Green Process Development for Production of 1,2 Propane-diol from Hydrogenation of Glycerol

By BHARAT CHATWANI (11MCHE02)

DEPARTMENT OF CHEMICAL ENGINEERING

AHMEDABAD-382481

MAY 2013

Green Process Development for Production of 1,2 Propane-diol from Hydrogenation of Glycerol

Major Project

Submitted in partial fulfillment of the requirements

For the Degree of Master of Technology in Chemical Engineering

> By BHARAT CHATWANI (11MCHE02)

Guided By Dr. R. K. Mewada

DEPARTMENT OF CHEMICAL ENGINEERING

AHMEDABAD-382481

MAY 2013

Undertaking for the Originality of the Work

Bharat Chatwani (11MCHE02), gives undertaking that the major project entitled "Green Process Development for Production of 1,2 Propane-diol from Hydrogenation of Glycerol" submitted by me, towards the partial fulfillment of the requirments for the degree of Master of Technology - Chemical Engineering (Environment Process Design) of Nirma University, Ahmedabad is the original work carried out by me and I give assurance that no attempts of plagiarism has been made.

I understand, that in the event of any similarity found subsequently with any published work or any dissertation work elsewhere, it will result in severe disciplinary action.

Endorsed by

Bharat Chatwani

Dr. R. K. Mewada Guide, Associate Professor, Department of Chemical Engineering, Institute of Technology, Nirma University, Ahmedabad Date: Place:

Certificate

This is to certify that the Project Part-I Report entitled "Green process development for production of 1,2 Propane-diol from hydrogenation of glycerol" submitted by Mr. Bharat Chatwani (11MCHE02), towards the partial fulfillment of the requirements for the award of Degree of Master of Technology in Environment Process Design of Nirma University is the record of work carried out by him under my supervision and guidance. The work submitted has reached a level required for being accepted for examination. The results embodied in this major project, to the best of my knowledge, haven't been submitted to any other university or institution for award of any degree or diploma.

Dr. R.K. Mewada Guide, Associate Professor Department of Chemical Engineering, Institute of Technology, Nirma University, Ahmedabad. Dr. Jayesh.P.Ruparelia Professor and PG-Coordinator, Department of Chemical Engineering, Institute of Technology, Nirma University, Ahmedabad.

Dr.S.S.Patel Professor and Head of Department, Department of Chemical Engineering, Nirma University, Ahmedabad. Dr.K.Kotecha Director, Institute of Technology, Nirma University, Ahmedabad.

Acknowledgements

My deepest thanks to my guide Dr. R. K. Mewada, Associate Prof of Chemical Engineering Department, Institute of Technology, Nirma University for giving me an opportunity and guidance throughout the project. It was only due to his valuable opinion, cheerful enthusiasm and ever friendly nature that I was able to do part of my research work in a respectable manner.Under his guidance I was given innumerable opportunities to furnish, shapen and strengthen my technical skills. His support throughtout the semester was exceptional and very appreciable.

I take opportunity to express deep and sincere sence of gratitude towards Dr. S. S. Patel Head of Chemical Engineerind Departmenet, Dr. J. P. Ruparelia, Professor and PG-Coordinator of Department of Chemical Engineering, Institute of Technology, Nirma University, Ahmedabad for giving support and continual encouragement throughout Major project.

I would like to thanks Dr Ketan Kotecha, Honourable Director, Institute of Technology, Nirma University, Ahmedabad for his unmentionable support, providing basic infrastructure necessary to conduct research.

I would also thank my Institution, all my faculty members in Department of Chemical Engineering and cordial thanks to Mrs. Sunita madam for her helpful, timely notifications and sincere instruction regarding documentation work. No words are enough to acknowledge constant support of my colleagues Nikunj, Kartik, Rahul, Jitesh, Anand, Jimit, Videh and other classmates and Nishank, Rohan and other juniors without whom this project would have been a distant reality.

Date:

Bharat Chatwani

11MCHE02

Abstract

In current scenario, in general researchers are looking for renewable resources for production of commercially important products. Biodiesel production, from various renewable resources, by conventional esterification /or trans-esterification reaction, produces glycerol as one of the major co-product. Thus glycerol from biodiesel is renewable resource. Due to presence of three –OH groups in glycerol its becomes higly functional molecule and various commercially important products can be produced like 1,2 Propane-diol. Production of 1,2 Propane-diol through glycerol is an attractive route to use renewable resources.

This work presents review of various routes for glycerol to 1,2 Propane-diol reaction using heterogeneous catalyst. Based on literature survey, copper alumina phosphate (CAP) shows highest possible conversion with very good selectivity for 1,2 Propane-diol. However such reactions were carried at very high temperature and pressure, i.e. more than 220°C and more than 52 bar(g) pressure.

CAP catalyst was synthesized with different synthesis method and different promoters to enhance conversion and selectivity. Liquid phase reactions were carried out in high pressure reactor in presence of synthesized heterogeneous catalysts. Reaction mixture was analyzed using gas chromatography techniques.

Objective to carry out this work was to reduce the severity of the operation with good conversion and selectivity. But results are not encouraging.

Copper alumina phosphate (with KOH as promoter) shows highest possible conversion, 5.5% at 30 bar(g) pressure, 180°C temperature and 5 hours reaction time. Under similar conditions NaOH promoted CAP shows 4.2% conversion compared to 51% in the literature at higher temperature and pressure conditions.

Two major reasons for poor performance can be contributed to improper preparation of catalyst and less severe conditions of operation can be considered.

Keywords: Glycerol, 1,2 Propane-diol, Hydrogenation, Conversion, Selectivity

Contents

Uı	ndert	aking fo	or the Originality of the Work	i
Ce	ertific	ate		ii
A	cknov	vledgm	ents	iii
Al	bstrac	et		iv
1	INT	RODU	CTION	1
	1.1	Applic	cation of 1,2 Propane-diol	2
	1.2	Thesis	s organization	3
2	LIT	ERATI	URE SURVEY	4
	2.1	Altern	nate routes	4
		2.1.1	Two Step Process	5
		2.1.2	Three Step Process	5
	2.2	-	l phase reaction:	7
	2.3	Gas pl	hase reaction:	19
3	CAT	TALYS.	Γ PREPARATION & CHARACTERISATION	22
	3.1	CATA	LYST PREPARATION	22
		3.1.1	CATALYST SELECTION	22
		3.1.2	Catalyst preparation for Pd_Cu_Mg_Al & Cu_Mg_Al catalyst	23
		3.1.3	Catalyst preparation for CAP(Na ₂ CO ₃), CAP(KOH), CAP(NaOH)	25
	3.2	CATA	LYST CHARACTERIZATION	27
		3.2.1	Bulk	27
		3.2.2	Surface	27
		3.2.3	Morphology	28
4	EXI	PERIM	ENTAL SETUP	30
5	RES	SULTS	& DISCUSSIONS	31
6	FUI	FURE S	SCOPE	33

7 CONCLUSIONS

List of Figures

1.1	Various reaction pathway for Glycerol	2
2.1	Glycerol hydrogenation to 1,2 Propane-diol using acid - base catalyst	5
3.1	Final Form of catalyst Cu_Mg_Al & Pd_Cu_Mg_Al	24
3.2	Final form of Catalyst CAP(NaOH), CAP(KOH), CAP(Na ₂ CO ₃)	26
3.3	DLS(Dynamic light scattering) analysis of CAP(NaOH) catalyst	29
4.1	Image of the reactor.	30
7.1	Standard sample	43
7.2	Reaction sample of KOH	44
7.3	Reaction sample of NaOH	45

List of Tables

2.1	Catalysts for liquid phase reaction.	7
2.3	Catalysts for gas phase reaction.	19
3.1	From various catalysts carried out the reaction condition for particular catalyst &	
	result are:	22
5.1	Result of various catalyst carried out for reaction.	31
7.1	Molecular weight of various chemical component	40
7.2	Quantity of various chemical components required for preparation of 5 gm catalyst	41
7.3	Quantity of chemical required for preparation of 5 gm Cu_Mg_Al catalyst	41
7.4	Molecular weight of various components	42

Chapter 1 INTRODUCTION

Use of renewable feedstock and chemicals to valuable products is increasing day by day. Researchers are trying to convert renewable feedstock to petrochemicals that can provide the replacement of petroleum . Moreover it has been proposed that commodity chemicals that are derived from fossil resources are used to pharmaceuticals, agricultural adjuvant, plastics and transportation fuel [1].

Biodiesel has proved to be environmentally friendly diesel fuel. Its use is enlarged and has been used instead other [2]. The trans-esterification of triglycerides with various lower alcohols like methanol, ethanol or IPA, in the presence of acidic or basic catalyst results into biodiesel consisting of corresponding ester of fatty acids. The increase in production of biodiesel has lead to increase in production of glycerol. About 10 % (wt. basis) of glycerol is produced along with biodiesel production. So it is expected that with increase in biodiesel production, production of glycerol will also increase. Even economics of biodiesel largely depends on this important byproduct. It is considered as top 12 chemical building blocks that can be converted to more market value products [3].

Glycerol is having three hydroxyl groups in it structure. This provides immense possibilities to produce wide varieties of the products from glycerol starting from hydrogen to acrolein to 1,2 Propane-diol. Fig.1.1. describes production of commercially important products using glycerol as feed stock using various chemical processes [3-5]. It is expected that with better technology for production of such commercially important chemicals using glycerol as feed stock can improve the economics of biodiesel production and it can become more competitive to crude based diesel [6-8]. Viable alternates for chemical processes include oxidation, dehydration, halogenation, etherification, esterification, pyrolysis and hydrogenolysis of glycerol [7,9].

