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Abstract

Transformer is a vital link in the power system network. The transmission and
distribution (T & D) loss varies in a range of 10 to 40 % which is considered to be
significant high. Contribution of transformers is in the range of 6 % for T & D losses.
In a process of reducing total T & D losses, Loss capitalization for the modern age
transformers has increased in a great extent. This indicates necessity of reducing
losses (i.e. no load loss and load loss).

Stray losses in the transformer contribute around 15 to 40 % in the load losses
which is considered to be a significant amount. Hence to match the loss capitalization
stray losses shall be reduced. This is achieved by controlling the leakage field.

Large rating transformers are with strong electromagnetic field; If the field is not
controlled it links with the various structural parts of the transformer e.g. core clamp,
tank and will result in to excessive loss concentration, local heating (i.e. hot spots)
and further gasification during service conditions. Gasification in the oil can affect
reliability of transformer during service conditions. Reliability is at a prime concern
for large rating power transformers; all issues related to stray field are addressed to
conserve reliability of transformer.

Various measures e.g. magnetic and nonmagnetic shields are known to control
the stray field in the transformers; each of them their having advantages and dis-
advantages. Effective solution needs to be selected to make shielding measure more
optimum. It is possible to effectively control stray field by use of IEM (integral
equation method) and FEM (finite element method) precisely.
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Chapter 1

Introduction

1.1 Introduction

Transformer losses comprise a small percentage of the power throughput in a trans-
former. Yet these losses can produce localized heating which can compromise its
operation. It is important to be able to calculate these losses at the design stage
so that adequate cooling can be provided. In addition, such calculations and their
parameter dependencies can suggest ways of reducing these losses should that be
necessary based on cost considerations or design feasibility. There are two main cat-
egories of losses, no-load and load losses. No load losses are basically core losses
associated with energizing the transformer and driving flux through the core. Load
losses are further subdivided into I?R losses and stray losses. The I’R losses are
resistive losses in the windings and leads caused by the main current flow. The stray
losses are the result of the stray flux from the windings or leads impinging on metal
parts such as the tank walls, the clamps, and even the windings themselves, resulting
in induced eddy currents.

1.2 Literature Survey

Various references have been used for theoretical understandings as well as an aid to
the simulation carried out.

1. As an introduction to the fundamental concepts of Stray losses taking place
in Transformers, Design ,Maintaince & operation of Core formed Power Trans-
formers by A V Chiplonkar acts as classical guide. it details the basics of stray
loss occuring in power transformer in a lucid manner and helps build concepts
from a basic level. It provides detailed explanations of the emprical formulas
used for stray loss calculation in power transformers .Emphasis is on thorough
understanding and where applicable, all pertinent formulae have been derived
from fundamental principles.

2. For a quickly covering all the major topics pertaining to the stray losses in
transformer ,Transformer Engineering by S V Kulkarni & S A Khaparde is an
in-valuable book.The book servers more like an encyclopedia than a textbook
and chapter 4 & 5 of the book is a handy reference. It allows us to understand
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10.

11.

12.

the concepts within a few days if time is limited. It also provides a basic
understanding of places where stray loss occur , factors affecting stray loss,
methods to mitigate stray loss.

. The Transformer Manual by CBIP & Transformer Design Principles by Robert

Veccio , Bertrand Pauolin , Dilip Shah , Rajendra Ahuja gives an insight of loss
optimization taking place in transformers , used for tendering purpose .

FEM method applied to Transformer Design By Xose M Fernandiz helps to
model transformer in commercial FEM packages

Power Transformer Quality Assurance By Indrajit DasGupta acts as guide for
design & selection of the materials .

Calculation & Reduction Of Stray & Eddy Losses In Transformers by R S
Gargis & D C Paulik presented at IEEE transaction on power delivery , 1993 .
this paper shows the accuracy of the FEM software , the structural parts were
modelled and stray losses were calculated . the results were experimentally
verified .

. The research paper ” 3D Computer Field Model of Power Transformer-Magnetic

Field and Power Losses Computation” by S. Wiak, P. Drzymala, H. Welfle XIX
International Conference on Electrical Machines - ICEM 2010, Rome helps in
modelling of transformer in FEM software.

. A Reference paper ”Analysis of Stray Losses in Power Transformers by 3-D

Magnetic Field Simulation” by M.L. Jain ., Chetan Adlija presented at 15 NPSC
,2008 gives details of stray loss taking place at different structural parts of
transformer and percentage amount of each of its occurence.

Eddy Current & Stray Losses in Power Transformers by M. Rizzo, A. Savini
and J. Turowski , this paper gives details of various screens or sheilds used to
minimize the transformer tank stray loss . the continous FE & Cu screen was
found to be the best .

Study on Eddy Current Losses and Shielding Measures in Large Power Trans-
formers by Chen Yongbin, Yang Junyou , Yu Hainian and Tang Renyuan pre-
sented at IEEE transaction on Magnetics , 1994 . this paper shows that use of
vertical shunts of 10 mm for reducing the tank stray losses is more useful than
that of parallel shunts.

Minimization Techniques Of Transformer Tanklosses by A. Saleh, A. Omar at
CIGRE 2004 .this paper shows tank losses are concentrated in the side walls
which have the largest surface area. shielding is extremely effective to dramat-
ically reduce tank losses.

Finite Element Analysis of Leakage Inductance of 3-Phase Shell-Type and Core
Type Transformers by Mehdi Zare, Seyyed Mohammad Pedram Razi, Hassan
Feshki Farahani and Alireza Khodakarami in this paper transformer was mod-
eled in ansys & leakage inductance was calculated & was experimentally verified.
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13. Stray losses in power transformer tank walls and construction parts by Lenart
Kralj, Damijan Miljavec . this paper calculates the stray loss at lower & up-
per core clamps of the transformer . The losses are related to the magnetic
leakage fields. A time harmonic 3D finite element method is used to compute
the magnetic leakage field in the case of nominal load condition of the power
transformer.

