DESIGN AND INTERFACE OF GIS FOR AUGMENTING CAPACITY OF EXISTING AIS IN HIGHLY URBANIZED AREA

Major Project Report

Submitted in Partial Fulfillment of the Requirements for the $Degree \ of$

MASTER OF TECHNOLOGY

IN

ELECTRICAL ENGINEERING (Electrical Power Systems)

By

Vijaysinh R. Shinol (12MEEE27)

Department of Electrical Engineering INSTITUTE OF TECHNOLOGY NIRMA UNIVERSITY AHMEDABAD 382 481 May 2014

Undertaking For Originality of the Work

I, Mr. Vijaysinh R. Shinol, (Roll No:12MEEE27), give undertaking that the Major Project entitled "Design and Interface of GIS for Augmenting Capacity of Existing AIS in Highly Urbanized Area" submitted by me, towards the partial fulfillment of the requirement for the degree of Master of Technology in Electrical Power Systems, Electrical Engineering, under Institute of Technology, Nirma University, Ahmedabad is the original work carried out by me and I give assurance that no attempt of Plagiarism has been made. I understand that in the event of any similarity found subsequently with any published work or any dissertation work elsewhere; it will result in severe disciplinary action.

Signature of Student

Date:.... Place:Ahmedabad

Endorsed by:

Industry Guide **Er. S.M.Takalkar** Managing Director TPEC Pvt Ltd. Vadodara

Institute Guide

Prof. G.B.Buch Department of Electrical Engineering Institute of Technology Nirma University Ahmedabad Institute Co-Guide **Prof. V.M.Dholakiya** Department of Electrical Engineering Institute of Technology Nirma University Ahmedabad

Certificate

This is to certify that the Major Project Report entitled "Design and Interface of GIS for Augmenting Capacity of Existing AIS in Highly Urbanized Area" submitted by Mr.Vijaysinh R. Shinol (12MEEE27) towards the partial fulfillment of the requirements for degree in Master of Technology (Electrical Engineering) in the field of Electrical Power Systems of Nirma University is the record of work carried out by him under our supervision and guidance. The work submitted has in our opinion reached a level required for being accepted for examination. The results embodied in this major project work to the best of our knowledge have not been submitted to any other University or Institution for award of any degree or diploma.

Date:

Institute Guide **Prof. G.B.Buch** Department of Electrical Engineering Nirma University Ahmedabad Institute Co-Guide **Prof. V.M.Dholakiya** Department of Electrical Engineering Nirma University Ahmedabad

Industry Guide **Er. S.M.Takalkar** Managing Director TPEC Pvt Ltd. Vadodara

Head of Department

Department of Electrical Engineering Institute of Technology Nirma University Ahmedabad

Director

Institute of Technology Nirma University Ahmedabad

Industry Certificate

Date: 9th May, 2014

CERTIFICATE

This is to certify that **Mr. Vijaysinh R. Shinol** (Roll No. 12MEEE27), student of M.Tech in Electrical Engineering (Electrical Power Systems) of Institute of Technology, Nirma University, worked in Takalkar Power Engineers & Consultants Pvt. Ltd. (TPEC), Vadodara as a project student during the period of July 2013 to May 2014.

During this he carried out work pertaining to his thesis titled "Design and Interface of GIS for Augmenting Capacity of Existing AIS in Highly Urbanized Area", under our guidance.

According to our assessment he has put in good amount of working days and has completed his work to our satisfaction. We understand that this work is towards the partial fulfillment of the syllabus for Master Degree in Electrical Engineering (Electrical Power Systems) of the Nirma University.

We wish him all the best for his all future assignments.

Reg. Office: A-197, Vishwamitri Township, Opp. Gujarat Tractors, Vadodara–390 011. Tel: 0265 - 234 3001 • Tele Fax: 0265 - 235 6291 • Email: <u>info@tpec.in</u> • Web: <u>www.tpec.in</u> CIN: U74210GJ2010PTC059572

Acknowledgements

Success of any work depends upon the dedication, sincerity and hard work. It also requires some ingredients such as motivation, guidance, encouragement and time. I am very thankful to all those who are behind the successful completion of the dissertation work.

I would also like to thank Er. S.M. Takalkar, Managing Director, TPEC Pvt. Ltd. for their support, important guidance and giving me time from their busy schedule. I would also like to thank my institute guide Prof. G. B. Buch and Prof. V. M. Dholakiya, Institute of Technology, Nirma University, Ahmedabad for their valuable guidance for this dissertation work. I would also like to thank all technical staff member of TPEC Pvt. Ltd. Specially, Er. Alpesh Mohite, Er. Kishor Gaikwad, Er. Swati Pimplekar, Er. Parth Desai, Er. Sumit Lingarchani, Er. Heena Darji, Er. Gaurang Patel, Er. Keval Velani and Er. Krunal Saidanefor their time to time support during my entire study.

I would like to thank Dr. P. N. Tekwani, Head of Department, Electrical Engineering Department, Institute of Technology, Nirma University, Ahmedabad and Dr. S. C. Vora, PG Co-ordinator, Electrical Engineering Department, Institute of Technology, Nirma University, Ahmedabad. I am thankful to Nirma University for providing all kind of required resources.

I specially want to thank my parents and sister for their motivation, moral support and encouragement through out my dissertation work. And above all, I pay my regards to the Almighty for his love and blessing.

> - Vijay R. Shinol 12MEEE27

Abstract

Due to increase in power demand, load on substation is increased day by day. In urban substation many a time it is not possible to provide extension to existing air insulated substation due to non availability of space to accommodate additiona bays. In such case GIS extension is the only viable solution.

In GIS extension the cables are drawn from the existing bus and they are connected to GIS equipment. There after depending upon the requirement, the GIS equipment is either connected to step down transformer or step up transformer and feeders are taken out for connection to grid.

The extension of GIS from existing AIS substation need much engineering and also requires background of the equipment available in the market. Control and protection system of such expansion of GIS need critical review. Similarly operational configurations of GIS extension is different than those of independent AIS and GIS substation / switchgear also the Civil and structural work of such substation is a precise job.

The project work examines various aspects of such GIS extension for given voltage class and brings out detail engineering and construction feature of such substation. The study will include equipment specification, retrofitting in the existing AIS (if it is an extension) and interface between AIS and GIS.

List of Figures

1.1	Project Planning 55
5.1	Single Line Diagram
5.2	Protection Single line Diagram
5.3	Layout Plan
5.4	Layout Section Elevation
5.5	Design Procedure Block Diagram
5.6	Earthing Layout
5.7	Riser Connection Diagram
5.8	Direct Stroke Lightning Protection Diagram
5.9	Simulation Result of Busbar
5.10	Control Room Layout and Panel Arrangement
5.11	Station Auxiliary Supply System
5.12	$220 \text{ V DC Load Detail } \dots $
5.13	48 V DC Load Detail
5.14	$220 \text{ V Battery Sizing } \dots $
5.15	48 V Battery Sizing
5.16	Load Distribution Board
5.17	AC Distribution Board
5.18	DC Distribution Board
5.19	Cable Trench Layout
5.20	Summary of Power and Control Cable
5.21	SCADA System
A.1	Fault Location of Enclosure 85
B.1	Illumination Design of GIS Room

List of Tables

3.1	Capacity Addition Requirement	11
3.2	Year Wise Capacity Addition	12
3.3	Growth of Transmission Sector	12
3.4	Forecasted Load of Mumbai	12
5.1	Protective Relays	28
5.2	Recommended Lux Level	57

Abbreviations

AIS	Air Insulated Substation
ВРІ	Bus Post Insulator
CT	Current Transformer
DSLP	Direct Stroke Lightning Protection
EHV	Extra High Voltage
GIS	Gas Insulated Substation
HT	High Tension
HV	High Voltage
	Inverse Definite Minimum Time
LA	Lightning Arrestor
LT	Low Tension
MTS	Mixed Technology Switchgear
MV	
ONAN	Oil Natural Air Natural
HIS	Hybrid Insulated Substation
PT	Potential Transformer
	Supervisory Control And Data Acquisition
TRV	Transient Recovery Voltage

LIST OF TABLES

Nomenclature

I_{pn}	Primary Current
I_{sn}	Secondary current
I_r	Rated Current of the Protection IED
I_{fmax}	
\dot{R}_{CT}	C.T. Secondary Resistance
R_L	
R_b	Relay Burden
V_{kmin}	Min. Knee Point Voltage
ρ	Resistivity of Soil
ρ_s	Surface layer Resistivity
C_s	Reflection factor
t_s Duration of Shock	for Determining Allowable Body Current
R_q	Spacing Factor For Mesh Voltage
$\tilde{D_f}$	Decrement Factor For Determining IG
$\dot{K_m}$	Grid Resistance
L_x	
L_y	Length of Conductor in Y Direction
K_{ii}	Corrective Weighted Factor
K_i	Irregularity Factor
E_m	
L_r	Length of Ground Rod
E_s	Step Voltage
K_s	Geometrical Factor
L_R	Total Length of Ground Rod
h_x	Height of the Object to be Protected
h_a A	ctive height of the Object to be Protected
<i>r</i> _{<i>x</i>}	Radius of Protective Zone
Q	Conduction heat flux
<i>K</i>	Thermal conductivity
T_s	
T_{sur}	Surrounding temperature
T_{∞}	Fluid temperature
ε	Emmisivity
β	
C_p	Specific heat
μ	Viscosity
ν	•
Gr_L	
P_r	-
Nu_L	Nuscelt number

Contents

U	ndertal	king For Originality of the Work	ii
Ce	ertifica	te	ii
Ce	ertifica	te	iv
A	cknowl	edgements	v
A	bstract	;	vi
Li	st of F	igures	vii
Li	st of T	ables	viii
N	omencl	lature/Abbreviations	ix
Co	ontents	3	xi
1	1.1 E 1.2 R 1.3 C 1.4 S 1.5 P 1 1 1	duction Background	$egin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \end{array}$
2	Litera	ature Survey	7
3	 3.1 S 3.2 F 3.3 A 	of GIS Extension Study of Load Growth Cactor Leading to GIS Extension Advantages Disadvantages	11 11 13 13 14

	3.5	Application of GIS Extension 14
4	Sele	ction of Proposed GIS Equipment 15
	4.1	System Parameters
	4.2	GIS Equipments
		4.2.1 Busbar
		4.2.2 Circuit Breaker
		4.2.3 Isolators and Earthing Switches
		4.2.4 Current Transformer
		4.2.5 Voltage Transformer $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 22$
		$4.2.6 \text{Transformer} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		4.2.7 Outdoor Bushing $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 24$
		4.2.8 Lightning Arrester 25
5	Desi	ign of Proposed Gas Insulated Substation 27
	5.1	Single Line Diagram
	5.2	Substation Layout and Sectional Elevation
	5.3	Protection Single Line Diagram
	5.4	Substation Earthing
		5.4.1 Special Consideration For GIS
		5.4.2 Design Procedure Block Diagram
	5.5	CT Sizing
		5.5.1 Selection of Parameters of CT-1 on GIS Transformer Bay 45
		5.5.2 Selection of Parameters of CT-2 on GIS Transformer Bay 48
		5.5.3 Selection of Parameters of Bushing CT on Transformer 48
	5.6	Direct Stroke Lightning Protection
	5.7	Busbar Sizing
		5.7.1 Simulation Result of Busbar
	5.8	Control Room Layout And Panel Arrangement
	5.9	Illumination Design
		Station Auxiliary Supply
	5.11	Battery Sizing Calculation
	5.12	Distribution Board
	5.13	Cable Trench Layout
	5.14	Cable Schedule 72
		SCADA System
	5.16	Interface Between AIS and GIS
	5.17	Reconductring Requirement
		5.17.1 Another Case Study $\dots \dots \dots$
6	Con	clusion and Future Scope 75
	6.1	Conclusion
	6.2	Future Scope

xii

CONTENTS

Re	eferences	76
Α	Earthing Design Calculation	78
в	Illumination Design of GIS Room	88

Chapter 1

Introduction

1.1 Background

Substations form an important element of transmission and distribution network of electrical power system. Basically, these provide points for controlling the supply of power on different routes by means of various equipments such as transformers, compensating equipments, circuit breakers, isolators etc. The various circuits are linked together through these components to bus- bar system at the substation.

"Sub-station is integral parts of a power system and form important links between the generating station, transmission systems, distribution systems and the load points."

Construction of any substation from 33 kV to 765 kV is a precise job. There are many inputs required for electrical, mechanical and civil design of the substation.

• Electrical Design

Electrical design relates to the MVA capacity of the substation, selection of switchyard equipment like power transformer, circuit breaker, bus post insulator, current transformer, potential transformer, capacitive voltage transformer, lightning arrester, carrier communication equipment, control and relay panels, capacitors bank, SCADA system etc.

- Mechanical Design Mechanical design relates to fabrication of various structures, air conditioning, fire protection etc.
- Civil Design

Civil design relates to roads, water supply scheme, storm water disposal scheme, water harvesting, structure foundation, control room, cable trenches, office building, stores building, drainage, transformer/reactor foundations, road, security cabin etc.

1.2 Recent Trends

When the space is a constraint, compact substation has to be designed and constructed which includes Gas Insulated Switchgear (GIS). GIS is a compact substation. Now a day a combination of GIS and AIS are gaining more popularity, particularly in the densely populated urban areas where acquisition of additional land is not possible.

Due to increase in power demand, load on substation is increased. In urban substation many a time it is not possible to provide extension to existing air insulated substation due to non availability of space to accommodate additional bays. In such case GIS extension is the only viable solution. Also in hilly area where the availability of space is main constraint, Gas Insulated substation has to be designed and constructed.

GIS concept could be a very healthy and cost effective solution to the utility from operational/maintenance point of view, during the life of a substation. No doubt that the equipment installation cost of GIS is more than the conventional AIS substation.

1.3 Objective of Project

In this Project, main objective is to identify various aspects of GIS extension for augmenting the capacity of existing AIS substation in an urbanised area. Design a GIS for given voltage class on the basis of actual application. The study includes equipment specification, design/engineering like earthing, lightning protection system,cable schedule, interface between AIS and GIS, preparation of Substation design drawings and calculations.

1.4 Scope of Work

The work fulfills objective in following steps:

- Identify factor leading to Gas Insulated Substation extension.
- Study of present load, load growth for next five year and availability of space.
- Electrical design of GIS including equipment specification.
- Detail engineering like earthing, CT sizing, lightning system, busbar sizing, illumination design, station auxiliary supply, battery sizing, cable schedule etc.
- Substation design drawings and calculations are prepared.
- Interface between AIS and GIS.

1.5 Problem Identification and Project Planning

1.5.1 Problem Identification

The power demand in the country is increasing exponentially. The urban and suburban areas have very high density of consumers and in addition each consumer consumes power in big quantity. The space availability in urban and suburban areas is very less. With the result expansion of existing substation becomes very difficult.

Creating load centre away from the populated area does not solve the purpose as it will be difficult to secure right of way (ROW) for an over head transmission line or even to EHV cables. Hence it would need construction feeders or link cables over a longer distance. Besides this, it would also cause voltage drop.

Most of the substation in urban areas are connected to each other to form a ring main. Any extension in the substation capacity therefore needs providing Gas Insulated Substation (switchgear) in the existing air insulated substation.

Such substation comprise number of incoming line bays, transformer bays and feeder bays as AIS. Cables are laid from the AIS bus up to the point of GIS. The secondary feeder of GIS is connected to a transformer or taken out as a HT feeder to other remote substation as per the requirement. The utility in the metropolitan city like Mumbai, Delhi, Kolkata, Chennai etc. have started deploying such GIS extension. Even the utility of gujarat state (GETCO) has started augmenting the capacity of existing substation using GIS.

In this project, I have worked on case study of a substation at Borivali Aarey in Mumbai. The space available is very less and it is difficult to extend one AIS bay in available area. Extension in the substation capacity is therefore possible with GIS.

1.5.2 Project Planning

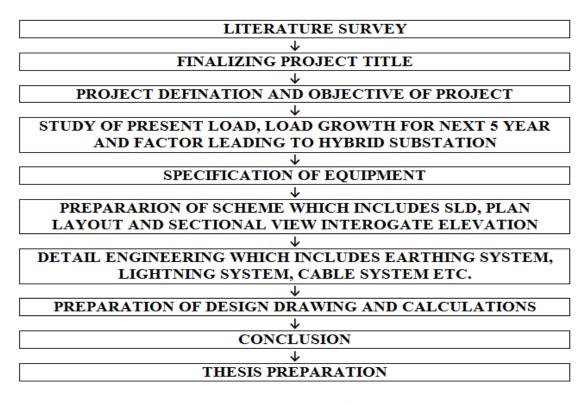


Figure 1.1: Project Planning

1.6 Thesis Organization

Chapter 1 introduces the background and design of substation, the recent trends in switchgear technology, Objective of project, scope of work, problem identification and project planning.

Chapter 2 gives literature survey on experiences with space saving solutions and different technology used in compact substation.

Chapter 3 explains load growth study and factor leading to GIS extension. It also explain advantages and disadvantages of GIS.

Chapter 4 determines brief of equipments and give ratings selected for the proposed gas insulated substation.

Chapter 5 includes step by step design for proposed gas insulated substation. It also includes main design calculations like Earthing, CT Sizing, DSLP Busbar Sizing and Battery sizing. It also includes the simulation result of busbar.

Chapter 6 includes conclusion and future scope of project work.

Appendix A includes detail earthing design calculation.

Appendix B includes illumination design of GIS room with simulation results.

Chapter 2

Literature Survey

Paper 1 briefs about the cost-effectiveness of integration of substations and lines into the geographic service area. Besides building new substations, the upgrading of existing substations has important considerations. Decisions between replacement or refurbishment are not the only options, also using existing substation footprints for new & more compact equipment is another approach. In recent years there has been increasing emphasis placed on reducing environmental impact of construction of substations. Options include new aesthetic solutions, better integration into the environment or placing entire substations underground.

While paper reports on experiences with such space saving solutions, becoming more a common practice of utilities, paper also presents a number of interesting examples of integration of substations and lines into its geographic service area and afford augmentation. Such projects follow typically the evaluation of life-cycle cost, performance, behavior and environmental impacts. Last but not least a sensitivity analysis is required to address the different aspects of the individual parameters of each utility and application.

Paper reflects that, it is often required to extend or replace installed substations within their existing location or footprint by GIS extension, combining air insulated and gas insulated technology. For air insulated bus-bars with disconnecting switches in combination with mixed technology switchgear (MTS), the capability of the switches

CHAPTER 2. LITERATURE SURVEY

and their behavior during bus-bar operations must be considered. The given rated transfer current values may not be sufficient if an existing AIS substation using air insulated bus-bars operates in combination with GIS bays.

Paper 2 reflects example of MTS. Mixed technology switchgear can thus be made up one of the following combinations:

- AIS in compact or combined design
- GIS in combined design
- Hybrid Insulated Substation in compact or combined design
 - Conventional switchgear
 Switchgear of which bays only include conventional components
 - Compact switchgear

Switchgear of which at least one or more bays are compact bays, i.e. in which at least some components share common support structures and cannot be placed individually.

- Combined switchgear

Switchgear of which at least one or more bays are combined bays, i.e. in which at least some components are multifunctional.

Paper 3 presents the advantages of modular construction of GIS. The recent past has witnessed a growing demand for compact solutions for indoor as well as outdoor applications. It has been noted that in addition to their small space requirement, many compact solutions offer standardized as well as interchangeable switchgear modules catering to the clients needs for flexibility. The fact that different kinds of available solutions like the HIS are delivered as pre-fabricated modules, reduces the overall erection and installation time to an extent in comparison to a conventional (AIS) substation, where individual components have to be procured, handled, installed, commissioned and maintained separately. Another advantage of pre-fabrication is

CHAPTER 2. LITERATURE SURVEY

the reduced risk of faulty installation at site.

In case of refurbishments or extensions, usually the lack of space makes it difficult to use the conventional (air-insulated) equipment. The above mentioned MTS characteristics permit the use of the new modules in GIS technology as well as in conventional installations. The overall cost of a substation using GIS components are comparable in investment cost but significantly lower in operating cost when the TDL concept is considered consequently. This paper also discusses about some example of GIS extension in ring main configuration.

Paper 4 discusses about Design Experience of 230/115/69kV Substation Refurbishment Extension Project in Philippine Grid Network. This paper describes some issues considered during design of this project, such as transformer power capacity growth, main equipment dismantling and new secondary system integration into existing system.

• Review and modification work caused from TR power capacity growth

The 100MVA transformer at the Cabanatuan substation under Luzon expansion project was replaced with one of 300MVA capacity. The increase of capacity, lead to the increase in weight of transformer, foundation size and rated current.

• Layout modification considering insulation clearance

The space for surge arrester installation on transformer high voltage side was reduced due to increase in transformer size. In order to make enough clearance for transformer installation, we reviewed installation of 3 phase surge arrester on the transformer main tank.

• Structural Analysis of Gantry Structure

The bus conductor of transformer secondary side was changed from single conductor to two bundle conductor due to growth of transformer capacity.

The subject of the paper 5 is the discussion of various executed GIS extensions and the subsequent erection and commissioning. It is based on the evaluation of over 30 years of experience with a high number of GIS in operation. Gas insulated switchgear (GIS) is often built to its final extent in several stages. The motives for upgrades and extensions are principally economical if well planned and are related to the expected or future network growth. Typical extensions are additional bays, bus section disconnectors, double cable terminations etc. Transmission system growth may lead to higher requirements with regard to short circuit current and/or nominal current ratings after the initial GIS installation. For planned extensions, the mid and long range forecasts and expectations regarding the following are decisive:

- Growth of population and/or growth of industrial, commercial activities in a certain region, resulting in increase of consumption of electrical energy.
- New industrial, economical areas and zones need for new energy supply points.
- added generating points, increasing the output of generating stations
- improved redundancy, availability of the energy supply
- Layout and concept changes of the high voltage network.

