GOP (Graphics Output Protocol)
Configuration Driver for BIOS

Major Project Report

Submitted in partial fulfilment of the requirements
for the degree of

Master of Technology
In
Electronics & Communication Engineering

(Communication Engineering)

By

Digant H. Solanki
(11MECC16)

E: NIRMA
. UNIVERSITY

Electronics & Communication Engineering Branch
Electrical Engineering Department
Institute of Technology
Nirma University
Ahmedabad-382 481
May 2013

GOP (Graphics Output Protocol)
Configuration Driver for BIOS

Major Project Report

Submitted in partial fulfilment of the requirements
for the degree of

Master of Technology
In
Electronics & Communication Engineering
(Communication Engineering)

By

Digant H. Solanki
(11MECC16)

Under the guidance of

Mr. Bimod Narayanan Prof. Sachin H. Gajjar
BIOS Engineer, Electronics & Comm. Branch,
Intel Technology India Pvt. Ltd. Institute of Technology,
Bangalore Nirma University, Ahmedabad

NIRMA

UNIVERSITY

Electronics & Communication Engineering Branch
Electrical Engineering Department
Institute of Technology
Nirma University
Ahmedabad-382 481
May 2013

i

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Tech-
nology in Communication Engineering at Nirma University and has not been
submitted elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material used.

- Digant H. Solanki

il

5 NIRMA
& UNIVERSITY

Certificate

This is to certify that the Major Project entitled ”GOP (Graphics Output
Protocol) Configuration Driver for BIOS” submitted by Digant H. Solanki
(11MECCI16), towards the partial fulfillment of the requirements for the degree of
Master of Technology in Communication Engineering, Nirma University, Ahmedabad
is the record of work carried out by him under our supervision and guidance. In our
opinion, the submitted work has reached a level required for being accepted for ex-
amination.The results embodied in this major project, to the best of our knowledge,
haven’t been submitted to any other university or institution for award of any degree
or diploma.

Date: Place: Ahmedabad
Prof. Sachin H. Gajjar Dr.D.K.Kothari
Guide Program Coordinator
Dr. P.N.Tekwani Dr.K Kotecha
Head of EE Department Director, I'T

v

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani, Head
of Electrical Engineering Department, and Dr. D. K. Kothari, Coordinator of M.Tech
Communication Engineering program for allowing me to undertake this thesis work
and for his guidelines during the review process.

I am deeply indebted to my thesis supervisors Prof. Sachin H. Gajjar, Department
of Electronics & Comm. Engineering, Nirma University and Mr. Bimod Narayanan,
BIOS Engineer at Intel India Technology Pvt. Ltd. for their constant guidance and
motivation. I also wish to thank Mr. Piyush Sharma, Manager, Intel India Technology
Pvt. Ltd., Mr. Sudhakar Otturu, Mr. Supriyo Choudhury, Mr. Satya Yarlagadda and
all other team members at Intel for their constant help and support. Without their
experience and insights, it would have been very difficult to do quality work.

I wish to thank my friends of my class for their delightful company which kept me
in good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and
sacrifices of my family members because of whom I am able to complete the degree
program successfully.

- Digant H. Solanki
11MECC16

Abstract

BIOS stands for Basic Input Output System.On a very high level, it initializes the
hardware like processor, chipset, peripherals etc. and then it gives control to the OS
through boot manager. The BIOS must do its job before computer can load operating
system and applications.Currently Intel has migrated from legacy BIOS to EFI BIOS
which is based on EFI Specification. It has standard, modular environment and have
many advantages over legacy BIOS.EFI is a standard or a specification which has
different phases named as SEC (Security), PEI (Pre EFI Initialization), DXE (Driver
Execution Environment) and BDS (Boot Device Selection). There is a provision of
legacy BIOS in EFI BIOS code because not all the OSes are EFI compatible.

In legacy BIOS, VBIOS is used for the display functionalities like: to initialize
Intel graphics Hardware and boot to appropriate attached display devices by means
of a data called as configurable header whereas in EFI BIOS this has been replaced
by GOP (Graphics Output Protocol) by its own other configurable header.For differ-
ent platforms, different configurable headers are required. Configurable Headers are
blocks of data inside VBIOS. In EFI BIOS, GOP driver uses the configurable header
for display purpose.Configurable header is a binary file which is currently configured
manually by Intel’s Configurable tool. In this document, one EFI based DXE driver is
discussed which is targeted to configure the Configurable header for BIOS such that
it can eliminate the need to configure it manually for different platforms.

vi

Contents

Certificatel

[Acknowledgements|

[Abstract]
[List of Tables|

iii

v

vi

ix

[List of Figures|

(1 _Introduction|
L1 OVerviewl. e,

(1.3 Terminology|
(.4 Problem Definitionl Lo
(1.5 Thesis Organization|.

[2 Literature Survey|

21 BIOS Overviewl

2.3 UEFI Driver Model Goals 2]
54 GUIDS [2] . . - -« e
2.5 Protocols and handles[2]| o 0L

3 Do E o Fov l

B.1 Overviewl.
3.2 EFI System Table[5]
3.3 DXE FoundationE]
3.4 DXE Dispatcher[5]
I;i,;i D:;E DIl‘ yf:l:il

vil

4 GOP Configuration Driver|

Ml GOPwvs VBIOS 0.0 oo

4.2 Objective of the Driver{

4.3 Hardware/Software used| L.

4.4 Flow Diagram)

(4.6 Code walkthrough|,

[> Driver Implementation|

5.1 EDK I Overview|11 |

5.2 EDKII Overview[11]|

5.3 Difference between EDK I & EDK II[11]|

.4 Similarities within BEDK and KD T Environmentl

(5.5 Implementation using Flags|

6 Conclusion & Future Scope]

6.1 Conclusionl . .
[6.2 Future Scope]

[References|

viii

24
24
26
26
30
34
35

41
41
41
42
43
43

45
45
45

46

List of Tables

(1.1 Terminology used|

4.1 Intel’s BIOS code with difterent Packages/.

X

List of Figures

R.I BIOSOverviewl e 6
2.2 Legacy BIOSvs. EFI BIOS 7
2.3 EFI Interface [4]|.o 8
2.4 BFFIl Boot Phases and services) 9
2.5 GUID Structure[2] 14
2.6 An example of GUID Definition[2|. 14
2.7 An example of Protocol Definition and Declaration[2]| 15
3.1 EFI Boot sequence[5]| o 18
3.2 EFI System Table and its services[5|| 19
3.3 DXE Foundation components|5|[. L. 20
(4.1 Legacy Boot|. 25
42 FFTBootl 25
4.3 EFI Boot with GOP Configuration Driver| 26
.4 DediProg SF600[10]|. 27
(4.5 Putty Configuration Window| 28
(4.6 UEFI image system|. 29
4.7 Flow Diagram to create setup options in BIOS|. 31
4.8 Flow Diagram ot GOP Config Policy|] 31
4.9 Flow Diagram ot GOP configuration Driver{ 33
[4.10 Driver Hierarchy| 37

Chapter 1

Introduction

1.1 Overview

In this thesis report, GOP Configuration Driver for BIOS is discussed.The driver
is totally based on C language and it is developed using a Microsoft Visual Studio
2008 as an IDE. The driver is intended to eliminate the human intervention. Graph-
ics Output Protocol (GOP) which is used for the EFI aware operating system is the
replacement of Video BIOS (VBIOS). GOP Driver takes care of the display function-
alities in the native mode (EDK II) whereas the VBIOS does the same in legacy BIOS.

GOP driver performs its task of display functionalities by means of a block of data
which is called as Configurable header. The driver gets the configurable header accord-
ing to the platform and performs the display functionalities defined in the configurable
header. It is included in the BIOS code as a binary file only. For different platform
different configurable headers are required.Intel uses its internal configurable Tool to
configure the configurable header for different platforms.

The GOP Configuration Driver objective here is to configure the configurable header
and eliminate the need of Intel’s configurable tool to configure the header manually. The
driver will get the header using Platform Gop Policy protocol, copied to some memory
location and get the pointer and the new configurable header address. After getting
the pointer to the copied header, driver will update the header as needed and update
the Platform Gop Policy such that the GOP driver will now get the updated header.
Setup options are created in the BIOS menu which are equivalent to the setup options
in configurable tool. The BIOS options in the BIOS menu are patched to the non
volatile memory and that are updated in the Platform Gop Policy by the means of
GOP Configuration Driver.

The driver discussed here is implemented in two different environment for Intel’s next
Gen Processor.The two different environments are EDK I and EDK 1I (also called as
Native). The detail about the EDK I and EDK II will be discussed later. The im-
plementation with EDK I and EDK II is done with the help of a flag defined in the code.

Also the driver is implemented in two different modes in which one is with the com-
plete package of the driver which contains all the source files, header files, dependency

files if any, information files etc.. while the other mode is a binary implementation of
the driver in which the driver’s binary file will directly used in the firmware so no need
to build the driver again as it it already a built in driver with the .efi image. Binary
mode will contain only .efi file of the driver and information file for that. This is also
implemented by defining a flag for that.

1.2 Motivation

It is always good to do something productive which can be considered as a beneficial
thing in any area for an organization if is done for that. Here the motivation behind
the work done in the thesis is to eliminate the human intervention to update the
display functionalities using Intel’s Configurable tool in BIOS development for different
platforms.

Video BIOS, used legacy BIOS mode, is responsible for the display or graphics
functionalities for the Intel’s mobile as well as desktop platforms. VBIOS does its
task using interrupt calls with GPU (Graphics Processing Unit). There is a two
way communication between VBIOS and GPU using the INT 10 and INT 15 call for
graphics functionalities. It is not good always to use interrupt calls so in EFI BIOS,
industry has introduced Graphics Output Protocol (GOP) to replace the functionality
of VBIOS.

