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ABSTRACT 

 
 

A plurality of Electronically Reconfigurable Gate Array (ERCGA) logic 
circuits are interconnected via a reconfigurable interconnect, and electronic 
representations of large digital networks are converted to take temporary actual 
operating hardware form on the interconnected circuits. The reconfigurable 
interconnect permits the digital network realized on the interconnected circuits to be 
changed at will, making the system well suited for a variety of purposes including 
simulation, prototyping, execution and computing. The reconfigurable interconnect 
may comprise a partial crossbar that is formed of ERCGA circuits dedicated to 
interconnection functions, wherein each such interconnect ERCGA is connected to at 
least one, but not all of the pins of a plurality of the logic circuits. In 
STMicroelectronics we divide the programmable logic in two part software and 
hardware. Software part includes development of software for the use of PiCoGA 
architecture and hardware part includes development of different libraries in 90nm 
and 65 nm for the realization of that architecture. Work carried out in this group was 
to prepare complete library set which includes all basic functionality in 65nm 
technology using Structured ASIC. 
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2. COMPANY PROFILE 
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No. of Employees               Approx 50,000. 

 

Table 2.1 Company Profile 
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2.1 ABOUT THE COMPANY 

 

STMicroelectronics is one of the world’s largest semiconductor companies 

with net revenues of US$9.85 billion in 2006 and US$4.69 billion for the first half of 

2007.  

 

The Company’s sales are well balanced between the semiconductor industry’s 

five major high-growth sectors (percentage of ST’s sales in 2007): Communications 

(35%), Consumer (17%), Computer (16%), Automotive (16%) and Industrial (16%).  

 

According to the latest industry data, ST is the world’s fifth largest 

semiconductor company with market leadership in many fields. For example, ST is 

the leading producer of application-specific analog chips and power conversion 

devices. It is also the #1 supplier of semiconductors for the Industrial market and for 

set-top box applications, and occupies leading positions in fields as varied as discrete 

devices, camera modules for mobile phones and automotive integrated circuits. 

Product Portfolio 

ST aims to be the leader in multimedia convergence applications and power 

solutions, offering one of the world’s broadest product portfolios, including 

application-specific products containing a large proprietary IP content and multi-

segment products that range from discrete devices to high-performance 

microcontrollers, secure smart card chips and MEMS (Micro-Electro-Mechanical 

Systems) devices.  

 

For complex ICs in demanding applications such as mobile multimedia, set-

top boxes and computer peripherals. The balanced portfolio approach allows ST to 

address the needs of all microelectronics users, from global strategic customers for 

whom ST is the partner of choice for major System-on-Chip (SoC) projects to local 

enterprises that need fully-supported general-purpose devices and solutions. 
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ST has also announced its intention, together with Intel and Francisco 

Partners, to form a new, independent semiconductor company, Numonyx, which will 

focus on supplying non-volatile memory solutions for a variety of consumer and 

industrial devices. 

Research & Development and Manufacturing 

Since its creation, ST has exhibited an unwavering commitment to R&D and is 

one of the industry’s most innovative companies. ST’s process technology portfolio 

includes advanced CMOS logic (including embedded memory variants), mixed-

signal, analog and power processes. In advanced CMOS, ST is to partner with the 

IBM consortium for the development of next-generation process technologies, 

including 32nm and 22nm CMOS process development, design enablement and 

advanced research adapted to the manufacturing of 300mm silicon wafers. ST and 

IBM will also cooperate at ST’s Crolles 300mm facility in the development of value-

added CMOS derivative SoC technologies. 

 

ST has a worldwide network of front-end (wafer fabrication) and back-end 

(assembly, packaging and test) plants. The Company is moving towards a less capital-

intensive manufacturing strategy and has recently announced plans to phase out some 

of its older facilities. ST’s principal wafer fabs are presently located in Agrate Brianza 

and Catania (Italy), Crolles, Rousset and Tours (France), Phoenix and Carrollton 

(USA) and Singapore. The wafer fabs are complemented by highly efficient assembly 

and test facilities located in China, Malaysia, Malta, Morocco and Singapore. 

Alliances 

ST has developed a worldwide network of strategic alliances, including 

product development with key customers, technology development with customers 

and other semiconductor manufacturers, and equipment- and CAD-development 

alliances with major suppliers. These industrial partnerships are complemented by a 

wide range of research programs conducted with leading universities and research 

institutes around the world, in addition to playing a key role in Europe’s advanced 

technology research programs such as MEDEA+ and industry initiatives such as 

ENIAC (European Nano-electronics Initiative Advisory Council). 
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Sustainable Excellence 

STMicroelectronics was one of the first global industrial companies to 

recognize the importance of environmental responsibility, its initial efforts beginning 

in the early 1990s. Since then ST has made outstanding progress; for example, energy 

consumption per product unit was reduced by 47% between 1994 and 2006 and CO2 

emissions have been reduced by 61% over the same timescale. In addition, ST has 

gone far beyond existing legal requirements in almost completely eliminating the use 

of hazardous substances such as lead, cadmium, and mercury. Since 1991, the 

Company’s sites have received more than 100 awards for excellence in all areas of 

Corporate Responsibility, from quality to corporate governance, social issues and 

environmental protection. 

Facts and Figures 

STMicroelectronics was created in 1987 by the merger of SGS 

Microelettronica of Italy and Thomson Semiconducteurs of France. Since its 

formation, ST has grown faster than the semiconductor industry as a whole and it has 

been one of the world’s Top Ten semiconductor suppliers since 1999.  

 

The group totals approximately 50,000 employees, 16 advanced research and 

development units, 39 design and application centers, 15 main manufacturing sites 

and 78 sales offices in 36 countries. 

 

Corporate Headquarters, as well as the headquarters for Europe and for 

Emerging Markets, are in Geneva. The Company’s U.S. Headquarters are in 

Carrollton (Texas); those for Asia-Pacific are based in Singapore and Japanese 

operations are headquartered in Tokyo. The “Greater China” region, which includes 

Hong Kong, China and Taiwan, is headquartered in Shanghai. 

 

Since December 8, 1994, when ST completed its initial public offering, the 

Company’s shares have been traded on the New York Stock Exchange (NYSE: STM) 

and on Euronext Paris; since June 1998, ST has also been listed in Milan on Borsa 

Italiana. The Company now has around 900 million outstanding shares, 71.1% of 

which are publicly traded on the various stock exchanges. The balance of the shares is 
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held by STMicroelectronics Holding II B.V. (27.5%), a company whose shareholders 

are Cassa Depositi e Prestiti and Finmeccanica of Italy, and Areva of France, and 

treasury shares (1.4%) held by STMicroelectronics NV. 

 2.2 PRODUCTS 

 

� Analog & Mixed Signal ICs 

� Memories 

� Power Management:� 

� Transistors 

� Application Specific for Audio power 

� Product Technologies  

2.3 APPLICATIONS  

� Automotive 

� Industrial  

� Computer  

� Security & Smartcard 

� Industrial 

 

 

 

 

 

 

 

 

 

 

�

�
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3. INTRODUCTION 

 

In the world of digital electronic systems, there are three basic kinds of devices: 

memory, microprocessors, and logic. Memory devices store random information such 

as the contents of a spreadsheet or database. Microprocessors execute software 

instructions to perform a wide variety of tasks such as running a word processing 

program or video game. Logic devices proide specific functions, including device-to-

device interfacing, data communication, signal processing, data display, timing and 

control operations, and almost every other function a system must perform.  

 3.1 PROGRAMMABLE LOGIC DEVICES 

 

 

 Fig. 3.1 Logic Device Family 

The main differences in programmable devices are between: 

� Mask-programmable and field-programmable 

� Erasable and non-erasable 
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The mask-programmable types are programmed when they are manufactured whereas 

the user sets up the field-programmable device with some form of programmer. Mask-

programmable devices are expensive in low production runs but are relatively cheap 

for large production runs, which is opposite for the field-programmable devices. An 

erasable device allows the stored set-up to be changed whereas the non-erasable type 

is permanent. 

 

 3.2 ADVANTAGES OF PROGRAMMABLE LOGIC OVER THE 

FIXED LOGIC 

1. PLDs offer customers much more flexibility during the design cycle because 

design iterations are simply a matter of changing the programming file, and 

the results of design changes can be seen immediately in working parts.  

2. PLDs do not require long lead times for prototypes or production parts - the 

PLDs are already on a distributor's shelf and ready for shipment.  

3. PLDs do not require customers to pay for large NRE costs and purchase 

expensive mask sets - PLD suppliers incur those costs when they design their 

programmable devices and are able to amortize those costs over the multi-year 

lifespan of a given line of PLDs.  

4. PLDs allow customers to order just the number of parts they need, when they 

need them, allowing them to control inventory. Customers who use fixed logic 

devices often end up with excess inventory which must be scrapped, or if 

demand for their product surges, they may be caught short of parts and face 

production delays.  

5. PLDs can be reprogrammed even after a piece of equipment is shipped to a 

customer. In fact, thanks to programmable logic devices, a number of 

equipment manufacturers now tout the ability to add new features or upgrade 

products that already are in the field. To do this, they simply upload a new 

programming file to the PLD, via the Internet, creating new hardware logic in 

the system. 
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4. CADENCE VIRTUOSO 

Virtuoso® Layout Editor is the industry-standard base-level custom physical 

layout tool of the Virtuoso custom design platform. It supports the physical 

implementation of custom digital, mixed-signal, and analog designs at the device, cell, 

and block levels.  

The Virtuoso custom design platform is a comprehensive system for fast, 

silicon-accurate design and is optimized to support “meet-in-the-middle” design 

methodologies such as advanced custom design. Virtuoso includes the industry’s only 

specification-driven environment, multi-mode simulation with common models and 

equations, vastly accelerated layout, advanced silicon analysis for 0.13 microns and 

below, and a full-chip, mixed-signal integration environment. The Virtuoso platform 

is available on the Cadence® CDBA database and the industry standard Open Access 

database. With the Virtuoso platform, design teams can quickly design silicon that is 

right and on time at process geometries from one micron to 90 nanometers and 

beyond. 