In case of substations, when space is really limited as in crowded city centres or at high altitude mountain locations, underground GIS substations, need very precise initial planning. Modular construction, small flexible GIS, with HV cable connections, power transformers, heat exchangers, etc. are allowing for hidden underground substations.

Chapter 3

Need of GIS Extension

3.1 Study of Load Growth

The pace of growth in industrial and commercial activities coupled with penetration of technology and I.T. in the day-to-day life of the common man, is expected to result in a high growth in power demand. Therefore, it is essential that Power Sector growth has to commensurate with the overall economic growth of the nation. The 12^{th} Five Year Plan for the Power sector being check by the Planning Commission aim at addition of 1 lakh MW of installed capacity.

As per the report 6 of planning commission Working Group, capacity addition requirement during the 12^{th} Plan is 75,785 MW. The source wise break up of 12^{th} Plan capacity addition program is given as under

	Hydro(MW)	Thermal(MW)	Nuclear(MW)	Total(MW)
Central	5632	11426	2800	19858
State	1456	12340	0	13796
Private	2116	40015	0	42131
Total	9204	63781	2800	75785

Table 3.1: Capacity Addition Requirement

Year	Central(MW)	State(MW)	Private(MW)	Total(MW)
2007-08	3240.00	5273.00	750.00	9263.00
2008-09	750.00	1821.20	882.50	3453.70
2009-10	2180.00	3118.00	4287.00	9585.00
2010-11	4280.00	2979.00	5121.50	12160.50
2011-12	4770.00	3761.20	11970.50	20501.70
			Total	54963.90

Table 3.2: Year Wise Capacity Addition

Table 3.3: Growth of Transmission Sector

Substation	Central(MVA)	State(MVA)	Private(MVA)	Total(MVA)
765 kV	24000	1000	-	25000
400kV	77225	73172	630	151027
220kV	6436	215771	1567	223774
500kV HVDC	9500	1700	0	11200

<u>Table 3</u>	Table 3.4: Forecasted Load of Mumbai		
Year	Total Required Load(MW)		
2010-11	3191		
2011-12	3342		
2012-13	3571		
2013-14	3817		
2014-15	4174		

So, above load growth 7 needs to be considered while planning for Mumbai power system grid.

3.2 Factor Leading to GIS Extension

- Growth of population and/or growth of industrial, commercial activities in a certain region, resulting in increase of consumption of electric energy.
- New industrial, economical areas and zones need for new energy supply points.
- Added generating points, increasing the output of generating stations.
- Improved redundancy, availability of the energy supply.
- Layout and concept changes of the high voltage network.
- The substation capacity expansion by compaction of space occupied by AIS equipment is therefore possible with the use of GIS extension.

3.3 Advantages

- Space saving up to 50-60 percentage can be achieved compared to an AIS station in low voltage system.
- It has high reliability due to usage of GIS components technology.
- Installation is fast and easy.
- It allows flexibility in design and layout.
- Optimum use of land.
- The substation capacity expansion by compaction of space occupied by AIS equipment is therefore possible with the use of gas insulated substation.

- GIS solutions combine five functions of traditional AIS substation, namely circuit breaker, disconnector, earth switch current transformer and voltage transformer into one SF6 encapsulated module.
- Gas insulated Substation can be used for longer times without any periodical inspections.

3.4 Disadvantages

- Initial cost of Gas insulated substation is high.
- Excessive damage in case of internal fault.
- Diagnosis of internal fault and rectifying takes very long time (high outage time).
- SF_6 is green house gas, its global warming potential is 25000 times more than CO_2 .

3.5 Application of GIS Extension

- Non availability of sufficient space.
- Difficult climatic conditions at site.
- Urban site (high rise building).
- New industrial, economical areas and zones.
- More populated area.

Chapter 4

Selection of Proposed GIS Equipment

Deciding substation equipments and their ratings is important task of substation design. Selection of voltage level plays an important role in designing substation and its equipments. Major parameter considered in selection of voltage level depends on amount of power to be transferred. Gas Insulated substation designed in this project is extended from existing Air Insulated substation. Currently load of 400 MVA at 220 kV voltage level is supplied through Air Insulated Substation. Due to increase in load demand and availability of space constraint 125 MVA at 220 kV is supplied through Gas insulated substation which is an extension of one bay from Air insulated substation.

4.1 System Parameters

- Nominal System Voltage(kV):- 220
- Highest Operating Voltage(kV):- 245
- Rated Frequency(Hz):- 50
- Grounding:- Effectively Earthed

- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and Between Phases(kVp):-1050
 1 min. Power Frequency Withstand Voltage to Earth(kVrms):- 460
 Switching surge withstand voltage:- -
- Rated Short Time Withstand Current(kA for 1 Sec.):- 40
- Rated Peak Withstand Current(kA):- 100
- Guaranteed maximum gas losses for complete installation as well as for all individual sections:- As per IEC 62271-203

4.2 GIS Equipments

4.2.1 Busbar

Main conductors are Aluminium or Copper alloy tubes as per manufacturers design philosophy and its dimensions depends upon mechanical strength. The rated current and short time withstand current is tested for current carrying capacity. The conductors are provided with silver plated finger contact assembly mounted on support insulator. These sliding contacts allow tubular conductors to expand axially with temperature rise without additional stress on support insulators. The shape of support insulator for tubular conductor normally ensure that field stress distribution is uniform.

Specifications of Busbar:-

- Rated Voltage(kV):- 220
- Standard Pipe Size:-Outer Diameter(mm):- 114.3 Inner Diameter(mm):- 97.18

- Material:- Aluminium grade 91E conforming to IS:5082(1996)
- $Area(mm^2):-2844$
- DC Resistance at $20^{\circ}C(\mu ohm/m)$:- 11.0
- Weight(kgs/Mtr):- 7.678
- Current Carrying Capacity(Amps):- 3590
- Tubular bus conductor temperature when carrying rated current at site condition:-Should not exceed $45^{0}C$ above ambient

4.2.2 Circuit Breaker

GIS uses essentially the same dead tank SF_6 puffer circuit breakers as are used for AIS. Instead of SF_6 to air bushings mounted on the circuit breaker enclosure, the GIS circuit breaker is directly connected to the adjacent GIS module.

Specifications of Circuit Breaker:-

- Nominal System Voltage(kV):- 220
- Highest Operating Voltage(kV):- 245
- Number of Poles:- 3
- Rated Frequency(Hz):- 50
- Type of Circuit Breaker:- SF_6 Gas insulated
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050
 - 1 min. Power Frequency Withstand Voltage to Earth(kVrms):- 460
- Rated Short Circuit Breaking Current Capacity(kA for 1 Sec.):- 40

- Rated Short Circuit Making Current(kA):- 100
- Rated Short Time Current Carrying Capacity(kA for 1 Sec.):- 40
- Rated Current(Amp):- 1250
- First Pole to Clear Factor:- 1.3
- Rated Operating Sequence or Duty, C Closing Operation O Opening Operation: O 0.3 Sec. CO 3 Sec. CO
- Auto Reclosing (Shall be suitable for 1 phase & 3 phase High Speed Auto Reclosing):- Single Phase Auto Reclosing
- Rated Line Charging Breaking Current(Amp):- 125
- Rated Out of Phase Breaking Current(kA):- 10
- Rated Cable Charging Breaking Current Capacity(Amp):- 250
- TRV peak value(kV):- 364
- Total Opening Time:- 1 Cycle (20 ms)
- Operating Mechanism:- Spring / hydraulic
- Rating for Auxiliary Circuits:- 10A at 220V DC
- Total Rated Break Time:- 2 Cycles (40ms)
- Rated Closing Time(ms) :- <55
- Type of Operation:- Individually Operated Single Pole
- Applicable Standards:- IEC-62271-100/ IEC-56/ IS-13118

4.2.3 Isolators and Earthing Switches

Disconnect switches have a moving contact that opens or closes a gap between stationary contacts when activated by an insulating operating rod that is itself moved by a sealed shaft coming through the enclosure wall. The stationary contacts have shields that provide the appropriate electric field distribution to avoid too high a surface electrical stress. The moving contact velocity is relatively low (compared to a circuit breaker moving contact) and the disconnect switch can interrupt only low levels of capacitive current (for example, disconnecting a section of GIS bus) or small inductive currents (for example, transformer magnetizing current). For transformer magnetizing current interruption duty, the disconnect switch is provided with a fast acting spring operating mechanism.

Ground switches have a moving contact that opens or closes a gap between the highvoltage conductor and the enclosure. Sliding contacts with appropriate electric-field shields are provided at the enclosure and the conductor. A maintenance ground switch is operated either manually or by motor drive to close or open in several seconds. When fully closed, it can carry the rated short-circuit current for the specified time period (1 or 3 sec) without damage. A fast acting ground switch has a high speed drive, usually a spring, and contact materials that withstand arcing so it can be closed twice onto an energized conductor without significant damage to itself or adjacent parts. Fast acting ground switches are frequently used at the connection point of the GIS to the rest of the electric power network, not only in case the connected line is energized, but also because the fast acting ground switch is able to handle discharge of trapped charge in a better manner. Ground switches are almost always provided with an insulating mount or an insulating bushing for the ground connection. In normal operation, the insulating element is bypassed with a bolted shunt to the GIS enclosure. During installation or maintenance, with the ground switch closed, the shunt can be removed and the ground switch used as a connection from test equipment to the GIS conductor. Voltage and current testing of the

internal parts of the GIS can then be done without removing SF6 gas or opening the enclosure.

Specifications of Isolators and Earthing Switches:-

- Nominal System Voltage(kV):- 220
- Highest Operating Voltage(kV):- 245
- Rated Frequency(Hz):- 50
- Type:- SF_6 Insulated
- System Earthing:- Effectively Earthed
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050

- Rated Normal Current(Amp):- 1250
- Rated Short Circuit Breaking Current(Rated Short Time Withstand Current) (kA for 1 Sec.):- 40
- Rated Maximum Duration of Short Circuit(Sec):- 1
- Rated Short Circuit Making Current(kA):- 100
- Rated Dynamic Withstand Current(kA):- 100
- No. of spare auxiliary contacts on each isolator:- 4 NO and 4 NC
- No. of spare auxiliary contacts on each earthing switch:- 4 NO and 4 NC
- Rated mechanical terminal load:- As per IEC

4.2.4 Current Transformer

Current transformers (CTs) are inductive ring type installed either inside the GIS enclosure or outside the GIS enclosure. The GIS conductor is the single turn primary for the CT. CTs inside the enclosure must be shielded from the electric field produced by the high voltage conductor or high transient voltages which may appear on the secondary through capacitive coupling. For CTs outside the enclosure, the enclosure itself must be provided with an insulating joint, and enclosure currents shunted around the CT. Both types of construction are in wide use.

Advanced CTs without a magnetic core (Rowgowski coil) have been developed to save space and reduce the cost of GIS. The Rowgowski coil type of CT is linear regardless of current due to the absence of magnetic core material that would saturate at high currents.

Specifications of Current Transformer:-

- Nominal System Voltage(kV):- 220
- Highest Operating Voltage(kV):- 245
- Rated Frequency(Hz):- 50
- System Earthing:- Effectively earthed
- Rated Short Time Withstand Current(kA for 3 Sec.):- 40
- Rated Dynamic Withstand Current(kAp):- 100
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050

- Type of Transformation Ratio:- Multi Ratio
- Rated Continuous Thermal Current:- 120

- Ratio Taps:- On Secondary Side
- Acceptable Limit of Temperature Rise above the Specified Ambient Temperature for continuous Operation of Rated Current:- As Per Standard
- Acceptable Partial Discharge Level at 1.1 times the Rated Voltage (pC):- 10
- Maximum Radio Interference Voltage at 1.1 times the Rated Voltage (V):- 1000
 V
- rated current ratio(primary/secondary)(amp):- 600-300/1-1-1

4.2.5 Voltage Transformer

Voltage transformers (VTs) shall be of the metal enclosed, gas-insulated inductive type, mounted directly in the high voltage enclosure. Secondary terminals must be located in accessible grounded terminal boxes on the VT enclosure itself. The secondary connections must be wired to the terminal strip in the respective bay marshalling cubicle. VTs should be in segregated compartment and not forming a part of busbar.

Specifications of Voltage Transformer:-

- Nominal System Voltage(kV):- 220
- Highest Operating Voltage(kV):- 245
- Rated Frequency(Hz):- 50
- System Earthing:- Effectively Earthed
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050

- Voltage Ratio:-Rated Primary Voltage(kVrms):- 220/√3 Rated Secondary Voltage(Volts) 110/√3-110/√3
- Rated Voltage Factor:- 1.2 Continuous and 1.5 for 30 Seconds

4.2.6 Transformer

Transformer is used to increase or decrease the voltage level without changing the frequency level. Transformer is the largest piece of equipment in a substation and it is, therefore, important from the point of view of substation layout. One of the important factors governing the layout of the substation is whether the transformer is a three phase unit or a unit of three single phase transformers. The space requirements with single phase banks are much larger than those with three phase transformers. However, when there is a limitation of transportation in hilly region or underground power house layout, single phase transformers are prefered.

Specifications of Transformer:-

- Type:- Three Phase, Oil Immersed
- Rated Frequency(Hz):- 50
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050

- Capacity(MVA):- 125
- Type of Cooling:- ONAN/OFAF
- Voltage Ratio(kV):- 220/33
- Current(H.V. Side)(Amp):- 328.03

- Current(L.V. Side)(Amp):- 2186.9
- Winding Connection:- Star Delta
- Tapping:- OLTC
- Neutral:- Solidly Grounded
- Vector Group:- Ynd11

4.2.7 Outdoor Bushing

Outdoor bushings, for the connection of conventional external conductors to the SF6 metal enclosed switchgear, shall be provided where specified and shall conform to the requirements. The dimensional and clearance requirements for the metal enclosure will be the responsibility of the manufacturer and their dimensions must be coordinated with the switchgear.

Specifications of Outdoor Bushing:-

- Rated Voltage(kV):- 220
- Rated Frequency(Hz):- 50
- Rated Current(A):- 1250
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050
 1 min. Power Frequency Withstand Voltage to Earth(KVrms):- 460
- Minimum total creepage distance (mm):- 6125

4.2.8 Lightning Arrester

The lightning arresters or surge diverters provide protection against surges. A lightning arrester or a surge diverter is a protective device which conducts the high voltage surges on the power system to the ground. Metal oxide gapless type surge arresters, which are being most widely used because of better protection level, high energy handling or discharge capability and low power loss under normal operating conditions. The most important and costly equipment in the substation is transformer and it is general practice to place surge arrester as near to the transformer as possible. **Specifications of Lightning Arrester:**-

- Nominal System Voltage(kV):- 220
- Highest Operating Voltage(kV):- 245
- Rated Frequency(Hz):- 50
- System Earthing:- Effectively Earthed
- System Fault Level(KA for 1 Sec.):- 40
- Rated Insulation Level
 Rated Lightning Impulse Withstand Voltage to Earth and between Phases(kVp):-1050
 1 min. Power Frequency Withstand Voltage to Earth(kVrms):- 460
- Rated Voltage of the Arrester(kVrms):- 196
- Maximum Continuous Operating Voltage(kVrms):- 141
- Type:- Heavy Duty, Station Class, Zno Gapless type
- Nominal Discharge Current(8/20 ms) (kA):- 10
- Power Frequency Spark-Over Voltage(kVp):- 294

- Maximum Impulse Spark-Over Voltage(kVp):- 849
- Residual(Discharge) Voltage(kVp):- 507
- Maximum Discharge Current(kA) (For Lightning Arrester of Station Class):-100
- Maximum Radio Interference Voltage for Frequency between 0.5 MHz and 2 MHz(V for Surge Arrester):- < 500
- Partial Discharge Level(pC) (At 1.05 time Continuous Operating Voltage) :-Not more than 50
- Pressure Relief Class :- Short Circuit Level of 40 KA for 1 Sec.
- Provision for corona extinction:- Corona Ring is provided

Chapter 5

Design of Proposed Gas Insulated Substation

5.1 Single Line Diagram

A simplified pictorial representation of three phase network with all the components of a system on a single line representation is known as single line diagram. This diagram indicates the proposed busbar arrangement and relative positions of various equipment in substation.

The single line diagram of proposed substation is shown in figure 5.1.

5.2 Substation Layout and Sectional Elevation

- Substation Layout:- After the bus arrangement is decided and Single Line Diagram is prepared, Layout drawing is prepared to show the actual position of each equipment. General Layout shows the area acquired by switchyards of different voltage level. The electrical layout would reveal,
 - Physical position of each equipment
 - Distance between various equipment

Location of buildings like control room, Storage yard, Fire pump house,
 D.G. set room, etc

The layout plan of proposed substation is shown in figure 5.3.

• Substation Sectional Elevation

It shows,

- Actual view of substation equipment connection

The section elevation of proposed substation is shown in figure 5.4.

5.3 Protection Single Line Diagram

Protection is required for protecting equipment against fault. Protection single line diagram shows the protections provided in the substation. It also shows the different relays provided for transformer, equipments, busbar and bay etc.:-

Relay Code	Relay
50/50N	Inst. O/C and E/F Relay
51NS	Standby Earth Fault Relay
87T	Transformer Differential Relay
87BB	Busbar Differential Relay
63	Buchholz Relay
74	Alarm Relay
OSR	Oil Surge Relay

Table 5.1: Protective Relays

The protection single line diagram of proposed substation is shown in figure 5.2.

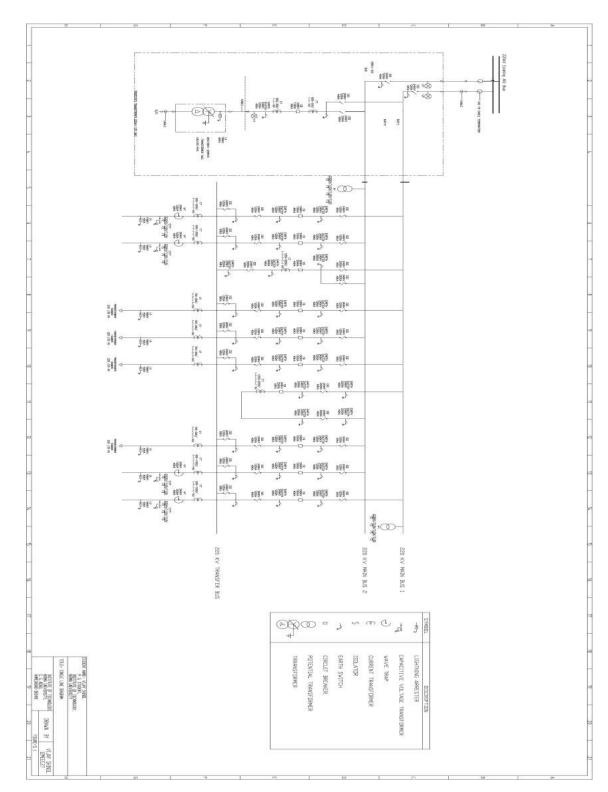


Figure 5.1: Single Line Diagram

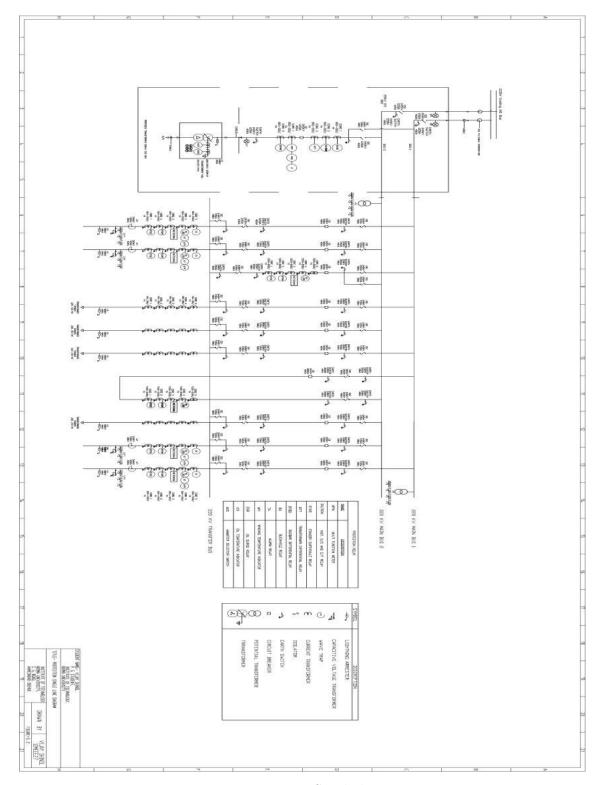


Figure 5.2: Protection Single line Diagram

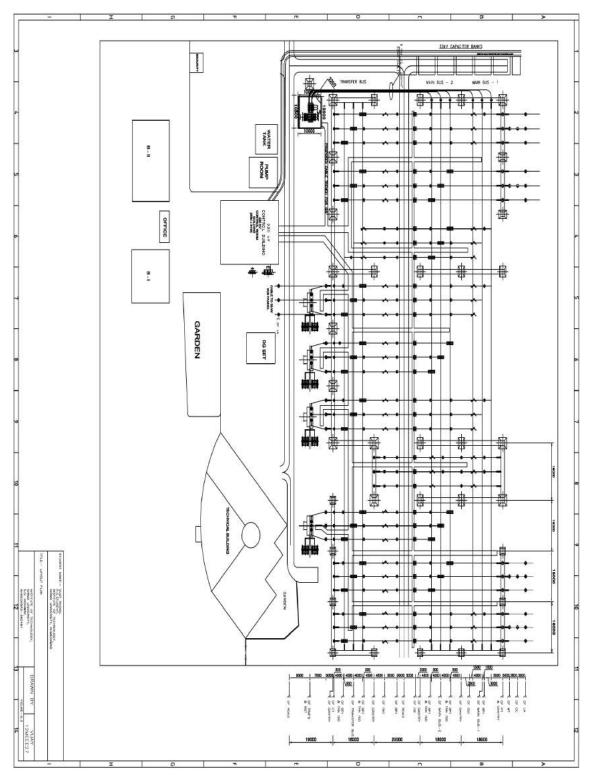


Figure 5.3: Layout Plan

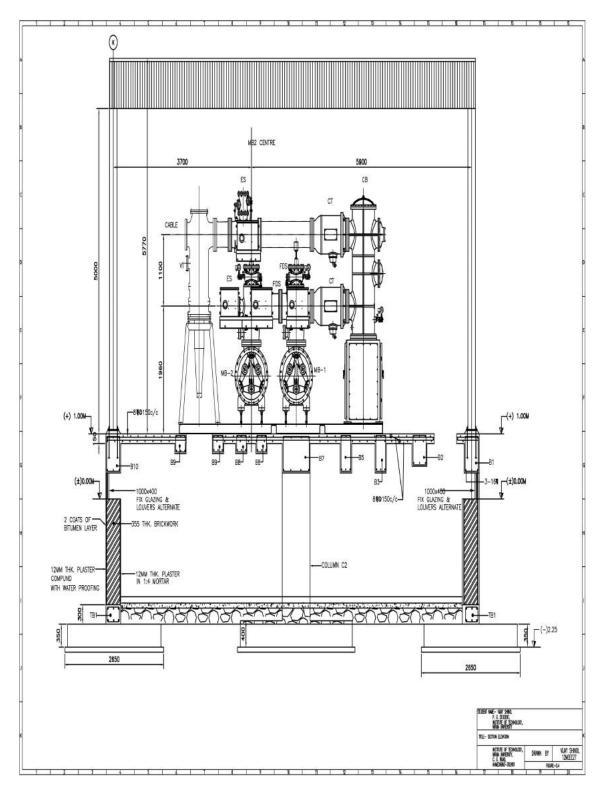


Figure 5.4: Layout Section Elevation

5.4 Substation Earthing

Earthing system is a vital part of all electrical systems. The proper earthing of a substation is important for the following two reasons:-

- It provides a means of dissipating electric current into the earth without exceeding the operating limits of the equipment.
- It provides a safety to protect personnel in the vicinity of grounded facilities from the dangers of electric shock under fault conditions.