GOP does the same functionality as VBIOS using protocol and its GUIDs instead
of interrupt calls used in VBIOS. Protocols and GUIDs are introduced in the new EFI
framework for the BIOS. It is easy to maintain the communication between GOP and
GPU using protocol and its GUIDs than with the interrupt calls used in VBIOS. More
will be discussed on protocol and GUIDs later. GOP makes the display functionality
possible with the help of configurable header which will be passed to the GPU.

The limitation with the GOP implementation in EFI BIOS is that there is only a
one way communication between GOP and GPU only. There is no link in the BIOS
code from GPU to GOP which can be used to configure the GOP if it is there. So
GOP has to provide different configurable headers for different platforms and BIOS
code must contain more than one configurable header for the display functionality.

The motivation behind this thesis is to make a driver in the BIOS code such that
it can configure the header according to the need for different platforms and it is
named as GOP Configuration Driver for BIOS. This driver will now make a second
way communication link from GPU to GOP and will make it possible to configure the
GOP functionalities by modifying the header.This driver is not available for the end
users but this driver will be used by the different OEMs like Dell, Lenovo etc...

1.3 Terminology

ACPI | Advanced Configuration and Power Interface
BDS Boot Device Selection

BIOS Basic Input Output System

CRB Customer Reference Board

CSM Compatibility Support Module

DXE Driver Execution Environment

ECP EFI Compatibility package

EDK EFI Development Kit

EFI Extensible Firmware Interface

FFS Firmware File System

FV Firmware Volume

GOP Graphics Output Protocol

GUID | Globally Unique Identifier

HOB Hand Off Block

INT Interrupt

OEM Original Equipment Vendor

OSPM | Operating System-directed configuration and Power Management
PCD Platform Configuration Database

PEI Pre EFI Initialization

PI Platform Initialization

POST | Power On Self-Test - Chipset initialization code
ROM | Read Only Memory

UEFI | Unified Extensible Firmware Interface

VBE VESA BIOS Extensions

VESA | Video Electronics Standard Association
VGA Video Graphics Adapter

VBIOS | Video BIOS

Table 1.1: Terminology used

1.4 Problem Definition

The Graphics Output Protocol (GOP) is enabled by UEFI driver to support graphic
console output in the pre-OS phase. GOP is designed to be lightweight and to support
the basic needs of graphics output prior to Operating System boot. The ultimate goal

of GOP is to replace legacy VGA BIOS and eliminate VGA HW functionality.

A configurable header file represents a single platform configuration. Each unique
configuration may be saved as a different configurable header file for different platform.
As the platform changes, one has to configure a header using Intel’s configurable tool.
This tool has many set up option for a header configuration. This tool will generate a
binary file for any particular requirement and this binary file has to be merged in the

system BIOS code which will be used by a GOP driver for its graphics output.

3

One limitation here is that BIOS code is not able to configure a header as the
platform changes. One has to configure a header using configurable tool as per the
requirement and then again have to merge the new configurable header into the BIOS
code. In this document, one DXE driver, called GOP Configuration Driver for BIOS,
is discussed which can accomplish the task to configure the header which is a block
of data used for display functionalities. This driver will have a code such that it can
configure some specific header data and it is possible to use a same header for different
platforms.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2, Literature Survey, describes the basics about BIOS, UEFI specification
and the difference between legacy BIOS and EFI BIOS. It also tells about the UEFI
Driver Model.

Chapter 3, DXFE Overview, presents the concepts about DXE phase which is useful
to make a DXE driver. In this chapter, DXE Phase overview, DXE Foundation, DXE
Dispatcher and a classification of DXE drivers is discussed.

Chapter 4, GOP Configuration Driver, covers the difference between GOP vs. VBIOS
and purpose of the driver , its flow diagram, issues faced and resolver and finally it
describes the high level understanding of every files used in the driver.

Chapter 5, Driver Implementation, describe how the driver is implemented using
two different environment and also with the two different modes using flags. It also
covers the overview, Difference and similarities between EDK I and EDK II environ-
ments.

Finally , In Chapter 6, conclusion and scope for future work is presented.

Chapter 2

Literature Survey

2.1 BIOS Overview

BIOS is the first code run by a PC when powered on. It acts as a layer between OS
and Hardware. BIOS initialize the various platform components like CPU initializa-
tion, core initialization, memory and chipset initialization etc. The BIOS must do its
job before your computer can load its operating system and applications.

The basic input/output system (BIOS), also known as the System BIOS or ROM
BIOS, is a de facto standard defining a firmware interface.

The BIOS software is built into the PC, and is the first code run by a PC when
powered on ("boot firmware’). The primary function of the BIOS is to set up the
hardware and load and start a boot loader. When the PC starts up, the first job for
the BIOS is to initialize and identify system devices such as the video display card,
keyboard and mouse, hard disk drive, optical disc drive and other hardware.[9]

The BIOS then locates software held on a peripheral device (designated as a 'boot
device’), such as a hard disk or a CD/DVD, and loads and executes that software,
giving it control of the PC. This process is known as booting, or booting up, which is
short for bootstrapping.[9]

BIOS software is stored on a non-volatile ROM chip built into the system on the
motherboard. The BIOS software is specifically designed to work with the particular
type of system in question, including having knowledge of the workings of various
devices that make up the complementary chipset of the system. In modern computer
systems, the BIOS chip’s contents can be rewritten, allowing BIOS software to be
upgraded.[9]

BIOS features are as follows:
e [t acts as a layer between OS and Hardware
e [t gets your computer up and running

e Initializes the hardware like Microprocessor, memory, chipset, devices, peripher-
als etc.

rv1.2ﬁapégn§ei?;vr?vrer Operating SYStem
0S Loader
ACPl, | | RUNTIME SERVICES Option
SMBIOS | | Int10 (Video) Intt3 (HDD), RO posT | BIOS
Tables | | Int5 (system info), others
Platform Hardware

Figure 2.1: BIOS Overview

e Prepares system to run an OS

The Advanced Configuration and Power Interface (ACPI) is a specification which
was developed to establish industry common interfaces enabling robust operating sys-
tem (OS)-directed motherboard device configuration and power management of both
devices and entire systems. ACPI is the key element in Operating System-directed

Loads and hands control over to the OS boot loader

configuration and Power Management (OSPM).[3]

Power-On Self-Test (POST) refers to routines run immediately after power is ap-
plied, by nearly all electronic devices. POST includes routines to set an initial value
for internal and output signals and to execute internal tests, as determined by the
device manufacturer. These initial conditions are also referred to as the device’s state.

Currently, Industry has migrated from Legacy BIOS to a standard and modular EFI
BIOS. EFI BIOS offers new & improved features and flexibility for code developers.

Provides Power Management functionality through ACPI

Provides a set of standardized routines for the OS to use

Abstracts motherboard and silicon specifics from the OS

Provides runtime services to the OS e.g. disk and video

The difference between Legacy BIOS and EFI BIOS is shown in Figure 2.2.

This is the traditional BIOS

Written in assembly code; initially designed
for IBM PC-AT

Interface is per-BIOS “spaghetti” code, not
modular

Lives within the first
memory

1MB of system

Uses 16bit memory access, requires hacks
to access above 1MB memory

Supports 3 party modules in the form of
16 bit Option ROMS

No built in boot/test environment

Only supports 18-bit runtime services such
as INT10, INT13, etc

Example of Legacy BIOS: AMI core 8,
Phoenix legacy BIOS

New architecture based on EFI| spec

C based; initially designed for Itanium
server systems
Well defined module environment and

interface based on EFI specification

Can live anywhere in the 4GB system
memory space

Allows direct access of all memory via (32-
bit and/or 64 bit) pointers

Supports 3 party 32/64 bit drivers

Built-in boot/test via EFI - Shell

New runtime interfaces and supports
legacy OSs and 16-bit legacy devices

Standardized implementations: Aptio (AMI),
H20 (Insyde), Tiano (Intel)

Figure 2.2: Legacy BIOS vs. EFI BIOS

BIOS code used today supports legacy BIOS as well as EFI BIOS by means of a
CSM module. All the OS are not compatible with the EFI BIOS; CSM module is used
to run appropriate BIOS code. When CSM mode is ON, system will boot to legacy
BIOS and if CSM mode is OFF, system will boot to native EFI BIOS.

The CSM translates the information generated under the EFI environment into the
information required by the legacy environment and makes the legacy BIOS services
available for booting to the operating system and for use in runtime.

2.2 UEFI Specification

2.2.1 Overview

This Unified Extensible Firmware Interface (hereafter known as UEFI) Specification
describes an interface between the operating system (OS) and the platform firmware
which is shown in the figure 2.3. UEFI was preceded by the Extensible Firmware
Interface Specification (EFI).

