == MULTI_TIME;
 };
 };
};
};

extend SINGLE_TIME_SINGLE_ERROR MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == TX_ER;
 e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend SINGLE_TIME_SINGLE_ERROR PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == RX_ER;
 e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend MULTI_TIME_SINGLE_ERROR_PHASE MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == TX_ER;
 e.err_occurrence == MULTI_TIME;
 e.err_phase not in [ABSOLUTE,CARRIER_EXTENSION];
 };
 };
};
};

extend MULTI_TIME_SINGLE_ERROR_PHASE PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == RX_ER;
 e.err_occurrence == MULTI_TIME;
 e.err_phase not in [ABSOLUTE,CARRIER_EXTENSION];
 };
 };
};
};

extend SINGLE_TIME_SINGLE_ERROR_PHASE MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == TX_ER;
 e.err_occurrence == SINGLE_TIME;
 e.err_phase not in [ABSOLUTE,CARRIER_EXTENSION];
 };
 };

Verification Of SoC with Ethernet Interface Appendix A Test Cases

96

 };
};

extend SINGLE_TIME_SINGLE_ERROR_PHASE PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 e.err_kind == RX_ER;
 e.err_occurrence == SINGLE_TIME;
 e.err_phase not in [ABSOLUTE,CARRIER_EXTENSION];
 };
 };
 };
};

extend SINGLE_TIME_TWO_ERROR MAC vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == TX_ER and e.err_occurrence ==
SINGLE_TIME;
 index == 1 => e.err_kind == TX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
};
};

extend SINGLE_TIME_TWO_ERROR PHY vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == RX_ER and e.err_occurrence ==
SINGLE_TIME;
 index == 1 => e.err_kind == RX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend MULTI_TIME_TWO_ERROR MAC vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == TX_ER and e.err_occurrence ==
SINGLE_TIME;
 index == 1 => e.err_kind == TX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend MULTI_TIME_TWO_ERROR PHY vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == RX_ER and e.err_occurrence ==
SINGLE_TIME;

Verification Of SoC with Ethernet Interface Appendix A Test Cases

97

 index == 1 => e.err_kind == RX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

===
extend SINGLE_TIME_TWO_ERROR_PHASE MAC vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == TX_ER and e.err_occurrence ==
SINGLE_TIME and
 e.err_phase not in
[IPG,ABSOLUTE,RANDOM,CARRIER_EXTENSION];
 index == 1 => e.err_kind == TX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend SINGLE_TIME_TWO_ERROR_PHASE PHY vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == RX_ER and e.err_occurrence ==
SINGLE_TIME and
 e.err_phase not in
[IPG,ABSOLUTE,RANDOM,CARRIER_EXTENSION];
 index == 1 => e.err_kind == RX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend MULTI_TIME_TWO_ERROR_PHASE MAC vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == TX_ER and e.err_occurrence ==
SINGLE_TIME and
 e.err_phase not in
[IPG,ABSOLUTE,RANDOM,CARRIER_EXTENSION];
 index == 1 => e.err_kind == TX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

extend MULTI_TIME_TWO_ERROR_PHASE PHY vr_enet_seq {
 body()@driver.clock is only {
 do MULTI_PROT_ERR_KIND pkt keeping {
 .protocol_errs.size() == 2 and
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == RX_ER and e.err_occurrence ==
SINGLE_TIME and
 e.err_phase not in
[IPG,ABSOLUTE,RANDOM,CARRIER_EXTENSION];

Verification Of SoC with Ethernet Interface Appendix A Test Cases

98

 index == 1 => e.err_kind == RX_CARRIER_EXTENSION_ERROR and
e.err_occurrence == SINGLE_TIME;
 };
 };
 };
};

===
 --ILLEGAL SCENARIOS--
===
extend vr_enet_seq_kind :
[TX_RX_IN_IPG,EXTENSION_ERR_IN_ALL,ILLEGAL_ERR_FROM_MAC_PHY,FCI_IN_ALL,HALF
_DUPLEX_ERR_IN_FULL];

extend TX_RX_IN_IPG MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == TX_ER and
e.err_occurrence.reset_soft() and
 e.err_phase in [IPG,CARRIER_EXTENSION];
 };
 };
 };
};
extend TX_RX_IN_IPG PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == RX_ER and
e.err_occurrence.reset_soft() and
 e.err_phase in [IPG,CARRIER_EXTENSION];
 };
 };
 };
};

==

extend EXTENSION_ERR_IN_ALL MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == TX_CARRIER_EXTENSION_ERROR and
e.err_occurrence.reset_soft() and
 e.err_phase not in [RANDOM, CARRIER_EXTENSION];
 };
 };
 };
};
extend EXTENSION_ERR_IN_ALL PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == RX_CARRIER_EXTENSION_ERROR and
e.err_occurrence.reset_soft() and
 e.err_phase not in [RANDOM,CARRIER_EXTENSION];
 };
 };
 };
};

===

extend FCI_IN_ALL PHY vr_enet_seq {

Verification Of SoC with Ethernet Interface Appendix A Test Cases

99

 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind == FALSE_CARRIER_INDICATION and
e.err_occurrence.reset_soft() and
 e.err_phase not in [RANDOM,IPG];
 };
 };
 };
};

===

extend ILLEGAL_ERR_FROM_MAC_PHY MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind not in
[TX_ER,TX_CARRIER_EXTENSION_ERROR,INVALID_SYNC_HEADER,INVALID_BLOCK_TYPE_FI
ELD];
 };
 };
 };
};

extend ILLEGAL_ERR_FROM_MAC_PHY PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind in
[TX_ER,TX_CARRIER_EXTENSION_ERROR,INVALID_SYNC_HEADER,INVALID_BLOCK_TYPE_FI
ELD];
 };
 };
 };
};

==

extend HALF_DUPLEX_ERR_IN_FULL MAC vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind in
[TX_CARRIER_EXTENSION_ERROR,CRS_DOWN_INJECT,CRS_DOWN_COLLECT,COLLISION];
 };
 };
 };
};
extend HALF_DUPLEX_ERR_IN_FULL PHY vr_enet_seq {
 body()@driver.clock is only {
 do SINGLE_PROT_ERR_KIND pkt keeping {
 for each (e) in .protocol_errs {
 index == 0 => e.err_kind in
[RX_CARRIER_EXTENSION_ERROR,CRS_DOWN_INJECT,CRS_DOWN_COLLECT,

FALSE_CARRIER_INDICATION,COLLISION];
 };
 };
 };
};
'>

Verification Of SoC with Ethernet Interface Appendix A Test Cases

100

File name : test_gmii_collision.e
Title :
Project : Gigabit Ethernet eVC
Created On :
Developers : eInfochips Ltd
Purpose :
Description :This testcase is used to fire normal packets
Assumptions : none
Limitations : none
Known Errors : none
Notes :