A practical approach to safe grounding thus concerns and strives for controlling the interaction of two grounding systems, as follows:

- The intentional ground, consisting of ground electrodes buried at some depth below the earths surface.
- The accidental ground, temporarily established by a person exposed to a potential gradient in the vicinity of a grounded facility.

The primary requirements of a good earthing system in a substation are:-

- The impedances to ground should be as low as possible. In general, it should not exceed 1 ohm for substations with high fault levels(EHV substation) and 5 ohm for substations with low fault levels(Distribution substation).
- The Step and Touch potentials should be within safe limits.

To meet these requirements, an earthing system comprising an earthing mat buried at a suitable depth(usually 0.3-0.6 m) below ground, supplemented with ground rods at suitable points is provided in the substation. For Earthing mat, combined system of vertical and horizontal rods are used because horizontal conductors are most effective in reducing the danger of high step and touch voltages on the earth's surface, sufficiently long vertical ground rods will stabilize the performance of such a combined system. Under normal condition, the ground rods make little contribution in lowering the earth resistance. This grid system would be extended over the entire substation/switchyard and often beyond the fence line.

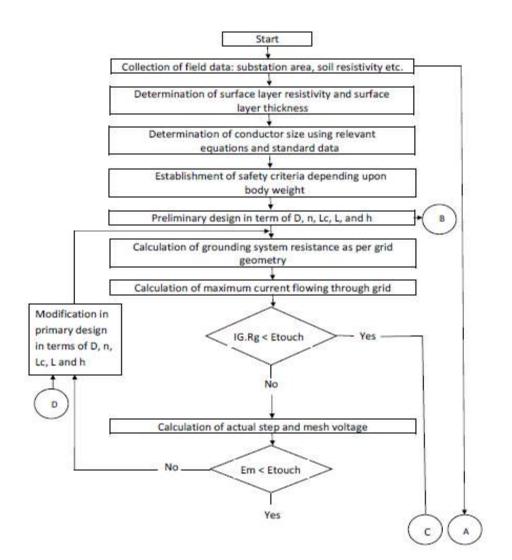
5.4.1 Special Consideration For GIS

- The individual metal enclosure sections of the GIS modules are made electrically continuous. In a continuous enclosure design, a voltage is induced in an enclosure by the current in the conductor that it surrounds, producing a longitudinal current flow in the enclosure. When a continuity of all phase enclosures is maintained through short connections at both ends, the enclosure current is only slightly less than that flowing in the inner bus in the opposite direction. This current returns through the enclosures of adjacent phases when the load is equalized between phases. The magnetizing current lags the enclosure current by approximately 90⁰. The flux is mainly contained within the enclosure.
- Another area required attention in GIS stations is earthing of metallic enclosures. The metallic enclosure of GIS have induced currents and specially during an internal earths fault the inductive voltage drop occurring with the GIS assembly must be taken into account for design to touch potential in GIS station. The touch voltages criteria of GIS station is

$$\sqrt{F_A^2 + E_G^2} < E_T(max)$$

Where,

 F_A = The actual calculated touch voltage


 E_G = Maximum value of metal to metal voltage difference on and between GIS enclosures or between GIS enclosure and the supponing structures

 $E_T(max) =$ Maximum permissible touch voltage

The earthing layout and riser connection diagram of proposed substation is shown in figure 5.6 and figure 5.7.

5.4.2 Design Procedure Block Diagram

The procedure block diagram illustrates the sequences of steps to design the ground grid. the procedure block diagram is shown in figure 5.5.

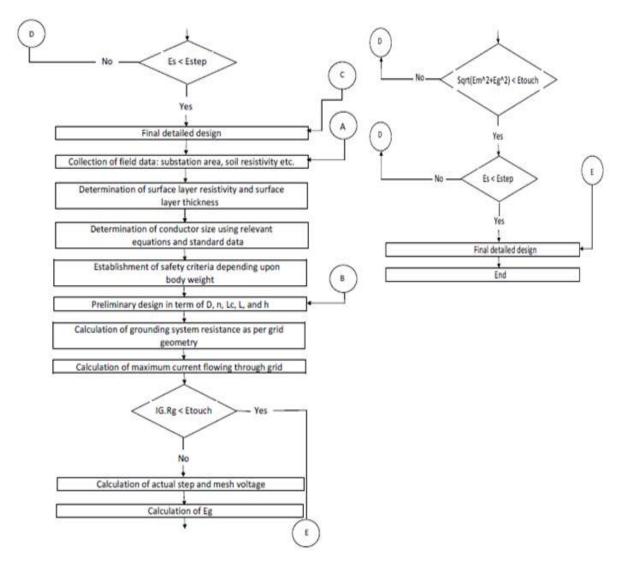


Figure 5.5: Design Procedure Block Diagram

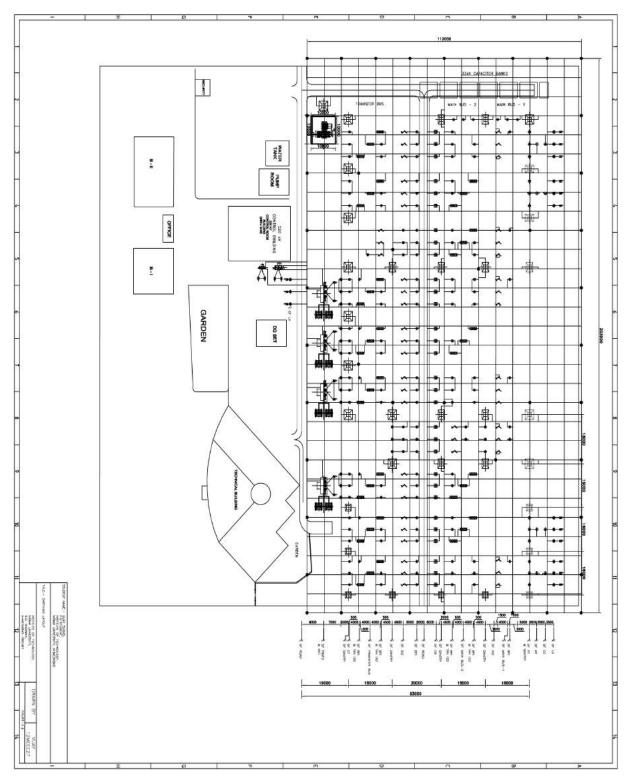


Figure 5.6: Earthing Layout

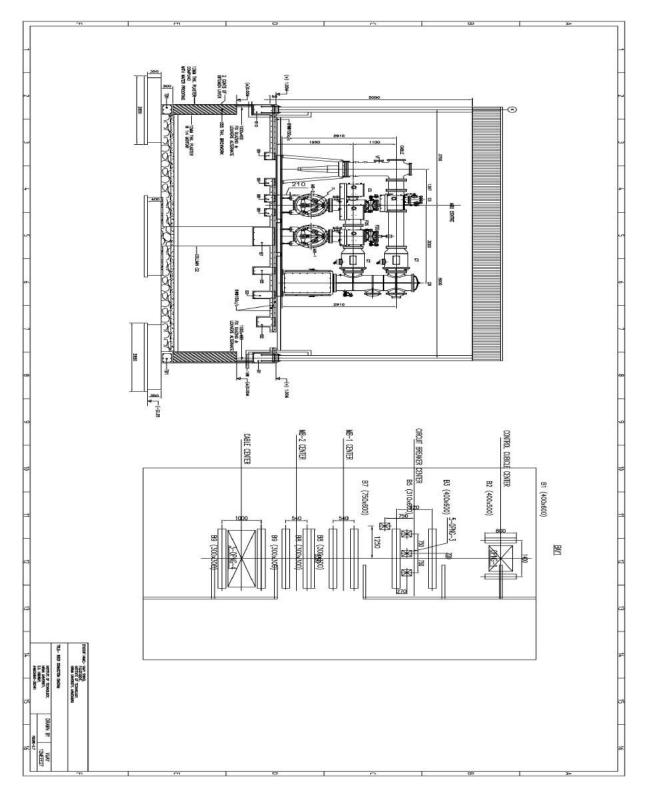


Figure 5.7: Riser Connection Diagram

Data required for design are:-

- Symmetrical fault current in substation(kA):- 40
- Duration of shock for determining allowable body current(Sec.):- 0.5
- Duration of fault current for sizing ground conductor(Sec.):- 1
- Surface layer resistivity(ohm-m)(for AIS):- 3000
- Surface layer resistivity(ohm-m)(for GIS):- 1000000
- Surface layer thickness(m):- 0.15
- Grid reference depth(m):- 1
- Soil resistivity(ohm-m):- 60
- Diameter of earthing conductor(m):- 0.04
- Depth of ground grid conductors(m):- 0.6
- Length of grid conductor in X direction(m):- 203
- Length of grid conductor in Y direction(m):- 112
- Spacing between parallel conductors(m):- 7
- Length of ground rod(m):- 3
- Number of rods placed:- 45
- Decrement factor for determining Ig:- 1
- Number of grid conductors in X direction:- 17
- Number of grid conductors in Y direction:- 30
- Equivalent Earthing mat $area(m^2)$:- 22736

- Total Length of Buried Conductor(m):- 6946
- Total length of ground rods(m):- 135

For earthing mat conductor Zinc coated steel material has been used. Parameters considered for Zinc coated steel material:-

- RMS Current(kA):- 40
- Fusing temperature((^{0}C) :- 419
- Ambient temperature $({}^{0}C)$:- 50
- Reference temperature for material constant $({}^{0}C)$:- 20
- Thermal coefficient of resistivity at 0 ${}^{0}C(1/{}^{0}C)$:- 0.00341
- Thermal coefficient of resistivity at 20 ${}^{0}C(1/{}^{0}C)$:- 0.0032
- Resistivity of the ground conductor at 20 ${}^{0}C(\mu \text{ohm.cm})$:- 20.1
- K_0 at 0 ${}^{0}C(1/{}^{0}C)$:- 293
- Duration of Current(sec.):- 1
- Thermal capacity, TCAP(J/ $cm^3.^0C$):- 3.93

Detail calculation of earthing design is given in AppendixA. Table gives the results of earthing design for both AIS and GIS.

• Determination of Size of Conductor for Earthing Grid

	AIS	GIS
Required area A_{mm^2}	688.79	688.79
Provided area A_{mm^2}	900	900

Here provided area is greater than required area. Hence it is safe.

CHAPTER 5. DESIGN OF PROPOSED GAS INSULATED SUBSTATION

	AIS	GIS
Surface layer derating factor C_s	0.77	0.77
Touch voltage $E_{touch50}(V)$	735	189455
Step voltage $E_{step50}(V)$	2449	757326

• Touch and Step Voltage Criteria

• Determining grid resistance

	AIS	GIS
Grid resistance $R_g(ohm)$	0.19	0.19

• Maximum Grid Current

	AIS	GIS
Fault current division factor S_f	0.60	0.60
Maximum grid current $I_G(A)$	24018.56	24018.56

• Ground Potential Rise (GPR)

	AIS	GIS
Ground potential rise(V)	4444	4444

• Mesh Voltage

	AIS	GIS
Total length of grid conductor (m) L_c	6811	6811
peripheral length of the grid (m) L_p	630	630
Spacing factor for mesh voltage K_m	0.62	0.62
Irregularity factor K_i	3.915	3.915
Mesh voltage $E_m(V)$	501.60	501.60

• Step voltage

	AIS	GIS
Spacing factor for step voltage	0.353	0.353
Step voltage $E_s(V)$	380.857	380.857

• Calculation of E_g

	AIS	GIS
	Not Required	Required
Frequency f(HZ)		50
I_s		40000
r_1 (m)		0.1675
r_2 (m)		0.1742
resistivity $\rho(ohm - m)$		0.00000029
For vertical length		
L(m)		2.91
structure piller length L1(m)		0.21
number of piller		9
$R_e(\text{ohm})$		$1.1733 * 10^{-5}$
$X_{Le}(\text{ohm})$		0.000234375
$R_s(\text{ohm})$		0.0000091
$X_{Ls}(\text{ohm})$		$4.76475 * 10^{-6}$
For horizontal length		
L(m)		3
$R_e(\text{ohm})$		$1.20962 * 10^{-5}$
$X_{Le}(\text{ohm})$		0.00024
		0.00048
$E_g(\mathbf{V})$		19.28
Touch voltage Criteria	501.60	501.97

• Comparision

For AIS:-

	Tolerable	Calculated
Touch $voltage(V)$	735.32	501.600
Step voltage(V)	2449.12	380.857

For GIS:-

	Tolerable	Calculated
Touch $voltage(V)$	189454.50	501.97
Step voltage(V)	757325.86	380.857

5.5 CT Sizing

CT Sizing is an important calculation which gives Knee Point Voltage and selection of primary to secondary current ratio of Current Transformer. The knee-point voltage of a current transformer is the magnitude of the secondary voltage after which the output current does not follow linear relationship with input current. That means, proportional relationship between input and output is no longer within declared accuracy. After knee point, saturation of the CT core occurs. The performance of a protection function will depend on the quality of the measured current signal. Saturation of the current transformer will cause distortion of the current signal and can result in a failure to operate or cause unwanted operations of some functions. To ensure correct operation, the current transformers must be able to correctly produce the current for a minimum time before the CT will begin to saturate. By selecting a CT with operating point below the knee point, proper operation of the protection can be ensured.

5.5.1 Selection of Parameters of CT-1 on GIS Transformer Bay

Cable route length from CT to Relay Panel = 54 m

Core - 1

Purpose	Busbar Differential Protection
Ratio	
Primary Current I_{pn}	600-300 A
Secondary Current I_{sn}	1 A
Rated Current of The Protection IED I_r	1 A
Accuracy Class	PS
Maximum Fault Current I_{fmax}	40000 A
Conductor Cross-Section	$4 mm^2$
Conductor Material	Copper
Number of Run Per Phase	2
Specific Resistance of Copper	0.0216 ohm.m
Two Way Lead Loop Resistance R_L	(2*54*0.0216/4)/2
	0.2916 ohm
Relay Burden	0.020 VA
	$0.020/1^2$ ohm
	0.020 ohm
Current Transformer Secondary Winding	5 ohm
Resistance	

Min. Knee Point Voltage Requirement

$$V_{Kmin} = 0.5I fmax * (I_{sn}/I_{pn}) * (R_{ct} + R_L + R_b/I_r^2)V$$
(5.1)

$$V_{Kmin} = 177.05V$$

We have selected a CT which gives Min. Knee Point Voltage of 177.05 V.

Core - 2

Purpose	Over Current Protection	
Ratio		
Primary Current I_{pn}	600-300 A	
Secondary Current I_{sn}	1 A	
Rated Current of The Protection IED I_r	1 A	
Accuracy Class	5P20	
Maximum Fault Current I_{fmax}	12000 A	
Conductor Cross-Section	$4 mm^2$	
Conductor Material	Copper	
Number of Run Per Phase	2	
Specific Resistance of Copper	0.0216 ohm.m	
Two Way Lead Loop Resistance R_L	(2*54*0.0216/4)/2	
	0.2916 ohm	
Relay Burden	0.020 VA	
	$0.020/1^2$ ohm	
	0.020 ohm	
Current Transformer Secondary Winding	5 ohm	
Resistance		

Min. Knee Point Voltage Requirement

$$V_{Kmin} = (I_{kmax} * I_{sn}/I_{pn}) * (R_{ct} + R_L + R_b/I_r^2)V$$
(5.2)

$$V_{Kmin} = 106.232V$$

We have selected a CT which gives Min. Knee Point Voltage of 106.232 V.

Core - 3

Purpose	Transformer Differential Protection
Ratio	
Primary Current I_{pn}	600-300 A
Secondary Current I_{sn}	1 A
Rated Current of The Protection IED I_r	1 A
Accuracy Class	PS
Rated Primary Current of The Transformer	328.0399 A
Maximum Primary Fundamental Frequency	6560.789 A
Current	
Conductor Cross-Section	$4 mm^2$
Conductor Material	Copper
Number of Run Per Phase	2
Specific Resistance of Copper	0.0216 ohm.m
Two Way Lead Loop Resistance R_L	(2*54*0.0216/4)/2
	0.2916 ohm
Relay Burden	0.020 VA
	$0.020/1^2$ ohm
	0.020 ohm
Current Transformer Secondary Winding	5 ohm
Resistance	

Min. Knee Point Voltage Requirement

$$V_{Kmin} = 30 * (I_{nt} * I_{sn}/I_{pn}) * (R_{ct} + R_L + S_r/I_r^2)V$$
(5.3)

 $V_{Kmin} = 87.12V$

$$V_{Kmin} = 2 * (I_{tf} * I_{sn}/I_{pn}) * (R_{ct} + R_L + S_r/I_r^2)V$$
(5.4)

$$V_{Kmin} = 116.161V$$

We have selected a CT which gives Min. Knee Point Voltage of 116.161V.

5.5.2 Selection of Parameters of CT-2 on GIS Transformer Bay

Cable route length from CT to Relay Panel = 58 m

Core - 1

Purpose	Metering
Ratio	
Primary Current I_{pn}	600-300 A
Secondary Current I_{sn}	1 A
Rated Current of The Protection IED I_r	1 A
Accuracy Class	0.2
Selected Rated Burden	15 VA
Conductor Cross-Section	$4 mm^2$
Conductor Material	Copper
Number of Run Per Phase	2
Specific Resistance of Copper	0.0216 ohm.m
Two Way Lead Loop Resistance R_L	(2 * 58 * 0.0216/4)/2
	0.3132 ohm
Instrument Connected And Their Burden	1 VA
(Multifunction Meter)	
Current Transformer Secondary Winding	5 ohm
Resistance	

Total connected burden = Lead burden + Instrument burden + CT secondary winding burden

= 6.3132 VA

We have selected CT with a burden of 15 VA. Hence, CT selected is adequate.

5.5.3 Selection of Parameters of Bushing CT on Transformer

Cable route length from CT to Relay Panel = 55 m

Purpose	Restricted Earth Fault Protection
Ratio	
Primary Current Ipn	600-300 A
Secondary Current I_{sn}	1 A
Rated Current of The Protection IED I_r	1 A
Accuracy Class	5P20
Rated Primary Current of The Transformer	328.0399 A
Maximum Primary Fundamental Frequency	6560.798 A
Current	
Conductor Cross-Section	$4 mm^2$
Conductor Material	Copper
Number of Run Per Phase	2
Specific Resistance of Copper	0.0216 ohm.m
Two Way Lead Loop Resistance R_L	(2*55*0.0216/4)/2
	0.297 ohm
Relay Burden	0.020 VA
	$0.020/1^2$ ohm
	0.020 ohm
Current Transformer Secondary Winding	5 ohm
Resistance	

Min. Knee Point Voltage Requirement

$$V_{Kmin} = 30 * (I_{nt} * I_{sn}/I_{pn}) * (R_{ct} + R_L + S_r/I_r^2)V$$
(5.5)

 $V_{Kmin} = 87.209V$

$$VKmin = 2 * (I_{etf} * I_{sn}/I_{pn}) * (R_{ct} + R_L + S_r/I_r^2)V$$
(5.6)

$$V_{Kmin} = 116.279V$$

We have selected a CT which gives Min. Knee Point Voltage of 116.279 V.