14. Study on Eddy Current Loss of Core Tie-plate in Power Transformers by Xuejun
Ma, Yu Jiang .this paper models tieplate used in transformer in Fem software
(Ansys) and shows increase in in the slots of tieplate reduces the eddy current
loss produced in the tieplate .

15. Tank Losses and Magnetic Shunts in a Three Phase Power Transformer by
Zhanhai Song, Yifang Wang, Shuai Mou, Zhe Wu, Yinhui Zhu, Bingfu Xiang,
Ce Zhou . this paper shows the modelling of 3 phase transformer in FEM
package and calculates the leakage magnetic feild & stray losses at the tank
walls . the sheilding method was used to reduce tank losses which was economic
and successful. The results were practically validated.

1.3 Objective of Dissertation

Stray losses in the transformer contribute around 15 to 40% in the load losses which
is considered to be a significant amount. Hence to match the loss capitalization stray
losses shall be reduced. This is achieved by controlling the leakage field.

Large rating transformers are with strong electromagnetic field; If the field is
not controlled it links with the various structural parts of the transformer e.g. core
clamp, tank walls ,frames (flitch plates, Edge stack, and will result in to excessive loss
concentration, local heating (i.e. hot spots) and further gasification during service
conditions. Gasification in the oil can affect reliability of transformer during service
conditions. Reliability is at a prime concern for large rating power transformers.

Various measures e.g. magnetic and nonmagnetic shields for the control of stray
loss in structural parts are known to control the stray field in the transformers; each
of them their having advantages and disadvantages. Effective solution needs to be
selected to make shielding measure more optimum. It is possible to effectively control
stray field by use of IEM (integral equation method) and FEM (finite element method)
precisely. The FEM software which are to be used are Ansys/ MagNet/ EDMAG-3D.
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1.4 Project Planning
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|

’ PROJECT DEFINATION AND OBJECTIVE OF PROJECT

1
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]
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1
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1
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|
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Chapter 2

Losses Occuring In Transformer

The losses occuring in the transformer can be broadly classified as follows:

1. No load loss

2. Load loss

(1) Copper loss
(2) Stray loss

2.1 No load loss

No load losses occur when the transformer is energized with its rated voltage at
one set of terminals but the other sets of terminals are open circuited so that no
through or load current flows. In this case, full flux is present in the core and only
the necessary exciting current flows in the windings. The losses are predominately
core losses due to hysteresis and eddy currents produced by the time varying flux in
the core steel. Cores in power transformers are generally made of stacks of electrical
steel laminations. These are usually in the range of 0.23 to 0.46 mm (9 tol8 mils)
in thickness and up to about 1 meter (40 inches). Modern electrical steels have a
silicon content of about 3% which gives them a rather high resistivity. Although
the thinness of the laminations and their high resistivity are desirable characteristics
in reducing (classical) eddy current losses, the high degree of orientation ( 95%)
produces large magnetic domains parallel to the rolling direction . They found that
these losses were significantly higher than the losses obtained from a classical eddy
current calculation which assumes a homogeneous mixture of many small domains.
These non-classical losses depend on the size of the domains in the zero magnetization
state where there are equal sized up and down domains. In order to decrease the non-
classical eddy current losses, it is therefore necessary to reduce the domain size. This
is accomplished in practice by laser or mechanical scribing. A laser or mechanical
stylus is rastered across the domains (perpendicular to their magnetization direction)
at a certain spacing. This introduces localized stress at the surface since the scribe
lines are not very deep. The domain size is dependent on the stress distribution in the
laminations. Localized stresses help to refine the domains. Thus, after scribing, the
laminations are not annealed since this would relieve the stress. shows the domain
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pattern in an oriented electrical steel sample before and after laser scribing. The
losses were reduced by approx. 12% as a result of laser scribing.

Figure 2.1: Laminated Core

2.2 Load Loss

Load losses occur when the output is connected to a load so that current flows through
the transformer from input to output terminals. When measuring load losses, the
output terminals are shorted to ground and only a small impedance related voltage
is necessary to produce the desired full load current.

Load losses are in turn broadly classified as I°R losses due to Joule heating pro-
duced by current flow in the coils.

And as stray losses due to the stray flux as it encounters metal objects such as tank
walls, clamps or bracing structures, and the coils themselves. The stray losses depend
on the conductivity, permeability, and shape of the metal object encountered. These
losses are primarily due to induced eddy currents in these objects .Even though the
object may be made of ferromagnetic material, such as the tank walls and clamps,
their dimensions are such that hysteresis losses tend to be small relative to eddy
current losses. Although losses are usually a small fraction of the transformed power
( 0.5% in large power transformers), they can produce localized heating which can
compromise the operation of the transformer.

2.3 Loss Capitalization Formula

The capitalizatoin loss formula for power transformer depends on following factors

1. Rate of Intrest (r)
2. Cost of Electrical Energy (EC)
3. Life Of Transformer (n)
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4. Cooloing Auxilaries in Transformer

5. Annual loss Factor(LS)
LS = 0.2 LF + 0.8 (LF?)

Here, LF = annual load factor = 0.6

IC= Initial Cost

Wi= Annual Cost of Iron Loss per KW

We= Annual Cost of Load Loss per KW

Wp= Annual Cost of Auxilary Loss per KW

Capitalisation Formula is = IC + Wi + We¢ + Wp

(147" —1

Wi = 8760 -
! Xexrx(l—l—r)”

(I+r)"—=1x1LS
rx (14r)m

(1+7r)"—1
rx (1+7r)"

We = 8760 x e x

Wp=10.4 x 8760 x e x
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Stray Losses Occuring In
Structural Parts of Transformer

These are losses caused by stray or leakage flux. Fig. shows the leakage flux pat-
tern produced by the coil currents in the bottom half of a single phase or leg of a
transformer, assuming cylindrical symmetry about the center line. This was gen-
erated with a 2D finite element program. The main components, core, coils, tank,
and clamp are shown .Shunts on the tank wall and clamp were given the material
properties of transformer oil so they are not active. shows the same plot but with the
tank and clamp shunts or shields activated. These are made of the same laminated
electrical steel as the core. The shunts or shields divert the flux from getting into
the tank or clamp walls so that the stray losses in Fig. are much less than those in
Fig. The stray flux pattern depends on the details of the winding sizes and spacings,
the tank size, the clamp position, etc. The losses generated by this flux depend on
whether shunts or shields are present as well as geometric and material parameters.

