ANALYSIS AND DESIGN OF TRESTLE TYPE WATER TOWER WITH DIAGONAL BRACING USING FEM AND DRAFT CODE PROVISIONS

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Civil Engineering (Computer Aided Structural Analysis & Design)

By

Sonar Priyadarshini V. (04MCL018)

> Guide Yogesh T. Vani

DEPARTMENT OF CIVIL ENGINEERING Ahmedabad 382 481 May 2006

CERTIFICATE

This is to certify that the Major Project entitled "Analysis and Design of Trestle type Water Tower with Diagonal bracing using FEM and Draft Code Provisions" submitted by Ms. Priyadarshini Vijay Sonar (04MCL018), towards the partial fulfillment of the requirements for the degree of Master of Technology in Civil Engineering (Computer Aided Structural Analysis and Design) of Nirma University of Science and Technology, Ahmedabad is the record of work carried out by her under my supervision and guidance. In my opinion, the submitted work has reached a level required for being accepted for examination. The results embodied in this major project, to the best of my knowledge, haven't been submitted to any other university or institution for award of any degree or diploma.

Yogesh T. Vani Guide, Structural Consultant, 4, Anupam Flats, Shree Matangi Society, Udyan Marg, Ahmedabad

Prof. P.H. Shah Head, Department of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad

Dr. H.V. Trivedi Director, Institute of Technology, Nirma University, Ahmedabad

Examiner

Examiner

25-05-06 Date of Examination

ACKNOWLEDGEMENT

It gives me great pleasure in expressing sincere thanks and profound gratitude to **Yogesh T. Vani**, Senior Consulting Engineer (Visiting Faculty at CEPT) Ahmedabad for his invaluable guidance and encouragement throughout this Major project. I heartily thank him for his suggestions and for the clarity of the concepts of the topic that helped me a lot during this study.

I extend my special thanks to **Prof. G.N. Patel**, Professor, Department of Civil Engineering and **Prof. P.H. Shah**, Head, Department of Civil Engineering, Institute of Technology, Nirma University, Ahmedabad for his continuous kind words of encouragement and motivation throughout the Major Project. I am heartily thankful to **Prof. C. H. Shah**, Structural consultant for his suggestions to improve quality of work. I am also thankful to **Dr. H. V. Trivedi**, Director, Institute of Technology for his kind support in all respect during my study.

I am thankful to **Prof. P.V. Patel**, **Prof. U.V. Dave**, **Prof. S. P. Purohit**, **S. Pandya** and all faculty members of Institute of Technology, Nirma University, Ahmedabad for their special attention and suggestions towards the project works.

I will be obliged to **Mr. Rushikesh Trivedi**, Structural engineer, VMS Consultants for his time and the help he offered during project.

The blessings of **God and my family members** makes the way for completion of major project-1. I am very much grateful to them.

I am also thankful to all my friends especially **Mr. Anil Wadile** for his suggestions and help, he gave throughout my M Tech Course.

> Sonar Priyadarshini V. Roll No.04MCL018

ABSTRACT

Water Tower is a special liquid retaining structure which is designed as crack free structure using Working Stress Method. There are basic discrepancies observed where the design of container is made with Working Stress Method and the supporting structure is designed by Limit Stress Method. As all engineering structures undergo Earthquakes with their distinct behaviour, Water tower also behaves quite differently than ordinary building structures.

In earlier codes provisions were given considering Water tank as Single Degree of Freedom system but in Draft Code impulsive and convective water masses of Container water are considered.

The Bhuj Earthquake occurred on 26th January 2001, most of the Water tanks built in Gujarat state which were designed by *IS 1893 (1984)* Code have survived the earthquake. The functioning of Water tanks during recent earthquake is at variance with conservative design approach adopted by provisions of Proposed Draft Code. There are varying opinions regarding provisions for elevated tanks seismic analysis in Proposed Draft Code '*IS: 1893 (2002) (part II)*'. Comments regarding Proposed Draft are also mentioned here. In this study comparison between design forces for Water tanks obtained by the provisions of Old Code and those of the Proposed Draft Code is carried out.

The dissertation also deals with the concept where we can achieve economical water tank staging by introducing diagonal bracings thus reducing the design column and horizontal bracing moments considerably and providing lighter sections. Considerable increase in cost results due to adoption Proposed Code, for Water tanks resting on column supports staging or shaft supports.

Generally in concrete design, Diagonal bracings are not preferred due to congestion of reinforcement at joints and difficulties in detailing and construction. If these problems are not addressed adequately, there is a potential danger which may lead to the failure of water tank supporting staging. In present dissertation steel diagonal Bracings are considered and the forces in columns and bracings due to conventional peripheral bracing system with and without Diagonal Bracings are compared.

The lateral load carrying capacity of structure is based on its stiffness and its load distribution mechanism. The trestle is found to be flexible compared to the shaft and thus subjected with lower lateral forces. For the stiffness calculation STAAD Pro software has been used which gives more accurate stiffness as it incorporates 3D behaviour of frame staging.

The provisions regarding Response Reduction Factors adopted for Shaft supports in Proposed Draft Code appears to be based on the thought that shafts are more vulnerable than the Trestle support. Although in Gujarat most of the tanks are Shaft supported and they have performed well during recent Earthquake.

The seismic analysis is carried out manually using old code provisions and draft code provisions. The Dynamic analysis of Case study problem is done using STAAD Pro.

First chapter includes the introduction part.

Second chapter includes the literature survey where the literature available for Water tanks regarding Modeling, design, Draft Code Provisions, Various Bracing System is abstracted. Scope of work is also included in the same chapter.

Third chapter includes comparison of Proposed Draft code with *IS* 1893-1984 and the discussion for provisions of draft code are reviewed.

Fourth chapter consists of Analysis and design of Water tank supported on trestle.

Fifth chapter contains the dynamic analysis of water tank carried out using STAAD Pro software which also consists of the time period variation of water tank for various modes of vibrations for various decreasing order capacities.

Sixth chapter includes estimation and cost analysis for trestles with and without Diagonal bracings additional to the Peripheral bracings for improving effectiveness of supporting structure with graphical representations.

Seventh chapter concludes with graphical representations and discusses future scope of the project.

CONTENTS

Certificate			Ι
Acknowledg	ement	t	II
Abstract			III
Contents			V
List of figure	es		VIII
List of table	s		IX
Abbreviatior	n Nota	tion and Nomenclature	Х
Chapter 1	Intro	oduction	
	1.1	General	1
	1.2	Types	1
	1.3	Materials	2
	1.4	Water tanks staging	2
		1.4.1 Shaft type staging	3
		1.4.2 Trestle type staging	3
	1.5	Innovative overhead water tanks	4
	1.6	Objective of study	5
	1.7	Outline of dissertation	6
Chapter 2	Liter	ature survey	
	2.1	Analysis	7
	2.2	Design	8
	2.3	Modeling	8
	2.4	Staging configuration with alternate Bracing Systems	9
	2.5	Column Stiffness and Lateral Load Distribution on	12
		Staging of Water tank	
	2.6	Effects of Earthquakes on Liquid Retaining Structures	14
	2.7	Effects of Winds on Liquid Retaining Structures	18
	2.8	Soil structure interaction	19
Chapter 3	Revi	ew of Proposed Draft Code <i>IS 1893-2005</i> (Part II)	
	3.1	General	22
		3.1.1 Spring mass model for seismic analysis	22
		3.1.2 Time Period	23

		3.1.3 Damping	24
		3.1.4 Design horizontal seismic co-efficient	24
		3.1.5 Base shear	25
		3.1.6 Base moment	26
		3.1.7 Direction of Earthquake forces	27
	3.2	Reviews	27
Chapter 4	Ana	ysis and Design of Water Tank	
	4.1	Determination of Stiffness of trestle	29
	4.2	Intze Tank Container design	32
		4.2.1 Assumed dimensions of water container	33
		4.2.2 Design of Top Dome	33
		4.2.3 Design of Top ring beam	34
		4.2.4 Design of cylindrical wall	35
		4.2.5 Design of Middle Gallery	35
		4.2.6 Design of Middle ring beam	36
		4.2.7 Design of Conical shell	37
		4.2.8 Design of Bottom dome	38
		4.2.9 Design of Bottom ring beam	38
	4.3	Peripherally Braced Trestle	40
		4.3.1 Seismic Load Analysis as per Proposed Draft Code	40
		4.3.2 Seismic Load Analysis as per IS 1893-1984	46
		4.3.3 Comparison between Existing & Draft Code	47
		4.3.4 Wind Load Analysis as per Proposed Draft Code	48
		4.3.5 Wind Load Analysis as per IS 875-1987	53
		4.3.6 Design of Peripherally Braced Trestle	59
	4.4	Steel Diagonally Braced Trestle	61
		4.4.1 Seismic Load Analysis as per Proposed Draft Code	61
		4.4.2 Seismic Load Analysis as per IS 1893-1984	67
		4.4.3 Comparison between Existing & Draft Code	68
		4.4.4 Wind Load Analysis as per Proposed Draft Code	68
		4.4.5 Wind Load Analysis as per IS 875-1987	68
		4.4.6 Design of Peripherally with Diagonally braced	69
		Trestle	
		4.4.7 Detailing For Diagonal Members	71

	4.5	Design Force summary	72
	4.6	Design of Footing	74
	4.7	Design summary	80
	4.8	Drawings sheets for Design of Water tank	83
Chapter 5	Dyna	amic Analysis of Water Tank	
	5.1	Model Simulation	85
	5.2	Properties of Model	87
	5.3	Loads Considered	87
	5.4	Results in Graphical representation	89
	5.5	Conclusion	90
Chapter 6	Estii	mation of Water Tank	
	6.1	Calculation of quantities	91
	6.2	Calculation of steel for lateral ties for columns	92
	6.3	Calculation of steel for stirrups of bracings	93
	6.4	Cost comparison for trestles with different bracing	95
		Systems	
	6.5	Volumetric comparison for trestles in graphical form	96
	6.6	Cost comparison for trestles in graphical form (cost is in	97
		rupees)	
	6.7	Conclusion	98
Chapter 7	Cone	clusion and future scope of work	
	7.1	Proposed code comparison	99
	7.2	Graphical representation of results	101
	7.3	Concluding remarks	106
	7.4	Future scope of work	108

References

Appendix – A	List of Useful Websites
Appendix – B	Lateral load distribution for Trestle

LIST OF FIGURES

Sr. No.	Figure	Name of Figure	Page
	No.		No.
1	1.1	Types of Tank Staging	2
2	1.2	Innovative Elevated tanks	4
3	2.1	Water tank and two mass representation	9
4	2.2	Elevated Water tank at Gandhidham	15
5	2.3	Usual trestle tower configuration	19
6	2.4	Staging with radial beams and other with radial	19
		beams and central column	
7	2.5	Staging with two concentric rows of columns	20
		connected by radial and circumferential beams	
8	2.6	Diagonal braces	20
9	3.1	Two mass idealisations and equivalent	23
		uncoupled system	
10	3.2	Coefficient of impulsive (Ci) and convective (Cc)	24
		mode time period for circular tank	
11	4.1	Stiffness calculations for trestle	30
12	4.2	Elevation and Plan of case study problem	31
13	4.3	Conical shell volume calculations	37
14	4.4	Detailing for steel diagonal x bracings	71
15	4.5	Drawing sheet no.1	74
16	4.6	Drawing sheet no.2	75
17	5.1	Beam elements and plate elements	85
18	5.2	Three dimensional view of water tank	87
19	5.3	Loads considered for dynamic analysis	88
20	5.4	Variations of frequencies for different modes	90

LIST OF TABLES

Sr.	Table	Title	Page
No.	No.		No.
1	1.1	Functions of trestle Elements	3
2	5.1	Eigen solutions	89
3	5.2	Base shear results	90

ABBREVIATION NOTATION AND NOMENCLATURE

Notation	Meaning
Ŷ	Density
(Ah)c	Design horizontal seismic coefficient for convective mode
(Ah)i	Design horizontal seismic coefficient for impulsive mode
∆bt	Drift
Ac	Concrete area
Ah	Horizontal seismic coefficient
As	Area of steel reinforcement
Cc	Coefficient of convective mode
Ср	Coefficients for bending moment
D	Diameter o water container
E	Joint efficiency factor
Eb	Modulus of elasticity of beam
Ec	Modulus of elasticity of Column
Es	Modulus of Elasticity
F	Allowable unit stress
F	Known force applied at CG of container
G	Specific capacity
g	Acceleration due to Gravity
Н	Depth from top of tank
h	Height of panel
h	Panel height
h'	Free Board
h1	Rise of Top dome of water tank
h2	Rise of bottom dome of water tank
hcg	Dist of container cg from ground level in Ground supported tanks
hcg	Height of center of gravity of empty container measured from base of staging
hi*	Height of impulsive mass above bottom of tank wall (considering base pressure
hs	Structural height of staging, measured from top of footing of staging to the bottom of tank wall
1	Importance factor
Ib	Moment of Inertia of beam
Ic	Moment of inertia of Column
К	Stiffness of Trestle
Kb	Stiffness of Beam
Kbg	Stiffness of bracings with equal panel height at top and bottom

KsStiffness of stagingLLengthLSpan of bracing girdermModular ratiombMass of base slab/platemiImpulsive mass of watermsEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNPMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apage	Kc	Stiffness of Column
LLengthLSpan of bracing girdermModular ratiombMass of base slab/platemiImpulsive mass of watermsEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNPMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in impulsive mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle angle	Ks	Stiffness of staging
LSpan of bracing girdermModular ratiombMass of base slab/platemiImpulsive mass of watermsEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNbMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicirch apolo	L	Length
mModular ratiombMass of base slab/platemiImpulsive mass of watermsEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNbMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSemicircle angle	L	Span of bracing girder
mbMass of base slab/platemiImpulsive mass of watermsEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNPMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSaminicip apple	m	Modular ratio
miImpulsive mass of watermsEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNPMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorRiRadius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSeminicip applo	mb	Mass of base slab/plate
msEquivalent massmtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNPMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorRiRadius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSeminicip apple	mi	Impulsive mass of water
mtMass of roof slabmwMass of tank wallNcNo. of Column in periphery of stagingNÞMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSemicircle apole	ms	Equivalent mass
mwMass of tank wallNcNo. of Column in periphery of stagingNÞMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorRiRadius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.Time period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apole	mt	Mass of roof slab
NcNo. of Column in periphery of stagingNÞMeriodonal thrustPAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apole	mw	Mass of tank wall
NÞ Meriodonal thrust P Allowable soil pressure q Design Load Q Required capacity q1 Uniform radial pressure Qd Volume Occupied r Radius of the container R Response reduction factor R1 Radius of Bottom dome S Surface Area Sa/g Average response acceleration coefficient T Hoop tension T Shell plate thickness tb Thickness of base slab/plate. Tc Time period in convective mode of container V Base shear V Shear force Vb Base shear W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apole	Nc	No. of Column in periphery of staging
PAllowable soil pressureqDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	NÞ	Meriodonal thrust
qDesign LoadQRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSemicircla angle	Р	Allowable soil pressure
QRequired capacityq1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorADisplacement resultedθSemicircle apole	q	Design Load
q1Uniform radial pressureQdVolume OccupiedrRadius of the containerRResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle angle	Q	Required capacity
QdVolume OccupiedrRadius of the containerRResponse reduction factorR_1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	q1	Uniform radial pressure
rRadius of the containerRResponse reduction factorRiRadius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apole	Qd	Volume Occupied
RResponse reduction factorR1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	r	Radius of the container
R1Radius of Bottom domeSSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.TcTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	R	Response reduction factor
SSurface AreaSa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	R ₁	Radius of Bottom dome
Sa/gAverage response acceleration coefficientTHoop tensionTShell plate thicknesstbThickness of base slab/plate.T_cTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	S	Surface Area
 T Hoop tension T Shell plate thickness tb Thickness of base slab/plate. T_c Time period in convective mode of container Time period in impulsive mode of container V Base shear V Shear force Vb Base shear W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apple 	Sa/g	Average response acceleration coefficient
 T Shell plate thickness tb Thickness of base slab/plate. T_c Time period in convective mode of container Time period in impulsive mode of container V Base shear V Shear force Vb Base shear W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apple 	Т	Hoop tension
tbThickness of base slab/plate.T_cTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	Т	Shell plate thickness
TcTime period in convective mode of containerTiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	tb	Thickness of base slab/plate.
TiTime period in impulsive mode of containerVBase shearVShear forceVbBase shearW1Total domed weightZZone factorΔDisplacement resultedθSemicircle apple	Tc	Time period in convective mode of container
 V Base shear V Shear force Vb Base shear W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apple 	ті	Time period in impulsive mode of container
 V Shear force Vb Base shear W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apple 	V	Base shear
Vb Base shear W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apple	V	Shear force
W1 Total domed weight Z Zone factor Δ Displacement resulted θ Semicircle apple	Vb	Base shear
Z Zone factor Δ Displacement resulted θ Semicircle apple	W1	Total domed weight
Δ Displacement resulted	Z	Zone factor
A Semicircle angle	Δ	Displacement resulted
Semicircle angle	θ	Semicircle angle
ocb Allowable Stress in compression bending	ocb	Allowable Stress in compression bending
ot Allowable stress in tension	σt	Allowable stress in tension

1.1 GENERAL

The storage reservoirs are part of the essential urban amenities. For the drinking purposes and industrial requirement Water is necessarily stored in large capacity reservoirs. They are special civil engineering structures in which, containers are designed as crack free, in order to ensure them to be leak proof. Also in these structures, the solid liquid interaction comes into picture. Storage containers are generally designed by Working stress method and the staging, i.e. supporting structure for storage containers are designed with Limit state method. Thus the different methodologies create some natural discrepancy in the Water tanks, especially if the entire structure is designed as one unit.

Due to Inverted Pendulum geometry, the design of Overhead Water tank is governed by Lateral Forces that may be Earthquake Forces or Wind Forces. In case of India, Water tanks are designed as per *IS: 3370 (Part I to V), IS: 11682*, and *IS: 1893*. After the event of Bhuj Earthquake of M 7.7 on Richter scale, the state government of Gujarat sponsored GSDMA (Gujarat Disaster Management Authority) project, which examined the necessity for revision of earthquake codes with the help of IITK (INDIAN INSTITUTE OF TECHNOLOGY, KANPUR), which suggests increase in earthquake forces as per Proposed Code.

It is not clear to what extent this sponsored assignment studied the performance of existing Water tanks of Gujarat during the past earthquake. The existing tanks were designed as per IS: 1893-1984. They are large in numbers of various capacities; constructed on different type of soils condition and that sense are truly representative of all possible situations.

The Draft Code suggests for Elevated Water tanks the response reduction factors of half the value then that for the building frame. Adoption of Draft code will not only result in increase of cost but will also raise serious doubts regarding the design adequacies of existing Water tanks which have survived earthquake and are functioning well.

1.2 TYPES OF WATER TANKS

Depending upon support type, Water tanks are classified as Ground supported, partially or Fully Under ground Water tanks. If storage reservoir is

situated above ground by some supporting structure like Trestle or Shaft then the Water tank is known as Overhead Water tank.

1.3 MATERIALS OF WATER TANKS

In general Water tanks are constructed using Reinforced Concrete and Steel. Uses of advanced materials like Prestressed Concrete and Polymerized concrete, Ferrocement for constructing tank can also be made.

The various forms of Water tanks components that are generally accepted are; for

- * **Containers:** Cylindrical, Rectangular, Square, Conical, elliptical
- * **Staging:** Trestle supported and Shaft supported
- * **Bottom:** Depending on Function, Construction, Maintenance costs & Aesthetics

For Concrete towersi) Curved shaped bottom, ii) Flat bottomFor Steel tanksi) Spherical or Dome shaped bottom.

1.4 WATER TANKS STAGING

It is the supporting structure for container, which transfers loads from container to footing below. Staging types are Shaft and Trestle.

FIGURE 1.1 TYPES OF TANK STAGING

1.4.1 Shaft type staging [1]

Shaft is hollow column, but when its thickness is very small compared to its diameter, it assumes a special identity as membrane structure. Sliding formwork speeds up the construction of shaft. But when the construction is done with conventional formwork then special care for the verticality, circularity and uniformity of thickness is to be taken. The variation in geometry results in additional stresses in shaft. It attracts more wind and seismic forces due to its higher obstruction area and higher stiffness. The construction joints of shaft are weak points thus after earthquake some damage is observed to these construction joints. [1]

1.4.2 Trestle type staging [1]

When a group of columns, say 4, 6, 8 etc. in nos. are so on used to support Water tank container then it is known as Trestle staging. As the individual column in a group of columns becomes slender, in order to make columns safe against buckling additional ties in the form of bracings are provided. The columns are subjected to direct and bending stresses, whereas bracings take reversible bending due to lateral forces like Earthquake and Wind.

As leakage through container joints results in corrosion of reinforcing steel, this at times weakens the joints of trestle resulting in risk of instability. Thus inspection and maintenance of beam column joints is very necessary. Also during design proper ductility should be provided to joints to avoid brittle failure of such joints. The major failure of trestles occurs due to deficient detailing and construction of beam column joints, poorly designed staging and lack of maintenance.

Sr. No.	Member	Purpose	Load subjected
1	Column	Transfer vertical loads	Direct & Bending stresses
2	Bracings	Reduction in effective length of column and participate in resisting lateral forces	Reversible Bending and Axial stresses
3	Foundation	Transfer loads to earth below	Bending stresses and shear

TABLE 1.1 FUNCTIONS OF TRESTLE ELEMENTS

1.5 INNOVATIVE WATER TANKS STAGING

Some of the innovative Water tanks are used as monuments, pent houses, shopping malls, and structure to fascinate people. Also there are examples where the supporting structures are also modified so as to improve overall lateral stiffness of Water tank. Following diagrams show few of such innovative structures.

FIGURE 1.2 INNOVATIVE WATER TANKS

1.6 OBJECTIVE OF STUDY

Regular updating and revisions of codes are necessary for improved design and construction practices in the country. The process of revision must reflect the refinement attained in the design process due to further research and further development. It must also reflect the experience gained during the interim period between the revisions. Greater participation of the code users will result in more balanced outcome. However it is often seen that the codes fall short meeting the expectations of the users.

The structures designed as per *IS*: 1893-2000 and constructed well have served the purpose well. The existing Water tanks in Gujarat appear to have survived well the disastrous Bhuj Earthquake M 7.7 Richter scale. Even though the Proposed Draft code *IS*: 1893-2000 (Part II) have suggested lower Response Reduction factors resulting in increase in lateral loads of 2 to 3 times in case of Shaft supported tanks and increase in case of Trestle supported tanks.

In this context it is considered of interest to study the provision of Proposed Draft code.

Thus it is necessary to study the Proposed Draft code and existing codes which mainly includes *IS: 1893* code for design of earthquake resisting structures and give comparative conclusions between them. The main objective of the dissertation is to study the analytical and designing clauses of Proposed Draft code *IS: 1893-2002 (Part II)* and compare them with the existing code of *IS: 1893-2000* and *IS: 1893-1984*.

To study the Trestle supported Water tank and to acquaint with the effects of Steel Diagonal Bracings on column moments, and verify whether Diagonal Bracings are more effective than traditional peripheral ties in reducing column moments.

5

1. Introduction

1.7 OUTLINE OF DISSERTATION

First chapter deals with the introduction of Trestle type staging supported Water tank.

Second chapter gives the summary of the various research papers referred for the dissertation work, which includes literature related with modeling, analysis and design of elevated Water tanks, and the alternative bracings systems for improving lateral stiffness of Water tank.

Third chapter includes review of Proposed Draft code and discussion regarding some issues that are of interest. The chapter consists of general design clauses for the analysis and design of trestle supported Water tanks mentioned in Proposed Draft Code.

Fourth chapter includes Analysis and Design of case study problem according to *IS: 1893 (1984)* and Proposed Draft Code for liquid retaining structures and their comparison in terms of base moments and base shear.

Fifth chapter is related with dynamic analysis of considered case study problem using STAAD Pro and Sixth chapter deals with the estimation of Trestle supported tank with Peripheral Bracings and with Diagonal Bracings.

The Seventh chapter consists of graphical representation of all the work related with detailed study of effects of Steel Diagonal bracings in case of column moments and their comparison with traditional peripheral braced staging with respect to column and bracing moment. It also includes conclusions and future scope of present dissertation. The Bhuj, Gujarat earthquake (Bhuj earthquake) of January 26, 2001 was a major event both in terms of its seismological characteristics and in terms of its economic, life loss and social consequences. After the large damages took place due to Bhuj Earthquake, the State government started disaster management project through GSDMA (Gujarat State Disaster Management Authority). One step of managing disasters is to make civil engineering structures more compatible with the requirement offered by large damaging natural hazards like Earthquakes, Floods and Cyclones. For that the codes for designing structures are being revised. *IS: 1893-2002* is being revised in five parts. Second part pertains Liquid Retaining Structures such as Water tanks. In present Project the Literature is studied as per following topics related with Water tanks.

- 2.1 Analysis
- 2.2 Design
- 2.3 Modeling
- 2.4 Staging configuration with alternate Bracing Systems
- 2.5 Column Stiffness and Lateral Load Distribution on Staging of Water tank
- 2.6 Effects of Earthquakes on Liquid Retaining Structures
- 2.7 Effects of Winds on Liquid Retaining Structures
- 2.8 Soil structure interaction

2.1 ANALYSIS

G. Tripathi & et al, simulated finite element model of Water tank and carried out seismic analysis of the same model built with four nodded plate and shell elements, taking care of appropriate distribution of Water mass so that hydrodynamic forces can be easily accounted. The author and others suggest alternative technique to simulate Water tank, to deal with seismic analysis problem. In which they considered mass lumping method which is less calculative and easy to understand than the approach used conventionally by Housner (1957) and *IS: 1893*, who considered Water to be filled inside Water container. Here as per author lumped mass technique, which requires less computational efforts, is better representation of hydrodynamic forces than that of conventional two mass representations. [02]

V. Verma & et al suggests another 'Lumped mass beam model' technique which is less computational, accurate method for the modeling of liquid retaining structure.

This method is based on 'Strain Energy Equivalence', in combination with 3D model found to be simpler, economic and gives conservative results. In this paper the formulation to calculate stiffness of beam model is given also 'Method of Energy Equivalence', 'Method of Averages' are discussed. [03]

2.2 DESIGN

For design of Water tank the Books by renowned authors are available which mainly includes **Jai Krishna and Jain** [04], **P. Dayaratnam** [05], **and Krishnaraju** [06].

2.3 MODELING

In the Proposed Draft Code Water tank model is simulated assuming dual nature behaviour of Water in elevated Water tank container. G.W. Housner first suggests such two mass representations. R. Shepherd also briefly discusses it in his technical paper. Two mass representations includes first mass which retain itself along with container produces hydrostatic pressures on container walls is known as 'Impulsive mass' and the other which sloshes resulting in wave pressure is known as 'Convective mass'.