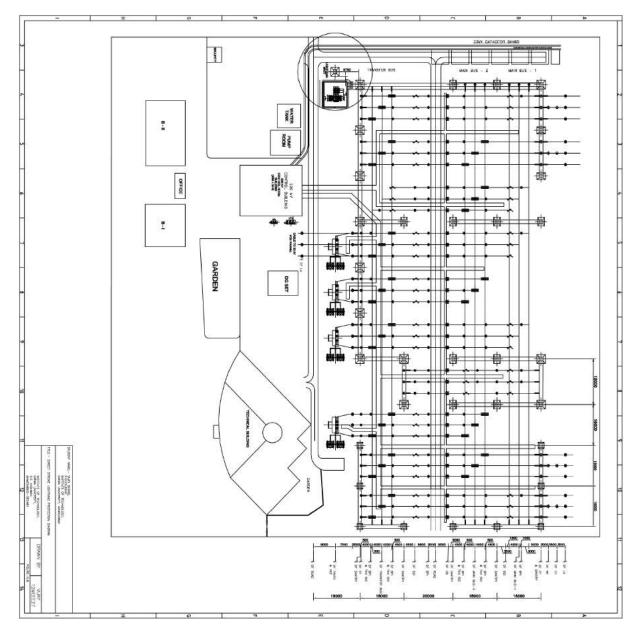


Figure 5.8: Direct Stroke Lightning Protection Diagram

5.6 Direct Stroke Lightning Protection

Earth shield wire is used in substation to protect equipment from direct stroke of lightning and Lightning Mast is used for the protection of building and remaining equipment in the substation which are not protected from Earth Shield Wire. Building of GIS is protected from direct stroke of lightning using Lightning Mast. Diagram of DSLP shows the projected area that is protected from Direct Stoke of Lightning. For preparation of DSLP diagram of this substation, Fixed angle method is used in which protected distance from Lightning Mast can be calculated. In this method,45 degree protection is considered. The protective zone of lightning mast is shown in figure 5.8.

Lightning Protection Calculation of Lightning Mast

The calculations for the Lightning protection by Lightning Mast is based on IEEE 998-2012 for lightning protection.

- Height of Lightning Mast h = 21 m
 Where height of lightning mast is the sum of structure height 19m and height of rod 2m.
- Height of the object to be protected hx = 5.77 m
- Active height of the lightning conductor ha = h $h_x = 15.23$ m

The protection angle of shielding is considered as 45 degree as per IEEE 998-2012. calculation of radius of protection as per IEEE 998-2012 using the following equation:

$$tan45 = r_x/h - h_x \tag{5.7}$$

Radius of protective zone at height $h_x * r_x = 15.23m$

The object must be fully located within the radius of 15.23 m which represents the protective zone of lightning mast.

5.7 Busbar Sizing

Busbar sizing 25 is done to verify the increment in temperature of SF_6 must not go beyond critical temparature at rated current passing through busbar. For 220 kV GIS busbar, 4" aluminium tubular pipe has been used in proposed substation. Required input data are:-

Description	Symbol	Unit	Values
Outer Diameter of Conductor	d_o	mm	114.3
Inner Diameter of Conductor	d _i	mm	97.18
Area	А	mm^2	2844
Length	L	m	3
Thermal Conductivity of alluminium	k	$w * m^{-1} * k^{-1}$	205
Mass density	ρ	kg/m^3	$2.8 * 10^{-8}$
Emissivity Co-efficient in Respect to	ε	-	0.75
Black Body			
Stefan-Boltzmann Constant	σ	$w * m^{-2} * k^{-4}$	
Thermal Conductivity of SF_6	k	$w * m^{-1} * k^{-1}$	0.0136
Specific heat	C_p	J/kg.K	668.92
Gravity	g	m/s^2	9.8
Fluid temparature	T_{∞}	^{0}C	20
Surrounding temperature	T_{sur}	^{0}C	20
Fluid temparature	T_{∞}	К	293
Surrounding temperature	T_{sur}	К	293
Dynamic viscosity	μ	kg/s.m	$1.377 * 10^{-4}$
Viscosity	ν	m^2/s	$2.268 * 10^{-5}$

Conduction heat transfer:-

$$Q = \frac{I^2 * \frac{\rho * L}{A}}{A}$$
(5.8)
$$Q = \frac{936^2 * \frac{2.8 * 10^{-8} * 3}{0.002844}}{0.002844}$$

$$Q = 9.098 * 10^3 W/m^2$$

$$Q = \frac{(T_1 - T_2) * K}{\ln \frac{d_o}{d_i}}$$
(5.9)

 $9.098 * 10^3 = \frac{(T_1 - 20) * 205}{ln \frac{0.114}{0.0972}}$

$$T_1 = 27.075 \ ^0C$$

Where T_1 is the surface temperature. So that,

G

$$T_{1} = T_{S} = 27.075 \ {}^{0}C$$
rashofnumber $Gr_{L} = \frac{g * \beta * (T_{s} - T_{\infty}) * L^{3}}{\nu^{2}}$

$$Gr_{L} = \frac{9.8 * 3.372 * 10^{-3} * (27.075 - 20) * 3^{3}}{(2.268 * 10^{-5})^{2}}$$

$$Gr_{L} = 1.227 * 10^{10}$$

$$Prandltnumber P_{r} = \frac{\mu * C_{p}}{K}$$

$$P_{r} = \frac{1.377 * 10^{-4} * 668.92}{0.0136}$$

$$P_{r} = 6.772$$
(5.11)

 $Rayleighnumber Ra_L = Gr_L * P_r \tag{5.12}$

 $Ra_L = 1.227 * 10^{10} * 6.772$

 $Ra_{L} = 8.30 * 10^{10}$ $Nu_{L} = [0.825 + \frac{0.387 * Ra_{L}^{1/6}}{[1 + (\frac{0.492}{P_{r}})^{9/16}]^{8/27}}]^{2}$ (5.13) $Nu_{L} = [0.825 + \frac{25.55}{1.0629}]^{2}$ $Nu_{L} = 618.16$ $Nu_{L} = \frac{h * L}{K}$ (5.14) $\frac{h*L}{K} = 618.16$ $h = \frac{618.16*0.0136}{3}$

Convection heat transfer coefficient $h = 2.80 W/m^2.K$

$$Q = Q_{conv} + Q_{rad} \tag{5.15}$$

$$Q = h * \pi * D * L * (T_s - T_{\infty}) + \varepsilon * \pi * D * L * \sigma * (T_s^4 - T_{sur}^4)$$
(5.16)

 $2.80*\pi*0.114*3*(27.075-20)+0.75*\pi*0.114*3*5.67*10^{-8}*(300.075^4-293^4)$

Q =

$$Q = 21.35 + 33.75$$

Here, the convection loss is 21.35 W and it is responsible for increase in temparature of SF_6 gas. But the temparature of SF_6 is not increased above surface temperature. surface temperature is below the value of critical temperature. So that, SF_6 is safe and hence the busbar design is safe.

5.7.1 Simulation Result of Busbar

The simulation result of busbar for given dimension are shown in figure 5.9.

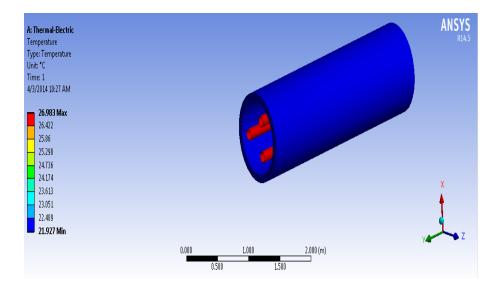


Figure 5.9: Simulation Result of Busbar

5.8 Control Room Layout And Panel Arrangement

It shows the panel arrangement in control room. It also shows the arrangement that is located at first floor and second floor. In this control room layout the location for control panel and relay panel of GIS is proposed. So that, Additional floor is not required for GIS panels.

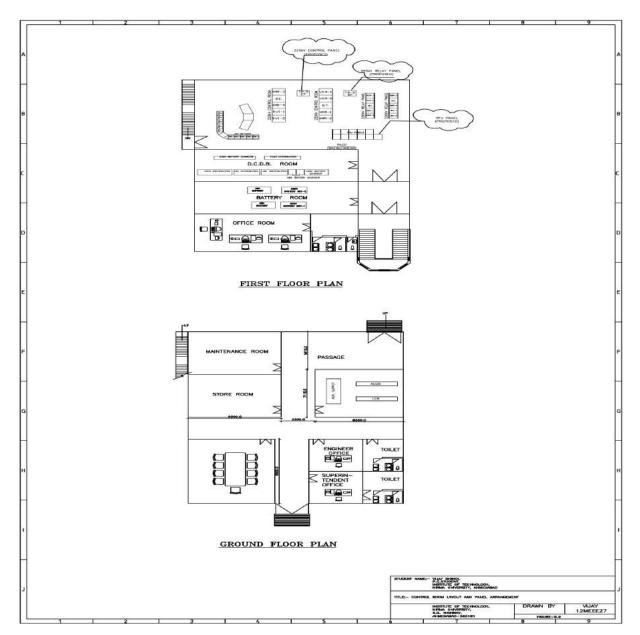


Figure 5.10: Control Room Layout and Panel Arrangement

5.9 Illumination Design

Good illumination in substation is necessary to facilatate normal operation and maintenance activities and at the same time to ensure safety of the working personnel. The lighting system of a particular area whether outdoor or indoor should be designed in such a way that uniform illumination is achieved. As far as possible any dark spots should be avoided. For this, proper lux level has to be maintained which requires careful placing of the luminaries and selection of proper mounting heights. For outdoor switchyard, average illumination level shall be 50 lux on main equipment and 20 lux on balance area of switchyard.For other parts of substation, recommended values of lux level are:-

Particulars	Lux level
Control Room / Control Desk	300
Control Room / rear face of panel	150
Battery Room	100
Office and Reception	300
Maintenance Room	300
Corridors	70
Approach Road / Pathways	20
Conferance Room	300
Store Room	100
Fire Pump House	150
Test Room	450
Entrance Loby	150
D.G. Set Room	150

 Table 5.2: Recommended Lux Level

In outdoor area, luminaries should be directed as far as possible towards transformers, circuit breaker/disconnect switches, their mechanism boxes etc., where some operations may be necessary at night.

The choice of lamps, i.e., incandescent, fluorescent, mercury vapour, sodium vapour, halogen etc., depends mainly on nature of work, the number of hour of utilization,

the cost of energy and the power available for utilization. For this substation, for switchyard lighting sodium vapour lamps are used and for control room lighting FTL and CFL are used. The foremost criterion in the design of illumination system of indoor area such as control room, workshop, repair bay, offices etc., is that illumination at the working height throughout the area should be as uniform as possible so as to avoid eye fatigue. In practice, complete uniformity of illumination is difficult to achieve and a ratio of minimum intensity to maximum equal to about 70 percent ususually considered acceptable.

The purpose of street lighting in substations is to promote safety and convenience on the approach roads, service roads and side walls inside switchyard. the aim should be to provide conditions of visibility adequate for accurate, certain and comfortable seeing.

Emergency lighting is called for in case of AC supply failure in substations. In indoor installations such as a control room, switchgear rooms etc., DC lamps connected to the DC supply system should be provided at suitable locations. These are brought in to service in case of ac supply failure. These are normally wired through automatic changeover contactor at DC distribution board.

CGLux 3.15 software is used for illumination design of switchyard and control room. The simulation result of GIS room is shown in appendixB, based on that illumination design of control room was carried out.

5.10 Station Auxiliary Supply

Station auxiliary supply is also an important part of substation. Station supply can be designed in two ways. In first method, supply is taken from a line passing nearer to the substation through tapping and then step down to distribution voltage. In second method, from lowest voltage of substation and then it is stepped down to distribution voltage. AC supply both single and three-phase, are needed in a substation for internal use for several function such as:-

- Illumination
- Battery Charging
- Transformer cooling system
- Transformer tap changing drives
- Power supplies for communication equipments
- Breaker/disconnect switch motors
- Fire protection system
- Marshalling kiosk lighting / Heating
- Air conditioning equipment

Generally, station supply is taken at 66 kV, 33 kV or 11 kV voltages. If voltage level is 66 kV or 33 kV, it is first stepped down to 11 kV. Station supply for this substation is taken from 33 kV outgoing line through tapping. Station transformer for this substation is of capacity 300 kVA. Then that voltage level is again stepped down to 415 V through auxiliary transformers. The auxiliary transformer is connected to the indoor AC distribution panel through cables. In the event of shutdown of the entire station, to ensure availability of AC auxiliary supply for charging of protective equipments, DG set is provided.

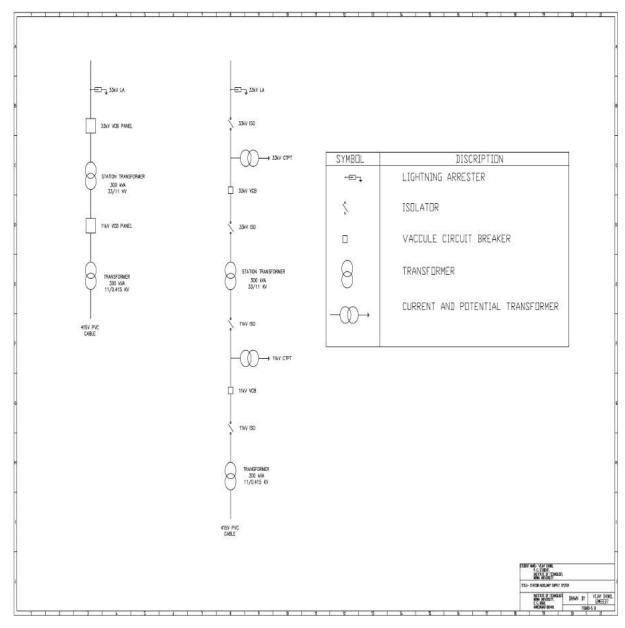


Figure 5.11: Station Auxiliary Supply System

5.11 Battery Sizing Calculation

DC auxiliary supply is required for relays, instrumentation, closing and tripping of circuit breaker, emergency lighting, control board indications etc. During normal operation, battery charger provides the required DC supply. An arrangement shall be made to supply an uninterrupted DC supply to load wherever the battery charger is facilitated with float/boost charging. The charging equipment generally consists of float charger and boost charger. In major substations, twin float chargers and twin boost chargers or with float cum boost charges with a suitable switching cubicles are generally used for reliability. However, to take care of failure of the AC supply, a storage battery of adequate capacity is provided to meet the DC requirement. Normally, the storage battery merely keeps floating on the direct current system and DC load is supplied by the float charger. In case of failure of rectifier (charger) in substation or failure of AC auxiliary supply the battery is drained. when AC power supply is resumed the boost charger charges the battery very quichly and restores its normal voltage & capacity.

The voltage commonly used for the DC auxiliary supply is 110 or 220 volts batteries for substation equipment and 48 volts for PLCC equipments. Generally, Lead-Acid batteries are used. Its sizing has been done according to IEEE 485-1997.

Capacity of the battery should be adequate to supply,

- Momentary current required for operation of switchgear.
- The contineous load of indicating lamps, relay and contactors etc.

• Emergency lighting load.

Rating and quantity of battery sets used for different voltage levels are:-

Voltage Level (kV)	Battery Voltage (V)	Quantity	Battery Capacity (AH)	Battery Charger Capacity (A)
220 and 33	220	1	275	60
PLCC	48	1	25	10

r No.	1	Load Disaria	ation		Pannel	Quantity	Contineo	us Load (W)	Moment	ary Load (V
		Load Discrip			Exist.	Future	Unit	Total	Unit	Total
A		220 kV Relay & Cor								
		Line Relay P			4	0	99	396	285	1140
		Line Control Transformer Rel			4	0	103 111	412	5 287	20 1435
		Transformer Con			4	1	103	515	5	25
	8	Transformer RT			4	î	100	500	0	0
	8	Busbar relay			2	0	89	178	275	550
		Busbar contro	l Panel		2	0	103	206	5	10
		Local Control Cu	bic Panel		0	1	65	65	165	165
		Others			5	0	126	630	0	0
в		33 kV VCB Pa Sub-tota			4	1	201	1005 4462	225	1125 4460
с		Switchgears (No of Cir			10	1		4402		4460
		Drive Mechan			10				345	3795
	8	Trip Coil			8			1	690	7590
23			1122		1000 C					11385
D		Isolator Oper			29	5		*	373	12682
E		Emergency L			0					
		Emergency DC	Lights		8		60	480		
1)	Total cor	ntinuous load for 8 Hrs	9	-	4462					
850					220	5.5				
					20.2818182					
				24	20	Amps				
2)	Emergen	cy DC Lighting Load for	r 3 Hrs	=	480	23				
					220					
				=	2.18181818					
				80	2	Amps				
3)		ry Loads for 1 minute ning Simultaneous Trip	ing of 11nos of	220 kV = = =	CBs and isolat 24067 220 109.395455 109	1	in case of B	usbar fault		
	b) Mome	entary load of panel								
	(3 . 9.19) (3.19)									
			Load	-	4460	-3				
				-	220 20.2727273					
					20.2727273	Amps				
				1222						
	Total mo	mentary load for 1 mi	n							
			Total load	-	129	Amps				
4)	At the tir	me of restoration, the ne of restoration, simu of one breaker if fault p running.	ltaneous closin	g of one	incomer and o	one outgoing				
		me of restoration				Quantity	Unit	Total		
	1	Circuit Breaker Maki				1	345	345		
	2	One CB Tripping Coil	2			1	345	345		
	3	One Motor Starting				1	373	373		
	4	One Motor Running				1	373	373 1436		
							1			

Figure 5.12: 220 V DC Load Detail

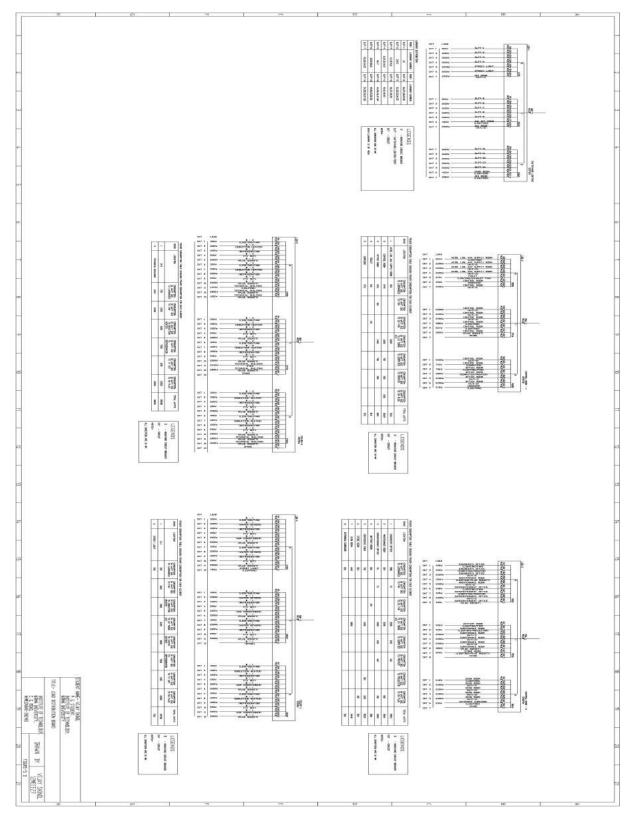
Summary	D of equipment wise DC load assesment is t	C Load D						
Sr No.	Load Di	anintian			Pannel	Quantity	Co	ontineous Load (W)
	Load Di	scription			Exist.	Future	Unit	Total
Α	220 kV P	LCC Panel						
	PLCC	Panel			4	0	23	92
	Sub-	total						92
1)	Total continuous load for 8 Hrs	=	<u> </u>					
		=	1.91666667					
		~	2	Amps				