In addition to the coils stray flux, there is also flux produced by the leads. This
flux can generate losses, particularly if the leads are close to the tank wall or clamps.
We should also mention losses in the tank wall depending on how the leads are taken
out of the tank. As Figs. indicate, there is also stray flux within the coils themselves.
This flux is less sensitive to the details of the tank and clamp position or whether
shunts or shields are present. The coil flux generates eddy currents in the wires or
individual strands of cable conductors.

3.1 Tie Plate Losses(Flitch Plate Losses)

The tieplate (also called flitch plate) is located just outside the core inthe space
between the core and innermost winding. It is a structural plate which connects the
upper and lower clamps. Tension in this plate provides the clamping force necessary
to hold the transformer together should a short circuit occur. It is usually made
of magnetic steel or stainless steel and could be subdivided into several side by side
vertical plates to help reduce the eddy current losses. Fig. shows a schematic diagram
of one of the tieplates associated with one leg.

8
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No shieids on tank of clame

Tank loss = T73.1 HWAin

Clamp ioss = 75.1 Wsin

tank

Figure 3.1: Leakage Flux Distribution In Transformer without Sheild

3.2 Core Edge Losses

Core edge loss is the stray loss occurring due to flux impinging normally (radially)
on core laminations. The amount and path of leakage field in the core depends on
the relative reluctances of the alternative magnetic circuits. Load conditions of the
transformer also have significant influence; In large transformers, the radially incident
flux may cause considerable eddy currents to flow in the core laminations resulting in
local hot spots. The effect of type of flitch plate (magnetic or non-magnetic) on the
core edge loss is also explained. A non-magnetic (stainless steel) flitch plate increases
the core edge loss since it allows (due to its higher skin depth) the flux to penetrate
through it to impinge on the laminations. Hence, although the use of non-magnetic
flitch plate may reduce the loss in it (assuming that its thickness is sufficiently small
), the core edge loss is generally increased. The first step of the core is usually slit
into two or three parts to reduce the core edge loss in large transformers. If the stack
height of the first step of the core is less than about 12 mm, slitting may have to be
done for the next step also. The use of a laminated flitch plate for large generator
transformers and autotransformers is preferable since it also acts as a magnetic shunt

3.3 Frame Losses

Frames (also called as yoke beams), serving to clamp yokes and support windings,
are in vicinity of stray magnetic field of windings. Due to their large surface area
and efficient cooling, hot spots seldom develop in them. Non-magnetic steel is not
recommended as a material for frames. It is expensive, difficult to machine and
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Figure 3.2: Leakage Flux Distribution In Transformer with Sheild

stray losses will be lower only if its thickness is sufficiently small. The loss in frames
due to leakage field can be reduced by either aluminum shielding or by use of non-
metallic platforms for supporting the windings. In distribution transformers, the stray
loss in the tank may not be much since the value of leakage field is low. In power
transformers, sometimes a frame of non-magnetic material (stainless steel) is used.
As explained its thickness should be as small as mechanically possible; otherwise its
loss may exceed the corresponding value for frame made of (magnetic) mild steel
material.

3.4 Tank Losses

The tank stray loss forms a major part of the total stray loss in large power trans-
formers. Stray flux departing radially from the outer surface of winding gives rise to
eddy current losses in transformer tank walls. Though the stray flux density in the
tank wall is low, the tank loss may be high due to its large area. Hot spots seldom
develop in the tank, since the heat is carried away by the oil. A good thermal con-
ductivity of the tank material also helps to mitigate hot spots. The stray loss in tank
is controlled by magnetic/eddy current shields.
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Figure 3.4: Laminated Flitch Plate With Slots
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Figure 3.5: Tank Wall Sheilding



Chapter 4

Measure to Control Stray Loss In
Transformer

Measures of stray loss control
The stray loss in a structural component is reduced by a number of ways

1. By use of laminated material
2. By use of high resistivity material

3. Reduction of flux density in the component by use of material with lower per-
meability

4. Reduction of flux density in the component by provision of a parallel magnetic
path having low reluctance and loss

5. Reduction of flux density in the component by diverting/repelling the incident
flux by use of a shielding plate having high conductivity

Three methods are commonly used for reducing stray losses in tanks. The first
method uses yoke shunts which collect the leakage field coming out of the windings
so that there is very little flux external to the core and windings. Secondly, magnetic
shunts can be provided on the tank so that they carry most of the leakage flux.
Thirdly, the tank may be lined with aluminum or copper plates (shields) the eddy
currents in these plates tend to shield the tank from most of the radial incident flux.

Some geometrical factors have a significant influence on the tested stray losses.
A small difference in heights of LV and HV windings can affect various stray loss
components in different ways. For example, if LV winding is taller by 1% and is placed
symmetrically with respect to HV winding height, the losses in the core clamping
structures reduce, whereas the losses in the tank increase. On the contrary, if HV
winding is taller, the stray losses in the core, frames and flitch plates increase, and
those in the tank reduce.

4.1 Use Of Magnetic Sheilding

The magnetic shunts are more effective in controlling stray losses as compared to
the non-magnetic (eddy current) shields. They offer a low reluctance path to the

13
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leakage flux constraining its path in a predetermined fashion. In the case of eddy
current shields, the flux repelled by them may find a path through nearby structural
components negating the advantages of shielding. An ideal magnetic shunt (infinite
permeability) has no magnetic voltage drop across its length. The magnetic shunts
are basically useful to shield structural components from the leakage field. They
are not used for shielding against the field of high currents. If magnetic shunts
are of adequate thickness and are made of CRGO laminations with lower watts/kg
characteristics, the losses in them are almost negligible. Usually, left over pieces of
core laminations (from original rolls) are used to make a magnetic shunt. The height
of magnetic shunts should be higher than the height of windings.
There are two types of Magnetic Sheilding :

1. Widthwise Shunt
2. Edgewise Shunt

The width-wise shunts (more commonly used) are placed on the tank as shown
in figure The width of shunts should be as small as possible to reduce entry losses at
their top and bottom portions where the leakage field impinges on them radially.