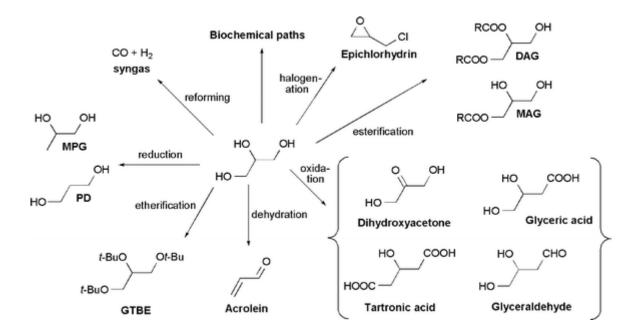


Figure 1.1: Various reaction pathway for Glycerol.

1,2 Propane-diol is an industrially interesting raw material. It is also used as a raw material for making other products. Viable alternates for chemical processes include oxidation, dehydration, halogenation, etherification, esterification, pyrolysis and hydrogenolysis of glycerol [7,9].

1.1 Application of 1,2 Propane-diol

- 1. Production of unsaturated polyester resins,
- 2. Functional fluids (Antifreeze, De-icing, and heat transfer),
- 3. Pharmaceutical products,
- 4. Cosmetic products,
- 5. Paints,
- 6. Humectant,
- 7. Polyesters,
- 8. Alkyd resins,
- 9. Additive in food,
- 10. Liquid detergents,
- 11. Flavours,
- 12. Fragrances,
- 13. Animal feed [3, 5, 17, 18].

1.2 Thesis organization

- 1. The 2nd chapter deals with liquid phase and gas phase reaction, reaction conditions under which it is carried out and also alternate routes for glycerol hydrogenation to 1,2 Propane-diol.
- 2. The 3rd chapter describes catalyst preparation method, procedure and also the result obtained for particular catalyst reportedly in the literature.
- 3. The 4th chapter includes reaction carried out at specific conditions and analysis condition of the reaction sample for GC as well as some specification related to GC column used for analysis purpose.
- 4. The chapter 5th describes result of the reaction and major problem encountered during catalyst preparation and also the reaction conditions that were maintained during the reaction compared to reported.
- 5. The chapter 6th highlites various parameter that were varried.

Chapter 2

LITERATURE SURVEY

1,2 Propane-diol is a commercially very important molecule and its wide range of applications are listed in chapter 1.

Various routes for commercial production of 1,2 Propane-diol are briefly discussed as follows.

2.1 Alternate routes

The commercial route to produce propylene glycol is by the hydration of propylene oxide derived from propylene by either the chlorohydrins process or the hydroperoxide process.

It also include several routes to propylene glycol from renewable feedstocks, out of which the most common route of production is through hydrogenolysis of sugars or sugar alcohols at high temperatures and pressures in the presence of a metal catalyst producing propylene glycol and other lower polyols [10].

During hydrogenation of glycerol, along with the product 1,2 Propane-diol there is various byproduct formation that include, propanol, lactic acid, propanoic acid and ethylene glycol as major product that had a (4%) annual market growth. Selective hydrogenolysis of glycerol to 1,2 Propane-diol requires a cleavage of C-O bond by hydrogen addition without attacking C-C bond in the glycerol molecules [3,11].

Acrolein that is an intermediate in glycerol hydrogenation is an important chemical in industry as it serves as a raw material for production of acrylic acid ester, absorber polymers, and detergents [12].

Ethylene glycol that is formed as a byproduct is used as antifreeze, and serves as a starting material for production of polyesters [13].

Several groups had reported hydrogenolysis of glycerol on different catalyst systems including supported transition metal catalyst such as Rh, Ni, Ru, Pt, Pt-Ru and Cu catalyst [3].

Usually glycerol hydrogenation to 1,2 Propane-diol is carried out by two step and three step processes:

2.1.1 Two Step Process

Under acidic conditions glycerol first dehydrated to acetol as an intermediate product prior to hydrogenolysis, furthermore hydrogenation to 1,2 Propane-diol. Thus, acid catalyst could play an important role in the glycerol dehydration stage as well as working under milder reaction conditions that might increase the conversion and selectivity as shown in scheme 1. [3].

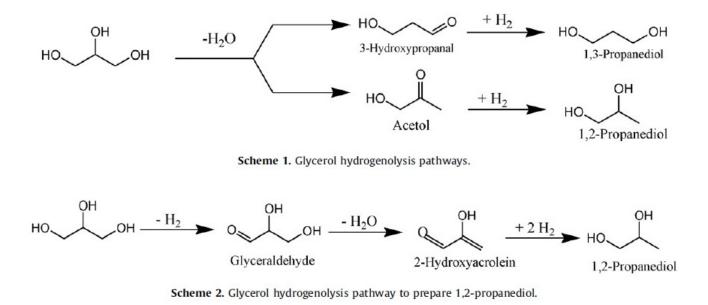


Figure 2.1: Glycerol hydrogenation to 1,2 Propane-diol using acid - base catalyst.

2.1.2 Three Step Process

Under basic conditions glycerol firstly dehydrogenate to glyceraldehydes and then further by dehydration to 2-Hydroxyacrolein followed by hydrogenation to 1,2 Propane-diol as shown above in scheme 2. [4, 14]. Generally due to high oxygen functionality and low thermal stability of polyol (glycerol), reaction typically occurs in aqueous phase at moderate temperature and pressures.

Besides going for hydrogen gas for glycerol hydrogenation there are other routes that acts as hydrogen source for glycerol hydrogenolysis that includes formic acid, 2-propanol, ethanol etc, as hydrogen donor molecule for inert atmosphere. Out of which in the literature formic acid is obtained with suitable conversion. during which hydrogen atom obtained from 2-propanol directly gets converted to 1,2 propane-diol. Other than that the literature also highlights in-situ hydrogen production and using it further for the reaction thereby suppressing the use of external hydrogen addition leading to improved operational safety but at mild pressure and inert gas that also improves economically. Moreover the use of molecular hydrogen over reactant is due to low solubility of hydrogen in aqueous solution and requires to be operated at elevated pressures. Besides this hydrogen has high diffusivity is easily ignited and presents considerable hazard.

Above all reported literature mentions the effect of additives (NaOH and CaO) being used for increasing the activity. Whereby use of residual sodium effects activity, selectivity, structure and stability of the catalyst are being effected reportedly.

2.2 Liquid phase reaction:

With higher hydrogen pressure and relatively lower temperature, glycerol hydrogenation in liquid phase reaction produces 1,2 Propane-diol with very good conversion and very high selectivity. Glycerol hydrogenation is carried out at pressure 2-10 MPa. During above reaction the various catalyst reported in the literature includes Ru, Cu, Pt, Pd, Rh, Ni etc, that also includes some promoters. And among those reported catalyst in the literature Ru, Cu is found to be mostly used catalyst so far.

Sr.	Journal	Title	Authors	Catalyst	Support	Т	Р	Result
No	Name,Vol					(K)	(bar)	(C,S)
	& Page No							
		Ι	LIQUID PHASE	REACTIO	N			
1	Applied	Development Of	Tomohisa	Ru	Carbon	393-	80	(79.3,74.7)
	Catalysis	A Ru/C Catalyst	Miyazawa,		Support	493		
	A: General	For Glycerol	Shuichi Koso,					
	318 (2007)	Hydrogenolysis	Kimio					
	244–251	In Combination	Kunimori,					
		With An	Keiichi					
		Ion-Exchange	Tomishige					
		Resin						
2	J. Chem.	Effect Of	Jie	Cu	ZrO ₂ ,	513	60	(85.05,
	Soc. Pak.,	Support On	Zhou,Shunli		SiO ₂ ,			85.71)
	Vol. 34,	Hydrogenolysis	Hao, Ning		HZSM-			
	No.4, 2012	Of Glycerol Over	Zhao, Fukui		5,			
		Cu Catalysts	Xiao, Wei Wei		γ -Al ₂ O ₃			
			And Yuhan					
			Sun					
3	Applied	Enhanced	Noraini	Ru	TiO ₂ ,	423	20	Ru/
	Catalysis	Activity Of	Hamzah,		SiO ₂ ,			Bentonite
	A: General	Ru/TiO ₂ Catalyst	Norasikin		Al_2O_3 ,			Catalyst
	419-420	Using Bisupport,	Mohamad		Ben-			(C,S) =
	(2012)	Bentonite-TiO ₂	Nordin, Ainol		tonite,			(61.2,80.1),
	133–141	for	Hayah Ahmad		Bentonite-			Ru/TiO ₂
		Hydrogenolysis	Nadzri, Yah		TiO ₂ ,			Catalyst
		Of Glycerol In	Awg Nik,		Ben-			(C,S) =
		Aqueous Media	Mohamad B.		tonite +			(38.8,84.4)
			Kassim, Mohd		Ru/TiO ₂ ,			
			Ambar Yarmo					

Table 2.1: Catalysts for liquid phase reaction.