4.1 VIRTUOSO LAYOUT EDITOR 

With Virtuoso Layout Editor, custom layout is accelerated with a 

comprehensive set of user-configurable and easy-to-use pure polygon layout features 

within a hierarchical multi-window environment. Additional acceleration is provided 

through optional parameterized cells (Pcells) and a powerful scripting language called 

SKILL that provides direct database access, tool configuration, and interoperability 

with other tools. 

4.2 BENEFITS 

� Easy creation and navigation of complex designs with unlimited hierarchy 

support coupled with a multi-window editing environment (see Figure 4.1) 

� Accelerated layout entry using easy-to use and easily accessed editing functions  

� Increased productivity and design optimization using Pcells 

� Efficient, high-performance handling of large designs using the Open Access 

database 
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�

Fig. 4.1 Virtuoso View 

 

 
 

Fig. 4.2  Layout of NOR Gate 

 



 

 11 

5. IMPLEMENTATION OF 65 nm LIBRARY 

In cadence layout maker I am working with 65nm technology. Here I have 

allotted the library of INVERTER, NAND gate, NOR gate, XOR gate, MUX and 

some small function like A+BC with given load driven capability. 

 

This library has one conman base cell on which we implement our logic. This base 

cell have some constrain like, 

1. The metal-3 must pass on the gird line and horizontally. 

2. The spacing between the different metal and poly. 

3. The PRBoundary setting must be on (0, 0) position etc. 

 

5.1 MODIFICATION IN DIFFERENT LAYOUTS 

Then I started to design a new library of the same component and try to optimize 

routing by reducing number of metal-2 and metal-3 required for connection in the 

cell. By this routing number of metal-2 and number of metal-3 saved is given in table 

5.1. 

 
Original After Editing Layout name 

No. of 
M2 

track 

No. of 
M2 

track  
on path 

No. 
of 

M3 
track 

No. of 
M3 

track  
on path 

No. 
of 

M2 
track 

No. of  
M2 

track 
on path 

No. of 
M3 

track 

No. of 
M3 

track on 
path 

AO6 X18 0 - 0 - 0 - 0 - 
AO7 X18 1 0 0 - 1 0 0 - 
AO12X27 1 0 0 - 0 - 0 - 
AO12X35 1 0 0 - 0 - 0 - 

MUX X18 3 2 1 1 3/2 3 1 1 
  X18 0 - 0 - 0 - 0 - 
X36 3 3 0 - 0 - 0 - 

NAND 

X54 3 3 0 - 0 - 0 - 
  X18 0 - 0 - 0 - 0 - 
X36 3 3 0 - 0 - 0 - 

NOR 

X54 3 3 0 - 0 - 0 - 
XOR  X18 3 2 1 0 3/2 3 1 1 

 
Table 5.1  Modification in different layouts 
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5.2 NEW MADE LAYOUTS BASED ON PREVIOUS LAYOUTS 

 

There is another task to made new layouts based on previously modified 

layouts. The available layouts are of lower load capacity. Now my task is make 

new cells for other load capacity using these available cells. The new made 

layouts and required metal-2 and metal-3 is given in table 5.2. 

 

Layout name No. of 
M2 track 

No. of M2 
track on 
preferred 

 path 

No. of 
M3 track 

No. of M3 
track on 
preferred 

path 
X9 0 0 0 0 

X36 4 4 0 0 
AOI12 

X54 4 4 0 0 
X36 4 3 0 0 OAI12 
X54 4 3 0 0 

X9 1 1 0 0 
X36 4 4 2 2 

MUX 

X54 4 4 3 3 
X9 0 0 0 0 

X36 0 0 0 0 
NAND 

X54 0 0 0 0 
X9 0 0 0 0 

X36 0 0 0 0 

NOR 

X54 0 0 0 0 

X9 1 1 0 0 

X36 3 3 2 2 

XOR 

X54 3 3 3 3 

 
Table 5.2  Metal Requirement For New Made Layouts Based On Previous 

Layouts 
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5.3 TOTALLY INDEPENDENT MADE LAYOUTS 

 There are some requirements where this layouts are not giving satisfactory 

performance as well as some functionality are not design for this library. So I have to 

design it independently. Some such design is listed below which is further described 

next. 

 

� Inverter 

� Buffer 

� AO-functionality 

� OA-functionality 

� NAND 

� NOR 

� XOR using tri-state topology 

� XOR using Boolean Equation 

� XNOR using tri-state topology 

� XNOR using Boolean Equation 

� MUX using tri-state topology 

 

5.3.1 Design Of Inverter: 
Inverter consists of transistor pairs in parallel connection. No. of transistor pair 

is depends on output load required to drive. Table 5.3  indicates the designed inverters 

and no. of transistor pair required to drive given load. 

 

Inverter Load 
Capacity 

No. of Transistor 
pair in driver 

X 9 1 
X 18 2 
X 27 3 
X 36 4 
X 45 5 

. . 

. . 
X 216 24 

 
Table 5.3  No. of transistor pairs requires to drive given load in Inverter. 
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5.3.2 Design of Buffer: 

 

Buffer consists of two connected inverters as described below. It can be design 

in various ways depends on output load condition. No. of transistor pair in stage B is 

depend on output load. For example if no. of transistor pair in stage B is 4 than it can 

drive double load than the buffer which includes 2 transistor pair in stage B. Here no. 

of transistor pair in stage A is depends on no. of transistor pair in stage B. This no. 

should be sufficient that can drive no. of transistor pair in stage B. 

 

 
 

Table 5.4 indicates no. of transistor pair in stage A and B for different load capacity. 

 

 

Buffer Load 
Capacity 

No. of Transistor 
pair in A stage 

No. of Transistor 
pair in B stage 

X 9 1 1 
X 18 1 2 
X 27 1 3 
X 35 2 4 
X 45 2 5 
X 54 2 6 

. . . 

. . . 

. . . 
X 216 8 24 

 
Table 5.4  No. of transistor pair required to drive given load in buffer 
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5.3.3 Design of EX-OR and EX-NOR using tri-state topology 
 

 Functionality of EX-OR is given by below equation Z = A’B + AB’ whereas 

functionality of EX-NOR is given by equation Z = AB + A’B’. These functionalities 

can be implement by two connected tri-state as shown in figure 5.1.  

 

 
 

Fig. 5.1  Configuration of EX-OR and EX-NOR gates using tri-state topology 

 

In EX-OR signal A drives your another signal B or B’, and output depends on 

A and B. Here this configuration provides low load capacity. So for improving load 

capacity we can insert buffer stage as per our requirement. In EX-NOR also we can 

implement in the same way as XOR functionality.  
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5.3.4 MULTIPLEXER using tri-state topology 

 

Functionality of Multiplexer is given by below equation 

 

Z = D0 S0’ + D1 S0 

 

 This can be also designed by tri-state topology as given figure 5.2. 

 

 
 

Fig. 5.2  Configuration Multiplexer using tri-state topology 

 

 

 This functionality can be also explained in the same way as exclusive gates. 

Here load capacity of multiplexer is depends on design of inverter. 
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5.3.5 Requirement of Metal-2 and Metal-3 of independent made 

layouts 
 Requirement of Metal-2 and Metal-3 in independent layouts are given in table 

5.5. 

 

 

Layout name No. of M2 
track 

No. of M2 track 
on preferred path 

No. of M3 
track 

No. of M3 track 
on preferred path 

Buffer 0 - 0 - 
Inverter 0 - 0 - 
XOR X9 1 1 0 - 

XNOR X9 1 1 0 - 
MUX X18, X36, 

X54 
0 - 0 - 

AOI22 1 1 0 - 
AO112 1 1 0 - 

NAND X9 0 - 0 - 
NOR X9 0 - 0 - 

 
Table 5.5  No. of Metal-2 and Metal-3 used in new independent made layouts 
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6. MODIFICATION IN LAYOUT 

 After making complete library set, it will goes to used in synthesis and place& 

Route. At this time it will gives some problem which is not issue in case of individual 

layout. So it is required to modify these layouts to solve problems which might be 

generated after Place and Route. Such type of some problems and their solutions are 

discussed in below sections. 

 

6.1 PARALLEL RUN PROBLEM 

 As shown in figure 6.1 when any metal line with its width less than ‘Y’ is 

passing near boundary, with distance less than ‘X/2’ from PRBoundary, this type of 

problem occurs. Here individual layout doesn’t give any DRC Errors. But when this 

type of cells placed near each other in PNR, it will gives DRC errors, because it 

requires distance between two metals larger than ‘X’ when their individual width is 

less than ‘Y’.  

 

 

 
 

Fig. 6.1  Parallel Run Problem 
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This problem can be solved by two ways.  

� Modify these layouts in such a way that each metal running parallel to the 

PRBoundary than its width is larger or equal to ‘Y’. 

� Modify these layouts in such a way that distance between this type of metals is 

always larger or equal to ‘X’. 

In our library we solve this problem using first solution. 

   

6.2 ACCESSIBILITY PROBLEM 

 At the time of PNR it will connect two cells using metal layers using higher 

than metal-1. So if your pin is of metal-1 than first it will place via and than connect 

metal-1 to metal-2. And this metal-2 is used in other connection. 

 

 So if you are already using metal-2 in your cells and it is passing above metal-

1 pin as shown in fig 6.2 than it is not possible to connect that pin to any other cell at 

the time of PNR. 

 

 
 

Fig. 6.2  Pin Alignment Problem 
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 This problem can be solved using two methods. 

 

� Shift this metal two in such a way that it is not passing above any metal-1 

contains pin. 

� Change in layout in such a way that metal-1 pin shift its position where it is not 

lying below metal-2. 