The interface is in the form of data tables that contain platform-related information,
and boot and runtime service calls that are available to the OS loader and the OS.
Together, these provide a standard environment for booting an OS. This specification
is designed as a pure interface specification. As such, the specification defines the
set of interfaces and structures that platform firmware must implement. Similarly,
the specification defines the set of interfaces and structures that the OS may use in
booting,.[1]

]
(1]
=N
=
L=]

Lo]

Figure 2.3: EFI Interface [4]

The intent of the specification is to define a way for the OS and platform firmware
to communicate only information necessary to support the OS boot process. This is
accomplished through a formal and complete abstract specification of the software-
visible interface presented to the OS by the platform and firmware. Furthermore,
an abstract specification opens a route to replace legacy devices and firmware code
over time. New device types and associated code can provide equivalent functionality
through the same defined abstract interface, again without impact on the OS boot
support code.[1]

The specification is applicable to a full range of hardware platforms from mobile
systems to servers. The specification provides a core set of services along with a
selection of protocol interfaces. The selection of protocol interfaces can evolve over
time to be optimized for various platform market segments. At the same time, the
specification allows maximum extensibility and customization abilities for OEMs to
allow differentiation. In this, the purpose of UEFI is to define an evolutionary path
from the traditional "PC-AT”-style boot world into a legacy-API free environment.|1]

2.2.2 UEFI Boot Phases

EFI BIOS is a modular code and it boots in a manner shown in Figure 2.4. EFI
Boot process is dived into four main phases which are:

e Security Phase

e Pre EFT Initialization Phase

e Driver Execution Environment Phase
e Boot Device Selection Phase

Each phases with its services are shown in the figure 2.4

CPU OS Boot
Security Pre-EFI Driver Execution Boot Device Select
-Provides uP boot -Init Proc -Initialize uP, cache, -Run down list
strap vector -Update ucode -Initialize more c/s of selected
-Initialize chipset -Initialize SMM devices.
-Initializes -Execute PCI -For each, try to
temporary RAM -Detect corrupted enumeration find boot image
using CPU cache flash and recover -Initialize video, kbd,
if corrupted mouse -Load boot image
-Provides optional -Find and initialize -Initialize USB legacy: into memory
security features RAM -Initialize drives -Jump to boot
-Create table interfaces image
(ACPI, SMBIOS, ...) -If fail try next

Figure 2.4: EFI Boot Phases and services

Security phase:

The Security (SEC) phase is the first phase in the PI Architecture architecture and is
responsible for the following:

e Handling all platform restart events.

e Creating a temporary memory store.

e Serving as the root of trust in the system.

e Passing handoff information to the PEI Core.

In addition to the minimum architecturally required handoff information, the SEC
phase can pass optional information to the PEI Core, such as the SEC Platform In-
formation PPI or information about the health of the processor.

Pre-EFI Initialization (PEI) Phase:

The Pre-EFI Initialization (PEI) phase of the PI Architecture specifications (hereafter
referred to as the PI Architecture) is invoked quite early in the boot flow. Specifically,
after some preliminary processing in the Security (SEC) phase, any machine restart
event will invoke the PEI phase.The PEI phase will initially operate with the platform
in a nascent state, leveraging only on processor resources, such as the processor cache
as a call stack, to dispatch Pre-EFI Initialization Modules (PEIMs). These PEIMs are
responsible for the following:

e Initializing some permanent memory complement.

e Describing the memory in Hand-Off Blocks (HOBs).

9

e Describing the firmware volume locations in HOBs.
e Passing control into the Driver Execution Environment (DXE) phase.

Philosophically, the PEI phase is intended to be the thinnest amount of code to achieve
the ends listed above. As such, any more sophisticated algorithms or processing should
be deferred to the DXE phase of execution.

The PEI phase is also responsible for crisis recovery and resuming from the S3 sleep
state. For crisis recovery, the PEI phase should reside in some small, fault-tolerant
block of the firmware store. As a result, it is imperative to keep the footprint of the
PEI phase as small as possible. In addition, for a successful S3 resume, the speed of
the resume is of utmost importance, so the code path through the firmware should be
minimized. These two boot flows also speak to the need to keep the processing and
code paths in the PEI phase to a minimum. The implementation of the PEI phase
is more dependent on the processor architecture than any other phase. In particular,
the more resources the processor provides at its initial or near initial state, the richer
the interface between the PEI Foundation and PEIMs.

Driver execution Environment (DXE) Phase:

The Driver Execution Environment (DXE) phase is where most of the system ini-
tialization is performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is
responsible for initializing permanent memory in the platform so that the DXE phase
can be loaded and executed. The state of the system at the end of the PEI phase is
passed to the DXE phase through a list of position-independent data structures called
Hand-Off Blocks (HOBs). HOBs are described in detail in the Platform Initialization
Hand-Off Block Specification. The more about the DXE phase will be discussed in
the next chapter.

Boot Device Selection (BDS) Phase:

The Boot Manager in DXE executes after all the DXE drivers whose dependencies
have been satisfied have been dispatched by the DXE Dispatcher. At that time, con-
trol is handed to the Boot Device Selection (BDS) phase of execution. The BDS phase
is responsible for implementing the platform boot policy.This boot policy provides flex-
ibility that allows system vendors to customize the user experience during this phase
of execution.

The Boot Manager must also support booting from a short-form device path that
starts with the first node being a firmware volume device path. The boot manager
must use the GUID in the firmware volume device node to match it to a firmware
volume in the system. The GUID in the firmware volume device path is compared
with the firmware volume name GUID. If a match is made, then the firmware volume
device path can be appended to the device path of the matching firmware volume and
normal boot behavior can then be used.

The BDS phase is implemented as part of the BDS Architectural Protocol. The DXE
Foundation will hand control to the BDS Architectural Protocol after all of the DXE

10

drivers whose dependencies have been satisfied have been loaded and executed by the
DXE Dispatcher. The BDS phase is responsible for the following:

e Initializing console devices.
e Loading device drivers.
e Attempting to load and execute boot selections.

If the BDS phase cannot make forward progress, it will reinvoke the DXE Dispatcher
to see if the dependencies of any additional DXE drivers have been satisfied since the
last time the DXE Dispatcher was invoked.

2.2.3 Boot modules
Platform

This module touches almost all components on the mother board including CPU and
PCH. It does the Board detection, Processor Power management including C-states,
P-states, throttling, Thermal reporting and Implement some security features related
to processor.

PCH

PCH module is used to provide following services. Intel HD Audio, SMBUS, SPI,
SATA, Legacy interrupt, System Management Interrupts, System reset, Timers, USB,
Display Link Etc.

Memory

This module runs in PEI phase in 32bit mode.It supports detection and initializa-
tion of memory modules and complies with the requirements in the BIOS specification.

ME
Me is management engine, it provides centralized administration, also responsible for
vpro technology, integrated clock control etc.

Security

It provides trusted execution environment also provide security related function create
cryptographic keys, windows bitlocker.

System Agent
This is uncore part mainly responsible for graphics also initializing System Memory,

initializing Power Management, internal Graphics, internal Audio, and PCI Express,
modifying SA register default values for optimal performance, SMRAM initialization.

11

2.3 UEFI Driver Model Goals [2]

The UEFT Driver Model has following goals:

e Compatible

Drivers conforming to this specification must maintain compatibility with the
previous EFI and UEFT Specification.

e Simple

Drivers that conform to this specification must be simple to implement and
simple to maintain. The UEFI Driver Model must allow a driver writer to con-
centrate on the specific device for which the driver is being developed. A driver
should not be concerned with platform policy or platform management issues.
These considerations should be left to the system firmware.

e Scalable

The UEFT Driver Model must be able to adapt to all types of platforms. These
platforms include embedded systems, mobile, and desktop systems, as well as
workstations and servers.

e Flexible

The UEFT Driver Model must support the ability to enumerate all the devices,
or to enumerate only those devices required to boot the required OS. The min-
imum device enumeration provides support for more rapid boot capability, and
the full device enumeration provides the ability to perform OS installations,
system maintenance, or system diagnostics on any boot device present in the
system.

e Extensible

The UEFI Driver Model must be able to extend to future bus types as they
are defined.

e Portable

Drivers written to the UEFI Driver Model must be portable between platforms
and between supported processor architectures.

e Interoperable

Drivers must coexist with other drivers and system firmware and must do so
without generating resource conflicts.

e Describe complex bus hierarchies

12

The UEFIT Driver Model must be able to describe a variety of bus topologies
from very simple single bus platforms to very complex platforms containing many
buses of various types.

e Small driver footprint

The size of executables produced by the UEFI Driver Model must be minimized
to reduce the overall platform cost. While flexibility and extensibility are goals,
the additional overhead required to support these must be kept to a minimum
to prevent the size of firmware components from becoming unmanageable.

e Address legacy option rom issues

The UEFI Driver Model must directly address and solve the constraints and
limitations of legacy option ROMs. Specifically, it must be possible to build
add-in cards that support both UEFI drivers and legacy option ROMs, where
such cards can execute in both legacy BIOS systems and UEFI-conforming plat-
forms, without modifications to the code carried on the card. The solution must

provide an evolutionary path to migrate from legacy option ROMs driver to
UEFT drivers.

2.4 GUIDs [2]

A UEFI programming environment provides software services through the UEFI
Boot Services Table, the UEFI Runtime Services Table, and Protocols installed into
the handle database. Protocols are the primary extension mechanism provided by the
UEFT Specification. Protocols are named using a GUID.

A GUID is a unique 128-bit number that is a globally unique identifier (a universally
unique identifier, or UUID). Each time an image, protocol, device, or other item is
defined in UEFI, a GUID must be generated for that item. The example below shows
the structure definition for an EFI_GUID in the EDK II along with the definition of
the GUID value for the EFI Driver Binding Protocol from the UEFI Specification.

Protocol services are registered in the handle database using the GUID name of the
Protocol and Protocol services are discovered by looking up Protocols in the handle
database using the GUID name associated with the Protocol to perform the lookup
operation.

UEFT fundamentally assumes that a specific GUID exposes a specific protocol inter-
face (or other item). Because a protocol is "named” by a GUID (a unique identifier),
there should be no other protocols with that same GUID. Be careful when creating
protocols to define a new, unique GUID for a new protocol. Put another way, the
GUID forms a contract: If the UEFI Driver finds a protocol with a particular GUID,
it may assume that the contents of the protocol are as specified for that protocol. If
the contents of the protocol are different, the driver that published the protocol is
assumed to be in error.

