
Modeling SYSTEMC and TLM2.0 models for
various elements of PercSense Architecture for

Machine learning IP

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Electronics & Communication Engineering

(Communication Engineering)

BY

Kasturi D. Patil

(12MECC34)

Electronics and Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382481

May 2014

Modeling SYSTEMC and TLM2.0 models for
various elements of PercSense Architecture for

Machine learning IP

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Electronics & Communication Engineering

(Communication Engineering)

BY

Kasturi D. Patil

(12MECC34)

Under The Guidance Of

Dr. N.P Gajjar

Electronics and Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382481

May 2014

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Tech-

nology in Communication Engineering at Nirma University and has not been

submitted elsewhere for a degree.

ii) Due acknowledgement has been made in the text to all other material used.

Kasturi D.Patil

iv

Certificate

This is to certify that the Major Project entitled ”Modeling SYSTEMC and

TLM2.0 models for various elements of PercSense Architecture for Ma-

chine learning IP” submitted by Kasturi D. Patil (12MECC34), towards the

partial fulfillment of the requirements for the degree of Master of Technology in

Communication Engineering of Nirma University, Ahmedabad is the record of

work carried out by her under my supervision and guidance. In my opinion, the

submitted work has reached a level required for being accepted for examination. The

results embodied in this thesis, to the best of my knowledge, haven’t been submitted

to any other university or institution for award of any degree or diploma.

Date : Place : Ahmedabad

Guide : Program Coordinator:

Dr. N. P. Gajjar Dr. D. K Kothari

(Professor,EC) (Professor and section head,EC)

HOD,EE : Director

Dr. P. N. Tekwani Dr. K Kotecha

(Professor,EE) (Director, IT, NU)

v

ACKNOWLEDGEMENT

I would like to express my gratitude and sincere thanks to my guides and thesis su-

pervisors Dr.N. P. Gajjar and Krishnakumar Nair for their constant guidance

and motivation. I am deeply indebted to Dr. P.N Tekwani,Head of Electrical

Engineering Department and Dr. D. K. Kothari, Coordinator M.Tech Communi-

cation Engineering and Dr. K Kotecha, Director, Institute of Technology Nirma

University, for allowing me to undertake this thesis work and for his guidelines during

the review process. Without their experience and insights, it would have been very

difficult to do quality work. I wish to thank my friends of my class for their delightful

company which kept me in good humor throughout the year. Last, but not the least,

no words are enough to acknowledge constant support and sacrifices of my family

members because of whom I am able to complete the degree program successfully.

Kasturi D. Patil

12MECC34

vi

Abstract

With computing systems these days having the capability of being driven by natural

interfaces such as gestures, speech recognition, etc., there is an ever growing need

for the systems being built in the future to have more complexity in different do-

mains and hence heavy computing capability to support the underlying Perceptual

Computing algorithms. In particular Object detection and recognition of Machine

Vision are heavy on compute, also ISP/GPU processors are not very efficient for data

manipulation to feed into detection/extraction stages since these stages require data

to be extracted from different locations of the integral image. There is a need for effi-

cient extraction of these data elements. Most of the fast implementations of machine

vision algorithms for Object recognition make use of Integral Image based (32 bit)

processing, and this is not very efficient to be processed on an ISP.

The Project aims at improvement of power-performance and alleviating workloads for

machine learning algorithms like GMM(Gaussian Mixture Model), KNN(K-Nearest

Neighbor), DBNN(Deep Belief Neural Network), CDBNN(Convolutional Deep Belief

Neural Network) by providing custom accelerator.

The algorithms that have been identified with a common structure for accelera-

tion are GMM for speech based Senone classifier, , K Nearest Neighbor (KNN) based

Classifier (Object). Some of the motivating factors for an accelerator of this nature

is to be very efficient for a class of Detection/Feature Extraction, Classification and

Machine Learning algorithms including Speech based, with the help of this project

much better metrics for performance/power/price can be obtained as compared to

ISP/GPU based general purpose based vector DSP systems, and this proposed archi-

tecture is highly scalable and configurable.