In computer programmes to simulate model of Water tank with idealized discrete mass system limited number of degree of freedom are used in prototype. Thus for simulation of Water tank model two mass representation which is easy and useful.

As per **R Shepherd**, Earlier studies show one degree of freedom system for Water tank gives satisfactory results but in application of computer simulation and numerical integration techniques, for getting accurate earthquake prediction it is necessary to have valid model of the system. In two mass representations mass m_1 is the convective mass and m_0 is the impulsive mass, the effective spring stiffness K_1 may be determined by considering geometric properties of tank and tower stiffness K_0 is derived by standard structural analysis techniques.

Author used computer numerical integration techniques and compared the results obtained with the results of dynamic analysis carried on the prestressed concrete tubular tower.

8

FIGURE 2.1 WATER TANK AND TWO MASS REPRESENTATIONS

The considered tower model supports a cylindrical container. Impulsive movements of container walls, because of inertia forces give rise to impulsive pressures and these pressures developed are directly proportional to acceleration of container walls. Convective pressures are produced by the oscillations of fluid and are consequences of the impulsive pressures.

For a liquid storage tank, assuming m1 and m0 masses can use the equivalent dynamic system. Above figure shows an oscillating liquid surface and next one shows mass equivalent to those produced by the liquid.

The mass m_1 exerts a maximum horizontal force directly proportional to the maximum acceleration of the tank bottom, at a height h_1 and thus contributes to the overturning moment in the tank. The mass m_{0r} acting as a solid oscillating mass flexibly connected to the walls and located at a height h_0 , also contributes to the overturning moment acting on the tank. [07]

2.4 STAGING CONFIGURATION WITH ALTERNATE BRACING SYSTEMS

R.K. Ingle & S. S. Kulkarni describes the method by which we can reduce lateral drift of Water tower by studying proper design aspects. Design of staging is carried out for the gravity and lateral loads like wind, earthquake forces. Author states it is necessary to consider additional forces due to P – Delta effect for the stability of column and stability of structure as a whole.

The Water containers are designed as per uncracked theory whereas staging columns are designed by limit state method, which leads to the natural

9

discrepancy between two components of same structure. Author suggests P -Delta effects should be included in computation of story shears, story drift and member end forces when stability index exceeds value of 0 .1 where,

Stability index = (Story drift X Vertical load)/ (Height X Horizontal shear) Due to bending of columns and beams, and due to axial deformations of columns, drift occurs in framed structures. As height to width ratio increases, effect of the column axial deformations is significant. The major portion, nearly 20 – 70 % of drift in case of rigid frames is caused due to end rotations of beams and columns concept known as 'Bent action'.

As per Naeim's (1986) suggestion bent action displacements can be calculated as follows

$$\Delta_{bt} = \sum (V_i) h_i^2 \left(\frac{\frac{1}{\sum (K_b)_i} \frac{1}{\sum (K_c)_i}}{(12E)} \right)$$

Where,

 K_b is the stiffness of beam,

 K_c is stiffness of column,

E is modulus of elasticity,

V is the shear force,

h is the height of panel

This expression gives reasonable sizes of columns and braces. Important to note that for tall Water structures designed to satisfy drift limitations braces required are more than the brace requirement observed in design against wind and seismic loading. [08]

Frames are laterally stiffened to control drift either by following ways,

- · Increasing size of columns or braces or both
- Rigid brace introduction
- · Increasing number of panels of braces
- Introduction of plan bracing

In above mentioned alternatives, introduction of rigid braces or plan braces is economical alternative. [08]

• As per the conclusions derived by **R. K. Ingle**, intermediate bracing sizes can be increased for controlling drift up to stability index is less than 0.1 but at

the same time by selecting such economical alternative will go against the 'weak beam – strong column system'. This fact should be taken into account,

- · Increase in size of central brace and second lowest brace gives better results,
- Increasing size of braces increases stiffness of Water tank at the same time reducing moments in columns and braces,
- Plan bracing doesn't have significant effect on reduction of drift so plan bracings are not recommended.

In Another paper by **R. K. Ingle** discusses proportioning of columns for Water tank supporting structures.

As per *IS: 456* it is necessary to include effects of final deformations i.e. P – Delta effect in buildings design forces. Shape of the column, placing like tangentially or radially, plays an important role in reducing drift leading to economical design. [09]

Author studied above-mentioned effects for Water tower design and for modelling made following assumptions:

- Considering the Water tower as space frame, also being connected by container walls the top braces are considered to be axially rigid, carries out static analysis of Water tower skeleton.
- The interaction between soil and structure on account of great stiffness of foundation is disregarded.
- By provision of tangential arrangement of columns twisting moments in braces decreases considerably.

The conclusions made on going through series of experiments on Water tower having various configurations. [13]

- As the number of panels increases, percent increase in stiffness goes down for tangential disposition of columns in comparison with square columns,
- Percent increase in stiffness of the structure goes up as the number of columns is increased along the periphery. This means that the structure tends to become a cylinder of minimum thickness,
- Tangential arrangement of columns shows less time period, which means more acceleration from the response spectrum of *IS: 1893*. However the increase in forces is less in comparison with the increase in stiffness,
- Radial arrangement of columns shows decrease in stiffness and increase in stability index. This arrangement is not recommended.

Tangential arrangement of rectangular columns can be used for tank supporting structure, which will reduce secondary moments without increase in cost of the structure.

Raymond H. Plaut & Rac Hak Yoo [10] in his paper writes regarding elastic response of columns after sudden loss of bracing.

Author discusses the elastic response of braced columns after sudden loss of bracings due to explosion or any other accidents, which make column to undergo dynamic loading. These loadings result into significant amount of oscillations leading to collapse.

Effects of axial forces, bracings position, and bracing stiffness also taken into account which gives some important conclusions like

- As bracing stiffness increases, optimal bracing location corresponding to critical maximum load, moves towards base of column.
- Stiffer brace tends to store more energy, thus when such brace is not near the ends, maximum response increases as the bracing stiffness K increases.
- When such brace is located near the ends of the columns maximum response is obtained at t = 0 sec when brace suddenly get removed then maximum deflection does not necessarily increase as brace stiffness increase.

2.5 COLUMN STIFFNESS AND LATERAL LOAD DISTRIBUTION ON STAGING OF WATER TANK

As per the studies carried out by **Sajjad Sameer U. and Sudhir K. Jain** the column stiffness given by 12 EI/L^3 is inaccurate, and the column axial deformation contributes 5 to 15 % of the total lateral displacement. The seismic force for the structure depends on the flexibility structure has. [11]

The assumption that Bracings attached to the columns are rigid is not true but depending upon that the columns stiffnesses are calculated by Indian standards. For tank staging whenever approximate methods are used they should be carefully applied due to three-dimensional behaviour of frame. Three approximate methods namely Portal method, Moment Distribution method and Simplified portal method are given by author for the calculation of staging stiffness.

12

The formulations for these methods are as follows [11]

Method 1 Portal Method

For columns of intermediate panels

$$Kcolumn = \frac{12EcIc}{h^3} \left[\frac{\sum Kbg}{\sum Kbg + 2Kc} \right]$$

For columns of uppermost and bottom most panels

$$K column = \frac{12EcIc}{h^3} \left[\frac{\sum Kbg}{\sum Kbg + Kc} \right]$$

Method 2 Moment Distribution Method

For columns of intermediate panels

$$K column = \frac{12EcIc}{h^3} \left[\frac{\sum Kbg}{\sum Kbg + 2Kc} \right]$$

For columns of uppermost and bottom most panels

$$Kcolumn = \frac{12EcIc}{h^3} \left[\frac{\sum Kbg + Kc}{\sum Kbg + 2Kc} \right]$$

Method 3 Simplified Portal Method

For intermediate panels

$$Kpanel = \frac{12EcIcNc}{h^3} \left[\frac{\left(\frac{EbIb}{L}\right)}{\left(\frac{EbIb}{L} + \frac{2EcIc}{h}\right)} \right]$$

For the uppermost and the bottommost panels

$$Kpanel = \frac{12EcIcNc}{h^3} \left[\frac{\left(\frac{EbIb}{L}\right)}{\left(\frac{EbIb}{L} + \frac{EcIc}{h}\right)} \right]$$

Where,

L Span of bracing girder

h Panel height

- Kbg Stiffness of bracings with equal panel height at top and bottom
- Kc Stiffness of Column
- Nc No. of Column in periphery of staging

Another good paper on lateral load analysis of frame staging for Elevated Water tanks written by **Sajjad Sameer U. and Sudhir K. Jain** in which they have described overall seismic forces that are coming in the design of bracings, columns and other important component of elevated Water tank.

By the approximate method axial force in columns is obtained assuming it is proportional to the distance from bending axis of staging, and taking into account the shift in the inflexion point location. [12]

2.6 EFFECTS OF EARTHQUAKES ON LIQUID RETAINING STRUCTURES

After Bhuj Earthquake some reports gave observations regarding Elevated Water tanks damages. Some of them are as follows;

2.6.1 Ravi mistry, Weimin Dong, Haresh Shah took survey of the earthquake damaged areas and gave following observations:

- It was noted that all government-designed and operated overhead Water tanks with capacities ranging from 10,000 liters to 1,000,000 liters appeared to have withstood the earthquake without any apparent damage, regardless of their proximity to the epicenter. An example of one of these structures, which is located near Gandhidham, is shown in Figure 2.2.
- However, we understand that five elevated tanks failed in the area surrounding Morbi and Malia (approximately 60 km SE of the epicenter).
 Unfortunately, the reconnaissance team was unable to visit these tanks to ascertain the cause or severity of the damage. [13]

14

FIGURE 2.2 ELEVATED WATER TANK AT GANDHIDHAM, NO APPARENT DAMAGE

Durgesh C Rai describes various kinds of damages and overall causes of damages in shaft as well as trestle supported Water tanks after Bhuj earthquake on 26th January 2001 in Gujrat and surrounding area.

Durgesh C Rai [14] following are the observations and conclusions:

- Within the radius of 125 km from epicenter many overhead Water tanks suffered severe damages. In which *Shaft supported overhead tanks* shows tension cracks at bottom portion of shaft, whereas *RC framed staging tanks* located in regions of the highest intensity of shaking collapsed while a few developed cracking near brace-column joint regions.
- Staging diameter of shaft increases with increase in the capacity but thickness of the staging section is usually kept 150 and 200 mm. The flexure cracks in staging were observed from first to third lift portions. These cracks are mostly circumferential and throughout out perimeter of shaft. Cracks also observed in construction joints.
- The ESRs are behaving like *inverted pendulum* structures which resist lateral forces by the flexural strength and stiffness of their *circular hollow shaft type staging*. The section close to the ground is subjected to the maximum flexural

demand. Damage to shaft is critical as it affects load-bearing capacity seriously.

- For the *Frame type staging Water tanks* author writes that Frame type staging are superior to shaft type staging for lateral resistance as their *large redundancy* and *greater capacity to absorb seismic energy* through inelastic actions.
- RC frameworks can be designed to perform in a ductile fashion under lateral loads with greater reliability. The sections near the beam-ends can be designed and detailed to sustain inelastic deformation and dissipate seismic energy.
- In frame supported Water tanks, frame members and the brace column joints if not designed and detailed for inelastic deformations, a collapse of the staging may occur under seismic overloads.
- The current designs of RC shaft type circular staging (supporting structure) for elevated Water tanks are extremely vulnerable to lateral loads such as earthquakes. [14] Extreme damages can occur to tanks within 125 m from epicenter. This is despite the fact that most staging could withstand the seismic forces greater than those specified by *IS: 1893-1984*. Under seismic loads frame staging behaves quite differently than in normal framed structure.
- Also the staging does not have much redundancy and hence toughness (a desirable feature for earthquake-resistance which is present in the multiple bays and frame lines of a building framing system). This lack of redundancy is extremely serious in circular shaft type staging where lateral stability of the structure depends on only a single element, i.e., shaft, failure of which would severely affects the lateral stability of the entire structure. Shaft also has lack of ductility, which can be used during earthquake to resists lateral loads. [14]
- *IS: 1893-1984* code underestimates the design forces by at least a factor of 3 for Water tanks.
- The slender staging that results from the low design forces is a very unfavorable feature for seismic areas. Also, there are no provisions in IS codes for ductile detailing of shaft type (thin shell) tank staging generally shaft behave in a brittle manner, therefore, should be avoided.

 As Frame staging of Water tanks can be detailed as per provisions of IS: 13920-1993 and IS: 11682-1985 which refers to the ductility requirements of IS: 4326-1976.

• The failures of framed staging are lesser than shaft type.

After publishing this paper, the state professionals are in disagreement with to the conclusions of Durgesh Rai. As per many consultants and professionals, the paper is deficient in collecting experimental data, and extent of the survey.

Following are some of the conclusions that are derived by Professionals against **Durgesh Rai's** technical Paper.

- As far as Shaft and Frame staging are concerned, both are the alternative systems for supporting Water tank. Both are reasonably different structures so comparison between them should be avoided. Properly designed, well constructed, good maintained structural systems always behave better in resisting gravity and lateral loads.
- Damages to any structure needs to be examined very carefully. More often construction deficiencies are overlooked and emphasis shifts to design deficiencies. These aspects should be considered before drawing abovementioned conclusion.
- As in the state of Gujarat, in most of the cases the construction is of shaft supported Water tanks, and so obviously the damages are observed more in such Water tanks compared to the frame supported Water tanks which are constructed on much lower scale.
- Regarding this issue data from GWSSB which is having records of more than 40 years construction of Water tanks in Gujarat shows Water tanks have survived Bhuj and other earthquakes even in areas near the epicenter, which were designed by *IS*: 1893-1984 and functioning well till date. [15]

Regarding both shaft supported and trestle supported tank comparison some of the points are briefly studied and stated by **Prof. Y. T. Vani** in his letter to GSDMA. In the compiled letter author gave illustrations and note regarding the report of GWSSB where state government data shows about 2000 ESR's of capacity above 5000 liters which are shaft supported tanks which have performed well during Earthquake, even though these tanks were designed as per previous *IS*: 1893 (1984). (Refer 5.0 of report to GSDMA)

17

Also author states

Any comparison in the two systems (Shaft and Trestle) of design has to be based on total design comparisons rather than comparison of isolated numbers. The load factors, assessment of limit state strength, various other design parameters, and the final comprehensive 'safety factor', all will affect the design. [16]

Prof C. H. Shah also gave explanation of how we can not blame only shaft as supporting system responsible for failures of tank.

As per Author we have to consider how the cracks in Water tank develops, which may be of following type due to

- Corrosion of reinforcement
- Honeycombing at the construction joints
- Inadequate strength

Similarly the causes of failures of structures like lack of ductile detailing, poor quality construction, and poor maintenance should be given proper importance before coming to any conclusion regarding any supporting system to be better than other structural system. [16]

2.7 EFFECTS OF WINDS ON LIQUID RETAINING STRUCTURES

B. Tansel, M. ASCE, and N. Ahmed writes about Structural stability of Elevated Water Reservoirs under Hurricane force wind conditions.

It is necessary to provide uninterrupted supply of electricity, telecommunication facilities and Water supply during natural disasters. Elevated Water reservoirs are designed to serve two basic purposes that are equalizing Water storage volume and emergency Water storage.

Elevated Tank Configurations

Design of elevated tanks depends on capacity, required elevation, size and shape of structural members, stability of structure and foundation, type and installation of appurtenances for operation. Towers supporting elevated tanks are designed to act as a unit with the tank so that they should able to resist the combined stresses due to weight and bending. Elevated storage tanks' configurations are based on the shape of storage tank and the riser structures, which include double ellipsoidal, spherical, and ped-cone (spherical with conical base and top). Towers configurations includes fluted pillar, composite or multilegged. The height of the elevated storage tank depends on allowable bearing capacity of the soil on which the tank will be built. Author suggests Water tanks to be kept at full capacity level to avoid damages due to high winds during storm.

2.8 SOIL STRUCTURE INTERACTION

Somnath Datta, S. C. Datta & et al, discusses the Soil structure interaction in dynamic analysis of frame staging Water retaining structure briefly.

The paper aims to observe the effect of soil-structure interaction on two dynamic characteristics namely, the impulsive lateral period, which regulates lateral seismic behaviour and the impulsive torsional-to-lateral period ratio that regulates torsional vulnerability of the structure.

A parametric study with limited example tanks based on these formulations shows that the frame staging with all kinds of alternate configurations having less panel heights, more number of columns, larger column diameter and stiffer circumferential beams compared to columns encounters the strongest influence of soil-structure interaction effect. [18]

The staging types considered for study are as follows

FIGURE 2.3 USUAL TRESTLE TOWER CONFIGURATIONS

FIGURE 2.4 STAGING WITH RADIAL BEAMS & WITH RADIAL BEAMS AND CENTRAL COLUMN

FIGURE 2.5 STAGING WITH TWO CONCENTRIC ROWS OF COLUMNS CONNECTED BY RADIAL AND CIRCUMFERENTIAL BEAMS

FIGURE 2.6 DIAGONAL BRACES

Author gives formulation for calculation of time period of various staging configuration. The study of effect of soil-structure interaction is mainly done on two important dynamic characteristics of elevated tanks supported by frame staging with a few alternate configurations. Analytical formulations are validated and employed in the present study so that influential parameters can be well identified and can be varied within their feasible range of variations. Following conclusions can be arrived from the study:

Soil-structure interaction [18]

- Considerably, increases the impulsive lateral period and decreases the impulsive torsional-to-lateral period ratio.
- Having stronger effect in case of elevated tanks supported by alternate frame staging configurations with panels of small heights, and larger number of columns, large column diameter and stiffer circumferential beams compared to the columns.
- Analysis with fixed base assumption may lead to underestimation or overestimation of seismic base shear of elevated tanks with any alternate staging configuration at both tank-full and tank-empty conditions. Soilflexibility may cause tension in some of the staging columns at tank-empty

condition resulting risk for the performance of elevated tanks resting on various staging.

- If elevated tanks designed on the basis of a fixed base assumption. Ignoring soil-structure interaction may also lead to wrong assessment of torsional vulnerability.
- Considerable effect of soil-structure interaction on dynamic characteristics of both of them due to their stiffer structural configurations should be accounted for seismic design.

3.1 GENERAL

As far as Water Tower is concerned it shows high susceptibility to lateral forces due to its structural form in case of Elevated Water tanks. Also the amount of lateral forces subjected on structure depends on structures rigidity. Rigid the structure, attracts more forces. By the use of provisions of *IS: 1893-2005(Part II)* Proposed Draft code there is large increase of design forces on Water tanks approximately three to four times as per case study considered in this project where the stiffness of the staging is calculated considering it as flexible structure. It's necessary to review the provisions of Proposed Draft, which is being circulated before its acceptance by BIS. Some of the modifications are done in Proposed Draft are quite admirable but some ambiguity are also present in some of the provisions. Here one by one some provisions are reviewed.

Some of the major modifications included in Proposed Draft are as follows

a) Analysis of ground supported tanks.

b) For elevated tanks two-degree of freedom idealization is used for analysis.

c) Bracing beam flexibility is included for calculation of lateral stiffness of tank staging.

d) The effect of convective hydrodynamic pressure inclusion.

e) Hydrodynamic pressure distribution suggestion stress analysis of tank wall.

f) Effect of vertical ground acceleration on hydrodynamic pressure is considered.

3.1.1 SPRING MASS MODEL FOR SEISMIC ANALYSIS

The IS 1893-1984 assumes Elevated Water tank behaves as Single degree of freedom but research work [19] shows the Water inside Water container can be separated for the purpose of analysis as some portion of Water on application of lateral forces tries to be retained with the container whereas above mass of Water sloshes producing wave pressure. This dual nature behaviour is accepted in Proposed Draft making Elevated Water tank as Two degree of freedom system, which is also rational one.

FIGURE 3.1 TWO MASS IDEALISATION AND EQUIVALENT UNCOUPLED SYSTEM

Here it is necessary to note that for consideration of equivalent uncoupled system behaviour both times period of impulsive and convective mode as well separated preferably Ti/ Tc > 2.5.

Where,

 m_c = Convective mass of liquid

- m_i: Impulsive mass of liquid
- $\ensuremath{\mathsf{m}}_{\ensuremath{\mathsf{s}}}\xspace$: Mass of container of elevated tank and one-third mass of staging
- K_c: Spring stiffness of convective Mode
- K_s: Lateral stiffness of elevated tank staging
- Ti: Impulsive mode time period
- Tc: Convective mode time period

3.1.2 TIME PERIOD

$$T_{i} = 2\pi \sqrt{((m_{i} + m_{s})/K_{s})}$$
(3.1)

Time period for impulsive mode is given by above Equation (3.1) Where, Ks is the stiffness of staging.

And for convective mode time period following equation is used.

$$T_c = C_C \sqrt{\frac{D}{g}}$$
(3.2)

Where,

Cc is the coefficient of convective mode is found out by following graph shown.

FIGURE 3.2 COEFFICIENT OF IMPULSIVE (Ci) AND CONVECTIVE (Cc) MODE TIME PERIOD FOR CIRCULAR TANK.

Design of Water tank is carried out for Tank Empty and Tank full condition. On general observations Tank full condition governs design in the higher earthquake prone areas.

3.1.3 DAMPING

Damping in the convective mode for all types of liquids and for all types of tanks is mentioned to take as 0.5% of the critical. Damping in the impulsive mode shall be taken as 2% of the critical for steel tanks and 5% of the critical for concrete or masonry tanks.

3.1.4 DESIGN HORIZONTAL SEISMIC COEFFICIENT

For the seismic analysis on general scale only horizontal seismic coefficient is considered and it is assumed that the mass of structure and hydrodynamic forces will be sufficient to deal with for the vertical acceleration component.
The formula for calculating design horizontal seismic coefficient is as follows

$$A = \left[\frac{Z}{2}\frac{I}{R}\frac{S_a}{g}\right]$$

Where,

Z = Zone factor given in Table 2 of IS 1893-2002 (Part 1),

I = Importance factor given in Table 1 of Proposed Draft code,

R = Response reduction factor given in Table 2 of Proposed Draft code,

Sa/g = Average response acceleration coefficient as given by Figure 2 and Table 3 of *IS:* 1893-2002 (Part 1) and subject to Clauses 4.5.1 to 4.5.4 of Proposed Draft code.

3.1.5 BASE SHEAR

For Ground Supported Tank

Base shear in impulsive mode, at the bottom of tank wall is given by

 $V_i = (A_h)_i (m_i + m_w + m_t)g$

And base shear in convective mode is given by

$$V_c = (A_h)_c m_c g$$

Where,

 $(Ah)_i$ = Design horizontal seismic coefficient for impulsive mode,

 $(Ah)_c$ = Design horizontal seismic coefficient for convective mode,

mi = Impulsive mass of Water

mw = Mass of tank wall

mt = Mass of roof slab, and

g = Acceleration due to gravity.

Similarly for Elevated Water tanks

Base shear at the top of footing is

$$V_i = (A_h)_i (m_i + m_s)g$$

And the convective base shear is given by

$$V_C = (A_h)_C m_s g$$

Where,

ms = Mass of container and one-third mass of staging.

mi= Impulsive mass of water.

The resultant base shear is found out by using SRSS i.e. Square root of Sum of Squares method.

Thus base shear equation becomes,

$$V = \sqrt{V_i^2 + V_c^2}$$

3.1.6 BASE MOMENT

For Ground supported tanks

Bending moment in impulsive mode, at the bottom of wall is given by

$$M_{i} = (A_{h})_{i}(m_{i}h_{i} + m_{w}h_{w} + m_{t}h_{t})g$$

and bending moment in convective mode is given by

$$M_c = (A_h)_c m_c h_c g$$

Where,

hw = Height of center of gravity of wall mass, and

ht = Height of center of gravity of roof mass.

Overturning moment in impulsive mode to be used for checking the tank stability at the bottom of base slab/plate is given by

$$M_{i}^{*} = (A_{h})_{i} \left[m_{i}(h_{i}^{*} + t_{b}) + m_{w}(h_{w} + t_{b}) + m_{t}(h_{t} + t_{b}) + \frac{m_{b}t_{b}}{2} \right] g$$

and overturning moment in convective mode is given by

$$M_{c}^{*} = (Ah)_{c} m_{c} (h_{c}^{*} + t_{b})g$$

Where,

mb = mass of base slab/plate, and

tb = thickness of base slab/plate.

hi* Height of impulsive mass above bottom of tank wall (considering base pressure)

For the Elevated Water tanks

Overturning moment in impulsive mode, at the base of the staging is given by

$$M_i^* = (A_h)_i [m_i (h_i^* + h_s) + m_s h_{cg}]g$$

and overturning moment in convective mode is given by

$$M_{c}^{*} = (A_{h})_{c} m_{c} (h_{c}^{*} + h_{s})g$$

Where,

hs = Structural height of staging, measured from top of footing of staging to the bottom of tank wall, and

hcg = Height of center of gravity of empty container, measured from base of staging.

Total moment shall be obtained by combining the moment in impulsive and convective modes through Square root of Sum of Squares (SRSS) and is given as

$$M_i^* = \sqrt{M_i^{*2} + M_c^{*2}}$$

3.1.7 DIRECTION OF EARTHQUAKE FORCES

For Ground supported rectangular tanks

These tanks to be analyzed for horizontal earthquake force acting nonconcurrently along each of the horizontal axes of the tank for evaluating forces on tank walls.

For elevated tanks,

Staging components should be designed for the critical direction of seismic force. Different components of staging may have different critical directions.

The alternative to above clause is to consider following load combination for designing trestle i.e. staging and its components

Load combination rules:

i) 100% + 30% Rule:

$$\pm$$
 ELx \pm 0.3ELy and \pm 0.3ELx \pm ELy

ii) SRSS Rule:

$$\sqrt{EL_x^2 + EL_y^2}$$

Where, ELx is response quantity due to earthquake load applied in x-direction and Ely is response quantity due to earthquake load applied in y-direction.

3.2 REVIEWS

As far as Proposed Draft provisions are concerned there are some admirable inclusions like two mass representations, but in case of design values, Proposed Draft clauses increases design forces by 1.2 times approximately on Trestle supported Water tanks. The solved example in this project also shows the same amount of increase in design forces.

The following issues need to be clarified in Proposed Draft like

Importance factor

The importance factor mentioned in Draft for drinking Water tanks is 1.5 which is same for hazardous fluid containing tanks.

Response reduction Factor

The response reduction factor in case of building particularly for Special Moment Resisting Frames is 5 in *IS: 1893-2002(PART I)* but for frame staging supporting Water tanks the value sudden reduces to 2.5 without giving any explanation regarding R value reduction.