13

/1]
/// 128 bit buffer containing a unique identifier value.
/// Unless otherwise specified, aligned on a 64 bit boundary.
/1]
typedef struct {
UINT32 Datal;
UINT16 Data2;
UINT16 Data3;
UINTB Datad[8];
} GUID:

/1

/// 128-bit buffer containing a unicque identifier value.

1]
typedef GUID EFI_GUID;

/1]
/// The global ID for the Driver Binding Protocol.

/]

Figure 2.5: GUID Structure[2]

#define EFI DRIVER BINDING PROTOCOL GUID \

{\
0x18a031ab, 0xb443, Oxddla, {0xab, Oxc0, Oxc, 0x9, 0x26, Oxle, 0x9f, 0xT1 } \

}

Figure 2.6: An example of GUID Definition|2]

14

117/
/// Global ID for the Component Name Protocol

11
#define EFI_CO]-IPONENT_NAME‘.Q_PROTDCOL_GUID 5\
{0x6aTabcff, 0xeB8d9, 0x4£70, { Oxba, O0xda, 0x75, Oxab, 0x30, 0x25, Oxce, 0xl4 } }

typedef struct EFI COMPONENT NAME2 PROTOCOL EFI COMPONENT NAME2? PROTOCOL;

117/
/// This protocol is used to retrieve user readable names of drivers
/// and controllers managed by UEFI Drivers.

117/
struct EFI COMPONENT NAME? PROTOCOL {
EFI COMPONENT NAMEZ? GET DRIVER NAME GetDriverName;

EFI_COMPONENT NAME? GET CONTROLLER NAME GetControllerName;

11

/// A Wull-terminated ASCII string array that contains one or more
/// supported language codes. This is the list of language codes that
/// this protocol supports. The number of languages supported by a
/// driver is up to the driver writer. SupportedLanguages is

/// specified in RFC 4646 format.

s

CHARS *SupportedLanguages;

Figure 2.7: An example of Protocol Definition and Declaration|2]

In some ways, GUIDs are can be viewed as contracts. If a UEFI Driver looks up a
protocol with a certain GUID, the structure under the GUID is well defined. If the
GUID is duplicated, this 1:1 mapping breaks. If a GUID is copied and applied to a
new protocol, the users of the old protocol call the new protocol expecting the old
interfaces or vice versa. Either way, the results are never good.

2.5 Protocols and handles|2]

The extensible nature of UEFT is built, to a large degree, around protocols. Protocols
serve to enable communication between separately built modules, including drivers.

Drivers create protocols consisting of two parts. The body of a protocol is a C-
style data structure known as a protocol interface structure, or just ”interface”. The
interface typically contains an associated set of function pointers and data structures.

Every protocol has a GUID associated with it. The GUID serves as the name for the
protocol. The GUID also indicates the organization of the data structure associated
with the GUID. Note that the GUID is not part of the data structure itself. The
example below shows a portion of the Component Named 2 Protocol definition from
the UEFI Driver Model chapter of the UEFI Specification. Notice that the protocol
data structure contains two functions and one data field.

Protocols are gathered into a single database. The database is not "flat.” Instead,
it allows protocols to be grouped together. Each group is known as a handle, and the

15

handle is also the data type that refers to the group. The database is thus known as
the handle database. Handles are allocated dynamically. Protocols are not required
to be unique in the system, but they must be unique on a handle. In other words, a
handle may not be associated with two protocols that have the same GUID.

16

Chapter 3

Driver Execution Environment

3.1 Overview

The Driver Execution Environment (DXE) phase is where most of the system ini-
tialization is performed. Pre-EFI Initialization (PEI), the phase prior to DXE, is
responsible for initializing permanent memory in the platform so that the DXE phase
can be loaded and executed. The state of the system at the end of the PEI phase is
passed to the DXE phase through a list of position independent data structures called
Hand-Off Blocks (HOBs).

There are several components in the DXE phase like:
e DXE Foundation
e DXE Dispatcher

o A set of DXE drivers

The DXE Foundation produces a set of Boot Services, Runtime Services, and DXE
Services. The DXE Dispatcher is responsible for discovering and executing DXE drivers
in the correct order. The DXE drivers are responsible for initializing the processor,
chipset, and platform components as well as providing software abstractions for sys-
tem services, console devices, and boot devices. These components work together to
initialize the platform and provide the services required to boot an operating system.
The DXE phase and Boot Device Selection (BDS) phases work together to establish
consoles and attempt the booting of operating systems.[5]

The DXE phase is terminated when an operating system is successfully booted. The
DXE Foundation is composed of boot services code, so no code from the DXE Foun-
dation itself is allowed to persist into the OS runtime environment. Only the runtime
data structures allocated by the DXE Foundation and services and data structured
produced by runtime DXE drivers are allowed to persist into the OS runtime envi-
ronment.Figure 3.1 shows the phases that a platform with Framework firmware will
execute.[5]

17

expozed

Pre Expozed Z)
_ APT o5 :;;en‘t Previously

Driver

)

: DXE
Dispatcher

Ty DXE APIs
Transient 0S now limited
Device, \ Environment
Bus, or L
Drver Transient OS

Boot Loader

QS-Fresent
: App
: "
Boot Services Final OS Final OS
Runtime Services Boot Loader g Environmenmnt
DXE Services
security j

Security Pre EFI Driver Eoot Transient Run Time After
(SEC) | Initialization Execution Device System Load (RT) Life
Environmant | Enviranmsnt Salactinn {TSL) (AL)

{PEIl) {DXE) {BDS)

Power ¢n —=[.. Platform initalization . .]—[.... 05 boot.. ..] —— - Shutdown

Figure 3.1: EFI Boot sequencel5]

The DXE phase does not require a PEI phase to be executed. The only requirement
for the DXE phase to execute is the presence of a valid HOB list. There are many
different implementations that can produce a valid HOB list for the DXE phase to
execute.

3.2 EFI System Table[5]

The EFI System Table is passed to every executable component in the DXE phase. It
contains a pointer to the following:

e EFI Boot Services Table

e EFI Runtime Services Table

It also contains pointers to the console devices and their associated 1/O protocols.
In addition, the EFI System Table contains a pointer to the EFI Configuration Table,
and this table contains a list of GUID/pointer pairs. The EFI Configuration Table
may include tables such as the DXE Services Table, HOB list, ACPI table, SMBIOS
table, and SAL System table.

The EFI Boot Services Table contains services to access the contents of the handle
database. The handle database is where protocol interfaces produced by drivers are
registered. Other drivers can use the EFI Boot Services to look up these services
produced by other drivers.Figure 3.2 shows the components of EFI system Table. All
of the services available in the DXE phase may be accessed through a pointer to the
EFT System Table.

18

3.3

Active Consoles EFl Runtime Services Table
Input Consocle ! Variable Services
Output Console 1 Real Time Clock Services
Standard Error Console Resot Services
! Status Code Services
EFl Boot Services Table Virtual Memory Services
Task Priority Level Services
Memory Sarvices Version Information
Event and Timer Sarvices [EFl Spacification Varsion
Protocol Handler Services i Firmware Vendor
| Image Services ! Firmware Revision
| Driver Support Sarvices

System Configuration Table
DXE Services Tabla DXE Services Table

‘ Global Coherancy Domain Services HOB List
Dispatcher Services ACPI Table

SMBIOS Table

¥
Handle Database

SAL System Table

e Protocol Interface
Boot Services and Structures Runtime Services and Structures
Only available prior to OS5 runtime Available before and during OS runtime

Figure 3.2: EFI System Table and its services[5]

DXE Foundation|5]

The DXE Foundation is designed to be completely portable with no processor, chipset,
or platform dependencies. This lack of dependencies is accomplished by designing in
several features:

e DXE Foundation depends only upon a HOB list for its initial state

This means that the DXE Foundation does not depend on any services from
a previous phase, so all the prior phases can be unloaded once the HOB list is
passed to the DXE Foundation.

The DXE Foundation does not contain any hard-coded addresses.

This means that the DXE Foundation can be loaded anywhere in physical mem-
ory, and it can function correctly no matter where physical memory or where
Firmware Volumes (FVs) are located in the processor’s physical address space.

The DXE Foundation does not contain any processor-specific, chipset-specific,
or platform specific information.

Instead, the DXE Foundation is abstracted from the system hardware through
a set of DXE Architectural Protocol interfaces. These architectural protocol
interfaces are produced by a set of DXE drivers that are invoked by the DXE
Dispatcher.

The DXE Foundation must produce the EFI System Table and its associated set of
EFI Boot Services and EFI Runtime Services. The DXE Foundation also contains the

19

Firmware
Yolume

Block Driver
(Read-Only)

(Memory

DXE Foundaticn

Memony
Services

Firmware VYVolume Driver

EFIl Boot Services

Task Priority Event and Timer Image
Sernvices Services Sendces

Driver Support
Senvices

Protocol Handler
Sendices

PE/COFF

Lo acler

HOB

FParser

Section
Extraction
Protecol
Driver

Flush Instruction

Cache

Decompress Setlump

DXE Services

Global Coherency Domain
Sendices
Dispatcher Senices

DXE Dispatcher

Dependency Expression
Evaluator

Figure 3.3: DXE Foundation components|5]

Mapped) LongJdump

Driver

DXE Dispatcher whose main purpose is to discover and execute DXE drivers stored
in FVs. Figure 3.3 shows the components of DXE Foundation.