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips.
This file may not be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

Revision History :

<'
package vr_enet;
'>
o Some specific sequences:

<'
import vr_enet_ve/tests/vr_enet_gmii_ve_config;

--Always configure kind to MAC_DUT for collision testing.
extend vr_enet_system_ve {
 keep kind == MAC_DUT;
};
extend vr_enet_agent_ve {
 keep check_collision == TRUE;
};

--As collision is possible in HALF duplex mode only.
-- Random data mode is off.
extend vr_enet_agent{
 keep config.duplex_kind == HALF;
 keep config.random_data_mode == FALSE;
 keep config.jam_length == 8;
 keep config.retransmission_enable ==FALSE;
};

--Firing 5 normal ethernet packets from MAC agent.
extend MAC MAIN vr_enet_seq {
 keep count ==30;
 body()@driver.clock is only {
 for i from 1 to count {
 do pkt keeping {
 .data_length == 46 and
 .preamble.preamble_length == 56;
 };
 };
 };
};

Verification Of SoC with Ethernet Interface Appendix A Test Cases

101

--jam_length is time in cycle.
--TX_EN will go low after jam_length time when COL is asserted.
--If jam_length value is zero then TX_EN will go low before jam bits are
sent.
--If it is 1 then TX_EN will go low after 1 byte of jam.
--This is true when COL is not in preamble.
--Firing collision from PHY agent.

extend PHY MAIN vr_enet_seq {
--Method in bfm will be called depending upon value of this flag
-- If TRUE ,preamble_collision() method will be called upon
-- If FALSE,tx_er_collision() method will be called upon
select_method : bool;

 keep count ==30;
 body()@driver.clock is only {
 for i from 1 to count {
 do pkt keeping {
 .directed_prot_errs.size()==1 and
 .preamble.preamble_length == 56 and
 for each (e) in .directed_prot_errs {
 e.err_kind == COLLISION and
 e.timing == i-1 and
 e.err_phase == ABSOLUTE;
 };
 };
 };
 };

 mid_do(s:any_sequence_item) is also {
 for each (e) in pkt.directed_prot_errs {
 if(e.err_kind == COLLISION) {

 gen select_method ;

 if(select_method == TRUE) {
 start driver.as_a(GMII_FAMILY
vr_enet_driver).parent_agent.as_a(ACTIVE
vr_enet_agent).bfm.as_a(GMII_FAMILY PHY
vr_enet_bfm).preamble_collision(e.timing);
 }
 else {
 start driver.as_a(GMII_FAMILY
vr_enet_driver).parent_agent.as_a(ACTIVE
vr_enet_agent).bfm.as_a(GMII_FAMILY PHY
vr_enet_bfm).tx_er_collision(e.timing);
 };
 };--if
 };--for
 };--mid_do()
};

extend vr_enet_bfm {

 !jam_length : uint;
 !collision_timing : uint;

};

--They are used for only setting flags on which particular sets of errors
will be expected by VE
extend PHY GMII_FAMILY vr_enet_bfm {
 preamble_collision(d : uint) @clk is {

 collision_timing = d+1;

Verification Of SoC with Ethernet Interface Appendix A Test Cases

102

 gen jam_length keeping {it < parent_agent.config.jam_length/2};

 wait rise(gmii_smp.sig_GMII_RX_DV$);

 preamble_collision_expect_error();

 wait [jam_length]*cycle;
 force gmii_smp.sig_GMII_TX_EN$ = 0;
 sync
@sys.vr_enet_gmii_ve_env.system_ves[0].system.active_mac_agents[0].bfm.pack
et_started;
 force gmii_smp.sig_GMII_TX_EN$ = 0;
 release gmii_smp.sig_GMII_TX_EN ;
 };

 tx_er_collision(d : uint) @clk is {

 collision_timing = d+1;

 wait rise(gmii_smp.sig_GMII_COL$);

 trans_continues_expect_error();

 if(d < 7) {
 wait [11-(d+1)]*cycle;
 }
 else {
 wait [4]*cycle;
 };
 force gmii_smp.sig_GMII_TX_EN$ = 1;
 wait [1]*cycle;
 force gmii_smp.sig_GMII_TX_EN$ = 0;
 sync
@sys.vr_enet_gmii_ve_env.system_ves[0].system.active_mac_agents[0].bfm.pack
et_started;
 release gmii_smp.sig_GMII_TX_EN ;

 };
}; //extend

extend GMII_FAMILY vr_enet_bfm {

 preamble_collision_expect_error() is {

 if collision_timing <=7 {
 if(collision_timing < 7 and jam_length == 0) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET025");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET010");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET005");
 }
 else if (collision_timing + jam_length <= 7) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET026");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET010");

Verification Of SoC with Ethernet Interface Appendix A Test Cases

103

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET005");
 }
 else if (collision_timing == 7 and jam_length != 0) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET029");
 }
 else {
 if(collision_timing + jam_length > 7) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET026");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");
 }
 else {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");
 };
 };
 }
 else {
 if jam_length==0 {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET028");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET004");
 }
 else {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET029");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");

 };

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET004");
 };

 };

 trans_continues_expect_error() is {

 if(collision_timing < 7) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET027");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");

Verification Of SoC with Ethernet Interface Appendix A Test Cases

104

 }
 else {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET030");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");
 };

 };
};
'>

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips.
This file may not be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

File name : test_gmii_collision.e
Title :
Project : Gigabit Ethernet eVC
Created On :
Developers : eInfochips Ltd
Purpose :
Description :This testcase is used to fire normal packets
Assumptions : none
Limitations : none
Known Errors : none
Notes :

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips.
This file may not be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

Revision History :

<'
package vr_enet;
'>

Verification Of SoC with Ethernet Interface Appendix A Test Cases

105

o Some specific sequences:

<'
import vr_enet_ve/tests/vr_enet_gmii_ve_config;

--always configure kind to MAC_DUT for collision testing.
extend vr_enet_system_ve {
 keep kind == MAC_DUT;
};
extend vr_enet_agent_ve {
 keep check_collision == TRUE;
};

--As collision is possible in HALF duplex mode only.
--Random data mode is off.
extend vr_enet_agent{
 keep config.duplex_kind == HALF;
 keep config.random_data_mode == FALSE;
 keep config.jam_length == 8;
 keep config.retransmission_enable ==FALSE;
};

--Firing 5 normal ethernet packets from MAC agent.
extend MAC MAIN vr_enet_seq {
 keep count ==30;
 body()@driver.clock is only {
 for i from 1 to count {
 do pkt keeping {
 .data_length == 46 and
 .preamble.preamble_length == 56;
 };
 };
 };
};