‘,-ﬂ‘
el

shunt —1—|

NN

Figure 4.1: Width Wise Shunt

The other type of magnetic shunt, edge-wise shunt, is better than width-wise
shunt because the flux is incident on the thickness (edge) of laminations resulting
in negligible eddy loss in them. A typical edge-wise shunt is shown in figure . The
effective permeability of laminations as seen by the incident flux is much higher for this
shunt as compared to the width-wise shunt since the flux does not encounter any non-
magnetic gaps once it enters the shunt. In the width-wise shunt, due to non-magnetic
gaps (however small they be), the effective permeability at the entry point reduces
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making it less effective as compared to the edge-wise shunt. A substantial reduction
in tank stray losses is reported in by the use of edge-wise shunts. It is preferable to
experimentally check the quantum of stray loss reduction before standardizing the

use of edge-wise shunts.

L. tank

—

Figure 4.2: Edge Wise Shunt

4.2 Use Of Yoke Shunts

Yoke shunts are another form of magnetic shunts (flux collectors), which are placed
parallel to the yoke at the top and bottom ends of the windings. These shunts can be
quite effective since the fluxes coming out from the three phases can add up to zero in
them. The yoke shunts provide an excellent means of guiding the leakage field safely
back to the core minimizing stray losses in the tank and other structural components.
Hence, the gap between the shunt and yoke must be kept sufficiently small for the
effective control of the leakage field.

Some manufacturers use wound steel pressure ring on the top of the windings,
which not only acts as a clamping ring (for mechanical stability during short circuits)
but it also reduces the stray losses in structural components. The steel ring provides
a low reluctance path for the leakage field coming out of the windings and diverts it
into the yoke away from the structural components.
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Figure 4.3: Yoke Shunt

4.3 Use Of Eddy Current Sheilding

Aluminum or copper shields are used for shielding structural components from the
high current and leakage fields. Eddy currents induced in them repel the incident field
reducing the losses in structural components. As discussed , the thickness of these
shields should be adequate for their effectiveness and for reducing the loss in shields
themselves. In most of the cases, the loss in the structural component and eddy
current shield is more than that of the structural component and magnetic shunt.
However, the eddy current shields have the advantage that they can be fitted on odd
shapes of the tank unlike magnetic shunts. The weight of the eddy current shield
is also usually lower than the magnetic shunt. For shielding a tank from the high
current field, the eddy current shields are better than the magnetic shunts.

The components required to make the eddy current shielding arrangement are of
simpler construction and the shields can be suitably formed to protect the areas having
complex shapes. The disadvantage of this method is that there are losses produced
in the shield itself and these must be accurately evaluated. The shield dimensions
have to be properly designed and adequate cooling needs to be provided to limit its
temperature rise. Secondly, the diverted flux from the shield may cause overheating
in the nearby unprotected structural parts. Hence, the design and positioning of the
eddy current shields have to be done more carefully as compared to the magnetic
shunts.
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Figure 4.4: Eddy Current Sheilding



Chapter 5

Design Of Transformer

5.1 Rating

3 phase , 100 MVA | 220/66 KV | star/star connected , 15 % impedence , 50 Hz ,
core type power transformer .

5.2 Material Specifications

1. Winding - Copper,relative permiability u = 0.9999  conductivity o = 58000000
siemens/mtr

2. Core - CRGO,relative permiability y= 15000 , ,conductivity ¢ = 10000 siemens/mtr

3. Tank - Electrical Steel ,relative permiability p = 500 , ,conductivity o = 1560000
siemens/mtr

4. Flitch Plate, Yoke Beam - iron relative permiability u = 4000 , ,conductivity o
= 10300000 siemens/mtr

5.3 Dimensions of Transformer
1. Core Diameter = 775 mm
2. Leg Centre = 1615 mm
3. Window Height = 2225 mm
4. Radial Diameter LV winding = 775/2 + 66 = 453.5 mm
5. Radial Diameter HV winding = 453.5 + 77 +100 = 630.5 mm
6. Thickness of LV winding = 100 mm
7. Thickness of HV winding = 123 mm

8. Height of LV winding = 1925 mm

18
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Height of HV winding = 1925 mm
Bottom Clearance = 110 mm

Top Clearance = 110 + 60 + 20 = 190 mm
Tank = 5336 * 2926 * 3965 mm
Tank Thickness = 15 mm

Flitch plate = 3295 * 210 * 16 mm
Yoke Beam = 3230 * 210 * 16 mm
LV turns = 252

HV turns = 800

LV current = 874.77 A

HV current = 262.43 A

HV to HV clearance = 110 mm

5.4 Calculations

1.

10.

11.

12.

E, (Volt/turn): = 0.5 VMV A = 0.5 4/100000 = 158.77
Flux Density = 1.6 T = Bm

E, = 444 * £ * Bm * Ai

. Al = Net Area = 4316.114 mm

Space Factor = 0.97
Gross Area = 4316.114/ 0.97 = 4449.60 mm
Diameter of core (d)

Al = T #?

4

d = 775 mm

HV current = 100 * % * 290 = 262.44 A

LV current = 100 * % * 66 = 74.77 A
HV turns = 220 * 1000 / 158.77 = 800.00
LV turns = 66 * 1000/ 158.77 = 262.44

Current Density = 3 A/ m?

19
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13.

14.
15.
16.
17.
18.
19.
20.