As mentioned in Proposed Draft R values are taken directly from international codes. This is not very convincing. Just taking R-values from foreign codes without examining its implication on the final design may result in an approach, which is very conservative.

Regarding shaft-supported tanks also, codes recommend lesser R-value than frame support. This is based on the belief that Shafts are more vulnerable to earthquakes even though most of the shaft-supported tanks appear to have performed well during earthquakes in Gujarat. [15]

Additionally the tremendous increase in base shear in case of Shaft supported tanks will result in very large raft foundations without proportionate increase in shaft diameter. In normal soils, this may result in unacceptable increase in cost of Shaft supported tanks, making them unviable in comparison to Trestle supported tanks.

Sloshing height

Elevated Water tanks are usually covered at the top. Water within the free board space is also considered for design for Full tank condition. As a result there is very little space above. Additionally there are obstructions such as inner supporting columns, inner shafts etc. preventing sloshing. In this circumstance when earthquake occurs then the water body will mainly behave in impulsive mode. The proposed code does not address this aspect when it recommends use of dual mass i.e. impulsive and convective mass of water.

4.1 STIFFNESS OF STRUCTURE

More accurate we calculate the natural time period of structure, more realistic we can predict the behaviour of the structure for Lateral force. As far as water tank trestles are concerned no specific formula for calculation of stiffness is mentioned in Indian Standard *IS: 11682-1985* Criteria for Design of RCC staging for Overhead Water Tanks which allows the designer flexibility in the use of formula for stiffness as per his perception of frame supported trestle.

The trestle is the space frame, which behaves quite differently than normal building frame. Thus for calculating stiffness we had to consider overall no.of bracings which may be in horizontal or vertical plane or may be in inclined plane and the amount of rigidity the joints have, because it also affects the stiffness.

In present project the stiffness is calculated by the method mentioned in IS 1893-2005 (Part II) Proposed Draft code, which is more accurate than other formulations as 3D behaviour of the trestle, is incorporated in it. In *SP 22 (S & T)* 1982, Explanatory Handbook on Codes for Earthquake Engineering, Bureau of Indian Standards examples of trestle supported water tanks are solved considering frame staging as rigidly connected by bracings which is too conservative. Thus in this work flexibility of frame staging is incorporated as per Proposed draft code provisions.

The two arrangements of bracing systems are considered, first one with Peripheral bracing or polygonal bracing and second one with steel diagonal bracing in addition to peripheral bracings.

For the calculation of both kinds of arrangements of trestle STAAD Pro software is used where we find out displacement for the node simulated at CG level of container for any known force. As the stiffness is the force required for unit displacement of structure.

4.

$$K = \frac{F}{\Delta} \tag{5.1}$$

Where,

K is the stiffness of structure

F is the known force applied at CG of the container

 $\boldsymbol{\Delta}$ is the displacement observed

We can easily decide the stiffness of structure. For both arrangements following models were prepared and stiffness calculated as per previously mentioned procedure.

FIGURE: 4.1 STIFFNESS CALCULATIONS FOR TRESTLE

On application of lateral force 100 kN, we get the displacement of the node at CG of container as 24.535 mm and 12.223 mm respectively for Peripherally braced, and Peripherally with Diagonally braced trestle. Thus for Peripherally braced trestle Stiffness = 100000/ 24.535 = **4075.81** N/mm And for Peripherally with diagonally braced trestle Stiffness = 100000/ 12.223 = **8181.29** N/mm

FIGURE 4.2 ELEVATION AND PLAN OF CASE STUDY PROBLEM

4.2 INTZE TANK CONTAINER DESIGN

Data

20	N/mm ²
415	N/mm ²
24.53	kN/m ³
1800000	liters
1800	m ³
1.35	m
30	m
1.5	kN/m ²
250	kN/m ²
2	m
	20 415 24.53 1800000 1800 1.35 30 1.5 250 2

Permissible Stresses

As per IS:456-2000 (Table:2	1) & IS:3370(Part-	II) (C	Cl:3.3)	
Permissible stress in compressio	n (Direct) σcc	=	5	N/mm ²
Permissible stress in compressio	n in			
Bending	σcbc	=	7	N/mm ²
Permissible stress in steel	σst_1	=	150	N/mm ²
Permissible stress in steel beyo	nd 225 mm thk σ st ₂	=	190	N/mm ²
Modular ratio (m -1)		=	13	
Coeff. of moment of resistance	Q	=	0.9	
Permissible stress in concrete (Direct tension) σ ct		=	2.8	N/mm ²
Permissible stress in concrete (Bond strength)ζbd		=	0.8	N/mm ²
for deformed bars ζ bd		=	1.28	N/mm ²
for reinforcement bars in compre	ession ζbd	=	1	N/mm ²

4.2.1 ASSUMED DIMENTIONS OF WATER CONTAINER

Inside diameter of tank	21.00	m
Thickness of top dome	0.10	m
Thickness of stair shaft	0.16	m
Thickness of bottom dome	0.20	m
Thickness of cylindrical wall at top t_2	0.20	m
Width of walking gallery at middle level	0.75	m
Thicknessf walking gallery at middle level	0.12	m
Rise of top Dome	2.10	m
Height of Cylindrical wall	2.05	m
Rise of Bottom Dome	1.30	m
Thickness of Bottom Dome shell	0.20	m
Thickness of conical shell	0.50	m
Depth of Freeboard	0.30	m
Inclination of Conical wall with horizontal θ	52.00	o
Height of conical wall	5.20	m
Radius of Bottom Ring Beam	12.60	m
Height of staging above Plinth level	30.00	m
Height of staging above G.L.	31.35	m
Depth of Footing from G.L.	2.00	m
Diameter of spiral stair column	0.30	m

4.2.2 DESIGN OF TOP DOME

load calculation

Thickness of dome	(t)	0.1	m
Self weight of dome	(W _{self})	2.5	kN/m ²
Live load on dome	(wl)	0.75	kN/m ²
Load due to Finishes	(W _f)	0.4	kN/m ²
Total load $(w) = (w_{se})$	e_{if}) + (wl) + (w _f)	3.60	kN/m ²

Rise of Top Dome	(h ₁)	2.1	m
Inside Radius of Tank	(r ₁)	10.5	m
Surface Radius : $R = 0.5 x$	(r_1^2/h_1+h_1)	27.3	m
	COSØ	0.82	
	φ	35.23	
Total live load on dome W	₁=2 ΠRh₁wl	270.16	kN
Self weight of Dome W	$v_2 = 2\Pi Rh_1 w_d$	1027.51	kN
Meridional thrust $N\phi = v$	wR/(1+cosø)	54.13	kN/m
Compressive stress	Nø/t	0.54	MPa
Nq =wR($\cos\phi - 1/(1 + \cos\phi)$		26.205	kN/m
Minimum reinforcement in eit	her direction	150	mm²/m
Provide 8 mm dia @ 300 mm	c/c so steel provided	167.55	mm²/m
Percentage of Steel		0.17	%
Refering IS: 3370 (Part III) P	ercentage of steel	0.30	%
For Tor steel		0.24	%
4.2.3 DESIGN OF TOP	RING BEAM		
Hoop tension in ring beam T =	=(N $\phi \cos \phi$)(r ₁)	464.28	kN
Area of tension steel required	= As = T/ σst_1	3095	mm ²
Bar diameter		20	mm
No. of bars needed	<mark>9.85</mark> ≅	10	No.s
Area of tension steel provided	Asp =	3142	mm ²
			Check Safe
the the field of the same th		200	
Let width of beam $b_1 =$		300	mm
Depth of beam required $D_1 =$	<mark>424</mark> ≅	400	mm
Tensile stress in concrete =		2.92	kN/m²
			Check Safe
So Provide top ring beam of 3	00 x 400 mm with 10 No.s o	f 20 mm dia.	
Main steel with 6 mm dia.@ 2	50 mm c/c.		
Weight of Top Ring Beam	W ₃	197	kN

4.2.4 DESIGN OF CYLINDRICAL WALL

Wall height h		2.05	m
Maximum hoop Tension is at h		2.05	m
Maximum hoop Tension $T_{1=} g r_2 h$		215	kN
Ast required = $T_1 / \sigma st$		1435	mm ²
Bar Diameter =		16	mm
No.s of bars needed	<mark>7.14</mark> ≅	8	No.s
Area of tension steel provided	Asp	1608	mm ²

	Check Saf	e		
Hoop tension	At interval		Steel No.s	Min steel
			reqd bars	mm ² 0.27
	1.55 1.05	163	910 5	27.14 Safe
	1.05 0.55	110	560 3	Safe
	0.55 0	58	178 1	Safe
Bar Diameter		10	mm	
No.s of bars needed	for 1.55 1.05	2	162.8 mm ²	Safe
Area of tension steel provided	for 1.05 0.55	1	110.3 mm ³	Safe
	for 0.55 0	1	57.75 mm ⁴	Safe
Weight of Vertical Cylindrical Wall	W_4	669.70	kN	

4.2.5 DESIGN OF MIDDLE GALLARY

Width of walking gallery	0.75	m
Thickness of middle gallery slab	0.12	m
Width of Bottom Ring beam	0.5	m
Cantilever portion of slab	0.25	
Load calculation		
Self weight of gallery slab	736	N/m
Railing Loads	750	N/m
B.M.due to self weight	91.97	N/m/m

B.M.due to Railing		97.50	N/m/r	n
B.M.due to UDL (Live load)		46.88	N/m/r	n
OR B.M.due to end live load		130	N/m/r	n
Total B.M. =		319.47	N/m/r	n
Depth of slab required		18.88	mm	
Depth of slab Provided		120	mm	Safe
Effective depth =		90	mm	
Area of steel required		17.03	mm ²	
Provide bar diameter		8	mm	
No.s of Bars required	0.3 ≅	1		
Provide 8mm dia radial bar at 300 m	nm c/c & anchored inte	o ring beam		
As provided		50.27	mm ²	Safe
Total weight of slab	W ₅	51.43	kN	
Total live load on middle gallery	W ₆	78.99	kN	
Total Railing load	W ₇	53.96	kN	

4.2.6 DESIGN OF MIDDLE RING BEAM

Let the width of Middle Ring Be	eam b ₂	500) mm
Let the Depth of Middle Ring B	eam d ₂	500) mm
Self weight of the beam		6.2	5 kN/m
Total Self Weight $W_8 =$	W ₈	430.0	L kN
LL from the Top Dome	W ₁	270.10	<mark>5</mark> kN
Weight of Top Dome	W ₂	1027.5	L kN
Weight of Top Ring Beam	W ₃	<mark>196.93</mark>	<mark>3</mark> kN
Weight of Vertical wall	W_4	669.70	<mark>)</mark> kN
Weight of Galllery slab	W ₅	51.43	<mark>3</mark> kN
LL on Gallery	W ₆	78.99	<mark>)</mark> kN
Weight of the Railing	W ₇	53.90	5 kN
Total load transferred to the Co	onical Wall W ₉	2348.68	<mark>3</mark> kN
Hoop Tension on Ring Beam T	= W9*cot	<mark>529.33</mark>	<mark>3</mark> kN
Area of steel in Ring Beam		3528.84	1 mm ²

Providing Bar Diameter		2	0	mm	
No.s of Bars required	<mark>11.2</mark> ≅	12.0	0		
As Provided	Asp	3769.9	1	mm ² Check	Safe
Tensile stress in concrete		0.94499	4	kN/m ² Check	Safe
Provide 500x500 mm with 20 mm dia	a. 12 no.s				
4.2.7 DESIGN OF CONICAL	_ SHELL				
Let thickness of the conical shell			0.50	m	
Slope of the wall	θ		52	0	
Height of Conical Wall	h ₃		5.2	m	
Self weight of slab			12.5	kN/m ²	
Radius at bottom of conical slab	r ₃		6.44		
Length of slab			6.60	m	

Surface Area

 $A = \pi (R_1 + R_2) s = \pi (R_1 + R_2) \sqrt{(R_1 - R_2)^2 + \hbar^2}.$

FIGURE: 4.3 CONICAL SHELL VOLUME CALCULATIONS

The surface area, not including the top and bottom circles,	355.85076	m ²
Weight of conical wall W_{11}	6560.83	kN
Weight of Water over conical wall W_{12}	10052.19	kN
Total load on conical slab W ₁₃	18961.70	kN
Meridional thrust in slab of cone	594.92	kN/m
Horizontal component of Meridiaonal Thrust H_1	366.27	kN/m
Thickness of Conical Slab at base	0.500	m
The Meridional Thrust	1.19	MPa Check Safe
Hoop tension from base of the cone		
$r_x = 6.4 + y$		
Height of water at this level $h_x = h + (h_3 - y)$		
Normal load on the slanting slab $px = water pressure + contained on the slanting slab px = water px$	mponent of v	veight of the slab
$P_x = (2.05+5.2-y)*10+12.5\cos\theta = 80.2 - 10Y$		
Provide Bar Diameter =	20	mm

Hoop Tension in the slab T = ($p_x \csc \theta$) (r	- _x)			Hoop tension k	Bars Reqd	Bars prov	Stress	in conc
At	y =	0	m	655.16	13.9	14	Safe	0.01
At	y =	1	m	662.55	14.1	15	Safe	0.01
At	y =	2	m	644.57	13.7	14	Safe	0.01
At	y =	3	m	601.20	12.8	13	Safe	0.01
At	y =	4	m	532.45	11.3	12	Safe	0.01
At	y =	5	m	438.33	9.3	10	Safe	0.01
At	y =	5.2	m	416.46	8.8	9	Safe	0.01
						2		

Minimum reinforcement in radial direction 0.30 % 9898.34 mm²

Provide 12 mm dia at 300 mm c/c

4.2.8 DESIGN OF BOTTOM DOME

Half chord length: r $_3$		6.44	m
Rise of the Dome: h_2		1.30	m
Thickness of the shell (Bottom dome)		0.20	m
Radius of dome: R		16.6	m
Self weight of the slab: W $_{\rm 14}$		<u>664.60</u>	kN
Weight of water over Bottom Dome: W $_{\rm 15}$		8580.68	kN
Total weight of the dome: W $_{ m 16}$		9245.27	kN
Semicentral angle: Sin ϕ		0.39	
Meridional thrust: N ϕ		<u>589.02</u>	kN/m
Compressive Stress		2.95	N/mm ²
			Nominal
Minimum Reinforcement		460.00	mm²/m
Provide 12 mm dia at 300 mm c/c			
Horizontal thrust: H $_2$		362.63	kN/m
4.2.9 DESIGN OF BOTTOM RING BE	АМ		
Radius of Bottom Ring Beam		6.30	m
The horizontal component of thrust from shel	l at ring beam	ı level	
	H_1	366.27	kN/m
The horizontal component of Meridional thrus	t from bottom	n dome at bea	am level
	H_3	3.64	kN/m

	Т		23.41	kN
Providing a Ring Beam of width			500	mm
And depth of Ring Beam			500	mm
The Compressive stress			0.09	N/mm ²
			Nominal	
The Minimum reinforcement be 0.24 %			600	mm ²
Provide Bar Diameter			16	mm
No.s of Bars required	2.98	≅	4	No.s
Provide 16 mm dia. 4 No.s with 8 mm @ 300) mm c/c			
Weight of the beam	W_{17}		247.99	kN
Total weight of concrete upto ring beam is	W_{18}		28454.96	kN
Weight of water	W_{19}		18633	kN
Total weight	W		28454.96	kN
Mass of the container only			9822.10	kN

The net force is inwards and causes compression on ring beam. The Hoop compression is

4.3 PERIPHERALLY BRACED TRESTLE

4.3.1 SEISMIC ANALYSIS AS PER PROPOSED DRAFT CODE

Mass of the container only:	= 9822.10	kN = 1001491	Kg
Mass of water in container, m	= 18633	kN = 1899888.26	Kg
Mass of columns:	= 2560	kN	
Mass of braces:	= 536.27	kN	
Mass of the staging:	= 3096.27	kN = 315708.07	Kg
Total mass of full tank:	= 31551.23	kN = 3217089.93	Kg
Total mass of empty tank:	= 12918.37	′ kN = 1317208.77	Kg

Mass of container and one third mass of staging is expressed as

ms = 9822.10 + (3096.27)/3

= 10854.19 kN = **1106693.31 Kg**

Lateral stiffness of staging which is only Peripherally braced

CG of empty container

= **3.528** m from top of bottom ring beam

Ec Modulus of Elasticity of concrete

 $= 25000 \text{ N/mm}^2 = 25 \text{ kN/mm}^2 = 25000000 \text{ kN/m}^2$

Top Dome Weight	=	1027.51	kΝ
Top Ring Beam Weight	=	196.93	kΝ

Cylindrical Wall	=	669.70 k	٢N
Bottom Ring Beam	=	247.99 k	٢N
Circular Ring Beam	=	430.01 k	٢N
Bottom Dome	=	664.60 k	٢N
Conical Dome	=	6560.83 k	٢N
Water	=	18632.86 k	٢N
Columns	=	2560.00 k	٢N
Bracings	=	536.27 k	٢N

Centre of Gravity of Empty Container from bottom slab

= 3.52 m

Mass **m** = mass of water

= 1899888.26 kg

Let h be the height equivalent circular cylinder

$$\mathcal{H}\left(\frac{\mathsf{D}}{2}\right)^2 h = 1899.88$$

So **h** = $1899.88x \frac{4}{21^2 x \pi}$ = **5.48** m

Inner diameter of tank, D = 21 m, h/D = 5.48/21 = 0.26 so,

$$\frac{mi}{m} = \frac{\tanh 0.866 \frac{D}{h}}{0.866 \frac{D}{h}} = \frac{\tanh 0.866 \frac{21}{5.48}}{0.866 \frac{21}{5.48}} = 0.300746$$

mi = 1899888.26 x 0.300746 = 571385.59 kg

hi/ h = 0.375 < 0.75 so **hi** = 0.375 x 5.48 = **2.06** m

$$\frac{hi^*}{h} = \frac{0.866\frac{D}{h}}{2\tanh 0.866\frac{D}{h}} = \frac{0.866\frac{21}{5.48}}{2\tanh 0.866\frac{21}{5.48}} = 1.65 \text{ for h/D} < 1.33$$

so **hi**^{*} = 1.65 x 5.48 = **9.07 m**

$$\frac{mc}{m} = 0.23 \frac{\tanh 3.68 \frac{h}{D}}{\frac{h}{D}} = 0.23 \frac{\tanh 3.68 \frac{5.48}{21}}{\frac{5.48}{21}} = 0.66$$

so mc = 0.66 x 1899888.26 = **1246178.6 kg**

$$\frac{hc}{h} = 1 - \frac{\cosh\left(3.68\frac{h}{D}\right) - 1.0}{3.68\frac{h}{D}\sinh\left(3.68\frac{h}{D}\right)} = 1 - \frac{\cosh\left(3.68\frac{5.48}{21}\right) - 1.0}{3.68\frac{5.48}{21}\sinh\left(3.68\frac{5.48}{21}\right)} = 0.54$$

so **hc** = 0.54 x 5.48 = **2.94** m

$$\frac{hc^*}{h} = 1 - \frac{\cosh\left(3.68\frac{h}{D}\right) - 2.01}{3.68\frac{h}{D}\sinh\left(3.68\frac{h}{D}\right)} = 1 - \frac{\cosh\left(3.68\frac{5.48}{21}\right) - 2.01}{3.68\frac{5.48}{21}\sinh\left(3.68\frac{5.48}{21}\right)} = 1.48$$

so **hc**^{*} = 1.48 x 5.48 = **8.10** m

$$kc = 0.836 \frac{mg}{h} \tanh^2 \left(3.68 \frac{h}{D} \right) = kc = 0.836 \frac{1899888.26 \times 9.81}{5.48} \tanh^2 \left(3.68 \frac{5.48}{21} \right)$$

K_c = 1575780.14 N/mm

 $h_s = 31.60$ mStructural height of staging, measured from top of foundation to the bottom of container wall $h_{cg} = 35.13$ mHeight of center of gravity of the empty container

of elevated tank, measured from base of staging

Time period:

Time period of Impulsive mode,

$$T_i = 2\pi \sqrt{\left(\frac{(m_i + m_s)}{K_s}\right)} = 2\pi \sqrt{\left(\frac{(571385.59 + 1106693.31)}{4075810}\right)} = 4.03 \text{ sec}$$

Time period of Convective mode,

For h/D = 0.26, Cc = 3.8 from Graph

$$T_c = C_C \sqrt{\frac{D}{g}} = 3.8 \sqrt{\frac{21}{9.81}} =$$
Tc = **5.56** sec

Design horizontal Seismic Coefficients

Design horizontal seismic coefficient for impulsive mode,

$$(Ah)_{i} = \frac{Z}{2} \frac{I}{R} \left(\frac{Sa}{g}\right)_{i}$$

Where, Z = **0.16** (IS 1893, PART (I), Table2, Zone III) I = **1.5**

Since Staging has Special Moment Resisting Frames (SMRF), R is taken as 2.5

Here **Ti** = **4.03** sec Site has **Medium Soil** Damping = 5 %

Here the time period is greater than 4.0 sec and as per Cl.4.5.3. of Proposed draft We can use the same expression, which is applicable for 4.0 seconds. So $\mathbf{Sa/g} = 1.36/T = 1.36/4.03 = \mathbf{0.34}$ Hence, (Sa/g)i = 0.34(IS 1893) (Part I) Figure 2 $(Ah)_i = \frac{Z}{2} \frac{I}{R} \left(\frac{Sa}{g}\right)_i^2 = (Ah)_i = \left(\frac{0.16}{2}\right) \left(\frac{1.5}{2.5}\right) (0.34) = \mathbf{0.01632}$ (Sections 4.5 and 4.5.1)

For Convective mode, value of Response reduction factor is taken as **2.5** For Convective mode as per Cl 4.5.1

 $T_c = 5.56 \text{ sec}$

Site has Medium Soil

Damping = 0.5%

Here the time period is greater than 4 seconds and as per Cl.4.5.3. of Proposed draft

Code, we can use the same expression, which is applicable for 4.0 seconds. So

(Sa/g) = 1.36/T = 1.36/5.56 = 0.2446, this value is for Damping factor 5.0 %

(**Ah**) $_{c}$ = (0.16/2) x (1.5/2.5) x (0.2446) x1.75

= 0.02054

Base shear

Base shear art the bottom of staging in Impulsive mode,

 $V_i = (A_h)_i (m_i + m_s)g = V_i = (0.01632)_i (571385.59 + 1106693.31)9.81 = 268.66 \text{ kN}$

..... (Section 4.7.2)

Similarly, base shear in Convective mode,

 $V_c = (A_h)_c m_c g = (0.02054)_c \times 1246178.6 \times 9.81/1000 = 251.1 \text{ kN}$

Total base shear at the bottom of staging,

$$V = \sqrt{V_i^2 + V_c^2} = \sqrt{(268.66)^2 + (251.1)^2} = 367.73 \text{ kN}$$

Base Moment

Overturning moment at the base of staging in Impulsive mode

$$M_{i}^{*} = (A_{h})_{i}[m_{i}(h_{i}^{*} + h_{s}) + m_{s}h_{cg}]g = (0.01632)_{i}x[571385.59(9.07 + 31.60) + 1106693.31x35.13]x9.81$$

= **M_{i}^{*} = 9944.784** kNm (Section 4.7.2)

Similarly overturning moment in Convective mode,

=
$$M_c^* = (A_h)_c m_c (h_c^* + h_s)g = (0.02054)_c x 1246178.6 x (8.10 + 31.60) x 9.81 = 9968.74$$
 kNm

Total overturning moment

 $M = \sqrt{M_{i}^{*2} + M_{c}^{*2}} = \sqrt{(9944.78)^2 + (9968.74)^2} = 14080.99 \text{ kNm}$

Sloshing wave height

Maximum sloshing wave height,

$$d_{\text{max}} = (A_h)_c R \frac{D}{2} = (0.02054)_c 2.05 \frac{21}{2} = 0.54 \text{ m}$$
 (Section 4.11)

Height of sloshing wave is more than free board of 0.3 m

Analysis for Tank Empty Condition

For empty condition tank will be considered as

Single degree of freedom system as described in Section 4.7.4 Time period of Impulsive mode,

$$T = T_e = 2\pi \sqrt{\frac{m_s}{K_s}} = 2\pi \sqrt{\frac{1106693.31}{4075810}} = 3.27 \text{ sec.}$$

Empty tank will not have convective mode of vibration.

Design Horizontal Seismic Coefficient

Design horizontal Seismic Coefficient corresponding to Impulsive time period Ti = 3.27 sec.

$$(A_h)_i = \frac{Z}{2} \frac{I}{R} \left(\frac{Sa}{g}\right)_i$$
..... (Section 4.5 and 4.5.1)

Where, Z = **0.16** (IS 1893: part I):Table2; Zone IV)

I = **1.5**

Since Staging has Special Moment Resisting Frames (SMRF), R is taken as 2.5

Here Ti= **3.27** sec Site has **Medium soil** Damping = 5 %

Hence, (Sa/g)i = 1.36 / 3.24 = **0.416** (IS 1893) (Part I) Figure 2

$$(\mathbf{Ah})_i = \left(\frac{0.16}{2}\right) \left(\frac{1.5}{2.5}\right) \left(0.416\right)_i = 0.019968$$

Base shear

Base shear art the bottom of staging in Impulsive mode,

 $V = V_i = (A_h)_i m_s g = (0.019968)_i x 1106693.31 x 9.81 = 216.78 \text{ kN}$

...... (Section 4.6.2)

Base Moment

Total base moment,

 $M^* = (A_h)_i m_s h_{cg} g = (0.019968)_i x 1106693.31 x 35.13 x 9.81$ (Section 4.7.3) = **7615.68** kNm

Since total base shear **367.73** kN and base moment **14080.99** kN-m in tank full condition are more than that total base Shear **216.78** kN and base moment **7615.68** kNm in tank empty condition,

So Design will be governed by Tank full condition.