vii

Abbreviation Notation and Nomenclature

TLM . Transaction Level Modeling

IP . Intellectual Property

CPU . Central Processing Unit

GPU . Graphics Processing Unit

ISP . Internet Service Provider

GMM . Gaussian Mixture Model

KNN .K-Nearest Neighbor

DBNN . Deep Belief Neural Network

CDBNN . Convolutional Deep Belief Neural Network

PE . Processing Engine

ML . Machine Learning

FSM . Finite State Machine

RBM . Restricted Boltzmann Machine

SIMD . Single Instruction Multiple Data

MAC . Multiply And Accumulate

GDB . GNU Debugger

RTL . Register Transfer Level

CPP . C Plus Plus

Contents

Declaration iii

Certificate iv

Abstract vi

Abbreviation Notation and Nomenclature vii

List of Figures 1

1 Introduction 2

1.1 Project Definition . 2

1.2 Objective of Study . 3

1.3 Scope of Work . 3

1.4 Thesis Organization . 4

2 Literature Survey 5

2.1 MACHINE LEARNING . 5

2.1.1 Applications of Machine Learning 6

2.1.2 Machine Learning Algorithms 7

2.2 SYSTEMC(IEEE-1666) . 12

2.2.1 MODEL OF TIME : . 14

2.2.2 MODULES : . 14

2.2.3 PROCESSES AND EVENTS : 14

viii

CONTENTS ix

2.2.4 PORTS, INTERFACES AND CHANNELS : 15

2.3 PYTHON(SCRIPTING) . 15

2.3.1 PYTHON FEATURES: . 16

2.3.2 Why PYTHON?:[8] . 17

2.4 TRANSACTION LEVEL MODELING (TLM2.0) 18

2.4.1 Keypoints . 22

3 Modeling and verification of PE 27

3.1 PROCESSING ENGINE FLOW DIAGRAM 28

3.2 Machine learning algorithms in PE 29

3.3 Ramp up tasks in SYSTEMC . 30

3.3.1 CODE SNIPPET . 31

3.3.2 MODELING AND VERIFIDCATION OF THE PROCESS-

ING ENGINE MODEL . 34

3.3.3 REASON BEHIND SYSTEMC 41

3.4 Verif using PYTHON . 42

3.4.1 WRITING A MAKEFILE . 45

3.5 Conclusion . 46

4 Conversion of Percsense Arch into TLM2.0 47

4.1 Conclusion: . 54

5 Conclusion and Future Scope 55

5.1 Conclusion . 55

5.2 Future Scope . 56

References 56

List of Figures

2.1 A simple example of 3- Nearest Neighbor Classification) 9

2.2 Deep belief model . 10

2.3 SystemC language architechture . 13

2.4 Comaparison between Python and other languages 17

2.5 TLM2.0 classes . 20

3.1 mac.h(The header file) . 31

3.2 Mac.cpp (The cpp file) . 32

3.3 Test.h (Test bench file) . 33

3.4 pe packet.h . 35

3.5 pe.h . 36

3.6 pe.cpp(reset all the pipe stages and inputs) 37

3.7 pe.cpp(Define stg1,stg2 and stg3) . 38

3.8 pe.cpp(Define all the pipelines) . 39

3.9 Driver . 40

4.1 initiator.h . 48

4.2 initiator.cpp . 49

4.3 target.h . 50

4.4 target.cpp . 51

4.5 main.cpp . 52

4.6 PercSense architecture . 53

1

Chapter 1

Introduction

1.1 Project Definition

The purpose of the project as a whole is to implement the PercSense Architecture

for speeding up Perceptual Computing and Machine learning based algorithms. Per-

ceptual Computing (PerC) is a project undertaken within Intel Corporation tasked

with the research, development, and productization of technologies for Natural User

Interaction. [1] The objective of PerC is to explore consumer-focused hardware and

software applications of close-range hand and finger gestures, speech recognition, face

recognition and tracking, and augmented reality.PercSense is a configurable and scal-

able fixed function accelerator that yields high performance at low power consumption

for Computer Vision, Speech and in general Machine Learning (ML) workloads. Perc-

Sense ML IP in combination with a CPU/GPU/ISP is a unique approach wherein we

get the benefits of a programmable approach as well as a HW fixed function approach.

So, The PerC System Level Architechture aims at improvement of power-performance

and alleviating workloads for machine learning algorithms like GMM, KNN, DBNN,

CDBNN by providing custom accelerator.

The PerC System Level Architechture has a small part called Processing engine(PE).

The Processing engine has the following features:

2

CHAPTER 1. INTRODUCTION 3

• It is based on SIMD(Single instruction multiple data) architecture.

• It has mathematics which is common to various Machine Learning algorithms.

• It has fixed point arithmetic.

The Project aims at improvement of power-performance and alleviating workloads for

machine learning algorithms like GMM, KNN, DBNN, CDBN by providing custom

accelerator.

1.2 Objective of Study

The main objective of the Study is as Follows :

a. Ownership of Processing Engine Modeling

(1) Work closely with architecture team to understand Processing Engine (PE)

(2) Model Processing Engine using SystemC

(3) Compare PE cycle accuracy with RTL Feedback into SystemC

b. Functional verification of Processing Engine

c. Ownership of TLM2.0 model

1.3 Scope of Work

The Project focuses on the Machine Learning IPs and how they are modelled using

SystemC. The preceding chapters also explains the advantges of SystemC. Further-

more the scope of the project is extended to make the simulations faster. To make

them faster, TLM2.0 IEEE standard is used. How does TLM2.0 advantageous is

explained in the chapters to come. Furthermore, The project is based on artificial

intelligence and explores various Machine Learning Algorithms.

CHAPTER 1. INTRODUCTION 4

1.4 Thesis Organization

The title of the project says ” Modeling SYSTEMC and TLM2.0 models for vari-

ous elements of PercSense Architecture for Machine learning IP”.First chapter of the

thesis includes all the literature survey and theories studied required for the project.

This survey includes study about SystemC, TLM2.0, python,various algorithms of

machine learning etc.Chapter two includes Modeling and verification of PE for dif-

ferent Machine learning Algorithms. The algorithms taken under consideration are

DBNN, CNN,RBM. Chapter three includes exercises done in TLM2.0 and work done

on Percsense architechture using TLM2.0. The final chapter is conclusion and future

scope wherein all the work is concluded and future scope is cited.

Chapter 2

Literature Survey

2.1 MACHINE LEARNING

Computer learns from a series of events. When a new event is placed before it, it

makes a prediction based on what it has learnt. [1] Machine learning is Field of study

that gives computers the ability to learn without being explicitly programmed.

Tom Mitchell (1998) Well-posed Learning Problem:

A computer program is said to learn from experience E with respect to some task

T and some performance measure P, if its performance on T, as measured by P,

improves with experience E.

Machine Learning grew out of Artificial intelligence (AI). There are the following

machine learning algorithms:

• Supervised learning

• Unsupervised learning

5

CHAPTER 2. LITERATURE SURVEY 6

Supervised Learning: It is the machine learning task of inferring a function

from labeled training data. The training data consist of a set of training examples.

In supervised learning, each example is a pair consisting of an input object (typically

a vector) and a desired output value (also called the supervisory signal).

A supervised learning algorithm analyzes the training data and produces an inferred

function, which can be used for mapping new examples. An optimal scenario will

allow for the algorithm to correctly determine the class labels for unseen instances.

This requires the learning algorithm to generalize from the training data to unseen

situations in a ”reasonable” way.

Unsupervised Learning: In machine learning, the problem of unsupervised learn-

ing is that of trying to find hidden structure in unlabeled data. Since the examples

given to the learner are unlabeled, there is no error or reward signal to evaluate a

potential solution. This distinguishes unsupervised learning from supervised learning

and reinforcement learning.

Unsupervised learning is closely related to the problem of density estimation in statis-

tics. However unsupervised learning also encompasses many other techniques that

seek to summarize and explain key features of the data. Many methods employed in

unsupervised learning are based on data mining methods used to preprocess data.

2.1.1 Applications of Machine Learning

• Database mining: Large datasets from growth of automation/web. E.g., Web

click data, medical records, biology, engineering.

• Applications cant program by hand. E.g., Autonomous helicopter, most of

Natural Language Processing (NLP), Computer Vision.