4	Applied	Hydrogenolysis	Shuixin Xia,	Pd , Cu	Mg-Al	453	20	(76.9,97.2)
	Catalysis	Of Glycerol On	Zhenle Yuan,	ru, cu		100	20	(10.9,91.2)
	A: General	Bimetallic Pd-	Lina Wang,					
	403 (2011)	Cu/Solid-Base	Ping Chen,					
	173–182	Catalysts	Zhaoyin Hou					
	175 102	Prepared Via	Zhaoyin nou					
		Layered Double						
		Hydroxides						
		Precursors						
5	Catalysis	Influence Of	Lan Ma,	Ru–Re	SiO ₂	433	80	(51.7,51.7)
5	Today 149	Catalyst	Dehua He	Ku-KC	5102	433	00	(31.7,31.7)
	(2010)	Pretreatment On	Denua IIe					
	148–156	Catalytic						
	140-150	Properties And						
		Performances Of						
		Ru–Re/SiO ₂ In						
		Glycerol						
		Hydrogenolysis						
		To Propanediols						
6	Applied	Investigating The	E.S.	Cu	HMS-	513	80	5Ru/SiO ₂
0	Catalysis	Performance And	Vasiliadou,	Cu	Support,	515		(21.7,60.5
	A: General	Deactivation	A.A.		SiO ₂ -			(21.7,00.5 5Cu/SiO ₂
	A. General 396 (2011)	Behaviour Of	Lemonidou		Support			(4.1,90.1)
	177–185	Silica-Supported	Lemondou		Support			(4.1,90.1) :(10,83.6)
	177-105	Copper Catalysts						5(Ru–Cu)/
		In Glycerol						SiO ₂
		Hydrogenolysis						(39.2,85.9
		119010501019515						(39.2,83.9 HMS-
								Support
								5Cu/HMS
								(28.5,93.2)
								(20.3,93.2)

7	Chemical	Liquid Phase	Lingqin Shen,	Hpmo,	_	573	_	72%
	Engineer-	Dehydration Of	Hengbo Yin,	HPW,		575		Yield
	ing Journal	Glycerol To	Aili Wang,	Hsiw.				Tield
	180 (2012)	Acrolein	Yonghai Feng,	1151				
	277-283	Catalyzed by	Yutang Shen,					
	211 205	Silicotungstic,	Zhanao Wu,					
		Phosphotungstic,	Tingshun					
		and Phospho-	Jiang					
		molybdic	viang .					
		acids						
8	Catalysis	A Remarkable	Weiqiang Yu,	Ni	AC	473	50	(63.2,77.4)
	Communi-	Enhancement Of	Jie Xu, Hong	111		175		(00.2,771)
	cations 11	Catalytic Activity	Ma, Chen					
	(2010)	For KBH ₄	Chen, Jing					
	493–497	Treating The	Zhao, Hong					
		Carbothermal	Miao, Qi Song					
		Reduced Ni/AC						
		Catalyst In						
		Glycerol						
		Hydrogenolysis						
9	Chemical	Effect of niobia	R. Rodrigues,	Pt	niobia	413	50	(>75,50)
	Engineer-	and alumina as	N. Isoda, M.		and			
	ing Journal	support for Pt	Gonçalves,		alumina			
	198–199	catalysts in the	F.C.A.		as			
	(2012)	hydrogenolysis	Figueiredo, D.		support			
	457–467	of glycerol	Mandelli,					
			W.A.					
			Carvalho					
10	Applied	Low-Pressure	Mohanprasad	Cu		473	14	Yield-
	Catalysis	Hydrogenolysis	A. Dasari,	chromite				73%
	A: General	Of Glycerol To	Pim-Pahn					
	281 (2005)	Propylene Glycol	Kiatsimkul,					
	225–231		Willam R.					
			Sutterlin,					
			Galen J.					
			Suppes					

11	Journal Of	Hydrogenolysis	Erin P. Maris,	Ru, Pt	С	473	40	(85,85)
	Catalysis	Of Glycerol Over	Robert J.		_		-	()
	249 (2007)	Carbon-	Davis					
	328–337	Supported Ru						
		And Pt Catalysts						
12	Applied	Glycerol Liquid	A. Iriondo,	Ptni	γ-	513	40	Con:
	Catalysis	Phase	J.F. Cambra,		Al_2O_3 ,			(53.1%)
	B: Envi-	Conversion Over	V.L. Barrio,		La ₂ O ₃ -			
	ronmental	Monometallic	M.B. Guemez,		Modified,			
	106 (2011)	And Bimetallic	P.L. Arias,		γ-Al ₂ O ₃			
	83-93	Catalysts:Effect	M.C.		Modified			
		Of Metal,	Sanchez-					
		Support Type	Sanchez,R.M.					
		And Reaction	Navarro,					
		Temperatures	J.L.G. Fierro					
13	Applied	Dehydration-	Masaki	Cu	Al ₂ O ₃	463-	6.4-	Cu/Al ₂ O ₃
	Catalysis	Hydrogenation	Akiyama,		(N-242),	468	20	(N-242) =
	A: General	Of Glycerol Into	Satoshi Sato,		Al ₂ O ₃			(100,78.2).
	371 (2009)	1,2-Propanediol	Ryoji		(T317),			Cu/Al ₂ O ₃
	60–66	At Ambient	Takahashi,		ZnO			(T-317) =
		Hydrogen	Kanichiro		(N211),			(100, 75).
		Pressure	Inui, Masahiro		Cr ₂ O ₃			Cu/ZnO
			Yokota		(N201),			(N-211) =
					SiO ₂			(29.7,
					(N-111)			21.9).
								Cu/Cr ₂ O ₃
								(N-201) =
								(100,77.3)
								Ni/SiO ₂
								(N-111) =
								(100, 4.4)
14	Bioresource	Treatment Of	Martin Hájek,					
	Technology	Glycerol Phase	František					
	101 (2010)	Formed By	Skopal					
	3242-3245	Biodiesel						
		Production						

15	Applied	Hydrogenolysis	Zhenle Yuan,	Cu	MgO-	453	30	(80.0,98.2)
	Catalysis	Of Glycerol Over	Lina Wang,		Al ₂ O ₃			
	B: Envi-	Homogenously	Junhua Wang,					
	ronmental	Dispersed	Shuixin Xia,					
	101 (2011)	Copper On Solid	Ping					
	431-440	Base Catalysts.	Chen,Zhaoyin					
			Hou,					
			Xiaoming					
			Zheng					
16	Bioresource	Design And	John A.					
	Technology	Analysis Of	Posada, Luis					
	111 (2012)	Biorefineries	E. Rincón,					
	282–293	Based On Raw	Carlos A.					
		Glycerol:	Cardona					
		Addressing The						
		Glycerol						
		Problem						
17	Catalysis	Aqueous Phase	Debdut Roy,	Ru, Pt	Al ₂ O ₃	493	0-41	(50.2,48.7)
	Today 156	Hydrogenolysis	Bala					
	(2010)	Of Glycerol To	Subramaniam,					
	31–37	1,2-Propanediol	Raghunath V.					
		Without External	Chaudhari					
		Hydrogen						
		Addition						
18	Catalysis	Glycerol	Silvia Bolado,	Ru	C	433	60	(60,31.72)
	Communi-	Hydrogenolysis	Ricardo E.					
	cations 12	To 1, 2	Treviño, M.					
	(2010)	Propanediol Over	Teresa García-					
	122–126	Ru/C Catalyst	Cubero,					
			Gerardo					
			González-					
			Benito					

19	Journal of	Glycerol	Tomohisa	Ru,	С	393	80	(38.8,28.8)
	Catalysis	Conversion In	Miyazawa,	Rh,				
	240 (2006)	The Aqueous	Yohei	Pt,				
	213-221	Solution Under	Kusunoki,	Pd				
		Hydrogen Over	Kimio					
		Ru/C + An	Kunimori,					
		Ion-Exchange	Keiichi					
		Resin And Its	Tomishige					
		Reaction	_					
		Mechanism						
20	Applied	Influence Of	M. Balaraju,	Ru	IER,	453	60	(25, 40.9),
	Catalysis	Solid Acids As	V. Rekha, P.S.		Cstpa/			(25, 67),
	A: General	Co-Catalysts On	Sai Prasad,		ZrO ₂ ,			(44.6,60.9)
	354 (2009)	Glycerol	B.L.A.		Nb ₂ O ₅ ,			(21,60.2),
	82-87	Hydrogenolysis	Prabhavathi		Cstpa,			(44, 64.3).
		To Propylene	Devi, R.B.N.		TPA/ZrO ₂			
		Glycol Over	Prasad, N.					
		Ru/C Catalysts	Lingaiah					
21	Applied	Glycerol	Tomohisa	Ru	Carbon	453	80	(48.8,70.2)
	Catalysis	Hydrogenolysis	Miyazawa,		Support			
	A: General	То	Shuichi Koso,		+			
	329 (2007)	1,2-Propanediol	Kimio		amberlyst			
	30–35	Catalyzed By A	Kunimori,		(15, 70)			
		Heat-Resistant	Keiichi					
		Ion-Exchange	Tomishige					
		Resin Combined						
		With Ru/C						
22	Catalysis	Promoting Effect	Lan Ma,	Ru	С,	393-	40-	(64.1,59.5)
	Communi-	Of Rhenium On	Dehua He,		Al_2O_3 ,	453	100	
	cations 9	Catalytic	Zhanping Li		ZrO ₂			
	(2008)	Performance Of						
	2489–2495	Ru Catalysts In						
		Hydrogenolysis						
		Of Glycerol To						
		Propanediol						

23	Catalysis	Highly Active	Yohei	Ru	С,	393	40	(40.7,93.1)
	Communi-	Metal-Acid	Kusunoki,		amberlyst,			
	cations 6	Bifunctional	Tomohisa		Zeolites,			
	(2005)	Catalyst System	Miyazawa,		Sulfated			
	645–649	For	Kimio		Zirconia,			
		Hydrogenolysis	Kunimori,		H_2WO_4 ,			
		Of Glycerol	Keiichi		and			
		Under Mild	Tomishige		liquid			
		Reaction			H ₂ SO ₄			
		Conditions						
24	Applied	Characterization	Zhiwei	Cu	SiO ₂	453	64-90	(8.6-32.7,
	Catalysis	And Catalytic	Huang, Fang					>94.3)
	A: General	Properties Of	Cui, Haixiao					
	366 (2009)	The	Kang, Jing					
	288–298	Cuo/SiO ₂ Catalysts	Chen, Chungu					
		Prepared By	Xia					
		Precipitation-Gel						
		Method In The						
		Hydrogenolysis						
		Of Glycerol To						
		1,2-Propanediol:						
		Effect Of						
		Residual Sodium						
25	Applied	Supported Cu	Liyuan Guo,	Cu	HY,	573	15-36	(34.6,93.9)
	Catalysis	Catalysts For The	Jinxia Zhou,		13X,			
	A: General	Selective	Jingbo Mao,		HZSM-			
	367 (2009)	Hydrogenolysis	Xinwen Guo,		5.Hb,			
	93–98	Of Glycerol To	Shuguang		γ -Al ₂ O ₃			
		Propanediols	Zhang					
26	Applied	Modification Of	Yasunori	Rh	SiO ₂	393	10-80	(76,60)
	Catalysis	Rh/ SiO ₂	Shinmi, Shuichi					
	B: Envi-	Catalyst For The	Koso, Takeshi					
	ronmental	Hydrogenolysis	Kubot, Yoshinao					
	94 (2010)	Of Glycerol In	Naka-					
	318–326	Water	gawa,Keiichi					
			Tomishige					