Figure 5.13: 48 V DC Load Detail

	owing data:							
		101	12220	9200				
	PC System Voltage ging voltage per cell	-	220	ž				
tandard t	emp. for rating cell capacity rigin factor Kd	r	25	°C				
emperate	ure Correction Factor Kt	-	1.15					
geing Fac		-	1.25	v				
			890 mm 1 mm 2 mm 2 mm 2 mm 2 mm 2 mm 2 mm					
	Number of Battery Cells	13.55	Float cha	DC System Vol rging voltage p		_23		
		(), = ,	220	-				
	Hence, consider	=	110 110	Nos of cells				
llowable	DC system voltage based on 2.3	3 V per Cell - -	equilizing vi 256.3	oltage of Batte V	ry Bank			
	Voltage Window	=	187	-	253	v		
lumber o	f cells governed by maximum system voltage is	-		n System Volta s voltage per ce				
		-	253	_9				
	Hence consider	=	108.5837 109	~ ~				
	End Of Discharge Voltage	-	Mini	mum System V	oltage			
	ana na taona na fining kana na finin	=	187 109	No. of Cells				
		-	1.715596	5				
		CELL SIZI	NG CAL	CULATION				
	For Cell sizing calculations Amp	pere hour me	thod using	KT Capacity fe		perIEEE		
	Standard 485 based on 8hr dur	ation & 1.71	final Volts (per Cell.				
	KT factor based on Manufactu	rer`s Typical	Performan	nce curve and (ell data:			
	Discharge Periods per min	1	119	120	179	180	299	1
	KT factor	0.77	2.85	2.87	3.68	3.7	5.6	1
	Discharge Periods per min KT factor	300 5.62	359 6.27	360 6.29	478 8.12	479 8.15	480 8.17	1
	an search a filling and th		20 CS3040-0	11 1100000			11020202	T):
2	^		Duty cy	cie				
	149							
							27	
22	129		22	-		ſ	-1	1
Ampere	S1 20	2		2	20	7	10000	
W	20		53		2010-001-001-001-001-001-001-001-001-001		S 5	
				1	54			
	52							>
	20100	180		50	101502.04	479	480	
	20100	180	30 Minu		151552824	479	480	
r S	0 1 Section 1 Cell Size -	145	Minu 9+0.77		20.5222	479	480	22
5	0 1 Section 1 Cell Size = Section 2 =	145 114.7 (149 x 3.	Minu 9*0.77 3 AH 7) - (129 x	ıtes	25566	479	480	55
ŝ	0 1 Section 1 Cell Size - = Section 2 = Cell Size =	145 114.7 (149 x 3. 76.53	Minu 9*0.77 3 AH 7) - (129 x 8 AH	ates 3.68)	11.50.60	479	480	25
	0 1 Section 1 Cell Size = Section 2 =	145 114.7 (149 x 3. 76.53	Minu 9*0.77 3 AH 7) - (129 x 8 AH 29) - (129 s	ıtes	1.7)	479	486	25
	Section 1 Cell Size - Section 2 = Cell Size = Section 3 =	145 114.7 (149 x 3. 76.5 (149 x 6. 135.7	Minu 9*0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ;	ates 3.68)		36257.5	480	25
3	Section 1 Cell Size - E Cell Size = Cell Size = Section 3 = Cell Size = Section 4 -	145 114.7 (149 x 3. 76.5; (149 x 6. 135.7; (149 x 8. 172.3)	Minu 9*0.77 3 AH 7) - (129 x 8 AH 29) - (129 x 8 AH 15) - (129 x 7 AH 15) - (129 x	ites 3.68) × 6.27) + (2 × 3	5.6) - (2 x 2.i	85)	0 93833	25
	0 1 Section 1 Cell Size Cell Size Cell Size Cell Size Cell Size Cell Size Section 3 Cell Size Cell Size Section 4 Cell Size Section 5 =	145 114.7 (149 x 3. 76.5 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 176.8 xor, Aging	Minu 9*0.77 3 AH 7) - (129 x 8 AH 29) - (129 x 8 AH 15) - (129 x 7 AH 15) - (129 x	1.1es 3.68) × 6.27) + (2 × 3 × 8.12) + (2 × 5 × 8.15) + (2 × 5 254.250625	5.6) - (2 x 2.3 5.62) - (2 x 2 AH	85)	0 93833	73
	0 1 Section 1 - Cell Size - Section 2 - Cell Size - Section 3 - Cell Size - Section 4 - Cell Size - Section 5 - Cell Size - Applying Temp, Correction fact	145 114.7 (149 x 3. 76.5: (149 x 6. 135.7; (149 x 8. 172.3 (149 x 8. 176.8	Minu)*0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH	3.68) x 6.27) + (2 x 3 x 8.12) + (2 x 5 x 8.15) + (2 x 5	5.6) - (2 × 2.1 5.62) - (2 × 2	85)	0 93833	
	Section 1 Cell Size - Cell Size = Cell Size = Section 3 = Cell Size = Section 4 - Cell Size - Section 5 = Cell Size =	145 114.7 (149 x 3. 76.54 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 176.8 tor, Aging Consider	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = =	1.1es 3.68) × 6.27) + (2 × 3 × 8.12) + (2 × 3 × 8.15) + (2 × 3 × 8.15) + (2 × 3 254.250625 275	5.6) - (2 x 2.1 5.62) - (2 x 2 АН АН	85) 2.87) + (7 × 0	.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.54 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 176.8 tor, Aging Consider	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = =	1.1es 3.68) × 6.27) + (2 × 3 × 8.12) + (2 × 3 × 8.15) + (2 × 3 × 8.15) + (2 × 3 254.250625 275	5.6) - (2 x 2.1 5.62) - (2 x 2 АН АН	85) 2.87) + (7 × 0	.77)	27
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.54 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 176.8 176.8 consider	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = =	xtes 3.68) × 6.27) + (2 × 3 × 8.12) + (2 × 3 × 8.15) + (2 × 3 254.250625 275	5.6) - (2 x 2.1 5.62) - (2 x 2 АН АН	85) 2.87) + (7 × 0	.77)	27
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.54 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 176.8 176.8 consider	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 7 AH 17) - (129 ; 7 AH = = dications ca =	$3.68)$ $\times 6.27) + (2 \times 3)$ $\times 8.12) + (2 \times 3)$ $\times 8.15) + (2 \times 3)$ 254.250625 275 In be determin L Charge Capa	5.6) - (2 x 2.1 5.62) - (2 x 2 AH AH ed by followi + city in Amps	85) 2.87) + (7 × 0 Ing equation <u>BIF x C</u> H	.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.54 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 172.3 (149 x 8. 176.8 (149 x 8. 177.3 (149 x 8. 176.5) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (140 x 8.) (149 x 8.)	Minu ++0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = = =	$\frac{1}{100} \frac{1}{100} \frac{1}$	5.6) - (2 × 2.1 5.62) - (2 × 2 AH AH AH + city in Amps ated)	85) 1.87) + (7 × 0 ing equation BIF x C H	.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.5i (149 x 6. 135.7i (149 x 8. 172.3' (149 x 8. 176.8' 176.8' tor, Aging Consider A A L	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 7 AH 17) - (129 ; 7 AH = = dications ca =	$\frac{1}{20}$ 3.68) x 6.27) + (2 x 3 x 8.12) + (2 x 3 x 8.15) + (2 x 3 254.250625 275 an be determine L Charge Capa (To be calcul Continuous 1 20	5.6) - (2 × 2.1 5.62) - (2 × 2 AH AH AH ted by followi + city in Amps Amps	85) 2.87) + (7 × 0 ing equation BIF x C H	.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.54 (149 x 6. 135.7 (149 x 8. 172.3 (149 x 8. 172.3 (149 x 8. 176.8 (149 x 8. 177.3 (149 x 8. 176.5) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (149 x 8.) (140 x 8.) (149 x 8.)	Minu ++0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 8 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = = =	$\frac{1}{2} \frac{1}{2} \frac{1}$	5.6) - (2 × 2.1 5.62) - (2 × 2 AH AH AH ted by followi + city in Amps Amps	$(1000 \pm 1000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 100000000$.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.5; (149 x 6. 135.7; (149 x 8. 172.3; (149 x 8. 176.8; cor, Aging <u>Consider</u> A bistation app A L BIF	Minu)*0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 7 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = = = = = = = =	3.68) $x 6.27) + (2 x 3)$ $x 8.12) + (2 x 3)$ $x 8.15) + (2 x 3)$ 254.250625 275 an be determine L Charge Capa (To be calcul Continuous 1 20 Battery ineff 1.1 1.4	5.6) - (2 x 2.i 5.62) - (2 x 2 АН АН ed by followi + city in Amps ated) .oad in Amps iciency Facto for Ni-Cd	$(1000 \pm 1000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 100000000$.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.5i (149 x 6. 135.7i (149 x 8. 172.3' (149 x 8. 176.8' 176.8' tor, Aging Consider A A L	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 x 8 AH 15) - (129 x 7 AH 17) - (129 x 17) - (129 x 4 17) - (129 x = = = = = =	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	5.6) - (2 x 2.i 5.62) - (2 x 2 АН АН ed by followi + city in Amps ated) .oad in Amps iciency Facto for Ni-Cd	$(1000 \pm 1000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 10000 \pm 100000000$.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.5; (149 x 6. 135.7; (149 x 8. 172.3; (149 x 8. 176.8; cor, Aging <u>Consider</u> A bistation app A L BIF	Minu)+0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 7 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = = = = = = = = = =	1.14 254.250625 275 254.250625 275 254.250625 275 254.250625 275 254.250625 275 254.250625 275 20 Battery ineff 1.1 Discharge in 275 Battery Rech	5.6) - (2 x 2.3 5.62) - (2 x 2 AH AH ed by followi + citty in Amps ated) .oad in Amps for Lead-Aci for Lead-Aci for Lead-Aci AH AH AH age Time in	85) 1.87) + (7 × 0 Ing equation <u>BIF x C</u> H	.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.5) (149 x 6. 135.7) (149 x 8. 172.3' (149 x 8. 176.8' consider A bistation app A L BIF C	Minu)*0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 7 AH 15) - (129 ; 7 AH 17) - (129 ; 7 AH = = = = = = = = = = =	1.11 1.11 1.11 1.11 1.11 1.12 1.15 1	s.62) - (2 x 2.1 s.62) - (2 x 2 AH AH ed by followi + city in Amps ated) .oad in Amps iciency Facto for Lead-Acti for Ni-Cd AH	$B(5) = (7 \times 0)$ $B(5 \times 0)$ $B(5 \times 0)$ $Hrs = 302.5$.77)	
	Section 1 Cell Size = Cell Size = Section 2 = Cell Size = Section 3 = Cell Size = Section 4 = Cell Size = Section 5 = Cell Size = Section 5 = Cell Size = Applying Temp. Correction fact	145 114.7 (149 x 3. 76.5 (149 x 6. 135.7) (149 x 8. 172.3 (149 x 8. 176.8 tor, Aging Consider A A L BIF C H	Minu)*0.77 3 AH 7) - (129 x 8 AH 29) - (129 ; 15) - (129 ; 7 AH 15) - (129 ; 7 AH = = = = = = = = = = = = =	11es 3.68) x 6.27) + (2 x 3 x 8.12) + (2 x 3 x 8.15) + (2 x 3 254.250625 275 275 an be determin L Charge Capa (To be calcul Continuous 1 20 Battery ineff 1.1 1.4 Discharge in 275 Battery Reeh 8	5.6) - (2 × 2.1 5.62) - (2 × 2 AH AH AH ted by followin + city in Amps for lead-Aci for Lead-Aci for Ni-Cd AH AH AH Hrs	85) 1.87) + (7 × 0 ling equation $\frac{BIF \times C}{H}$ so or Id Hrs	.77)	

Figure 5.14: 220 V Battery Sizing

	em Parameters										
Enter follo	owing data:										
	DC System Voltage		48 2	v							
Standard	rging voltage per cell temp. for rating cell capacity	1	25	*C							
	argin factor Kd	1	1.15								
Ageing Fa	ture Correction Factor Kt actor Ka	10	1 1.25								
	n Equilizing voltage per cell		2.33	v							
	Number of Battery Cells	-	Nominal D	C System Volt	tage						
				ging voltage p							
		-	48								
			2								
		-	24								
	Hence, consider	75	24	Nos of cells							
Allowable	DC system voltage based on 2.33	V per Cell e	auilizing vol	Itage of Batte	ry Bank						
1	e e e e e e e e e e e e e e e e e e e	=	55.92	V							
	Voltage Window	=	41	52	55	v					
Number o	of cells governed by maximum system voltage is	=		System Volta voltage per ce							
	system voltage is			fortoBe ber ce							
		=	2.33								
		=	23.60515	v							
	Hence consider	54	24	v							
	End Of Discharge Voltage	-	Minim	num System V	/oltage						
				No. of Cells							
		-	40.8	1							
			1000								
		-	1.7							 	
				ULATION							
	For Cell sizing calculations Amper				ctor is used pe	r IEEE					
	Standard 485 based on 8hr durat	30n & 1.711	rinai voits pi	er Cell.							
	KT factor based on Manufacture	er's Typical	Performanc	e curve and (Cell data:						
	Discharge Periods per min	1	119	120	179	180	299				
1											
1	KT factor	0.77	2.85	2.87	3.68	3.7	5.6				
	KT factor Discharge Periods per min KT factor	0.77 300 5.62	2.85 359 6.27								
	Discharge Periods per min	300 5.62	359 6.27	2.87 360 6.29	3.68 478	3.7 479	5.6 480				
	Discharge Periods per min	300 5.62	359	2.87 360 6.29	3.68 478	3.7 479	5.6 480				
2	Discharge Periods per min	300 5.62	359 6.27	2.87 360 6.29	3.68 478	3.7 479	5.6 480				
	Discharge Periods per min	300 5.62	359 6.27	2.87 360 6.29	3.68 478	3.7 479	5.6 480				
upere	Discharge Periods per min	300 5.62	359 6.27 Outy cyc	2.87 360 6.29	3.68 478	3.7 479	5.6 480				
Ampere	Discharge Periods per min KT factor	300 5.62	359 6.27 Duty cycl 2 51	2.87 360 6.29	3.68 478	3.7 479 8.15	5.6 480 8.17				
Ampere	Discharge Periods per min	300 5.62	359 6.27 Duty cycl 2 51 36(2.87 360 6.29	3.68 478	3.7 479	5.6 480 8.17				
Ampere	Discharge Periods per min KT factor	300 5.62	359 6.27 Duty cycl 2 51	2.87 360 6.29	3.68 478	3.7 479 8.15	5.6 480 8.17	>	,		
Ampere	Discharge Periods per min KT factor 0 1 18 Section	300 5.62 C	359 6.27 Duty cycl 2 51 36(2.87 360 6.29	3.68 478	3.7 479 8.15	5.6 480 8.17				
Ampere	Discharge Periods per min KT factor	300 5.62	359 6.27 Duty cycl 2 51 36(2.87 360 6.29	3.68 478	3.7 479 8.15	5.6 480 8.17			 	
Ampere	Discharge Periods per min KT factor 0 1 18 Section	300 5.62 C 30 2*8.17	359 6.27 Duty cycl 2 51 360 Minut	2.87 360 6.29	3.68 478	3.7 479 8.15	5.6 480 8.17	>			
Ampere	Discharge Periods per min KT factor 0 1 18 0 1 18 Section Cell Size = =	300 5.62 C 30 2*8.17 16.34	359 6.27 Duty cycl 2 51 360 Minut	2.87 360 6.29	3.68 478 8.12	3.7 479 8.15	5.6 480 8.17	>		 	
Ampere	Discharge Periods per min KT factor 0 1 18 Section	300 5.62 C 30 2*8.17 16.34	359 6.27 Duty cycl 2 51 360 Minut	2.87 360 6.29 le 0 tes 23.48875	3.68 478	3.7 479 8.15	5.6 480 8.17	>			
	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor	300 5.62 C 30 2*8.17 16.34	359 6.27 Duty cycl 2 51 366 Minut AH	2.87 360 6.29 le 0 tes 23.48875	3.68 478 8.12	3.7 479 8.15	5.6 480 8.17	>			
Battery Cl	Discharge Periods per min KT factor 0 1 18 0 1 18 Section Cell Size = =	300 5.62	359 6.27 Duty cycl 2 S1 366 Minut AH = =	2.87 360 6.29 le 0 tes 23.48875 25	3.68 478 8.12 АН АН	3.7 479 8.15 479	5.6 480 8.17 480	>	-		
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62	359 6.27 Duty cycl 2 S1 366 Minut AH = =	2.87 360 6.29 le 0 tes 23.48875 25 be determine	3.68 478 8.12 AH AH AH	3.7 479 8.15 479 479	5.6 480 8.17 480		<u>.</u>	 	
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62	359 6.27 Duty cycl 2 S1 366 Minut AH = =	2.87 360 6.29 le 0 tes 23.48875 25	3.68 478 8.12 АН АН	3.7 479 8.15 479	5.6 480 8.17 480				
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 30 2*8.17 16.34 r, Aging station appl A	359 6.27 Duty cycl 2 S1 366 Minut AH = =	2.87 360 6.29 le 0 tes 23.48875 25 be determine L	3.68 478 8.12 AH AH ed by followin +	3.7 479 8.15 479 479 g equation BIF x C	5.6 480 8.17 480				
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	359 6.27 Duty cycl 2 S1 366 Minut AH = = =	2.87 360 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul	3.68 478 8.12 8.12 AH AH ed by followin + - city in Amps ated)	3.7 479 8.15 479 479 g equation BIF x C	5.6 480 8.17 480				
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 30 2*8.17 16.34 r, Aging station appl A	359 6.27 Duty cycl 2 S1 36i Minut AH = =	2.87 360 6.29 le 0 tes 23.48875 25 be determine L Charge Capa (To be calcul Continuous l	AH AH AH AH city in Amps ated) .cad in Amps	3.7 479 8.15 479 479 g equation BIF x C	5.6 480 8.17 480				
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	359 6.27 Duty cycl 2 S1 366 Minut AH = = =	2.87 360 6.29 6.29 le 23.48875 25 25 be determine L Charge Capa (To be calcul Continuous I 2	3.68 478 8.12 8.12 AH AH ed by followin + - city in Amps ated)	3.7 479 8.15 479 479 g equation BIF x C	5.6 480 8.17 480				
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 80 2*8.17 16.34 r, Aging station appl A L	359 6.27 Duty cycl 2 S1 36i Minut AH = = = :	2.87 360 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul Continuous I 2 Battery inefff 1.1	AH AH AH AH city in Amps ated) .cad in Amps iciency Factor for Lead-Acid	3.7 479 8.15 479 479 g equation BIF x C	5.6 480 8.17 480	>			
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 80 2*8.17 16.34 r, Aging station appl A L	359 6.27 Duty cycl 2 S1 36i Minut AH = = = :	2.87 360 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul Continuous I 2 Battery inefff 1.1	AH AH AH AH city in Amps ated) .cad in Amps iciency Factor for Lead-Acid for Ni-Cd	3.7 479 8.15 479 479 g equation BIF x C	5.6 480 8.17 480		2		
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 80 2*8.17 16.34 r, Aging A A L BIF C	359 6.27 Duty cycl 2 S1 366 Minut AH = = = = = = = = = = = = = =	2.87 360 6.29 1e 23.48875 25 23.48875 25 25 25 25 25 25 25 25 25 2	AH AH AH AH city in Amps ated) .cad in Amps ated) .cad in Amps for Lead-Acid for Ni-Cd AH	3.7 479 8.15 479 g equation <u>BIF x C</u> H	5.6 480 8.17 480	>	2		
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 30 2*8.17 16.34 r, Aging station appl A L BIF	359 6.27 Duty cycl 2 S1 366 Minut AH = = = = = = = =	2.87 360 6.29 1e 23.48875 25 23.48875 25 25 25 25 25 25 25 25 25 2	AH 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8.12	3.7 479 8.15 479 g equation <u>BIF x C</u> H	5.6 480 8.17 480	>	<u>.</u>		
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 80 2*8.17 16.34 r, Aging A A L BIF C	359 6.27 Duty cycl 2 S1 364 Minut AH = = = = = = = = = = = = =	2.87 360 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul Continuous I 2 Battery ineff 1.1 Discharge in 25 Battery Rech	AH AH AH ed by followin + - city in Amps ated) .oad in Amps iciency Factor for Ni-Cd AH AH AH AH	3.7 479 8.15 479 g equation <u>BIF x C</u> H	5.6 480 8.17 480	>			
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 C 80 2*8.17 16.34 r, Aging A A L BIF C	359 6.27 Duty cycl 2 51 366 Minut AH = = = = = = = = = = = = = = =	2.87 360 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul Continuous L 2 Battery ineff 1.1 Discharge in 25 Battery Rech 8 2	AH AH AH ed by followin + city in Amps ated) .cad in Amps Amps iciency Factor for Lead-Acid for Ni-Cd AH AH age Time in H Hrs	3.7 479 8.15 479 479 5	5.6 480 8.17 480	>			
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	359 6.27 Duty cycl 2 31 36 Minut AH = = = = = = = = = = = = = = = =	2.87 360 6.29 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul Continuous I 2 Battery ineff 1.1 1.4 Discharge in 25 Battery Rech 8	AH AH AH ed by followin + city in Amps ated) .cad in Amps Amps iciency Factor for Lead-Acid for Ni-Cd AH AH age Time in H Hrs	3.7 479 8.15 479 479 5	5.6 480 8.17 480				
Battery Cl	Discharge Periods per min KT factor 0 1 18 Section Cell Size = = Applying Temp. Correction factor tharger Calculation	300 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	359 6.27 Duty cycl 2 S1 366 Minut AH = = = = = = = = = = = = = = = = = =	2.87 360 6.29 1e 23.48875 25 be determine L Charge Capa (To be calcul Continuous I 2 Battery ineff 1.1 Discharge in 25 Battery Rech 8 2 5.4375 10	AH AH 8.12 8.12 AH ed by followin + - city in Amps ated) .cad in Amps iciency Factor for Lead-Acid for Ni-Cd AH AH Hrs + - Amps - Amps	3.7 479 8.15 479 479 8.15 10 10 10 10 10 10 10 10 10 10	5.6 480 8.17 480				


Figure 5.15: 48 V Battery Sizing

5.12 Distribution Board

Load Distribution Board:- Load Distribution Board is provided in the control room to distribute the load of switchyard, control room and substation colony. Switchyard load covers outdoor lighting of switchyard, street lighting and indoor lighting of D.G. set room, GIS room and Fire Pump house. For switchyard, one load distribution boards is provided. Two load distribution board is provided for control room and two load distribution board is provided for substation colony which covers street lighting load, B-1 load and B-2 load.

AC Distribution Board:- AC load of substation is distributed through AC Distribution Board. Load Distribution Board gets supply through AC Distribution Board. AC Distribution Board also distributes supply to Bay Marshalling Kiosk, Local control cubical, Panels of control room, Pumps, Battery Charger panels, Transformer cooler control box, Tap changing system of transformers and crane. In case of failure of station supply, D.G. set of 175 KVA capacity will supply the required load of substation. For this substation, One AC distribution boards is provided.

DC Distribution Board:- When AC supply is available, DC load will get supply through battery charger panel. When AC load is not available, DC load will get supply through battery set provided. DC load is distributed through DC Distribution Board. DC Distribution Board distributes supply to BMK, LCC, Relay Control panels, DC emergency lighting and PLCC panels. For each voltage level of 220 V, 110 V and 48 V, separate DC Distribution Board has to be provided. For this substation, one DCDB for 220 V and one for 48 V systems are provided.