Conductor Used = PICC (Paper Insulated Copper Conductor )
PICC = 1.3 mm to 4 mm (length)
PICC (width) = 5 to 7 * (length)

Winding Used = Continuous Disc Type
No. of Disc = 38

Disc clearance = 5 mm

Radial Height of Conductor = 1925 mm
Thickness of LV winding = 100 mm
Thichness of HV winding = 123 mm

Clearances used are according to Indian Standards & Company Practice

20



Chapter 6

Stray Loss Calculation

6.1 Total Stray Loss

Stray Loss (without shields) = MVA * Z * ( 5.67- 1.77 log(MVA)) / 0.65
= 100 * 0.14 * ( 5.67 - 1.77 * 2)/ 0.65
= 45.86 KW

6.1.1 Tank Losses

Average ohmic loss = 2.54 * 10* W/m?
Tank volume = 4 * 4.5 * .01 m?
Total Loss = 2.54 * 10%* 4 * 4.5 * .01 * 6 KW
= 30.618 KW

6.1.2 FlitchPlate & Yokebeam Loss

Flitchplate & Yokebeam loss = 2.65 * 10* *WW/?24 * B2
W = width of Flitch plate in mtr
B = flux Density in Tesla
Flitch plate & Yoke beam loss = 2.65 * 10**0.210%* *1.232 * 5
= 5.124 KW

6.2 Total Stray Loss with Sheilds

Different kinds of Sheilds use for the control of Stray losses are

1. EdgeWise Shunt
2. WidthWise Shunt
3. Partial Shunt

4. FullHieght Shunt
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[
0 2 50+003 56+003 (mm)

Figure 6.1: Edge Wise Geometry

6.3 Total Stray Loss with EdgeWise Shunt

Stray Loss calculation using EdgeWise Sheeild can be done using either CRGO or
Copper material.

6.3.1 EdgeW:ise Sheild having CRGO material

The Fluxdensity at flitchplate , tank is calculated
The Ohmicloss at flitchplate , tank , sheilds is calculated.

The loss density at tank is 7.931 * 10> W/ m?

Total tank loss is = 7.93%10% * 4* 4.5 * 0.01* 6
= 8. 64 KW

Area of bottom shields = (830%830) + (730*730) + (630%630) + (530*530)mm>
= 0.68 + 0.53 40 .39 + 0.28 m?

Volume Of bottom Sheild = 1.88 * .01 m?
= .0188 m?

Loss density at Sheilds = 1.57 * 10* W/ m?

Loss at bottom sheilds is = .0188% 1.57*10**3
= 0.879 KW
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Area at Side & Back Sheilds = (730%3000) + (630*2800) + (530%2600) + (430*2400)mm?
= 2.19 + 1.76 + 1.37 + 1.032 m?
= 6.364 m?

Volume of Side & Back Sheilds = 6.364 * 0.01m?
= 0.06364 m3

loss at Side & Bottom Sheild = 0.06364* 1.57* 10* * 5
=5 KW

Flux Density At Flitchplate = 0.8 T

Loss at Flitchplate = 2.65 * 10**0.210%* * 0.80% * 6
= 2.40 KW

Total Stray Loss = 2.4 + 5 4+ 0.879 + 8.64 KW
= 16.92 KW

6.3.2 EdgeWise Sheild having Copper material

The Fluxdensity at flitchplate , tank is calculated

The Ohmicloss at flitchplate , tank , sheilds is calculated.

The loss density at tank is 1.04 *10* W/ m3

Total tank loss is = 1.04%10%* 4*4.5%0.01*6
= 11.23 KW

Area of bottom shields = (830*830) + (730*730) + (630*%630) + (530*530) mm?
= 0.68 + 0.53 40 .39 + 0.28m?

Volume Of bottom Sheild = 1.88 * .01m?
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= .0188 m?
Loss density at Sheilds = 2.087 * 10* W/m?3

Loss at bottom sheilds is = .0188% 2.087*10* *3
= 1.173 KW

Area at Side & Back Sheilds = (730%¥3000) + (630%2800) + (530%2600) + (430%2400)

mm?

=219 + 1.76 + 1.37 + 1.032m?
= 6.364 m?

Volume of Side & Back Sheilds = 6.364 * 0.01 m?>
= 0.06364 m3

loss at Side & Bottom Sheild = 0.06364* 2.087* 10* * 5
= 6.618 KW

Flux Density At Flitchplate = 0.82 T

Loss at Flitchplate = 2.65 * 10%*0.210%4* 0.822 * 6
= 2.52 KW

Total Stray Loss = 2.52+ 6.618 4+ 1.173 + 11.23 KW
= 21.541 KW

6.4 Total Stray Loss with Partial Shunt

Stray Loss calculation using EdgeWise Sheeild can be done using either CRGO or
Copper material.

6.4.1 Partial Height Sheild having CRGO material
The Fluxdensity at flitchplate , tank is calculated
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I T
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Figure 6.2: Partial Height Shunt Geometry

The Ohmicloss at flitchplate , tank , sheilds is calculated.

The loss density at tank is 5.155 * 10°> W/m?

Total tank loss is = 5.155%10%* 4%4.5%0.01*6
= 5.568 KW

Area of bottom shields = (830%830) + (830*830) + (830*830) + (830*830)mm>
= 0.68*4m?
=2.72 m?

Volume Of bottom Sheild = 2.72 * .01m3
= .0272m3

Loss density at Sheilds = 1.40* 10* W/m3

Loss at bottom sheilds is = .0272* 1.40*10* *3
= 1.142 KW

Area at Side & Back Sheilds = (730%3000) + (7303000) + (730*3000) -+ (730%3000)mm?
= 2.19 *4m?
= 8.76m?>
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Volume of Side & Back Sheilds = 8.76 * 0.01m?
= 0.0876m?

loss at Side & Bottom Sheild = 0.0876* 1.40*10* * 5
= 6.132 KW

Flux Density At Flitchplate = 0.75 T

Loss at Flitchplate = 2.65 * 10* *0.210%4 *0.75% * 6
=211 KW

Total Stray Loss = 2.11 + 5.568 + 1.142 + 6.132 KW
= 14.95 KW

6.4.2 Partial Height Sheild having Copper material

The Fluxdensity at flitchplate , tank is calculated

The Ohmicloss at flitchplate , tank , sheilds is calculated.