27	Applied	Co/MgO	Xiaohui Guo,	Со	MgO	453-	10-30	Co/MgO:
	Catalysis	Catalysts For	Yong Li,			523		- 673
	A: General	Hydrogenolysis	Ruijuan Shi,					(5.3,45.3)
	371 (2009)	Of Glycerol To 1,	Qiying Liu,					Co/MgO:
	108–113	2-Propanediol	Ensheng					- 873
			Zhan, Wenjie					(44.8,42.2)
			Shen					
28	Applied	Comparative	Shuichi	Rh	SiO ₂	393	80	(9.7,41)
	Catalysis	Study Of	Koso,Hideo					
	B: Envi-	Rh–Moox And	Watan-					
	ronmental	Rh–Reox	abe,Kazu					
	111–112	Supported On	Okumura,					
	(2012) 27–	SiO ₂ For The	Yoshinao					
	37	Hydrogenolysis	Naka-					
		Of Ethers And	gawa,Keiichi					
		Polyols	Tomishige					
29	Catalysis	Role Of	R.B. Mane,	Cu-	-	493	50	(65,85)
	Today 164	Promoters In	A.A.	chromite				
	(2011)	Copper Chromite	Ghalwadkar,					
	447–450	Catalysts For	A.M. Hengne,					
		Hydrogenolysis	Y.R.					
		Of Glycerol	Suryawanshi,					
			C.V. Rode					
30	Applied	Ru-Based	E.S.	Ru	ZrO ₂ ,	513	80	(69,60.5)
	Catalysis	Catalysts For	Vasiliadou,E.		SiO ₂ ,			
	B: Envi-	Glycerol	Hera-		γ -Al ₂ O ₃			
	ronmental	Hydrogenoly-	cleous,I.A.					
	92 (2009)	sis—Effect Of	Vasalos,A.A.					
	90–99	Support And	Lemonidou					
		Metal Precursor						
31	Applied	Surface And	M. Balaraju,	Ru	TiO ₂	453	60	5Ru/TiO ₂
	Catalysis	Structural	V. Rekha,					(DP):
	A: General	Properties Of	B.L.A.					(44,58)
	384 (2010)	Titania-	Prabhavathi					5Ru/TiO ₂
	107–114	Supported Ru	Devi, R.B.N.					(IM):
		Catalysts For	Prasad, P.S.					(31,59)
		Hydrogenolysis	Sai Prasad, N.					
		Of Glycerol	Lingaiah					

32	Journal Of Catalysis 290 (2012) 79–89	Liquid-Phase Glycerol Hydrogenolysis By Formic Acid Over Ni–Cu/Al ₂ O ₃ Catalysts	I. Gandarias,J. Requies,P.L. Arias, U. Armbruster,A. Martin	Ni-Cu	Al ₂ O ₃	493	45	(90,82)
33	Catalysis Today Xxx (2012) Xxx– Xxx	Effect Of Preparation Parameters Of Cu Catalysts On Their Physico- Chemical Properties And Activities For Glycerol Hydrogenolysis	R.B. Mane, S.E. Kondawar, P.S. Niphadkar, P.N. Joshi, K.R. Patil, C.V. Rode	Cu	KOH, NaOH, Na ₂ CO ₃	493	52	CAP Na ₂ CO ₃ R: (63,88)
34	Catalysis Today 174 (2011) 10– 16	Studies On The Conversion Of Glycerol To 1,2-Propanediol Over Ru-Based Catalyst Under Mild Conditions	Seung-Hwan Lee, Dong Ju Moon,	Ru	Alumina, Ca-Zn	453	25-40	Ru–Mg/Al (47.3,61.1 Ru–CaMg/ Al: (56.7,78.4) Ru–ZnMg/ Al: (55.6,75.1) Ru–CaZn Mg/Al: (58.5,85.5 Ru/γ- Al ₂ O ₃ : (45.6,59.2)
35	Catalysis Today 187 (2012) 122– 128	Glycerol Hydrogenolysis To 1,2-Propanediol With Cu/γ-Al ₂ O ₃ : Effect Of The Activation Process	F. Vila, M. López Granados, M. Ojeda, J.L.G. Fierro, R. Mariscal	Cu	γ-Al ₂ O ₃	493	24	Yield- 10.2%

36	Catalysis Today Xxx (2012) Xxx– Xxx	Catalytic Transformation Of Glycerol On Several Metal Systems Supported On ZnO	Manuel Checa, Florian Auneau, Jesús Hidalgo- Carrillo, Alberto Marinas, José M. Mari- nas,Catherine Pinel, Francisco J. Urbano	Pt	ZnO	448	6	-
37	Applied Catalysis B: Envi- ronmental 117–118 (2012) 253–259	Hydrogenolysis Of Glycerol To Obtain 1,2-Propanediol On Ce-Promoted Ni/SBA-15 Catalysts	I.Jiménez- Morales,F. Vila,R. Mariscal,A. Jiménez- López	Ni	SBA-15	473	30	(56, 32.5)
38	Bioresource Technology 101 (2010) 7088–7092	Biodiesel Derived Glycerol Hydrogenolysis To 1,2-Propanediol On Cu/MgO Catalysts	Zhenle Yuan, Junhua Wang, Lina Wang, Weihui Xie, Ping Chen, Zhaoyin Hou, Xiaoming Zheng	Cu	MgO Support	453	30	(72, 97.6)
39	Bioresource Technology 104 (2012) 814–817	Catalytic Production Of 1,2-Propanediol From Glycerol In Bio-Ethanol Solvent	Shuixin Xia, Zhen- leYuan,Lina Wang,Ping Chen, ZhaoyinHou	Rh, Cu	Al, Mg	453	20	(91,98.7)

40	Catalysis	Hydrogenolysis	Jian Feng,	Ru	TiO ₂ ,	443	30	(66.3,47.7)
	Communi-	Of Glycerol To	Haiyan Fu,		SiO ₂ ,			
	cations 9	Glycols Over	Jinbo Wang,		Nay,			
	(2008)	Ruthenium	Ruixiang Li,		γ -Al ₂ O ₃			
	1458–1464	Catalysts: Effect	Hua Chen,		And			
		Of Support And	Xianjun Li		Active			
		Catalyst			Carbon			
		Reduction						
		Temperature						
41	Applied	Solid Acid	Yoshinao	Ir-Reox	SiO ₂	473	80	-
	Catalysis	Co-Catalyst For	Nakagawa,		Support			
	A: General	The	Xuanhe Ning,					
	433–434	Hydrogenolysis	Yasushi					
	(2012)	Of Glycerol To	Amada,					
	128–134	1,3-Propanediol	Keiichi					
		Over	Tomishige					
		Ir-Reox/SiO ₂						
42	Catalysis	Preparation And	Byoung Kyu	CuAl ₂ O ₄		493	50	(90,90)
	Communi-	Characterization	Kwak, Dae	Spinel				
	cations 24	Of	Sung Park,					
	(2012)	Nanocrystalline	Yang Sik Yun,					
	90–95	CuAl ₂ O ₄ Spinel	Jongheop Yi					
		Catalysts By						
		Sol–Gel Method						
		For The						
		Hydrogenolysis						
		Of Glycerol						

43	Catalysis	Cu/SiO ₂	Zhiwei	Cu	SiO ₂	553	64	Hom-
	Today 183	Catalysts	Huang, Fang					DP:-
	(2012) 42–	Prepared By	Cui, Jingjing					(C,S):-
	51	Hom- And Het	Xue, Jianliang					(22.1,98),
		Deposi-	Zuo, Jing					(11.7,97.8),
		tion-Precipitation	Chen, Chungu					(6.1,98.4).
		Methods:	Xia					Het-DP:-
		Texture,						(C,S):-
		Structure, And						(35,93.7),
		Catalytic						(30.1,95.2),
		Performance In						(21.6,96).
		The						
		Hydrogenolysis						
		Of Glycerol To						
		1,2-Propanediol						
44	Catalysis	Copper Modified	C.V. Rode,	Cu	Waste	493	52	Sel:->85
	Today 190	Waste Fly Ash	R.B. Mane,		Fly Ash			% Conv:-
	(2012) 31–	As A Promising	A.S. Potdar,					10-60%
	37	Catalyst For	P.B. Patil, P.S.					
		Glycerol	Niphadkar,					
		Hydrogenolysis	P.N. Joshi					

2.3 Gas phase reaction:

It has been reported that propanediol is producible at gas phase conversion of glycerol with hydrogen pressure of 0.1-5 MPa and reaction temperatures of 573 K have been applied [1].

Repotedly in gas phase reaction the yield of 1,2 Propane-diol is limited by equilibrium of the second step hydrogenation due to low hydrogen hydrogen pressure, so elevated pressure of hydrogen is preffered to shift equilibrium to produce 1,2 Propane-diol. Above all the selectivity of the intermediate, product is found to be affected with elevated temperature.

With ruthenium based carbon catalyst leads to excessive hydrogenation and results into cleavage of C-C bond and that results into formation of lower alcohol. Thus selectivity decreases in case of Ru supported carbon catalyst. However due to lower selectivity in gas phase reaction, it was proposed to carry out liquid phase reaction for further study for this report.