Summary:

Tank Full	Base Shear in kN	Base Moment in kNm	Base Shear Net	Base Moment Net	Time Period
Impulsive	268.66	9944.784	367.73	14080.99	4.03
Convective	251.10	9968.74			5.56
Tank Empty	Base Shear in kN	Base Moment in kNm	Base Shear Net	Base Moment Net	Time Period
Impulsive	216.78	7615.68	216.78	7615.68	3.27
Convective	—	—			-

4.3.2 SEISMIC ANALYSIS AS PER IS 1893-1984

FOR PERIPHERALLY BRACED WATER TANK TRESTLE

TANK FULL CONDITION

Calculation of C G of water tank from top of the footing Staging height + C.G. of water container h = 34.878 m = Design horzontal Seismic Coefficients As per seismic coefficient method alpha $h = \beta x I x a a$ ß = 1For raft foundation Table 3 where Fo = 0.2IS 1893-1984 (Part I) Table2; Zone III I = **1.5**For Water tanks Table 4 Here $T = 2 \times 3.14 \times (3005807.2/(4075810))^{0.5} =$ 5.39 sec Site has Medium Soil so Sa/g= 0.04 $\alpha h = \beta x I x Fo x Sa/g = 1*0.2*1.5*0.04$ = 0.012 W = weight of container+0.33x weight of staging + weight of water 9822.1+1/3 x 3096.3+18633 =29487.2kN = 3005807.2 kg Base shear $=\alpha hW =$ 0.012 x 3005807.2 kg = **353.8** kN = 36070 kg Moment at base of staging = 353.8×34.878 = 12338 kNm TANK EMPTY CONDITION ß = **1**For raft foundation Table 3 0.2IS 1893-1984 (Part I) Table2; Zone III where Fo = I = **1.5**For Water tanks Table 4 here, $T = sec = 2 \times 3.14x (1106693.31)^{0.5} / (4075810)^{0.5}$ 3.27 sec = Site has Medium Soil Damping = 5 %0.04 Hence, (Sa/g) =(IS 1893-1984) (Part I) Figure 2 $(\alpha h) =$ 0.012 W = 10843.879 **1106693** kg Base shear αhW 130.3 kN = Moment at base of staging 4544 kN-m = So Design will be governed by tank full condition.

	IS 1893-2002 PR	OPOSED DRAFT	IS1893	-1984	
	Base Moment (kNm)	Base Shear (kN)	Base Moment (kNm)	Base Shear (kN)	
Design values	14080.99	367.73	12344.44	353.93	
Impulsive	9944.78	268.66	12344.44	353.93	
Convective	9968.74	251.10	_	•	
% COMPARISION	114.07	102.00	100	100	
WITH IS 1893-1984	114.07	105.90	100	100	
Design Governing Case	Tank Full C	Condition	Tank Full Condition		
Response Reduction	D	2 5	0 - 1 0 5	- 0.2	
Factor	K –	2.5	$\beta = 1.0, F0 = 0.2$		
Tank Full Ti sec	4.03		5.40		
Tank Full Tc sec	5.56			•	
Tank Empty Te sec	3.27		3.27		

4.3.3 COMPARISON BETWEEN EXISTING & DRAFT CODE

4.3.4 WIND ANALYSIS AS PER IS 875-2005 PROPOSED DRAFT CODE

Wind data:			
1 Wind zone	3	Vb =	44 m/s (IS: 875-pt.3,Sec.5.2,Fig. 1)
2 Terrain catregory	В	Open ter	rain with wellscattered structures
		Category	2, as defined in IS 875
			(IS: 875-pt.3,Sec.5.3.2.1)
Design Factors			
Risk Coefficient factor $k_1 =$		0.91	
			(IS: 875-pt.3,Sec.5.3.1,Table-1)
Terrain and Height factor k	2, var	ies with h	neight and is given in Table 22.1
			(IS: 875-pt.3,Sec.5.3.2.2,Table-2)
Topography Factor k3 =		1	Soil Slope < 3°
			(IS: 875-pt.3,Sec.5.3.3.1)
Importance Factor for cyclo	nioc	region k4	= 1.3
(Important structure after	cyclo	one)	(IS: 875-pt.3,Sec. 5.3.4)
Wind directinality Factor kd	=	1	for staging and also cyclone affected area
			(IS: 875-pt.3,Sec. 6.1.1, cl. 5.4.1)
Area averaging Factor ka =		1	for staging
	=	0.8	for Tank Portion
Tributory area = 13	84.6	m ²	(IS: 875-pt.3,Sec. 6.1.2, Table 4)
Design Wind Pressure			
Design Wind speed = Vz	: =	VbxK ₁ xK	₂ xK _{3x} k4
= 5	2.05	x k ₂ m/s	(IS: 875-pt.3,Sec. 5.3)
$Pz = 0.6* (Vz)^2 =$	626	x k ₂	
Pd = Pz * ka * kd			(IS: 875-pt.3,Sec. 5.4, sec 6.1)

l evels	Height upto	К2	Design	Design	Level	Columr	Bottom
			Velocity	Pressure	<u>31.35</u>	No	Ring Beam
1st Level	0.85	1.000	52.05	1.15		7	
2nd Level	5.19	1.000	52.05	1.15	26.89	,	7th Bracing
3rd Level	9.53	1.000	52.05	1.15		6	
	10	1.000	52.05	1.15	22.55	0	6th Bracing
4th Level	13.87	1.039	54.07	1.19		5	
	15	1.050	54.65	1.21	18.21	5	5th Bracing
5th Level	18.21	1.063	55.32	1.22		1	
	20	1.070	55.70	1.23	13.87	-	4th Bracing
6th Level	22.55	1.083	56.36	1.24		З	
7th Level	26.89	1.104	57.49	1.27	9.53	5	3rd Bracing
	30	1.120	58.30	1.29		2	
Top of Trestle	31.35	1.123	58.47	1.29	5.19	Z	2nd Bracing
Bottom of cyl	37.8	1.140	59.31	1.31		4	
Top of cylinde	39.85	1.145	59.58	1.31	0.85	T	1st Brace at Plinth
Top of roof	41.95	1.155	60.14	1.33	0	/X/	Ground level
	50	1.170	60.90	1.34	-2		Foundation

Wind Load Calculations:

External Pressure coefficient for roof and bottom of tank :

(z/H) - 1 = (41.95/9.6) - 1 = 3.369

(IS: 875-pt.3,Sec.6.2.2.8,Table 14)

H/D = **0.4571**

Therefore, Cpe = -0.75 for roof and -0.81 for bottom

Eccentricity of force at rc =
$$0.1*(21) =$$
 2.1 m

Total force acting on the roof of the structure

P = 0.785 x D² x (pi - Cpe x Pd)
= 344.31 kN acting upwarc 2.10 m from center of dome
(IS: 875-pt.3,Sec.6.2.2.9)

Note: If no opening exist; like in RCC tanks, pi = 0

Roof pressure will be used with Gravity loads for design of dome. (IS: 875-pt.3,Sec.6.2.2.8)

Overall Horizontal Force on the tank :

 $F = C_f x Ae x P_d$ (or P_z)

(IS: 875-pt.3,Sec.6.3,6.3.3.1 (c))

No horizontal force will act on top dome. The effect of wind pressure on dome has been included with an eccentricity.

Cylindrical Portion:

 $V_{z}(avg) = (58.47 + 59.58)/2$ = **59.03** m/s Vz x b = **1240** > 6 h/b **0.098** < 0.5 Therefore , Cf = **0.7** from Table 20 (rough) and Pd =KaxKdxPz so for top Pd = 1*0.8*Pz and at staging = 1* 1* Pz Pz = **1.49** kN/m² at top an **1.48** kN/m² at bottom This being a very small difference, heigher value may be taken. Fcylinder = 0.7 x 21 x 1.49 = **21.90** kN/m height

Conical Bottom:

Vd (avg) = (59.31+58.47)/2 = 58.89 m/s Vd x b =989.41 and 989.41 > 6 h/b =0.260 < 2 Cf = 0.7 from Table 20 (rough) Therefore, **1.48** kN/m² at top an **1.46** kN/m² at bottom. and Pz =This is being a very small difference, heigher value may be taken F conical dome = 0.7 x ((21-12.6)/2+12.6) x **1.48** = **17.40** kN/m height

Staging :

Pd =	1.15 kN/m ²	upto 10	m for 1st	,2nd and	3rd Level	Bracings
	1.19 kN/m ²	at	13.87	m	4th Level	Bracings
	1.22 kN/m ²	at	18.21	m	5th Level	Bracings
	1.24 kN/m ²	at	22.55	m	6th Level	Bracings
	1.27 kN/m ²	at	26.89	m	7th Level	Bracings

In order to calculate wind force on each column, each column is considered as an individual member (IS875-pt.3, Sec. 6.3.3.1 c, table 20) and no sheilding effect is considered on leeward columns, as the columns are placed far apart on periphery only)

Perimeter length : **12.6** m No. of columns in periphery Nc = 8Therefore for one column: Width of column 0.5 m Depth of column **0.8** m 52.33 x 0. 29.45 > 6 Vd x b =h/b =61.7 and 61.7 > 20 Cf = Therefore, **1.2** from table 20 for rough surface finish Fcolumn = $1.2 \times 0.5 \times 1.15$ **0.6886** kN/m height upto 10 m height for 1 and 2 nd column = Fcolumn = $1.2 \times 0.5 \times 1.19$ = **0.7153** kN/m for **13.87** m height 3rd level column Fcolumn = $1.2 \times 0.5 \times 1.22$ = 0.7153 **18.21** m height 4th level column kN/m for Fcolumn = $1.2 \times 0.5 \times 1.24$ = 0.7456 kN/m for **22.55** m height 5th level column Fcolumn = $1.2 \times 0.5 \times 1.27$ = 0.7606 **26.89** m height 6th level column kN/m for Fcolumn = $1.2 \times 0.5 \times 1.29$ = **0.7736** kN/m for **31.35** m height 7th level column

Fbracings = $1.0 \times \{ 2 \times (12.6 - 0.5 \times 5) \} \times$ 1.15 = **23.1845** kN/m..... height acting upto 3rd brace level Fbracings = $1.0 \times \{ 2 \times (12.6 - 0.5 \times 5) \} \times$ 1.19 = **24.0817** kN/m.....height acting at 4th brace level Fbracings = $1.0 \times \{ 2 \times (12.6 - 0.5 \times 5) \} \times$ 1.22 = **24.6414** kN/m..... height acting at 5th brace level Fbracings = $1.0 \times \{ 2 \times (12.6 - 0.5 \times 5) \} \times$ 1.24 = **25.1030** kN/m..... height acting at 6th brace level Fbracings = $1.0 \times \{ 2 \times (12.6 - 0.5 \times 5) \} \times$ 1.27 = **25.6061** kN/mheight acting at 7th brace level This is calculated considering it as an individual member and using table 23 with h/b ratio <2 ; F ring beam = 1x 12.6 x 1.29

= **16.2458** kN/m height as above

4.3.5 WIND ANALYSIS AS PER IS 875-1987

Wind data:							
1 Wind zone :		3	Vb =	44	m/s		
				(IS: 875	-pt.3,Sec	.5.2,Fig	g. 1)
2 Terrain catre	gory :	В	Open ter	rain with v	vellscatte	red stru	uctures
			Category	2, as defi	ned in IS	875	
				(IS: 875	-pt.3,Sec	.5.3.2.	1)
Design Factor	S						
Risk Coefficient	factor k_1	=	1.07				
				(IS: 875	-pt.3,Sec	.5.3.1,	Table-1)
Terrain and He	ight factor	k ₂ , varie	es with he	ight and is	s given in	Table	22.1
				(IS: 875	-pt.3,Sec	.5.3.2.2	2,Table-2)
Topography Fa	ctor k3 =		1	Soil Slope	e < 3°		
				(IS: 875	-pt.3,Sec	.5.3.3.	1)
Design Wind	Pressure						
Desian Wind sr	need -	V/7 —	VhvK.vK.	vK.			
2 00.911 11.10 op	iccu –	vz –	VDAR1AR2	2113			
_ co.g op	=	47.08	x k ₂	(IS: 875	-pt.3,Sec	. 5.3)	
Levels	Height upto	vz – 47.08 K₂	x k ₂ Design	(IS: 875 Design	-pt.3,Sec Level	. 5.3) Colur	nn Bottom
Levels	Height upto	47.08 K ₂	v k ₂ Design Velocity	(IS: 875 Design Pressure	-pt.3,Sec Level <u>31.35</u>	. 5.3) Colur No	nn Bottom Ring Beam
Levels	Height upto	47.08 K ₂ 0.980	x k ₂ Design Velocity 46.14	(IS: 875 Design Pressure 1.02	-pt.3,Sec Level 31.35	. 5.3) Colur No	nn Bottom Ring Beam
Levels 1st Level 2nd Level	Height upto 0.85 5.19	47.08 K ₂ 0.980 0.980	x k ₂ Design Velocity 46.14	(IS: 875 Design Pressure 1.02	-pt.3,Sec Level <u>31.35</u> <u>26.89</u>	. 5.3) Colur No 7	nn Bottom Ring Beam 7th Bracing
Levels 1st Level 2nd Level 3rd Level	Height upto 0.85 5.19 9.53	47.08 K ₂ 0.980 0.980 0.980	x k ₂ Design Velocity 46.14 46.14	(IS: 875 Design Pressure 1.02 1.02	-pt.3,Sec Level <u>31.35</u> 26.89	. 5.3) Colur No 7	nn Bottom Ring Beam 7th Bracing
Levels 1st Level 2nd Level 3rd Level	Height upto 0.85 5.19 9.53 10	47.08 K ₂ 0.980 0.980 0.980 0.980	x k ₂ Design Velocity 46.14 46.14 46.14	(IS: 875 Design Pressure 1.02 1.02 1.02	-pt.3,Sec Level <u>31.35</u> <u>26.89</u> <u>22.55</u>	. 5.3) Colur No 7 6	nn Bottom Ring Beam 7th Bracing 6th Bracing
Levels 1st Level 2nd Level 3rd Level 4th Level	Height upto 0.85 5.19 9.53 10 13.87	47.08 K ₂ 0.980 0.980 0.980 0.980 1.011	x k ₂ Design Velocity 46.14 46.14 46.14 46.14 46.14	(IS: 875 Design Pressure 1.02 1.02 1.02 1.02	-pt.3,Sec Level <u>31.35</u> <u>26.89</u> <u>22.55</u>	. 5.3) Colur No 7 6	nn Bottom Ring Beam 7th Bracing 6th Bracing
Levels 1st Level 2nd Level 3rd Level 4th Level	Height upto 0.85 5.19 9.53 10 13.87 15	47.08 Κ ₂ 0.980 0.980 0.980 0.980 1.011 1.020	Velocity Velocity 46.14 46.14 46.14 46.14 46.14 46.14 46.14 47.60 48.02	(IS: 875 Design Pressure 1.02 1.02 1.02 1.02 1.05 1.06	-pt.3,Sec Level <u>31.35</u> <u>26.89</u> <u>22.55</u> <u>18.21</u>	. 5.3) Colur No 7 6 5	nn Bottom Ring Beam 7th Bracing 6th Bracing 5th Bracing
Levels 1st Level 2nd Level 3rd Level 4th Level 5th Level	Height upto 0.85 5.19 9.53 10 13.87 15 18.21	47.08 K ₂ 0.980 0.980 0.980 0.980 1.011 1.020 1.039	x k ₂ Design Velocity 46.14 46.14 46.14 46.14 46.14 46.14 46.14 48.02 48.93	(IS: 875 Design Pressure 1.02 1.02 1.02 1.02 1.02 1.05 1.06 1.08	-pt.3,Sec Level 31.35 26.89 22.55 18.21	. 5.3) Colur No 7 6 5	nn Bottom Ring Beam 7th Bracing 6th Bracing 5th Bracing
Levels 1st Level 2nd Level 3rd Level 4th Level 5th Level	Height upto 0.85 5.19 9.53 10 13.87 15 18.21 20	47.08 K ₂ 0.980 0.980 0.980 0.980 1.011 1.020 1.039 1.050	x k ₂ Design Velocity 46.14 46.14 46.14 46.14 46.14 46.14 47.60 48.02 48.93 49.43	(IS: 875 Design Pressure 1.02 1.02 1.02 1.02 1.02 1.05 1.06 1.08 1.09	-pt.3,Sec Level 31.35 26.89 22.55 18.21 13.87	. 5.3) Colur No 7 6 5 4	nn Bottom Ring Beam 7th Bracing 6th Bracing 5th Bracing 4th Bracing
Levels Levels 1st Level 2nd Level 3rd Level 4th Level 5th Level 6th Level	Height upto 0.85 5.19 9.53 10 13.87 15 18.21 20 22.55	47.08 K ₂ 0.980 0.980 0.980 0.980 1.011 1.020 1.039 1.050 1.063	x k ₂ Design Velocity 46.14 46.14 46.14 46.14 46.14 47.60 48.02 48.93 49.43 50.03	(IS: 875 Design Pressure 1.02 1.02 1.02 1.02 1.05 1.06 1.08 1.09 1.10	-pt.3,Sec Level <u>31.35</u> <u>26.89</u> <u>22.55</u> <u>18.21</u> <u>13.87</u>	. 5.3) Colur No 7 6 5 4	 mn Bottom Ring Beam 7th Bracing 6th Bracing 5th Bracing 4th Bracing
Levels 1st Level 2nd Level 3rd Level 4th Level 5th Level 6th Level 7th Level	= Height upto 0.85 5.19 9.53 10 13.87 15 18.21 20 22.55 26.89	47.08 K ₂ 0.980 0.980 0.980 0.980 1.011 1.020 1.039 1.050 1.063 1.084	x k ₂ Design Velocity 46.14 46.14 46.14 46.14 46.14 47.60 48.02 48.93 49.43 50.03 51.06	(IS: 875 Design Pressure 1.02 1.02 1.02 1.02 1.05 1.06 1.08 1.09 1.10 1.13	-pt.3,Sec Level <u>31.35</u> <u>26.89</u> <u>22.55</u> <u>18.21</u> <u>13.87</u> <u>9.53</u>	. 5.3) Colur No 7 6 5 4 3	 mn Bottom Ring Beam 7th Bracing 6th Bracing 5th Bracing 4th Bracing 3rd Bracing

51.95

52.71

52.95

53.46

54.14

1.15

1.16

1.17

1.18

1.19

5.19

0.85

0

-2

1

12

2nd Bracing

1st Brace at Plinth

Ground level

Foundation

31.35 1.103

37.8 **1.120**

39.85 **1.125**

1.135

1.150

41.95

50

Top of Trestle

Bottom of cylinder

Top of cylinder

Top of roof

Wind Load Calculations:

External Pressure coefficient for roof and bottom of tank :

(z/H) - 1 = (41.95/9.6) - 1 = 3.369

(IS: 875-pt.3,Sec.6.2.2.9,Table 19)

H/D = **0.4571**

Therefore, Cpe = -0.75 for roof and -0.81 for bottom

Eccentricity of force at roof

= 0.1*(21) = **2.1** m

Total force acting on the roof of the structure

 $P = 0.785 \times D^{2} \times (pi - Cpe \times Pd)$ = **306.03** kN acting upwards at **2.10** m from center of dome (IS: 875-pt.3,Sec.6.2.2.9)

Note: If no opening exist; like in RCC tanks, pi = 0

Roof pressure will be used with Gravity loads for design of dome.

Overall Horizontal Force on the tank :

 $F = C_f x Ae x P_d (or P_z)$ (IS: 875-pt.3,Sec.6.3,6.3.3.1 (c))

No horizontal force will act on top dome. The effect of wind pressure on dome has been included with an eccentricity.

Cylindrical Portion:

$V_d(avg) =$	(52.71+5	52.95)/2	2		
:	= 52.83	m/s	and	Vd x b =	1109.4 > 6
h/b =	0.098	< 0.5			
Therefore ,	Cf =	0.7	from Tab	le 23 (rou	igh) and
Pz =	1.17	at to	op and	1.16	at bottom
This being a v	ery small di	fferenc	e, heigher	value ma	y be taken.
Fcylinder =	0.7 x 21 x	(1.17	17.20	kN/m he	ight
Conical Bott	om:				
Vd (avg) =	(52.71+5	51.95)	/2 =	52.33	m/s
Vd x b =	879.08	and	879.08	> 6	

h/d = **0.260 < 0.5**

Therefore ,Cf =**0.7** from Table 23 (rough)and Pz =**1.16** at top and**1.15** at bottom.This is being a very small difference , heigher value may be takenFconical dome= $0.7 \times ((21-12.6)/2+12.6) \times 1.17$ =**13.76** kN/m height

Staging :

Pd =	1.02 kN/m ²	upto 10 m	n for 1st	,2nd and	3rd Level I	Bracings
	1.05 kN/m ²	at	13.87	m	4th Level	Bracings
	1.08 kN/m ²	at	18.21	m	5th Level	Bracings
	1.10 kN/m ²	at	22.55	m	6th Level	Bracings
	1.13 kN/m ²	at	26.89	m	7th Level	Bracings

In order to calculate wind force on each column, each column is considered as an individual member (IS875-pt.3,Sec. 6.3.3.1 c,table 23) and no sheilding effect is considered on leeward columns, as the columns are placed far apart on periphery only)

Perimeter length : **12.6** m No. of columns in periphery Nc =8 Therefore for one column: Width of column = 0.5 m Depth of column = **0.8** m Vd x b =52.33 x 0 **26.16 > 6** h/b =61.7 and 61.7 > 20 from table 23 for rough surface finish Therefore, Cf = 1.2 Fcolumn = $1.2 \times 0.5 \times 10^{-1}$ 1.02 = **0.6104** kN/m height upto 10 m height for 1 and 2 nd column $Fcolumn = 1.2 \times 0.5 \times 10^{-1} \text{ m}$ 1.05 = 0.6297 kN/m for **13.87** m height 3rd level column $Fcolumn = 1.2 \times 0.5 \times 10^{-1} M$ 1.08 = 0.6297 kN/m for **18.21** m height 4th level column $Fcolumn = 1.2 \times 0.5 \times 10^{-1}$ 1.10 = 0.6620 kN/m for **22.55** m height 5th level column

Fcolumn =	1.2 x 0.5 x	1.13	
=	0.6755	kN/m for	26.89 m height 6th level colum
Fcolumn =	1.2 x 0.5 x	1.15	
=	0.6873	kN/m for	31.35 m height 7th level colum
Fbracings =	1.0 x { 2 x (12.6- 0	0.5*5)} x 1.02	
=	20.5505 kN/m	height act	ting upto 3 rd brace level
Fbracings =	1.0 x { 2 x (12.6- 0).5*5)} x 1.05	
=	21.1997 kN/m	height acti	ing at 4 th brace level
Fbracings =	1.0 x { 2 x (12.6- 0).5*5)} x 1.08	
=	21.7932 kN/m	height acti	ing at 5 th brace level
Fbracings =	1.0 x { 2 x (12.6- 0).5*5)} x 1.10	
=	22.2858 kN/m	height act	ting at 6 th brace level
Fbracings =	1.0 x { 2 x (12.6- 0).5*5)} x 1.13	
=	22.7408 kN/m	height act	ting at 7 th brace level
This is calculate	ed considering it as	s an individual r	member and using table 20
with h/b ratio <	<2		
F ring beam =	1x 12.6 x	1.15	= 14.4324 kN/m height as above

	Force per	Height of	Тор	CG of force	Moment in
Element		element	horizontal	from	
	unit Ht	in m	force	Ground	kNm
Cylindrical wall	17.20	2.05	35.26	38.83	1368.89
Conical dome	13.76	2.10	28.89	36.75	1061.87
Top ring beam	14.43	0.50	7.22	39.60	285.76
7 th column	0.69	4.34	2.98	29.18	87.04
6 th column	0.68	4.34	2.93	24.84	72.82
5 th column	0.66	4.34	2.87	20.50	58.89
4 th column	0.63	4.34	2.73	16.16	44.16
3 rd column	0.61	4.34	2.65	11.82	31.31
2 nd column	0.61	4.34	2.65	7.48	19.82
1 st column	0.61	4.34	2.65	3.14	8.32
7 th Bracing	22.74	0.50	11.37	26.89	305.75
6 th Bracing	22.29	0.50	11.14	22.55	251.27
5 th Bracing	21.79	0.50	10.90	18.21	198.43
4 th Bracing	21.20	0.50	10.60	13.87	147.02
3 rd Bracing	20.55	0.50	10.28	9.53	97.92
2 nd Bracing	20.55	0.50	10.28	5.19	53.33
1 st Bracing	20.55	0.50	10.28	0.85	8.73
					4101.3

Summary of forces and total loads on tank

				IS 875-1987		IS 875-2005 PROPOSED DRAFT			
Element	Height of	CG of force	Force per	Тор	Moment in	Force per	Тор	Moment in	Increase in
	element in	from		horizontal		unit Ht	horizontal		
	m	Ground	unit Ht old	force	kNm	draft	force draft	kNm	forces
Cylindrical portion	2.05	38.83	17.20	35.26	1368.89	21.90	44.90	1743.29	27.35
Conical dome	2.10	36.75	13.76	28.89	1061.87	17.40	36.55	1343.22	26.50
Top ring beam	0.50	39.60	14.43	7.22	285.76	16.25	8.12	321.67	12.56
7th column	4.34	29.18	0.69	2.98	87.04	0.77	3.36	97.97	12.56
6th column	4.34	24.84	0.68	2.93	72.82	0.76	3.30	81.99	12.60
5th column	4.34	20.50	0.66	2.87	58.89	0.75	3.24	66.34	12.64
4th column	4.34	16.16	0.63	2.73	44.16	0.72	3.10	50.17	13.59
3rd column	4.34	11.82	0.61	2.65	31.31	0.69	2.99	35.33	12.82
2nd column	4.34	7.48	0.61	2.65	19.82	0.69	2.99	22.36	12.82
1st column	4.34	3.14	0.61	2.65	8.32	0.69	2.99	9.38	12.82
7th Bracing	0.50	26.89	22.74	11.37	305.75	25.61	12.80	344.27	12.60
6th Bracing	0.50	22.55	22.29	11.14	251.27	25.10	12.55	283.04	12.64
5th Bracing	0.50	18.21	21.79	10.90	198.43	24.64	12.32	224.36	13.07
4th Bracing	0.50	13.87	21.20	10.60	147.02	24.08	12.04	167.01	13.59
3rd Bracing	0.50	9.53	20.55	10.28	97.92	23.18	11.59	110.47	12.82
2nd Bracing	0.50	5.19	20.55	10.28	53.33	23.18	11.59	60.16	12.82
1st Bracing	0.50	0.85	20.55	10.28	8.73	23.18	11.59	9.85	12.82
					4101.33			4970.88	

SUMMARY OF WIND FORCES AND TOTAL LOADS ON TANKS BY EXISTING AND DRAFT CODE

4.3.6 DESIGN OF PERIPHERALLY BRACED TRESTLE

DESIGN	OF COLUI	MN SECTI	ON					
for 8 no.	of column							
Grade of	Grade of concrete =				5 N/mm ²			
Ultimate	load Pu =			7353.45	kN			
Ulitmate	Moment M	u=		187.84	kNm			
assumed	l bar dia.			25	mm			
Main ste	eel							
Assumed	1 b =	550	mm & D =	800	mm with d' i	n mm =	40	
Ratio (d'	/D) =	0.05						
Pu/(fck*	b*D)	=	0.668					
&	-							
Mu/(fck*	^s b*d ²)	=	0.0237					
Referring	g interactior	n chart cor	respondin	g to fy =	415	N/mm ²		
and (d'/[D) =	0.07						
thus								
(p/fck) =	=	0.09	so p =	2.25	%			
	A = (pbD/	(100)	=	9900	mm ²			
Provide	25	mm dia o	distributing	g on all sides	equally			
Provide	20.1783	~	16	on two faces	and as showr	ו on other	two.	
æ	22	no.s						
Transve	erse steel							
using	8	mm dia ti	ies, spacin	g of least of	following			
1. Least	Lateral dim	ention =	550	mm				
2. 16* di	ia of main s	steel =	400	mm				
3. 48* di	ia of ties =		384	mm				
Grade of	steel =		415	N/mm ²				
Provide	8	mm dia ti	ies at	384	*	300	mm c/c.	