  

6.3 PIN ALIGNMENT PROBLEM 

 At the time of PNR, tool will search pins in grid position and connects it with 

metal-2. So if your pin is not on grid than tool is not able to find pin position and not 

able to connect it with other cells. This situation is described in fig 6.3.  

 

 

 
Fig. 6.3  Pin Alignment Problem 

 

 To solve this problem pin should be shifted in the centre of grid along with 

metal-1 so that at the time of PNR this pins are identified and can be connected with 

other cells. 
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6.4 METAL-2 PROBLEM 

 In many cases metal-2 is used for power connection. So if your layout contains 

Metal-2 and passing near power line than it might give DRC problems if proper 

distance is not maintained. This condition is described in fig 6.4. 

 

 
 

Fig. 6.4  Metal-2 Problem 

 

So to solve this problem, you have to modify these layouts in such a way that metal-2 

remains at  larger or equal distance from power line. 
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7. EXTRACTION OF THE LAYOUT 

 

 After completion of layouts its extraction is required for generation of .spi file. 

This file contains required information for post-layout simulation. It contains netlist of 

layout including resistance of each nets as well as capacitance between these nets. So 

by using this information we can find out maximum operating frequency, its power 

consumption and many more things. So extraction of each layout is necessary. 

 

The flow of the extraction is as shown in fig 7.1. 

 

As shown in the figure 7.1 first we generate the .GDS (Graphical Design 

System) file from the layout which contains information of layout. It includes 

information in terms of dimension of rectangles used in layout and its relative 

position. 

 

Then we generate the .CDL (Circuit Description Language) file from the 

schematic which contains the circuit connection details. It is netlist but contains 

information only related to connection. It not includes any information of resistance 

and capacitance used in it. 
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Fig. 7.1  Extraction flow for any layout 

 

 

 

This two files, .GDS and .CDL can not accept directly by Starrcxt tool. So it is 

required to convert this files into some another format. So these two files are given to 

the tool caliber and it generates the intermediate result that can accept by Starrcxt tool. 

 

This tool compares both files and then generates LVS report as well as netlist 

including resistance and capacitance between different nets. This netlist is our 

required .spi files. 
 

 
 

 

 

 

.gds .cdl 

calibre 

Intermediate 
Result 

Starrcxt 

Extracted Netlist 
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8. SYNTHESIS 

 

8.1 WHAT IS LOGIC SYNTHESIS? 

 

 Logic synthesis is the process of converting a high-level description of design 

into an optimized gate-level representation. Logic synthesis uses a standard cell 

library which have simple cells, such as basic logic gates like and, or, and nor, or 

macro cells, such as adder, muxes, memory, and flip-flops. Standard cells put together 

are called technology library. Normally the technology library is known by the 

transistor size (0.18u, 90nm). 

 

 A circuit description is written in Hardware Description Language (HDL) such 

as Verilog. The designer should first understand the architectural description. Then he 

should consider design constraints such as timing, area, testability, and power. 
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8.2 LEVELS OF ABSTRACTION 

 

 

 
 

 So synthesis may be divide into two three parts. 

 

� Translation 

� Optimization 

� Mapping 

 

 First it will translate your HDL code into Boolean function. So that it can be 

implement as hardware. Than this Boolean function will minimize using different 

algorithm, which is said Optimization of design. As discuss this optimization is 

depends on your input constraints. This constraint may be area or timing or both. 
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Than this optimized design is mapped into available libraries. This mapping depends 

on technology of library as well as functions available into library. It may be possible 

that some required functionality is not available in library. So this type of functions is 

converted into functions which are available into library. And after mapping of this 

design gate-level netlist is prepared, which is further used in Place and Route process. 

 

8.3 WHY SYNTHESIS TOOL IS REQUIRED? 

 Synthesis process is possible either manually or using tool. For very small 

design manual synthesis is possible but as design becomes larger, this type of manual 

synthesis is not feasible. There are also some other reasons which leads to use 

synthesis tool. 

 

Productivity:  

 Nowadays design becomes larger and larger. As design becomes larger no. of 

gates to implement also increase. So manually synthesis of that number of gates is not 

possible. So we require synthesis tool to synthesize any big design. 

 

Design Tricks:  

 For implement any design much iteration are required. Manually it is not 

possible to implement all type of design and check which one is best for our 

application constraints. So here tool have many design tricks for synthesis. So it can 

try them depends on loads, fan-outs, library limitation etc. 

 

Abstraction:  

 There are many high level issues like fan-outs, load capacitances etc. which 

are not possible to take into consideration. So this type of calculation is only possible 

by using Synthesis tool. 

 

Reusability:  

 Your HDL code is not technology dependent. So it can be implementing using 

any of your designed library. So if you want to try your design using different 

libraries than it is not possible manually. So for this type of comparison automated 

tool is necessary. 
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And there are many issues like verification if synthesized design, number of 

parametric standards is also leads us to use Synthesis tool. 

 

8.4 SYNTHESIS IS CONSTRAINT-DRIVEN 

 

 Synthesis process is constraints driven process. It depends on your given 

inputs. There are many type of trade-off like area and maximum clock frequency. 

Means as you want to increase clock frequency than you have to increase required 

area of design as shown in figure. 
 

 

 
 

 So we can say that for lower delay constraints design we require larger area to 

implement. So in Synthesis tool we give constraints to tool and it will give you final 

design. 
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9. PLACE AND ROUTE 

This chapter covers the essential steps of a Gate to Layout flow. The basic steps 

of a Gate to Layout flow include the following: 

 

1. Load library 

2. Import gate netlist 

3. Specify design constraints 

4. Floor planning 

5. Power planning 

6. Physical synthesis 

7. Clock tree synthesis 

8. Routing 

9. Physical verification 

10. Post-layout verification 

 

Most P&R projects have to move through these steps. However, the steps are 

not necessarily executed in the order listed. Below are examples of the variation 

that may occur in the execution of P&R: 

 

� Physical verification (step 9) of the pad ring during floor planning (step 4).  

� Physical synthesis (step 6) to assess the feasibility of a floor plan (step 4) 

without power planning (step 5).  

� Some P&R flow perform physical synthesis (step 6) and clock tree synthesis 

(step 7) concurrently.  

 

 

 Not all the steps are necessary for a P&R project. Depending on the logic 

design requirements and fabrication process technology, some steps can be omitted, 

or some steps can be added. For example, 

 

� Clock tree synthesis might not be necessary at 0.6um process technology.  

� Crosstalk noise violation analysis and fixing is a must for layout using 0.18um 

or smaller process technology.  
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9.1 LOAD LIBRARY 

 

 A P&R library contains two types of information 

 

� technology library 

� cell library 

 

 

9.1.1 Technology Library 

 

Wires that satisfy all layout design rules must be put in place by the router. The 

timer engine requires accurate parasitic capacitances and resistances for static 

timing analysis, crosstalk analysis and power analysis. Information regarding the 

layout design rules and capacitance look-up table are nested in the technology 

library. The following table lists some of the P&R tasks and their corresponding 

roles from the technology library that are necessary to perform the tasks.  

 

 

P&R Task Technology library 

Congestion driven P&R Process design rules. 

Timing driven P&R Routing Parasitic. 

Cross-talk aware P&R 

Routing parasitic with coupling 

capacitance. 

Electro-migration (EM) sign-off 

Electro-migration limit for each metal 

layer. 

Metal and via density filling Metal and via density requirement 
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9.1.2 Cell Library 

 

The cell library holds both logical and physical information of the logic cell. The 

logical information is similar to the contents of a synthesis library. Several different 

types of information exist and cannot all be listed here. The following are some of the 

common contents of the cell 

library.  

 

� Cell type (e.g. combinational, sequential, pad, timing model, etc.) 

� Pin-to-Pin delay 

� Slew for output pin 

� Capacitive loading on input pin 

� Leakage and dynamic power consumption 

� Design rule (e.g. maximum input slew for input pins and maximum load for 

output pins) 

� Maximum allowable noise for input pins, and holding resistance for output pins 

 

The full physical layouts of the cells are too complicated to be used in a P&R 

environment. Hence, the physical information in the cell library contains a simplified 

version of the layout commonly known as an “abstract”. An abstract contains the 

following information:  

 

� Cell name 

� Size of the cell 

� Allowable orientation 

� Pin names and their layout geometries 

� Routing blockages 

� Process antenna areas for the pins 

 

 

Power and ground pins are typically excluded from the logical library but they 

must be included in the abstract library. The following graphic (Fig. 1.1) depicts an 

example of a standard cell abstract. 
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Fig. 9.1  An example of a standard cell abstract. 

 

A popular format for abstract library is Layout Exchange Format (LEF). LEF 

format supports both the technology library and the cell library. The technology 

defines the name of the layers (e.g. metal layers and via layers) that are used in the 

cell libraries, therefore it is mandatory to load the technology library before the cell 

library. 

 

9.1.3 Three Types of Cell Libraries 

 

 There are three types of cell libraries: 

 

� Standard cell library 

� Pad cell library 

� Macro library 

 

 Standard cells must be placed in the “core” and on the “cell row”. “Core” and 

“Cell row” are described in the latter part of this chapter. Pads and macros do not have 

this restriction and can be placed anywhere on the layout. However, pads are typically 

placed on the peripherals of the layout. All P&R tools have specific functions to 

automate the placement of the pads. 
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9.2 IMPORT GATE NETLIST 

 

 Verilog is the most popular gate-level netlist format. It is also the preferred 

netlist format for most P&R tools. An alternative is the use of the VHDL gate-level 

netlist.  

 

 After loading the netlist into the P&R tool, the logic gate in the design bind to 

their cell master in the cell libraries. This process seems trivial, but it is necessary to 

cater to all situations where cells from different libraries have the same cell name. 

9.2.1 Cell and Instance 

 

 A cell library is a collection of cells. Standard cell refers to a logic gate. I/O 

cells are usually called I/O pads. Hard macros refer to the layout of the IP. An IP 

without a layout implementation is called a soft macro.  