--jam_length is time in cycle.
--TX_EN will go low after jam_length time when COL is asserted.
--If jam_length value is zero then TX_EN will go low before jam bits are
sent.
--If it is 1 then TX_EN will go low after 1 byte of jam.
--This is true when COL is not in preamble.
--Firing collision from PHY agent.
extend PHY MAIN vr_enet_seq {

--Method in bfm will be called depending upon value of this flag
-- If TRUE ,preamble_collision() method will be called upon
-- If FALSE,tx_er_collision() method will be called upon
 select_method : bool;

 keep count ==30;
 body()@driver.clock is only {
 for i from 1 to count {
 do pkt keeping {
 .directed_prot_errs.size()==1 and
 .preamble.preamble_length == 56 and
 for each (e) in .directed_prot_errs {
 e.err_kind == COLLISION and
 e.timing == i-1 and
 e.err_phase == ABSOLUTE;
 };
 };
 };
 };

Verification Of SoC with Ethernet Interface Appendix A Test Cases

106

 mid_do(s:any_sequence_item) is also {
 for each (e) in pkt.directed_prot_errs {
 if(e.err_kind == COLLISION) {

 gen select_method ;

 if(select_method == TRUE) {
 start driver.as_a(GMII_FAMILY
vr_enet_driver).parent_agent.as_a(ACTIVE
vr_enet_agent).bfm.as_a(GMII_FAMILY PHY
vr_enet_bfm).preamble_collision(e.timing);
 }
 else {
 start driver.as_a(GMII_FAMILY
vr_enet_driver).parent_agent.as_a(ACTIVE
vr_enet_agent).bfm.as_a(GMII_FAMILY PHY
vr_enet_bfm).tx_er_collision(e.timing);
 };
 };--if
 };--for
 };--mid_do()
};

extend vr_enet_bfm {

 !jam_length : uint;
 !collision_timing : uint;

};

--They are used for only setting flags on which particular sets of errors
will be expected by VE
extend PHY GMII_FAMILY vr_enet_bfm {
 preamble_collision(d : uint) @clk is {

 collision_timing = d+1;
 gen jam_length keeping {it < parent_agent.config.jam_length/2};

 wait rise(gmii_smp.sig_GMII_RX_DV$);

 preamble_collision_expect_error();

 wait [jam_length]*cycle;
 force gmii_smp.sig_GMII_TX_EN$ = 0;
 sync
@sys.vr_enet_gmii_ve_env.system_ves[0].system.active_mac_agents[0].bfm.pack
et_started;
 force gmii_smp.sig_GMII_TX_EN$ = 0;
 release gmii_smp.sig_GMII_TX_EN ;
 };

 tx_er_collision(d : uint) @clk is {

 collision_timing = d+1;

 wait rise(gmii_smp.sig_GMII_COL$);

 trans_continues_expect_error();

 if(d < 7) {
 wait [11-(d+1)]*cycle;
 }
 else {
 wait [4]*cycle;

Verification Of SoC with Ethernet Interface Appendix A Test Cases

107

 };
 force gmii_smp.sig_GMII_TX_EN$ = 1;
 wait [1]*cycle;
 force gmii_smp.sig_GMII_TX_EN$ = 0;
 sync
@sys.vr_enet_gmii_ve_env.system_ves[0].system.active_mac_agents[0].bfm.pack
et_started;
 release gmii_smp.sig_GMII_TX_EN ;

 };
}; //extend

extend GMII_FAMILY vr_enet_bfm {

 preamble_collision_expect_error() is {

 if collision_timing <=7 {
 if(collision_timing < 7 and jam_length == 0) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET025");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET010");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET005");
 }
 else if (collision_timing + jam_length <= 7) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET026");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET010");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET005");
 }
 else if (collision_timing == 7 and jam_length != 0) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET029");
 }
 else {
 if(collision_timing + jam_length > 7) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET026");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");
 }
 else {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");
 };
 };
 }
 else {
 if jam_length==0 {

Verification Of SoC with Ethernet Interface Appendix A Test Cases

108

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET028");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET004");
 }
 else {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET029");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");

 };

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET004");
 };

 };

 trans_continues_expect_error() is {

 if(collision_timing < 7) {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET027");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");
 }
 else {

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET030");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET002");

get_enclosing_unit(vr_enet_system_ve).mac_active_agents[0].error_logger.exp
ected_errors.add("ERR_ENET001");
 };

 };
};
'>

Copyright (c) 2000-2003 eInfochips. - All rights reserved. This software is
authored by eInfochips and is eInfochips intellectual property, including
the copyrights in all countries in the world. This
software is provided under a license to use only with all other rights,
including ownership rights, being retained by eInfochips.
This file may not be distributed, copied, or reproduced in any manner,
electronic or otherwise, without the express written consent of eInfochips.

Verification Of SoC with Ethernet Interface Appendix B Log Report

Appendix B Log Report

Normal test case log report:
Initializing Specman Elite (4.3.4) - Linked on Sun Aug 29 21:15:26 2004

 1. break on error
Breakpoint already exists: 1. break on error
Loading
/home/manishr/manish/test_cases/rgmii/test_rgmii_normal/test_rgmii_normal.
e
...
read...parse...update...patch...h code...code...clean...
Doing setup ...
191 checks were modified.
Generating the test using seed 1974560108...
[0] ENET_0 A_RGMII_MAC_0 MAC: Checking DUT signal connectivity in
RGMII_MAC_0
enet_evc_top.rgmii_0
[0] ENET_0 A_RGMII_PHY_0 PHY: Checking DUT signal connectivity in
RGMII_PHY_0
enet_evc_top.rgmii_0

-------------- ENET_0: vr_enet_env-@0
Verisity Ethernet eVC - version 2.0
No of ACTIVE MAC AGENTS : 1
No of PASSIVE MAC AGENTS : 0
No of ACTIVE PHY AGENTS : 1
No of PASSIVE PHY AGENTS : 0
-------------- E path: sys.vr_enet_rgmii_env

All sequence drivers:

 driver sent pending current
 0. vr_enet_driver-@1 0 0 -
 1. vr_enet_driver-@2 0 0 -

Starting the test ...
Running the test ...
[0] ENET_0: Checking DUT reset signal connectivity in environment ENET_0
[0] ENET_0: Checking signal RESET Environment name ENET_0 with value
reset
[0] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) Starting MAIN vr_enet_seq-@3
[0] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) Starting MAIN vr_enet_seq-@4
Running should now be initiated from the simulator side
To complete waveform setup, execute in simulator prompt the command file
sn_wave_simvision.sv
Please load the file: 'sn_wave_test_rgmii_normal.sv' into the viewer after
the
simulation is completed.
Doing garbage collection: current size is 85337136 bytes ...
Done - new size is 66636012 bytes.
[0] ENET_0: Reset was asserted
[0] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) MAIN vr_enet_seq-@3 quit
[0] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) MAIN vr_enet_seq-@4 quit
[4] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) rerunning drvr 0
[4] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) Starting MAIN vr_enet_seq-@19
[4] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) rerunning drvr 1
[4] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) Starting MAIN vr_enet_seq-@20
[100] ENET_0: Reset was deasserted