• Handwriting Recognition.

• Speech recognition.

CHAPTER 2. LITERATURE SURVEY 7

• Face Recognition.

• Stock market prediction.

• Autonomous driving.

2.1.2 Machine Learning Algorithms

a. Gaussian Mixture Model

b. K-Nearest Neighbor

c. Deep Belief Networks

a. Gaussian Mixture Model : A Gaussian Mixture Model (GMM) is a para-

metric probability density function represented as a weighted sum of Gaussian com-

ponent densities. GMMs are commonly used as a parametric model of the probability

distribution of continuous measurements or features in a biometric system, such as

vocal-tract related spectral features in a speaker recognition system. GMM parame-

ters are estimated from training data using the iterative Expectation-Maximization

(EM) algorithm or Maximum a Posteriori (MAP) estimation from a well-trained prior

model.

A Gaussian mixture model is a weighted sum of M component Gaussian densities

as given by the equation,

Where x is a D-dimensional continuous-valued data vector (i.e. measurement or

features), wi, i = 1, . . . ,M, are the mixture weights, and g(x|ui,i) i = 1, . . . ,M, are

CHAPTER 2. LITERATURE SURVEY 8

the component Gaussian densities. Each component density is a D-variate Gaussian

function of the form,

The complete Gaussian mixture model is parameterized by the mean vectors,

covariance matrices and mixture weights from all component densities. These param-

eters are collectively represented by the notation,

b. K-Nearest Neighbor: The intuition underlying Nearest Neighbor Classi-

fication is quite straightforward, examples are classified based on the class of their

nearest neighbors. It is often useful to take more than one neighbor into account so

the technique is more commonly referred to as k-Nearest Neighbor (k-NN) Classifica-

tion where k nearest neighbors are used in determining the class. Since the training

examples are needed at run-time, i.e. they need to be in memory at run-time, it is

sometimes also called Memory-Based Classification. Because induction is delayed to

run time, it is considered a Lazy Learning technique. Because classification is based

directly on the training examples it is also called Example-Based Classification or

Case-Based Classification.

The basic idea is as shown in Figure which depicts a 3-Nearest Neighbor Classifier

on a two-class problem in a two-dimensional feature space. In this example the

decision for q1 is straightforward all three of its nearest neighbors are of class O so

it is classified as an O. The situation for q2 is a bit more complicated at it has two

neighbors of class X and one of class O. So kNN classification has two stages; the first

is the determination of the nearest neighbors and the second is the determination of

CHAPTER 2. LITERATURE SURVEY 9

the class using those neighbors.

Figure 2.1: A simple example of 3- Nearest Neighbor Classification)

CHAPTER 2. LITERATURE SURVEY 10

c. Deep belief networks: Learning is difficult in densely connected, directed

belief nets that have many hidden layers because it is difficult to infer the conditional

distribution of the hidden activities when given a data vector. Variational methods

use simple approximations to the true conditional distribution, but the approxima-

tions may be poor, especially at the deepest hidden layer, where the prior assumes

independence. Also, variational learning still requires all of the parameters to be

learned together and this makes the learning time scale poorly as the number of

parameters increases.

Figure 2.2: Deep belief model
The network used to model the joint distribution of digit images and digit labels. In

this letter, each training case of an image and an explicit class label, but work in
progress has shown that same learning algorithm can be used if the ”labels” are
replaced by a multilayer pathway whose inputs are spectrograms from multiple

different speaker saying isolated digits.The network then learns to generate pairs
that consists of an image and a spectrogram of the same digit class.

CHAPTER 2. LITERATURE SURVEY 11

A model is described in which the top two hidden layers form an undirected asso-

ciative memory (Figure 2.2) and the remaining hidden layers form a directed acyclic

graph that converts the representations in the associative memory into observable

variables such as the pixels of an image. This hybrid model has some attractive

features:

• There is a fast, greedy learning algorithm that can find a fairly good set of

parameters quickly, even in deep networks with millions of parameters and

many hidden layers.

• The learning algorithm is unsupervised but can be applied to labeled data by

learning a model that generates both the label and the data.

• There is a fine-tuning algorithm that learns an excellent generative model that

outperforms discriminative methods on the MNIST database of hand-written

digits.

• The generative model makes it easy to interpret the distributed representations

in the deep hidden layers.

• The inference required for forming a percept is both fast and accurate.

• The learning algorithm is local. Adjustments to a synapse strength depend on

only the states of the presynaptic and postsynaptic neuron.

• The communication is simple. Neurons need only to communicate their stochas-

tic binary states.

CHAPTER 2. LITERATURE SURVEY 12

2.2 SYSTEMC(IEEE-1666)

SystemC [2] is a language that allows designers to develop both the hardware and

software Components of their system together. This is all possible to do at a high

level of abstraction. Strictly speaking, SystemC is not a language, but rather a library

for C++, Containing structures for modeling hardware components and their interac-

tions. SystemC can thus be compared to the hardware description languages VHDL

and Verilog. An important aspect that these languages have in common is that they

all come with A simulation kernel, which allows the designer to evaluate the system

behavior through Simulations. Nowadays, there exist tools for high-level synthesis

of SystemC models; this has pushed the industry to adopt this unified hardware −

software design language in large scale.

SystemC design flow:

a. System / Architectural Level

(1) Not synthesizable

(2) Event- Driven

(3) Abstract communication

(4) Abstract data types

b. Behavioral Level

(1) synthesizable

(2) Clocked item I/O cycle accurate

(3) Algorithm Description

CHAPTER 2. LITERATURE SURVEY 13

c. RT level (Register Transfer)

(1) synthesizable

(2) Clocked

(3) FSM

(4) Datapath

Figure 2.3: SystemC language architechture

CHAPTER 2. LITERATURE SURVEY 14

2.2.1 MODEL OF TIME :

One of the most important components in the SystemC library is the model of time.

The underlying model is based on 64 bits unsigned integer values. However, this is

Hidden to the programmer through the data type (class)sc time. Due to the limits of

the underlying implementation of time, we cannot represent continuous time, but only

discrete time. Therefore, in SystemC there is a minimum representable time quantum,

called the time resolution. This can be set by the user, as we shall demonstrate in

later parts of this document. Note that this time resolution limits the maximum

representable time, because the underlying data type representing the time is a 64-

bit integer value. Thus, any time value smaller than the time resolution will be

rounded to zero.