The execution order of DXE drivers are determined by a combination of the optional
a priori file and the set of dependency expressions that are associated with the DXE
drivers. The FV file format allows dependency expressions to be packaged with the
executable DXE driver image. DXE drivers utilize a PE/COFF image format, so
the DXE Dispatcher must also contain a PE/COFF loader to load and execute DXE
drivers. Below diagram shows the components of DXE Foundation used in EFI.

3.4 DXE Dispatcher[5]

After the DXE Foundation is initialized, control is handed to the DXE Dispatcher.
The DXE Dispatcher examines every firmware volume that is present in the system.
Firmware volumes are either declared by HOBs, or they are declared by DXE drivers.
For the DXE Dispatcher to run, at least one firmware volume must be declared by a
HOB.

The DXE Dispatcher is one component of the DXE Foundation. This component
is required to discover DXE drivers stored in firmware volumes and execute them in
the proper order. The proper order is determine by a combination of an a priori file
that is optionally stored in the firmware volume and the dependency expressions that
are part of the DXE drivers. The dependency expression tells the DXE Dispatcher
the set of services that a particular DXE driver requires to be present for the DXE
driver to execute. The DXE Dispatcher does not allow a DXE driver to execute until
all of the DXE driver’s dependencies have been satisfied. After all of the DXE drivers
have been loaded and executed by the DXE Dispatcher, control is handed to the

20

BDS Architectural Protocol that is responsible for implementing a boot policy that is
compliant with the EFI Boot Manager.

The DXE Dispatcher is responsible for loading and invoking DXE drivers found in
firmware volumes. Some DXE drivers may depend on the services produced by other
DXE drivers, so the DXE Dispatcher is also required to execute the DXE drivers in
the correct order. The DXE drivers may also be produced by a variety of different
vendors, so the DXE drivers must describe the services they depend upon. The DXE
dispatcher must evaluate these dependencies to determine a valid order to execute the
DXE drivers. Some vendors may wish to specify a fixed execution order for some or
all of the DXE drivers in a firmware volume, so the DXE dispatcher must support this
requirement.

In addition, the DXE Dispatcher must support the ability to load ”emergency patch”
drivers. These drivers would be added to the firmware volume to address an issue that
was not known at the time the original firmware was built. These DXE drivers would
be loaded just before or just after an existing DXE driver.

Finally, the DXE Dispatcher must be flexible enough to support a variety of platform
specific security policies for loading and executing DXE drivers from firmware volumes.
Some platforms may choose to run DXE drivers with no security checks and others
may choose to check the validity of a firmware volume before it is used, and other
may choose to check the validity of every DXE driver in a firmware volume before it
is executed.

3.5 DXE Drivers

The DXE architecture provides a rich set of extensible services that provides for
wide variety of different system firmware designs. The DXE Foundation provides the
generic services required to locate and execute DXE drivers. The DXE drivers are the
components that actually initialize the platform and provide the services required to
boot an EFI-compliant operating system or a set of EFI-compliant system utilities.
There are many possible firmware implementations for any given platform. Because
the DXE Foundation has fixed functionality, all the added value and flexibility in a
firmware design is embodied in the implementation and organization of DXE drivers.

There are two basic classes of DXE drivers:

e Early DXE Drivers
e DXE Drivers that follow the EFI Driver Model

Additional classifications of DXE drivers are also possible. All DXE drivers may
consume the EFI Boot Services, EFI Runtime Services, and DXE Services to perform
their functions. DXE drivers must use dependency expressions to guarantee that the
services and protocol interfaces they require are available before they are executed.

21

Classes of Drivers:

1. Early DXE Drivers:

The first class of DXE drivers is those that execute very early in the DXE phase.
The execution order of these DXE drivers depends on the following:

e The presence and contents of an a priori file

e The evaluation of dependency expressions

These early DXE drivers will typically contain basic services, processor initializa-
tion code, chipset initialization code, and platform initialization code. These early
drivers will also typically produce the DXE Architectural Protocols that are required
for the DXE Foundation to produces its full complement of EFI Boot Services and EFI
Runtime Services. To support the fastest possible boot time, as much initialization
should be deferred to the DXE drivers that follow EFI Driver Model. The early DXE
drivers need to be aware that not all of the EFI Boot Services, EFI Runtime Services,
and DXE Services may be available when they execute because not all of the DXE
Architectural Protocols may be been registered yet. 2]

2. DXE Drivers That Follow the EFI Driver Model:

The second class of DXE drivers is those that follow the EFI Driver Model. These
drivers do not touch any hardware resources when they initialize. Instead, they reg-
ister a Driver Binding Protocol interface in the handle database. The set of Driver
Binding Protocols are used by the Boot Device Selection (BDS) phase to connect the
drivers to the devices that are required to establish consoles and provide access to
boot devices. The DXE drivers that follow the EFI Driver Model ultimately provide
software abstractions for console devices and boot devices, but only when they are
explicitly asked to do so.[2]

The DXE drivers that follow the EFI Driver Model do not need to be concerned with
dependency expressions. These drivers simply register the Driver Binding Protocol in
the handle database when they are executed, and this operation can be performed
without the use of any DXE Architectural Protocols. DXE drivers with empty depen-
dency expressions will not be dispatched by the DXE Dispatcher until all of the DXE
Architectural Protocols have been installed.

Additional Classification

DXE drivers can also be classified as the following:
e Boot service drivers

e Runtime drivers

22

Boot service drivers provide services that are available until the ExitBootServices()
function is called. When ExitBootServices() is called, all the memory used by boot
service drivers is released for use by an operating system.[1]

Runtime drivers provide services that are available before and after ExitBootServices()
is called, including the time that an operating system is running. All of the services
in the EFI Runtime Services Table are produced by runtime drivers.

The DXE Foundation is considered a boot service component, so the DXE Foun-
dation is also released when ExitBootServices() is called. As a result, runtime drivers
may not use any of the EFI Boot Services, DXE Services, or services produced by boot
service drivers after ExitBootServices() is called.[1]

23

Chapter 4

GOP Configuration Driver

4.1 GOP vs. VBIOS

The Graphics Output Protocol (GOP) is enabled by UEFI driver to support graphic
console output in the pre-OS phase.GOP is designed to be lightweight and to support
the basic needs of graphics output prior to Operating System boot. The ultimate goal
of GOP is to replace legacy VBIOS and eliminate VGA HW functionality.

In legacy VBIOS, INT10 and INT15 call scheme is used as a communication between
platform and GPU. INT10 is a call from VBIOS to GPU and INT15 is a call from
GPU to VBIOS. This INT communication scheme is messy and hard to maintain so
it is been replaced by the UEFI protocol in GOP.

In GOP, UEFI Protocols are used as a communication link between GOP driver and
GPU for the display functions. Each Protocol is identified by its GUID as discussed.
In this, BIOS doesn’t have to maintain the INT kind of call for display functionalities
but it has to make things work based on the GUIDs of the protocol as per the need
in EFI native mode.

Major differences between GOP driver vs. legacy VBIOS|6]
e Accessed through UEFI protocols vs. Interrupts and VGA/VBE interface
e Boot only services vs. both boot and OS run-time services
e Written in C instead of x86 assembler

Figure 4.1 and 4.2 show the Legacy boot mode and EFI Boot mode respectively.
In Legcy Boot, VBIOS will take the responsibility of display functionalities whereas
in EFI Boot, GOP will take do the same.

Compatibility Support Module (CSM) code is required for an implementation of
the Intel Platform Innovation Framework for EFI. The CSM provides compatibility
support between the Framework and traditional, legacy BIOS code and allows booting
a traditional OS or booting an EFI OS.[§]

24

CSM

* Checks boot mode. * Provides INT 10
Legacy Boot mode interface

detected. * Locates and Bri displ
dispatchesthe ¢ brings up dispiay

e Loads CSM Iﬁ'%gp?? Option

Legacy
DXE Core VBIOS

Figure 4.1: Legacy Boot

GOP Policy

«Checks boot mode. Driver «Consumes GOP
UEFI Boot mode Policy. Gets VBT via
detected sLocates and loads GOP Policy

the VBT into memory «Provides GOP
sLoads GOP Policy interface

driver *Provides the GOP +Brings up display
Policy Protocol

DXE Core GOP Driver

Figure 4.2: EFI Boot

25

Checks boot mode.
UEFI Boot mode * Getthe VBT
detected * Update it and store at
some memory location
*Loads GOP Policy * Update the GOP Policy
driver Protocoal

GOP Configuration

GOP Policy
Driver * Consumes GOP Palicy.

Gets the updated VBT
* | ocates and loads the via GOP Policy

VBT into memory * Provides GOP interface

*Brings up displa
* Provides the GOP Policy de s ey

Protocol
GOP Driver

Figure 4.3: EFI Boot with GOP Configuration Driver

After the introduction of GOP Configuration driver in BIOS, the scenario shown
in Figure 4.2 will be replaced as shown in the Figure 4.3

4.2 Objective of the Driver

As discussed, there is a GOP driver within BIOS code which is responsible for the
display functionalities for Intel based mobile and desktop board. It provides the re-
quired display functionalities through configurable header which is a block of data.
Configurable header is a binary file which gets generated by the Intel’s Configurable
tool. This tool has set up options for the display functionalities which can be modified
manually and finally the configurable header will get generated for those particular
display functionalities for a particular platform.To be generic, BIOS code have more
than one headers and GOP driver will choose the correct header based on the platform.