 

 An instance refers to a cell in the design. Rather than saying “adding the cell 

AND2D1 to the design”, the common term used is “instantiating the cell AND2D1 to 

the design”. Every instance in the same design hierarchy must have a unique instance 

name. The following example is an instantiation of a 2-input AND gate: 

 

AND2D1 inst0 ( .A1(net1), .A2(net2), .Z(net3) ); 

 

 The instance name of the 2-input AND gate is “inst0”, and the master name 

(or cell name) is AND2D1. Figure 9.2 summaries the definition of cell and instance. 
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Fig. 9.2  Cell and instance 

9.2.2 Define power and ground connections 

 

 Refer to the instantiation of a 2-input AND gate. 

 AN2D1 inst0 ( .A1(net1), .A2(net2), .Z(net3) ); 

 

 Gate level netlist does not typically include the connection to the power and 

the ground supplies. However, these connections have to be defined before layout 

implementation. All P&R tools use global nets and wildcards to define these 

connections. For example, the following Design Exchange Format (DEF) statements 

create two new nets named VDD and VSS. It also connects all the pins with name 

“vdd” to net VDD, and all the pins with name “vss” to net VSS. The “*” in the 

commands is the wildcard that matches to any instance name.  

-VDD (* vdd) 

-VSS (* vss) 

 

 If VDD and VSS are the only two power nets in the design, and all the power 

pins of the cell instances are named “vdd” and “vss”, then these two commands are 

sufficient to define all the power supply connections.  
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 Tie-high and tie-low refer to the connection of the input pins to the power 

supply. Tie-high and tie-low are represented as 1’b1 and 1’b0 in the Verilog netlist. 

There are two ways to physically connect tie-high and tie-low nets. These nets can 

either connect directly to the power and the ground nets, or connect using tie-high and 

tie-low cells. Whichever the case, it is t he design of the pad library and the standard 

cell library that determines the appropriate type of connection.  

9.2.3 Instance name and hierarchical instance name 

 
 A design can contain many hierarchical levels. The design name is the same as 

the top-level design hierarchy name. An instantiation can be a cell or a sub-hierarchy.  

A netlist can instantiate the same sub-hierarchy several times. However, in order to 

allow the layout of the sub-hierarchy to be implemented differently for each instance, 

the sub-hierarchy must be “uniquified” by duplicating the sub-hierarchy with different 

hierarchy cell names. Figure 1.3 illustrates the “uniquification” process. Note that 

instance names are preserved during uniquification. 

 

 A full hierarchical name is required to refer to a particular instance. Refer 

again to Figure 1.3. Assume there is a flip-flop with instance name “U1” in 

“Adder32”. As “Adder32” is instantiated four times before uniquification, we can 

refer to that flip-flop in the four instances of “Adder32” as Inst0/U1, Inst1/U1, 

Inst2/U1 and Inst3/U1. As instance names are preserved during uniquification, the  

instance names of the four flip-flops remain unchanged after uniquification.  

 

 
 

Fig. 9.3  Uniquify the netlist. 
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9.3  SPECIFY DESIGN CONSTRAINT 

 P&R is a constraint-driven process. In the absence of constraints, P&R 

optimization is purely congestion-driven. A timing constraint is an important part of 

the design constraint. Timing constraints specify the timing goals of the design. In 

order to perform timing-driven placement or physical synthesis, timing constraints 

must be available. Timing constraints are most likely to be specified in SDC format. 

 

 The timing constraints should be specified at the top-level of the design. It is 

necessary to specify a complete top-level timing constraint for a timing-driven flow. 

Any unconstrained timing paths will not be optimized for timing performance. Hence, 

unconstrained paths might be implemented with logics that are very slow or with 

extraordinarily large slew. On the other hand, over-constraining the timing 

requirement is undesirable. An over-constrained design can result in an 

implementation that is unnecessarily large in area and the P&R will possibly consume 

a much longer run-time.  

 

 In addition to timing constraints, there are constraints not related to timing 

performance. There is no standardized name for this type of constraint, so it will be 

termed a “non-timing constraints” in this book.  

There are many different types of non-timing constraints. The following list describes 

some of them. 

 

�  Design rules which include maximum fan-out, maximum slew and maximum 

capacitance loading. 

�  Scan-chain re-ordering and re-partitioning. 

�  Selective hierarchy flattening. 

�  Buffering of inputs and outputs with user-specified cells. 

�  Identification of cells that the tool cannot modify or can only resize. 

�  Identification of nets that must be preserved during logic optimization. 

�  Disallow the use of certain cells.  

�  Assign higher priority to certain nets so as to achieve shorter wiring length. 

�  Restriction in the area that certain cells can be placed. 

�  Among others. 
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 Non-timing constraints can be employed to ensure the physical implementation 

meets the design requirements, improvement of layout quality and turn-around time, 

as well as to work-around the limitations 

of the P&R tools. 

 

9.4  FLOOR PLANNING 

 

 Floor planning is the first step of physical layout implementation. A floor plan 

should include the following decisions:  

 

�  Size of the layout  

�  Core area  

�  Placement of i/o pads and i/o pins  

�  Placement of the hard macros  

 

 A floor plan should include the placement of all the pads (or pins) and the hard 

macros. However, the standard cells are not placed yet and no routing is performed at 

this stage.  

9.4.1 Size of the layout 

 

 The first step in floor planning is to define the outline of the layout. If  the layout 

is rectangular, only the length and the width of the layout are  required. More co-

ordinates are needed to define the outline of a rectilinear layout, such as an L-shape 

layout. Most of the P&R tools do not alter the size of the layout specified by the user.  

9.4.2 Core Area 

 

The core area is usually defined by specifying the distance between the edge of the 

layout and the core, as shown in Figure 9.4.  
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Fig 9.4  Definition of the core area. 

 

 All standard cells must be placed in the core area. I/O pads and macros do not 

have this restriction although it is common to place macros in the core area. The area 

outside the core can be used to place the I/O pads, the I/O pins, and the core power 

rings. 

  

 Standard cells are placed in rows, similar to placing books on a book shelf. The 

rows are called “cell rows” and are drawn inside the core area. All cell rows have the 

same height. There are three common ways to arrange the cell rows (Figure 9.5). 

 

 The most common approach for layout with more than three metal layers is to flip 

every other cell row which does not leave a gap between the cell rows.  

The second configuration is to flip every other cell row, but leave a gap between 

every two cell rows. The purpose of the gaps is to allocate more resources for the 

inter-connect routings.  

  

 The last configuration is to leave a gap between every cell row, and not flip the 

cell rows. This configuration is useful when only two or three metal layers are 

available for routing.  
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Fig. 9.5  Three types of cell row configuration. 

 

 The “slanting lines” on the right of the cell rows in Figure 1.5 denote the 

orientation of the cell rows. Modern P&R tools will fill the core area with cell rows 

automatically. Some P&R tools require the user to specify the areas in the core where 

the cell-row should be created.  

 

 If all the standard cells are in the same power domain, then only one core area is 

required. In a multiple core power P&R flow, more than one core area must be 

defined, and every core area must associate itself with a power domain.  

9.4.3 Placements of IO Pads and IO Pins Geometries 

 

 For a chip-level layout, the next step is to place the IO pads. The P&R tool can 

fill the gaps between the pads with pad filler cells and corner cells. For a block-level 

layout, the user needs to define the location and geometries (size and metal layer) of 

every IO pin.  
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9.4.4 Placements of the Hard Macros 

 

 The floor plan is complete if the design does not contain any hard macro
1
. 

Otherwise, the next step is to place the hard macros. Placing the hard macros may not 

be a simple task. A good macro placement has the following qualities: 

 

�  Provides a compact layout. 

�  Does not cause routing congestion. 

�  Does not make timing closure difficult. 

�  Allows robust power routing between the power pads and the macros. 

 

 The biggest challenge in placing the macros is in assessing the quality of the 

floor plan, which cannot be achieved without executing the rest of the flow. Thus, 

floor planning is an iterative and time consuming process. The trick in performing 

floor planning is to shorten the turn- around time of the iterations, and to reduce the 

number of iterations. The following figure 9.6 depicts a simple floor plan of a chip-

level layout with only one macro.  

 

 
 

Fig. 9.6  A floor plan with one macro and I/O pads 
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9.5 POWER PLANNING 

 

 All connections to the power and ground nets are routed during power planning. 

The only exception is the tie-high and the tie-low nets. Most P&R tools use a 

dedicated router to route the power nets. All power routings created by the power 

router are considered pre-routes, and are not modified by the detailed router when the 

signal nets are routed.  

  

 The key consideration for power planning is: 

 

�  An acceptable IR-drop from the power pads to all power pins  

�  Meeting electro-migration requirements 

�  Does not result in routing congestion 

�  Compact layout 

 

 A power plan consists of several types of power structure. Figure 9.7 illustrates a 

typical sequence to construct the power structures.  

 

1. Core power rings are routed first  

2. Core power pads are connected to the core power rings  

3. The power rings are added around the macros where necessary  

4. Vertical stripes and horizontal stripes are added to reduce the IR- drop at the 

power  rails of the standard cells and the macros  

5. The power pins of the hard macros are tapped to the core rings or the power 

stripes  

6. If tie-high and tie-low cells are not used, the tie-high and tie-low inputs to the hard 

macros and IO pads are tapped to the power structures 

7. The power rails for the standard cell are added to the power plan  

 

 The power rails can tap the power from the core power rings, the power 

stripes and the macro power rings 
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Fig. 9.7  Steps in building a power plan. 

 

9.6 PHYSICAL SYNTHESIS 

 

 Physical synthesis refers to the placement of the standard cells and the 

optimization of the layout base on the design constraints. 