2.2.2 MODULES :

Modules are the basic building blocks in SystemC. A module comprises ports, con-

current processes, and some internal data structures and channels that represent the

model state and the communication between processes. A module can also use another

module in a hierarchy. A module is described with the macro SC MODULE. Actually,

the macro SC MODULE (Module) expands to class Module: public sc module.

2.2.3 PROCESSES AND EVENTS :

The functionality in SystemC is achieved with processes. As opposed to C++ func-

tions, which are used to model sequential system behavior, processes provide the

mechanism for simulating concurrency. A process is a C++ member function of

the SystemC module. The function is declared to be a process in the constructor.

There are two macros (SC METHOD and SC THREAD) which can be used in the

constructor for such process registration with the simulation kernel.

CHAPTER 2. LITERATURE SURVEY 15

2.2.4 PORTS, INTERFACES AND CHANNELS :

Communication between processes inside different modules is accomplished using

ports, interfaces and channels. The port of a module is the object through which

the process accesses a channels interface. The interface defines the set of access

functions for a channel while the channel itself provides the implementation of these

functions. At elaboration time the ports of a module are connected (bound) to des-

ignated channels. The interface, port, channel structure provides for great flexibility

in modeling communication and in model refinement.

2.3 PYTHON(SCRIPTING)

Python in the project was just used for scripting[8]. Python is a high-level, inter-

preted, interactive and object oriented-scripting language. Python was designed to

be highly readable which uses English keywords frequently where as other languages

use punctuation and it has fewer syntactical constructions than other languages.

• Python is interpreted: This means that it is processed at runtime by the

interpreter and you do not need to compile your program before executing it.

This is similar to PERL and PHP.

• Python is Interactive: This means that you can actually sit at a Python

prompt and interact with the interpreter directly to write your programs.

• Python is Object-Oriented: This means that Python supports Object-

Oriented style or technique of programming that encapsulates code within ob-

jects.

CHAPTER 2. LITERATURE SURVEY 16

2.3.1 PYTHON FEATURES:

Python’s feature highlights include:

• Easy-to-learn: Python has relatively few keywords, simple structure, and a

clearly defined syntax. This allows the student to pick up the language in a

relatively short period of time.

• Easy-to-read: Python code is much more clearly defined and visible to the

eyes.

• Easy-to-maintain: Python’s success is that its source code is fairly easy-to-

maintain.

• A broad standard library: One of Python’s greatest strengths is the bulk of

the library is very portable and cross-platform compatible on UNIX, Windows,

and Macintosh.

• Interactive Mode: Support for an interactive mode in which you can enter

results from a terminal right to the language, allowing interactive testing and

debugging of snippets of code.

• Portable: Python can run on a wide variety of hardware platforms and has

the same interface on all platforms.

• Extendable: You can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more

efficient.

• Databases: Python provides interfaces to all major commercial databases.

• GUI Programming: Python supports GUI applications that can be created

and ported to many system calls, libraries, and windows systems, such as Win-

dows MFC, Macintosh, and the X Window system of UNIX.

CHAPTER 2. LITERATURE SURVEY 17

• Scalable: Python provides a better structure and support for large programs

than shell scripting.

2.3.2 Why PYTHON?:[8]

Figure 2.4: Comaparison between Python and other languages

CHAPTER 2. LITERATURE SURVEY 18

2.4 TRANSACTION LEVEL MODELING (TLM2.0)

Transaction level modeling[2] in SystemC involves communication between SystemC

processes using function calls. The focus of TLM is on the communication between

the processes rather than the algorithms performed by the processes themselves, so

the processes shown in this tutorial will be rather trivial. We assume that in a model

of system behavior, some of the SystemC processes will produce data, others will

consume data, some will initiate communication, others will passively respond to

communication initiated by others. The focus of OSCI TLM-2.0 in particular is the

modeling of on-chip memory-mapped busses. This does not mean that TLM-2.0 is

dedicated exclusively to memory-mapped busses, just that this is where most of the

features are focused. TLM-2.0 has a layered structure, with the lower layers being

more flexible and general, and the upper layers being specific to bus modeling. In

future, the standard may be re-oriented toward other styles of communication as they

emerge, the obvious direction being network-on-chip (NoC) architectures.

TLM-2.0 consists of a set of core interfaces, the global quantum, initiator and tar-

get sockets, the generic payload and base protocol, and the utilities. The TLM-1 core

interfaces, analysis interface and analysis ports are also included, although they are

separate from the main body of the TLM-2.0 standard. The TLM-2.0 core interfaces

consist of the blocking and non-blocking transport interfaces, the direct memory in-

terface (DMI), and the debug transport interface. The generic payload supports the

abstract modeling of memory-mapped buses, together with an extension mechanism

to support the modeling of specific bus protocols whilst maximizing interoperability.

TLM 1.0 has three shortcomings with respect to the modeling of memory-mapped

buses and other on-chip communication networks:

a. TLM-1 has no standard transaction class, so each application has to create

its own non-standard classes, resulting in very poor interoperability between

CHAPTER 2. LITERATURE SURVEY 19

models from different sources. TLM-2.0 addresses this shortcoming with the

generic payload.

b. TLM-1 has no support for timing annotation, so no standard way of commu-

nicating timing information between models. TLM-1 models would typically

implement delays by calling wait, which slows down simulation. TLM-2.0 ad-

dresses this shortcoming with the addition of timing annotation to the blocking

and non-blocking transport interface.

c. The TLM-1 interfaces require all transaction objects and data to be passed by

value or const reference, which slows down simulation. Some applications work

around this restriction by embedded pointers in transaction objects, but this

is non-standard and non-interoperable. TLM-2.0 addresses this shortcoming

with transaction objects whose lifetime extends across several transport calls,

supported by a new transport interface.