DESIGN OF BRACES

for 191peripheral bracing

Mu =	117.29	kNm
Vu =	50.54	kN

Thus Ast = [0.36*fck*b*(0.53d)/(0.87*fy)]

so using 8 mm dia 4 legged No.s stirrups as nominal shear reinforcements, the spacing is given by

Sv = $(Asv*fy/(0.4*b)) = 208.5 \approx 300$ mm, centers

SUMMARY:	Column			
Main steel :	25	mm dia bars total equally distributed on all faces	22	no.s
Transverse steel:	8	mm dia bars at	300	mm centers
	Periphera	l Bracings		
Main steel :	8	No.s of mm dia and bottom equally distributed	20	bars on top
Transverse steel:	8	mm dia bars at	250	mm centers
4.4 DIAGONALLY AND PERIPHERALLY BRACED TRESTLE4.4.1 SEISMIC ANALYSIS AS PER PROPOSED DRAFT CODE

Mass of the container only:	= 9822.10	kN = 1001491	Kg
Mass of water in container, m	= 18633	kN = 1899881.16	Kg
Mass of columns:	= 2560	kN	
Mass of braces:	= 536.27	kN	
Mass of the staging:	= 3096.27	kN = 315708.0743	Kg
Total mass of full tank:	= 31551.23	kN = 3217089.935	Kg
Total mass of empty tank:	= 12918.37	kN = 1317208.77	Kg

Mass of container and one third mass of staging is expressed as

ms = 9822.10 + (3096.27)/3

Lateral stiffness of staging which id only Peripherally braced

Ks = 8181.29 kN/m = **8181290 N/m**

CG of empty container

= 3.528 m from top of bottom ring beam

Ec Modulus of Elasticity of concrete

 $= 25000 \text{ N/mm}^2 = 25 \text{ kN/mm}^2 = 25000000 \text{ kN/m}^2$ Top Dome Weight = 1027.51 kN
Top Ring Beam Weight = 196.93 kN
Cylindrical Wall = 669.70 kN
Bottom Ring Beam = 247.99 kN
Circular Ring Beam = 430.01 kN

Bottom Dome	=	664.60 kN
Conical Dome	=	6560.83 kN
Water	=	18632.86 kN
Columns	=	2560.00 kN
Bracings	=	536.27 kN

Centre of Gravity of Empty Container from bottom slab

= 3.52 mMass **m** = mass of water = **1899888.26 kg** Let h be the height equivalent circular cylinder $(D)^2$

$$\pi\left(\frac{\mathsf{D}}{2}\right)^{\mathsf{T}}h = 1899.88$$

So **h** = $1899.88x \frac{4}{21^2 x\pi}$ = **5.48** m

Inner diameter of tank, **D** = **21** m, h/D = 5.48/21 = **0.26** so,

$$\frac{mi}{m} = \frac{\tanh 0.866\frac{D}{h}}{0.866\frac{D}{h}} = \frac{\tanh 0.866\frac{21}{5.48}}{0.866\frac{21}{5.48}} = 0.300746$$

 $m_i = 1899888.26 \times 0.300746$

= 571385.59 kg

hi/ h = 0.375 < 0.75 so **hi** = 0.375 x 5.48 = **2.06** m

$$\frac{hi^*}{h} = \frac{0.866\frac{D}{h}}{2\tanh 0.866\frac{D}{h}} = \frac{0.866\frac{21}{5.48}}{2\tanh 0.866\frac{21}{5.48}} = 1.65 \text{ for h/D} < 1.33$$

So **hi**^{*} = 1.65 x 5.48 = **9.07 m**

$$\frac{mc}{m} = 0.23 \frac{\tanh 3.68 \frac{h}{D}}{\frac{h}{D}} = 0.23 \frac{\tanh 3.68 \frac{5.48}{21}}{\frac{5.48}{21}} = 0.66$$

so $m_c = 0.66 \times 1899888.26 = 1246178.6 \text{ kg}$

$$\frac{hc}{h} = 1 - \frac{\cosh\left(3.68\frac{h}{D}\right) - 1.0}{3.68\frac{h}{D}\sinh\left(3.68\frac{h}{D}\right)} = 1 - \frac{\cosh\left(3.68\frac{5.48}{21}\right) - 1.0}{3.68\frac{5.48}{21}\sinh\left(3.68\frac{5.48}{21}\right)} = 0.54$$

so $h_c = 0.54 \times 5.48 = 2.94 \text{ m}$

$$\frac{hc^*}{h} = 1 - \frac{\cosh\left(3.68\frac{h}{D}\right) - 2.01}{3.68\frac{h}{D}\sinh\left(3.68\frac{h}{D}\right)} = 1 - \frac{\cosh\left(3.68\frac{5.48}{21}\right) - 2.01}{3.68\frac{5.48}{21}\sinh\left(3.68\frac{5.48}{21}\right)} = 1.48$$

so **hc**^{*} = 1.48 x 5.48 = **8.10** m

$$kc = 0.836 \frac{mg}{h} \tanh^2 \left(3.68 \frac{h}{D} \right) = kc = 0.836 \frac{1899888.26 \times 9.81}{5.48} \tanh^2 \left(3.68 \frac{5.48}{21} \right)$$

K_c = **1575780.14** N/mm

 $h_s = 31.60$ mStructural height of staging, measured from top of foundation to the bottom of container wall $h_{cg} = 35.13$ mHeight of center of gravity of the empty container

of elevated tank, measured from base of staging

Time period:

Time period of Impulsive mode,

$$T_i = 2\pi \sqrt{\left(\frac{(m_i + m_s)}{K_s}\right)} = 2\pi \sqrt{\left(\frac{(571385.59 + 1106693.31)}{8181290}\right)} = 2.844 \text{ sec}$$

Time period of Convective mode,

For h/D = 0.26, Cc = 3.8 from Graph

$$T_c = C_C \sqrt{\frac{D}{g}} = 3.8 \sqrt{\frac{21}{9.81}} = \text{Tc} = 5.56 \text{ sec}$$

Design horizontal Seismic Coefficients

Design horizontal seismic coefficient for impulsive mode,

$$(Ah)_{i} = \frac{Z}{2} \frac{I}{R} \left(\frac{Sa}{g} \right)_{i}$$

Where, Z = **0.16** (IS 1893, PART (I), Table2, Zone III)
I = **1.5**

Since Staging has Special Moment Resisting Frames (SMRF), R is taken as 2.5

Here **Ti** = **2.844** sec

Site has **Medium Soil**

Damping = 5%

Here the time period is greater than 4.0 sec and as per Cl.4.5.3. of Proposed draft we can use the same expression, which is applicable for 4.0 seconds. So

Sa/g = 1.36/ T = 1.36 / 2.844 = **0.4782**

Hence, $(Sa/g)_i = 0.4782$

$$(Ah)_{i} = \frac{Z}{2} \frac{I}{R} \left(\frac{Sa}{g}\right)_{i}^{=} (Ah)_{i} = \left(\frac{0.16}{2}\right) \left(\frac{1.5}{2.5}\right) (0.4782) = 0.0229536$$
 (Sections 4.5 and 4.5.1)

For Convective mode, value of Response reduction factor is taken as **2.5** For Convective mode as per Cl 4.5.1

Site has Medium Soil

Damping = 0.5%

Here the time period is greater than 4 seconds and as per Cl.4.5.3. of Proposed draft Code, we can use the same expression, which is applicable for 4.0 seconds. So

(Sa/g) = 1.36/T = 1.36/5.56 = 0.2446 This value is for damping 5 % Multiplying factor of 1.75 is to be used to obtain Sa/g values for 0.5 %

Damping

..... (Section 4.6.2)

 $(Ah)_{c} = (0.16/2)x(1.5/2.5)x(0.2446)x1.75$

= 0.02054

Base shear

Base shear art the bottom of staging in Impulsive mode,

 $V_i = (A_h)_i (m_i + m_s)g = V_i = (0.0229536)_i (571385.59 + 1106693.31)9.81/1000 =$ **377.86** kN(Section 4.7.2)

Similarly, base shear in Convective mode,

 $V_c = (A_h)_c m_s g = (0.02054)_c x 1246178.6 x 9.81 = 251.1 \text{ kN}$

Total base shear at the bottom of staging, $V = \sqrt{V_i^2 + V_c^2} = \sqrt{(377.861)^2 + (251.1)^2} = 453.68 \text{ kN}$

Base Moment

Overturning moment at the base of staging in Impulsive mode $M_i^* = (A_h)_i [m_i(h_i^* + h_s) + m_s h_{cg}]g =$

 $(0.0229536)_i x[571385.59(9.07 + 31.60) + 1106693.31x35.13]x9.81$

M_i^{*} = **13987.046** kNm

..... (Section 4.7.2)

Similarly overturning moment in Convective mode,

 $M_{c}^{*} = (A_{h})_{c} m_{c} (h_{c}^{*} + h_{s})g = (0.02054)_{c} x 1246178.6x (8.10 + 31.60) x 9.81 = 9968.74 \text{ kNm}$ Total overturning moment $M = \sqrt{M_{i}^{*2} + M_{c}^{*2}} = \sqrt{(13987.046)^{2} + (9968.74)^{2}} = 17175.95 \text{ kNm}$

Sloshing wave height

Maximum sloshing wave height,

Height of sloshing wave is more than free board of 0.3 m

Analysis for Tank Empty Condition

For empty condition tank will be considered as Single degree of freedom system as described in Section 4.7.4 Time period of Impulsive mode,

 $T = T_e = 2\pi \sqrt{\frac{m_s}{K_s}} = 2\pi \sqrt{\frac{1106693.31}{8181290}} = 2.3097$ sec.

Empty tank will not have convective mode of vibration.

Design Horizontal Seismic Coefficient

Design horizontal Seismic Coefficient corresponding to Impulsive time period Ti = 2.3097 sec.

$$(A_h)_i = \frac{Z}{2} \frac{I}{R} \left(\frac{Sa}{g}\right)_i$$
 (Section 4.5 and 4.5.1)

Where, Z = **0.16** I = **1.5**

Since Staging has Special Moment Resisting Frames (SMRF), R is taken as 2.5

Here Ti= **2.3097** sec Site has **Medium soil** Damping = **5** % Hence, (Sa/g)i = 1.36 / 2.3097 = **0.589** (IS 1893) (Part I) Figure 2 $\left(\frac{0.16}{2}\right)\left(\frac{1.5}{2.5}\right)(0.589)_i$

(Ah) _i =	= = 0.02827	72
Base shear		
Base shear art the	bottom of staging in Impulsive	mode,
$V = V_i = (A_h)_i m_s g$	$=(0.028272)_i x 1106693.31 x 9.81$	= 306.94 kN
		(Section 4.6.2)
Base Moment		
Total base moment	- - 1	
$M^* = (A_h)_i m_s h_{cg} g =$	$(0.028272)_i x 1106693.31 x 35.13 x 9.8$	31 (Section 4.7.3)
= 10782.78 kNm		

Since total base shear **453.68** kN and base moment **17175.95** kN-m in tank full Condition is more than that total base Shear **306.94** kN and base moment **10782.78** kNm in tank empty condition,

So Design will be governed by Tank full condition.

Tank Full	Base Shear in kN	Base Moment in kNm	Base Shear Net	Base Moment Net	Time Period
Impulsive	377.86	13987.04	453.63	17175.95	2.844
Convective	251.10	9968.74			5.56
Tank Empty	Base Shear in kN	Base Moment in kNm	Base Shear Net	Base Moment Net	Time Period
Impulsive	306.94	10782.78	306.94	10782.78	2.3097
Convective	—	—			-

ANALYSIS FOR HYDROSTATIC PRESSURE

It will be same for peripherally braced water tank as container remaining same for both cases.

4.4.2 SEISMIC ANALYSIS AS PER IS 1893-1984

TANK FULL CONDITION

Calculation of C G of water tank from top of the footing h = Staging height + C.G. of water container = **34.878** m

Design horzontal Seismic Coefficients As per seismic coefficient method α h = β xIxFoxSa/g

 B =
 1
For raft foundation Table 3

 where Fo =
 0.2
IS 1893-1984 (Part I) Table2;Zone III

 I =
 1.5
For Water tanks Table 4

Here $T = 2x3.14 \times (3005807.2/(8181290))^{0.5} =$ **3.81 sec** Site has Medium Soil so = Sa/g= **0.04**

 $\alpha h = \beta x I x Fo x Sa/g = 1*0.2*1.5*0.04 = 0.012$

Moment at base of staging = **12338** kNm

TANK EMPTY CONDITION

Site has Medium Soil

Damping = 5%Hence, (Sa/g) = 0.05(IS 1893-1984) (Part I) Figure 2 $(\alpha h) =$ 0.015 W = 10843.879 **1106693** kg = Base shear αhW 162.8 kN = Moment at base of staging 5680 kN-m = So Design will be governed by tank full condition.

4.4.3 COMPARISON BETWEEN EXISTING & PROPOSED DRAFT CODE

	IS 1893-2002 PR	DPOSED DRAFT	IS1893-1984		
	Base Moment (kNm)	Base Shear (kN)	Base Moment (kNm)	Base Shear (kN)	
Design values	17175.95	453.68	12338.00	353.80	
Impulsive	13987.05	377.86	12338.00	353.80	
Convective	9968.74	251.10	_		
% INCREASE COMPARI	120 21	179.72	100	100	
WITH IS 1893-1984	159.21	120.25	100	100	
Design Governing Case	Tank Full C	ondition	Tank Full Condition		
Response Reduction					
Factor	R = 2	2.5	$\beta = 1.0, F_0 = 0.2$		
Tank Full Ti sec	2.85		3.81		
Tank Full Tc sec	5.56		-		
Tank Empty Te sec	2.31		2.31		

4.4.4 WIND ANALYSIS AS PER PROPOSED DRAFT CODE

As the surface area obstructed by diagonals will be negligible so wind force calculation is assumed to be same as for peripherally braced trestle for simplicity.

4.4.5 WIND ANALYSIS AS PER IS 875-1987

As the surface area obstructed by diagonals will be negligible so wind force calculation is assumed to be same as for peripherally braced trestle for simplicity.

4.4.6 DESIGN OF PERIPHERALLY WITH DIAGONALLY BRACED TRESTLE

DESIGN OF COLUMN SECTION

for 8 no.s column 25 N/mm^2 Grade of concrete = Ultimate load Pu = 7670.72 kN Factored values Ulitmate Moment Mu= 144.06 kNm assumed bar dia. 25 mm Main steel Assumed b =550 mm & D = 800 mm with d' in mm = 40 Ratio (d'/D) =0.05 Pu/(fck*b*D) & 0.697 = $Mu/(fck*b*d^2)$ = 0.0181 415 N/mm² Referring interaction chart corresponding to fy = and (d'/D) =0.07 thus (p/fck) =0.09 so p =2.25 % **9900** mm² = A = (pbD/100)Provide **25** mm dia distributing on all sides equally Provide **20.1783** ≈ 16 on two faces and as shown on other two. 22 no.s ≈ Transverse steel 8 mm dia ties, spacing of least of following using 1. Least Lateral dimention = **550** mm 2. 16* dia of main steel = 400 mm 3. 48^* dia of ties = 384 mm Grade of steel = 415 N/mm² 8 mm dia ties at Provide 300 mm c/c. **384** ≈

DESIGN OF BRACES

for 191 r	no. bracing						
Mu =	79.65	kNm	Factored	values			
Vu =	34.47	kN					
Section of	of brace is	b =	230	mm			
		D =	350	mm			
		d =	310	mm			
So Mu. L	im =	(0.148*fc	$k*b*d^2) =$		81.78	811	kNm
Thus Ast	: =	[0.36*fck	*b*(0.53c	l)/(0.87*fy)]			
	=	941.98	mm²				
Use	1.91995	~	2	bars of	25	mm dia e	ach side
ζv =	(Vu/bd) =	0.48345	N/mm ²				
(100*As	t/(b*d)) =	1.376				1.25	0.7
from Is 4	156-2000, P	ermissible	shear str	ess		1.5	0.74
ζc =	0.720196	N/mm²	>	0.48345	Safe	ans	0.72
so using	8	mm dia	4	legged No.s	stirrups as	nominal s	hear
reinforce	ments, the	spacing is	s given by				
Sv =	(Asv*fy/(0	.4*b)) =	226.63	~	300	mm, cen	ters
DESIGN	OF TENSI	ON MEME	BER				
DENSITY	OF STEEL	PROVIDED	76.8123	kN/m ³			
length =	6.34606	m					

tensuion 75.02 kN Factored values Permissible stress = 305.9 N/mm^2 area required = $75*1000/159.6 = 245.244 \text{ mm}^2$ using 20 mm dia bars having area = 314 mm^2 As Ast provided > Ast require so safe Stress in section = 238.92 N/mm^2 < 305.9 N/mm^2 Safe

4.4.7 DETAILING OF CONNECTION OF DIAGONAL BRACING WITH EXISTING CONCRETE MEMBERS

FIGURE 4.4 DETAILING FOR STEEL DIAGONAL X BRACINGS

(A) ARRANGEMENTS OF BRACINGS (B) TYPICAL CONNCETION DETAILS

- **1** New bracing members
- **2** Existing concrete structural elements
- 3 Joints of bracing members and existing RC elements
- 1 Existing beam
- **3** Structural steel angle cleat
- 5 Bolt
- **7** Bracing members

- 2 Existing column
- 4 Structural steel gusset plate
- **6** Grout to be injected in the gap between concrete surface and steel surface
- **8** Gap in the hole for bolt to be filled by grout

4.5 DESIGN FORCE SUMMARY

(A) FOR COLUMNS

PERIPHERALLY BRACED TRESTLE

for columns for columns For axial Axial force Shear @ Y Shear @ Z TORSION For axial Axial force Shear @ Y Shear @ Z TORSION Moment @ Moment @ Moment @ Moment @ Z force in kNm in kNm Y in kNm in kNm force in kNm in kNm Y in kNm Z in kNm 8 958.39 0.00 20.64 0.00 125.23 0.00 8 1169.91 0.00 19.83 0.00 96.04 0.00 18 930.54 0.00 17.60 0.00 86.35 0.00 18 1142.12 0.00 12.31 0.00 52.02 0.00 28 883.37 1083.12 25.28 0.00 0.00 14.89 0.00 53.47 0.00 28 0.00 8.01 0.00 38 828.07 0.00 14.14 0.00 39.48 0.00 38 1013.78 0.00 7.24 0.00 18.93 0.00 48 769.97 0.00 13.94 0.00 31.10 0.00 48 941.92 0.00 7.11 0.00 16.01 0.00 58 712.41 13.71 22.87 0.00 58 870.60 7.00 12.71 0.00 0.00 0.00 0.00 0.00 68 14.53 7.37 658.78 0.00 0.00 11.61 0.00 68 802.83 0.00 0.00 7.50 0.00 78 613.61 0.00 6.13 0.00 11.73 0.00 78 743.24 0.00 3.38 0.00 3.89 0.00 Shear @ Y Shear @ Z TORSION Shear @ Y Shear @ Z TORSION For Mz Axial force Moment @ Moment @ Z For Mz Axial force Moment @ Moment @ torsion in kNm in kNm Y in kNm in kNm in kNm Y in kNm Z in kNm in kNm torsion 0.00 67.14 0.00 1.93 0.00 333.40 2 24.06 63.53 2.58 2.58 6.62 258.92 12 0.00 70.20 0.00 2.20 0.00 268.99 12 51.30 45.56 0.09 2.92 0.87 159.37 22 0.00 72.95 0.00 2.76 0.00 211.08 22 58.08 39.47 0.18 3.60 0.13 107.60 32 0.00 73.77 0.00 3.66 0.00 183.37 32 58.78 37.77 0.11 4.67 0.04 93.56 42 0.00 74.03 0.00 4.94 0.00 168.15 42 58.07 37.45 0.13 6.10 0.03 89.75 52 0.00 74.23 0.00 6.47 0.00 153.96 52 56.96 38.00 0.09 7.73 0.02 87.98 62 0.00 72.81 0.00 7.69 0.00 128.48 62 54.69 39.27 0.42 8.98 0.12 82.52 72 0.00 79.66 0.00 7.66 0.00 78.28 72 46.58 50.74 0.23 8.81 1.29 63.21

PERIPHERALLY & DIAGONALLY BRACED TRESTLE

(B) FOR BRACINGS

DESIGN FORCES FOR PERIPHERAL BRACINGS BY DRAFT CODE PROVISIONS

PERIPHERALLY BRACED TRESTLE

PERIPHERALLY & DIAGONALLY BRACED TRESTLE

For Periph	eral Bracings	5					For Perip	heral Bracing	<u>js</u>				
For axial	Axial force	Shear @ Y	Shear @ Z	TORSION	Moment @	Moment @ Z	For axial	Axial force	Shear @ Y	Shear @ Z	TORSION	Moment @	Moment @
force		in kNm	in kNm		Y in kNm	in kNm	force		in kNm	in kNm		Y in kNm	Z in kNm
				-	_			-	-	-	-		,
195	1.65	33.69	0.02	0.09	0.04	78.20	195	29.89	22.70	0.02	0.04	0.08	52.93
295	1.48	56.98	0.02	0.19	0.15	132.26	295	52.55	33.38	0.05	0.09	0.23	77.53
395	0.43	66.81	0.02	0.21	0.32	155.05	395	58.71	36.09	0.07	0.11	0.45	83.77
495	0.14	70.55	0.01	0.25	0.57	163.74	495	60.20	36.78	0.04	0.15	0.82	85.37
595	0.13	71.08	0.06	0.31	1.04	164.95	595	60.09	36.96	0.06	0.23	1.45	85.78
695	0.65	68.66	0.29	0.43	1.98	159.38	695	59.93	36.69	0.34	0.36	2.57	85.17
795	4.02	61.39	0.76	0.48	3.53	142.35	795	51.35	34.69	0.88	0.49	4.37	80.35
											-		
For Mz	Axial force	Shear @ Y	Shear @ Z	TORSION	Moment @	Moment @ Z	For Mz	Axial force	Shear @ Y	Shear @ Z	TORSION	Moment @	Moment @
For Mz torsion	Axial force	Shear @ Y in kNm	Shear @ Z in kNm	TORSION	Moment @ Y in kNm	Moment @ Z in kNm	For Mz torsion	Axial force	Shear @ Y in kNm	Shear @ Z in kNm	TORSION	Moment @ Y in kNm	Moment @ Z in kNm
For Mz torsion	Axial force	Shear @ Y in kNm	Shear @ Z in kNm	TORSION	Moment @ Y in kNm	Moment @ Z in kNm	For Mz torsion	Axial force	Shear @ Y in kNm	Shear @ Z in kNm	TORSION	Moment @ Y in kNm	Moment @ Z in kNm
For Mz torsion 191	Axial force	Shear @ Y in kNm 33.69	Shear @ Z in kNm 0.02	TORSION 0.09	Moment @ Y in kNm 0.04	Moment @ Z in kNm 78.20	For Mz torsion	Axial force 33.02	Shear @ Y in kNm 22.98	Shear @ Z in kNm 0.02	TORSION 0.12	Moment @ Y in kNm 0.04	Moment @ Z in kNm 53.11
For Mz torsion 191 291	Axial force 1.65 1.48	Shear @ Y in kNm 33.69 56.98	Shear @ Z in kNm 0.02 0.02	TORSION 0.09 0.19	Moment @ Y in kNm 0.04 0.15	Moment @ Z in kNm 78.20 132.26	For Mz torsion 191 291	Axial force 33.02 52.69	Shear @ Y in kNm 22.98 33.92	Shear @ Z in kNm 0.02 0.00	TORSION 0.12 0.17	Moment @ Y in kNm 0.04 0.23	Moment @ Z in kNm 53.11 78.68
For Mz torsion 191 291 391	Axial force 1.65 1.48 0.43	Shear @ Y in kNm 33.69 56.98 66.81	Shear @ Z in kNm 0.02 0.02 0.02	TORSION 0.09 0.19 0.21	Moment @ Y in kNm 0.04 0.15 0.32	Moment @ Z in kNm 78.20 132.26 155.05	For Mz torsion 191 291 391	Axial force 33.02 52.69 57.00	Shear @ Y in kNm 22.98 33.92 36.65	Shear @ Z in kNm 0.02 0.00 0.04	TORSION 0.12 0.17 0.17	Moment @ Y in kNm 0.04 0.23 0.51	Moment @ Z in kNm 53.11 78.68 85.03
For Mz torsion 191 291 391 491	Axial force 1.65 1.48 0.43 0.14	Shear @ Y in kNm 33.69 56.98 66.81 70.55	Shear @ Z in kNm 0.02 0.02 0.02 0.02 0.01	TORSION 0.09 0.19 0.21 0.25	Moment @ Y in kNm 0.04 0.15 0.32 0.57	Moment @ Z in kNm 78.20 132.26 155.05 163.74	For Mz torsion 191 291 391 491	Axial force 33.02 52.69 57.00 58.53	Shear @ Y in kNm 22.98 33.92 36.65 37.33	Shear @ Z in kNm 0.02 0.00 0.04 0.10	TORSION 0.12 0.17 0.17 0.20	Moment @ Y in kNm 0.04 0.23 0.51 0.89	Moment @ Z in kNm 53.11 78.68 85.03 86.63
For Mz torsion 191 291 391 491 591	Axial force 1.65 1.48 0.43 0.14 0.13	Shear @ Y in kNm 33.69 56.98 66.81 70.55 71.08	Shear @ Z in kNm 0.02 0.02 0.02 0.02 0.01 0.06	O.09 0.19 0.21 0.25 0.31	Moment @ Y in kNm 0.04 0.15 0.32 0.57 1.04	Moment @ Z in kNm 78.20 132.26 155.05 163.74 164.95	For Mz torsion 191 291 391 491 591	Axial force 33.02 52.69 57.00 58.53 59.03	Shear @ Y in kNm 22.98 33.92 36.65 37.33 37.50	Shear @ Z in kNm 0.02 0.00 0.04 0.10 0.23	O.12 0.17 0.17 0.20 0.26	Moment @ Y in kNm 0.04 0.23 0.51 0.89 1.54	Moment @ Z in kNm 53.11 78.68 85.03 86.63 87.02
For Mz torsion 191 291 391 491 591 691	Axial force 1.65 1.48 0.43 0.14 0.13 0.65	Shear @ Y in kNm 33.69 56.98 66.81 70.55 71.08 68.66	Shear @ Z in kNm 0.02 0.02 0.02 0.01 0.06 0.29 0.29	O.09 0.19 0.21 0.25 0.31 0.43	Moment @ Y in kNm 0.04 0.15 0.32 0.57 1.04 1.98	Moment @ Z in kNm 78.20 132.26 155.05 163.74 164.95 159.38	For Mz torsion 191 291 391 491 591 691	Axial force 33.02 52.69 57.00 58.53 59.03 58.63	Shear @ Y in kNm 22.98 33.92 36.65 37.33 37.50 37.22	Shear © Z in kNm 0.02 0.00 0.04 0.10 0.23 0.52 0.52	TORSION 0.12 0.17 0.17 0.20 0.26 0.38	Moment @ Y in kNm 0.04 0.23 0.51 0.89 1.54 2.67	Moment @ Z in kNm 53.11 78.68 85.03 86.63 87.02 86.38

