
Workload Characterization on
Android Based Intel Devices

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Communication Engineering)

By

Komal Shah

(12MECC25)

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad - 382481

May, 2014

Workload Characterization on
Android Based Intel Devices

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Communication Engineering)

By

Komal Shah

(12MECC25)

Under the Guidance of

Mr. Ajaya Durg Dr. Dhaval Pujara

Principle Engineer, Intel Professor, EC, IT, NU

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad - 382481

May, 2014

iii

Declaration

This is to certify that

a. This thesis comprises my original work towards the degree of Master of Tech-

nology in Communication Engineering at Nirma University and has not been

submitted elsewhere for a degree.

b. Due acknowledgement has been made in the text to all other material used.

- Komal Shah

(12MECC25)

iv

Certificate

This is to certify that the project entitled “Workload Characterization on An-

droid Based Intel Devices” submitted by Komal Shah (12MECC25), towards

the partial fulfillment of the requirements for the degree of Master of Technology in

Communicaton Engineering of Nirma University, Ahmedabad is the record of work

carried out by her under our supervision and guidance. In our opinion, the submitted

work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of our knowledge, haven’t been submitted

to any other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Guide Program Coordinator

Dr. Dhaval Pujara Dr. D. K. Kothari

(Professor, EC) (Professor, EC)

HOD, EE Director

Dr. P. N. Tekwani Dr. K. Kotecha

(Professor, EE) (Director, IT, NU)

v

Acknowledgements

I offer my sincere thanks to the very individual who played their possible role in

inspiring me, motivating me and helping me during the project.

I am deeply indebted to my guide Dr. Dhaval Pujara and industrial guide Mr.

Ajaya Durg, Principal Engineer, Intel Corporation for their constant guidance, moti-

vation and support. They have devoted significant amount of valuable time to plan

and discuss the thesis work. Without their experience and insights, it would have

been very difficult to do quality work.

I would like to express my gratitude and sincere thanks to Dr. P. N. Tekwani, Head

of Electrical Engineering Department and Dr. D. K. Kothari, Coordinator, M. Tech

Communication Engineering program for allowing me to undertake this internship.

I also wish to thank Paul S. Chelladurai, Manoj Dawarwadikar, Shareef Hakim,

Arojit Roychowdhury and Sundar Iyer for their help, support and guidance. Without

their guidance and support, it would have been very difficult to complete the project.

I wish to thank my friends for their delightful company which kept me in good

humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and

sacrifices of my family members because of whom I am able to complete the degree

program successfully.

- Komal Shah

(12MECC25)

vi

List of Abbreviations

2D .2 Dimensional

3D .3 Dimensional

BW .Bandwidth

CPU . Central Processing Unit

DAQ .Data Acquisition System

DDR . Double Data Rate

DVFS .Dynamic Voltage Frequency Scaling

EIST . Enhanced Intel SpeedStep Technology

eMMC . Embedded Multi Media Card

FPS . Frames Per Second

GFX . Graphics

GPS . Globle Positioning System

GPU . Graphics Processing Unit

HDMI .High Density Multimedia Interface

HFM .Highest Frequency Mode

HLT .Halt

HW . Hardware

ID . Identity

IDI . Improved Data Interchange

IP . Intelligent Peripheral

IPC . Instruction Per Cycle

JVM . Java Virtual Machine

LCD . Liquid Crystal Display

LFM .Lowest Frequency Mode

LPE .Low Power Engine

MB . Mega Bytes

Mbps .Mega Bytes Per Seconds

vii

MCO . Memory and CPU Observer

MSR . Model Specific Register

OS .Operating System

PA . Platform Architect

PC . Personal Computer

PLL . Phase Lock Loop

SA . System Agent

SDIO . Secure Digital Input/Output

SOC . System On Chip

SRAM . Static Random Access Memory

SW . Software

TG . Task Graph

UI . User Interface

VID . Voltage Identification

VM .Virtual Machine

VP . Visual Paradigm

VPB . Video Play Back

VPU . Virtual Processing Unit

Wi-Di . Wireless Display

Wi-Fi . Wireless Fidelity

viii

Abstract

Smart-phones, tablets, portable handheld devices are used for prolonged periods

without being connected to a power supply. For these devices, end goal is to achieve

highest performance with lowest power consumption. So, Energy Efficiency is impor-

tant in the smart phone world. This project explores few challenges to increase the

performance of these devices in order to be competitive by characterizing different

workloads. It presents recommendation for Atom LFM. It also explores HW render-

ing v/s SW rendering for Graphics benchmark. As a case study, the project presents

about graphics benchmark characterization with display resolution in order to reach

a conclusion of how it affects the performance and which is the best resolution to

choose.