The TLM-2.0 classes are layered on top of the SystemC class library as shown in

the diagram below. For maximum interoperability, and particularly for memory-

mapped bus modeling, it is recommended that the TLM-2.0 core interfaces, sockets,

generic payload and base protocol be used together in concert. These classes are

known collectively as the interoperability layer. In cases where the generic payload

is inappropriate, it is possible for the core interfaces and the initiator and target

sockets, or the core interfaces alone, to be used with an alternative transaction type.

It is even technically possible for the generic payload to be used directly with the

core interfaces without the initiator and target sockets, although this approach is not

recommended.

CHAPTER 2. LITERATURE SURVEY 20

Figure 2.5: TLM2.0 classes

Transaction Level Modeling (TLM) is motivated by a number of practical prob-

lems. These include:

• Providing an early platform for software development

• System Level Design Exploration and Verification

• The need to use System Level Models in Block Level Verification.

A commonly accepted industry standard for TLM would help to increase the

productivity of software engineers, architects, and implementation and verification

CHAPTER 2. LITERATURE SURVEY 21

engineers. However, the improvement in productivity promised by such a standard

can only be achieved if the standard meets a number of criteria:

CHAPTER 2. LITERATURE SURVEY 22

• It must be easy, efficient and safe to use in a concurrent environment.

• It must enable reuse between projects and between abstraction levels within the

same project.

• It must easily model hardware, software and designs which cross the hardware

/ software boundary.

• It must enable the design of generic components such as routers and arbiters.

Since the release of version 2.0, it has been possible to do TLM using SystemC.

However, the lack of established standards and methodologies has meant that each

TLM effort has had to invent its own methodologies and APIs to do TLM. In addition

to the cost of reinventing the wheel, these methodologies all differed slightly, making

IP exchange difficult.

2.4.1 Keypoints

There are key concepts required to understand this proposal:

• Interfaces

• Blocking vs. Non-Blocking

• Bidirectional vs. Uni Directionl

• Sockets

• Coding styles

a. Interface : The emphasis on interfaces rather than implementation flows from

the fact that SystemC is a C++ class library, and that C++ (when used prop-

erly) is an object orientated language. First we need to rigorously define the

key interfaces, and then we can go on to discuss the various ways these may

be implemented in a TLM design. It is crucial for the reader to understand

CHAPTER 2. LITERATURE SURVEY 23

that the TLM interface classes form the heart of the TLM standard, and that

the implementations of those interfaces (e.g. tlm fifo) are not as central. In

SystemC, all interfaces should inherit from the class sc interface.

b. Blocking and Non-Blocking: In SystemC, there are two basic kinds of pro-

cesses: SC THREAD and SC METHOD. The key difference between the two is

that it is possible to suspend an SC THREAD by calling wait(). SC METHODs

on the other hand can only be synchronized by making them sensitive to an

externally defined sc event. Calling wait() inside an SC METHOD leads to a

runtime error. Using SC THREAD is in many ways more natural, but it is

slower because wait() induces a context switch in the SystemC scheduler. Us-

ing SC METHOD is more constrained but more efficient, because it avoids the

context switching.

c. Bidirectional and Unidirectional Transfers: Some common transactions

are clearly bidirectional, for example a read across a bus. Other transactions

are clearly unidirectional, as is the case for most packet based communication

mechanisms. Where there is a more complicated protocol, it is always possible

to break it down into a sequence of bidirectional or unidirectional transfers.

For example, a complex bus with address, control and data phases may look

like a simple bidirectional read/write bus at a high level of abstraction, but

more like a sequence of pipelined unidirectional transfers at a more detailed

level. Any TLM standard must have both bidirectional and unidirectional in-

terfaces. The standard should have a common look and feel for bidirectional

and unidirectional interfaces, and it should be clearly shown how the two relate.

d. Initiators, Targets, and Sockets: In TLM-2.0, an initiator is a module that

initiates new transactions, and a target is a module that responds to transac-

tions initiated by other modules. A transaction is a data structure (a C++

object) passed between initiators and targets using function calls. The same

module can act both as an initiator and as a target, and this would typically be

CHAPTER 2. LITERATURE SURVEY 24

the case for a model of an arbiter, a router, or a bus. In order to pass transac-

tions between initiators and targets, TLM-2.0 uses sockets. An initiator sends

transactions out through an initiator socket, and a target receives incoming

transactions through a target socket. A module that merely forwards transac-

tions without modifying their content is known as an interconnect component.

An interconnect component would have both a target socket and an initiator

socket.

e. Coding styles: A coding style is a set of programming language idioms that

work well together, not a specific abstraction level or software programming

interface. For simplicity and clarity, this document restricts itself to elaborating

two specific named coding styles; loosely-timed and approximately-timed. By

their nature the coding styles are not precisely defined, and the rules governing

the TLM-2.0 core interfaces are defined independently from these coding styles.

In principle, it would be possible to define other coding styles based on the

TLM-1 and TLM-2.0 mechanisms.

(1) Untimed coding style TLM-2.0 does not make explicit provision for an

untimed coding style, because all contemporary bus-based systems require

some notion of time in order to model software running on one or more

embedded processors. However, untimed modeling is supported by the

TLM-1 core interfaces. (The term untimed is sometimes used to refer to

models that contain a limited amount of timing information of unspecified

accuracy. In TLM-2.0, such models would be termed loosely-timed.)

(2) Loosely-timed coding style and temporal decoupling The loosely-

timed coding style makes use of the blocking transport interface. This

interface allows only two timing points to be associated with each transac-

tion, corresponding to the call to and return from the blocking transport

function. In the case of the base protocol, the first timing point marks

the beginning of the request, and the second marks the beginning of the

CHAPTER 2. LITERATURE SURVEY 25

response. These two timing points could occur at the same simulation

time or at different times. The loosely-timed coding style is appropriate

for the use case of software development using a virtual platform model of

an MPSoC, where the software content may include one or more operating

systems. The loosely-timed coding style supports the modeling of timers

and interrupts, sufficient to boot an operating system and run arbitrary

code on the target machine. The loosely-timed coding style also supports

temporal decoupling, where individual SystemC processes are permitted

to run ahead in a local time warp without actually advancing simulation

time until they reach the point when they need to synchronize with the

rest of the system. Temporal decoupling can result in very fast simulation

for certain systems because it increases the data and code locality and

reduces the scheduling overhead of the simulator. Each process is allowed

to run for a certain time slice or quantum before switching to the next,

or instead may yield control when it reaches an explicit synchronization

point.