Verification Of SoC with Ethernet Interface Appendix B Log Report

110

[104] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_SPEED_MODE_MISMATCH:
Detected speed mode from the bus is SPEED_MODE_10MBPS
while expected speed mode is SPEED_MODE_1GBPS
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates RXC clock speed

[104] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_DUPLEX_STATUS_MISMATCH:
Detected duplex status from the bus is HALF
while expected duplex status is FULL
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates duplex status

[108] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) MAIN vr_enet_seq-@20: Executing
default
body() method: doing 2 sequences
[108] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@21 created
[108] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) MAIN vr_enet_seq-@19: Executing
default
body() method: doing 2 sequences
[108] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@22 created
[108] ENET_0 A_RGMII_PHY_0 PHY: 0 error validation rules violated...
[108] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@23 created
[108] ENET_0 A_RGMII_MAC_0 MAC: 0 error validation rules violated...
[108] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@24 created
[196] ENET_0 A_RGMII_PHY_0 PHY BFM : Started sending packet #0 ETHERNET
INJECT
vr_enet_packet-@23
[196] ENET_0 A_RGMII_MAC_0 MAC BFM : Started sending packet #0 ETHERNET
INJECT
vr_enet_packet-@24
[212] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Started collecting packet #0
ETHERNET COLLECT vr_enet_packet-@25
[212] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Started collecting packet #0
ETHERNET COLLECT vr_enet_packet-@26
[772] ENET_0 A_RGMII_PHY_0 PHY BFM : Finished sending packet #0 UID:
0xc8100000 ETHERNET INJECT vr_enet_packet-@23
[772] ENET_0 A_RGMII_PHY_0 PHY BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :VLAN_TAG
 Duplex mode :FULL
 Packet number :0
 Length of data :20
 Start time :196
 End_time :772
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0xda5efe190392
 Tag Protocol ID :33024
 User Priority :0
 Canonical Indicator :0
 VLAN Identifier :2
 Length/Type value :20
 Pad Size :22
 Actual crc :0x9fcb09e5
==
[772] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@23 sent by drvr 1
[772] ENET_0 A_RGMII_MAC_0 MAC BFM : Finished sending packet #0 UID:
0x48000000 ETHERNET INJECT vr_enet_packet-@24
[772] ENET_0 A_RGMII_MAC_0 MAC BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED

Verification Of SoC with Ethernet Interface Appendix B Log Report

111

 Duplex mode :FULL
 Packet number :0
 Length of data :20
 Start time :196
 End_time :772
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0x243b421a5646
 Length/Type value :20
 Pad Size :26
 Actual crc :0x22d11e1e
==
[772] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_tx_ok_get is updated to
the
value : 1
[772] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute brd_frm_tx_ok_get is
updated to
the value : 1
[772] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute multi_frm_tx_ok_get is
updated
to the value : 1
[772] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@24 sent by drvr 0
[772] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@21 done
[772] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@27 created
[772] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@22 done
[772] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@28 created
[772] ENET_0 A_RGMII_PHY_0 PHY: 0 error validation rules violated...
[772] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@29 created
[772] ENET_0 A_RGMII_MAC_0 MAC: 0 error validation rules violated...
[772] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@30 created

 *** Dut warning at time 776
 Checked at line 96 in @vr_enet_rgmii_checker
 In MONITOR GMII_FAMILY
vr_enet_rgmii_layer-@6.sn___phy_status_in_ipg_eval() (unit:
sys.vr_enet_rgmii_env.active_mac_agents[0].monitor.GMII_FAMILY'RGMII'rgmii
_monitor):

ERR_ENET044_PHY_RGMII_DUPLICATION_MISMATCH:
Data is not duplicated at positive and negative cycles.
Data on positive edge RXD[3:0] is 0x05
while data on negative edge RXD[7:4] is 0x0e
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates RXC clock speed

Will continue execution (check effect is WARNING)

[788] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Finished collecting packet #0
UID:
0xc8100000 ETHERNET COLLECT vr_enet_packet-@25
[788] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :VLAN_TAG
 Duplex mode :FULL
 Packet number :0
 Length of data :20
 Start time :212
 End_time :788

mailto:vr_enet_rgmii_layer-@6.sn___phy_status_in_ipg_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

112

 IPG in bit time :104
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0xda5efe190392
 Tag Protocol ID :33024
 User Priority :0
 Canonical Indicator :0
 VLAN Identifier :2
 Length/Type value :20
 Pad Size :22
 Actual crc :0x9fcb09e5
==
[788] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Finished collecting packet #0
UID:
0x48000000 ETHERNET COLLECT vr_enet_packet-@26
[788] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :FULL
 Packet number :0
 Length of data :20
 Start time :212
 End_time :788
 IPG in bit time :104
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0x243b421a5646
 Length/Type value :20
 Pad Size :26
 Actual crc :0x22d11e1e
==
[788] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_rcd_ok_get is updated
to
the value : 1
[788] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute brd_frm_rcd_ok_get is
updated
to the value : 1
[868] ENET_0 A_RGMII_PHY_0 PHY BFM : Started sending packet #1 ETHERNET
INJECT
vr_enet_packet-@29
[868] ENET_0 A_RGMII_MAC_0 MAC BFM : Started sending packet #1 ETHERNET
INJECT
vr_enet_packet-@30
[884] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Started collecting packet #1
ETHERNET COLLECT vr_enet_packet-@31
[884] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Started collecting packet #1
ETHERNET COLLECT vr_enet_packet-@32
[1444] ENET_0 A_RGMII_PHY_0 PHY BFM : Finished sending packet #1 UID:
0xc8100001 ETHERNET INJECT vr_enet_packet-@29
[1444] ENET_0 A_RGMII_PHY_0 PHY BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :FULL
 Packet number :1
 Length of data :20
 Start time :868
 End_time :1444
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff

Verification Of SoC with Ethernet Interface Appendix B Log Report

113

 Src. Address :0x1497b445d806
 Length/Type value :20
 Pad Size :26
 Actual crc :0xe021ebd2
==
[1444] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@29 sent by drvr 1
[1444] ENET_0 A_RGMII_MAC_0 MAC BFM : Finished sending packet #1 UID:
0x48000001 ETHERNET INJECT vr_enet_packet-@30
[1444] ENET_0 A_RGMII_MAC_0 MAC BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :FULL
 Packet number :1
 Length of data :20
 Start time :868
 End_time :1444
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x54c1e2508d68
 Src. Address :0x4edb4a8239d4
 Length/Type value :20
 Pad Size :26
 Actual crc :0x87a37b48
==
[1444] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_tx_ok_get is updated
to
the value : 2
[1444] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@30 sent by drvr 0
[1444] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@27 done
[1444] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@28 done