Performance and power evaluation play a critical role in the architecture analysis

of any platform. Architects needs platform model to check how the new feature

or how an optimization will impact on power and performance. Although, there are

several simulation approaches for Architectural analysis, starting from Cycle Accurate

simulators for detailed modelling to high level Spreadsheets for quick analysis, there

remains a significant gap to analyse real world “Use-Cases” at SYSTEM level and

appropriately co-design HW/SW for optimal Power/Performance.

This project describes a high level SYSTEM approach to abstract the Use-Case

into a set of Task flows running over a topology of IP blocks. Task flow approach

eliminates dependency on functional models that are needed for Virtual Platform sim-

ulations and enables faster evaluation of Architectural studies. Key trade off in Task

flow approach is between ability to run actual application binaries v/s speed with

application flow represented by a Task flow based on SW spec. This project presents

the Task flow approach for VPB (Video Playback) Use-Case on Android based In-

tel smart phone and correlation of simulation results with measured to validate the

accuracy and correctness of such approach and tool.

Contents

Declaration iii

Certificate iv

Acknowledgements v

List of Abbreviations vi

Abstract viii

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Project Definition . 2

1.2 Motivation . 2

1.3 Organization of the Report . 3

2 Literature Survey 4

2.1 Exploring CPU of the Android Device Using Command Line 5

2.1.1 General Commands to Explore CPU 5

2.1.2 Governors [1] . 6

2.2 Android Architecture . 6

2.3 Mobile Platform . 9

ix

CONTENTS x

2.4 CPU Power Management . 10

2.4.1 Power and Performance Trade-Off 12

2.4.2 Enhanced Intel SpeedStep Technology 12

2.4.3 CPU States . 14

3 Power and Performance Measurement 19

3.1 Power Measurement . 20

3.2 Performance Measurement . 21

3.3 Characterization Measurement . 22

3.4 Case Study: Recommendation for Atom LFM 23

3.4.1 CPU Frequency Scalability . 24

3.5 Conclusion . 27

4 Case Study: Android Graphics 28

4.1 Anatomy of a Game Engine [10] . 29

4.2 Hardware Acceleration . 31

4.3 Software Rendering . 31

4.4 Case Study: Quadrant 2D - Analysis of HW/ SW Rendering 32

4.4.1 Conclusion . 34

4.5 Case Study: Graphics Benchmark - Characterization with Display Res-

olution . 34

4.5.1 Quadrant . 35

4.5.2 AnTuTu . 38

4.5.3 Basemark X . 40

4.5.4 Summary and Conclusion . 42

5 Platform Architecture Modeling & Simulation 43

5.1 SYSTEM Task Flow Approach . 44

5.2 Platform Architect Tool . 47

5.2.1 Hardware Model . 48

CONTENTS xi

5.2.2 Task Flow . 51

5.2.3 Steps to Build, Simulate and Analyse 56

5.2.4 Features of PA Tool . 59

5.3 Platform Modelling . 60

5.4 Use-Case Task Flow Modelling . 62

5.5 Simulation and Results . 64

5.6 Summary and Conclusion . 67

6 Conclusion and Future Scope 68

6.1 Conclusion . 68

6.2 Future Scope . 69

References 70

List of Figures

2.1 Android Architecture [2] . 7

2.2 CloverTrail Plus SOC [4] . 10

2.3 Power Distributions for Typical Handheld Device [5] 11

3.1 Power Measurement Setup . 20

3.2 Video Playback - Dual Core Frequency Scaling 24

3.3 Video Playback - Single Core Frequency Scaling 25

3.4 Video Record - Single Core Frequency Scaling 26

3.5 Basemark Taiji - Single Core Frequency Scaling 27

4.1 Frame Processing in Game Application 29

4.2 Quadrant 2D - Score Comparison . 33

4.3 Quadrant 2D - Performance/Watt Comparison 34

4.4 Quadrant 3D Score v/s Display Resolution 36

4.5 Quadrant 3D Score v/s Display Resolution 37

4.6 Quadrant 3D - Corridor Graphics C-State Residency 37

4.7 Quadrant 3D - Memory BW analysis 38

4.8 AnTuTu - Score v/s Display Resolution 39

4.9 AnTuTu - 2D and 3D test FPS v/s Display Resolution 39

4.10 AnTuTu 2D - Graphics C0 Residency 40

4.11 Basemark X - FPS v/s Display Resolution 41

4.12 Basemark X - Memory BW Characterization 41

xii

LIST OF FIGURES xiii

4.13 Performance Drop Characterizations with Increasing Display Pixels . 42