 

 Physical synthesis consists of a few typical phases: 

 

� Global placement 

� Global routing 

� Physical optimization 

�  detailed placement 

�  further physical optimization 

 

 

 After physical synthesis, all standard cells are placed on the cell rows. The 

placement should be legalized, which means that the standard cells are on the cell 

row, on the placement grid, non-overlapping, and the power pins of the standard cells 

are properly connected. The placement should be routable, meeting the timing goal, 

and satisfy the placement constraints specified by the user.  
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 In order to meet the timing goal, the tool might need to optimize the netlist. 

Different tools have different capabilities given the type of optimization it can 

perform. The user can also configure the type of optimization the tool can utilize. 

Some of optimization techniques a P&R tool can employ are listed below. The 

optimization techniques are listed in an increasing order of structural change relative 

to the original netlist. 

 

�  Gate sizing 

�  Buffer insertion and removal 

�  Pin swapping 

�  Cloning 

�  Logic restructuring 

�  Architecture retargeting 

 

 Physical synthesis becomes essential when the IC industry started to adopt 

process technologies that are 0.25um and smaller. The following table summaries the 

evolution of the placement methodology. 

 
Process Technology  Physical Optimization Techniques 
0.6um and larger Placement is congestion driven. Manual insertion of buffers 

to long nets after routing. 

0.35um Placement is timing driven. Physical optimization is 
restricted to gate sizing andbuffer insertion. 

0.25um and smaller Physical synthesis is fully adopted 

  
Table 9.1  Evolution of placement methodology with process technology. 

 

 Most P&R flows will not attempt to restructure the logic in the clock network. 

Some P&R tools have the ability to size the cells in the clock network during physical 

synthesis. To achieve a good estimation of the inter-connect parasitics, global routing 

is performed during physical synthesis. It is assumed that detailed routing will match 

global routing closely so that physical synthesis is optimizing on the real critical 

paths.  

  

 The routing congestion map can be derived from global routing. Any routing 
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congestion at this stage should be resolved as much as possible by reiterating the 

placement with additional controls, or by improving the floor plan and power plan. 

Before proceeding further to the layout design, the layout is now ready to perform IR-

drop analysis. Two main objectives of IR-drop analysis are to ensure  

 

�  All power pins of the hard macros and the standard cells are connected to the  

power structures 

�  The voltage drops in the power structures are within acceptable limit. 

 

9.7 CLOCK TREE SYNTHESIS 

 After all the standard cells are placed, the clock nets are buffered. The following 

list provides the additional requirements for synthesizing clock trees when compared 

to the buffering of the high fan-out non-clock nets: 

 

�  clock latency 

�  clock skew 

�  restriction on the type of buffer and inverter the clock tree can use 

�  stricter signal slew requirements on the clock nets  

 

 Clock latency is the delay of the clock signal from the clock source to the clock 

pin. Clock skew is the difference between the clock latencies and the two clock pins. 

 

 It is straight forward to specify the clock tree requirements to the P&R tool. If 

the clock tree starts from one source and fans-out only to the clock pins of the flip-

flops and the macros, the clock tree meets the requirements of the P&R tool. 

Unfortunately, this is not always the case. For example, the clock tree schematic 

shown below has the following additional requirements: 

� The clock latencies of flip-flops div_reg* do not have to be balanced with the 

clock latencies of the other flip-flops  

� A small clock skews between the flip-flops div_reg*  

� A small clock skews for the rest of the flip-flops in both functional mode and test 

mode  

� Optimize for shorter clock latencies during functional mode  
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Fig. 9.8  Clock tree schematics example 

 

 

 It is not uncommon for the clock tree synthesis algorithm to generate a poor 

clock tree when complicated blockages exist in the layout. The following is an 

example of a poor clock tree: Additional routing requirements are often applied on the 

clock nets. In order to reduce noise coupling, the route spacing to the clock net can be 

doubled. Shielding the clock net is another option to reduce noise coupling. For a 

clock with very high clock frequency, it may be necessary to use multiple-via on the 

clock routing to meet the electro-migration rules. 

 

 Before clock trees are inserted, the tool uses ideal clock latencies and ideal clock 

skews for timing analysis. After the clock trees are synthesized, the tool should use 

the actual clock latencies and clock skews for the timing analysis. It is now possible to 

analyze and fix hold violations using computed clock latencies associated with every 

clock end-point after clock tree synthesis. Hold violations should be fixed first in 

“best corner” operating condition, and then in the “worst corner” operating condition. 

Current P&R tools fix hold violations by adding delay to the data path. The tool will 

not attempt to make changes to the clock path. It is advisable to analyze the buffers 

added by the tool for hold fixing. If the result is not satisfactory, clock trees might 

need to be re-synthesized using different approaches. 
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9.8 ROUTING 

 

 The process of routing the non-power signals is called “detailed routing”. After 

clock tree synthesis, empty space still exists in the cell rows. These empty spaces in 

between the standard cells will eventually be filled by filler cells. Fillers can be 

inserted either before or after detailed routing. If the fillers contain metal routing other 

than the power rail, then the fillers should be inserted before routing. Otherwise, it is 

best to add the fillers after routing. Figure 9.9 shows the results before and after filler 

cell insertion.  

 

 

 
 

Fig. 9.9  Insertion of the filler cells 

  

 Routing is performed throughout P&R flow. Powers are routed during power 

planning by a dedicated router. During physical synthesis, the signal nets are 

“globally routed” using the global router. The routings are called global routes. Global 

routes allow the P&R tool to resolve routing congestion and estimate the routing 
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parasitic. After the clock trees are synthesized, the clock trunks are routed with actual 

metal geometries. This occurs before the clock trees are re-optimized. This is then 

followed by detailed routing. 

  

 Detailed routing is carried out in stages. The detailed routing stages are different 

in various P&R tools, but the methodology used for detailed routing is similar. The 

stages are outlined below.  

 

1. Track routing: Global routing uses a very coarse routing grid. Track routing 

assigns  the global routes to the actual routing tracks.  

2. Detailed routing with only metal one: Connections between cells that are placed 

side-by-side are possible candidates.  

3. Connecting the rest of the signal nets by following the result of track routing: The 

aim is to connect all the routings so that there are none “Open”. The routings can 

be full of routing violations (e.g. short) and design rule violations (e.g. metal to 

metal spacing violations).  

4. Resolve routing violations iteratively: The detailed router divides the layout into 

regions and works within each region to clean up the routing violations. This 

process iterates with a region of different sizes and aspect ratios. The iterative 

process continues until there are no more routing violations or the limit on the 

number of iterations has been reached.  

5. Iterating between fixing antenna violations and cleaning up routing violations: 

New routing violations can be introduced during the process of fixing the antenna 

violations.  

6. Optimizing the detailed routes: The types of optimization to be performed will 

depend on the user’s specifications and the tool’s capability. The optimization can 

include minimizing wire jog and switching of routing layers, or even out the 

spacing between the routes, and replacing single via with redundant via.  

 

 All P&R tools have the functionality to perform cell-level DRC and LVS on a 

routed design. However, it is mandatory to perform a full-layer (or sometimes called 

full-GDS) physical verification. 
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9.9 PHYSICAL VERIFICATION 

 

 After the layout is routed, a GDS containing the design layout can be generated 

from the P&R tool. Ideally, the GDS is ready to be sent for mask making and 

fabrication. However, any mistakes made during the P&R flow will be left 

undetected. Physical verification is an independent process of verifying the integrity 

of the layout.  

 

 There are three types of physical verification: 

 

� Design Rule Check (DRC) 

� Layout Versus Schematic (LVS) 

� Electrical Rule Check (ERC) 

 

 DRC checks the layout geometries for the manufacturing process. A full DRC 

deck contains hundreds of DRC rules. The following are some common DRC rules: 

 

� Spacing between geometries 

� Minimum and maximum width of the geometries 

� Density of the metals, the poly and the diffusion 

� Antenna violation 

� Via reliability 

 

 

 LVS checks the layout for correct connectivity between the devices in the circuit. 

A circuit device can be a transistor, a resistor, a capacitor, a diode, among others. 

During LVS verification, circuit devices and the inter-connections are extracted from 

the layout and saved as a layout netlist. This typically exists in a format similar to that 

of the spice format. The layout netlist is compared with the post-layout design netlist 

(usually i n Verilog format).  

 

 ERC identifies errors in layout that are related to electrical connections. 

Examples are latch-up protection, floating substrate, floating well, and bad device 
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connections. Currently, the ERC rules are typically embedded in the DRC and LVS 

rules. At 0.35um or larger technology, it is possible for the layout implementation to 

meet timing performance without physical synthesis and clock tree synthesis. In this 

case, the pre-layout netlist is the same as the post-layout netlist. However, P&R with 

0.35um or smaller technology definitely requires physical synthesis and clock tree 

synthesis for timing closure. Hence, the P&R tool has to make modifications to the 

netlist and output a post-layout netlist. As LVS performs the comparison between the 

post-layout netlist and the layout, it does not verify that the post-layout netlist is 

functionally equivalent to the pre-layout netlist. Equivalent checker tools are needed 

to guarantee the post-layout netlist has the same functionality as the pre-layout netlist. 

The complete physical verification flow is shown in Figure 9.10.  

 

 
 

Fig. 9.10  Physical verification flow. 

 

9.10 POST-LAYOUT VERIFICATION 

 

 Sign-off tools are tools that are used to perform the final check on the design. 

Due to run-time and memory usage considerations, P&R tools have to use simplified 

models during parasitics extraction, static timing analysis and other types of analyses. 

Hence, there is a need for sign-off tools. 

 

 On average, the parasitics extraction result from a P&R tool should be within a 

few percentage points from a sign-off parasitics extraction tool. However, some nets 

can exhibit a large difference, in excess of 100%. Similarly, the static timing engine in 
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the P&R tool and the sign-off static timing tool might show differences with respect 

to design constraints, delay calculation or tracing of the timing path. The sign-off 

tools may find violations the P&R tool misses. It may be necessary to correlate the 

interpretation of the design constraints by the P&R tool and the sign-off tools early in 

the P&R project. It is common practice to over-constrain the design by a small margin 

so that differences among the tools do not pose any concerns.  