 *** Dut warning at time 1448
 Checked at line 96 in @vr_enet_rgmii_checker
 In MONITOR GMII_FAMILY
vr_enet_rgmii_layer-@6.sn___phy_status_in_ipg_eval() (unit:
sys.vr_enet_rgmii_env.active_mac_agents[0].monitor.GMII_FAMILY'RGMII'rgmii
_monitor):

ERR_ENET044_PHY_RGMII_DUPLICATION_MISMATCH:
Data is not duplicated at positive and negative cycles.
Data on positive edge RXD[3:0] is 0x02
while data on negative edge RXD[7:4] is 0x0d
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates RXC clock speed

Will continue execution (check effect is WARNING)

[1460] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Finished collecting packet #1
UID:
0xc8100001 ETHERNET COLLECT vr_enet_packet-@31
[1460] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :FULL
 Packet number :1
 Length of data :20
 Start time :884
 End_time :1460

mailto:vr_enet_rgmii_layer-@6.sn___phy_status_in_ipg_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

114

 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0x1497b445d806
 Length/Type value :20
 Pad Size :26
 Actual crc :0xe021ebd2
==
[1460] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Finished collecting packet #1
UID:
0x48000001 ETHERNET COLLECT vr_enet_packet-@32
[1460] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :FULL
 Packet number :1
 Length of data :20
 Start time :884
 End_time :1460
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x54c1e2508d68
 Src. Address :0x4edb4a8239d4
 Length/Type value :20
 Pad Size :26
 Actual crc :0x87a37b48
==
[1460] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_rcd_ok_get is updated
to
the value : 2
[1460] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute brd_frm_rcd_ok_get is
updated
to the value : 2
[4644] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) MAIN vr_enet_seq-@20 ended
[4644] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) MAIN vr_enet_seq-@19 ended
Last specman tick - stop_run() was called
Normal stop - stop_run() is completed
Checking the test ...
[4644] ENET_0 A_RGMII_MAC_0 MAC SCOREBOARD:

Total number of errors are 0

+++

[4644] ENET_0 A_RGMII_PHY_0 PHY SCOREBOARD:

Total number of errors are 0

+++

Checking is complete - 0 DUT errors, 2 DUT warnings.

Finished an Ethernet test with stop condition
OBJ_MECH_IDLE_CYCLES_TOGETHER

eVC name: ENET_0
Test time: 4644

[4644] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Number of packets collected
--

Verification Of SoC with Ethernet Interface Appendix B Log Report

115

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

[4644] ENET_0 A_RGMII_MAC_0 MAC BFM : Number of packets injected

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

[4644] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Number of packets collected
--
2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

[4644] ENET_0 A_RGMII_PHY_0 PHY BFM : Number of packets injected

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

Wrote 1 cover_struct to test_rgmii_normal_1974560108.ecov

All sequence drivers:

 driver sent pending current
 0. vr_enet_driver-@1 2 0 -
 1. vr_enet_driver-@2 2 0 -

**** Specman - finishing session:
config run -exit_on == normal_stop (or all); exiting...

Collision test case log report:

Initializing Specman Elite (4.3.4) - Linked on Sun Aug 29 21:15:26 2004

Verification Of SoC with Ethernet Interface Appendix B Log Report

116

 1. break on error
Breakpoint already exists: 1. break on error
Loading
/home/manishr/manish/test_cases/rgmii/test_rgmii_normal/test_rgmii_normal.
e
...
read...parse...update...patch...h code...code...clean...
Doing setup ...
191 checks were modified.
Generating the test using seed 1110103410...
[0] ENET_0 A_RGMII_MAC_0 MAC: Checking DUT signal connectivity in
RGMII_MAC_0
enet_evc_top.rgmii_0
[0] ENET_0 A_RGMII_PHY_0 PHY: Checking DUT signal connectivity in
RGMII_PHY_0
enet_evc_top.rgmii_0

-------------- ENET_0: vr_enet_env-@0
Verisity Ethernet eVC - version 2.0
No of ACTIVE MAC AGENTS : 1
No of PASSIVE MAC AGENTS : 0
No of ACTIVE PHY AGENTS : 1
No of PASSIVE PHY AGENTS : 0
-------------- E path: sys.vr_enet_rgmii_env

All sequence drivers:

 driver sent pending current
 0. vr_enet_driver-@1 0 0 -
 1. vr_enet_driver-@2 0 0 -

Starting the test ...
Running the test ...
[0] ENET_0: Checking DUT reset signal connectivity in environment ENET_0
[0] ENET_0: Checking signal RESET Environment name ENET_0 with value
reset
[0] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) Starting MAIN vr_enet_seq-@3
[0] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) Starting MAIN vr_enet_seq-@4
Running should now be initiated from the simulator side
To complete waveform setup, execute in simulator prompt the command file
sn_wave_simvision.sv
Please load the file: 'sn_wave_test_rgmii_normal.sv' into the viewer after
the
simulation is completed.
Doing garbage collection: current size is 85531036 bytes ...
Done - new size is 66671040 bytes.
[0] ENET_0: Reset was asserted
[0] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) MAIN vr_enet_seq-@3 quit
[0] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) MAIN vr_enet_seq-@4 quit
[4] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) rerunning drvr 0
[4] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) Starting MAIN vr_enet_seq-@19
[4] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) rerunning drvr 1
[4] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) Starting MAIN vr_enet_seq-@20
[100] ENET_0: Reset was deasserted
[104] ENET_0 A_RGMII_MAC_0 MAC:

PHY_RGMII_LINK_STATUS_MISMATCH:
Link status indicated as down by RGMII PHY.
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates link status

[104] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_SPEED_MODE_MISMATCH:
Detected speed mode from the bus is SPEED_MODE_10MBPS

Verification Of SoC with Ethernet Interface Appendix B Log Report

117

while expected speed mode is SPEED_MODE_100MBPS
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates RXC clock speed

[108] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) MAIN vr_enet_seq-@20: Executing
default
body() method: doing 2 sequences
[108] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@21 created
[108] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) MAIN vr_enet_seq-@19: Executing
default
body() method: doing 2 sequences
[108] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@22 created
[108] ENET_0 A_RGMII_PHY_0 PHY: 0 error validation rules violated...
[108] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@23 created
[108] ENET_0 A_RGMII_MAC_0 MAC: 0 error validation rules violated...
[108] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@24 created
[108] ENET_0 A_RGMII_PHY_0 PHY BFM : Injecting RX_ER
vr_enet_directed_prot_err
[112] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_SPEED_MODE_MISMATCH:
Detected speed mode from the bus is SPEED_MODE_1GBPS
while expected speed mode is SPEED_MODE_100MBPS
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates RXC clock speed