5.1 Generic Workload Task Flow . 46

5.2 Y-Chart Model of PA Tool . 47

5.3 Hardware Configuration . 48

5.4 Bus Configuration . 50

5.5 Memory Configuration . 51

5.6 Clock Configuration . 51

5.7 Task Table . 52

5.8 Connection Table . 53

5.9 Function Table . 55

5.10 Memory Table . 56

5.11 Mapping File . 56

5.12 System Model . 57

5.13 HW Parameters . 58

5.14 Task Graph . 58

5.15 MCO Trace Sample Results . 58

5.16 Generic SOC of Mobile/Tablet Platform [14] 60

5.17 Generic Task Flow for Video Playback [16] 63

List of Tables

I CPU - C-States . 15

I Task Table - Parameter Description 53

II Connection Table - Parameter Description 54

III Simulation v/s Measurement Correlation of BW 65

IV Simulation v/s Measurement Correlation of Residency 66

V Simulation v/s Measurement Correlation of CPU Residency at Differ-

ent CPU Frequency . 66

xiv

Chapter 1

Introduction

Today mobile phones are not only used just as a phone but it is now a smart phone,

with more advanced computing capability and connectivity than a regular cellular

phone used to make and receive calls. The smart phones includes mail functional-

ity, media players, high pixel digital cameras, video cameras, GPS navigation units,

etc. to form one multi-use device. Modern smart phones also include high-resolution

touch screens and web browsers that display standard web pages as well as mobile-

optimized sites. High-speed data access is provided by Wi-Fi, mobile broadband and

bluetooth. With the increase in the use of each feature in the mobile device power

consumption increase and performance becomes important.

The embedded systems and various computing devices such as smart phones, tablets,

portable handheld web devices, ebook readers are often used for prolonged periods

without being connected to a power outlet. This usage pattern poses a new set of

challenges related to power and performance. These systems comprise of various mod-

ules such as: Camera, Accelerometer, GPS, Orientation sensors, temperature sensors,

Radio and Modem chips, CPUs, GPUs and bright LCDs. Also, there are very large

variations in the specifications of such devices with varied processors, Wi-Fi chips

and other modules, although the use-cases are similar. The challenge is to balance

the performance and power so that the device can be used for an acceptable duration

within acceptable performance bounds. Performance without power considerations is

1

CHAPTER 1. INTRODUCTION 2

meaningless, especially in the smart phone world so energy efficiency is important.

1.1 Project Definition

To characterize workload on Android based Intel Devices. This is basically in two

parts.

• Workload energy efficiency characterization on different platforms and explore

methodologies to optimize it

• Modelling and simulation of Video Playplay on exsisting platform and correla-

tion with measured results using Platform Architect Tool

1.2 Motivation

Smart phones, tablets and other portable handheld devices are used for long period

of time without being charged. This usage pattern poses challenges related to power

and performance. The challenge is to balance the performance and power so that the

device can be used for an acceptable duration within acceptable performance. End

goal is to achieve highest performance with lowest power consumption. So, Energy

Efficiency is important in the smart phone world. A very high performance without

power consideration is meaningless in case of portable device. It is the energy which

needs to be efficient. Also, mobile platform needs to be optimized and upgraded,

to be with the competition. It becomes necessary to characterize workload before

the silicon is ready so that hardware changes can be done before the silicon and

this helps to save cost. It is necessary to study the characterization of workload on

the next generation platform before the actual silicon. A need arises for a SYSTEM

level approach and tool which supports it to model and simulate the real life use-case.