CHAPTER 5. DESIGN OF PROPOSED GAS INSULATED SUBSTATION

Figure 5.16: Load Distribution Board

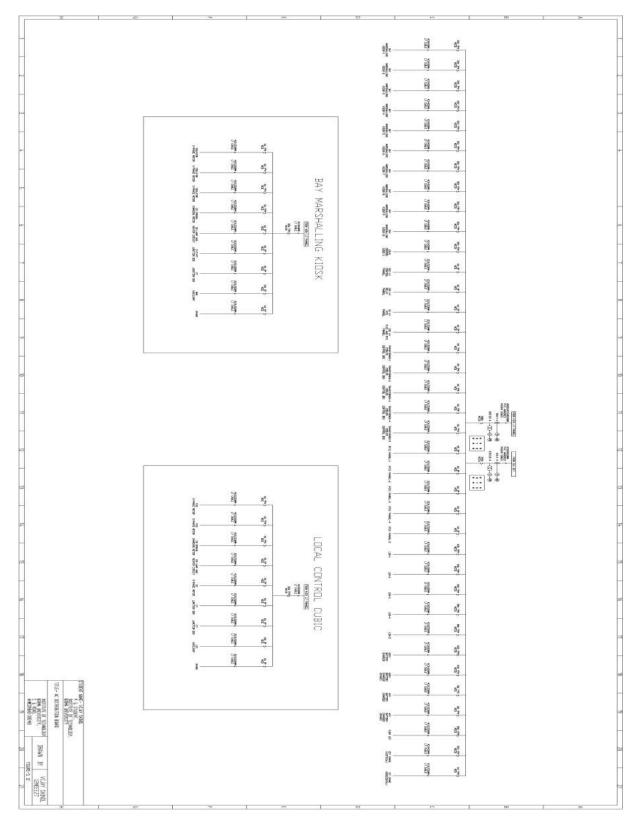
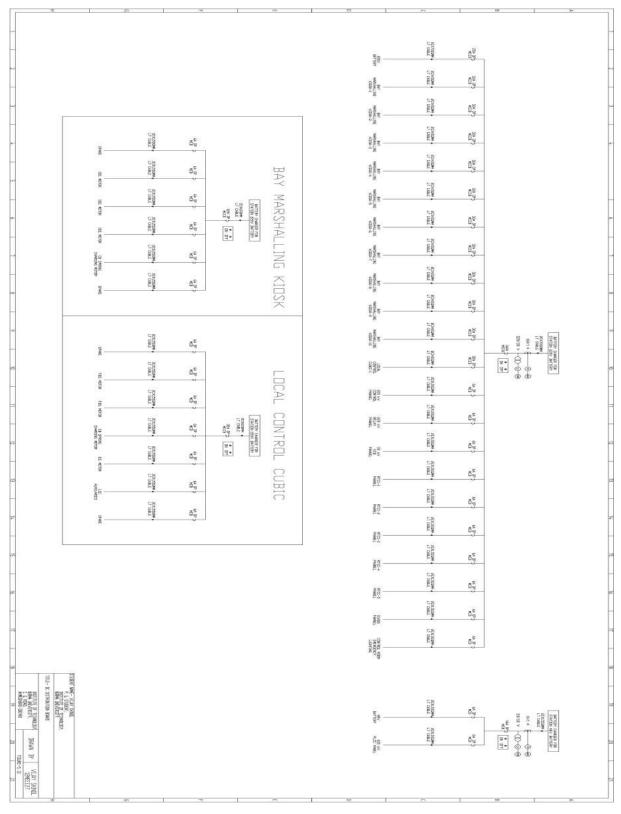



Figure 5.17: AC Distribution Board

CHAPTER 5. DESIGN OF PROPOSED GAS INSULATED SUBSTATION

Figure 5.18: DC Distribution Board

5.13 Cable Trench Layout

Cable Trench is normaly laid for cable run. It includes both power and control cables. It also includes the cables from lighting equipment in substation. In cable trench, trays are used to support cables. Power and control cables shall be laid in separate trays. Cables from equipment/kiosk to trench are taken through PVC pipes. Cable trays are made with provision that a maintenance personal can work easily.

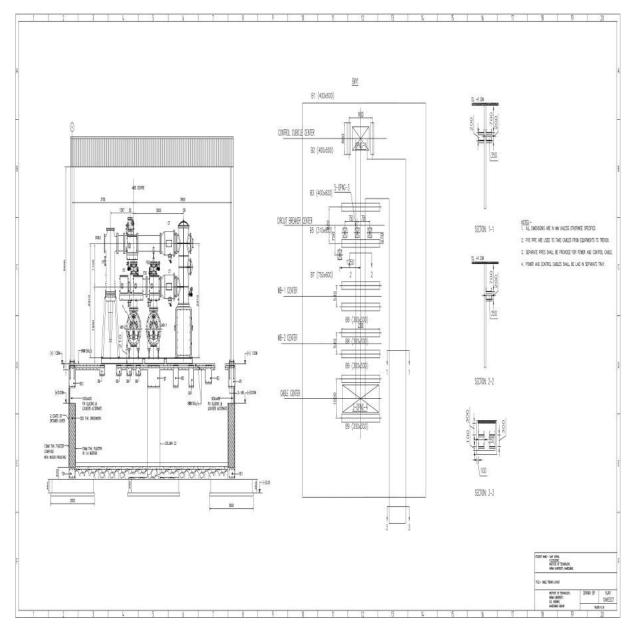


Figure 5.19: Cable Trench Layout

5.14 Cable Schedule

Cable schedule means the schedule which contains cable length, no of core in cable, function of each core, route from field to panel or from one location to other. Total requirement of different power and control cable are shown in figure 5.20.

	SUMMARY OF POWER CA	ABLES FOR GIS
SR NO	NO OF CORES	QTY (MTR)
1	4C X 4 SQMM	125
2	4C X 1.5 SQMM	190
3	2C X 4 SQMM	85
4	2C X 1.5 SQMM	400

	SUMMARY OF CONTROL C	CABLES FOR GIS
SR NO	NO OF CORES	QTY (MTR)
1	24C X 2.5 SQMM	220
2	19C X 2.5 SQMM	150
3	14C X 2.5 SQMM	125
4	12C X 2.5 SQMM	225
5	10C X 2.5 SQMM	320
6	4C X 2.5 SQMM	635

Figure 5.20: Summary of Power and Control Cable

5.15 SCADA System

The SCADA system shall perform data acquisition from remote terminal units (RTUs) located at substations. The RTU data includes status and sequence of event inputs. RTU communications shall utilise the IEC 61850 protocols. The substation SCADA system shall exchange various types of real time and historical data with the PC based MS office applications. The scada system for proposed substation is shown in figure 5.21.

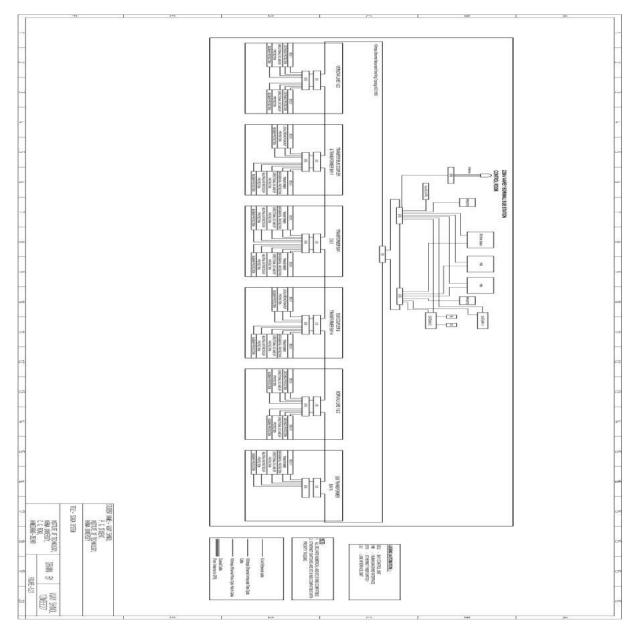


Figure 5.21: SCADA System

5.16 Interface Between AIS and GIS

AIS bus is connected to GIS bus through 1C x 500 mm^2 power cable. the bending radius of power cable is 20 times the diameter of conductor and it is 2200 mm. If the power cable is bended beyond its bending radius then power cable is stressed more and it may damage.

5.17 Reconductring Requirement

The existing AIS substation is having 220 kV main bus of Twin AAAC Zebra. The main bus gantry structures and column foundations are designed to take the mechanical load of twin conductor only. This Main bus bar can be loaded up to 1935 Amps. With additional demand, the bus bar current will go to 1620 Amps. So, there is no need to replace the existing bus of AIS.

5.17.1 Another Case Study

The existing receiving substation at Magthane, Borivali is having 220 kV main bus of Twin ACSR Moose. This main bus bar can be loaded for about 1500 Amps. With additional demand, the bus bar current will go to 3100 Amps. This has become necessary to allow the additional power evacuation from the existing bus to the proposed GIS in the substation. The existing bus gantries of the substations cannot withstand the load of Quad Moose and replacing them would need a very long shut down. The metropolitan city of Mumbai cannot afford long shut down. For this particular application it is proposed to use Twin ACSS Curlew conductor instead of existing Twin ACSR Moose Conductor. Since the mechanical properties of ACSS Curlew and ACSR Moose conductor are nearly same, it will be possible to string them on the existing gantry structures without any modification and their foundations also need no change.

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

Due to increase in load demand, it is required to increase capacity of substation. In urban AIS substation where space is main constraint. GIS extension provides a solution. One bay of GIS required much less space as compared to one bay of AIS and it is possible to augment the capacity of AIS substation.

The AIS cum GIS substation means extension of existing bus in such a manner that we can create more line bays and transformer bays.

While doing so, the capacity of existing bus (AIS) should not be exceeded. Failing this the bus may have to be changed.

6.2 Future Scope

- Design and Analysis of Gas Insulated Bus duct system
- Replacement of SF_6 with distilled water as a dielectric medium
- Breakdown And Thermal Study of SF_6 gas
- Relay coordination

References

- B3 00 SPECIAL REPORT FOR SC B3 (Substations) Wolfgang DE-GEN*/Peter GLAUBITZ* CIGRE 2012
- [2] Compact substation solutions 22^{nd} AMEU Technical Convention
- [3] Mixed Technology HV Switchgear and Substations: Optimised Service Strategies Session CIGRE 2004
- [4] Design Experience of 230/115/69kV Substation Refurbishment / Extension Project in Philippine Grid Network CIGRE 2012
- [5] GIS SUBSTATION EXTENSIONS AND UPGRADES E. Mikes * Ch. Tschannen ALSTOM LTD P. Hadorn Ph. Ponchon ALSTOM TD SA
- [6] POWER GRID CORPORATION OF INDIA LIMITED Annual Report 2011-2012.
- [7] PARTIAL GRID DISTURBANCE IN MUMBAI SYSTEM Dt. 05thAug 2011.
- [8] John.D.McDonald, Electrical Power Substations Engineering, CRC Press, 2nd Eddition., 2007.
- [9] P.S.Satnam and P.V.Gupta, Substation Design and Equipment, Dhanpat Rai Publications, 3rd revised Ed., 2006.
- [10] IEC 60376: New sulphur hexafluoride.
- [11] IEC 62271-203: Gas Insulated metal-enclosed switchgear for rated voltages above 52KV.
- [12] IEC 62271-102: Alternating current disconnectors(isolators) and earthing switches.
- [13] IEC 60044(2002): Instrument Transformer.
- [14] IEC 60137(2003): Bushings for alternating voltages above 1000 V.
- [15] IEC 60076(2000): Power Transformer.

- [16] IEC 60099(2004): Surge Arrester.
- [17] IEC 62271-100: High Voltage Alternating Current Circuit Breaker.
- [18] IEEE 80(2000): IEEE Guide for Safety in AC Substation Grounding.
- [19] IEEE 998(1996): IEEE Guide for Direct Lightning Stroke Shielding of Substations.
- [20] IEEE 998(1996): IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications.
- [21] IS 2309(2006): Protection of Buildings and Allied Structures against Lightning.
- [22] CBIP 299(2006): Manual on Substation Layout.
- [23] CBIP 223(1992): Design of Earthing Mat for High Voltage Substation.
- [24] ABB Instrument Transformer Application Guide.
- [25] Fundamental of Heat And Mass Transfer, Frank P. Incropera, Devid P. Dewitt.

Appendix A Earthing Design Calculation

Data required for design are:-

- Symmetrical fault current in substation(kA):- 40
- Duration of shock for determining allowable body current(Sec.):- 0.5
- Duration of fault current for sizing ground conductor(Sec.):- 1
- Surface layer resistivity(ohm-m)(for AIS):- 3000
- Surface layer resistivity(ohm-m)(for GIS):- 1000000
- Surface layer thickness(m):- 0.15
- Grid reference depth(m):- 1
- Soil resistivity(ohm-m):- 60
- diameter of earthing conductor:- 0.04
- Depth of ground grid conductors(m):- 0.6
- Length of grid conductor in X direction(m):- 203
- Length of grid conductor in Y direction(m):- 112
- Spacing between parallel conductors(m):- 7
- Length of ground rod(m):- 3
- Number of rods placed:- 45
- Decrement factor for determining Ig:- 1
- Number of grid conductors in X direction:- 17

- Number of grid conductors in Y direction:- 30
- Equivalent Earthing mat $area(m^2)$:- 22736
- Total Length of Buried Conductor(m):- 6946
- Total length of ground rods(m):- 135

For earthing mat conductor Zinc coated steel material has been used. Parameters considered for Zinc coated steel material:-

- RMS Current(KA):- 40
- Fusing temperature((^{0}C) :- 419
- Ambient temperature $({}^{0}C)$:- 50
- Reference temperature for material constant $({}^{0}C)$:- 20
- Thermal coefficient of resistivity at 0 ${}^{0}C(1/{}^{0}C)$:- 0.00341
- Thermal coefficient of resistivity at 20 ${}^{0}C(1/{}^{0}C)$:- 0.0032
- Resistivity of the ground conductor at 20 ${}^{0}C(\mu \text{ohm.cm})$:- 20.1
- K_0 at 0 ${}^{0}C(1/{}^{0}C)$:- 293
- Duration of Current(sec.):- 1
- Thermal capacity, $TCAP(J/cm^{3.0}C)$:- 3.93

For Air Insulated Substation

Step 1:- Determination of Size of Conductor for Earthing Grid

$$A_{mm^2} = I * \frac{1}{\sqrt{\left(\frac{T_{CPA} * 10^{-4}}{t_c * \rho_r * \alpha_r}\right) ln(\frac{K_o + T_m}{K_o + T_a})}}$$
(A.1)

$$A_{mm^2} = 598.94$$

From CBIP Publication No 223, The following values of Corrosion factor has been considered for different types of soil resistivity.

- In case of conductors to be laid in soils having resistivity greater than 100 Ohm-metre No allowance
- In case of conductors to be laid in soils having resistivity from 25 to 100 Ohmmetre - **15 percent allowance**
- In case of conductors to be laid in soils having resistivity lower than 25 Ohmmetre or where treatment of soil around electrodes is carried out - **30 percent allowance**

$$A_{mm^2}$$
=598.94 X 1.15
 A_{mm^2} =688.79
Provided area of conductor from CBIP 223,
Provided Area = 75 * 12
Provided Area= 900
Step 2:- Touch and Step Voltage Criteria

$$C_s = \frac{1 - (0.09 * (1 - \rho/\rho_s))}{2 * h_s * 0.09}$$
(A.2)
$$C_s = 0.77$$

$$E_{touch50} = (1000 + 1.5c_s\rho_s) * (0.116/\sqrt{ts})$$
(A.3)
$$E_{touch50} = 735V$$

$$E_{step50} = (1000 + 6c_s\rho_s) * (0.116/\sqrt{ts})$$
(A.4)

$$E_{step50} = 2449$$

Step 3:- Determining Grid Resistance

The value of Grid Resistance is,

$$R_g = \rho * \left[\frac{1}{t} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{1 + h\sqrt{20A}}\right)\right]$$
(A.5)

 $R_g = 0.19$ ohm

Step 4:- Maximum Grid Current

Maximum Grid Current I_G is determined by,

$$I_G = D_f * S_f * I_g \tag{A.6}$$

Consider Dt = 1 for fault duration of 1 Sec. Using Table: C1(IEEE 80(2000), pg no:-150), the equivalent impedance of the transmission and distribution ground system for 4 lines and 4 distribution feeder is $Z_{eq} = 0.23+0.12i$.

$$S_{f} = \left| \frac{Z_{eq}}{Z_{eq} + R_{g}} \right|$$

$$S_{f} = 0.60$$

$$I_{G} = D_{f} * S_{f} * I_{g}$$

$$I_{G} = 24018.56 \text{ A}$$
(A.7)

Step 5:- GPR

$$GPR = I_G * R_g$$
 (A.8)
 $GPR = 4444V$

Step 6:- Mesh Voltage

$$K_h = (1 + \frac{h}{h_0})^{0.5}$$
(A.9)
$$K_h = 1.265$$

$$n = n_a * n_b * n_c * n_d \tag{A.10}$$

$$n_a = \frac{2 * L_c}{L_p} \tag{A.11}$$

Where,

 $L_c = \text{Total Length of conductor}$

 L_p = Peripheral Length of the earthing equivalent area

$$L_c = ((Lx * Nx) + (Ly * Ny))$$
 (A.12)
 $L_c = 6811$

$$L_p = (2 * Lx) + (2 * Ly)$$
 (A.13)
 $L_p = 630$

$$n_{a} = 21.62$$

$$n_{b} = \sqrt{\frac{L_{p}}{4 * \sqrt{A}}}$$

$$n_{b} = 1.022$$

$$n_{c} \& n_{d} = 1$$

$$n = 22.10$$

$$k_{ii} = 1$$
(A.14)

$$K_m = \frac{1}{2 * \pi} * \left[ln \left(\frac{D^2}{16 * h * d} + \frac{(D + 2 * h)^2}{8 * D * d} - \frac{h}{4 * d} \right) + \frac{k_{ii}}{k_h} ln \frac{8}{\pi * (2 * n - 1)} \right] \quad (A.15)$$
$$k_m = 0.62$$
$$K_i = 0.644 + 0.148 * n \qquad (A.16)$$

$$K_i = 3.915$$

so that,

$$E_m = \frac{\rho * I_G * K_m * K_i}{L_c + [1.55 + 1.22 * (\frac{L_r}{\sqrt{L_x^2 + L_y^2}})] * L_R}$$
(A.17)
$$E_m = 501.60V$$

Step 7:- Calculation of Step Voltage

$$K_s = \frac{1}{\pi} \left(\frac{1}{2h} + \frac{1}{D+h} + \frac{1}{D} (1 - 0.5^{n-2}) \right)$$
(A.18)
$$K_s = 0.353$$

$$E_s = \frac{(\rho * I_G * K_s * K_i)}{(0.75 * L_c + 0.85 * L_R)}$$
(A.19)

$$E_s = 380.857$$

Step 8:- Comparison between calculated tolerable Step and Touch voltages

Tolerable Touch Voltage (V) = 735.32 is greater than Calculated Touch Voltage (V) = 501.60

Tolerable Step Voltage (V) = 2449.12 is greater than Calculated Step Voltage (V) = 380.86

Hence Earthing design is safe.

For Gas Insulated Substation Step 1:- Determination of Size of Conductor for Earthing Grid

$$A_{mm^2} = I * \frac{1}{\sqrt{\left(\frac{T_{CPA} * 10^{-4}}{t_c * \rho_r * \alpha_r}\right) ln(\frac{K_o + T_m}{K_o + T_a})}}$$
(A.20)

 $A_{mm^2} = 598.94$

From CBIP Publication No 223, The following values of Corrosion factor has been considered for different types of soil resistivity.

- In case of conductors to be laid in soils having resistivity greater than 100 Ohm-metre No allowance
- In case of conductors to be laid in soils having resistivity from 25 to 100 Ohmmetre - **15 percent allowance**
- In case of conductors to be laid in soils having resistivity lower than 25 Ohmmetre or where treatment of soil around electrodes is carried out - **30 percent allowance**

 $A_{mm^2} = 598.94 \text{ X } 1.15$ $A_{mm^2} = 688.79$ Provided area of conductor from CBIP 223,
Provided Area = 75 * 12
Provided Area = 900

Step 2:- Touch and Step Voltage Criteria

$$C_s = \frac{1 - (0.09 * (1 - \rho/\rho_s))}{2 * h_s * 0.09}$$

$$C_s = 0.77$$
(A.21)

$$E_{touch50} = (1000 + 1.5c_s\rho_s) * (0.116/\sqrt{ts})$$
(A.22)

$$E_{step50} = (1000 + 6c_s\rho_s) * (0.116/\sqrt{ts})$$
(A.23)

$$E_{step50} = 757326$$

 $E_{touch50} = 189455 V$

Step 3:- Determining Grid Resistance

The value of Grid Resistance is,

$$R_g = \rho * \left[\frac{1}{t} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{1 + h\sqrt{20A}}\right)\right]$$
(A.24)

$R_g = 0.19ohm$ Step 4:- Maximum Grid Current

Maximum Grid Current I_G is determined by,

$$I_G = D_f * S_f * I_g \tag{A.25}$$

Consider Dt = 1 for fault duration of 1 Sec. Using Table: C1(IEEE 80(2000), pg no:-150), the equivalent impedance of the transmission and distribution ground system for 4 lines and 5 distribution feeder is $Z_{eq} = 0.23+0.12i$.

$$S_{f} = |\frac{Z_{eq}}{Z_{eq} + R_{g}}|$$

$$S_{f} = 0.60$$

$$I_{G} = D_{f} * S_{f} * I_{g}$$

$$I_{G} = 24018.56A$$
(A.26)

Step 5:- GPR

$$GPR = I_G * R_g \tag{A.27}$$
$$GPR = 4444V$$

Step 6:- Mesh Voltage

$$K_h = (1 + \frac{h}{h_0})^{0.5}$$
(A.28)
$$K_h = 1.265$$

$$n = n_a * n_b * n_c * n_d \tag{A.29}$$

$$n_a = \frac{2 * L_c}{L_p} \tag{A.30}$$

Where,

 $L_c = \text{Total Length of conductor}$

 L_p = Peripheral Length of the earthing equivalent area

$$Lc = ((Lx * Nx) + (Ly * Ny))$$
 (A.31)
 $L_c = 6811$

$$L_p = (2 * Lx) + (2 * Ly) \tag{A.32}$$

$$L_{p} = 630$$

$$n_{a} = 21.62$$

$$n_{b} = \sqrt{\frac{L_{p}}{4 * \sqrt{A}}}$$

$$n_{b} = 1.022$$

$$n_{c} \& n_{d} = 1$$

$$n = 22.10$$

$$k_{i}i = 1$$
(A.33)

$$K_m = \frac{1}{2*\pi} * \left[ln(\frac{D^2}{16*h*d} + \frac{(D+2*h)^2}{8*D*d} - \frac{h}{4*d}) + \frac{k_{ii}}{k_h} ln\frac{8}{\pi*(2*n-1)} \right] \quad (A.34)$$
$$k_m = 0.62$$

$$K_i = 0.644 + 0.148 * n$$
 (A.35)
 $K_i = 3.915$

$$E_m = \frac{\rho * I_G * K_m * K_i}{L_c + [1.55 + 1.22 * (\frac{L_r}{\sqrt{L_x^2 + L_y^2}})] * L_R}$$
(A.36)