(3) Approximately-timed coding style The approximately-timed coding

style is supported by the non-blocking transport interface, which is ap-

propriate for the use cases of architectural exploration and performance

analysis. The non-blocking transport interface provides for timing anno-

tation and for multiple phases and timing points during the lifetime of

a transaction. For approximately-timed modeling, a transaction is broken

down into multiple phases, with an explicit timing point marking the tran-

sition between phases. In the case of the base protocol there are exactly

four timing points marking the beginning and the end of the request and

the beginning and the end of the response. Specific protocols may need

to add further timing points, which may possibly cause the loss of direct

compatibility with the generic payload. Although it is possible to use the

non-blocking transport interface with just two phases to indicate the start

CHAPTER 2. LITERATURE SURVEY 26

and end of a transaction, the blocking transport interface is generally pre-

ferred for loosely-timed modeling. The approximately-timed coding style

cannot generally exploit temporal decoupling because of the need for tim-

ing accuracy. Instead, each process typically executes in lock step with

the SystemC scheduler. Process interactions are annotated with specific

delays. To create an approximately-timed model, it is generally sufficient

to annotate delays representing the data transfer times for write and read

commands and the latency of the target. For the base protocol, the data

transfer times are effectively the same as the minimum initiation interval or

accept delay between two successive requests or two successive responses.

The annotated delays are implemented by making calls to the SystemC

scheduler, that is, wait(delay) or notify(delay).

Chapter 3

Modeling and verification of PE

In Percsense system level architechture,there are different classifier stages, one of

which is Feature classifier. The feature classifier encompasses processing engine or

PE module which is responsible for parallel computations. There are 16 PEs in all in

the architechture, processing parallely.Each processing element has a control signal

that is coming in and determines whether it is part of the Data Path or is it is passed

through.The PE can run various different Machine learning algorithms like DBNN,

CNN,RBM used for feature extraction.

The objective of this chapter hence, focusses on modeling and verification of these

PEs. The language used for modeling and verification is IEEE-1666 SystemC. Now,

Let’s discuss in depth what actually is processing engine, how it works, what all it

supports, why is it written only in systemC in the further sections to come.

27

CHAPTER 3. MODELING AND VERIFICATION OF PE 28

3.1 PROCESSING ENGINE FLOW DIAGRAM

Properties of PE [1]:

• Based on Single instruction multiple data (SIMD) architecture.

• Has mathematics which is common to various machine learning algorithms.

• Has fixed point arithmetic.

• Implements Math required for some common machine learning algorithms.

• Fixed point mathematics.

• Multiple such PE blocks to achieve SIMD.

The PE is actually a small part in the Percsense system level architechture which

drives all the machine learning algorithms. PEs exist in the from of what is called as

CHAPTER 3. MODELING AND VERIFICATION OF PE 29

Tile. Each tile consists of 16 PEs working parallely and hence, SIMD architechture.

The basic architecture of PE encompasses four pipeline stages. Each stage or layer

has an arithematic block assigned to it.Also, there are multiplexers and and regis-

ter storage at every layer. As seen in the flow diagram, the first stage consists of

adder/subtraction, its the control signal which decides what to choose according to

the algorithm demand.Similarly, next is the squarer shifter , then the multiplier then

accumulator.

3.2 Machine learning algorithms in PE

As mentioned in the above section that PE implements a Math required for some

Machine learning algorithms. These algorithms include GMM,DBNN,CDBNN etc.

The main advantage being that all the above mentioned machine learning algorithms

can be implemented on the same PE just by bypassing or including some blocks ac-

cording to the need of the algorithm. For instance,GMM has an equation as follows:

((A−B)2 × C) + ((A−B2)
2 × C) + (3.1)

So, as the equation requires an adder/Subtractor, a multiplier, a squarer and a MAC,

All the four blocks of PE will be in action.Now, let’s take another example of DBNN

algorithm. The equation defining DBNN algorithm is as follows:

w1 × x1 + w2 × x2 + w3 × x3 + (3.2)

As evident from the equation, it has algebra like multiplication and MAC, So the

blocks of PE which will come into picture here will be multiplier and the MAC. The

other blocks that is, adder/ subtractor and squarer can be bypassed using control

signals at the very designing stage.

CHAPTER 3. MODELING AND VERIFICATION OF PE 30

Thus, the PE is designed for such machine learning algorithms and the algorithms

can be changed just by changing control signals at the design level.

The design and verification of the PE module is done in IEEE-1666 standard SystemC

language. Some of the ramp up task done in SystemC are discussed in sections to

come. To get to the verification and modeling of PE, these ramp up tasks were the

stepping stone.

3.3 Ramp up tasks in SYSTEMC

• MAC (Multiply and accumulate)[4].

• E-xor gate using NAND gate.

• FIR Filter [6].

• Design and verification of PE without any control signals.

• Code for PE using control signals.

• Verification using Python Script.

• Writing a Make file.

• Debugging different compile and runtime errors.

• Debugging using GDB debugger[1].

• Verification of the Processing Engine(PE) for Fixed point values.

• Adding different control signals.

• Addition of nonlinearity (Sigmoid) and verification for the same.

CHAPTER 3. MODELING AND VERIFICATION OF PE 31

3.3.1 CODE SNIPPET

a. Multiply and Accumulate(MAC)

Figure 3.1: mac.h(The header file)

CHAPTER 3. MODELING AND VERIFICATION OF PE 32

Figure 3.2: Mac.cpp (The cpp file)

CHAPTER 3. MODELING AND VERIFICATION OF PE 33

Figure 3.3: Test.h (Test bench file)

CHAPTER 3. MODELING AND VERIFICATION OF PE 34

Code explanation:

a. In (.h) file:The header file systemc.h has all the systemC components i.e.;

ports etc.

b. Declaration of the MODULE.

c. Declaration of input and output ports.

d. Function definition.

e. Declaring a constructor.

f. In (.cpp) file:Binding of ports and signals.

g. In (test) file:Passing values through test bench.