This project studies workloads energy efficiency characterization and different method-

ologies/scopes to optimize it in terms of enery efficiency. It also presents a Task Flow

CHAPTER 1. INTRODUCTION 3

approach for system level modelling of use-case. Simulation of existing platform on

a platform architect tool and correlation with the silicon measurement for Video

Playback use-case is also included.

1.3 Organization of the Report

This report is organized in six chapters, including present chapter. First chapter in-

cludes project definition, motivation, scope of work and organization of report. Sec-

ond chapter is the literature survey, which briefs about the basics of command line

approach to explore android device, Android architecture, Power and Performance

trade-off, CPU Power states, etc., that forms the basics of all workload characteriza-

tion. Chapter 3 is about the Power, Performance and Characterization measurement

for any workload on Android devices and a case study of LFM recommendation for

the future platform. Chapter 4 describes about graphics. Different types of rendering

and reason for choosing graphics benchmark for characterization. It includes 2 case-

studies. One is on HW rendering v/s SW rendering and other is on impact of display

resolution on performance. Chapter 5 is about the SYSTEM Task Flow approach

and Platform Architect tool. It explains the function of tool with an example. Also,

it includes building model for existing platform and simulating for Video Playback

workload. At the end correlation of simulation results with silicon measurement is

presented. Conclusion of the thesis and Future scope of the work is described in

Chapter 6.

Chapter 2

Literature Survey

This chapter starts with exploring the android device, a command line approach to

know android device and to change few parameters like frequency with which CPU is

working, governors, number of cores, etc. It then presents Android Architecture and

platform hardware - a view of Intel’s smart phone SOC (System On Chip).

To evaluate the performance of Android devices and to compare different platforms

various benchmarks (workloads) are available in the market. It becomes necessary to

characterize these benchmarks in terms of CPU Utilization, CPU Frequency, GPU

Utilization, GPU Frequency, Memory Bandwidth, Core scaling, Display Resolution,

etc.

In order to understand the behaviour of any benchmark on a platform it is neces-

sary to understand CPU states. For a high intensive workload, CPU might get fully

utilized at maximum frequency. Similarly, a low profile workload utilizes lower CPU

frequency for less fraction of time. This also affects the performance of the workload

and together energy efficiency of the workload. So, literature survey dives into details

of CPU Power and Performance States and presents trade-off between Power and

Performance.

4

CHAPTER 2. LITERATURE SURVEY 5

2.1 Exploring CPU of the Android Device Using

Command Line

To explore CPU of any android device, it is necessary to have root access of the device.

All Intel’s device are by default as root user for easy testing and troubleshooting.

2.1.1 General Commands to Explore CPU

For memory information

cat /proc/meminfo

For CPU information

cat /proc/cpuinfo

To find no of cores

cat /proc/cpuinfo | grep processor | wc l

To find Max frequency

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo max freq

To find Min frequency

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo min freq

To find Current working frequency

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling cur freq

To find the supported frequency of the device

cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time in state

or

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling available frequency

To disable hyperthreading/core

echo 0 > /sys/devices/system/cpu/cpu1/online

To enable hyperthreading

echo 1 > /sys/devices/system/cpu/cpu1/online

Enter frequency in kHz. Range of frequency can be set by giving different frequency

CHAPTER 2. LITERATURE SURVEY 6

to maximum and minimum.

2.1.2 Governors [1]

Governors estimate the load on each CPU. They run an algorithm to decide as to

when the frequency of the CPU has to changed. Information about the governors can

be found using

echo/sys/devices/system/cpu/cpu0/cpufreq/scaling available governors

Output: ondemand userspace interactive performance

To change governor

cat performance > /sys/devices/system/cpu/cpu0/cpufreq/ scaling governor

Ondemand

This governor scales CPU depending on the need basis on the fly.