DESIGN FORCES FOR DIAGONAL BRACINGS BY DRAFT CODE PROVISIONS

Maximum Tensile Force : 75 kN

4.6 DESIGN OF FOOTING

4.6.1 DESIGN OF FOOTING FOR PERIPHERALLY BRACED TRESTLE

DATA:		
Outside diameter of raft	D1 =	14 m
Inside diameter of raft	D2 =	4 m
Mean Diameter Thickness of shaft Outside radius	= = a =	6.05 m 0.5 m 7 m
Mean radius	β a = β =	3.0250 m 0.43214
	αa =	4.00000
	α =	0.57143
Area of raft Moment of Inertia Section Modulus	A = I = Z =	153.938 m² 1885.74 m ⁴ 269.392 m³
<u>Loads:</u> Direct load, Moment,	P = M =	3216.0 T 1405.0 T − m
	S.B.C. =	7.5 T / m ²

If P/A < M/Z, use equivalent moment for foundation design as follows:

	$q_p = P/A =$	20.89 T / m ²
	M/Z =	5.2 T / m ²
	P/A + M/Z =	26.11 T / m ²
	P/A - M/Z =	15.68 T / m ²
Design Pressure	for Raft:	
Due to direct load	= P / A = p =	20.89 T / m ²
Due to moment	$= M_{eq} / Z = q =$	5.22 T / m ²

RADIAL AND TANGENTIAL MOMENTS DUE TO DIRECT LOAD:

 $\begin{array}{l} \underline{Constants:} \\ Y_1 = -\beta^4 + (8\alpha^2\beta^2\ln\beta) - (\beta^2\gamma_2) - (\gamma_3\ln\beta) \\ Y_1 = 4.3925 \\ Y_2 = (5.48\alpha^2 - 2.52 - 2.96\beta^2 - (8\ln\beta) + (8\alpha^4\ln\alpha)/(\alpha^2 - 1)) \\ Y_2 = -7.3519 \\ Y_3 = (\alpha^{2*}((-6.82) - (8^*\beta^2) - (21.65^*\ln\beta) + (21.65^*\alpha^{2*}\ln\alpha)/(\alpha^2 - 1))) \\ Y_3 = 5.1346 \\ Y_4 = (-8)\alpha^2 \\ Y_4 = -2.6122 \\ Y_5 = (8\beta^2\ln\beta) - (\beta^2\gamma_6) + (-\beta^4) - (\gamma_7\ln\beta) \\ Y_5 = -1.6107 \end{array}$

 $\begin{array}{ll} Y_6 = & (5.48 - 2.52 \alpha^2 - 2.96 \ \beta^2 - (8 \ ln \ \beta) + (8 \ \alpha^4 \ ln \ \alpha) / (\alpha^2 - 1) \\ Y_6 = & -15.3519 \\ Y_7 = & (- \ 6.82 \alpha^2 \) - (8 \ \beta^2) + (21.65 \alpha^4 \ ln \ \alpha) / ((\alpha^2 - 1) - (21.65 \ \alpha^2 \ ln \ \beta)) \\ Y_7 = & -3.8013 \\ Y_8 = & -8.0000 \end{array}$

Moments:

For f <
$$\beta$$

 $M_{ri} = (pa^2 / 64) * (-12.6 f^2 - 2.3 Y_2 + (0.85/f^2) Y_3 - Y_4 (3.15 + 2.3 \ln f))$
 $M_{ti} = (pa^2 / 64) * (-5.8 f^2 - 2.3 Y_2 - (0.85/f^2) Y_3 - Y_4 (1.45 + 2.3 \ln f))$
 $Q_{ri} = (pa / 2f) (\alpha^2 - f^2)$; $Q_t = 0$

For $f > \beta$

$$\begin{split} M_{re} &= (pa^2 \,/\, 64 \,) \,^* \,(\,\, \text{-12.6 } \, f^2 \,- 2.3 \,\, \text{Y}_6 \,+ (0.85 / \, f^2) \,\, \text{Y}_7 \, \text{-} \,\, \text{Y}_8 \,(3.15 \,+\, 2.3 \,\, \text{ln f} \,) \,) \\ M_{te} &= (pa^2 \,/\, 64 \,) \,^* \,(\,\, \text{-5.8 } \, f^2 \,- 2.3 \,\, \text{Y}_6 \, \text{-} \,\, (0.85 / \, f^2) \,\, \text{Y}_7 \, \text{-} \,\, \text{Y}_8 \,(1.45 \,+\, 2.3 \,\, \text{ln f} \,) \,) \end{split}$$

 $Q_{re} = pa(1 - f^2) / 2f$

RADIAL AND TANGENTIAL MOMENTS DUE TO MOMENT:

$$\begin{array}{l} \underline{Constants:} \\ Y_1 = -\beta^4 - (\gamma_2 \ \beta^2) - (\gamma_3 / \beta^2) - (\gamma_4 \ \ln \beta) \\ Y_1 = 27.0996 \\ Y_2 = (-5.46)^* ((1+\alpha^4)/(\alpha^2+1)) - (\ 3 / \ \beta^2) - 0.81\beta^2 \\ Y_2 = 11.3584 \\ Y_3 = (3\beta^2\alpha^4) - (11.12\alpha^4 / \beta^2) + (20.24\alpha^4 / (\alpha^2+1)) \\ Y_3 = -4.4707 \\ Y_4 = 12 \ \alpha^4 \\ Y_4 = 1.2795 \\ Y_5 = \ \gamma_6 \ \beta^2 - \beta^4 - \ \gamma_7 / \ \beta^2 - \gamma_8 \ \ln \beta \\ Y_5 = 31.4401 \\ Y_6 = (-5.46)^* ((1+\alpha^4)/(\alpha^2+1)) + (\ 3\alpha^4 / \ \beta^2) - 0.81\beta^2 \\ Y_6 = -4.7061 \\ Y_7 = (3\beta^2) - (11.12\alpha^4 / \beta^2) + (20.24\alpha^4 / (\alpha^2+1)) \\ Y_7 = -4.1618 \\ Y_8 = 12.0000 \end{array}$$

Moments:

For $f < \beta$ $M_{ri} = (qa^2 / 192) * (-20.6 f^3 - 6.3 f Y_2 - (1.7 / f^3) Y_3 - Y_4 (1.15 / f)) * Cos\theta$ $M_{ti} = (qa^2 / 192) * (-7 f^3 - 2.9 f Y_2 + (1.7 / f^3) Y_3 - Y_4 (1.15 / f)) * Cos\theta$ $Q_{ri} = (qa / 192) (-72f^2 - 8Y_2 + (2/f^2)Y_4) \cos \theta$ $Q_{ti} = (qa / 192) (24 f^2 + 8 Y_2 + (2/f^2) Y_4) Sin \theta$ For $f > \beta$ $M_{re} = (qa^2 / 192) * (-20.6 f^3 - 6.3 f Y_6 - (1.7 / f^3) Y_7 - Y_8 (1.15 / f)) Cos\theta$ $M_{te} = (qa^2 / 192) * (-7 f^3 - 2.9 f Y_6 + (1.7 / f^3) Y_7 - Y_8 (1.15 / f)) * Cos\theta$ $Q_{re} = (qa / 192) (-72f^2 - 8 Y_6 + (2/f^2) Y_8) \cos \theta$ Diameter at the section = 19.65 m f = d'/D =1.40 m Radial Moments: M_{ri} = -30.11 T-m Circumferential Moments: M_{ti} = -16.76 T-m

4.7.2 DESIGN OF FOOTING FOR PERIPHERALLY AND

DIAGONALLY BRACED TRESTLE

D 4 T 4	_	_
DATA: Outside diameter of raft	D1 =	14 m
Inside diameter of raft	D2 =	4 m
Mean Diameter Thickness of	=	6.05 m 0.5 m
Outside radius	a =	7 m
Mean radius	β a =	3.0250 m
	β =	0.43214
	α a =	4.00000
	α =	0.57143
Area of raft	A =	153.938 m ²
Moment of Inertia	l =	1885.74 m⁴
Section Modulus	Z =	269.392 m ³
Loads:		
Direct load , Moment ,	P = M =	3216.0 T 1674.3 T - m
	S.B.C. =	7.5 T / m ²

If P/A < M/Z, use equivalent moment for foundation design as follows:

	$q_p = P/A =$	20.89 T / m ²
	M/Z =	6.2 T / m ²
	P/A + M/Z =	27.11 T / m ²
	P/A - M/Z =	14.68 T / m ²
Design Pressure	for Raft:	
Due to direct load	= P / A = p =	20.89 T / m ²
Due to moment	$= M_{eq} / Z = q =$	6.22 T / m ²

RADIAL AND TANGENTIAL MOMENTS DUE TO DIRECT LOAD: Constants:

 $\begin{array}{l} \mathbf{Y}_{1} = -\beta^{4} + (8\alpha^{2}\beta^{2}\ln\beta) - (\beta^{2}\gamma_{2}) - (\gamma_{3}\ln\beta) \\ \mathbf{Y}_{1} = \mathbf{4.3925} \\ \mathbf{Y}_{2} = (5.48 \ \alpha^{2} - 2.52 - 2.96 \ \beta^{2} - (8\ln\beta) + (8 \ \alpha^{4}\ln\alpha) / (\alpha^{2} - 1) \\ \mathbf{Y}_{2} = -7.3519 \\ \mathbf{Y}_{3} = (\alpha^{2*}((-6.82) - (8^{*}\beta^{2}) - (21.65^{*}\ln\beta) + (21.65^{*}\alpha^{2*}\ln\alpha) / (\alpha^{2} - 1)) \\ \mathbf{Y}_{3} = \mathbf{5.1346} \\ \mathbf{Y}_{4} = (-8)\alpha^{2} \\ \mathbf{Y}_{4} = -2.6122 \\ \mathbf{Y}_{5} = (8 \ \beta^{2}\ln\beta) - (\beta^{2}\gamma_{6}) + (-\beta^{4}) - (\gamma_{7}\ln\beta) \\ \mathbf{Y}_{5} = -1.6107 \end{array}$

 $\begin{array}{ll} Y_6 = & (5.48 - 2.52 \alpha^2 - 2.96 \ \beta^2 - (8 \ ln \ \beta) + (8 \ \alpha^4 \ ln \ \alpha) / (\alpha^2 - 1) \\ Y_6 = & -15.3519 \\ Y_7 = & (- \ 6.82 \alpha^2 \) - (8 \ \beta^2) + (21.65 \alpha^4 \ ln \ \alpha) / ((\alpha^2 - 1) - (21.65 \ \alpha^2 \ ln \ \beta)) \\ Y_7 = & -3.8013 \\ Y_8 = & -8.0000 \end{array}$

Moments:

For f < β $M_{ri} = (pa^2 / 64) * (-12.6 f^2 -2.3 Y_2 + (0.85/f^2) Y_3 - Y_4 (3.15 + 2.3 \ln f))$ $M_{ti} = (pa^2 / 64) * (-5.8 f^2 -2.3 Y_2 - (0.85/f^2) Y_3 - Y_4 (1.45 + 2.3 \ln f))$ $Q_{ri} = (pa / 2f) (\alpha^2 - f^2)$; $Q_t = 0$

For $f > \beta$

$$\begin{split} M_{re} &= (pa^2 \,/\, 64 \,) \,^{\star} \, (\, \text{-12.6 f}^2 \,\text{-2.3 Y}_6 \,+\! (0.85 \!/\, f^2) \, Y_7 \,\text{-}\, Y_8 \, (3.15 \,+\, 2.3 \, \text{ln f} \,) \,) \\ M_{te} &= (pa^2 \,/\, 64 \,) \,^{\star} \, (\, \text{-5.8 f}^2 \,\text{-2.3 Y}_6 \,\text{-}\, (0.85 \!/\, f^2) \, Y_7 \,\text{-}\, Y_8 \, (1.45 \,+\, 2.3 \, \text{ln f} \,) \,) \end{split}$$

 $Q_{re} = pa(1 - f^2) / 2f$

RADIAL AND CIRCUMFERNTIAL MOMENTS AT CENTER OF SHAFT:

RADIAL AND TANGENTIAL MOMENTS DUE TO MOMENT:

$$\begin{array}{l} \hline Constants: \\ Y_1 = -\beta^4 - (\gamma_2 \ \beta^2) - (\gamma_3 / \beta^2) - (\gamma_4 \ \ln \beta) \\ Y_1 = 27.0996 \\ Y_2 = (-5.46)^*((1+\alpha^4)/(\alpha^2+1)) - (\ 3 \ / \ \beta^2) - 0.81\beta^2 \\ Y_2 = 11.3584 \\ Y_3 = (3\beta^2\alpha^4) - (11.12\alpha^4 / \beta^2) + (20.24\alpha^4 / (\alpha^2+1)) \\ Y_3 = -4.4707 \\ Y_4 = 12 \ \alpha^4 \\ Y_4 = 1.2795 \\ Y_5 = \gamma_6 \ \beta^2 - \beta^4 - \ \gamma_7 / \ \beta^2 - \gamma_8 \ \ln \beta \\ Y_5 = 31.4401 \\ Y_6 = (-5.46)^*((1+\alpha^4)/(\alpha^2+1)) + (\ 3\alpha^4 \ / \ \beta^2) - 0.81\beta^2 \\ Y_6 = -4.7061 \\ Y_7 = (3\beta^2) - (11.12\alpha^4 / \beta^2) + (20.24\alpha^4 / (\alpha^2+1)) \\ Y_7 = -4.1618 \\ Y_8 = 12.0000 \end{array}$$

<u>Moments:</u> For f < β

For f < β $M_{ri} = (qa^2 / 192) * (-20.6 f^3 - 6.3 f^3)$ $M_{ti} = (qa^2 / 192) * (-7 f^3 - 2.9 f^3)$	f Y ₂ - (1.7/ f ³) Y ₃ - Y ₄ (1.15 / f)) * Cosθ Y ₂ + (1.7/ f ³) Y ₃ - Y ₄ (1.15 / f)) * Cosθ
Q _{ri} = (qa / 192) (-72f ² - 8 Y ₂ + (2	2/ f²) Y ₄) Cos θ
Q _{ti} = (qa / 192) (24 f^2 + 8 Y ₂ + (2	$2/f^2$) Y_4) Sin θ
For f > β $M_{re} = (qa^2 / 192) * (-20.6 f^3 - 6.3 f^3)$ $M_{te} = (qa^2 / 192) * (-7 f^3 - 2.9 f^3)$ $Q_{re} = (qa / 192) (-72f^2 - 8 Y_6 + (200))$	f Y ₆ - (1.7/ f ³) Y ₇ - Y ₈ (1.15 / f)) Cosθ Y ₆ + (1.7/ f ³) Y ₇ - Y ₈ (1.15 / f)) * Cosθ 2/ f ²) Y ₈) cos θ
Diameter at the section = 19.65 f = d'/D = 1.40	m m
Radial Moments:	
M _{ri} = -35.88	T-m
Circumferential Moments:	
M _{ti} = -19.97	T-m

4.7 DESIGN SUMMARY

Type of braced frame : Code referred :

Peripherally braced frame

IS1893-2005 (Part II)Draft code

Code referred

Level	Width	Length	Main dia	No.s	Stirrups dia	c/c spacing						
1st	550	800	25	22	8	300						
2nd	550	800	25	18	8	300						
3rd	550	800	25	18	8	300						
4th	550	800	25	18	8	300						
5th	550	800	25	16	8	300						
6th	550	800	25	14	8	300						
7th	550	800	25	14	8	300						
8th	550	800	25	14	8	300						

Total main steel & stirrups steel in m³ for given no. of columns

For Bracings

Length of bracing = 4630 mm no.s Stirrups dia c/c spacing Level b D main dia 1st 250 400 20 4 250 8 2nd 300 480 20 6 8 300 500 3rd 300 25 4 8 300 4th 300 550 25 5 8 300 25 5th 300 550 5 8 300 25 5 6th 300 550 8 300 7th 300 480 20 6 8 300

Total

Type of braced frame : Code referred : Total values in m³

Peripherally & Diagonally braced frame IS1893-2005 (Part II)Draft code

For columns

Level	Width	Length	Main dia	No.s	Stirrups dia	c/c spacing
1st	550	800	25	22	8	300
2nd	550	800	25	20	8	300
3rd	550	800	25	18	8	300
4th	550	800	25	18	8	300
5th	550	800	25	18	8	300
6th	550	800	25	16	8	300
7th	550	800	25	14	8	300
8th	550	800	25	14	8	300

Total main steel & stirrups steel in m³ for given no. of columns

For Bracings

Length	of bracing	=	4630			
Level	b	D	main dia	no.s	Stirrups dia	c/c spacing
1st	230	350	25	2	8	230
2nd	300	380	25	3	8	300
3rd	300	380	25	3	8	300
4th	300	400	25	3	8	300
5th	300	400	25	3	8	300
6th	300	400	25	3	8	300
7th	300	380	25	3	8	300

	SUMMARY OF RADIAL AND TANGENTIAL MOMENTS IN RAFT:												
Radial	Dia.	f	Due to D	irect Load	Due to	Moment	Com	bined					
Distance	ď	d' / D1	Mr	Mt	Mr	Mt	Mr	Mt					
(m)	(m)		(T-m)	(T-m)	(T-m)	(T-m)	(T-m)	(T-m)					
7.000	14.000	1.000	714.63	709.23	3.09	-18.94	717.72	728.17					
6.628	13.255	0.947	713.44	708.72	5.79	-21.21	719.23	729.92					
6.255	12.510	0.894	709.09	707.85	8.34	-24.17	717.43	732.02					
5.883	11.765	0.840	701.15	706.80	10.90	-27.99	712.06	734.79					
5.510	11.020	0.787	689.13	705.81	13.66	-32.89	702.79	738.70					
5.138	10.275	0.734	672.30	705.25	16.92	-39.20	689.22	744.45					
4.765	9.530	0.681	649.74	705.67	21.09	-47.41	670.82	753.08					
4.393	8.785	0.628	620.09	707.89	26.83	-58.29	646.92	766.18					
4.020	8.040	0.574	581.45	713.19	35.21	-73.04	616.65	786.23					
3.648	7.295	0.521	530.93	723.62	48.00	-93.67	578.93	817.29					
3.275	6.550	0.468	464.07	742.56	68.35	-123.67	532.43	866.23					
3.025	6.050	0.432	232.83	253.14	-43.37	-19.70	276.20	272.84					
2.775	5.550	0.396	238.79	255.89	-39.47	-17.96	278.26	273.85					
2.498	4.995	0.357	244.81	258.66	-35.23	-16.07	280.04	274.72					
2.220	4.440	0.317	250.20	261.14	-31.08	-14.20	281.28	275.34					
1.943	3.885	0.278	254.95	263.32	-27.02	-12.37	281.96	275.69					
1.665	3.330	0.238	259.06	265.22	-23.02	-10.55	282.09	275.77					
1.388	2.775	0.198	262.55	266.82	-19.09	-8.76	281.64	275.58					
1.110	2.220	0.159	265.40	268.13	-15.21	-6.99	280.61	275.12					
0.833	1.665	0.119	267.62	269.15	-11.37	-5.23	278.99	274.38					
0.555	1.110	0.079	269.20	269.88	-7.57	-3.48	276.76	273.36					
0.278	0.555	0.040	270.15	270.32	-3.78	-1.74	273.93	272.06					
0.000	0.000	0.000	270.47	270.47	0.00	0.00	270.47	270.47					

A _{st, min.}	=	0.15*	bd /	100	at	any	section

Load Factor (RF) = 1

DESIGN FOR FLEXURE:

RF * Moment RADIAL STEEL TANGENTIAL STEEL Effective Diameter Radial Distance Thickness M, M, M_u/bd² A_{st, req} Provide M_u/bd² A_{st, req} Provide A_{st, req} A_{st, pro} Pt, req Pt, req (m) (m) (m) (T-m) (T-m) (N/mm^2) (cm²/m) (cm²)Dia Nos. (N/mm^2) (cm²/m) Dia sp (cm²) 7.000 14.00 1.280 717.72 728.17 4.381 1.686 215.75 9489 25 225 1104 4.444 1.726 220.96 25 13.26 6.628 1.280 719.23 729.92 4.390 1.691 216.49 9015 25 225 1104 4.455 1.733 221.85 25 4.379 12.51 6.255 1.280 717.43 8473 25 1.742 732.02 1.684 215.60 225 1104 4.468 222.92 25 11.77 5.883 1.280 712.06 734.79 4.346 1.664 212.98 7872 25 225 1104 4.485 1.753 224.35 25 5.510 1.280 702.79 738.70 4.289 7220 25 11.02 1.629 208.56 25 225 1104 4.509 1.769 226.39 10.28 5.138 1.280 689.22 744.45 4.207 1.580 6529 25 1104 4.544 1.792 229.43 25 202.27 225 9.53 4.765 1.280 670.82 753.08 4.094 4.596 1.516 194.07 5810 25 450 2209 1.829 234.12 25 646.92 8.79 4.393 1.280 766.18 3.948 1.437 183.92 5076 25 450 2209 4.676 1.887 241.52 25 8.04 4.020 1.280 616.65 786.23 3.764 1.342 171.76 4338 80 4.799 1.982 253.65 25 25 393 3.648 7.30 1.280 578.93 817.29 3.534 1.231 157.51 80 4.988 2.149 275.04 3610 25 393 25 3.275 6.55 1.280 532.43 866.23 3.250 1.102 141.08 2903 25 80 393 5.287 2.515 321.98 25 6.05 3.025 5.55 2.775 1.280 278.26 273.85 1.698 0.515 65.87 1148 25 450 2209 1.671 0.506 64.72 25 5.00 2.498 1.280 280.04 274.72 1.709 0.518 66.33 1041 25 450 2209 1.677 0.507 64.94 25 4.44 2.220 1.280 281.28 275.34 1.717 0.521 66.66 930 25 450 2209 1.681 0.509 65.10 25 3.89 1.943 1.280 281.96 275.69 1.721 0.522 66.84 816 25 450 2209 1.683 0.509 65.20 25 3.33 1.665 1.280 282.09 275.77 1.722 0.522 66.87 700 450 1414 1.683 0.510 65.22 25 20 2.78 1.388 1.280 275.58 1.719 0.521 582 450 1414 1.682 0.509 65.17 25 281.64 66.75 20 2.22 1.110 1.280 280.61 1.713 464 1414 0.508 65.05 25 275.12 0.519 66.48 20 450 1.679 278.99 0.833 1.280 346 20 0.507 64.86 25 1.67 274.38 1.703 0.516 66.06 450 1414 1.675 1.11 0.555 1.280 276.76 1.689 0.512 65.48 228 20 450 1414 1.668 0.505 64.59 25 273.36 0.56 0.278 1.280 273.93 1.672 64.74 450 1414 25 272.06 0.506 113 20 1.661 0.502 64.25 0.000 1.651 20 450 1.651 63.84 0.00 1.280 270.47 270.47 0.499 63.84 0 1414 0.499 25

	A _{st, pro}
acing	(cm ² /m)
240	20.44
240	20.44
240	20.44
200	24.53
200	24.53
175	28.04
175	28.04
150	32.71
150	32.71
130	37.74
130	37.74
140	35.04
140	35.04
150	32.71
200	24.53
200	24.53
200	24.53
220	22.30
220	22.30
220	22.30
250	19.63
250	19.63

	SUMMARY OF RADIAL AND TANGENTIAL MOMENTS IN RAFT:												
Radial	Dia.	f	Due to D	irect Load	Due to	Moment	Com	bined					
Distance	d'	d' / D1	M,	Mt	M _r	Mt	M,	Mt					
(m)	(m)		(T-m)	(T-m)	(T-m)	(T-m)	(T-m)	(T-m)					
7.000	14.000	1.000	714.63	709.23	3.69	-22.57	718.32	731.79					
6.628	13.255	0.947	713.44	708.72	6.90	-25.27	720.34	733.99					
6.255	12.510	0.894	709.09	707.85	9.94	-28.80	719.03	736.65					
5.883	11.765	0.840	701.15	706.80	12.99	-33.35	714.14	740.15					
5.510	11.020	0.787	689.13	705.81	16.28	-39.19	705.41	745.00					
5.138	10.275	0.734	672.30	705.25	20.16	-46.71	692.46	751.96					
4.765	9.530	0.681	649.74	705.67	25.13	-56.50	674.86	762.17					
4.393	8.785	0.628	620.09	707.89	31.97	-69.46	652.06	777.35					
4.020	8.040	0.574	581.45	713.19	41.95	-87.04	623.40	800.23					
3.648	7.295	0.521	530.93	723.62	57.19	-111.62	588.13	835.24					
3.275	6.550	0.468	464.07	742.56	81.45	-147.38	545.53	889.94					
3.025	6.050	0.432	232.83	253.14	-51.69	-23.47	284.51	276.62					
2.775	5.550	0.396	238.79	255.89	-47.03	-21.40	285.82	277.29					
2.498	4.995	0.357	244.81	258.66	-41.98	-19.15	286.79	277.80					
2.220	4.440	0.317	250.20	261.14	-37.04	-16.92	287.23	278.06					
1.943	3.885	0.278	254.95	263.32	-32.19	-14.74	287.14	278.06					
1.665	3.330	0.238	259.06	265.22	-27.44	-12.58	286.50	277.79					
1.388	2.775	0.198	262.55	266.82	-22.75	-10.44	285.30	277.26					
1.110	2.220	0.159	265.40	268.13	-18.13	-8.33	283.53	276.46					
0.833	1.665	0.119	267.62	269.15	-13.55	-6.23	281.17	275.39					
0.555	1.110	0.079	269.20	269.88	-9.02	-4.15	278.21	274.03					
0.278	0.555	0.040	270.15	270.32	-4.50	-2.07	274.65	272.39					
0.000	0.000	0.000	270.47	270.47	0.00	0.00	270.47	270.47					