So, inshort the summary is that the code explains itself. It has the header file in

which all all the omponents like ports are declared, modules are formed, functions

and constructors are declared. In the cpp file, all the signals are declared and are

bound to the modules. The test file is used to pass values to the ports. It is actually

a testbench.

3.3.2 MODELING AND VERIFIDCATION OF THE PRO-

CESSING ENGINE MODEL

• Modeling of DRIVER

Under this section, the actual modeling of the driver driving the PE was done.The

driver drives the PE. As explained earlier, the PE has two input ports and four

layers. The driver is responsible for supplying input and weights. So, the driver

CHAPTER 3. MODELING AND VERIFICATION OF PE 35

has the following files:

1. pe packet.h : Wherein all the input and the weight packets are declared.

2. pe.h : Wherein all the layers and the functions according to those layers are

declared.

3. pe.cpp : Wherein all the layers and the functions according to those layers

are defined.

4. main.cpp: wherein all the ports are bound.

5. driver.h : A driver body is created.

6. driver.cpp : The driver defined.

Figure 3.4: pe packet.h

CHAPTER 3. MODELING AND VERIFICATION OF PE 36

Figure 3.5: pe.h

CHAPTER 3. MODELING AND VERIFICATION OF PE 37

Figure 3.6: pe.cpp(reset all the pipe stages and inputs)

CHAPTER 3. MODELING AND VERIFICATION OF PE 38

Figure 3.7: pe.cpp(Define stg1,stg2 and stg3)

CHAPTER 3. MODELING AND VERIFICATION OF PE 39

Figure 3.8: pe.cpp(Define all the pipelines)

CHAPTER 3. MODELING AND VERIFICATION OF PE 40

Figure 3.9: Driver

Code explaination: The first part of the code defines three structures namely

control packet,pe float packet and pe packet. Each struct has different specific

work or component.control packet encapsulates all the control signals necces-

sary for driving PE.pe float packet defines two inputs and a weight variable

of type FLOAT.pe packet defines two inputs and a weight variable of type

INTEGER(int).

CHAPTER 3. MODELING AND VERIFICATION OF PE 41

The second part of the code is actually a header file which declares all the input

and output ports, variables and functions. Next is the cpp file which encapsu-

lates the defination of all the functions declared inthe header file. Next comes

the ”Driver”.Driver is designed in order to provide values or inputs to the main

file. And thus, verify the functioning of the PE.

• Verification of PE

The verification processes is as:

a. For the verification process a Python script is written.

b. The Python script first reads an output from the SystemC file pe.cpp and

writes the output in the file testout.txt.

c. The Python script reads input from the SystemC file Driver.cpp.

d. The Python script now has an algorithm which uses inputs and does op-

eration on the inputs.

e. Finally it compares the output from the algorithm and the output from

SystemC file.

3.3.3 REASON BEHIND SYSTEMC

The question arises why only SystemC is used for designing of the IP? Why not any

other HDL like Verilog or System Verilog?[9]

The answer to this question is quite simple:

SystemC:

• Improves simulation performance(Consumes less time).

• Increased Productivity.

• Is used for TLM modeling which allows higher level of abstraction than RTL.

CHAPTER 3. MODELING AND VERIFICATION OF PE 42

Difference between TLM and RTL:

• RTL (Register Transfer level) is pin accurate which means all the communica-

tion is using pin.

• While TLM (Transaction level modeling) depends on functional calls.

3.4 Verif using PYTHON

Python is an easy to learn, powerful programming language. It has efficient high-level

data structures and a simple but effective approach to object-oriented programming.

Pythons elegant syntax and dynamic typing, together with its interpreted nature,

make it an ideal language for scripting and rapid application development in many

areas on most platforms. In my project up till now, Python has been used for three

purposes:

a. For verifying algorithm in SystemC.

b. For comparing C and SystemC outputs of the Processing Engine.

CHAPTER 3. MODELING AND VERIFICATION OF PE 43

c. For non-linearity in Processing engine (PE).

Code Snippet (1):

CHAPTER 3. MODELING AND VERIFICATION OF PE 44

Code Explanation:

• Here input.txt file is read.

• Then these inputs are given to algorithm and output from algorithm is saved.

• Another file Verification.txt is opened for comparison.

• Now the Python output is compared with the output in file Verification.txt

which is SystemC output.

Code Snippet (2): This code cannot be provided as it is INTEL CONFIDEN-

TIAL.

Code Snippet (3): The non- linearity in processing engine is checked in the below

code (using sigmoid function)

CHAPTER 3. MODELING AND VERIFICATION OF PE 45

3.4.1 WRITING A MAKEFILE

a. What is a makefile?[1]

Make files are simple way to organize code compilation. Compiling your source code

files can be tedious, especially when you want to include several source files and have

to type the compiling command every time you want to do it. Make files are special

format files that together with the make utility will help you to automagically build

and manage your projects.

b. The make utility

If you run make this program will look for a file named makefile in your directory,

and then execute it.If you have several makefiles, then you can execute them with the

command: make -f MyMakefile There are several other switches to the make utility.

c. Build Process

1. Compiler takes the source files and outputs object files

2. Linker takes the object files and creates an executable

d. Compiling by hand

The trivial way to compile the files and obtain an executable, is by running the com-

mand:

g++ main.cpp hello.cpp factorial.cpp -o hello

e. Build Process

The basic makefile is composed of:

target: dependencies

[tab] system command

CHAPTER 3. MODELING AND VERIFICATION OF PE 46

f. Makefile example

3.5 Conclusion

From this chapter it is concluded that the PE was modeled successfully using SystemC

as the language.The driver which drives the PE was modeled without flaws.From the

chapter, it can also be concluded the reason behind using SystemC over other HDLs

as it consumes less time and improves simulation performance .This chapter also

concludes proper verification of PE . For the verification purposes,Python has been

used as a scripting language .It also shows methods and steps to write a MAKEFILE.

Hence, the modeling and the verification of PE was successfully carried out.

Chapter 4

Conversion of Percsense Arch into

TLM2.0

In TLM2.0 task given was to convert the complete PercSense code into TLM2.0 based

interfaces. The next task lined up was to convert all the interfaces in the PercSense

System level architechture into TLM 2.0 compliant.The main reason to do this was

as follows:

a. Interoperability

b. Faster

1. Interoperability : The TLM2.0 gives interoperability among different modules[9].

For example, different vendors having different codes in different languages can play

together if they are TLM 2.0 compiant.