Userspace

In this governor user can specify/fix minimum & maximum frequency of his choice

between (P0 − Pn).

Interactive

Similar to ondemand governor, this is more aggressive. It has considerably less

delays in scaling up the frequency.

Performance

This governor always locks frequency to maximum i.e. P0 always, even though idle.

2.2 Android Architecture

Android is a Linux based operating system, designed primarily for mobile devices such

as smart phones and tablet computers. Android is open source. It allows the software

to be freely modified and distributed by device manufacturers and developers. The

Android OS is referred as a software stack of different layers, where each layer is a

group of several program components.

CHAPTER 2. LITERATURE SURVEY 7

Figure 2.1: Android Architecture [2]

The basic layer is the Linux kernel. It is this Linux layer that interacts with the

hardware and contains all the essential hardware drivers. Drivers are programs that

control and communicate with the hardware. The Linux kernel also acts as an ab-

straction layer between the hardware and other software layers. Android uses the

Linux for all its core functionality such as memory management, process manage-

ment, networking, security settings etc.

The next layer is the Androids native libraries. It is this layer that enables the device

to handle different types of data. These libraries are written in c or c++ language

and are specific for a particular hardware.

CHAPTER 2. LITERATURE SURVEY 8

Surface Manager is used for compositing window manager with off-screen buffering.

Off-screen buffering means you cant directly draw into the screen, but your drawings

go to the off-screen buffer. There it is combined with other drawings and form the

final screen the user will see. This off screen buffer is the reason behind the trans-

parency of windows [2].

In the runtime layer there are two sections, Libraries and Android Runtime. The

libraries component shares its space with the run-time component. The libraries

component acts as a translation layer between the kernel and the application frame-

work. The libraries are written in C/C++ but are exposed to developers through a

Java API. Developers can use the Java application framework to access the underlying

core C/C++ libraries. Some of the core libraries include the following [2]:

• LibWebCore: Allows access to the web browser.

• Media libraries: Allows access to popular audio and video recording and

playback functions.

• Graphics libraries: Allows access to 2D and 3D graphics drawing engines.

Android Runtime consists of Dalvik Virtual machine and Core Java libraries. Virtual

Machine is an isolated, guest operating system running within another host operating

system. This execute applications as if they were running on a physical machine.

One of the main advantages of a virtual machine is portability. Regardless of the

underlying hardware, the code will work on the VM. It is possible to write code only

once and execute it on any hardware platform that runs a compatible VM [2]. It is a

type of JVM used in android devices to run apps and is optimized for low processing

power and low memory environments. Unlike the JVM, the Dalvik Virtual Machine

doesnt run .class files, instead it runs .dex files. .dex files are built from .class file at

the time of compilation and provide higher efficiency in low resource environments.

Application Framework is the blocks that interact with the application directly. These

programs manage the basic functions of phone like resource management, voice call

management etc.

CHAPTER 2. LITERATURE SURVEY 9

• Activity Manager: Manages the activity life cycle of applications

• Content Providers: Manage the data sharing between applications

• Telephony Manager: Manages all voice calls. Used to access voice calls in

application.

• Location Manager: Location management, using GPS or cell tower

• Resource Manager: Manage the various types of resources in application

Applications are the top layer in the android architecture and this is where our appli-

cations are going to fit. The application component of the Android operating system

is the closest to the end user. This is where the contacts, phone, messaging, and

angry birds apps live.

2.3 Mobile Platform

A platform is an integrated set of processor, a lightweight form-factor for mobility,

technologies to provide great battery life, wireless capabilities and applications that

use the mobile form-factor efficiently. The final product is the sum of a set of parts

that provides the valuable end user experience - it is not just a device, but a platform

[3].

The five major ingredients in a platform are:

• Hardware: Such as the processor, the chipset, the modem, memory, etc.

• Software: Operating Systems, Applications, Firmware and Compilers

• Technologies: Intel Hyper-Threading Technology, Intel SpeedStep Technol-

ogy, etc.

• Standards and Initiatives: Such as Wi-Fi, Wi-Max, etc.