The result of parasitics extraction is usually stored in SPEF or SPDF format. The 

extracted parasitics can be back-annotated into the sign-off static timing analyzer 

(STA) tool. STA performs delay calculations and verifies the timing performance. 

The STA tool can generate a standard delay format (SDF) file that is used by a logic 

simulator for post-layout sign-off simulation. The post-layout verification flow is 

shown in Figure 9.11. 

 

 

 
 

Fig. 9.11 Post-layout verification flow 

 

 

 If the timing goal is not achieved, then a possible attempt to close the timing is 

initiated. A correction to the layout by manual gate sizing and buffer insertion is 

standard practice to achieve the timing goal. Subsequently, the post-layout 

verification is repeated. Manual modification on the layout is too tedious with many 

timing violations. Therefore, it is also possible to back-annotate SPEF or SPF into the 

P&R tool, and let  the tool optimize the layout to meet the timing requirement. Care 

should be taken to ensure that the P&R tool does not create new timing violations 

while fixing existing timing violations.  
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10. AES (ADVANCED ENCRYPTION STANDARD) 

For explain flow of Synthesis and PNR here I am taking one example. Here I 

am taking Advanced Encryption standard (AES) as an example and in further chapters 

its synthesis and PNR will be explained. 

 

The Advanced Encryption Standard (AES) specifies a FIPS-approved 

cryptographic algorithm that can be used to protect electronic data. The AES 

algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt 

(decipher) information. Encryption converts data to an unintelligible form called 

cipher text; decrypting the cipher text converts the data back into its original form, 

called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 

192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. 

. 

10.1 NOTATION AND CONVENTIONS 

10.1.1 Inputs and Outputs 

The input and output for the AES algorithm each consist of sequences of 128 

bits (digits with values of 0 or 1). These sequences will sometimes be referred to as 

blocks and the number of bits they contain will be referred to as their length. The 

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits. Other input, 

output and Cipher Key lengths are not permitted by this standard. 

 

The bits within such sequences will be numbered starting at zero and ending at 

one  less than the sequence length (block length or key length). The number i attached 

to a bit is known as its index and will be in one of the ranges 0 � �i < 128, 0 � �i < 192 

or 0 � �i < 256 depending on the block length and key length (specified above). 

10.1.2 Bytes 

The basic unit for processing in the AES algorithm is a byte, a sequence of 

eight bits treated as a single entity. The input, output and Cipher Key bit sequences 

are processed as arrays of bytes that are formed by dividing these sequences into 

groups of eight contiguous bits to form arrays of bytes. For an input, output or Cipher 
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Key denoted by a, the bytes in the resulting array will be referenced using one of the 

two forms, an or a[n], where n will be in one of the following ranges: 

 

Key length = 128 bits, 0 �  n < 16;  Block length = 128 bits, 0 � �n < 16; 

Key length = 192 bits, 0 � n < 24; 

Key length = 256 bits, 0 �  �n < 32. 

 

All byte values in the AES algorithm will be presented as the concatenation of 

its individual bit values (0 or 1) between braces in the order {b7, b6, b5, b4, b3, b2, 

b1, b0}. These bytes are interpreted as finite field elements using a polynomial 

representation: 

 

7
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
0

i
i

i

b x b x b x b x b x b x b x b x b x
=

+ + + + + + + =� … (10.1) 

 

For example, {01100011} identifies the specific finite field element  x6 ��+ x5 + 

��x �+ 1. 

It is also convenient to denote byte values using hexadecimal notation with 

each of two groups of four bits being denoted by a single character as in table. 10.1. 

 
Bit 

pattern 
Character 

Bit 
Bit 

pattern 
Character 

Bit 
Bit 

pattern 
Character 

Bit 
Bit 

pattern 
Character 

Bit 
0000 0 0100 4 1000 8 1100 c 
0001 1 0101 5 1001 9 1101 d 
0010 2 0110 6 1010 a 1110 e 
0011 3 0111 7 1011 b 1111 f 

 
Table 10.1  Hexadecimal representation of bit patterns. 

 

Hence the element {01100011} can be represented as {63}, where the 

character denoting the four-bit group containing the higher numbered bits is again to 

the left. Some finite field operations involve one additional bit (b8) to the left of an 8-

bit byte.  Where this extra bit is present, it will appear as ‘{01}’ immediately 

preceding the 8-bit byte; for example, a 9-bit sequence will be presented as {01}{1b}.  
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10.1.3 Arrays of Bytes 

Arrays of bytes will be represented in the following form: 

  a0, a1, a2, a3………… an-1 

 

The bytes and the bit ordering within bytes are derived from the 128-bit input 

sequence 

input0, input1, input2 … input126, input127 

 

as follows: 

a0 = {input0, input1, …, input7}; 

a1 = {input8, input9, …, input15}; 

: 

: 

: 

a15 = {input120, input121, …, input127}. ---------------------------------------

-10.2 

 

Following table shows how bits within each byte are numbered. 

 
Input Bit 

Sequence 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

… 

Byte 

Number 
0 1 2 

 

Bit Number 

in byte 
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

… 

 

Table 10.2  Indices for Bytes and Bits. 

10.1.4 The State 

 

Internally, the AES algorithm’s operations are performed on a two-

dimensional array of bytes called the State. The State consists of four rows of bytes, 

each containing Nb bytes, where Nb is the block length divided by 32. In the State 

array denoted by the symbol s, each individual byte has two indices, with its row 

number r in the range 0 � �r < 4 and its column number c in the range 0 � �c < Nb. This 
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allows an individual byte of the State to be referred to as either s r,c or s[r,c]. For this 

standard, Nb = 4, i.e., 0 � �c < 4. 

 

Here input – the array of bytes in0, in1, in2,  … in15 – is copied into the State 

array as illustrated in Fig. 10.1. The Cipher or Inverse Cipher operations are then 

conducted on this State array, after which its final value is copied to the output – the 

array of bytes  out0, out1, … out15. 

 

Input Bytes   State Array   Output Bytes 

in0 in4 in8 in12  S0,0 S0,1 S0,2 S0,3  out0 out4 out8 out12 

in1 in5 in9 in13 S1,0 S1,1 S1,2 S1,3 out1 out5 out9 out13 

in2 in6 in10 in14 

 

S2,0 S2,1 S2,2 S2,3 

 

out2 out6 out10 out14 

in3 in7 in11 in15  S3,0 S3,1 S3,2 S3,3  out3 out7 out11 out15 

 

Fig. 10.1  State array input and output. 

 

Hence, at the beginning of the Cipher or Inverse Cipher, the input array, in, is copied 

to the State array according to the scheme: 

s[r, c] = in[r + 4c]  for 0 � �r < 4 and 0 � �c < Nb. ------------------------- (10.3) 

 

and at the end of the Cipher and Inverse Cipher, the State is copied to the output array 

out as follows: 

out[r + 4c] = s[r, c]  for 0 � �r < 4 and 0 � �c < Nb.------------------------ (10.4) 

10.1.5 The State as an Array of Columns 

  

The four bytes in each column of the State array form 32-bit words, where the 

row number r provides an index for the four bytes within each word. The state can 

hence be interpreted as a one-dimensional array of 32 bit words (columns), w0...w3, 

where the column number c provides an index into this array. Hence, for the example 

in Fig. 10.1, the State can be considered as an array of four words, as follows: 

 

w0 = s0,0 s1,0 s2,0 s3,0  w2 = s0,2 s1,2 s2,2 s3,2                     

w1 = s0,1 s1,1 s2,1 s3,1  w3 = s0,3 s1,3 s2,3 s3,3 .-------------------(10.5) 
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10.2 ALGORITHM SPECIFICATION 

 

For the AES algorithm, the length of the input block, the output block and the 

State is 128 bits. This is represented by Nb = 4, which reflects the number of 32-bit 

words (number of columns) in the State. For the AES algorithm, the length of the 

Cipher Key, K, is 128, 192, or 256 bits. The key length is represented by Nk = 4, 6, or 

8, which reflects the number of 32-bit words (number of columns) in the Cipher Key. 

 

For the AES algorithm, the number of rounds to be performed during the 

execution of the algorithm is dependent on the key size. The number of rounds is 

represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 when Nk = 6, and Nr = 14 

when Nk = 8. The only Key-Block-Round combinations that conform to this standard 

are given in Fig. 10.2. 

 

 Key Length 
(Nk words) 

Block Size 
(Nb words) 

Number of 
Rounds (Nr) 

AES-128 4 4 10 
AES-192 6 4 12 
AES-256 8 4 14 

 
Fig. 10.2  Key-Block-Round Combinations 

 

For both its Cipher and Inverse Cipher, the AES algorithm uses a round 

function that is composed of four different byte-oriented transformations:  

 

A. Byte substitution using a substitution table (S-box), 

B. Shifting rows of the State array by different offsets,  

C. Mixing  the data within each column of the State array, and  

D. Adding a Round Key to the State. 
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10.3 CIPHER 

At the start of the Cipher, the input is copied to the State array using the 

conventions described in Sec. 10.1.4. After an initial Round Key addition, the State 

array is transformed by implementing a round function 10, 12, or 14 times (depending 

on the key length), with the final round differing slightly from the first Nr-1 rounds. 

The final State is then copied to the output as described in Sec. 10.1.4. 

 

The round function is parameterized using a key schedule that consists of a 

one-dimensional array of four-byte words derived using the Key Expansion routine 

described in Sec. 10.5. The Cipher procedure is described in the Fig. 10.3. The 

individual transformations - SubBytes(), ShiftRows(), MixColumns(), and 

AddRoundKey() – process the State and are described in the following subsections. 