[112] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_DUPLEX_STATUS_MISMATCH:
Detected duplex status from the bus is FULL
while expected duplex status is HALF
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates duplex status

[120] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_SPEED_MODE_MISMATCH:
Detected speed mode from the bus is SPEED_MODE_1GBPS
while expected speed mode is SPEED_MODE_100MBPS
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates RXC clock speed

[120] ENET_0 A_RGMII_MAC_0 MAC:
PHY_RGMII_DUPLEX_STATUS_MISMATCH:
Detected duplex status from the bus is FULL
while expected duplex status is HALF
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates duplex status

 *** Dut warning at time 124
 Checked at line 152 in @vr_enet_rgmii_checker
 In vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval() (unit:
sys.vr_enet_rgmii_env.active_mac_agents[0].monitor):

ERR_ENET031_PHY_MII_FALSE_CRS_INDICATION:
RX_ER signal has been asserted when RX_DV signal was de-asserted by MII
PHY,
without indicating False Carrier Indication.
Specs(IEEE-802.3,2000): 22.2.2.8

Will continue execution (check effect is WARNING)

 *** Dut warning at time 132
 Checked at line 152 in @vr_enet_rgmii_checker

mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

118

 In vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval() (unit:
sys.vr_enet_rgmii_env.active_mac_agents[0].monitor):

ERR_ENET031_PHY_MII_FALSE_CRS_INDICATION:
RX_ER signal has been asserted when RX_DV signal was de-asserted by MII
PHY,
without indicating False Carrier Indication.
Specs(IEEE-802.3,2000): 22.2.2.8

Will continue execution (check effect is WARNING)

[292] ENET_0 A_RGMII_PHY_0 PHY BFM : Started sending packet #0 ETHERNET
INJECT
vr_enet_packet-@23
[292] ENET_0 A_RGMII_MAC_0 MAC BFM : Started sending packet #0 ETHERNET
INJECT
vr_enet_packet-@24
[308] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Started collecting packet #0
ETHERNET COLLECT vr_enet_packet-@25
[308] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Started collecting packet #0
ETHERNET COLLECT vr_enet_packet-@26
[316] ENET_0 A_RGMII_PHY_0 PHY: Collision is detected on the bus
[484] ENET_0 A_RGMII_PHY_0 PHY BFM : Finished sending packet #0 UID:
0xc8100000 ETHERNET INJECT vr_enet_packet-@23
[484] ENET_0 A_RGMII_PHY_0 PHY BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :0
 Length of data :20
 Start time :292
 End_time :484
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0xf4d6e69b2c41
 Length/Type value :20
 Pad Size :26
 Actual crc :0x4a12a3b
==========Packet Error Information==========
 Error type : RX_ER
 Error phase : IPG
 Start time : 0
 Error length : 2

==
[484] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@23 sent by drvr 1
[484] ENET_0 A_RGMII_MAC_0 MAC BFM : Finished sending packet #0 UID:
0x48000000 ETHERNET INJECT vr_enet_packet-@24
[484] ENET_0 A_RGMII_MAC_0 MAC BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :0
 Length of data :20
 Start time :292
 End_time :484
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff

mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

119

 Src. Address :0xee4e3f148e91
 Length/Type value :20
 Pad Size :26
 Actual crc :0x36e8a1ae
==========Packet Error Information==========
 Error type : TX_ER
 Error phase : DATA
 Start time : 0
 Error length : 2

==
[484] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@21 done
[484] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@27 created
[484] ENET_0 A_RGMII_PHY_0 PHY: 0 error validation rules violated...
[484] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@28 created
[484] ENET_0 A_RGMII_PHY_0 PHY BFM : Injecting RX_ER
vr_enet_directed_prot_err
[488] ENET_0 A_RGMII_MAC_0 MAC:

PHY_RGMII_LINK_STATUS_MISMATCH:
Link status indicated as down by RGMII PHY.
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates link status

[496] ENET_0 A_RGMII_MAC_0 MAC:

PHY_RGMII_LINK_STATUS_MISMATCH:
Link status indicated as down by RGMII PHY.
Specs(HP-RGMII,Version2.0 Specs): Table-4 Indicates link status

 *** Dut warning at time 500
 Checked at line 152 in @vr_enet_rgmii_checker
 In vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval() (unit:
sys.vr_enet_rgmii_env.active_mac_agents[0].monitor):

ERR_ENET031_PHY_MII_FALSE_CRS_INDICATION:
RX_ER signal has been asserted when RX_DV signal was de-asserted by MII
PHY,
without indicating False Carrier Indication.
Specs(IEEE-802.3,2000): 22.2.2.8

Will continue execution (check effect is WARNING)

[500] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: WARNING! : The Source address
could
not be unpacked due to lack of bits
[500] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: WARNING! : The Length/Type
field
could not be unpacked due to lack of bits
[500] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: WARNING! : The CRC could not be
unpacked due to lack of bits
[500] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Finished collecting packet #0
CRC:
0xc49b92d9 ETHERNET COLLECT vr_enet_packet-@25
[500] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :0
 Length of data :0

mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

120

 Calculated CRC :0x9d64c953
 Start time :308
 End_time :500
 IPG in bit time :0
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x000000000000
 Src. Address :0x000000000000
 Length/Type value :0
 Pad Size :0
 Actual crc :0x0
==========Packet Error Information==========
 Error type : CRC_ERROR

 Error type : SHORT_FRAME_ERROR

 Error type : COLLISION
 Error phase : ABSOLUTE
 Start time : 0

==
[500] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: WARNING! : The Source address
could
not be unpacked due to lack of bits
[500] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: WARNING! : The Length/Type
field
could not be unpacked due to lack of bits
[500] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: WARNING! : The CRC could not be
unpacked due to lack of bits
[500] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Finished collecting packet #0
CRC:
0xc49b92d9 ETHERNET COLLECT vr_enet_packet-@26
[500] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :0
 Length of data :0
 Calculated CRC :0x9d64c953
 Start time :308
 End_time :500
 IPG in bit time :0
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x000000000000
 Src. Address :0x000000000000
 Length/Type value :0
 Pad Size :0
 Actual crc :0x0
==========Packet Error Information==========
 Error type : CRC_ERROR

 Error type : SHORT_FRAME_ERROR

 Error type : COLLISION
 Error phase : ABSOLUTE
 Start time : 0

==
[500] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_chk_seq_err_get is
updated
to the value : 1

Verification Of SoC with Ethernet Interface Appendix B Log Report

121

 *** Dut warning at time 500
 Checked at line 41 in @vr_enet_data_check
 In vr_enet_monitor-@15.check_tx_packet() (unit:
sys.vr_enet_rgmii_env.active_phy_agents[0].monitor):