The loss density at tank is 1.04 * 10* W/m3

Total tank loss is = 1.04 *10* * 4*4.5%0.01*6
= 11.232 KW

Area of bottom shields = (830%830) + (830%830) + (830%830) + (830%830) mm?
= 0.68%4 m?
=2.72 m?

Volume Of bottom Sheild = 2.72 * .01m?
= .0272 m3

Loss density at Sheilds = 1.5 * 10* W/m?
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Loss at bottom sheilds is = .0272* 1.5%10* *3
= 1.224 KW

Area at Side & Back Sheilds = (730*3000) + (730*3000) + (730*3000) + (730*3000)

mm?

= 2.19 *4 m?
= 8.76 m?

Volume of Side & Back Sheilds = 8.76 * 0.01m?
= 0.0876 m?

loss at Side & Bottom Sheild = 0.0876* 1.3* 10* * 5
= 5.694 KW

Flux Density At Flitchplate = 0.77 T

Loss at Flitchplate = 2.65 * 10* * 0.210%4* 0.772 * 6
= 222 KW

Total Stray Loss = 2.22 + 5.694 + 1.224 + 11.232 KW
= 20.37 KW

6.5 Total Stray Loss with Width Wise Shunt

Stray Loss calculation using Width Wise Sheild can be done using either CRGO or
Copper material.
The stacks used are of 20 mm.

6.5.1 Width Wise Sheild having CRGO material

The Fluxdensity at flitchplate , tank is calculated

The Ohmicloss at flitchplate , tank , sheilds is calculated.
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Figure 6.3: Width Wise Shunt Geometry

The loss density at tank is 6.094 * 103> W/m?

Total tank loss is = 6.094 *103 * 4*4.5%0.01*6
= 6.580 KW

Area of bottom shields = (830*%830) +
= 0.68%4 m?
=2.72 m?

Volume Of bottom Sheild = 2.72 * .01m?
= .0272 m?

Loss density at Sheilds = 9.18 * 10* W/m3

Loss at bottom sheilds is = .0272* 9.18 *103*3
= 0.749 KW

Area at Side & Back Sheilds = (730*3000) +
= 2.19 ¥4 m?
= 8.76 m?

Volume of Side & Back Sheilds = 8.76 * 0.01m?

= 0.0876 m?

(830%830) +

(730%3000) +

(830%830) +

(730*3000) +

5e+003 (mi

(830*830)mm?

(730%3000)mm?
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loss at Side & Bottom Sheild = 0.0876* 9.18 * 103 * 5
= 4.020 KW

Flux Density At Flitchplate = 0.65 T
Loss at Flitchplate = 2.65 * 10* *0.210%4 *0.65% * 6
= 1.586 KW

Total Stray Loss = 1.586 +4.020 4 0.749 + 6.580 KW
= 12.935 KW

6.5.2 Width Wise Sheild having Copper material

The Fluxdensity at flitchplate , tank is calculated

The Ohmicloss at flitchplate , tank , sheilds is calculated.

The loss density at tank is 1.121 * 10* W/ m3

Total tank loss is = 1.121 *10* * 4*4.5%0.01*%6
= 12.106 KW

Area of bottom shields = (830*830) + (830*830) + (830*830) + (830*830) mm?
= 0.68%4 m?
=2.72 m?

Volume Of bottom Sheild = 2.72 * .01m?
= .0272 m?

Loss density at Sheilds = 1.02 * 10* W/m3
Loss at bottom sheilds is = .0272* 1.02 *10* *3
= (0.844 KW

Area at Side & Back Sheilds = (730*3000) + (730*3000) + (730*3000) + (730*3000)mm?
= 2.19 *4 m?
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= 8.76 m?

Volume of Side & Back Sheilds = 8.76 * 0.01m?
= 0.0876 m3

loss at Side & Bottom Sheild = 0.0876* 1.02 * 10* * 5
= 4467 KW

Flux Density At Flitchplate = 0.67 T
Loss at Flitchplate = 2.65 * 10* * 0.210%** 0.67> * 6
= 1.674 KW

Total Stray Loss = 1.674 +4.467 4 0.844 + 12.106 KW
= 19.091 KW

6.6 Total Stray Loss with Full Height Shunt

0 3.5e+003 Te+003

Figure 6.4: Full Height Shunt Geometry

Stray Loss calculation using Width Wise Sheild can be done using either CRGO
or Copper material.

6.6.1 Full Height Sheild having CRGO material
The Fluxdensity at flitchplate , tank is calculated
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The Ohmicloss at flitchplate , tank , sheilds is calculated.
The loss density at tank is 5.33 * 103> W/m3

Total tank loss is = 5.33 *103 * 4*4.5%0.01*6
= 5.756 KW

Area of bottom shields = (830*830) + (830*830) + (830*830) + (830*830)mm?
= 0.68%4 m?
=2.72 m?

Volume Of bottom Sheild = 2.72 * .01m?
= .0272 m?

Loss density at Sheilds = 10.29 * 10> W /m?3
Loss at bottom sheilds is = .0272* 10.29 *103*3
= 0.840 KW

Area at Side & Back Sheilds = (730*3775) + (730*3775) + (730*3775) + (730*3775)mm?
= 2.75 *4 m?
= 11.04 m?

Volume of Side & Back Sheilds = 11.04 * 0.01m3
=0.11 m?3

loss at Side & Bottom Sheild = 0.11* 6.83 * 10% * 5
= 3.756 KW

Flux Density At Flitchplate = 0.6 T
Loss at Flitchplate = 2.65 * 10** 0.210%4 * 0.62 * 6
= 1.352 KW

Total Stray Loss = 1.352 + 5.75 + 0.840 + 3.756 KW
= 11.704 KW
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6.6.2 Full Height Sheild having Copper material

The Fluxdensity at flitchplate , tank is calculated
The Ohmicloss at flitchplate , tank , sheilds is calculated.
The loss density at tank is 8.16 * 10> W/ m?