DESIGN OF RAFT USING LIMIT STATE METHOD AS PER IS 456: 2000

A_{st, min.} = 0.15 * bd / 100 at any section DESIGN FOR FLEXURE:

Load Factor (RF) = 1

Diameter	Radial	Effective	RF*I	Moment	RADIAL STEEL					TANGENTIAL STEEL							
	Distance	Thickness	M,	Mt	M _u /bd ²	P _{t, req}	A _{st, req}	A _{st, req}	Pro	vide	A _{st, pro}	M _u /bd ²	Pt, req	A _{st, req}	Pro	vide	A _{st, pro}
(m)	(m)	(m)	(T-m)	(T-m)	(N/mm ²)		(cm ² /m)	(cm ²)	Dia	Nos.	(cm ²)	(N/mm ²)		(cm ² / m)	Dia	spacing	(cm ² /m)
					. ,		. ,				. ,	. ,		` ´			
14.00	7.000	1.280	718.32	731.79	4.384	1.688	216.04	9502	25	225	1104	4.467	1.741	222.81	25	240	20.44
13.26	6.628	1.280	720.34	733.99	4.397	1.696	217.04	9038	25	225	1104	4.480	1.750	223.94	25	240	20.44
12.51	6.255	1.280	719.03	736.65	4.389	1.691	216.39	8504	25	225	1104	4.496	1.760	225.32	25	240	20.44
11.77	5.883	1.280	714.14	740.15	4.359	1.672	213.99	7909	25	225	1104	4.518	1.775	227.15	25	200	24.53
11.02	5.510	1.280	705.41	745.00	4.305	1.639	209.80	7263	25	225	1104	4.547	1.795	229.73	25	200	24.53
10.28	5.138	1.280	692.46	751.96	4.226	1.592	203.75	6577	25	225	1104	4.590	1.824	233.50	25	175	28.04
9.53	4.765	1.280	674.86	762.17	4.119	1.530	195.84	5863	25	450	2209	4.652	1.869	239.21	25	175	28.04
8.79	4.393	1.280	652.06	777.35	3.980	1.454	186.06	5135	25	450	2209	4.745	1.939	248.15	25	150	32.71
8.04	4.020	1.280	623.40	800.23	3.805	1.363	174.41	4405	25	80	393	4.884	2.053	262.83	25	150	32.71
7.30	3.648	1.280	588.13	835.24	3.590	1.257	160.90	3687	25	80	393	5.098	2.262	289.56	25	130	37.74
6.55	3.275	1.280	545.53	889.94	3.330	1.137	145.59	2996	25	80	393	5.432	2.941	376.45	25	130	37.74
6.05	3.025																
5.55	2.775	1.280	285.82	277.29	1.745	0.530	67.85	1183	25	450	2209	1.692	0.513	65.61	25	140	35.04
5.00	2.498	1.280	286.79	277.80	1.750	0.532	68.10	1069	25	450	2209	1.696	0.514	65.75	25	140	35.04
4.44	2.220	1.280	287.23	278.06	1.753	0.533	68.22	952	25	450	2209	1.697	0.514	65.81	25	150	32.71
3.89	1.943	1.280	287.14	278.06	1.753	0.533	68.19	832	25	450	2209	1.697	0.514	65.81	25	200	24.53
3.33	1.665	1.280	286.50	277.79	1.749	0.531	68.03	712	20	450	1414	1.696	0.514	65.75	25	200	24.53
2.78	1.388	1.280	285.30	277.26	1.741	0.529	67.71	590	20	450	1414	1.692	0.513	65.61	25	200	24.53
2.22	1.110	1.280	283.53	276.46	1.731	0.525	67.25	469	20	450	1414	1.687	0.511	65.40	25	220	22.30
1.67	0.833	1.280	281.17	275.39	1.716	0.521	66.63	349	20	450	1414	1.681	0.509	65.12	25	220	22.30
1.11	0.555	1.280	278.21	274.03	1.698	0.514	65.86	230	20	450	1414	1.673	0.506	64.76	25	220	22.30
0.56	0.278	1.280	274.65	272.39	1.676	0.507	64.93	113	20	450	1414	1.663	0.503	64.34	25	250	19.63
0.00	0.000	1.280	270.47	270.47	1.651	0.499	63.84	0	20	450	1414	1.651	0.499	63.84	25	250	19.63

5.1 MODEL SIMULATION

The approximate analysis is can be obtained following *IS: 1893-2001 (Part I)* procedure. For the exact analysis we have to take help from software. In present project, for the dynamic analysis of Case study problem STAAD Pro software is used. The results are compared with the approximate analysis and found to be comparable showing accuracy of work.

The wire frame model constructed in STAAD is as shown below.

FIGURE 5.1 BEAM ELEMENTS AND PLATE ELEMENTS

MODEL DATA

No. of Nodes: 1154 No. of plates: 1120 No. of beams: 216 Base condition: Fixed Joints

5.

GEOMETRICAL DIMENTIONS OF WATERTANK

Capacity	=	1800 m ³
Staging height above ground	=	30 m
Radius of container	=	21 m
Height of cylindrical wall	=	2.05 m
No. of columns	=	8 No.s along periphery
No. of Bracing panels	=	7 No.s
Panel depth	=	4.34 m at above plinth
At plinth level depth of panel	=	3.1 m
Rise of top Dome	=	2.1 m
Rise of Bottom Dome	=	1.3 m
Length of Bracing	=	4.63 m
Depth of footing below ground	=	2 m
STRUCTURAL DIMENTIONS		
Thickness of Top dome	=	100 mm
Thickness of Bottom dome	=	200 mm
Thickness of Cylindrical wall	=	200 mm
Thickness of Conical Wall	=	500 mm
Columns	=	500 x 800 mm
Peripheral Bracings	=	200 x 500 mm
Bottom Ring Beam	=	500 x 500 mm
Middle Ring Beam	=	500 x 500 mm
Top Ring Beam	=	300 x 400 mm

SEISMIC DATA

Zone: III Soil Condition: Medium Soil I importance factor: 1.5 R: 2.5 as per IS 1893-2005 (Part II) Proposed Draft Code

FIGURE 5.2 THREE DIMENTIONAL VIEW OF WATERTANK

5.2 PROPERTIES OF MODEL

MATERIAL PROPERTIES ASSIGNED

ISOTROPIC CONCRETE E 2.17185e+007 POISSON 0.17 DENSITY 23.5616 ALPHA 1e-005 DAMP 0.05

5.3 LOADS CONSIDERED

LOADS CONSIDERED

LOAD 1 SELFWEIGHT LOAD 2 LIVE LOAD LOAD 3 WATERLOAD LOAD 4 HYDROSTATIC LOADS LOAD 5 SEISMIC LOADS

FIGURE 5.3 LOADS CONSIDERED FOR DYNAMIC ANALYSIS

LOAD COMBINATIONS USED FOR CALCULATING DESIGN FORCES

LOAD COMB 11 1.5DL + 1.5LL 1 1.5 2 1.5 3 1.5 LOAD COMB 12 1.5DL + 1.5EQLX 1 1.5 5 1.5 3 1.5 LOAD COMB 13 1.5DL - 1.5EQLX 1 1.5 5 -1.5 3 1.5 LOAD COMB 14 1.5DL + 1.5EQLZ 1 1.5 6 1.5 3 1.5 LOAD COMB 15 1.5DL - 1.5EQLZ 1 1.5 6 -1.5 3 1.5 LOAD COMB 16 0.9DL + 1.5EQLX 1 0.9 5 1.5 3 0.9 LOAD COMB 17 0.9DL - 1.5EQLX 1 0.9 5 -1.5 3 0.9 LOAD COMB 18 0.9DL + 1.5EQLZ 1 0.9 6 1.5 3 0.9 LOAD COMB 19 0.9DL - 1.5EQLZ 1 0.9 6 -1.5 3 0.9 LOAD COMB 20 1.2DL + 1.2LL + 1.2EQLX 1 1.2 2 1.2 5 1.2 3 1.2 LOAD COMB 21 1.2DL + 1.2LL - 1.2EQLX 1 1.2 2 1.2 5 -1.2 3 1.2 LOAD COMB 22 1.2DL + 1.2LL + 1.2EQLZ 1 1.2 2 1.2 6 1.2 3 1.2 LOAD COMB 23 1.2DL + 1.2LL - 1.2EQLZ 1 1.2 2 1.2 6 -1.2 3 1.2

5.4 RESULTS IN GRAPHICAL FORM

MODE	FREQUENCY(CYCLES/SEC)	PERIOD(SEC)	ACCURACY
1	0.18	5.62	7.12E-16
2	0.18	5.62	1.78E-16
3	0.21	4.83	3.94E-16
4	2.25	0.44	2.70E-15
5	2.25	0.44	2.99E-15
6	2.35	0.43	1.30E-11
7	2.35	0.43	6.50E-07
8	3.03	0.33	5.27E-08
9	3.06	0.33	4.16E-13
10	3.06	0.33	9.80E-13
11	3.46	0.29	2.22E-11
12	3.46	0.29	1.94E-11
13	3.94	0.25	3.45E-12
14	4.13	0.24	8.62E-15
15	4.74	0.21	3.21E-13

TABLE 5.1 EIGEN SOLUTIONS

Variation of Time Period for Mode Shapes

FIGURE 5.4 VARIATIONS OF FREQUENCIES FOR DIFFERENT MODES

	Dynamic Analysis Out	put
	Method	Base Shear in kN
1	SRSS	382.72
2	ABS	446.45
3	CQC	382.78
	Manual (Proposed co	de)
	Case	Base Shear in kN
1	Impulsive	268.66
2	Convective	251.10
3	SRSS	349.15

TABLE 5.2 BASE SHEAR RESULTS

5.5 CONCLUSION

• Dynamic analysis results of Base shear are comparable with manual calculation as per Proposed Draft validates base shear calculation.

Note: The consideration of hydrostatic pressure is avoided at this stage of modeling due to some of complexities like when Water get sloshed then it will loose its contact with container wall. The reference input file is attached in soft copy in CD submitted.

6.1 CALCULATION OF QUANTITIES IN m³

:

Type of braced frame : Code referred

Peripherally braced frame IS1893-2005 (Part II)Draft code

For columns

Level	Width	Length	Main dia	No.s	% Steel	Main steel	Stirrups	Concrete
1st	550	800	25	22	2.25	0.246	0.180	10.912
2nd	550	800	25	18	2	0.306	0.138	15.277
3rd	550	800	25	18	1.9	0.290	0.138	15.277
4th	550	800	25	18	1.9	0.290	0.138	15.277
5th	550	800	25	16	1.7	0.260	0.138	15.277
6th	550	800	25	14	1.5	0.229	0.115	15.277
7th	550	800	25	14	1.5	0.229	0.115	15.277
8th	550	800	25	14	1.45	0.222	0.115	15.277
Total main	steel & stirr	ups steel in	2.07	1.08	117.85			

For Bracings

Length of bracing =4630 mm Level main dia reqd % % steel Main stee conc m³ b D no.s stirrups 400 1st 250 0.0097 3.704 20 4 2.72 1.18 0.044 2nd 300 480 20 6 2.726 1.21 0.065 0.0094 5.334 300 500 25 4 1.778 1.21 0.0096 5.556 3rd 0.067 25 4th 300 550 5 1.778 1.22 0.075 0.0103 6.112 25 300 550 5 1.22 5th 1.778 0.075 0.0103 6.112 25 5 300 550 1.22 6.112 6th 1.778 0.075 0.0103 7th 300 480 20 6 1.778 1.21 0.065 0.0094 5.334 0.464 0.0689 38.262 Total values in m3

Type of braced frame : Code referred : For columns

Peripherally & Diagonally braced frame

IS1893-2005 (Part II)Draft code

Level	Width	Length	Main dia	No.s	% Steel	Main steel	Stirrups	Concrete		
1st	550	800	25	22	2.25	0.246	0.180	10.912		
2nd	550	800	25	20	2.2	0.336	0.158	15.277		
3rd	550	800	25	18	2	0.306	0.138	15.277		
4th	550	800	25	18	2	0.306	0.138	15.277		
5th	550	800	25	18	2	0.306	0.138	15.277		
6th	550	800	25	16	1.75	0.267	0.138	15.277		
7th	550	800	25	14	1.5	0.229	0.115	15.277		
8th	550	800	25	14	1.5	0.229	0.115	15.277		
Total main	steel & stirr	uns steel in	2.22	1.12	117.85					

otal main steel & stirrups steel in m3 for given no. of columns

For Bracings

Length of bracing =			4630	mm					
Level	b	D	main dia	no.s	% steel	reqd %	Main steel	stirrups	conc m ³
1st	230	350	25	2	2.336	1.16	0.035	0.0098	2.982
2nd	300	380	25	3	1.363	1.179	0.050	0.0087	4.223
3rd	300	380	25	3	1.778	1.179	0.050	0.0087	4.223
4th	300	400	25	3	1.778	1.185	0.053	0.0006	4.445
5th	300	400	25	3	1.778	1.185	0.053	0.0006	4.445
6th	300	400	25	3	1.778	1.185	0.053	0.0006	4.445
7th	300	380	25	3	1.778	1.179	0.050	0.0087	4.223
					Total valu	es in m3	0.342	0.0377	28.984

For Diagonal Bracings

Length of diagonal = 6.34 m + lap length = $6.34 + 47 \times 20 \times 2 = 8.22 \text{ m}$, no.s = 112, dia 20 mm so volume in $m^3 = 0.289 m^3$ and weight = 0.289*7.83 ton = 2.263 ton so cost = 2.263x 35000 =**Rs. 79205/-**

6.

6.2 CALCULATION OF STEEL FOR LATERAL TIES FOR COLUMNS

	Length of		Presence is
Diagram		Total length	yes 1 if no
	stirrup in mm		then put 0
L=720 h=462	2364.01	18912.08	1
$2 \qquad h=435 \qquad h=462$	1794.41	14355.28	1
$\begin{array}{c} \underline{L}=150 \\ 3 \\ \hline \end{array} \\ h=462 \\ \hline \end{array}$	1224.81	9798.48	1
-L=1 <u>34</u> ▲ h=462	655.21	5241.68	0
5	462.01	3696.08	0

Total volume of stirrup steel for given no.s of columns in m³

0.017309

6.3 CALCULATION OF STEEL FOR STIRRUPS OF BRACINGS

Clear cover =	25	mm
No.s of bracings	8	No.s
length of bracings	4630	mm
Dia of stirrups	8	mm

Dia of stirrups	8 mm				
		Length of	Total	No.s oF	Quantity in
Diagram		stirrups in	length for		
		mm	columns	Stirrups	m ³
250					
↓		1200.01	9600.08	20	0.00965
 480 480 		1460.01	11680.08	16	0.00939
 300 ↑ 500 ↓ 		1500.01	12000.08	16	0.00965
 300 → 100 → <li< td=""><td></td><td>1600.01</td><td>12800.08</td><td>16</td><td>0.01029</td></li<>		1600.01	12800.08	16	0.01029
		1160.01	9280.08	21	0.00979
 300 → 380 → 380 → 		1360.01	10880.08	16	0.00875
 300 400 ↓ 		1400.01	11200.08	16	0.00900

			Peripherally braced frame		Diagonally braced frame	
		Rate	in m ³	Cost	in m ³	Cost
	Main Steel	35000 / tonne	2.071	567,584.30	2.22	609,450.37
For columns	Stirrups	35000 / tonne	1.080	295,974.00	1.12	307,615.64
	Concrete	2000 / m3	117.850	235,699.20	117.85	235,699.20
				1,099,257.50		1,152,765.21
		Rate	in m ³	Cost	in m ³	Cost
	Main Steel	35000 / tonne	0.464	127,159.20	0.342	93725.1
For Bracings	Stirrups	35000 / tonne	0.069	18,882.05	0.0377	10331.685
	Concrete	2000 / m3	38.262	76,524.00	28.984	57,968.00
				222,565.25		162024.785
Т		Total cost of Stagir	ng :-	1,321,822.74		1,314,790.00
·	•	-	1			
For	Bracings	35000 / toppe			0.26	70100.00
Diagonals	Dracings	55000 / tonne			0.20	79100.00
Final cost of staging:-		g:-	1,321,822.74		1,393,890.00	
		· · · · · · · · · · · · · · · · · · ·	5-	_,,		_,,

6.4 COST COMPARISON FOR TRESTLES WITH DIFFERENT BRACING SYSTEMS

6.5 VOLUMETRIC COMPARISON FOR TRESTLES IN GRAPHICAL FORM

6.6 COST COMPARISON FOR TRESTLES IN GRAPHICAL FORM (cost is in Rupees)

6.7 CONCLUSION

The graph shows clearly that when steel diagonals are provided then the moment variation in peripheral bracings becomes nearly of equal value in case of intermediate panels but the axial forces in columns are increasing considerably, resulting heavy column sections for the trestle with steel diagonals also heavy foundation than conventional peripherally braced trestle.

Also the volume of steel required for diagonals is approximately 70 to 80 % that of overall steel requirement thus it makes trestle uneconomical in cost criteria.

But if we consider efficient working of Diagonally and Peripherally braced trestle during Earthquake then this initial investment is safer than failure of structure.

7.1 PROPOSED CODE COMPARISION

The equation for Base shear by any code results into following form

V = C.W

Where,

C = Coefficient (Depending upon Importance, Location and some Structural Properties (distribution of mass and stiffness)) and

W = Seismic Weight (W = mg; m = mass which participates in vibration)
The main differences between *IS:* 1983-1984 and *IS:* 1893-2005 (Part 2)
Proposed Draft code are as follows

<u>IS: 1893-1984</u>

In this code, **C** the coefficient was not dependent upon Ductility of the supporting system. Factor (Sa/g) was being determined from Natural Period.

In IS: 1893-1984 code there was no formula for trestle lateral stiffness is provided so staging was assumed to be stiffer as per *SP: 22* explanatory examples for simplicity of calculations but in Proposed draft code flexibility of frame staging is considered.

Also in *IS:* 1893-1984 code \mathbf{W} i.e. mass participating in vibration was assumed to be the total water mass in the container which is not rational as some part of volume of water in container retain itself with container during vibrations and some portion does not take part during vibration of water container.

Proposed Draft for IS: 1893 (Part II)

In proposed draft code **W** i.e. mass participating in vibration is assumed to be consisting of the Impulsive as well as Convective water mass in the container. **W** i.e. mass participating in vibration is being considered **lower** than assumptions of *IS:* 1893-1984 code.

In Proposed Draft, the major reason for **High** Design Seismic Forces is "to account for redundancy, ductility and overstrength of the supporting system of tanks by the value of R = 2.5"... This means tanks are expected to be capable of dissipating the energy by half a margin as compared to building frames detailed for ductility. (For SMRF, R=5.0 in building)

7.

CONCLUSIONS REGARDING EARTHQUAKE AND WIND DRAFT CODE

After referring Proposed seismic draft code the base shear values for considered structure is found to be approximately 10 to 40 % more than the base shear values for the same structure obtained by referring *IS: 1893-1984* code in case of impulsive base shear and on applying SRSS rule for design base shear. Above conclusions are validated by the results of case study problem as discussed in chapter 4.

The increase in base shear for Peripherally braced trestle is about 15 % whereas it is nearly 40% for peripherally and Diagonally braced trestle.

For Wind draft code the values for wind design forces are increasing by 10-15 % for staging while there is increase of 20-25 % in design values for container this is on result of inclusion of shape factors for intze container in draft code.

Special factor of safety for storms is considered in Wind draft code

CONCLUSIONS REGARDING STEEL DIAGONAL BRACINGS

When we use steel diagonals with Reinforced concrete frames then the 'Truss action' is incorporated in Frame action making stiffer composite staging.The following are the some of the advantages of Diagonal bracings1. Diagonal bracings are characterised by extensive yielding in tension and inelastic buckling of bracings.

2. The story drift is also controlled in case of diagonal bracings. Due to diagonal bracings axial forces in columns increases considerably so we have to do extra strengthening of columns and footing to avoid premature failure.

3. As the cost of retrofitting with the use Diagonal bracings is cheaper than the cost required for dismantling old frame structure and new construction together we can conclude that Steel Diagonals can be effectively used for retrofitting.

7.2 GRAPHICAL REPRESENTATIONS

7.2.1 COLUMN MOMENT VARIATION

7.2.2 COLUMN AXIAL FORCE VARIATION

7.2.3 COLUMN TORSION VARIATION

Column torsion in kN

⇒

7.2.4 PERIPHERAL BRACINGS MOMENT VARIATION

7.2.5 PERIPHERAL BRACINGS' AXIAL FORCE VARIATION

7.3 CONCLUDING REMARKS

Comparison between column moments

The values of column moments are reduced to nearly 80 % of value in case of tank full condition for diagonally braced trestle than the conventionally braced trestle.

We can find overall equal moment distribution for the intermediate peripheral bracings which are combined with Diagonal bracings.

Whereas the sole peripheral bracings' moment varies from all levels

Here note that the lateral stiffness of staging for both calculations may be for IS: 1893-1984 or for Proposed draft are carried out considering Flexibility of structure.

In case of Diagonally and Peripherally braced trestle the column moments are comparatively high for the bottommost and first story column which shows necessity to have control on drift in these areas.

Column axial forces

If we see the graphs for column axial forces the value in case of Diagonally braced trestle the values are approx increasing by 30% than the Peripherally braced trestle, this is the result of Truss Action which is incorporated with Frame action which reduces moments in columns but increases Axial force in columns due to diagonal bracings which are acting like tension members of a Truss.

Compared with *IS: 1893-1984* the values for column axial forces are increasing by 20% approximately.

Column torsion

The column torsion is increases from bottom towards upwards portion of staging.

Thus torsion is more critical for upper stories of staging; compared to earlier code value of torsion is increasing by 20% approximately by the use of Proposed Draft code whereas we can find increase in torsion when we use the diagonal bracings additional to Peripheral bracings.

Peripheral Bracings moment variation

The moments are varying largely from position to position in case of solely use of Peripheral bracings, but when we use diagonal bracings additionally with peripheral bracings the moment for intermediately located peripheral bracings is approx same which shows reduction in concrete as this moment is lesser than peripheral trestle and also shows approx same section of concrete can be used for intermediate peripheral bracings.

Peripheral bracings axial force

Due to truss action resulting by the use of diagonal bracings; the peripheral bracings are subjected with axial forces which are nearly 30 to 50 % greater than the trestle without Diagonal bracings. Thus proper check regarding axial force of peripheral braces should be considered because concrete is weak in tension.

7.4 FUTURE SCOPE OF WORK

For the Draft code comparison we can do lot of work which includes

- 1. Study of foreign codes and their comparison with draft code for reviews and commentary
- 2. Dynamic analysis for sloshing effect and draft code results
- 3. Most of the tanks are having obstructions like inside columns in tank container, which will reduce sloshing mass this study should be carried out to judge exact amount of impulsive and convective mass
- 4. The safety of tank is generally checked for tank full and tank empty conditions, studies regarding similar exercises can be carried out for partial full conditions. To get probable critical design values for tank design.

The studies pertaining to different bracing systems are carried out in this piece of work. For the same topic following much more work can be carried out;

- Study regarding variations like increase in diagonal steel or reduction which will effect on base shear should be studied to arrive at optimal solution of design of trestle with diagonal bracings.
- Working of diagonal bracings, their safety and function should be checked with some criteria to assure the proper working. This study should be included as energy dissipation capacity is more in steel diagonals during vibrations.
- 3. Using Diagonal bracings retrofitting is better as diagonals are fitted in existing RC members it won't create much problem for retrofitting than other methods provided original beam column junctions are properly designed, Detailed and constructed. such studies for cross bracings can be carried out and the tables for ratio like stiffness of trestle and concrete can be done to have optimal solution.