Sr.	Journal	Title	Authors	Catalyst	Support	Т	Р	Result
No	Name,Vol					(K)	(bar)	(C,S)
	& Page No							
			GAS PHASE RI	EACTION				
45	Catalysis	Comparison Of	Baoxiang	Pt	Al ₂ O ₃	473	40	Selectivity
	Today 183	Kinetics And	Peng, Chen					= 98.5%
	(2012) 3–	Reaction	Zhao, Isidro					
	9	Pathways For	Mejía-					
		Hydrodeoxy-	Centeno,					
		genation of C ₃	Gustavo A.					
		Alcohols On	Fuentes,					
		Pt/Al ₂ O ₃	Andreas Jen-					
			tys,Johannes					
			A. Lercher					
46	Chemical	Gas Phase	Yonghai Feng,	Cu/ZnO	Al_2O_3 ,	513-	1	(0,20)
	Engineer-	Hydrogenolysis	Hengbo Yin,	/Mox	TiO ₂ ,	573		
	ing Journal	Of Glyc-	Aili Wang,		And			
	168 (2011)	erol Catalyzed By	Lingqin Shen,		ZrO ₂			
	403–412	Cu/ZnO/Mox(Mox	Longbao Yu,					
		=Al ₂ O ₃ , TiO ₂ ,	Tingshun					
		And ZrO ₂)	Jiang					
		Catalysts						

Table 2.3: Catalysts for gas phase reaction.

47	Chinese	Kinetics Of	Zhou	Cu	ZnO,	493-	30-50	(81.5,93.9)
	Journal Of	Hydrogenolysis	Zhiming,Li		Al ₂ O ₃	513		
	Chemical	Of Glycerol To	Xun, Zeng					
	Engineer-	Propylene Glycol	Tianying,					
	ing, 18(3)	Over	Hong Wenbin					
	384—390	Cu-ZnO-Al ₂ O ₃	Cheng					
	(2010)	Catalysts	Zhenmin And					
			Yuan					
			Weikang,					
48	Journal Of	Mediatory Role	Xiaoyuan	Ru	SiO ₂	<516	1	Conv:
	Industrial	Of K, Cu And	Liao, Kewen					(K,Cu,Mo):
	And Engi-	Mo Over	Li, Xiaomin					(25,55,28)
	neering	Ru/SiO ₂	Xiang,					Selectivity
	Chemistry	Catalysts For	Sheng-Guang					:
	18 (2012)	Glycerol	Wang, Xichun					(6.3,26.2,
	818-821	Hydrogenolysis	She, Yulei					15.5)
			Zhu,					
			Yongwang Li					
49	Applied	Selective	A. Bienholz,	Cu	SiO ₂	518	1-15	CuO,
	Catalysis	Hydrogenolysis	H. Hofmann,					ZnO
	A: General	Of Glycerol Over	P. Claus					(52,98),
	391 (2011)	Copper Catalysts						Cu/SiO ₂
	153–157	Both In Liquid						(19,78)
		And Vapour						
		Phase:						
		Correlation						
		Between The						
		Copper Surface						
		Area And The						
		Catalyst's						
		Activity						

50	Chin. J.	Comparison Of	Huang Jinhua,	Ni,	SiO ₂	493	30	Ni/SiO ₂ :-
	Catal.,	Ni ₂ P/SiO ₂ And	Chen Jixiang	Ni ₂ P				(73.2,
	2012, 33:	Ni/SiO ₂ For						49.9)
	790–796	Hydrogenolysis						Ni ₂ P/SiO ₂ :-
		Of Glycerol: A						(95.1,
		Consideration Of						85.9)
		Factors						
		Influencing						
		Catalyst Activity						
		And Product						
		Selectivity						
51	Bioresource	Aqueous Phase	Maria L.	Ptsn	Support	473	40	Selectivity
	Technology	Hydrogenolysis	Barbelli,		on SiO ₂			= 59%
	111 (2012)	Of Glycerol To	Gerardo F.					and 83%,
	500-503	Bio-Propylene	Santori, Nora					Conv:-
		Glycol Over	N. Nichio					54%
		Pt–Sn Catalysts						

Chapter 3

CATALYST PREPARATION & CHARACTERISATION

3.1 CATALYST PREPARATION

3.1.1 CATALYST SELECTION

So far various catalysts are reported in the literature for hydrogenation of glycerol that includes Ru, Pt, Pd, Cu, Ni, Rh (Metals), Supports includes MgO, ZnO, SiO₂, Al₂O₃, γ -Al₂O₃, TiO₂ etc, and Promoters include K, Cu, Mo etc.

But among all Cu_Mg_Al Catalyst, Pd_Cu_Mg_Al and CAP (Na₂CO₃), CAP (NaOH), CAP (KOH) catalysts were reported with the best conversion, and selectivity, besides above all the major problem encountered among above catalysts is reaction time, Catalyst reduction temperature, etc.

Table	3.1: From	n various	catalysts	carried	out the	reaction	condition	for pa	rticular	catalyst	& res	sult
are:												

Sr.	Catalyst	Reaction	Reaction	Reaction	Conversion	Selectivity
No		Temperature	Pressure	Time	(%)	(%)
		(K)	(bar)	(hr)		
1	Cu_Mg_Al	453	30	20	80	98.2
2	Pd_Cu_Mg_Al	453	20	10	88	99.6
3	$CAP(Na_2CO_3)$	493	52	5	62	88
4	CAP(NaOH)	493	52	5	51	88
5	CAP(KOH)	493	52	5	58	88

With ref. to above mentioned catalyst it is planned to utilize these catalyst at less severe conditions and modifications was planned to enhance its activity and selectivity even at lower temperature and pressure conditions.

3.1.2 Catalyst preparation for Pd_Cu_Mg_Al & Cu_Mg_Al catalyst

- Dripping Process:- The procedure follows as Solution A containing Cu(NO₃)₂.3H₂O, Mg(NO₃)₃.9H₂O, Al(NO₃)₂.6H₂O with molar ratio of 0.4:5.6:2 are added in 400 ml distilled water. That is mixed with solution B containing Na₂CO₃, NaOH with concentration 0.25, 0.8 mol/L respectively. Solution A is mixed with B until pH of 9.5 is reached.
- 2. Reflux: Then the suspension is circumfluence in a 1L (RBF-Round Bottom Flask). The reflux is carried out for 12 hr at 110°C.
- 3. Washing & Filtration:- Then the resultant suspension is allowed to cool for some time and then washing and filtration is carried out until it reaches pH of 7 using distilled water.
- 4. Drying:- After which the slurry is dried in oven for 12 hr at 80°C until it is completely dried.
- 5. Calcination:- The dried contain is then powdered followed by calcinations at 300°C for 4 hr.
- 6. Reduction:- Before reaction the catalyst is reduced for 1 hr at 300°C.

Dripping Process :-

 \downarrow

Mixing of solution A & B along with stirring for 2 hr.

Reflux :-

Processing the suspension within for 12 hr.

Filtration & Washing :-

 \downarrow

 \downarrow

Filtering & washing the slurry until pH of 7 is achieved.

Drying & Calcination :-

The resulted suspension is dried for 12 hr followed by calcination for 4 hr

Reduction:-Reduction with H₂at 300°C for 1 hr.

 \downarrow

Figure 3.1: Final Form of catalyst Cu_Mg_Al & Pd_Cu_Mg_Al

3.1.3 Catalyst preparation for CAP(Na₂CO₃), CAP(KOH), CAP(NaOH)

- In a typical procedure, simultaneous addition of equimolar (0.05 M) mixture of aqueous solutions of Cu(NO₃)₂.3H₂O, Al(NO₃)₂.6H₂O and 0.2 M K₂CO₃ to 5–10 mL of water taken in a round bottom flask at room temperature gave the precipitate of the mixed precursor.
- 2. The final pH of the precipitate was maintained in a range of 8–9.
- 3. This was digested for 5–6 hr and then filtered and washed with deionized water to remove the traces of potassium.
- 4. Thus the obtained precipitate was dried in oven at 100°C for 5–8 hr.
- 5. By following the same procedure Cu–Al catalysts were prepared using different precipitating agent's i.e KOH, NaOH and Na₂CO₃.
- 6. The prepared catalysts were nominated as CAP (NaOH), CAP (Na₂CO₃), CAP (KOH).
- 7. All the prepared catalysts were calcined at 400°C for 3 hr.
- 8. The catalyst is activated under H_2 flow at 200°C for 12 hr.

Mixing of Cu(NO ₃) ₂ .3H ₂ O
(6.66 gm), Al(NO ₃) ₂ .6H ₂ O
(10.33 gm) and NaOH(4 gm)
Mixing until pH of 8-9.
↓
Digested for 5-6 hr washed & filtered.
Drying at 100°C for 5-8 hr.
\downarrow
Calcined at 400°C for 3 hr.
\downarrow
Activated at 200°C for 12 hr under H ₂
flow.
\downarrow

Figure 3.2: Final form of Catalyst CAP(NaOH), CAP(KOH), CAP(Na₂CO₃)

3.2 CATALYST CHARACTERIZATION

Heterogeneous catalyst is characterized by various components that includes (active species, physical and/or chemical promoters, and supports), shape, size, pore volume, pore distribution and surface area.

- Catalyst characterization is intended to correlate catalyst behaviour with their physical and chemical properties to predict catalytic result.
- Reasons for deactivation, and procedures for regeneration.
- Determining morphology/physical and chemical properties.

Catalyst characterization is carried out to determine effectivity, stability, activity etc.

3.2.1 Bulk

Though surface knowledge being essential, bulk properties finds its importance in being the nature of surface sites determined by those properties. the various techniques included are:-

- 1. Spectroscopic and diffraction techniques.
- 2. X-ray diffraction.
- 3. IR spectroscopy.
- 4. Raman spectroscopy.