The limitation with the GOP driver here is that there is only a one way commu-
nication between GOP and GPU. GPU to GOP communication is not there currently
and that means GOP is enable to configure the header. So,it is an objective of this
project to make a two way communication between GOP and GPU by means of a GOP
Configuration Driver which will configure the header according to the BIOS setup op-
tions for different platforms.

4.3 Hardware/Software used

To develop the driver discussed here in the thesis, some sort of hard wares and soft
wares require which is discussed here in this topic. Whole BIOS code is developed
under the framework defined by the UEFI Specification and which require an IDE
(integrated development environment) to develop the code.

26

¢ oo [1""% -

Figure 4.4: DediProg SF600[10]

Hardware required here are:

e CRB (Customer Reference Board)

This is the reference board used for the internal purpose of the organization
and this will be provided to the OEMs (Original Equipment Vendor) like Dell,
Lenovo etc. In this thesis, mobile board as a CRB is used throughout. This
CRB contains is like a typical mother board used here for the internal testing
purpose.

e Dediprog SF600

It is the hardware which is used for flashing the BIOS in flash memory. The
SF600 shown in figure 4.4 is a high speed ”in System Programming” program-
mer to update the SPI Flash soldered on board (In Circuit Programming) or in
the socket adaptor (Off line programming). The programmer is easily controlled
by the computer DediProg Software through the USB bus offering friendly in-
terface and powerful features to users.[10]

e USB to Serial Cable

It is used to take a debug log for verification of the code.

Soft wares that required here are:

e Microsoft Visual Studio 2008

27

& o oo IRD =

Categony:

= S;:ssior‘l EBasic options for your Pu Y session

L__I T I__n::glgmg Specify the destination you warnt to connect to
?iml":'.;?board Seral line Speed
e Bell CiomMA SEe00
- Features Connection type:

=1-- WWindaomww 0 Raww 0 Telnet) Rlogin) SSH @ Serial
gzz:i:fs::e Load. save or delete a stored session
.. Translation Sawed Sessions
- Selection
- Colours "

Default Settings

=1 Connection -ng
" pete
- Proooye
Ssind

Close window omn et :
0 Alwways 0 Mewver @ Onby on clean esxit

Geen] |

Figure 4.5: Putty Configuration Window

Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It is used to develop console and graphical user interface applications.
Visual Studio supports different programming languages by means of language
services, which allow the code editor and debugger to support (to varying de-
grees) nearly any programming language, provided a language-specific service
exists. This IDE is used to develop a driver discussed here and also the whole
EFI BIOS code. EFI BIOS code is arranged in different modules also called
packages and it is the actual concept of EFI to make the code modular. The
code is developed under the EDK environment which will be discussed later.[9]

Putty

It is a free and open source terminal emulator application which can act as
a client for the SSH, Telnet, rlogin, and raw TCP computing protocols and as
a serial console client. Purpose of putty here is to use as a serial console client.
It is used to take a debug log on a particular COM port. Putty configuration
window is shown below in Figure 4.4 [9]

EDK (EFI Development Kit)

The EDK (EFI Development Kit) is the open-source component of the ”Framework”,
Intel’s implementation of the EFI Specification, which was developed under the project
code named "Tiano”. The EDK is essentially a container for the Framework’s Foun-
dation code and sample drivers. The EDK is also a development kit for developing,
debugging, and testing EFI and Framework drivers, EFI Option ROMs, and EFI Ap-
plications for use in the Framework environment.Currently the industry is migrating
to the new EDK II which is a modern, feature-rich, cross-platform firmware develop-

28

FROML

Figure 4.6: UEFI image system

ment environment for the UEFI and PI (Platform Initialization) specifications.

The driver discussed here is developed under the EDK environment using the Mi-
crosoft Visual Studio as an IDE. Using the MS visual studio as an IDE for BIOS
development, one has to build the code to generate the .Rom image of BIOS. This
image will reside in the SPI chip on the platform which is a Flash memory on the
platform where the actual BIOS code sits in the form of .rom image. This can be
understood from the Figure 4.5 which shows the UEFI image system.

UEFI specification defines the standardized format for EFI firmware storage devices
(FLASH or other non-volatile storage) which are abstracted into ” Firmware Volumes”.
Build systems must be capable of processing files to create the file formats described by
the UEFI specification. The tools provided as part of the EDK II BaseTools package
process files compiled by third party tools, as well as text and unicode files in order
to create UEFI compliant binary image files.[7]

As shown in the Figure 4.5, object file created by compiling a BIOS code will be
packed into different packages. These different packages will be combined into FFS
called Firmware File System. Multiple EFI Sections are combined into a Firmware
file (FFS) which consists of zero or more EFI sections. Each FFS consists of a FFS
header plus the data.

Framework Firmware File System (FFS) is a binary layout of file storage for firmware
volumes. It is a flat file system in that there is no provision for any directory hierar-
chy; rather, files all exist in the root directly. Files are stored end to end without any
directory entry to describe which files are present.

29

A Firmware Volume (FV) is a file level interface to firmware storage. Multiple FVs
may be present in a single FLASH device, or a single FV may span multiple FLASH
devices. An FV may be produced to support some other type of storage entirely, such
as a disk partition or network device.A firmware device is a persistent physical repos-
itory that contains firmware code and/or data. A single physical firmware device may
be divided into smaller pieces to form multiple logical firmware devices and a logical
firmware device is called a firmware volume.

Finally the .rom image will be created with multiple Firmware Volumes. This .rom
image of BIOS code is going to be flashed in the SPI flash memory on the platform.

4.4 Flow Diagram

In this section, flow diagrams for the full fledge GOP configuration driver are presented
to get a high level understanding of every step used to make this driver. Flow diagrams
are divided in to three phases as below:

e Creating setup options in the BIOS Menu which are going to be configured in
the configurable header. This is shown in Figure 4.7

e Creating the Policy Protocol which will be updated by the driver based on the
setup options. This is shown in Figure 4.8

e GOP Configuration which will configure the header. This is shown in Figure 4.9

30

Created a setup window in the BIOS menu named as GOP CONFIGURATION

Y

Created setup options in the GOP CONFIGURATION menu such that by changing that we can configure the
binary value of the setup option defined in Configurable Header

Patched that setup options in non volatile memory such that the value of the same can be store there.

Created a function which will update the GOP Configuration Policy based on that set up optians,

Figure 4.7: Flow Diagram to create setup options in BIOS

Created the policy protocol, named as Gop Configuration Policy, defined with a unique GUID

Y

Contains a header & a source file and used to update the setup options based on
Configurable Header mapping

Y

Header file contains the whole header mapping by means of different structures and each of the
structure member can be accessed & updated by putting it as a setup options in BIOS

Y

Unique GUID is assigned to the Palicy Protocol and declared globally so that any driver based
On its need can consume the protocol,

Figure 4.8: Flow Diagram of GOP Config Policy

31

Included Header files required to be used in the driver

Declaration of GUIDs and Global Variables which are going to be used for the driver

Y

Two function which are defined in header file of driver are declared here with its body:
1. Function to install the Gop Policy Protocol
2. Function to update the header’s address which is going to be used by the Gop Driver

Driver Entry point function with argument as a pointer to the EFl System Table

k J

Function call to install a Gop Config Policy Protocol

Y

Call back event created which will call back the function from this driver to update the header data
Immediately when Platform Gop Policy Protocol is installed

Driver Entry point function end up here.

Y

Call back function entry which will be executed immediately after the Platform Gop Policy
Protocol Is installed

X
Lj

32

Local Variable Declaration for Header's Address, Header's Size, Protocol Status,
Pointer to the Configurable Header etc...

Y

Locate the Platform Gop Palicy Protocol and get the Configurable header (Address and Size)
From Firmware Volume

Y

Allocate the memory of header's size, Copy the header to that memory, Get the address
Of that memory location and assign a pointer to that copied header,

Y

Locate the Gop Policy Protocol and update the Configurable Header as
Per the requirements

Y

Update the Platform Gop Policy such that the GOP driver now will take the Copied
And update header for the display functionalities.

Y

Call back event created which will call back the function from this driver to update the header data
Immediately when Platform Gop Policy Protocol is installed

Call back function ends up here.

Figure 4.9: Flow Diagram of GOP configuration Driver

33

4.5 Issues Faced and resolved

To make a full fledge driver is not so easy deal rather it’s all depend on your ex-
perience, your understanding and your command over coding. There are some issued
faced up to now to make this driver working as per the expectation.

This driver objective is to configure the header and put that updated header for the
GOP driver to use for display. So it is obvious to make this driver executed before the
GOP driver. Also GOP configuration driver has to get the original header and then
have to update it so it should execute after the driver which is used to get the header
from firmware volume.

Problem 1:Execution Order flow

Intention here is to make a GOP Configuration Driver independent so there is not
any dependency expression for the driver. Because of this the driver is loaded some-
time before Platform Gop Policy or sometime after that. Platform Gop Policy is the
policy protocol which is used to get the header data from firmware volume. This policy
protocol is used inside the driver to get the header data. To fulfil the driver objective
execution flow ideally required in the BIOS is as follows:

e Platform Gop Policy
e Gop Configuration Driver

e GOP Driver which uses the configurable header.

As the Gop Configuration Driver is independent, it was not possible to get the exact
flow all the time. that was the major problem faced during that time.

Solution 1:

To resolve this issue, callback event function inside the driver is created.Callback
event function is used inside the driver where actual logic to update the configurable
header data is kept. This callback event set here such that it will call the function
immediately after the installation of Platform Gop Policy. And Gop Policy Protocol
is added as a dependency expression for Platform Gop Policy. So the execution flow
will always look like:

Gop Configuration Driver

Platform Gop Policy

Callback event function which will update the header

e GOP Driver which will use the updated header.