ERR_ENET001_MAC_BAD_CRC:
MAC has transmitted a packet with BAD CRC.
Specs(IEEE-802.3,2000): 3.4

Will continue execution (check effect is WARNING)

 *** Dut warning at time 500
 Checked at line 46 in @vr_enet_data_check
 In vr_enet_monitor-@15.check_tx_packet() (unit:
sys.vr_enet_rgmii_env.active_phy_agents[0].monitor):

ERR_ENET002_MAC_SHORT_FRAME:
MAC has transmitted a packet with SHORT FRAME.
Specs(IEEE-802.3,2000): 4.2.3.3

Will continue execution (check effect is WARNING)

 *** Dut warning at time 508
 Checked at line 152 in @vr_enet_rgmii_checker
 In vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval() (unit:
sys.vr_enet_rgmii_env.active_mac_agents[0].monitor):

ERR_ENET031_PHY_MII_FALSE_CRS_INDICATION:
RX_ER signal has been asserted when RX_DV signal was de-asserted by MII
PHY,
without indicating False Carrier Indication.
Specs(IEEE-802.3,2000): 22.2.2.8

Will continue execution (check effect is WARNING)

[684] ENET_0 A_RGMII_PHY_0 PHY BFM : Started sending packet #1 ETHERNET
INJECT
vr_enet_packet-@28
[684] ENET_0 A_RGMII_MAC_0 MAC BFM : Started sending packet #0 ETHERNET
INJECT
vr_enet_packet-@24
[700] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Started collecting packet #1
ETHERNET COLLECT vr_enet_packet-@29
[700] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Started collecting packet #1
ETHERNET COLLECT vr_enet_packet-@30
[708] ENET_0 A_RGMII_PHY_0 PHY: Collision is detected on the bus
[876] ENET_0 A_RGMII_PHY_0 PHY BFM : Finished sending packet #1 UID:
0xc8100001 ETHERNET INJECT vr_enet_packet-@28
[876] ENET_0 A_RGMII_PHY_0 PHY BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED

mailto:vr_enet_monitor-@15.check_tx_packet
mailto:vr_enet_monitor-@15.check_tx_packet
mailto:vr_enet_monitor-@16.sn___phy_mii_rx_er_chk_eval

Verification Of SoC with Ethernet Interface Appendix B Log Report

122

 Duplex mode :HALF
 Packet number :1
 Length of data :20
 Start time :684
 End_time :876
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xbd55fb832377
 Src. Address :0x7826a4b48198
 Length/Type value :20
 Pad Size :26
 Actual crc :0x728911e4
==========Packet Error Information==========
 Error type : RX_ER
 Error phase : IPG
 Start time : 0
 Error length : 2

==
[876] ENET_0 A_RGMII_PHY_0 PHY: SEQ(2) vr_enet_packet-@28 sent by drvr 1
[876] ENET_0 A_RGMII_MAC_0 MAC BFM : Finished sending packet #0 UID:
0x48000000 ETHERNET INJECT vr_enet_packet-@24
[876] ENET_0 A_RGMII_MAC_0 MAC BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :0
 Length of data :20
 Start time :684
 End_time :876
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0xee4e3f148e91
 Length/Type value :20
 Pad Size :26
 Actual crc :0x36e8a1ae
==========Packet Error Information==========
 Error type : TX_ER
 Error phase : DATA
 Start time : 0
 Error length : 2

==
[876] ENET_0 A_RGMII_PHY_0 PHY: SEQ(1) NORMAL_PHY vr_enet_seq-@27 done
[892] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: WARNING! : The Source address
could
not be unpacked due to lack of bits
[892] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: WARNING! : The Length/Type
field
could not be unpacked due to lack of bits
[892] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: WARNING! : The CRC could not be
unpacked due to lack of bits
[892] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Finished collecting packet #1
CRC:
0xc49b92d9 ETHERNET COLLECT vr_enet_packet-@29
[892] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :1

Verification Of SoC with Ethernet Interface Appendix B Log Report

123

 Length of data :0
 Calculated CRC :0x9d64c953
 Start time :700
 End_time :892
 IPG in bit time :0
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x000000000000
 Src. Address :0x000000000000
 Length/Type value :0
 Pad Size :0
 Actual crc :0x0
==========Packet Error Information==========
 Error type : CRC_ERROR

 Error type : SHORT_FRAME_ERROR

 Error type : COLLISION
 Error phase : ABSOLUTE
 Start time : 0

==
[892] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: WARNING! : The Source address
could
not be unpacked due to lack of bits
[892] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: WARNING! : The Length/Type
field
could not be unpacked due to lack of bits
[892] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: WARNING! : The CRC could not be
unpacked due to lack of bits
[892] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Finished collecting packet #1
CRC:
0xc49b92d9 ETHERNET COLLECT vr_enet_packet-@30
[892] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :1
 Length of data :0
 Calculated CRC :0x9d64c953
 Start time :700
 End_time :892
 IPG in bit time :0
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x000000000000
 Src. Address :0x000000000000
 Length/Type value :0
 Pad Size :0
 Actual crc :0x0
==========Packet Error Information==========
 Error type : CRC_ERROR

 Error type : SHORT_FRAME_ERROR

 Error type : COLLISION
 Error phase : ABSOLUTE
 Start time : 0

==
[892] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_chk_seq_err_get is
updated
to the value : 2

Verification Of SoC with Ethernet Interface Appendix B Log Report

124

 *** Dut warning at time 892
 Checked at line 41 in @vr_enet_data_check
 In vr_enet_monitor-@15.check_tx_packet() (unit:
sys.vr_enet_rgmii_env.active_phy_agents[0].monitor):

ERR_ENET001_MAC_BAD_CRC:
MAC has transmitted a packet with BAD CRC.
Specs(IEEE-802.3,2000): 3.4

Will continue execution (check effect is WARNING)

 *** Dut warning at time 892
 Checked at line 46 in @vr_enet_data_check
 In vr_enet_monitor-@15.check_tx_packet() (unit:
sys.vr_enet_rgmii_env.active_phy_agents[0].monitor):

ERR_ENET002_MAC_SHORT_FRAME:
MAC has transmitted a packet with SHORT FRAME.
Specs(IEEE-802.3,2000): 4.2.3.3

Will continue execution (check effect is WARNING)

[2924] ENET_0 A_RGMII_MAC_0 MAC BFM : Started sending packet #0 ETHERNET
INJECT vr_enet_packet-@24
[2940] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Started collecting packet #2
ETHERNET COLLECT vr_enet_packet-@31
[3276] ENET_0 A_RGMII_MAC_0 MAC BFM : Injecting TX_ER
vr_enet_directed_prot_err
[4076] ENET_0 A_RGMII_PHY_0 PHY: SEQ(0) MAIN vr_enet_seq-@20 ended
[4076] ENET_0 A_RGMII_MAC_0 MAC BFM : Finished sending packet #0 UID:
0x48000000 ETHERNET INJECT vr_enet_packet-@24
[4076] ENET_0 A_RGMII_MAC_0 MAC BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :0
 Length of data :20
 Start time :2924
 End_time :4076
 IPG in bit time :1016
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0xee4e3f148e91
 Length/Type value :20
 Pad Size :26
 Actual crc :0x36e8a1ae
==========Packet Error Information==========
 Error type : TX_ER
 Error phase : DATA
 Start time : 0
 Error length : 2