2. Fast: It is also observed that TLM is faster than RTL. [9] For having a glimpse

of what TLM2.0 is and how does it work. Below is one of the code written while the

course of work:

47

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 48

Figure 4.1: initiator.h

Code explaination: The above code(figure 4.1) declares a TLM2.0 module con-

sisting of an initiator socket, TLM2.0 generic payload,TLM2.0 event,constructor and

thread.All the TLM header files are also included.

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 49

Figure 4.2: initiator.cpp

Code explaination: In the above code(figure 4.2) TLM2.0 generic Payload is de-

clared which includes command, data length,address,data pointer and so on.

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 50

Figure 4.3: target.h

Code explaination: In the figure(figure4.3) a target similar to the initiator is

designed and target sockets are created.

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 51

target.cpp Code explaination: Here in the above figure(figure 4.4) all the

Figure 4.4: target.cpp

generic payload attributes are fetched and response are set according to the command

in payload.

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 52

contd..

Figure 4.5: main.cpp

Code explaination: In the main.cpp file(figure 4.5) all the initiator and target

sockets are bound to modules.

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 53

After all the ramp up task, a base for TLM2.0 was created which made it easy to

make the actual PercSense architechture TLM2.0 compliant. The figure below :

In the figure above(figure 4.6), which is the actual architecture, the red colored

Figure 4.6: PercSense architecture

TLM convert means TLM2.0 compliant sections.The architecture has a test block, a

memory block,a Bus, a DMA controller, RAMs and piles of PE. All the interfaces

can be converted into TLM2.0.

CHAPTER 4. CONVERSION OF PERCSENSE ARCH INTO TLM2.0 54

4.1 Conclusion:

So, at the end of this chapter it is concluded that some of the interfaces of the

Percsense system level architecture were made TLM2.0 compliant successfully.

Chapter 5

Conclusion and Future Scope

5.1 Conclusion

In this dissertation, SystemC and TLM2.0 models of PE, a part of PercSense Ar-

chitecture of Machine learning IPs were studied and modeled and verified for the

same.During the course of modeling the PE, various ramp up tasks were done,

for example,Ex-or gate using NAND gates and testbench for the same in SystemC

(IEEE- 1666) and code for MAC (multiply and accumulate) testbench for the same in

SystemC(IEEE- 1666).The modeling of processing engine was first done without us-

ing any of the control signals like sum,difference,compare,accumulate and so on.Next,

PE was modeled and verified using all the control signals. The PE parameters like

First interger input (ip0),Second integer input(ip1) and Weight (wt) are passed as

arguments through a driver module.These parameters were varied and output of PE

was observed for its functionality.

Comparison between SystemC, C and HDLs was also carried out.From the comparison

it was concluded that SystemC performs best over other HDLs and C as it improves

simulation performance and takes less time comparitively.For the verification of PE,

Python scripting was used. As the modeling and verification of PE had lots of files

i.e, the header files, the cpp files, there was a need to combine all the files and then

55

CHAPTER 5. CONCLUSION AND FUTURE SCOPE 56

compile them rather than compiling and running on the command line on UNIX. So,

this problem was solved using what is called as a MAKEFILE. All the PE files were

combined and compiled by designing just one Makefile.

Various use cases and advantages of TLM2.0 were studied.Ramp up tasks were also

done wherein Initiator and target model framework for communication and synchro-

nisation were designed as TLM2.0 compliant which made a base for the converting

the Percsense architechture into TLM2.0.So, with the help of these,some of the parts

of Percsense architechture were made TLM2.0 compliant.

5.2 Future Scope

The future scope of the project is vast. For instance,the main scope of the work is

further converting all the remaining blocks of the Percsense architecture into TLM2.0

compliant.Furthermore, TLM2.0 is a very useful tool in industries nowadays.Every

IP should be designed in such a way that it can play with IPs from other ven-

dors.Suppose,one has a code written in System verilog and other person has it in

SystemC and both the codes are to be combined, here TLM2.0 comes handy.

References

[1] Intel India Tech Pvt. Ltd Internal Modules.”PercSense Architecture Specifica-

tion”,2013

[2] 1666-2011 - ”IEEE Standard for Standard SystemC Language Reference Manual”,

Jan. 9 2012

[3] David Black, Jack Donavan, ” SystemC from the Ground Up”

[4] www.asic-world.com/systemc/tutorial.html

[5] www.accellera.org

[6] www.forteds.com/SystemC

[7] https://www.coursera.org/course/ml

[8] https://www.python.org/

[9] http://www.doulos.com/knowhow/systemc/tlm2/

57

www.asic-world.com/systemc/tutorial.html
www.accellera.org
www.forteds.com/SystemC
 https://www.coursera.org/course/ml
https://www.python.org/
http://www.doulos.com/knowhow/systemc/tlm2/

	Declaration
	Certificate
	Abstract
	Abbreviation Notation and Nomenclature
	List of Figures
	Introduction
	Project Definition
	Objective of Study
	Scope of Work
	Thesis Organization

	Literature Survey
	MACHINE LEARNING
	Applications of Machine Learning
	Machine Learning Algorithms

	SYSTEMC(IEEE-1666)
	MODEL OF TIME :
	MODULES :
	PROCESSES AND EVENTS :
	PORTS, INTERFACES AND CHANNELS :

	PYTHON(SCRIPTING)
	PYTHON FEATURES:
	Why PYTHON?:[8]

	TRANSACTION LEVEL MODELING (TLM2.0)
	Keypoints

	Modeling and verification of PE
	PROCESSING ENGINE FLOW DIAGRAM
	Machine learning algorithms in PE
	Ramp up tasks in SYSTEMC
	CODE SNIPPET
	MODELING AND VERIFIDCATION OF THE PROCESSING ENGINE MODEL
	REASON BEHIND SYSTEMC

	Verif using PYTHON
	WRITING A MAKEFILE

	Conclusion

	Conversion of Percsense Arch into TLM2.0
	Conclusion:

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