3.2.2 Surface

The surface is place of catalytic activity where only its part is used for catalytic reaction. Catalyst based supported metal only occupies small portion of the total surface. whereas in case of acid catalyst that not only occupies surface but differ in acid strength and nature. To understand catalysts activity decaying with respect to time, performance, nature of active site is essential. The various techniques employed are:

- 1. Volumetric, gravimetric and dynamic adsorption methods,
- 2. Adsorption calorimetry,
- 3. IR spectroscopy,
- 4. Raman spectroscopy,
- 5. Temperature programmed desorption

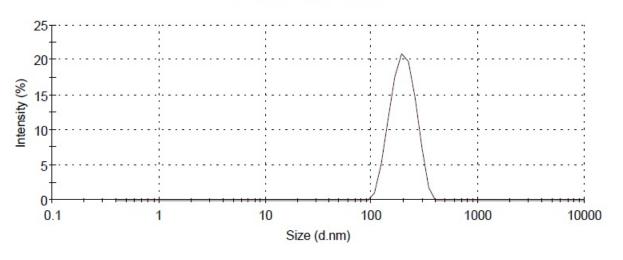
3.2.3 Morphology

The importance of morpholgy lies in development of catalyst and provide necessary feedback required for obtaining suitable result. As a matter of fact to understand or study the catalytic behaviour requires the knowledge of the morphological characteristics. The morphological characteristics of interest are the specific surface area, the specific pore volume, and the distribution of the area and of the pore size.

- 1. micropores (+ < 2 nm),
- 2. mesopores (2 < 4 < 50 nm),
- 3. macropores (4 > 50 nm).

Most of the heterogeneous catalyst are porous solid, that arises from preparation method of solid. The porous structure provides the solid to have a total surface much higher than that corresponding to the external one. Most common catalysts have a specific surface area between 1 and 1000 m²/g, while their external specific surface area is in the range 0.01-10 m²/g. The various techniques used are

- 1. Vapour adsorption at low temperature (nitrogen adsorption),
- 2. Mercury porosimetry,
- 3. Incipient wetness method,
- 4. Permeametry and counterdifision,
- 5. Microscopy [scanning electron microscopy, transmisson electron microscopy].


So far copper alumina phosphate catalyst with NaOH and KOH provided some necessary result so CAP(NaOH) catalyst was carried out for characterization. Results of the characterization of NaOH catalyst for DLS is as follows:

DLS (Dynamic light scattering):

Dynamic light scattering test methods confirms size of catalyst particles. Dynamic Light Scattering is also known as Photon Correlation Spectroscopy. This technique is one of the most popular methods used to determine the size of particles. Shining a monochromatic light beam, such as a laser, onto a solution with spherical particles in Brownian motion causes a Doppler Shift when the light hits the moving particle, changing the wavelength of the incoming light. This change is related to the size of the particle. It is possible to compute the sphere size distribution and give a description of the particle's motion in the medium, measuring the diffusion coefficient of the particle and using the autocorrelation function. The analysis of CAP(NaOH) has been carried out at Shah-schulman center for surface science and nanotechnology, D.D.University, Nadiad. which affirms that the average particle size of CAP(NaOH) id 291.1 dnm. DLS test had been carried out using water as an dispersant at 25°C for 150 second duration.

Following test conditions were maintained during test.

- Count Rate (kcps) : 201.8
- Measurement Position (mm): 4.65
- Cell Discription : Disposable sizing cuvette.

Size Distribution by Intensity

Figure 3.3: DLS(Dynamic light scattering) analysis of CAP(NaOH) catalyst

Based upon suitable conversion obtained from CAP (NaOH) and CAP(KOH). catalyst CAP(NaOH) was characterized with DLS (Dynamic light scattering) that confrims size of particle to be 291.1 d.nm

EXPERIMENTAL SETUP

Before reaction is being carried out in the reactor, it is being cleaned with Water, 2-Propanol. Throughout all the catalyst the reaction temperature, reaction pressure and time were maintained the same i.e 180°C, 30 bar, 5 hr. Firstly the reactant is charged i.e Glycerol and 30 bar H₂ pressure. Secondly the temperature is increased from 35 to 180°C slowly. During the reaction each sample at every 1 hr is collected, the reaction is carried out for 5 hr. The obtained sample of the reaction is analyzed using GC (Gas Chromatography- 2010), Using RTX-Wax Capillary column. All the GC result are provided in Appendix B.

Figure 4.1: Image of the reactor.

Following GC analysis was carried out using RTX-Wax capillary column with a maximum temperature of 250°C, Inner diameter of 0.25 mm ID, with film thickness of 0.25 μ m at 30 m length. Following analysis was carried out with temperature of injection being 200°C, 90°C for column temperature and FID temperature at 230°C. The mode of injection was split, other than that in split injection mode the pressure was kept 14.5 psi with a total flow of 50 mL/min, and purge flow of 3 mL/min. In the FID section the flow of H₂was kept 40 mL/min and flow of air was kept 400 mL/min, the make up flow was kept 30 mL/min. And the total program time for the analysis was 28.57 min.

RESULTS & DISCUSSIONS

After carrying out reactions with various catalysts. CAP(KOH), CAP(NaOH) catalyst came up with some possible outcome of 5.5 & 4.2%.

Tuble 3.1. Result of various catalyst carried out for reaction.			
Sr.No	Type of catalyst	Conversion (%)	Selectivity (%)
1	CAP(KOH)	5.5	97.89
2	CAP(NaOH)	4.1	98.00
3	CAP(Na ₂ CO ₃)	0.01	48.78
4	Cu_Mg_Al	2.5, 1.2	100
5	Pd_Cu_Mg_Al	0.15	91.25

Table 5.1: Result of various c	talyst carried	out for reaction.
--------------------------------	----------------	-------------------

Two major reasons can be contributed for poor performance of reaction. They are improper preparation of catalyst and less severe conditions of operation can be considered.

During catalyst synthesis following problems were faced

- 1. Catalyst reduction temperature.
- 2. pH.
- 3. Foreign contaiminants.
- 4. Reflux temperature.
- 5. Reduction time.

All reactions are carryout at 180°C and 30 bar (g) pressure. However these temperature and pressure values are much lower than the reported conditions. Apart from that reaction time is also very less, 5 hours compared to reported time ranging from 24 hours.

It is expected that due to these two major reasons, conversion of glycerol achieved over here are much less compared to reported conversion. Apart from these hydrogen pressure play a key role in increasing solubility of hydrogen in liquid mixture during reaction. Hydrogen pressure more than 50 bar (g) would be the minimum pressure required to have good solubility of hydrogen in reaction mixture. So such processes requires tremendous high pressure of hydrogen.

FUTURE SCOPE

There were many catalyst carried out so far, the result obtained are stated below whereas during following carried out reaction various parameter were varied that include following:

- 1. Glycerol concentration.
- 2. Temperature.
- 3. Pressure.
- 4. Volume of the reactant.
- 5. Catalyst loading.
- 6. Reaction time.
- 7. Catalyst reduction time.

CONCLUSIONS

Based on literature survey, high performance catalyst were selected and synthesized in laboratory. However results of these experiments are not encouraging.

Based on the experiments conducted, conversion was only about 4-6% with about 90-98% selectivity for 1,2 Propane-diol. However for the same catalyst, reported conversion in the literature is 58% with selectivity of 88% but at pressure of 52 bar,

Improper preparation of catalyst and less severe conditions of operation can be considered. Due to certain problems arise during catalyst synthesis, catalyst may not have gained its proper structure.

All reactions are carryout at 180°C and 30 bar (g) pressure. However these temperature and pressure values are much lower than the reported conditions. Apart from that reaction time is also very less, 5 hours compared to reported time ranging from 24 hours.

It is expected that due to these two major reasons, conversion of glycerol achieved over here are much less compared to reported conversion. Hydrogen pressure play a key role in increasing solubility of hydrogen in liquid mixture during reaction. Hydrogen pressure more than 50 bar (g) would be the minimum pressure required to have good solubility of hydrogen in reaction mixture. So such processes requires tremendous high pressure of hydrogen.

REFERENCES

- Tomohisa Miyazawa, Shuichi Koso, Kimio Kunimori, Keiichi Tomishige Development Of A Ru/C Catalyst For Glycerol Hydrogenolysis In Combination With An Ion-Exchange Resin, Applied Catalysis A: General 318 (2007) 244–251.
- 2. Jie Zhou, Shunli Hao, Ning Zhao, Fukui Xiao, Wei Wei And Yuhan Sun, Effect Of Support On Hydrogenolysis Of Glycerol Over Cu Catalysts, J. Chem. Soc. Pak., Vol. 34, No.4, 2012.
- Noraini Hamzah, Norasikin Mohamad Nordin, Ainol Hayah Ahmad Nadzri, Yah Awg Nik, Mohamad B. Kassim, Mohd Ambar Yarmo, Enhanced Activity Of Ru/TiO₂ Catalyst Using Bisupport, Bentonite-TiO₂ for Hydrogenolysis Of Glycerol In Aqueous Media, Applied Catalysis A: General 419– 420 (2012) 133– 141.
- Shuixin Xia, Zhenle Yuan, Lina Wang, Ping Chen, Zhaoyin Hou, Hydrogenolysis Of Glycerol On Bimetallic Pd-Cu/Solid-Base Catalysts Prepared Via Layered Double Hydroxides Precursors, Applied Catalysis A: General 403 (2011) 173–182.
- Lan Ma, Dehua He, Influence Of Catalyst Pretreatment On Catalytic Properties And Performances Of Ru–Re/SiO₂, In Glycerol Hydrogenolysis To Propanediols, Catalysis Today 149 (2010) 148–156.
- E.S. Vasiliadou, A.A. Lemonidou, Investigating The Performance And Deactivation Behaviour Of Silica-Supported Copper Catalysts In Glycerol Hydrogenolysis, Applied Catalysis A: General 396 (2011) 177–185.
- Lingqin Shen, Hengbo Yin, Aili Wang, Yonghai Feng, Yutang Shen, Zhanao Wu, Tingshun Jiang, Liquid Phase Dehydration Of Glycerol To Acrolein Catalyzed By Silicotungstic, Phosphotungstic, And Phosphomolybdic Acids, Chemical Engineering Journal 180 (2012) 277–283.
- Weiqiang Yu, Jie Xu, Hong Ma, Chen Chen, Jing Zhao, Hong Miao, Qi Song, A Remarkable Enhancement Of Catalytic Activity For KBH₄ Treating The Carbothermal Reduced Ni/AC Catalyst In Glycerol Hydrogenolysis, Catalysis Communications 11 (2010) 493–497.
- R. Rodrigues, N. Isoda, M. Gonçalves, F.C.A. Figueiredo, D. Mandelli, W.A. Carvalho, Effect of niobia and alumina as support for Pt catalysts in the hydrogenolysis of glycerol, Chemical Engineering Journal 198–199 (2012) 457–467.