==

mailto:vr_enet_monitor-@15.check_tx_packet
mailto:vr_enet_monitor-@15.check_tx_packet

Verification Of SoC with Ethernet Interface Appendix B Log Report

125

[4076] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_tx_ok_get is updated
to
the value : 1
[4076] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute brd_frm_tx_ok_get is
updated
to the value : 1
[4076] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute multi_frm_tx_ok_get is
updated
to the value : 1
[4076] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute multi_coll_frm_get is
updated
to the value : 1
[4076] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@24 sent by drvr 0
[4076] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@22 done
[4076] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@32 created
[4076] ENET_0 A_RGMII_MAC_0 MAC: 0 error validation rules violated...
[4076] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@33 created
[4092] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Finished collecting packet #2
UID:
0x48000000 ETHERNET COLLECT vr_enet_packet-@31
[4092] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :2
 Length of data :20
 Start time :2940
 End_time :4092
 IPG in bit time :1024
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0xffffffffffff
 Src. Address :0xee4e3f148e91
 Length/Type value :20
 Pad Size :26
 Actual crc :0x36e8a1ae
==========Packet Error Information==========
 Error type : TX_ER
 Error phase : DATA
 Start time : 0
 Error length : 2

==
[4260] ENET_0 A_RGMII_MAC_0 MAC BFM : Started sending packet #1 ETHERNET
INJECT vr_enet_packet-@33

 *** Dut warning at time 4276
 Checked at line 40 in @vr_enet_mii_checker
 In vr_enet_monitor-@15 (unit:
sys.vr_enet_rgmii_env.active_phy_agents[0].monitor):

mii_ipg_chk_btn_tx_pkts: ERR_ENET017_MAC_MII_IPG_TOO_SHORT:
Inter packet gap (IPG) between two Tx packets is shorter than 96 bit time.
Specs(IEEE-802.3,2000): 4.2.3.2.2 & 22.2.3.1

Will continue execution (check effect is WARNING)

[4276] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Started collecting packet #3
ETHERNET COLLECT vr_enet_packet-@34

Verification Of SoC with Ethernet Interface Appendix B Log Report

126

[4612] ENET_0 A_RGMII_MAC_0 MAC BFM : Injecting TX_ER
vr_enet_directed_prot_err
[5412] ENET_0 A_RGMII_MAC_0 MAC BFM : Finished sending packet #1 UID:
0x48000001 ETHERNET INJECT vr_enet_packet-@33
[5412] ENET_0 A_RGMII_MAC_0 MAC BFM :
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :1
 Length of data :20
 Start time :4260
 End_time :5412
 IPG in bit time :96
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x18957307c120
 Src. Address :0xac2b44ac6769
 Length/Type value :20
 Pad Size :26
 Actual crc :0x8755daef
==========Packet Error Information==========
 Error type : TX_ER
 Error phase : DATA
 Start time : 0
 Error length : 2

==
[5412] ENET_0 A_RGMII_MAC_0 MAC: MAC attribute frm_tx_ok_get is updated
to
the value : 2
[5412] ENET_0 A_RGMII_MAC_0 MAC: SEQ(2) vr_enet_packet-@33 sent by drvr 0
[5412] ENET_0 A_RGMII_MAC_0 MAC: SEQ(1) NORMAL_MAC vr_enet_seq-@32 done
[5428] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Finished collecting packet #3
UID:
0x48000001 ETHERNET COLLECT vr_enet_packet-@34
[5428] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR:
==========Packet Information==============
 Packet type :ETHERNET_802_3
 Tag kind :UNTAGGED
 Duplex mode :HALF
 Packet number :3
 Length of data :20
 Start time :4276
 End_time :5428
 IPG in bit time :92
 Preamble size in bits :56
 SFD :1 0 1 0 1 0 1 1
 Dest. Address :0x18957307c120
 Src. Address :0xac2b44ac6769
 Length/Type value :20
 Pad Size :26
 Actual crc :0x8755daef
==========Packet Error Information==========
 Error type : TX_ER
 Error phase : DATA
 Start time : 0
 Error length : 2

==
[8612] ENET_0 A_RGMII_MAC_0 MAC: SEQ(0) MAIN vr_enet_seq-@19 ended
Last specman tick - stop_run() was called
Normal stop - stop_run() is completed
Checking the test ...
[8612] ENET_0 A_RGMII_MAC_0 MAC SCOREBOARD:

Verification Of SoC with Ethernet Interface Appendix B Log Report

127

Total number of errors are 0

+++

[8612] ENET_0 A_RGMII_PHY_0 PHY SCOREBOARD:

Total number of errors are 0

+++

Checking is complete - 0 DUT errors, 9 DUT warnings.

Finished an Ethernet test with stop condition
OBJ_MECH_IDLE_CYCLES_TOGETHER

eVC name: ENET_0
Test time: 8612

[8612] ENET_0 A_RGMII_MAC_0 MAC RX MONITOR: Number of packets collected
--
2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

[8612] ENET_0 A_RGMII_MAC_0 MAC BFM : Number of packets injected

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

[8612] ENET_0 A_RGMII_PHY_0 PHY TX MONITOR: Number of packets collected
--
4==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

[8612] ENET_0 A_RGMII_PHY_0 PHY BFM : Number of packets injected

2==> ETHERNET_802_3 type packets
0==> ETHERNET_PAUSE type packets
0==> ETHERNET_VII type packets
0==> ETHERNET_MAGIC type packets
0==> ETHERNET_JUMBO type packets
0==> ETHERNET_SNAP type packets
0==> RANDOM_DATA type packets

Wrote 1 cover_struct to test_rgmii_normal_1110103410.ecov

Verification Of SoC with Ethernet Interface Appendix B Log Report

128

All sequence drivers:

 driver sent pending current
 0. vr_enet_driver-@1 2 0 -
 1. vr_enet_driver-@2 2 0 -

**** Specman - finishing session:
config run -exit_on == normal_stop (or all); exiting...

--

	01 cover_page_final.pdf
	02 content.pdf
	03 chap_1.pdf
	04 chap_2.pdf
	05 chap_3.pdf
	06 chap_4.pdf
	07 chap_5.pdf
	08 Chap_6.pdf
	09 chap_7.pdf
	10 References.pdf
	11 Appendix_A.pdf
	12 Appendix_B.pdf