- C.H. Shah, "Failures of Water Tanks", Study of Distressed structures-Water Tanks (Reff site http://www.iase.org)
- G. Tripathi & et al (05-08 January 2000), "Seismic analysis of liquid storage tank with multiple-impulsive-convective mass lumping scheme", *Proc. Structural Engineering Convention-2000*
- 3. V. Verma & et al (05-08 January 2000), "Seismic analysis of liquid storage tank with multiple-impulsive-convective mass lumping scheme", *Proceeding Structural Engineering Convention-2000*
- Jai Krishna, O.P. Jain, "Plain and Reinforced Concrete Vol. I & II, Nemchand & Bros"; Roorkee
- 5. P. Dayaratnam "*Design of reinforced Concrete structures*", Oxford & IBH Publishing Co. Pvt. Ltd., Fourth Edition
- 6. N. Krishna Raju, "Advanced Reinforced Concrete Design", CBS Publishers & Distributors, New Delhi
- 7. R. Shepherd (1972), "The two mass representation of a water tower structure", *Journal of Sound and Vibration*, Vol. 23(3), pp. 391-396
- 8. R.K. Ingle & S. S. Kulkarni, Staging design aspect of RCC water towers for limiting drift", *Computer and Structures*, Vol. 42, pp. 425-432
- 9. R.K. Ingle, "Proportioning of columns for water tank supporting structures", *Computer and Structures*, Vol. 42, pp. 425-432
- Raymond H. Plaut, Rae-Hak Yoo (April 1996), "Elastic Response of Columns after Sudden Loss of Bracing", *Journal of Engineering Mechanics*, pp. 383-384
- 11. Sajjad Sameer U. and Sudhir K. Jain (Dec.1992)," Approximate methods for the determination of time period of water tank staging", *The Indian concrete journal*, pg. 691-698, Vol. 42, pp. 425-432
- Sajjad Sameer U. and Sudhir K. Jain (Dec.1992)," Lateral load Analysis of Frame supported staging for elevated water tanks", *The Indian concrete journal*, pp. 1375-1394
- Ravi mistry, Weimin Dong, Haresh Shah, "Bhuj EQ Report", Interdisciplinary observations on the January 2001, Bhuj, Gujarat Earthquake, Sponsored by World Safety Initiative, Earthquake and Mega cities Initiative

- Durgesh C. Rai (September 2003)," Performance of elevated tanks in *Mw* 7.7 Bhuj earthquake of January 26th, 2001", *Proc. Indian Acad. Sci.* (Earth Planet Sci.), Vol. 112 (3), pp. 421-429
- 15. Indian Association of Structural Engineers, Gujarat State Center," Comments on proposed draft provisions for seismic design of elevated tanks supported on shafts", Meeting of Indian Association of Structural Engineers (Gujarat State Center)
- Y. T. Vani, "Comments on Proposed Draft Provisions for Seismic Design of Elevated Tanks" (Reff site: http://www.iase.org/)
- B. Tansel, M. ASCE, and N. Ahmed (April 1996), "Structural stability of elevated water reservoirs under hurricane force wind conditions", *Journal of Engineering Mechanics*, pp. 383 – 384
- Somnath Datta & et al (2004), "Soil-structure interaction in dynamic behaviour of elevated tanks with alternate frame staging configurations", *Journal of Sound and Vibration*, Vol. 277, pp. 825-853
- 19. Housner G.W., "The dynamic behavior of Water Tanks", *Bulletin of Seismological Society of America*, Vol. 53, pp. 439 480
- 20. A. K. Chopra. "*Dynamics of Structures: Theory and Applications to Earthquake Engineering."* Pearson Education, 2nd Edition, 2001
- 21. V. P. Singh (2002), "Mechanical Vibrations", Dhanpat Rai & Co. (P) Ltd.
- A. K. Jain & R. A. Mir (April 1991), "Inelastic response of reinforced concrete frames under earthquakes", *The Indian Concrete Journal*, pp. 175-179
- Amlan K. Sengupta, Badari Narayanan V. T. & Ashokan A. IITM, "Seismic retrofit of existing multi storied buildings in India – an overview of the method and strategies Seismic Analysis of a water storage structure"
- 24. C. S. Viswanatha, R. Jagdish, S. Ravi and M.N. Ramesh, "Corrosion cancer in RC overhead water tanks"
- 25. C.V. S. Kameswara Rao, "Analysis of supporting tower of overhead tanks".
- 26. C. V. Kant (Feb.1998), "Problems of concrete water towers and Sump wells", *The Indian Concrete journal*, pp. 91-101
- 27. H.Plaut, Yu Wen Yang, "Behaviour of three span braced columns with equal or unequal spans Raymond Coupled vibration of partially fluid-filled cylindrical shells with ring stiffeners"

- K. K. Singh & Dinesh Sikand, "Repair and rehabilitation a case study of an overhead RC water tank", *International symposium on 'Innovative world of Concrete-93'*, Calcutta, India, pp. 14.11-14.13
- 29. Sekar Chandra Dutta, Sudhir K. Jain, C.V.R. Murty (2002), "Seismic torsional vibration in elevated tanks", *Structural Engineering and Mechanics*, Vol.9, No.6, pp. 615-636
- R. N. Raikar, "Diagnosis and Treatment of structures in distress", ISBN: 81-900037-4-7., pp. 169-179
- Jaiswal O.R., Jain S.K., "Proposed Draft Provisions on Seismic Design of Liquid Storage Tanks", Document No. IITK – GSDMA – EQ08 – V1.0, Interim Report I: A – Earthquake Codes, January, 2004, IITK – GSDMA Project on Building Codes, (Reff site: http://www.nicee.org)
- 32. Shah C. H., "Case study on E.S.R. at P Point, LIMBDI", Structural Dynamics an overview
- 33. Rai D.C., "Seismic Retrofitting of RC Shaft Support of Elevated Tanks", *Indian Concrete Journal*, Vol. 77, November 2003, No. 11, pp. 1441 – 1449
- 34. "Images published by EERI", distributed in India by NICEE, (National Information Center for Earthquake Engineering), IIT Kanpur, Kanpur
- 35. Dutta S.C., "Seismic torsional vibration in elevated tanks", *Structural engineering and mechanics*, vol. 9, No. 6, 2000, pp. 615 636
- Jain S.K. and Sameer U. S., "Seismic Design of Frame staging for elevated water tanks", *Ninth Symposium on Earthquake Engineering*, Roorkee, December 14-16 1990, vol. 1
- Dutta S.C., Majumdar S., Dutta S., "Seismic Behavior of Tanks: Progress and Scope for Research", *Journal of Institution of Engineers of India*, Vol. 82, Feb. 2002, pp. 208 -216
- Edward L. Wilson, "Three Dimensional Static and Dynamic Analysis of Structures – A physical approach with emphasis on earthquake engineering", *Computers and Structures*, Inc., Berkeley, California, USA, January 2002
- Jain S. K., Sameer S.U., "A Review of Requirement of Indian codes for seismic design of elevated water tanks", *Bridge and Structural Engineer*, Vol. XXIII, No. 1, 1993

- Haroun, M. A., Housner G.W., "Dynamic Characteristics of Liquid Storage Tanks", ASCE, *Journal of Engineering Mechanics Division*, Vol. 108, No. 5, Sept.–Oct. 1982, pp. 783-800
- 41. IS: 456-2000, Code of Practice for Plain & Reinforced Concrete
- 42. *IS: 3370-1967* (Part I to IV), Code of Practice for Concrete Structures for the Storage of Liquids
- 43. IS: 875-1987, Code of Practice for Live Loads & Wind Loads
- 44. IITK-GSDMA guidelines for seismic design of liquid storage tanks, August 2005
- 45. Indian Standard *IS: 1893 (Part I) 1984* Criteria for Earthquake Resistant Design of structures
- 46. Indian Standard *IS:1893 (Part I) 2002* Criteria for Earthquake Resistant Design of structures
- *47.* Indian Standard *IS: 11682-1985* Criteria for Design of RCC staging for Overhead Water Tanks
- 48. Indian Standard *SP: 22 (S & T) 1982* Part 1, Explanations on IS: 1893-1975 Criteria for Earthquake Resistant Design of Structure
- 49. Indian Standard IS: 13920-1993 Ductile Detailing of Reinforced Concrete structures subjected to Seismic Forces Code of Practice
- IS:1893-2002 (Part 1), "Criteria for Earthquake Resistant Design of Structures Part – 1: General Provisions and Buildings", Bureau of Indian Standards, New Delhi
- 51. *IS: 1893-1984*, "Criteria for Earthquake Resistant Design of Structures", Bureau of Indian Standards, New Delhi
- 52. Dr. Prem Krishna, Dr. Krishen Kumar, Dr. N. M. Bhandari, "Review of Indian Wind Code, IS: 875-1987(Part III) ", IITK-GSDMA Wind01-V3.0
- 53. Dr. N. M. Bhandari, Dr. Prem Krishna, Dr. Krishen Kumar, "An Explanatory Handbook on Proposed IS 875 (Part III) Winds loads on Buildings and Structures", *IITK-GSDMA Wind06-V3.0*
- 54. Dr. N. M. Bhandari, Dr. Prem Krishna, Dr. Krishen Kumar, "An Explanatory Handbook on IS 875 - 1987 (Part III) Winds loads on Buildings and Structures", *IITK-GSDMA Wind06-V1.0*
- 55. *SP 22 (S & T): 1982*, Explanatory Handbook on Codes for Earthquake Engineering, Bureau of Indian Standards, New Delhi

- 56. SP 24 handbook on Indian standard code of practice for plain and reinforced concrete IS 456 -1978
- 57. SP 34 handbook on concrete reinforcement and detailing
- 58. SP 64 (S & T) Explanatory handbook on Indian standard code of practice for design loads (other than Earthquake) for buildings and structures is 875 (part 3)

APPENDIX A

- http://www.nicee.org/
- http://www.ias.ac.in
- http://www.iaseguj.org/
- http://www.webcrawler.com
- http://www.soople.com/ S
- http://www.pdhonline.org/
- http://www.free-definition.com/
- http://www.tto.cz/
- http://www.johnmartin.com/earthquakes/
- o http://darkwing.uoregon.edu/~struct/
- http://water.me.vccs.edu/courses/
- http://www-megacities.physik.uni-karlsruhe.de/www. mega/downloads

LATERAL LOAD DISTRIBUTION ON STAGING

For Proposed Draft code

Colum	Node		Case1 Critical f	or C	olumn		Node		Case 2 Critical	for E	Bracing
n No.	No.	Α	xial Force		Shear		No.	Α	xial Force		Shear
C1	10016	FY	0.2500 M/r	FX	0.000 S	C1	10020	FY	0.2310 M/r	FX	0.0366 S
C2	10012	FY	0.1768 M/r	FX	0.125 S	C2	10016	FY	0.2310 M/r	FX	0.0366 S
C3	10008	FY	0.0000 M/r	FX	0.250 S	C3	10012	FY	0.0957 M/r	FX	0.2134 S
C4	10004	FY	-0.1768 M/r	FX	0.125 S	C4	10008	FY	-0.0957 M/r	FX	0.2134 S
C5	10032	FY	-0.2500 M/r	FX	0.000 S	C5	10004	FY	-0.2310 M/r	FX	0.0366 S
C6	10028	FY	-0.1768 M/r	FX	0.125 S	C6	10032	FY	-0.2310 M/r	FX	0.0366 S
C7	10024	FY	0.0000 M/r	FX	0.250 S	C7	10028	FY	-0.0957 M/r	FX	0.2134 S
C8	10020	FY	0.1768 M/r	FX	0.125 S	C8	10024	FY	0.0957 M/r	FX	0.2134 S
Tot	tal	0.0000 M/r 1.000 S							0.0000 M/r		1.0000 S

Lateral Load Distribution For Peripheral Braced Trestle

	S =	268.66 kN	h = (mi(hi*+hs)+mshcg)/(mi+ms)
Impulsive condition	M =	9944.8 kNm	= 36.989 -31.6
	r =	6.05 m	= 5.389 m

	Per Tank Full Impulsive Condition											
Colum	Node		Case1 Critical f	for C	olumn		Node		Case 2 Critical for Bracing			
n No.	No.	A	Axial Force		Shear		No.	P	xial Force	Shear		
C1	10016	FY	410.94	FX	0.00	C1	10020	FY	379.66	FX	9.84	
C2	10012	FY	290.58	FX	33.58	C2	10016	FY	379.66	FX	9.84	
C3	10008	FY	0.00	FX	67.17	C3	10012	FY	157.26	FX	57.33	
C4	10004	FY	-290.58	FX	33.58	C4	10008	FY	-157.26	FX	57.33	
C5	10032	FY	-410.94	FΧ	0.00	C5	10004	FY	-379.66	FX	9.84	
C6	10028	FY	-290.58	FX	33.58	C6	10032	FY	-379.66	FX	9.84	
C7	10024	FY	0.00	FX	67.17	C7	10028	FY	-157.26	FX	57.33	
C8	10020	FY	290.58	FΧ	33.58	C8	10024	FY	157.26	FX	57.33	
Total			0.00		268.66				0.00		268.66	

	S =	251.1 kN	hc* =	8.1 m
Convective condition	M =	9968.7 kNm	=	8.1 M
	r =	6.05 m		

	Per Tank Full Convective Condition												
Colum	Node		Case1 Critical f	or C	olumn		Node		Case 2 Critical for Bracing				
n No.	No.	A	Axial Force		Shear		No.	P	Axial Force		Shear		
C1	10016	FY	411.93	FX	0.00	C1	10020	FY	380.57	FX	9.19		
C2	10012	FY	291.28	FX	31.39	C2	10016	FY	380.57	FX	9.19		
C3	10008	FY	0.00	FX	62.78	C3	10012	FY	157.64	FX	53.58		
C4	10004	FY	-291.28	FX	31.39	C4	10008	FY	-157.64	FX	53.58		
C5	10032	FY	-411.93	FX	0.00	C5	10004	FY	-380.57	FX	9.19		
C6	10028	FY	-291.28	FX	31.39	C6	10032	FY	-380.57	FX	9.19		
C7	10024	FY	0.00	FΧ	62.78	C7	10028	FY	-157.64	FΧ	53.58		
C8	10020	FY	291.28	FΧ	31.39	C8	10024	FY	157.64	FΧ	53.58		
Total			0.00		251.10				0.00		251.10		

	S =	216.78 kN		
Tank empty condition	M =	7615.7 kNm	hcg=	35.071 -31.6
	r =	6.05 m	hcg=	3.471 m

	Per Tank Empty Condition												
Colum	Node		Case1 Critical f	or C	olumn		Node		Case 2 Critical	for E	Bracing		
n No.	No.	A	Axial Force		Shear		No.	A	Axial Force		Shear		
C1	10016	FY	314.70	FX	0.00	C1	10020	FY	290.74	FX	7.94		
C2	10012	FY	222.52	FX	27.10	C2	10016	FY	290.74	FX	7.94		
C3	10008	FY	0.00	FX	54.20	C3	10012	FY	120.43	FX	46.26		
C4	10004	FY	-222.52	FX	27.10	C4	10008	FY	-120.43	FX	46.26		
C5	10032	FY	-314.70	FX	0.00	C5	10004	FY	-290.74	FX	7.94		
C6	10028	FY	-222.52	FX	27.10	C6	10032	FY	-290.74	FX	7.94		
C7	10024	FY	0.00	FX	54.20	C7	10028	FY	-120.43	FX	46.26		
C8	10020	FY	222.52	FX	27.10	C8	10024	FY	120.43	FX	46.26		
Total			0.00		216.78				0.00		216.78		

	Axial force on each Column											
1	Tank full Impulsive condition											
	Impulsive load = -2036.27	kΝ										
	Live Load = -43.65	kΝ										
2	Tank full Convective condition											
	Convective load = -1528.13	kΝ										
	Live Load = -43.65	kΝ										
3	Tank Empty condition											
	Axial load = -1343.27	kΝ										
	Live Load = -43.65	kΝ										

For IS: 1893-1984

	Lateral Load Distribution For Deviational Presed Treatle 1992-94														
	Lateral Load Distribution For Peripheral Braced Trestle 1893-84														
Colum	Node		Case1 Critical	for C	olumn		Node		Case 2 Critical	for E	Bracing				
n No.	No.	A	Axial Force		Shear		No.	A	xial Force		Shear				
C1	10016	FY	0.2500 M/r	FX	0.000 S	C1	10020	FY	0.2310 M/r	FΧ	0.0366 S				
C2	10012	FY	0.1768 M/r	FX	0.125 S	C2	10016	FY	0.2310 M/r	FX	0.0366 S				
C3	10008	FY	0.0000 M/r	FX	0.250 S	C3	10012	FY	0.0957 M/r	FX	0.2134 S				
C4	10004	FY	-0.1768 M/r	FX	0.125 S	C4	10008	FY	-0.0957 M/r	FX	0.2134 S				
C5	10032	FY	-0.2500 M/r	FX	0.000 S	C5	10004	FY	-0.2310 M/r	FΧ	0.0366 S				
C6	10028	FY	-0.1768 M/r	FX	0.125 S	C6	10032	FY	-0.2310 M/r	FX	0.0366 S				
C7	10024	FY	0.0000 M/r	FX	0.250 S	C7	10028	FY	-0.0957 M/r	FX	0.2134 S				
C8	10020	FY	0.1768 M/r	FX	0.125 S	C8	10024	FY	0.0957 M/r	FX	0.2134 S				
Tot	Total 0.0000 M/r 1.000 S 0.0000 M/r 1.0000 S										1.0000 S				

	S =	353.8 kN
Tank full condition	M =	12338 kNm
	r =	6.05 m

	Per Tank Full Condition											
Colum	Node		Case1 Critical	for C	olumn		Node		Case 2 Critical for Bracing			
n No.	No.	A	Axial Force		Shear		No.	A	Axial Force		Shear	
C1	10016	FY	509.83	FΧ	0.00	C1	10020	FY	471.03	FΧ	12.95	
C2	10012	FY	360.51	FX	44.23	C2	10016	FY	471.03	FX	12.95	
C3	10008	FY	0.00	FΧ	88.45	C3	10012	FY	195.11	FΧ	75.50	
C4	10004	FY	-360.51	FΧ	44.23	C4	10008	FY	-195.11	FΧ	75.50	
C5	10032	FY	-509.83	FX	0.00	C5	10004	FY	-471.03	FΧ	12.95	
C6	10028	FY	-360.51	FX	44.23	C6	10032	FY	-471.03	FX	12.95	
C7	10024	FY	0.00	FΧ	88.45	C7	10028	FY	-195.11	FΧ	75.50	
C8	10020	FY	360.51	FΧ	44.23	C8	10024	FY	195.11	FΧ	75.50	
Total			0.00		353.80				0.00		353.80	

	S =	130.3 kN	hcg=	35.071 -31.6
Tank empty condition	M =	4544 kNm	hcg=	3.471 m
	r =	6.05 m		

	Per Tank Empty Condition													
Colum	Node		Case1 Critical f	or C	olumn		Node		Case 2 Critical for Bracing					
n No.	No.	Α	xial Force		Shear		No.	Α	xial Force		Shear			
C1	10016	FY	187.77	FX	0.00	C1	10020	FY	173.48	FX	4.77			
C2	10012	FY	132.77	FX	16.29	C2	10016	FY	173.48	FX	4.77			
C3	10008	FY	0.00	FX	32.58	C3	10012	FY	71.86	FX	27.80			
C4	10004	FY	-132.77	FX	16.29	C4	10008	FY	-71.86	FX	27.80			
C5	10032	FY	-187.77	FX	0.00	C5	10004	FY	-173.48	FX	4.77			
C6	10028	FY	-132.77	FX	16.29	C6	10032	FY	-173.48	FX	4.77			
C7	10024	FY	0.00	FX	32.58	C7	10028	FY	-71.86	FX	27.80			
C8	10020	FY	132.77	FX	16.29	C8	10024	FY	71.86	FX	27.80			
Total			0.00		130.30				0.00		130.30			

	Axial force on each Column												
1	Tank full condition												
	Impulsive load = -	3943.9	kΝ										
	Live Load = -	43.65	kΝ										
2	Tank Empty condition												
	Axial load = -1	614.79	kΝ										
	Live Load = -	43.65	kΝ										

For Proposed Draft Code

Lateral Load Distribution For Peripheral and Diagonal Braced Trestle

Colum	Node	C	Case1 Critical	Column		Node	С	Case 2 Critical for Bracing			
n No.	No.	A	Axial Force	e Shear			No.	Α	xial Force	Shear	
C1	10016	FY	0.2500 M/r	FX	0.000 S	C1	10020	FY	0.2310 M/r	FX	0.0366 S
C2	10012	FY	0.1768 M/r	FX	0.125 S	C2	10016	FY	0.2310 M/r	FX	0.0366 S
C3	10008	FY	0.0000 M/r	FX	0.250 S	C3	10012	FY	0.0957 M/r	FX	0.2134 S
C4	10004	FY	-0.1768 M/r	FX	0.125 S	C4	10008	FY	-0.0957 M/r	FX	0.2134 S
C5	10032	FY	-0.2500 M/r	FX	0.000 S	C5	10004	FY	-0.2310 M/r	FX	0.0366 S
C6	10028	FY	-0.1768 M/r	FX	0.125 S	C6	10032	FY	-0.2310 M/r	FX	0.0366 S
C7	10024	FY	0.0000 M/r	FX	0.250 S	C7	10028	FY	-0.0957 M/r	FX	0.2134 S
C8	10020	FY	0.1768 M/r	FX	0.125 S	C8	10024	FY	0.0957 M/r	FX	0.2134 S
Total	0.0000 M/r			1.000 S				0.0000 M/r		1.0000 S	

	S =	377.86 kN	$h = (mi(hi^*+hs)+mshcg)/(mi)$
Impulsive condition	M =	13987 kNm	= 36.989 -31.6
	r =	6.05 m	= 5.389 m

	Peripheral and Diagonal Braced Tank Full Impulsive Condition													
Colum	Node	C	Case1 Critical	for	Column		Node	С	Case 2 Critical for Bracing					
n No.	No.	A	Axial Force		Shear		No.	A	Axial Force	Shear				
C1	10016	FY	577.98	FX	0.00	C1	10020	FY	533.98	FX	13.83			
C2	10012	FY	408.69	FX	47.23	C2	10016	FY	533.98	FX	13.83			
C3	10008	FY	0.00	FX	94.47	C3	10012	FY	221.18	FX	80.63			
C4	10004	FY	-408.69	FΧ	47.23	C4	10008	FY	-221.18	FX	80.63			
C5	10032	FY	-577.98	FX	0.00	C5	10004	FY	-533.98	FX	13.83			
C6	10028	FY	-408.69	FX	47.23	C6	10032	FY	-533.98	FX	13.83			
C7	10024	FY	0.00	FX	94.47	C7	10028	FY	-221.18	FX	80.63			
C8	10020	FY	408.69	FΧ	47.23	C8	10024	FY	221.18	FX	80.63			
Total			0.00		377.86				0.00		377.86			

	S =	251.1 kN	hc* =	8.1 m
Convective condition	M =	9968.7 kNm	=	8 m
	r =	6.05 m		

F	Peripheral and Diagonal Braced Tank Full Convective Condition													
Colum	Node	C	Case1 Critical	for	Column		Node	Case 2 Critical			for Bracing			
n No.	No.	P	Axial Force		Shear		No.	P	Axial Force		Shear			
C1	10016	FY	411.93	FX	0.00	C1	10020	FY	380.57	FX	9.19			
C2	10012	FY	291.28	FX	31.39	C2	10016	FY	380.57	FX	9.19			
C3	10008	FY	0.00	FX	62.78	C3	10012	FY	157.64	FX	53.58			
C4	10004	FY	-291.28	FX	31.39	C4	10008	FY	-157.64	FX	53.58			
C5	10032	FY	-411.93	FX	0.00	C5	10004	FY	-380.57	FX	9.19			
C6	10028	FY	-291.28	FX	31.39	C6	10032	FY	-380.57	FX	9.19			
C7	10024	FY	0.00	FX	62.78	C7	10028	FY	-157.64	FX	53.58			
C8	10020	FY	291.28	FX	31.39	C8	10024	FY	157.64	FΧ	53.58			
Total			0.00		251.10				0.00		251.10			

	S =	306.94 kN		
Tank Empty condition	= M	10783 kNm	hcg=	35.071 -31.6
	r =	6.05 m	hcg=	3.471 m

	Pe	erip	heral and D	iag	onal Brac	ed	Tank	Em	pty Condition	on	
Colum	Node		Case1 Critic	or Column		Node		Case 2 Critical for Brad			
n No.	No.	A	Axial Force		Shear		No.	A	Axial Force		Shear
C1	10016	FY	445.57	FX	0.00	C1	10020	FY	411.65	FΧ	11.24
C2	10012	FY	315.07	FX	38.37	C2	10016	FY	411.65	FX	11.24
C3	10008	FY	0.00	FX	76.74	C3	10012	FY	170.51	FX	65.50
C4	10004	FY	-315.07	FX	38.37	C4	10008	FY	-170.51	FΧ	65.50
C5	10032	FY	-445.57	FX	0.00	C5	10004	FY	-411.65	FΧ	11.24
C6	10028	FY	-315.07	FX	38.37	C6	10032	FY	-411.65	FΧ	11.24
C7	10024	FY	0.00	FX	76.74	C7	10028	FY	-170.51	FΧ	65.50
C8	10020	FY	315.07	FX	38.37	C8	10024	FY	170.51	FΧ	65.50
Total			0.00		306.94				0.00		306.94

For IS: 1893-1984

Lat	Lateral Load Distribution For Peripheral and Diagonal Braced Trestle												
Colum	Node	Cas	se1 Critical fo	or C	olumn		Node	Cas	e 2 Critical f	or F	Bracing		
n No.	No.	A	xial Force		Shear		No.	A	xial Force	Shear			
C1	10016	FY	0.2500 M/r	FX	0.000 S	C1	10020	FY	0.2310 M/r	FΧ	0.0366 S		
C2	10012	FY	0.1768 M/r	FX	0.125 S	C2	10016	FY	0.2310 M/r	FX	0.0366 S		
C3	10008	FY	0.0000 M/r	FX	0.250 S	C3	10012	FY	0.0957 M/r	FX	0.2134 S		
C4	10004	FY	-0.1768 M/r	FX	0.125 S	C4	10008	FY	-0.0957 M/r	FX	0.2134 S		
C5	10032	FY	-0.2500 M/r	FX	0.000 S	C5	10004	FY	-0.2310 M/r	FX	0.0366 S		
C6	10028	FY	-0.1768 M/r	FX	0.125 S	C6	10032	FY	-0.2310 M/r	FX	0.0366 S		
C7	10024	FY	0.0000 M/r	FX	0.250 S	C7	10028	FY	-0.0957 M/r	FX	0.2134 S		
C8	10020	FY	0.1768 M/r	FX	0.125 S	C8	10024	FY	0.0957 M/r	FΧ	0.2134 S		
Total	0.0000 M/r				1.000 S				0.0000 M/r		1.0000 S		

	S =	353.8 kN	h = (n	ni(hi*+hs)+mshcg)/(mi+ms)
Impulsive condition	M =	12338 kNm	=	36.989 -31.6
	r =	6.05 m	=	5.389 m

	Peripheral and Diagonal Braced Tank Full Impulsive Condition													
Colum	Node	Cas	se1 Critical fo	or C	olumn		Node	Cas	Case 2 Critical for Bracing					
n No.	No.	A	Axial Force		Shear		No.	A	xial Force	Shear				
C1	10016	FY	509.83	FΧ	0.00	C1	10020	FY	471.03	FX	12.95			
C2	10012	FY	360.51	FΧ	44.23	C2	10016	FY	471.03	FX	12.95			
C3	10008	FY	0.00	FΧ	88.45	C3	10012	FY	195.11	FX	75.50			
C4	10004	FY	-360.51	FΧ	44.23	C4	10008	FY	-195.11	FX	75.50			
C5	10032	FY	-509.83	FΧ	0.00	C5	10004	FY	-471.03	FX	12.95			
C6	10028	FY	-360.51	FΧ	44.23	C6	10032	FY	-471.03	FX	12.95			
C7	10024	FY	0.00	FΧ	88.45	C7	10028	FY	-195.11	FX	75.50			
C8	10020	FY	360.51	FΧ	44.23	C8	10024	FY	195.11	FX	75.50			
Total			0.00		353.80				0.00		353.80			

	S =	162.8 kN		
Tank Empty condition	M =	5680 kNm	hcg=	35.071 -31.6
	r =	6.05 m	hcg=	3.471 m

Peripheral and Diagonal Braced Tank Empty Condition												
Colum	Node	Case1 Critical for Column					Node	Case 2 Critical for Bracing				
n No.	No.	Axial Force		Shear			No.	Α	Axial Force Sh		Shear	
C1	10016	FY	234.71	FΧ	0.00	C1	10020	FY	216.84	FX	5.96	
C2	10012	FY	165.97	FX	20.35	C2	10016	FY	216.84	FX	5.96	
C3	10008	FY	0.00	FX	40.70	C3	10012	FY	89.82	FX	34.74	
C4	10004	FY	-165.97	FX	20.35	C4	10008	FY	-89.82	FX	34.74	
C5	10032	FY	-234.71	FX	0.00	C5	10004	FY	-216.84	FX	5.96	
C6	10028	FY	-165.97	FX	20.35	C6	10032	FY	-216.84	FX	5.96	
C7	10024	FY	0.00	FX	40.70	C7	10028	FY	-89.82	FX	34.74	
C8	10020	FY	165.97	FΧ	20.35	C8	10024	FY	89.82	FX	34.74	
Total			0.00		162.80				0.00		162.80	