- Mohanprasad A. Dasari, Pim-Pahn Kiatsimkul, Willam R. Sutterlin, Galen J. Suppes, Low-Pressure Hydrogenolysis Of Glycerol To Propylene Glycol, Applied Catalysis A: General 281 (2005) 225–231.
- Erin P. Maris, Robert J. Davis, Hydrogenolysis Of Glycerol Over Carbon-Supported Ru And Pt Catalysts, Journal Of Catalysis 249 (2007) 328–337.
- A. Iriondo, J.F. Cambra, V.L. Barrio, M.B. Guemez, P.L. Arias, M.C. Sanchez-Sanchez, R.M. Navarro, J.L.G. Fierro, Glycerol Liquid Phase Conversion Over Monometallic And Bimetallic Catalysts:Effect Of Metal, Support Type And Reaction Temperatures, Applied Catalysis B: Environmental 106 (2011) 83–93.
- Masaki Akiyama, Satoshi Sato, Ryoji Takahashi, Kanichiro Inui, Masahiro Yokota, Dehydration–Hydrogenation Of Glycerol Into 1,2-Propanediol At Ambient Hydrogen Pressure, Applied Catalysis A: General 371 (2009) 60–66.
- Martin Hájek, František Skopal, Treatment Of Glycerol Phase Formed By Biodiesel Production, Bioresource Technology 101 (2010) 3242–3245.
- Zhenle Yuan, Lina Wang, Junhua Wang, Shuixin Xia, Ping Chen, Zhaoyin Hou, Xiaoming Zheng, Hydrogenolysis Of Glycerol Over Homogenously Dispersed Copper On Solid Base Catalysts., Applied Catalysis B: Environmental 101 (2011) 431–440
- John A. Posada, Luis E. Rincón, Carlos A. Cardona, Design And Analysis Of Biorefineries Based On Raw Glycerol: Addressing The Glycerol Problem, Bioresource Technology 111 (2012) 282–293.
- Debdut Roy, Bala Subramaniam, Raghunath V. Chaudhari, Aqueous Phase Hydrogenolysis Of Glycerol To 1,2-Propanediol Without External Hydrogen Addition, Catalysis Today 156 (2010) 31–37.
- Silvia Bolado, Ricardo E. Treviño, M. Teresa García-Cubero, Gerardo González-Benito, Glycerol Hydrogenolysis To 1, 2 Propanediol Over Ru/C Catalyst, Catalysis Communications 12 (2010) 122–126.
- Tomohisa Miyazawa, Yohei Kusunoki, Kimio Kunimori, Keiichi Tomishige, Glycerol Conversion In The Aqueous Solution Under Hydrogen Over Ru/C + An Ion-Exchange Resin And Its Reaction Mechanism, Journal Of Catalysis 240 (2006) 213–221.
- M. Balaraju, V. Rekha, P.S. Sai Prasad, B.L.A. Prabhavathi Devi, R.B.N. Prasad, N. Lingaiah, Influence Of Solid Acids As Co-Catalysts On Glycerol Hydrogenolysis To Propylene Glycol Over Ru/C Catalysts, Applied Catalysis A: General 354 (2009) 82–87.
- Tomohisa Miyazawa, Shuichi Koso, Kimio Kunimori, Keiichi Tomishige, Glycerol Hydrogenolysis To 1,2-Propanediol Catalyzed By A Heat-Resistant Ion-Exchange Resin Combined With Ru/C, Applied Catalysis A: General 329 (2007) 30–35.

- Lan Ma, Dehua He, Zhanping Li, Promoting Effect Of Rhenium On Catalytic Performance Of Ru Catalysts In Hydrogenolysis Of Glycerol To Propanediol, Catalysis Communications 9 (2008) 2489–2495.
- 23. Yohei Kusunoki, Tomohisa Miyazawa, Kimio Kunimori, Keiichi Tomishige, Highly Active Metal–Acid Bifunctional Catalyst System For Hydrogenolysis Of Glycerol Under Mild Reaction Conditions, Catalysis Communications 6 (2005) 645–649.
- 24. Zhiwei Huang, Fang Cui, Haixiao Kang, Jing Chen, Chungu Xia, Characterization And Catalytic Properties Of The CuO/SiO₂Catalysts Prepared By Precipitation-Gel Method In The Hydrogenolysis Of Glycerol To 1,2-Propanediol:Effect Of Residual Sodium, Applied Catalysis A: General 366 (2009) 288–298.
- Liyuan Guo, Jinxia Zhou, Jingbo Mao, Xinwen Guo, Shuguang Zhang, Supported Cu Catalysts For The Selective Hydrogenolysis Of Glycerol To Propanediols, Applied Catalysis A: General 367 (2009) 93–98.
- Yasunori Shinmi, Shuichi Koso, Takeshi Kubot, Yoshinao Nakagawa, Keiichi Tomishige, Modification Of Rh/SiO₂Catalyst For The Hydrogenolysis Of Glycerol In Water, Applied Catalysis B: Environmental 94 (2010) 318–326.
- Xiaohui Guo, Yong Li, Ruijuan Shi, Qiying Liu, Ensheng Zhan, Wenjie Shen, Co/MgO Catalysts For Hydrogenolysis Of Glycerol To 1, 2-Propanediol, Applied Catalysis A: General 371 (2009) 108–113.
- Shuichi Koso,Hideo Watanabe,Kazu Okumura, Yoshinao Nakagawa,Keiichi Tomishige, Comparative Study Of Rh–Moox And Rh–Reox Supported On SiO₂ For The Hydrogenolysis Of Ethers And Polyols, Applied Catalysis B: Environmental 111–112 (2012) 27–37.
- R.B. Mane, A.A. Ghalwadkar, A.M. Hengne, Y.R. Suryawanshi, C.V. Rode, Role Of Promoters In Copper Chromite Catalysts For Hydrogenolysis Of Glycerol, Catalysis Today 164 (2011) 447–450.
- E.S. Vasiliadou, E. Heracleous, I.A. Vasalos, A.A. Lemonidou, Ru-Based Catalysts For Glycerol Hydrogenolysis—Effect Of Support And Metal Precursor, Applied Catalysis B: Environmental 92 (2009) 90–99.
- M. Balaraju, V. Rekha, B.L.A. Prabhavathi Devi, R.B.N. Prasad, P.S. Sai Prasad, N. Lingaiah, Surface And Structural Properties Of Titania-Supported Ru Catalysts For Hydrogenolysis Of Glycerol, Applied Catalysis A: General 384 (2010) 107–114.
- 32. I. Gandarias, J. Requies, P.L. Arias, U. Armbruster, A. Martin, Liquid-Phase Glycerol Hydrogenolysis By Formic Acid Over Ni–Cu/Al₂O₃Catalysts, Journal Of Catalysis 290 (2012) 79–89.
- 33. R.B. Mane, S.E. Kondawar, P.S. Niphadkar, P.N. Joshi, K.R. Patil, C.V. Rode, Effect Of Preparation Parameters Of Cu Catalysts On Their Physico-Chemical Properties And Activities For Glycerol Hydrogenolysis, Catalysis Today Xxx (2012) Xxx– Xxx.