Total tank loss is = 8.16 *103 * 4*4.5%0.01*6
= 8.812 KW

Area of bottom shields = (830*830) + (830*830) + (830*830) + (830*830)mm?
= 0.68%4 m?
=2.72 m?

Volume Of bottom Sheild = 2.72 * .01m?3
= .0272 m3

Loss density at Sheilds = 9.3 * 10> W/m?
Loss at bottom sheilds is = .0272* 8.3 *10° *3
= 0.677 KW

Area at Side & Back Sheilds = (730%3775) + (730%3775) + (730*3775) + (730*3775)mm’
= 2.75 *4 m?
= 11.04 m?

Volume of Side & Back Sheilds = 11.04 * 0.01m?
=0.11 m?3

loss at Side & Bottom Sheild = 0.11* 1.24 * 10* * 5
= 6.82 KW

Flux Density At Flitchplate = 0.62 T
Loss at Flitchplate = 2.65 * 10** 0.210%4* 0.622 * 6
= 1.443 KW

Total Stray Loss = 1.443 + 6.82 + 0.677 + 8.812 KW
= 17.752 KW
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6.7 Cost Benifit Analysis

The cost benifit analysis of the various sheilds used in the geometry is as shown below

6.7.1 EdgeWise Shunt
The total Volume of the CRGO used in Sheilds is 0.08244 m?

The Density of CRGO material is 7.65 gms/ cm?

The total Weigth of CRGO material is 630.66 Kg .

Cost of CRGO material is 120 RS/kg

So, total cost of CRGO material used in Sheilds is Rs 75,679

Now , taking production cost , transportation cost , labour charge as 12.5 % of
material cost

So total Cost is Rs 85,138

Cost Of Load Loss/Kw is Given by

(I4+r)"—=1xLS

= 8760
We xex rx (147

(6.1)

Taking r = 0.1 n = 25

We get , We = Rs 82,20,000 for 35.742 Kw
In Sheilds the losses are 16.92 Kw

So the cost is Rs 38,91,000
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Net Savings is Rs 82,20,000-38,91,000-85,138

= Rs 42,43,000

6.7.2 Partial Height Shunt

The total Volume of CRGO used in the Sheilds is 0.1148 m?

The Density of CRGO material is 7.65 gms/ cm?

The total Weigth of CRGO material is 878.22 Kg .

Cost of CRGO material is 120 RS/kg

So, total cost of CRGO material used in Sheilds is Rs 1,05,386

Now , taking production cost , transportation cost , labour charge as 12.5 % of
material cost

So total Cost is Rs 118559.25

Cost Of Load Loss/Kw is Given by

(I+r)"—=1xLS
rx (14+7r)

We = 8760 x e x

Takingr =.1n =25

We get , We = Rs 8220000 for 35.742 Kw

In Sheilds the losses are 14.95 Kw
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So the cost is Rs 34,38,000

Net Savings is Rs 82,20,000-34,38,000-1,18,559

= Rs 46,63,440

6.7.3 Width Wise Shunt
The total Volume of CRGO used in the Sheilds is 0.1148 m?

The Density of CRGO material is 7.65 gms/ cm?

The total Weigth of CRGO material is 878.22 Kg .

Cost of CRGO material is 120 RS/kg

So, total cost of CRGO material used in Sheilds is Rs 105386

Now , taking production cost , transportation cost , labour charge as 15 % of
material cost

So total Cost is Rs 1,21,193

Cost Of Load Loss/Kw is Given by

(I4+r)"—1xLS

We = 8760
¢ xex rx (L+4+r)n

(6.3)

Taking r = 0.1 n = 25
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We get , We = Rs 82,20,000 for 35.742 Kw
In Sheilds the losses are 12.93 Kw

So the cost is Rs 29.75,000

Net Savings is Rs 82,20,000-29,75,000-1,21,193

= Rs 51,45,000

6.7.4 Full Height Shunt

The total Volume of CRGO used in the Sheilds is 0.1372 m?

The Density of CRGO material is 7.65 gms/ cm?

The total Weigth of CRGO material is 1050 Kg .

Cost of CRGO material is 120 RS/kg

So, total cost of CRGO material used in Sheilds is Rs 125950

Now , taking production cost , transportation cost , labour charge as 12.5 % of
material cost

So total Cost is Rs 1,41,693

Cost Of Load Loss/Kw is Given by

(I+r)"—=1xLS
rx (14+7r)

We = 8760 x e x
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Taking r = 0.1 n = 25

We get , We = Rs 82,20,000 for 35.742 Kw
In Sheilds the losses are 11.704 Kw

So the cost is Rs 26,91,000

Net Savings is Rs 82,20,000-26,91,000-1,41,693

= Rs 53,87,306
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Chapter 7

FEM Model & Simulation Results

7.1 Transformer Analysis without Sheild

The simplified FEM model of 100 MVA | 220/66 KV | Y-Y connected transformer
is shown. It contains LV windings , HV windings , Core , Yoke beams , Tank &
Flitchplate.

! T L
0 5e+003 1e+004 (mm)

Figure 7.1: FEM Model of Transformer

The average flux density in core is 1.6 T .

The Flux Density at the Tank wall is 0.25 T.

The average ohmic loss at Tank wall is 2.54 * 10* W/ m?
The average Flux Density at yoke & Flitchplate is 1.01 T.
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Figure 7.2: Meshed FEM Model of Transformer

7.2 Transformer Analysis with EdgeWise Sheild

The Flux Density at the Tank wall is 0.18 T.
The average ohmic loss at Tank wall is 7.33 * 10> W/ m3 (CRGO material)
The average ohmic loss at Sheild is 1.57 * 10* W/ m? (CRGO material)
The average Flux Density at yoke & Flitchplate is 0.75 T.
The average ohmic loss at Tank wall is 1.04* 10* W/ m? (Copper material)
The average ohmic loss at Sheild is 2.08 * 10* W/ m? (Copper material)

7.3 Transformer Analysis with Partial Height Sheild

The Flux Density at the Tank wall is 0.15 T.