34

So, thats how the problem of execution order was solved.
Problem 2: Porting a Driver into EDK II

After the driver implemented in EDK I, that has to be ported to EDK II also. The
driver is already planned for the next Gen Intel Processor targeted in 2014. There are
some changes needs to be done while porting the driver from EDK I to native. The
major change is to make a new information file as per the EDK II INF file specifica-
tion. Also the libraries for native implementation are different then of the EDK 1.
Problems here faced are to include the proper libraries because that was making errors
of undefined or unexpected tokens used in the source code of driver. Problems also
faced in the EDK II information file which was causing the linking errors because of
the changed libraries in EDK II and also some other concepts which should be followed
strictly in the EDK II fashion.

Solution 2:

To resolve the errors while porting, it was necessary to go through the EDK IT INF
file Specification. Form there the idea was clear how the INF file should be in EDK
IT fashion. Also searched for the libraries replaced in EDK II and tried with that and
make the driver to work properly as it was in EDK 1.

Other issues are like small things that were missed out and that lead to the failure
of build for the BIOS code. These things were like not included the proper files, not
given a proper path in the information file, declared the variable as global if that has
to be used locally and also to where to put the function which update the policy for
the driver etc..

4.6 Code walkthrough

In this section, the GOP configuration driver is discussed with the high level detail
of all the files defined in the driver. But before discussing the driver into detail, its
good to have a overview of the BIOS code packages and directories.

Whole BIOS code in is divided in to the different packages with some EDK I and
some EDK II fashion. All the packages are described briefly in the Table.2 below.

In Figure 4.10, the actual driver hierarchy in the BIOS code is showed. The driver

contains the different files and directories are also discussed briefly in this section.
That will clear the idea about the working and distribution of the driver.

35

Package

Description

Basetool

Provides build related tools for both EDK
and EDK2. Also contains miscellaneous

tools such as ECC and EOT

PlatformPkg

Intel’s Platform specific code (all in Native).

RefcodePkg

Intel’s Silicon specific Reference code.

Build

Created when source is built and contains
binary images.

CryptoPkg

Several security features were introduced
(e.g. Authenticated Variable Service,
Driver Signing, etc.)

EdkCompatibilityPkg

Provides header files and libraries
that enable you to build the EDK module in
UEFI 2.0 mode with EDK 11 Build.

FrameworkModulePkg

Intel Framework Module Package contains the
definitions and module implementation which
follows Intel’s UEFI & EFI Framework Spec.

FrameworkPkg

This package provides definitions and libraries
that comply to Intel’s UEFI & EFI Framework
Specifications.

MdePkg

provides all definitions(including functions,
MACROs;,structures and library classes) and
libraries instances, which are defined in

MDE Specification. It also provides the
definitions (including PPIs,PROTOCOLs,GUIDs).
EFI1.10,UEFI2.3.1,PI1.2 and some

Industry Standards.

10

MdeModulePkg

This package provides the modules that conform
to UEFT Industry standards.

11

NetworkPkg

Provides IPv6 network stack drivers,IPsec driver,
PXE driver, iSCSI driver and necessary shell
applications for network configuration.

12

PcAtChipsetPkg

This package is designed to public interfaces
and implementation which follows PcAt
defacto standard.

13

PerformancePkg

Add performance measurement capability to code.

14

R82014CrescentBayPlatPkg

Intel’s platform specific reference code
(not all in Native).

15

RomlImages

Created when source is built and contains
the .rom & .bin images of BIOS.

16

SecurityPkg

This package provides functionalities like TPM,
User identification (UID), secure boot and
authenticated variable.

17

SourceLevelDebugPkg

This package contains the source code to include
the Source code debugger agent into a platform.

18

UefiCpuPkg

This Package provides UEFI compatible
CPU modules and libraries.

Table 4.1: Intel’s BIOS cgg,e with different Packages

Now here the driver is discussed in the detail by explaining the each of the file and
directory briefly. The main folder created for the driver under BIOS code is named as
”GopConfig”.

GopConfig

e This folder is a complete package of a full fledge DXE GOP Configuration Driver
for BIOS.

e This contains two sub folders named DXE and GopConfigPolicy and one library
file named as GopConfigLib.inf

e Details about all the folders and file are discussed here on a high level.

= L GopiConfig
EI L7 Dxe
: _.E. GopiZ_onfig.c
..... _&. GopiZonfig.h
- i, GopConfig.inf
L 2 | Gop_onfigEcpCnly . inf
EI L Protocol
EI L GopZonfigPolicy
- “, GopConfigPalicy.
o _&, GopZonfigPalicy . b
- =&, GopConfiglib.inf
EI L mopConfigBin
: _&, GopConfig. eFi
- “i, GopConfigBin.inf
e =¥ | GopConfigEcpnly.inf

Figure 4.10: Driver Hierarchy

GopConfigPolicy

This folder contains a policy protocol which the GopConfig DXE driver uses. Gop-
ConfigPolicy folder contains two files.

1. GopConfigPolicy.h

e This is a header file in which a GUID is given to the Protocol and declared that
protocol as an extern so that other driver can use it through its GUID.

37

e This file contains a whole header structure. This header structure is divided into
different small structures based on the different functionalities .

e Apart from the header structure, this file contains the defined protocol struc-
ture which contains the different variables which are mapped to the setup option
variables created in the BIOS setup menu.

2. GopConfigPolicy.c

e In this file, protocol GUID is declared as a global variable which will be used to
refer the protocol for installing, uninstalling and any other function related to
that.

GopConfigLib.inf

This is an information file used for the GopConfigPOlicy Protocol and it will create
a library for the protocol so that other driver can use this protocol by including this
library file.

DXE

1. GopConfig.h

e This is a header file in which the GopConfigPolicy.h and other header files are
included such that driver can use the EFI defined BaseTools and library sets.

e Functions which are going to used in the driver source file GopConfig.c are de-
clared here like function to Install the GopConfigPolicy Protocol, header callback
function, function to get the header etc...

2. GopConfig.inf

e This is an information file in EDK II fashion which tell about the BASE_NAME
of the driver, INF version, File GUID which is nothing but the driver’s GUID,
Module type as DXE_DRIVER as it is a DXE driver, Driver entry point etc...
This section in the file is named as [Defined] section.

e This file tell about the sources to be built like GopConfig.c and Gopconfig.h
here. Also it has sections which tell about the packages it is using to refer some
protocol and libraries.

e Also the protocols the driver consumes or produces are declared here.For this
driver PlatformGopPolicy protocol and GopConfigPolicy protocol are declared
here.

38

If any dependency is there that can be defined directly in to this file by declaring
its GUID under the [Depex] section. There should not any separate file created
for the dependency in EDK II. Here the driver is totally independent so there is
not any dependency declared here.

. GopConfigEcpOnly.inf

This is an information file in EDK I fashion which is almost different than EDK
II. Here instead of declaring a packages like in EDK II, hard coded paths are
given for the protocol and other libraries used by the driver.

This file defines a driver entry point and dependency source for the driver. It
also defines a file GUID and component type like boot service driver, run time
driver etc. Here the component type defined is BS_ DRIVER that means it is
a Boot Service Driver.In EDK II fashion the component type is classified in a
more specific way than EDK 1.

Dependency file should be defined separately in EDK 1 fashion and it has to be
declare in the information file of that driver as a DEPEX_SOURCE. Here there
is no dependency for this driver is declared or defined in the information file as
the driver is independent.

. GopContfig.c

This file contains almost all the functionalities of driver. In this file all the
required header files are included and also the protocols GUIDs are declared
which would be used in the driver locally or globally.

As the driver is using the GopConfigPolicy Protocol, there is a function defined
here which will be called by the driver initialization function to install the pro-
tocol. The other protocol, PlatformGopConfig Protocol is used here to get the
header so this protocol is located here before using it inside the driver.

Driver entry function will call the function to install the GopConfigPolicy proto-
col and then an event is created which will call the callback function where the
header data is getting updated.

The event is created such that it will call the callback function immediately after
the installation of the PlatformGopPolicy protocol occurred.

In callback function, after locating the PlatformGopPolicy Protocol, the driver
will get the header using Get header data function declared in GopConfigPolicy
protocol and defined in PlatformGopPolicy protocol, copy the header to some
memory location and get the pointer to the new copied header.

The copied header then updated using GopConfigPolicy Protocol for the defied
setup options i BIOS menu as well as variables that are patched to that inside
the policy protocol.

39

e After updating the header data, PlatformGOPPolicy protocol will be updated
such that the GOP driver will use the configured header instead of the old header.

GopConfigBin

This folder is for binary implementation of the GOP Configuration Driver for BIOS.
This contains binary file of the driver along with its information files for EDK I &
EDK II. Each of the file it contains is discussed briefly below.

1. GopConfigBin.efi
e This is a binary file (.efi) of the driver.

e This file is being generated under the ”Build” folder from the complete package
of the driver (including all the files of driver) when the code is built

e When the source file of the driver is complied and built, it will generate object
file, .efi file and other files with that.

e Binary file (.efi) is copied from the ”Build” folder into the ” GopConfigBin” folder
for binary implementation of the driver.

2. GopConfigBin.inf

e This is a EDK IT information file for the binary driver. Here the same BASE_NAME,
Component type, Module Type and Driver entry point is defined under the [De-
fine] section as of the GopConfig.inf file except the INF version.

e As this the binary implementation of the driver, as a source file GopConfig.efi is
declared under the [Source] section.

e Also this binary file (GopConfig.efi) is nothing but the driver itself which is
already built, there is no any packages or protocol or any libraries should be
defined as in the case of GopConfig.inf.