- Seung-Hwan Lee, Dong Ju Moon, Studies On The Conversion Of Glycerol To 1,2-Propanediol Over Ru-Based Catalyst Under Mild Conditions, Catalysis Today 174 (2011) 10– 16.
- F. Vila, M. López Granados, M. Ojeda, J.L.G. Fierro, R. Mariscal, Glycerol Hydrogenolysis To 1,2-Propanediol With Cu/γ-Al₂O₃: Effect Of The Activation Process, Catalysis Today 187 (2012) 122–128.
- 36. Manuel Checa, Florian Auneau, Jesús Hidalgo-Carrillo, Alberto Marinas, José M. Marinas, Catherine Pinel, Francisco J. Urbano, Catalytic Transformation Of Glycerol On Several Metal Systems Supported On ZnO, Catalysis Today Xxx (2012) Xxx– Xxx.
- I.Jiménez-Morales, F. Vila, R. Mariscal, A. Jiménez-López, Hydrogenolysis Of Glycerol To Obtain 1,2-Propanediol On Ce-Promoted Ni/SBA-15 Catalysts, Applied Catalysis B: Environmental 117–118 (2012) 253–259.
- Zhenle Yuan, Junhua Wang, Lina Wang, Weihui Xie, Ping Chen, Zhaoyin Hou, Xiaoming Zheng, Biodiesel Derived Glycerol Hydrogenolysis To 1,2-Propanediol On Cu/MgO Catalysts, Bioresource Technology 101 (2010) 7088–7092.
- 39. Shuixin Xia, ZhenleYuan,Lina Wang,Ping Chen, ZhaoyinHou, Catalytic Production Of 1,2-Propanediol From Glycerol In Bio-Ethanol Solvent, Bioresource Technology 104 (2012) 814–817.
- 40. Jian Feng, Haiyan Fu, Jinbo Wang, Ruixiang Li, Hua Chen, Xianjun Li, Hydrogenolysis Of Glycerol To Glycols Over Ruthenium Catalysts: Effect Of Support And Catalyst Reduction Temperature, Catalysis Communications 9 (2008) 1458–1464.
- Yoshinao Nakagawa, Xuanhe Ning, Yasushi Amada, Keiichi Tomishige, Solid Acid Co-Catalyst For The Hydrogenolysis Of Glycerol To 1,3-Propanediol Over Ir-Reox/SiO₂, Applied Catalysis A: General 433–434 (2012) 128–134.
- Byoung Kyu Kwak, Dae Sung Park, Yang Sik Yun, Jongheop Yi, Preparation And Characterization Of Nanocrystalline CuAl₂O₄ Spinel Catalysts By Sol–Gel Method For The Hydrogenolysis Of Glycerol, Catalysis Communications 24 (2012) 90–95.
- 43. Zhiwei Huang, Fang Cui, Jingjing Xue, Jianliang Zuo, Jing Chen, Chungu Xia, Cu/SiO₂Catalysts Prepared By Hom- And Het Deposition–Precipitation Methods: Texture, Structure, And Catalytic Performance In The Hydrogenolysis Of Glycerol To 1,2-Propanediol, Catalysis Today 183 (2012) 42– 51.
- C.V. Rode, R.B. Mane, A.S. Potdar, P.B. Patil, P.S. Niphadkar, P.N. Joshi, Copper Modified Waste Fly Ash As A Promising Catalyst For Glycerol Hydrogenolysis, Catalysis Today 190 (2012) 31–37.
- Baoxiang Peng, Chen Zhao, Isidro Mejía-Centeno, Gustavo A. Fuentes, Andreas Jentys, Johannes A. Lercher, Comparison Of Kinetics And Reaction Pathways For Hydrodeoxygenation Of C₃ Alcohols On Pt/Al₂O₃, Catalysis Today 183 (2012) 3–9.

- 46. Yonghai Feng, Hengbo Yin, Aili Wang, Lingqin Shen, Longbao Yu, Tingshun Jiang, Gas Phase Hydrogenolysis Of Glycerol Catalyzed By Cu/ZnO/Mox(Mox =Al₂O₃,TiO₂, And ZrO₂ Catalysts, Chemical Engineering Journal 168 (2011) 403–412.
- 47. Zhou Zhiming,Li Xun, Zeng Tianying, Hong Wenbin Cheng Zhenmin And Yuan Weikang, Kinetics Of Hydrogenolysis Of Glycerol To Propylene Glycol Over Cu-ZnO-Al₂O₃ Catalysts, Chinese Journal Of Chemical Engineering, 18(3) 384—390 (2010).
- 48. Xiaoyuan Liao, Kewen Li, Xiaomin Xiang, Sheng-Guang Wang, Xichun She, Yulei Zhu, Yongwang Li, Mediatory Role Of K, Cu And Mo Over Ru/SiO₂ Catalysts For Glycerol Hydrogenolysis, Journal Of Industrial And Engineering Chemistry 18 (2012) 818–821.
- 49. A. Bienholz, H. Hofmann, P. Claus, Selective Hydrogenolysis Of Glycerol Over Copper Catalysts Both In Liquid And Vapour Phase: Correlation Between The Copper Surface Area And The Catalyst's Activity, Applied Catalysis A: General 391 (2011) 153–157.
- Huang Jinhua, Chen Jixiang, Comparison Of Ni₂P/SiO₂ And Ni/SiO₂ For Hydrogenolysis Of Glycerol: A Consideration Of Factors Influencing Catalyst Activity And Product Selectivity, Chin. J. Catal., 2012, 33: 790–796.
- Maria L. Barbelli, Gerardo F. Santori, Nora N. Nichio, Aqueous Phase Hydrogenolysis Of Glycerol To Bio-Propylene Glycol Over Pt–Sn Catalysts, Bioresource Technology 111 (2012) 500–503.

APPENDIX A

Catalyst calculation for Cu_Mg_Al

Sr.No	Chemical	Molecular weight (gm/mol)
1	$Cu(NO_3)_2.3H_2O$	241.60
2	$Mg(NO_3)_3.9H_2O$	256.4018
3	$Al(NO_3)_2.6H_2O$	375.13
4	PdCl ₂	177.33
5	NaOH	40
6	Na ₂ CO ₃	106
7	CuO	79.539
8	MgO	40.304
9	Al ₂ O ₃	101.961
10	PdO	122.419

Table 7.1: Molecular weight of various chemical component.

 $CuO + Al_2O_3 + MgO = 57.68$ (acc to 0.4:5.6:2 molar ratios)

1 mole contains 57.68 gm

So,

5 gm = 0.08668516 total moles are required for preparing 5gm catalyst.

Sr.No	Chemical	Gm
1	CuO	0.344743
2	MgO	2.445631
3	Al ₂ O ₃	2.209626
4	Catalyst	5

Table 7.2: Quantity of various chemical components required for preparation of 5 gm catalyst.

Table 7.3: Quantity of chemical required for preparation of 5 gm Cu_Mg_Al catalyst.

Sr.No	Chemical required	Gm
1	$Cu(NO_3)_2.3H_2O$	1.05
2	$Mg(NO_3)_3.9H_2O$	8.13
3	$Al(NO_3)_2.6H_2O$	15.56

Catalyst calculation for CAP(Na₂CO₃), CAP(KOH), CAP(NaOH)

 $CuO + Al_2O_3 = Cu_Al \text{ catalyst} (181.5069774)$

Sr.No	Components	Molecular weight (gm/mol)
1	Cu	63.5463
2	Al	26.98
3	0	15.9994
4	CuO	79.5457
5	Al ₂ O ₃	101.96
6	$Cu(NO_3)_2.3H_2O$	241.60
7	$Al(NO_3)_2.6H_2O$	375.13

Table 7.4: Molecular weight of various components.

In the above reaction totally 2 moles are involved as they are equimolar and assuming 5 gm of catalyst.

So, 2 moles contains 181.5069774 gm of catalyst so for

Therefore 5gm catalyst contains = 5*2/181.5069774 = 0.0550943 moles

So each CuO and Al₂O₃contains 0.02754715 moles,

Now,

1 mole CuO contains 79.5457 grams,

So, for 0.02754715 mole contains = 0.02754715*79.5457 = 2.19125736 grams,

1 mole Al₂O₃ contains 101.9612774 grams,

So, for 0.02754715 mole contains = 0.02754715*101.9612774 = 2.80874264 grams That is total grams required for catalyst = 2.19125736 + 2.80874264 = 5 grams Now, grams of Cu(NO₃)₂.3H₂O required: - 241.60*0.02754715 = 6.65539153 gram Similarly, grams of Al(NO₃)₂.6H₂O required: - 375.13*0.02754715 = 10.3337625 gram.

APPENDIX B

• Standard sample:

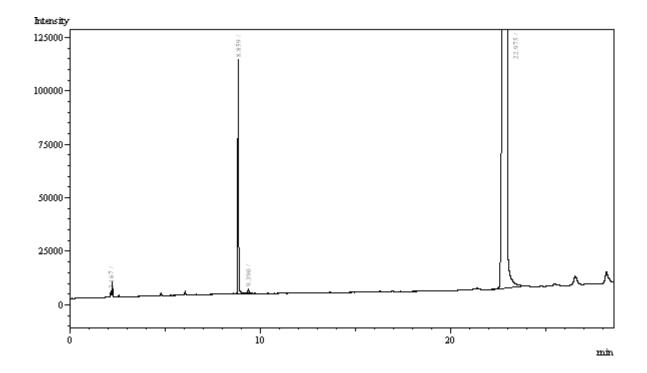


Figure 7.1: Standard sample

• Reaction sample of KOH:

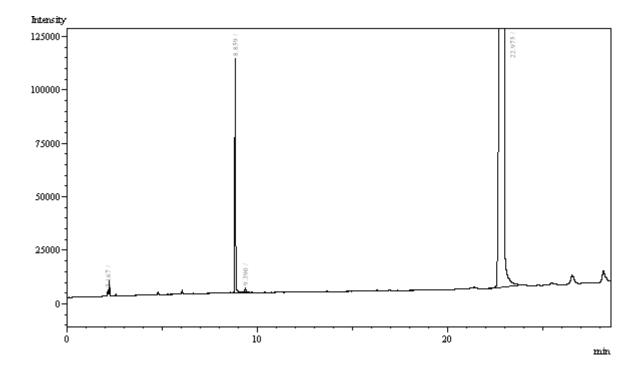


Figure 7.2: Reaction sample of KOH

• Reaction sample of NaOH

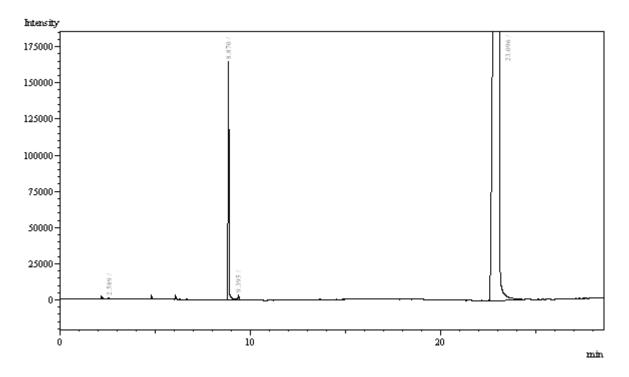


Figure 7.3: Reaction sample of NaOH