 $E_m = 501.60V$ Step 7:- Calculation of Step Voltage

$$K_s = \frac{1}{\pi} \left(\frac{1}{2h} + \frac{1}{D+h} + \frac{1}{D} (1 - 0.5^{n-2}) \right)$$
(A.37)
$$K_s = 0.353$$

$$E_s = \frac{(\rho * I_G * K_s * K_i)}{(0.75 * L_c + 0.85 * L_R)}$$

$$E_s = 380.857$$
(A.38)

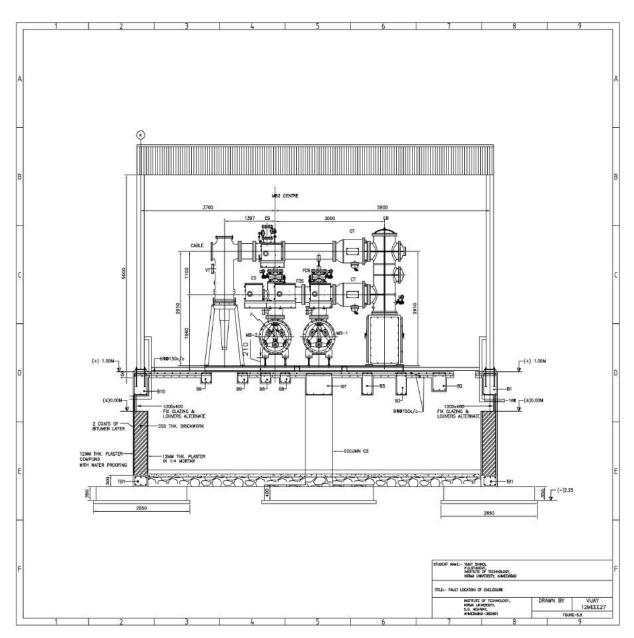


Figure A.1: Fault Location of Enclosure

Step 8:- Calculation of E_g For Vertical Length

- Frequency f(HZ):- 50
- *I_s*:- 40000
- r_1 (m):- 0.1675
- r_2 (m):- 0.1742
- resistivity (ohm-m):- 0.00000029
- L(m):- 2.91
- Structure Piller Length L1(m):- 0.21
- Number of Piller:- 9

$$A(m^2) = \pi * (r_2^2 - r_1^2)$$
(A.39)

$$A = 0.007192331$$
$$R_e = \frac{\rho * l}{A}$$
(A.40)

$$R_e = 1.17333 * e^{-05}$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_2^2 - r_1^2)} * \left(\frac{r_2^2 - 3 * r_1^2}{4} + \frac{r_1^4}{r_2^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right)$$
(A.41)

$$L_e(H/m) = 2.56371 * e^{-07}$$

$$X_{Le}(ohm) = 2 * \pi * f * L_e * L$$
(A.42)

$$X_{Le}(ohm) = 0.000234375$$
$$R_s(ohm) = \frac{(390\mu ohmperm * L1)}{number of piller}$$
(A.43)

$$R_{s}(ohm) = 0.0000091$$

$$L_{s}(nHperm) = 650$$

$$X_{Ls} = \frac{(2*3.14*f*L_{s}*L1)}{number of pillers}$$
(A.44)

$$X_{Ls}(ohm) = 4.76475 * e^{-06}$$

For Horizontal Length

- Frequency f(HZ):-50
- r₁ (m):- 0.1675
- r_2 (m):- 0.1742
- resistivity (ohm-m):- 0.00000029

• L(m):- 3

$$A(m^2) = \pi * (r_2^2 - r_1^2)$$
(A.45)

$$= 0.007192331 R_e = \frac{\rho * l}{A}$$
 (A.46)

$$R_e = 1.20962 * e^{-05}$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_2^2 - r_1^2)} * \left(\frac{r_2^2 - 3 * r_1^2}{4} + \frac{r_1^4}{r_2^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right)$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_2^2 - r_1^2)} * \left(\frac{r_2^2 - 3 * r_1^2}{4} + \frac{r_1^4}{r_2^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right)$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_1^2 - r_1^2)} * \left(\frac{r_2^2 - 3 * r_1^2}{4} + \frac{r_1^4}{r_2^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right)$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_1^2 - r_1^2)} * \left(\frac{r_2^2 - 3 * r_1^2}{4} + \frac{r_1^4}{r_2^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right) \right)$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_1^2 - r_1^2)} * \frac{r_1^2 - 3 * r_1^2}{4} + \frac{r_1^2}{r_1^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right)$$

$$L_e(H/m) = 2 * \mu * s\left(\frac{1}{(r_1^2 - r_1^2)} * \frac{r_1^2 - 3 * r_1^2}{4} + \frac{r_1^2 - r_1^2}{r_1^2 - r_1^2} * Ln(\frac{r_2}{r_1}) * 10\right)$$

А

$$L_e(H/m) = 2.56371 * e^{-07}$$

$$X_{Le}(ohm) = 2 * \pi * f * L_e * L$$
(A.48)

$$X_{Le} \text{ (ohm)} = 0.000241624 | Z | (ohm) = 0.000481891 E_g(V) = | Z | *I$$
(A.49)

$$\frac{E_g(V)}{E_m^2 + E_q^2} = 501.9705175 \text{V}$$

 $\sqrt{E_m^2 + E_g^2} = 501.9705175V$ Step 9:- Comparison between calculated tolerable Step and Touch voltages

Tolerable Touch Voltage (V) = 189454.50 is greater than Calculated Touch Voltage (V) = 501.97

Tolerable Step Voltage (V) = 757325.86 is greater than Calculated Step Voltage (V) = 380.86

Hence Earthing design is safe.

Appendix B Illumination Design of GIS Room

Input Data	Notation	Value
Lengh of GIS Room (m)	L	10
Width of GIS Room (m)	W	10
Required Level of Illumination (lux)	Е	300
Coefficient of Utilization Factor	COU	0.55
Maintenance Factor	MF	0.7
Provided Luminaries (Indistrial Type)	-	2 * 36W FTL
Lumens Output at 230 V	-	3250

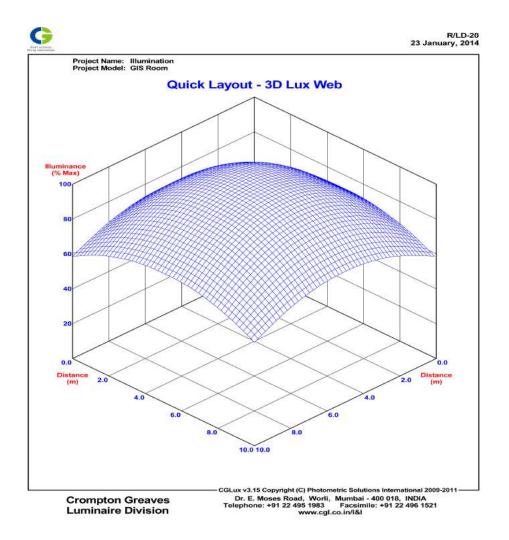
Lumens output of single fitting with two lamp at 230 volt

= 2 * 3250= 6500 Lumens

Total area where illumination is provided (A)

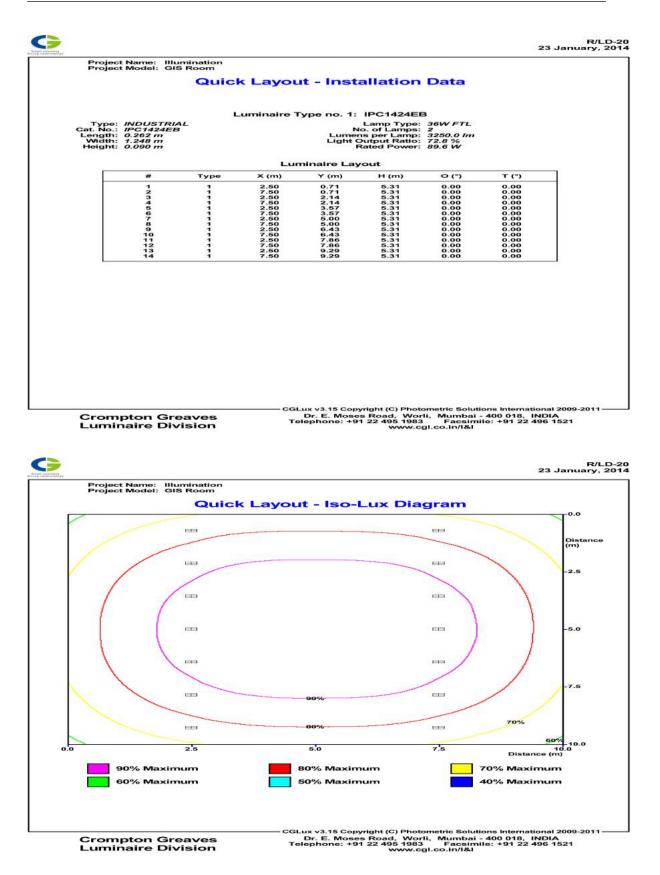
= 10 * 10= 100 Sq Mtr

Total lumens required for above area


$$= 100 * 300$$

 $= 30000$

Lumens output of each set


$$= 6500 * 0.55 * 0.7$$
$$= 2502.5$$
Total nos. of fitting required = $\frac{Totallumens required}{Lumensoutput of each set}$
$$= 30000/2502.5$$
$$= 11.988$$
Say = 12 setHence considering no. of set = 12 Set

Hence no. of lamp = 24

The simulation result of illumination design of GIS room is shown below.