 
Fig. 10.3  Flow of AES Algorithm 

 

As shown in Fig. 10.3, all Nr rounds are identical with the exception of the 

final round, which does not include the MixColumns() transformation.  
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10.3.1 SubBytes()Transformation 

 

The SubBytes() transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-box). This S-box, 

which is invertible, is constructed by composing two transformations: 

 

1. Take the multiplicative inverse in the finite field GF(28); 

2. Apply the following affine transformation  

 

'
( 4)mod8 ( 5)mod8 ( 6)mod8 ( 7)mod8i i i i i i ib b b b b b c+ + + += ⊕ ⊕ ⊕ ⊕ ⊕  … (10.6) 

 

for 0 � i < �8 , where bi is the ith bit of the byte, and ci is the ith bit of a byte c 

with the value {63} or {01100011}. Here and elsewhere, a prime on a variable (e.g. 

b’�) indicates that the variable is to be updated with the value on the right.  

In matrix form, the affine transformation element of the S-box can be 

expressed as: 

'
0 0
'
1 1
'
2 2
'
3 3
'
4 4
'
5 5
'
6 6
'
7 7

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

b b

b b

b b

b b

b b

b b

b b

b b

� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �
� � � �� � �= +
� � � �� � �
� � � �� �
� � � �� �
� � � �� �
� � � �� �
� � � �� �� � �� � � �

�
�
�
�
�
�
�

� �
� �
� �
� �
� ��

         ------------------------ (10.7) 

Figure 10.4 illustrates the effect of SubBytes() transformation on the state. 

 

 
  

Fig  10.4 SubBytes() applies theS-Box to each byte of the state. 
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The S-box used in the SubBytes() transformation is presented in hexadecimal 

form in Fig. 10.5. For example, if S1,1 = �{53}, then the substitution value would be 

determined by the intersection of the row with index ‘5’ and the column with index 

‘3’ in Fig. 10.5. This would result in S’1,1� having a value of {ed}. 

 

  Y 

  0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63 7c 77 7b f2 6b 6f c5 30 1 67 2b fe d7 ab 76 

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 

3 4 c7 23 c3 18 96 5 9a 7 12 80 e2 eb 27 b2 75 

4 9 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 

5 53 d1 0 Ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 

6 d0 ef aa Fb 43 4d 33 85 45 f9 2 7f 50 3c 9f a8 

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 

8 cd 0c 13 Ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 

9 60 81 4f Dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 

a e0 32 3a 0a 49 6 24 5c c2 d3 ac 62 91 95 e4 79 

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 8 

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 

d 70 3e b5 66 48 3 f6 0e 61 35 57 b9 86 c1 1d 9e 

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 

X 

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 

 

Fig.10.5  S-box: substitution values for the byte XY (in hexadecimal format) 

10.3.2 ShiftRows() Transformation 

 

In the ShiftRows() transformation, the bytes in the last three rows of the State 

are cyclically shifted over different numbers of bytes (offsets). The first row, r = 0, is 

not shifted. 

Specifically, the ShiftRows() transformation proceeds as follows:  
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S’r,c = S r,(c+shift (r,Nb)) mod Nb for 0<r<4 and 0 �c <Nb,--------------- (10.8) 

 

where the shift value shift(r,Nb) depends on the row number, r, as follows (recall that 

Nb = 4): 

shift(1,4) = 1;  shift(2,4) = �2 ;     shift(3,4) = �3 .  -----------------(10.9) 

 

This has the effect of moving bytes to “lower” positions in the row (i.e., lower 

values of c in a given row), while the “lowest” bytes wrap around into the “top” of the 

row (i.e., higher values of c in a given row). Figure 10.6 illustrates the ShiftRows() 

transformation. 

 
Fig. 10.6  ShiftRows()  cyclically shifts the last three rows in the State. 

10.3.3 MixColumns () Transformation 

 

The MixColumns () transformation operates on the State column-by-column, 

treating each column as a four-term polynomial. The columns are considered as 

polynomials over GF(28) and multiplied modulo x4 + 1 with a fixed polynomial a(x), 

given by 

 

a(x) = {03}x3 + {01}x2 + {01}x + {02} -----------------------(10.10) 
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This can be written as a matrix multiplication. Let 

s’(x) = �a(x) * s(x) : 

 

 
Fig 10.7 MixColumns() operates on the State column-by-column 

 

10.3.4 AddRoundKey() Transformation 

 

In the AddRoundKey() transformation, a Round Key is added to the State by 

a simple bitwise XOR operation. Each Round Key consists of Nb words from the key 

schedule. Those Nb words are each added into the columns of the State, such that  

[ ]' ' ' '
0, 1, 2, 3, 0, 1, 2, 3,c c c c c c c c round Nb cS S S S S S S S w + +� � � �+ + + = + + + +� � � � ...(10.12)

 

 

where [wi] are the key schedule words, and round is a value in the range 0 � 

�round � � Nr. In the Cipher, the initial Round Key addition occurs when round = 0, 

prior to the first application of the round function. The application of the  

AddRoundKey () transformation to the Nr rounds of the Cipher occurs when 1� 

�round � �Nr.  

The action of this transformation is illustrated in Fig. 10.8, where l = round * Nb. 
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Fig. 10.8   AddRoundKey() XORs each column of the State with a word from 

the key schedule. 

10.4 KEY EXPANSION 

 

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion 

routine to generate a key schedule. The Key Expansion generates a total of Nb (Nr + 

1) words: the algorithm requires an initial set of Nb words, and each of the Nr rounds 

requires Nb words of key data. The resulting key schedule consists of a linear array of 

4-byte words, denoted [wi ], with i in the range 0 � �i < Nb(Nr + 1). 

 

SubWord() is a function that takes a four-byte input word and applies the S-

box  to each of the four bytes to produce an output word. The function RotWord() 

takes a word [a0,a1,a2,a3] as input, performs a cyclic permutation, and returns the 

word [a1,a2,a3,a0]. The round constant word array, Rcon[i], contains the values given 

by [xi-1,{00},{00},{00}], with x i-1 being powers of x (x is denoted as {02}) in the 

field GF(28). 

 

Here the first Nk words of the expanded key are filled with the Cipher Key. 

Every following word, w[i], is equal to the XOR of the previous word, w[i-1], and the 

word Nk positions earlier, w[i-Nk]. For words in positions that are a multiple of Nk, a 

transformation is applied to w[i-1] �prior to the XOR, followed by an XOR with a 

round constant, Rcon[i]. This transformation consists of a cyclic shift of the bytes in a 
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word (RotWord()), followed by the application of a table lookup to all four bytes of 

the word (SubWord()). 

 

It is important to note that the Key Expansion routine for 256-bit Cipher Keys 

(Nk = 8) is slightly different than for 128- and 192-bit Cipher Keys. If Nk = 8 and i-4 

is a multiple of  Nk, then SubWord() is applied to w[i-1] �prior to the XOR.  

 

10.5 IMPLEMENTATION ISSUES 

 

1. Key Length Requirements 

An implementation of the AES algorithm shall support at least one of the 

three key lengths specified 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8, 

respectively). Implementations may optionally support two or three key lengths, 

which may promote the interoperability of algorithm implementations.  

 

2. Keying Restrictions 

No weak or semi-weak keys have been identified for the AES algorithm, 

and there is no restriction on key selection.  

 

3. Parameterization of Key Length, Block Size, and Round Number 

This standard explicitly defines the allowed values for the key length 

(Nk), block size (Nb),  and number of rounds (Nr). However, future 

reaffirmations of this standard could include changes or additions to the allowed 

values for those parameters. Therefore, implementers may choose to design their 

AES implementations with future flexibility in mind.  

 

4. Implementation Suggestions Regarding Various Platforms 

Implementation variations are possible that may, in many cases, offer 

performance or other advantages. Given the same input key and data (plaintext or 

ciphertext), any implementation that produces the same output (ciphertext or 

plaintext) as the algorithm specified in this standard is an acceptable 

implementation of the AES. 
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11. SYNTHESIS RESULTS OF AES 

 

11.1 SYNTHESIS INPUTS  

 

11.1.1 VHDL or Verilog Code 

 

 The first requirement of any synthesis tool is HDL (Hardware Description 

Language) of your design. It may be in VHDL or Verilog format. Here AES 

(Advanced Encryption Standard) VHDL code is used as input to synthesis tool. 

 

11.1.2 Synthesis Library File( LIB file) 

 

 It contains following information. 

 

� Cell timing 

� Cell functionality 

� Cell netlist 

� Design Rule Constraints 

 

 In this Design following Library used for Synthesis 

 

Library Name 1) ECL065M2V0p6v1p0TD 

2) REG 

Technology 65 nm 

No .of cells 53 

Library Type Standard Cell 

 

Table 11.1 Library Information 
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11.1.3 Synopsys Design Constraints ( .sdf ) 

 

 Synthesis of any code requires timing constraints. Which include clock period, 

Input delay, Output Delay etc. In this Design following constraints are given to 

synthesis tool. 

 

Clock Period 3.33 nsec 

Input Delay 0.3 nsec 

Output Delay 0.3 nsec 

 

Table 11.2  Timing Constraints 

 

 

11.1.4 Define Used Cell 

 

 Except all this files, depends on your requirement we can suggest tool that 

which cells to be used and which not from given .lib file. For this design out of 53 

cells only 24 cells are given to tool for use in Synthesis procedure.  

 

11.2 SYNTHESIS OUTPUT  

 

11.2.1 Synthesized Netlist 

 

 Synthesis output is mainly contains synthesized netlist of given design code in 

VHDL or Verilog format. Here output netlist is in Verilog format. 

 

11.2.2 Timing Reports  

  

 It Contains different timing results such as length of critical path in netlist, Clock 

periode in critical path, slack in critical path etc.This report is given in following table 

11.3. 