3. GopConfigBinEcpOnly.inf

e This is a EDK I information file for the binary driver. Here also the same
BASE_NAME, Component type, Module Type and Driver entry point is defined
under the [Define] section as of the GopConfigEcpOnly.inf file except the INF
version.

e Similar to the GopConfigBin.inf, because this is the binary implementation of
the driver, GopConlfig.efi is declared under the [Source] section.

e Also this binary file (GopConfig.efi) is nothing but the driver itself which is
already built, there is no any hard coded path for protocol or any libraries should
be defined as in the case of GopConfigEcpOnly.inf.

40

Chapter 5

Driver Implementation

Basically the driver is written in C language using Microsoft Visual Studio as an IDE.
The driver is implemented in two environments and also with the two different modes.

Two different implementation of the driver here are:
e EDK Environment, also named as EDK I Environment
e EDK II Environment also called as Native mode.

And two different modes in each of the environments are:
e Driver with a source file, header file, information file etc.

e Driver with the binary file (.efi file) and the information file for that only.

5.1 EDK I Overview[11]

The EDK is the open-source component of the ”Framework”, Intel’s implementation
of the EFT Specification, which was developed under the project code named ” Tiano”.

The EDK is essentially a container for the Framework’s Foundation code and sam-
ple drivers. The EDK is also a development kit for developing, debugging, and testing
EFI and Framework drivers, EFI Option ROMs, and EFI Applications for use in the
Framework environment.

5.2 EDK II Overview|[11]

EDK II is a modern, feature-rich, cross-platform firmware development environment
for the UEFI and PI specifications. The EDK II project is the response to the EFI
community’s request for a better build and version tracking environment for UEFI and
PI development. The main difference between the EDK II to the original EDK is the
Enhanced Build Environment of the EDK II. The advantages of the Enhanced Build
Environment include:

41

e Operating System independence
e Flexibility in choosing the compiler and assembler tools

e The ability to generate working code using open source build tools and applica-
tions

e Enhanced development and build capability of modules and module packages
e Use of build configuration tools and data sets to provide flexible process

e Online source control allows users to contribute code and become participants.

The EDK II enhanced build environment is a significant departure from the build
environment of the original EDK. There are many new concepts and features in the
EDK II, which have altered the environment. If you are familiar with the original
EDK these changes will be obvious, while the benefits of them will be apparent to
everyone. The new structure, along with package owners is documented in the EDK
IT Packages.

It is important to note, that the compiled results of the EDK II are equivalent to the
original EDK, the changes are in the build environment and only affect the sources
at that level. Any differences in the code files are only to support the changes in the
build environment, once the modules are created, they are functionally identical.

The EDK II is classified at a development level project and the EDK is an official
level project. The EDK is still intended to be used for volume production and ship-
ments while the EDK 1II is being further refined through additional development.

5.3 Difference between EDK I & EDK II[11]

Mainly the build architecture is very different. Parts of the differences are that the
build description files (.dsc .inf, etc) have been enhanced and are different. However,
the EDK II build understands EDK build description files so that EDK II build can
include EDK source code. There are also build tool differences and EDK II supports
more OSes and more tool chains. Other differences besides the build include that EDK
IT has different, richer libraries (MDELIB, etc) which makes some of the source code
very different. EDK II also has the package concept so that the directory and file layout
is different. EDK II also uses Platform Configuration Database (PCD) for parameter-
ization and fix-up binary support etc. EDK II supports newer UEFI/PT specifications
than EDK. In addition, EDK II has compatibility with EDK style sources through
the EdkCompatiblityPkg (ECP). This is possible because the ECP will have binary
compatibility for EDK through its libraries and thunk code. Additionally, EDK II is
designed to work with Doxygen to generate design level specifications.

In addition, since EDK II supports the later versions of the UEFI and PI Specifi-
cations, there are newer protocols that will be part of EDK II that do not exist in

42

EDK. Thus if there is a desire to use the latest protocols there may be a need to use
EDK II instead of EDK.

Differences Summary:
e Build infrastructure and Build tools
e Packages / directory structure
e Rich Libraries

e Platform Configuration Database (PCD)

5.4 Similarities within EDK and EDK 11 Environ-
ment

The similarity is that code as far as the Platform Initialization boot execution phases
are similar. EDK and EDK II have similar Sec-PEI-DXE-TSL and runtime phases.
Also any of the protocol interfaces that are supported in both EDK and EDK IT will
be the same. Thus since EDK II understands EDK build description files the EDK 11
build can include EDK source code though the use of the ECP.

5.5 Implementation using Flags

In the BIOS code the driver is implemented in both of the environment using both of
the modes by means of flags. The Flags used in the code are:

e ECP_ENABLE Flag
e GOP_BIN Flag

The purpose of the ECP is to provide backwards compatibility for EDK I style source
modules that assume UEFI 2.0/Framework 0.9. The ECP uses a number of techniques
that allow these EDK I source modules to execute correctly when run on top of the
EDK II. This preserves customers’ existing investments in EDK I modules by allow-
ing them to be used ”as is” in EDK II based firmware. This also allows customers
to plan when/if their exiting modules will be ported to EDK IT without the use of ECP.

ECP_ENABLE

ECP Flag is used to tell whether the driver is building in EDK I or in EDK II en-
vironment. To build the driver, information file has to be defined in the description
file (.dsc) and firmware volume definition file (.fdf). ECP flag is defined such that it
will modify the information file name based on the value it has. If it is true it will
add prefix "EcpOnly” at the end of a name of information file the build tool will take
the EDK I information file from the source. If the ECP flag is false, it will not add
any prefix to the name of the information file and the build tool will take the EDK II

43

information file from the source. So driver in the BIOS code now have two different
information file in its folder. One for EDK I with the prefix "EcpOnly” and the other
with the same name but without prefix.

GOP_BIN

GOP _BIN flag is used to tell whether the driver will be built from the source and
header files defined for that or directly the binary file (.efi) of the driver will loaded.
The concept behind this is to not give the driver code to the OEM (Original Equip-
ment Vendors) like Dell, Lenovo etc To do this, instead of the whole driver source code
only the binary file of the driver will be included in the Reference code which will be
given to the OEMs.

When the BIOS code is built with the driver source code, different files (like .obj,
efi, lib etc...) will be generated for that. Form that .efi file is the binary file of the
driver. That .efi file of the driver will be copied from that to the other folder then of
the actual folder of the driver and an information file for that will be created. Using
that information file the binary implementation is possible as that information file will
provide the information to the build tool that it has to take the .efi file of the driver
directly instead of building the driver source code.

44

Chapter 6

Conclusion & Future Scope

6.1 Conclusion

This thesis shows that the GOP configuration driver for BIOS will eliminate the
need of Intel’s configurable tool to some extent which is used to configure the header
manually. GOP Configuration driver in DXE phase will take care of configuring the
header as per the requirement for platform.

This driver will get the header, copy it to some memory location, get the pointer
of the copied header, update the copied header according to the need, update the
Platform Gop Policy such that GOP driver will now use the updated copied header
for the display functionalities. That’s how this driver makes two way communications

possible between GOP and GPU.

The driver is developed using EDK I & EDK II environment and driver is imple-
mented directly using binary file and also using the complete package with source
file, header file and other files required to load the driver. This implementation is
accomplished using flags. Binary implementation is targeted for the OEM (Original
Equipment Vendor) who uses the Intel’s BIOS reference code but not able to see the
driver code.

6.2 Future Scope

Driver is ready with some setup options in BIOS menu which are same as in Intel’s
Configurable tool to configure the header data. One can expand the driver by adding
more setup options in the BIOS menu as per the requirement from OEMs.

In future if the header would be enhanced by some more data, one has to read the
script file to understand and check for the modification done and then accordingly has
to change the offsets used to get the every variable or data of header which are being
modified in the driver.

45

References

Unified Extensible Firmware Interface Specification Version 2.3.1, April 6, 2011.
Driver Writer’s Guide for UEFI 2.3.1, Version 1.01, August 2012.

Advanced Configuration and Power Interface Specification, Revision 5.0, December
6, 2011

UEFI Overview by Michael A. Rothman May 16th 2007.

Intel Platform Innovation Framework for EFI Driver Execution Environment Core
Interface Specification (DXE CIS), Version 0.9, September 16th, 2003

Replacing VGA, GOP implementation for UEFI, UEFI Summer Plug fest-July 6-9,
2011Presented by AMD.

EDK II Build Specification, June 2012.

Intel Platform Innovation Framework for EFI Compatibility Support Module Spec-
ification, Revision 0.97, September 4, 2007

http://en.wikipedia.org

[10] http://www.dediprog.com/SPI-Flash-Programmer/SF600

[11] http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Welcome

46

	Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Terminology
	Problem Definition
	Thesis Organization

	Literature Survey
	BIOS Overview
	UEFI Specification
	Overview
	UEFI Boot Phases
	Boot modules

	UEFI Driver Model Goals [2]
	GUIDs [2]
	Protocols and handles[2]

	Driver Execution Environment
	Overview
	EFI System Table[5]
	DXE Foundation[5]
	DXE Dispatcher[5]
	DXE Drivers

	GOP Configuration Driver
	GOP vs. VBIOS
	Objective of the Driver
	Hardware/Software used
	Flow Diagram
	Issues Faced and resolved
	Code walkthrough

	Driver Implementation
	EDK I Overview[11]
	EDK II Overview[11]
	Difference between EDK I & EDK II[11]
	Similarities within EDK and EDK II Environment
	Implementation using Flags

	Conclusion & Future Scope
	Conclusion
	Future Scope

	References