	Pro	ject N	lame: Aodel	: GIS	Roor	n														
							La	γοι	ıt -	Gre	eyS	cal	e C	Diag	Irar	n				
2	-														-				ľ	0.0
														C	3)istance m)
					=														-1	2.5
					-									er						
					1071									(76					
					m									=	а.				-	5.0
					-									-	a.					
																				2122
					œ									=	э					7.5
					⊞									-	j.					
0.0					2.5				6	5.0		_		7.	5		Die	stance	10.0	10.0
		۰.	% Ma					1	۰. ۲	0/ 84	axim					7 70	% Ma			
			% Ma								axim						% Ma			
		nina							CGLux Di Telep	v3.15 r. E. M phone	Copy Moses a: +91	Roa4	d, We	otomet orli, M 33 cgl.co	Facs	ai - 40 imile:	s inter 00 018 +91 3	3, INI 22 496	DIA 5 152	R/I
ant an	Lur		aire		ninat	ion			CGLux D Teleş	v3.15 r. E. M phone	Copy Moses a: +91	Roa4	d, We	orli, M	Facs	ai - 40 imile:	s Inter 00 018 +91 3	3, INI 22 496	DIA 5 152	1
	Lur	nina	aire	Div Illur : GIS	minati	ion m	ayc		CGLux D Teleş	r. E. Mohone	Moses a: +91	22 49	d, Wo 95 198 www.	orli, M 33 cgl.ce	Aumb Facs 5, in/lð	ai - 40 imile: 41	+91 3	3, INI 22 496	DIA 5 152	I R/I
- Man	Lur	nina Ject M	aire Aame: Aodel	Illur GIS Q	minati	n n k L 9 lx	Ma	out	D	um	nina	nco	d, We 95 198 www.	orli, M 33 cgl.ce	liat	ai - 40 imile: 41	+91 3	3, INE 22 499 2	01A 5 152 3 Jar	R/L nuary,
- Man	Pro	nina Ject M	aire Aame: Aodel	Illur GIS Q	minati Roor UIC	n n k L 9 lx	Ma	out	– 111 m = 3	um	nina Moses 12: +91	nco	d, We 95 198 www.	abu	liat	ai - 40 imile: 41	+91 3	3, INE 22 499 2	DIA 5 152	R/L nuary,
IIIun 0.50	Pro Pro Pro 238	pject M ject M ject M 10.97 249	Aire Aame: Aodel Ma 1.45 259	E IIIur : GIS Q erage x / Mi 1.92 268	minati Roor UiC = 311 n: 1.5 2.39 274	n n k L 9 lx 163 2.87 281	Ma Av 3.34 286	ximu e / M 3.82 288	- 111 m = 3 in: 1.3 4.29 290	UM 772 lx 340 4.76 290	100505 2: +91 N 5.24 290	5.71	e T 6.18 288	abu 238 I: 6.66	7.13 281	ai - 40 imile: 4	8.08 269	22 499 22 499 2 Dist 8.55 261	3 Jar 3 Jar <u>9.03</u> 251	1 R/L nuary, 9.50 240
Illun	Pro Pro Pro	pject M ject M ject M	Name: Nodel Avi Ma 1.45	Illui : GIS Q Prage x / Mi 1.92	minati Roor UIC = 311 n: 1.5 2.39	ion n k L 9 lx 163 2.87	Ma Av 3.34	ximu re / M 3.82	— III m = 3 in: 1.3	um 72 lx 340 4.76	Moses 2: +91	5.71	e T 6.18	abu 238 I: 6.66	Ilat 7.13	ai - 44 imile: 41	8.08	22 499 22 2 499 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 Jar	1 R/L nuary, 9.50
Illun 0.50 0.97 1.45 1.92	Pro Pro 0.50 238 248 259 267	nina oject h oject h 0.97 249 261 272 282	Avro Model 1.45 259 272 284 295	Eliture : GIS Q erage × / Mi 1.92 268 282 294 305	minati Roor UIC 2.39 274 289 302 314	n ion k L 2.87 281 296 310 322	Ma Av 286 302 315 328	ximu e / M 3.82 288 304 319 332	D. Telep m = 3 in: 1.3 290 306 320 333	UIII 772 lx 340 4.76 306 321 334	Moses 2: +91 5.24 290 306 321 334	Roase 22 49 Inicia 5.71 289 305 320 333	d, W, e T, www. 6.18 288 304 319 332	abu 238 l: 6.66 302 316 328	Aumbo Facs 5.in/lð 1281 281 297 311 323	ai - 44 imile: ii ion 7.61 275 290 304 315	8.08 269 284 296 307	3; INC 22 499 2 2 2 01st 8.55 261 274 286 297	DIA 5 152 ⁻ 3 Jar 4 152 ⁻ 2 152 ⁻ 9.03 251 263 274 284	r (m) 9.50 240 251 261 269
IIIun 0.50 0.97 1.45	Pro Pro Pro 238 248 259	nina ject N ject N 0.97 249 261 272	Ave Ave Model 1.45 259 272 284	Div : Illui : GIS Q arage x / Mi 1.92 268 282 294	minati Roor UIC 2.39 274 289 302	n n k L 9 lx 163 2.87 281 296 310	Ma Av 3.34 286 302 315	ximu e / M 3.82 288 304 319	- 111 m = 3 in: 1.: 4.29 290 306 320	UM 72 lx 340 4.76 290 306 321	Moses 2: +91 N 5.24 290 306 321	Road 22 49 linimi 8.71 289 305 320	e T 6.18 288 304 319	abu 238 l: 6.66 302 316	Aumba Facs 0, in//8 1 1 1 2 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 2 8 1 8 1	ai - 44 imile: 1 1 7.61 275 290 304	8.08 269 284 296	3; INC 22 499 2 2 Disi 8.55 261 274 286	DIA 5 152 ⁻ 3 Jar 4 152 ⁻ 2 152 ⁻ 9.03 251 251 263 274	R/L nuary, 9.50 240 251 261
Illun 0.50 0.97 1.45 1.92 2.39 2.87 3.34	Pro Pro 238 248 259 267 274 281 285	nina oject N ject N 249 261 272 282 290 297 302	Ave Ave Model 1.45 259 272 284 295 304 311 317	Div : GIS Q erage x / Mi 1.92 288 294 305 315 323 329	minati Roor uic 2.39 274 289 302 314 324 333 339	n k L 281 296 310 322 333 342 348	Ma 3.34 286 302 315 328 339 348 355	ximu e / M 3.82 288 304 319 332 343 352 359	D. Telep m = 3 in: 1.: 306 320 333 345 354 361	UUM 72 lx 340 4.76 290 306 321 334 345 354 362	Moses 2: +91 1 290 306 321 334 335 354 362	Roaa 22 45 100 100 100 100 100 100 100 100 100 10	e T 6.18 288 304 319 332 343 352 359	abu 238 l: 6.66 286 302 316 328 339 348 335	Aumbo Facs D.in//8 201 201 201 323 334 342 349	ai - 44 imile: imile: 41 7,61 275 290 304 315 325 334 340	8.08 8.08 269 284 295 307 317 325 331	22 499 22 499 2 2 0 158 8.55 261 274 286 297 306 313 319	DIA 5 152" 3 Jar 3 Jar 9.03 251 263 274 284 292 299 304	r (m) 9.50 240 251 261 269 277 283 288
Illun 0.50 0.97 1.45 1.92 2.39 2.87 3.34 3.82	Pro Pro 238 248 259 267 274 281 285 289	nina oject N ject N 249 261 272 282 290 297 302 306	Name: Ave Model 1.45 259 272 284 295 304 311	Div Illuc GIS Q erage x / Mi 1.92 288 294 305 315 323 329 334	minati Roor UIC 2.39 274 289 302 314 324 333	n bion k L 281 296 310 322 333 342 348 354	Ma 3.34 286 302 315 328 339 348 355 360	ximu 3.82 288 304 319 332 343 352 359 364	D. Telep m = 3 in: 1.: 306 320 333 345 354 361 366	72 lx 72 lx 4.76 290 306 321 334 345 354 362 362 367	Mosee 2: +91 5.24 290 306 321 334 345 354 362 367	Roaa 22 45 22 45 100 100 100 100 100 100 100 100 100 10	d, W, e T, www. 6.18 288 304 319 332 343 352 359 364	abu 238 l: 6.66 302 316 328 339 348 355 360	Aumbo Faces p.in//8 111 207 311 323 334 342 349 354	ai - 44 imile: imile: i l 7.61 275 290 304 315 325 334 340 345	8.08 8.08 269 284 296 307 317 325	22 499 22 499 2 2 2 305 313 319 323	DIA 5 152" 3 Jar 3 Jar 9.03 251 263 274 284 292 299 304 308	(m) 9.50 240 251 261 261 263 277 283 288 291
Illun 0.50 0.97 1.45 1.92 2.39 2.87 3.34	Pro Pro 238 248 259 267 274 281 285	nina oject N ject N 249 261 272 282 290 297 302	Ave Ave Madel 1.45 259 272 284 295 304 311 317 321	Div : GIS Q erage x / Mi 1.92 288 294 305 315 323 329	minati Roor uic 2.39 274 289 302 314 324 333 339 344	n k L 281 296 310 322 333 342 348	Ma 3.34 286 302 315 328 339 348 355	ximu e / M 3.82 288 304 319 332 343 352 359	D. Telep m = 3 in: 1.: 306 320 333 345 354 361	UIII 72 lx 340 4.76 290 306 321 334 345 354 354 362	Moses 2: +91 1 290 306 321 334 335 354 362	Roaa 22 45 100 100 100 100 100 100 100 100 100 10	e T 6.18 288 304 319 332 343 352 359	abu 238 l: 6.66 286 302 316 328 339 348 335	Aumbo Facs D.in//8 201 201 201 323 334 342 349	ai - 44 imile: imile: 41 7,61 275 290 304 315 325 334 340	8.08 269 284 296 307 317 325 331 336	22 499 22 499 2 2 0 158 8.55 261 274 286 297 306 313 319	DIA 5 152" 3 Jar 3 Jar 9.03 251 263 274 284 292 299 304	r (m) 9.50 240 251 261 269 277 283 288
IIIun 0.50 0.97 1.45 1.92 2.39 2.87 3.34 3.82 4.29	Pro Pro 238 248 259 267 274 285 289 291 292 292	nina ject M 0.97 249 249 249 290 297 302 308 309 309	Ave Ave Ma 1.45 259 272 284 295 304 311 317 321 324	Ellucional constante const	minati Roor UIC 2.39 274 289 302 314 323 339 344 347	n k L 9 ix 281 281 330 322 333 342 354 354 354 355 358 358	Ma 286 302 315 328 339 348 355 360 363 365 365	ximu e / M 3.82 288 304 319 332 343 352 359 364 368 369 369		72 Ix 340 4.76 290 306 321 334 345 354 362 367 370 372 372	Mosee 2: +91 10 10 10 10 10 10 10 10 10 1	Roage 22 45 Inimi 5.71 289 305 320 333 344 354 361 366 370 371 371	e T 6.18 288 304 319 332 343 352 359 364 368 369 369	abu 238 l: 6.66 286 302 316 328 339 348 339 348 339 348 339 348 355 360 364 365	Aumbo Facs 5, in//8 1111 2017 3281 2017 3111 323 334 342 349 354 354 355 358 358	ai - 44 imile: i i 275 290 304 315 325 334 340 345 348 349 349	8.08 269 284 296 307 317 325 331 336 338	22 499 22 499 2 2 2 305 313 319 323 325 327 326	DIA 5 152' 3 Jar 23 Jar 9.03 251 263 274 284 292 299 304 308 310 311 311	r (m) 9.50 240 251 261 263 277 288 291 293 294 294 294
IIIun 0.50 0.97 1.45 1.92 2.39 2.87 3.34 3.82 4.29 4.76 5.24 5.71	Pro Pro Pro 0.50 238 248 259 267 274 285 289 291 292 292 292 291	nina ject M 0.97 249 249 249 290 297 302 309 309 309 309	Averation in the second	Ellucional Constanti Ellucional Constanti Ellucional Ellucional Constanti Ellucional Constanti Ellucional Constanti Ellucional Constanti	minati Roor uic 2.39 274 289 302 314 324 333 339 344 349 349 347	n ion k L 9 ix 2.87 281 296 310 322 333 342 354 354 354 355 358 358 358 358	Ma Av 286 302 315 328 339 348 355 365 365 365 365 365 363	ximuu 3.82 288 304 319 332 343 352 343 352 359 384 368 369 369 369 369		72 Ix 340 4.76 290 306 321 334 345 362 367 370 372 372 372 370	Mosees 2: +91 5.24 290 306 321 334 345 345 345 345 345 345 345 345 345	Roage 22 45 Inimi 5.71 289 305 320 333 344 354 366 370 371 371 370	e T 6.18 288 304 319 332 343 352 359 364 369 369 369 367	abu 238 l: 6.66 286 302 316 328 339 348 339 348 339 348 339 348 355 360 364 365 365 365	Aumbo Facs p.in//d 11at x 7.13 281 297 311 323 334 334 334 354 354 355 358 368 368	7.61 7.61 275 290 304 316 325 324 340 345 348 349 349 348	8.08 269 284 295 307 325 331 336 338 339 340 338	22 499 22 499 22 499 23 22 261 274 286 297 306 313 319 323 325 327 326 325 327	DIA 5 152 ⁻ 3 Jar 23 Jar 9.03 251 263 274 284 292 299 304 308 310 311 311 310	1 R/(L) 9.50 240 251 261 261 261 263 277 283 283 294 293
IIIun 0.50 0.97 1.45 1.92 2.39 2.87 3.34 3.82 4.29 4.76 5.24	Pro Pro 238 248 259 267 274 285 289 291 292 292	nina ject M 0.97 249 249 249 290 297 302 308 309 309	Averation in the second	Ellucional constante const	minati Roor uic 2.39 274 289 302 314 324 333 339 344 349	n k L 9 ix 281 281 330 322 333 342 354 354 354 355 358 358	Ma 286 302 315 328 339 348 355 360 363 365 365	ximu e / M 3.82 288 304 319 332 343 352 359 364 368 369 369		72 Ix 340 4.76 290 306 321 334 345 354 362 367 370 372 372	Mosee 2: +91 10 10 10 10 10 10 10 10 10 1	Roaa2245 2245 1000 1000 1000 1000 1000 1000 1000 10	e T 6.18 288 304 319 332 343 352 359 364 368 369 369	abu 238 l: 6.66 286 302 316 328 339 348 339 348 339 348 339 348 355 360 364 365	Aumbo Facs 5, in//8 1111 2017 3281 2017 3111 323 334 342 349 354 354 355 358 358	ai - 44 imile: i i 275 290 304 315 325 334 340 345 348 349 349	8.08 269 284 295 307 317 325 331 336 338 339 340	22 499 22 499 2 2 2 305 313 319 323 325 327 326	DIA 5 152' 3 Jar 23 Jar 9.03 251 263 274 284 292 299 304 308 310 311 311	r (m) 9.50 240 251 261 263 277 288 291 293 294 294 294
IIIun 0.50 0.97 1.45 1.92 2.39 2.87 3.34 3.82 4.29 4.76 5.24 5.71 6.18	Pro Pro Pro 238 248 259 267 274 289 299 299 299 299 299 299 299 299 299	nina oject h 0.97 249 261 272 282 290 297 302 308 309 309 309 309 309	Avro Avro Ma 1.45 259 272 284 295 304 311 317 321 324 325 324 325 324 324 321	Elitut E GIS CQ erage x / Mi 1.92 268 294 305 323 334 333 334 338 337 334	minatti Roor uic 2.39 274 289 302 314 324 333 333 334 344 347 344	n ion k L 281 296 310 322 333 342 348 354 354 355 358 356 356 356	Ma 3.34 286 302 315 328 339 348 355 360 363 365 365 365 365 365 365 365	288 3.82 288 304 319 332 343 352 343 362 369 364 369 369 369 369 369 369 369 369		UUU 72 lx 340 290 306 321 334 345 362 367 370 372 372 370 367	Moses 2: +91 1:	Roage 22 45 5.71 8.71 289 305 320 333 344 354 354 354 354 354 354 354 354	e T. 6.18 288 304 319 332 343 352 364 368 369 369 367 364	abu 238 l: 6.66 286 302 316 328 339 348 339 348 339 348 339 360 364 365 364 365 364 365	Aumbo Facs p.in//d 7.13 201 207 311 323 334 234 349 354 359 354 359 358 368 367 354	7,61 7,61 275 290 304 315 325 334 345 348 349 349 348 349 348 349	8.06 4-91 : 8.08 269 284 296 307 317 325 331 335 338 339 340 338 338 339	22 499 22 499 2 0 155 8.55 261 274 286 297 306 313 319 323 325 327 326 325 327 326 323	DIA 5 152' 3 Jar ance 9.03 251 263 274 284 299 304 308 310 311 311 310 308	r (m) 9.50 240 251 261 261 261 263 293 293 293 294 294 294 294 294
0.50 0.97 1.45 1.92 2.39 2.87 3.34 3.82 4.29 4.76 5.24 5.24 6.71 6.18 6.66 7.13 7.61	Prop Pro 238 248 259 257 274 285 289 291 292 292 292 292 292 293 293 293 294 299 294 299 292 292 294 299 294 299 294 299 294 299 295 299 295 299 297 207 207 207 207 207 207 207 207 207 20	nina ject h ject h 249 249 249 249 290 309 309 309 309 309 309 309 3	Avra Avra Mai 1.45 259 272 284 295 304 311 317 321 324 325 324 325 324 325 324 325 324 325 321 311 304	Div Illui GIS CQ CQ CQ CQ CQ CQ CQ CQ CQ CQ	minatti Roor uic 2.39 274 289 302 314 324 333 339 344 347 348 349 347 348 349 347 348 349 347 348 349 347	n k L 9 ix 2.87 286 322 333 342 348 354 358 358 358 358 358 358 358 358 358 358	Ma 3.34 286 302 315 328 339 348 355 360 365 365 365 365 365 365 365 365	ximu e / M 3.82 288 304 319 332 343 343 343 343 343 369 364 369 369 369 369 369 369 369 369 367 351 342		72 Ix 340 4.76 290 306 321 334 345 364 362 367 370 372 370 372 370 372 370 372 370 372 370 372 370 367 367 364 345	Mosees 2: +91 1 1 1 1 1 1 1 1 1 1 1 1 1	Roams 22 45 1000 1000 1000 1000 1000 1000 1000 10	e T. 6.18 288 304 319 343 359 364 369 364 369 367 364 359 367 364 359 367 364 369 367 364 369 367 364 369 367 367 367 368 369 367 367 367 368 369 367 367 367 367 368 369 367 367 367 367 367 367 367 367	238 l: 6.66 206 302 316 328 339 348 355 360 365 365 365 365 365 365 365 365 365 365	Aumbo Faces Description Control Contro	7,61 275 290 304 315 325 324 340 345 348 349 349 348 349 348 349 348 349 348 349 348 349 348	8.08 269 284 296 307 317 336 338 339 340 338 339 340 338 339 340 338 339 340 338 339 340 338 339 340 338 339	22 499 22 499 2 2 2 2 2 2 2 2 3 2 2 6 1 2 2 4 2 2 6 3 2 3 3 2 6 3 2 3 3 2 6 3 2 3 2 6 3 2 3 2	DIA 5 152 3 Jar 3 Jar 9.03 251 263 274 284 284 284 308 310 311 311 310 308 304 298 291	1 (m) 9.50 240 251 261 263 277 283 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 295 297 287 287 287 287 287 287 287 287 287 28
IIIun 0.50 0.97 1.45 1.92 2.39 4.76 5.24 5.71 6.18 5.24 5.71 6.71 8.66 7.13 7.61 8.08	Properties of the second secon	nina ject h ce: 0.97 249 261 272 280 297 302 309 309 309 309 309 309 309 309	Avro Maire Avro Mai 1.45 259 272 284 295 304 311 317 321 324 325 324 325 324 321 311 304 294	Div : dis () cission () () () () () () () () () ()	minati Roor 2.39 274 289 302 314 324 333 334 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 344 339 344 349 347 344 339 344 349 332 344 349 344 349 332 344 349 344 349 344 349 332 344 349 344 349 344 349 332 344 349 332 344 349 332 344 333 339 344 349 332 344 349 344 347 344 349 332 344 332 344 332 344 332 332 332 344 344	n 9 1x 2.87 281 296 310 322 333 342 354 354 356 358 356 358 356 358 356 353 348 348 348 341 332 321	Ma 3.34 286 302 315 328 339 348 355 360 365 365 365 365 365 365 365 365	ximu 3.82 288 304 319 332 343 359 364 369 369 364 369 364 369 364 369 364 351 351 351 351 351		72 bx 340 4.76 324 340 306 321 334 364 364 364 364 370 372 372 370 367 367 361 354 354 354	Mosese 2: +91 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	Roam 22 46 22 46 1000 1000 1000 1000 1000 1000 1000 10	e T; www. e T; um = 6.18 286 304 319 332 343 352 359 364 368 369 369 369 364 368 369 364 351 351 351 351 351	abu 238 l: 6.66 328 339 348 339 339 348 339 339 339 339 339 339 339 339 339 33	Aumbo Faces o.in//d 11at 7.13 201 3297 311 323 334 342 349 354 358 358 358 358 358 358 358 358 358 358	7.61 7.61 275 290 304 315 326 334 348 349 348 348 348 348 348 348 348 348 348 348	8.08 +91 2 269 284 284 284 284 284 284 337 338 339 340 338 338 339 340 338 335 338 339 340 338 335 330 338 335 330	22 499 22 499 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 2 3 3 2 3 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 5 5 5	Ance 3 Jar 3 Jar 3 Jar 2 3 Jar 9.03 251 263 274 282 304 308 310 311 311 310 308 291 282	(m) 9.50 240 261 261 263 293 293 294 293 294 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 295 295 295 295 295 295 295 295 295 295
IIIun 0.50 0.97 1.45 1.92 2.39 2.87 4.29 4.76 5.24 5.71 6.18 6.71 6.18 6.7.13 7.61 8.08 8.55	Property 238 248 259 267 274 289 289 289 289 289 289 289 289 289 289	oject h oject h oject h 249 261 272 282 282 282 282 282 283 309 309 309 309 309 309 309 309 309 30	Avre Avre Ma: 259 272 284 304 311 317 324 325 325 324 325 324 325 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 324 325 325 324 325 325 325 325 325 325 325 325 325 325	Div : GIS cGIS cGIS (Q 204 305 323 334 337 338 337 348 348 348 348 348 348 348 348	isio minati Roor 2.39 274 289 302 314 324 333 339 344 348 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 349 347 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 348 347 348 349 347 348 347 347 348 349 347 348 347 332 339 339 347 347 348 347 339 332 347 347 348 347 332 347 347 348 347 348 347 348 347 348 347 348 347 348 347 348 347 348 347 348 347 348 347 347 348 347 347 348 347 348 347 347 347 347 347 347 347 348 347 347 347 347 347 347 347 347 347 347	n k L 2.87 281 296 310 322 333 342 354 354 355 358 356 353 358 356 353 348 354 357 358 356 353 348 354 357 358 358 358 358 358 358 358 358 358 358	Ma 3.34 286 302 315 328 339 348 355 360 365 365 365 365 365 365 365 365 365 365	ximue / M 3.82 288 304 319 332 343 352 364 369 369 369 369 369 369 369 369 369 369		72 lx 340 306 321 334 345 367 370 372 370 372 370 361 354 354 354 354 354 354 354 354 354 354	Mosese 2: +91 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	Roams 22 45 5.71 5.71 305 320 333 344 354 353 370 371 370 366 361 370 371 370 366 361 370 361 370 361 370 363 344 332	e T: 6.18 286 304 319 332 343 359 364 369 369 369 369 369 369 369 369	abu 238 l: 6.66 302 316 328 339 348 339 348 339 348 365 366 365 366 365 366 365 366 366 366	Aumbo Faces D. in//8 1111 207 3281 2281 323 334 342 3354 3454 3459 3568 357 357 358 357 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 358 357 357 358 357 357 357 357 357 357 357 357 357 357	7,61 7,61 275 290 304 315 325 334 348 349 349 348 348 348 348 348 348 348 348 348 348	8.08 +91 : +91 : 269 284 284 284 337 338 338 338 338 338 338 338 338 338	2 499 22 499 22 499 22 499 23 499 249 266 297 306 313 319 323 325 325 326 326 326 326 326 328 312 304 295 284	DIA 5 152- 3 Jar 23 Jar 201 263 274 284 299 308 308 310 311 310 308 304 308 304 308 291 282 299 201 282 299	R/(1 100000000000000000000000000000000000
IIIun 0.50 0.97 1.45 1.92 2.39 4.76 5.24 5.71 6.18 5.24 5.71 6.71 8.66 7.13 7.61 8.08	Properties of the second secon	nina ject h 0.97 249 261 272 280 297 302 309 309 309 309 309 309 309 309	Avro Maire Avro Mai 1.45 259 272 284 295 304 311 317 327 324 325 324 325 324 325 324 321 311 304 294	Div : dis () cission () () () () () () () () () ()	minati Roor 2.39 274 289 302 314 324 333 334 347 348 349 347 348 349 347 348 349 347 348 349 347 348 349 347 344 339 344 349 347 344 339 344 349 332 344 349 344 349 344 349 332 344 349 344 349 332 344 349 332 344 333 339 344 349 344 333 339 344 344	n 9 1x 2.87 281 296 310 322 333 342 354 354 356 358 356 358 356 358 356 353 348 348 341 332 321	Ma 3.34 286 302 315 328 339 348 355 360 365 365 365 365 365 365 365 365	ximu 3.82 288 304 319 332 343 359 364 369 369 364 369 364 369 364 369 364 351 351 351 351 351		72 bx 340 4.76 324 340 306 321 334 364 364 364 364 370 372 372 370 367 367 361 354 354 354	Mosese 2: +91 1: 1: 1: 1: 2: 2: 2: 2: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4	Roam 22 46 22 46 1000 1000 1000 1000 1000 1000 1000 10	e T; www. e T; um = 6.18 286 304 319 332 343 352 359 364 368 369 369 369 364 368 369 364 351 351 351 351	abu 238 l: 6.66 328 339 348 339 338 339 338 339 348 339 338 339 338 339 339 338 339 339 33	Aumbo Faces o.in//d 11 201 3201 3201 3207 3314 3207 334 342 342 343 354 356 356 356 356 356 356 356 357 354 349 341 333 322	7.61 7.61 275 290 304 315 326 334 348 349 348 348 348 348 348 348 348 348 348 348	8.08 +91 2 269 284 284 284 284 284 284 337 338 339 340 338 338 339 340 338 335 338 339 340 338 335 330 338 335 330	22 499 22 499 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 2 3 3 2 3 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 3 2 5 5 5 5	Ance 3 Jar 3 Jar 3 Jar 2 3 Jar 9.03 251 263 274 282 304 308 310 311 311 310 308 291 282	(m) 9.50 240 261 261 263 293 293 294 293 294 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 295 295 295 295 295 295 295 295 295 295
IIIuun 0.50 0.97 1.45 2.39 2.87 3.34 3.82 4.29 4.29 4.29 4.29 4.29 4.29 4.29 4.2	Prop Pro 238 248 259 259 267 229 289 289 289 289 289 289 289 289 289	oject h oject h oject h oject h 249 249 249 297 302 297 309 309 309 309 309 309 309 309 309 309	Avr Avr Ma 1.45 259 272 284 311 317 324 325 324 325 325 324 325 325 324 325 325 324 325 324 325 324 325 324 325 324 325 324 321 317 310 4 224 224	Div Illui constant cons	isio minati Roor 2.39 274 289 302 302 314 324 333 339 344 347 348 349 347 348 349 347 348 349 347 348 349 342 332 332 332 332 332 332	n k L 9 ix 281 296 310 322 333 342 348 357 358 358 358 358 358 358 358 358 358 358	Ma 3.34 286 302 315 328 339 348 355 360 365 365 365 365 365 365 365 365 365 365	ximu 3.82 288 304 319 332 343 362 369 364 369 367 364 369 367 364 369 351 342 369 367 364 369 351 342 343 369 367 364 369 357 364 369 367 364 369 367 367 367 367 367 367 367 367 367 367		72 bx 72 bx 340 4.76 290 306 321 334 345 364 362 367 370 372 370 367 372 370 367 372 370 367 372 370 367 372 370 367 372 370 367 372 370 367 372 370 367 372 370 367 372 370 372 370 372 370 372 370 372 370 372 370 372 370 370 370 372 370 370 372 370 370 370 370 370 370 370 370 370 370	Mosees : +91 .: +91 .: .: .: .: .: .: .: .: .: .:	Roam 22 45 305 305 305 305	e T 6.18 288 304 319 322 359 364 369 364 369 367 364 369 367 364 369 367 364 369 367 364 369 367 364 369 367 368 369 367 368 369 369 367 368 369 369 369 369 369 369 369 369	238 1: 238 1: 238 1: 238 1: 286 302 316 328 339 349 349 349 349 349 349 349 349 349	Aumbo Faces D. in//8 201 201 201 201 201 201 201 201 201 201	7,611 275 290 304 315 325 340 345 340 348 349 349 349 349 349 349 349 349 349 349	8.08 269 284 295 307 317 325 331 326 338 339 340 338 339 340 338 339 340 338 339 340 338 339 340 338 339 340 224 338 339 340 224 338 339 340 224 338 339 340 224 338 339 340 340 340 340 340 340 340 340 340 340	2 Mig 22 499 22 499 22 499 22 499 22 499 22 499 22 499 22 499 23 499 24 295 24 295 284 295 284 295 284 295	A A A A A A A A A A A A A A A A A A A	R/(nuary, (m) 9.50 240 251 261 263 283 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 293 294 203 294 294 294 294 294 294 294 294 294 294

92

Projec Projec	t Name: Illumination t Model: GIS Room		
		ut - Project Data Sheet	
		Project Data	
Room	Length: 10.0 m	Ceiling Reflectance: 0.80	,
Ceilin	Width: 10.0 m ng Height: 5.80 m	Wall Reflectance: 0.50 Floor Reflectance: 0.20	
work	plane Height: 0.40 m	Maintenance Factor: 0.70	,
	Lumin	aire Type Summary	
Number	Luminaire Type	Catalogue Number	
14	INDUSTRIAL	IPC1424EB	
Maximum I Minimum II Jniformity Jniformity Fotal lamp Jtilance: Fotal electr	uminance (Eave): 319 /x Illuminance (Emax): 372 /x a Illuminance (Emin): 238 /x a 1 - Emin / Emax: 0.640 (1 2 - Emin / Eave: 0.747 (1 :	squ. m	
Crom	on results are based on the nomi	CGLux v3.15 Copyright (C) Photometric Solutions Int Inal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9' www.cgl.co.in/l&i	other design design.
Crom Lumii	on results are based on the nomi s (M.F. / R.F.). Any deviations in pton Greaves naire Division st Name: Illumination t Model: GIS Room	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/i&i	other design design. 18, INDIA 1 22 496 1521 R/
Crom Lumii	on results are based on the nomi s (M.F. / R.F.). Any deviations in pton Greaves naire Division st Name: Illumination t Model: GIS Room	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9	other design design. 18, INDIA 1 22 496 1521 R/
Crom Lumii	on results are based on the nomi s (M.F. / R.F.). Any deviations in pton Greaves naire Division st Name: Illumination t Model: GIS Room	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/i&i	other design design. 18, INDIA 1 22 496 1521 R/
Projec Projec	t Name: Illumination t Model: GIS Room	inal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/l&l	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Model: GIS Room Quick Lay	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/i&i	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Model: GIS Room 2.50 1 0.71 1.43	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/i&i	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Model: GIS Room Quick Lay	inal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/l&l	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Model: GIS Room 2.50 1 0.71 1.43	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/i&i	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Model: GIS Room 2.50 1 0.71 1.43	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facsimile: +9 www.cgl.co.in/i&i	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	at Name: Illumination t Model: GIS Room a. (0.71) 2.50 0.71 1.43 3	nel values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facaimile: +9 www.cgl.co.in/l&l	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	at Name: Illumination t Model: GIS Room a. (0.71) 2.50 0.71 1.43 3	nel values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai - 400 0 Telephone: +91 22 495 1983 Facaimile: +9 www.cgl.co.in/l&l	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination Cuick Lay 2.50 1 2.50 1 1 1 3 5 1 1 1 1 1 1 1 1	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai 400 0 Tolephone: +91 22 495 1983 Facsimile: +9 www.cgi.co.in/i&i	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination Cuick Lay 2.50 1 2.50 1 1 1 3 5 1 1 1 1 1 1 1 1	nal values of lamps, ballasts, luminaires and these parameters may affect the illumination Dr. E. Moses Road, Worli, Mumbai 400 0 Tolephone: +91 22 495 1983 Facsimile: +9 www.cgi.co.in/i&i	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Name: Illumination t Model: GIS Room a.c. 1 c.c. 1	s.00 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	en results are based on the nominations in Any deviations in Any deviating in Any deviations in Any deviations in Any deviations in Any de	s.oo 2 4 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	t Name: Illumination t Name: Illumination t Model: GIS Room a.c. 1 c.c. 1	s.00 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	an results are based on the nominations (M.F. / R.F.). Any deviations in pton Greaves maire Division at Name: Illumination Quick Lay 0.71 1.43 3.4 3.4 3.4 3.4 1.43 1.43 1.4	soo 224 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	en results are based on the nominations in Any deviations in Any deviating in Any deviations in Any deviations in Any deviations in Any de	s.oo 2 4 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a	other design design. 118, INDIA 1 22 496 1521 23 January
Projec Projec	an results are based on the nominations (M.F. / R.F.). Any deviations in pton Greaves maire Division at Name: Illumination Quick Lay 0.71 1.43 3.4 3.4 3.4 3.4 1.43 1.43 1.4	soo 224 a 4 a 4 a 4 a 4 a 4 a 4 a 4 a	other design design. 118, INDIA 1 22 496 1521 23 January

Figure B.1: Illumination Design of GIS Room