 

 64 

  Levels of Logic: 27 

  Critical Path Length: 3.18 

  Critical Path Slack: 0 

  Critical Path Clk Period: 3.33 

  Total Negative Slack: 0 

  No. of Violating Paths:  0 

  No. of Hold Violations:  0 

 

Table 11.3 Timing Report 

 

11.2.3 Area Occupied 

 

 There is one another report which contains total area required by design cells. It 

doesn’t contains area of routing required. It gives area in  two categories. One is area 

required by Combinational Logic and another is area required by non-combinational 

logic. Addition of this two gives you total area. 

 

 

Combinational Area: 14231.88 

Non-combinational Area: 9406.8 

Net Area: 0 

Cell Area: 23638.68 

Design Area: 23638.68 

  

Total Number of Nets: 6338 

 

Table 11.4  Total Area Occupied by design 

11.2.4 Individual Cell Report 

 

 This tool also give information about each cell. Means which cell is used how 

many times in design, Its unit area as well as total area occupied by individual cell. 

This Results are shown in below table 11.5. 
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Sr 

No. Reference Library 

Unit 

Area Count 

Total 

Area Attributes 

1 AO12X8 ECL065M2V0p6v1p0TD 4.68 22 102.96   

2 AO12X15 ECL065M2V0p6v1p0TD 4.68 10 46.80   

3 AOI12X5_ ECL065M2V0p6v1p0TD 3.12 416 1297.92   

4 AOI12X10 ECL065M2V0p6v1p0TD 4.68 2 9.36   

5 AOI22X5 ECL065M2V0p6v1p0TD 3.12 1542 4811.04   

6 AOI22X10 ECL065M2V0p6v1p0TD 6.24 7 43.68   

7 BFX15 ECL065M2V0p6v1p0TD 3.12 95 296.40   

8 BFX31 ECL065M2V0p6v1p0TD 4.68 4 18.72   

9 BFX62 ECL065M2V0p6v1p0TD 9.36 1 9.36   

10 D_FF REG 14.04 670 9406.80   

11 IVX8 ECL065M2V0p6v1p0TD 1.56 455 709.80 n 

12 IVX15 ECL065M2V0p6v1p0TD 1.56 570 889.20   

13 IVX31 ECL065M2V0p6v1p0TD 3.12 8 24.96   

14 MXX15 ECL065M2V0p6v1p0TD 6.24 3 18.72   

15 ND2X12 ECL065M2V0p6v1p0TD 3.12 322 1004.64   

16 NR2X6 ECL065M2V0p6v1p0TD 3.12 38 118.56   

17 NR2X11 ECL065M2V0p6v1p0TD 3.12 96 299.52   

18 NR2X22 ECL065M2V0p6v1p0TD 6.24 2 12.48   

19 NR2X33 ECL065M2V0p6v1p0TD 9.36 1 9.36   

20 OAI12X5 ECL065M2V0p6v1p0TD 3.12 847 2642.64   

21 OAI12X10 ECL065M2V0p6v1p0TD 4.68 3 14.04   

22 OAI12X19 ECL065M2V0p6v1p0TD 9.36 1 9.36   

23 XNRX10 ECL065M2V0p6v1p0TD 6.24 284 1772.16   

24 XR2X15 ECL065M2V0p6v1p0TD 7.8 9 70.20   

              

Total      5408 23638.68   

   

Table 11.5  Individual Cell Report 
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 It also tells about cell attribute means cell is combinational or Non-Combinational 

type. Meaning of each attribute is given in following table 11.6. 

 

 By using this table we can plot following charts of comparison. 

 

 Fig 11.1 shows Unit area of Individual cell. From which we can analyze that Flip-

Flop requires larger area out of all cells. And in case of Combinational cells BFX62, 

NR2X33 and OAI12X19 requires larger area out of all others. 

 

 
Attributes Meaning 
B black box (unknown) 

Bo 
allows boundary 
optimization 

D dont_touch 
Mo map_only 
H Hierarchical 
N Noncombinational 
R removable 
S synthetic operator 

 
Table 11.6  Attribute Meaning used in Synthesis Report 
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Fig 11.1  Comparison of Individual Cell Area 
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 Whereas, Fig. 11.2 Contains Comparision of No. of cells used in design, which 

shows that AOI22X5 is most frequently used cell in library, which uses more than 

1500 times in dsign. 

 

 Fig 11.3 shows total area occupied by Individual cell in Design. From which we 

can analyze that Flip-Flop requires larger area out of all cells. And in case of 

Combinational cells AOI22X5 and OAI12X5 requires larger area out of all others. 

 

 Fig 11.4 shows Combined plot of Normalized cell count and total area occupied 

by Individual cell in Design. From which we can analyze that area occupied by Flip-

Flop is larger than area required by AOI22X5 cell, even if no. of cell of AOI22X5 is 

larger than required by Flip-flop.  This is because that individual area of Flip-Flop is 

much larger than required by AOI22X5 cell. 
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Fig 11.2  Comparison of Individual Cell Count Used 
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Total Area Occupied by individual cell
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Fig 11.3  Comparison of Total occupied by Individual Cell in Design 
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Fig 11.4  Comparison of Normalized Cell Count and Corresponding occupied 

area 
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12.  PNR RESULTS OF AES 

 

12.1 INPUTS TO PNR TOOL 

12.1.1 Technology File( .tf))  

Parameters used in PNR  

 

RouteTypeName CTSRoute 
NonDefaultRule DBLCUT_RULE 
TopPreferredLayer 5 
BottomPreferredLayer 3 
PreferredExtraSpace 1 
PostOpt YES 
RouteClkNet YES 
MaxSkew         180ps 

 

12.1.2 Synopsys Design Constraints ( .sdf ) 

 It contains timing constraints and clock definition.  

 
Clock Periode 3.33 nsec 
Input Delay 0.3 nsec 
Output delay 0.3 nsec 

 

12.1.3 Reference Libraries 

 

 It contains .LIB ( Library )  or .DB ( Database ) file.  

 Both of this contains following information. 

 

� Cell timing 

� Cell functionality 

� Cell netlist 

� Design Rule Constraints 
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12.1.4 Netlist File 

 It is synthesized output of our design. It mainly contains synthesized in VHDL 

or Verilog format. It may be in .edf (Electronic Design Interchange Format). Here this 

netlist is in Verilog format. 

 

12.1.5 Floorplan description File 

 It defines combinational and non-combinational area in total area. It also 

defines blockages in design. So it will gives guidelines to tool that at which place 

which type of cells should be placed. 

 

12.1.6 Library Exchange Format (.LEF) file  

 It contains the units, drawing patterns, layers, design rules, vias, and parasitic 

resistance and capacitance of the manufacturing process. 

 

12.1.7 GDSII – Files 

 It contains the physical layout information; to create reference libraries. 

 

12.2 OUTPUT OF PNR TOOL  

 

12.2.1 Synopsys Delay Format (.sdf) 

 It contains post-floorplaning timing. 

 

Setup mode all reg2reg in2reg reg2out 

WNS (ns) 0.004 0.287  0.004  3.122  

TNS (ns) 0.000  0.000  0.000  0.000  

Violating Paths 0 0 0 0 

All Paths 1469 670   1228   129   
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12.2.2 Synopsys Parasitic Extract Format (.spef or .spf) 

 It contains all parasitic capacitance for different load condition. 

12.2.3 Optimized Netlist (.v or .hv ) 

 It is Optimized netlist after PNR. It may be in .v which is flattened type netlist 

or may be in .hv format which is hierarchical format. 

12.2.4 Graphical Data Stream (.gds) 

 It contains updated gds format which is physical layout information.   

 

12.3 OUTPUT DESIGN IMAGES: 

 

 In PNR first of all floorplan is decided. It contains information about where 

Combinational and non-combinational cells will be placed. In this design ,it is in ‘+’ 

shape. Where in rectangle combinational cells will be placed and in other part, means 

in boarder of rectangle non-combinational cells will be placed. It also contains 

Obstacles , which will not allow any cell to place in that area. 

 

 Now  as per your input netlist and floorplan this design is placed in your given 

area. Than according to given timing constraints this design is optimize and after 

multiple of iteration this design is finally placed. Floorplan view of this design given 

in fig. 12.1. In this figure blue color indicates placed cell and other is blank area. 
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Fig 12.1  Placed Design Floorplan View 

 

 

 

 Fig 12.2 indicates placed designs view with metal layers. In this circled view is 

zoom in fig 12.3.  In this figure it can see that cell is shown as blue colored. As well 

as it is also seen that it is connected with VDD and GND lines selected above and 

below it. 
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Fig 12.2  Placed Design With Routing Nets 

 
Fig 12.3 Zoomed Placed Design View 
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 After placement and final routing of design fillers are added into the design. This 

filler might be a dummy cell in case of combinational area or may be dummy flip-flop 

in case of non-combinational area. Here cell contains pin on it whereas fillers doesn’t 

have any pin information on it. So in this way filler cell can be separated from design 

cells. 

 

 Figure 12.4 shows physical view of design after adding filler to it. Here also same 

way you can identify filler cells from design cells. In this case you can identified it by 

using routing lines. Filler cells don’t have any routing lines whereas design cells 

contain routing lines. 

 

 

 

 
 

Fig 12.4  Netlist View after adding Filler 

 

Placed Cell 

Filler
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 After completing PNR it will generates new optimized netlist. This netlist is 

shown in below fig 12.5. 

 

 

 
 

Fig 12.5 Output Optimized Net 
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13. CONCLUSION 

 

 This report contains information related to Structured ASIC type of semi-custom 

design style. This design style reduces design cycle time and cost of design. Here first 

standard cell library is prepared which further used in Synthesis and PNR. Other 

issues related to making layout are also discussed. These layouts are used to extract 

information about timing and area which will be used in Synthesis and PNR. This 

report also gives brief overview of Synthesis and PNR flow of any design using 

structured ASIC. Advanced Encryption Standard (AES) is more widely used in 

security systems. VHDL code of AES is used to demonstrate complete flow of 

Synthesis and PNR.  
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