The average ohmic loss at Tank wall is 5.155 * 10> W/ m3 (CRGO material)
The average ohmic loss at Sheild is 1.40 * 10> W/ m? (CRGO material)

The average Flux Density at yoke & Flitchplate is 0.70 T.

The average ohmic loss at Tank wall is 1.04* 10* W/ m3 (Copper material)
The average ohmic loss at Sheild is 1.4 * 10* W/ m3 (Copper material)

7.4 'Transformer Analysis with Width Wise Sheild

The Flux Density at the Tank wall is 0.11 T.
The average ohmic loss at Tank wall is 6.094 * 10° W/ m? (CRGO material)
The average ohmic loss at Sheild is 9.18 * 10> W/ m? (CRGO material)
The average Flux Density at yoke & Flitchplate is 0.65 T.



CHAPTER 7. FEM MODEL & SIMULATION RESULTS 40

B[ teslal g

2. 9472e+BE8
2. 7630e+000
. 2., 5885 +0E0
Z.3971e+008

2. 2137 e+B0EE
2. 8384 c+008
1. 8478e+008

1. EES7e+00E
1. 4883 +088
1. 2978 +088
1.1136e+008

9. 3827 e-@01

7. 4E692e-BE1
5.B357e-801
3, 8821e-0E1
1.9636e-0E1
1.35@7e-B0R2

I T —
0 2.56+003 5e+003 (mm)

Figure 7.3: Flux Density in Core

The average ohmic loss at Tank wall is 1.121* 10* W/ m? (Copper material)
The average ohmic loss at Sheild is 1.024 * 10* W/ m? (Copper material)

7.5 Transformer Analysis with Full Height Sheild

The Flux Density at the Tank wall is 0.08 T.
The average ohmic loss at Tank wall is 5.33 * 10> W/ m? (CRGO material)
The average ohmic loss at Sheild is 8.83 * 10> W/ m? (CRGO material)
The average Flux Density at yoke & Flitchplate is 0.6 T.
The average ohmic loss at Tank wall is 8.16* 10> W/ m? (Copper material)
The average ohmic loss at Sheild is 1.24 * 10* W/ m? (Copper material)
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Figure 7.4: Flux Density in Tank Wall
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Figure 7.5: Ohmic Loss in Tank Wall
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Figure 7.6: Flux Density in Flitch Plate & Yoke Beam
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Figure 7.7: Ohmic Loss in Flitch Plate & Yoke Beam
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Figure 7.8: Flux Density at Tank EdgeWiseShunt(CRGO)
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Figure 7.9: Ohmic Loss at Tank EdgeWiseShunt(CRGO)
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Figure 7.10: Flux Density at Flitchplate EdgeWise(CRGO)
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Figure 7.11: Ohmic Loss in Sheild(CRGO)
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Figure 7.12: Flux Density at Tank EdgeWiseShunt(Copper)
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Figure 7.13: Ohmic Loss at Tank EdgeWiseShunt(Copper)
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Figure 7.14: Flux Density at Flitchplate EdgeWise(Copper)
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Figure 7.15: Ohmic Loss in Sheild(Copper)
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Figure 7.16: Flux Density at Tank Partial IHeight Shunt(CRGO)
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Figure 7.17: Ohmic Loss at Tank Partial Height Shunt(CRGO)
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Figure 7.18: Flux Density at Flitchplate Partial Height (CRGO)
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Figure 7.19: Ohmic Loss in Partial Height Sheild(CRGO)
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Figure 7.20: Flux Density at Tank Partial 1Height Shunt(Copper)
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Figure 7.21: Ohmic Loss at Tank Partial Height Shunt(Copper)
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Figure 7.22: Flux Density at Flitchplate Partial Height (Copper)
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Figure 7.23: Ohmic Loss in Partial Height Sheild(Copper)
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Figure 7.24: Flux Density at Tank Width Wise Shunt(CRGO)
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Figure 7.25: Ohmic Loss at Tank Width Wise Shunt(CRGO))
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Figure 7.26: Flux Density at Flitchplate Width Wise (CRGO)
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Figure 7.27: Ohmic Loss in Width Wise Sheild(CRGO)
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Figure 7.28: Flux Density at Tank Width Wise Shunt(Copper)
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Figure 7.29: Ohmic Loss at Tank Width Wise Shunt(Copper)
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Figure 7.30: Flux Density at Flitchplate Width Wise (Copper)
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Figure 7.31: Ohmic Loss in Width Wise Sheild(Copper)
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Figure 7.33: Ohmic Loss at Tank Full Height Shunt(CRGO)
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Figure 7.34: Flux Density at Flitchplate Full Height (CRGO)
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Figure 7.35: Ohmic Loss in Full Height Sheild(CRGO)
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Figure 7.37: Ohmic Loss at Tank Full Height Shunt(Copper)
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Figure 7.38: Flux Density at Flitchplate Full Height (Copper)
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Figure 7.39: Ohmic Loss in Full Height Sheild(Copper)
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Chapter 8

Conclusion

Here the 3D model of 100 MVA | 220/66 KV , Y-Y connected Transformer is shown
in the fig.7.1 . The model is simplified & stray losses are calculated . They occur at
Tank,Yoke Beams , Flitchplates & Other Structural parts of the Transformer . These
losses are almost 45 KW . These losses are to minimized, they can be minimized by
various shielding measures .

Here various Sheilding Measures are used & Stray losses are evaluated . the
full height shunt gives the minimum losses & edgewise shunt gives maximum losses.
CRGO & Copper any material can be used for sheilds , but CRGO material gives
less losses.

Thus CRGO material with full height shunt gives the minimum losses.

Here the cost benifit analysis of the sheilds used is shown, maximum savings in
Rupees occurs when Full Ht. Shunt of CRGO material is used.

The FEM softwares which are used are ANSYS / MagNet/ EDMag - 3D .

Reduction of Stray Losses also reduces the Capitalization Cost of the Transformer.
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