CHAPTER 2. LITERATURE SURVEY 10

• Services : such as digital media distribution, communications services and

system services

In general, a platform is an underlying computer system on which application pro-

grams can run. One such mobile platform of Intel is as shown in Figure. 2.2.

Figure 2.2: CloverTrail Plus SOC [4]

Mobile Platfoms are designed specifically for mobile devices such as smart phones.

CloverTrail Plus is Intels first dual core Smart Phone Platform with 32 nm CPU core

running at 2 GHz. Medfield is the platform, Penwell is the SOC and the CPU inside

Penwell is codenamed as Saltwell.

2.4 CPU Power Management

Power management is essential for any portable device due to three reasons.

a. Longer Battery Life

CHAPTER 2. LITERATURE SURVEY 11

b. Thermal Management : Proper Skin Temperature

c. Lighter Device

In mobile devices running real time applications, the power consumed by the CPU

can be more than the needed amount of power. Power management is concerned

with minimizing the power consumed by a system. To manage power, it is vital to

understand how the power is consumed by different system components. The power

management strategy should focus on the major components that consume power

to reduce the overall system power consumption. Figure. 2.3 shows a typical power

consumption distribution for a handheld device.

Figure 2.3: Power Distributions for Typical Handheld Device [5]

Maximum power is consumed by LCD BL (LCD Back-Light). But scope of optimiza-

tion is very less as it completely depends on screen size and brightness. Next most

consuming power component is CPU. Power consumption in CPU depends on work-

load, operating frequency, governor, computing time, dispaly resolution. Today a

CHAPTER 2. LITERATURE SURVEY 12

seperate HW GPU is included for hard computing like 2D and 3D computing. Hence

there are lot of scope of power optimization in CPU and GPU. In this project, most

of the focus is on CPU and GPU optimization.

2.4.1 Power and Performance Trade-Off

The requirement for any handheld device is, high performance with low power con-

sumption.

Generally, dynamic power consumption is given by [5]

P = NCV 2f (2.1)

C : CMOS circuit output load capacitance

N : Average number of switching activities for clock cycle

V : Supply voltage

f : Clock frequency

This shows that power consumption is directly proportional to clock frequency. As

clock frequency increases performance improves but from above formula, power con-

sumption will also increase. Thus there is always a trade-off between power and

performance. End goal is to have such point of frequency and voltage so that power

and performance are under acceptable level and with the competition.

2.4.2 Enhanced Intel SpeedStep Technology

Enhanced Intel SpeedStep Technology (EIST) allows the system to dynamically ad-

just processor voltage and core frequency, which results in decreased power consump-

tion, which results in decreased heat production. It introduces a means of enabling

high performance while meeting the power-saving needs. Large power saving is pos-

sible if frequency and voltage are reduce at the same time. It throttles clock speed

as per demand of load thus save power yet achieve high performance.

CHAPTER 2. LITERATURE SURVEY 13

Enhanced Intel SpeedStep == Dynamic Frequency and Voltage scaling

The following are the key features of Enhanced Intel SpeedStep Technology [6].

• Multiple voltage and frequency operating points providing optimal performance

at the lowest power

• Voltage and frequency selection is software controlled by writing to processor

MSRs

– If the target frequency is higher than the current frequency, VCC is ramped

up in steps by placing new values on the VID pins and the PLL then locks

to the new frequency.

– If the target frequency is lower than the current frequency, the PLL locks to

the new frequency and the VCC is changed through the VID pin mechanism.

– Software transitions are accepted at any time. If a previous transition

is in progress, the new transition is deferred until the previous transition

completes.

• Improved Intel Thermal Monitor Mode

– When the thermal sensor indicates that the temperature is too high, the

processor can automatically perform a transition to a lower frequency and

voltage specified in a software programmable MSR.

– The processor waits for a fixed time period. If the temperature is down to

acceptable levels, an up transition to the previous frequency and voltage

point occurs.

– An interrupt is generated for the up and down Intel Thermal Monitor

transitions enabling better system level thermal management.

• Enhanced Thermal Management Features

CHAPTER 2. LITERATURE SURVEY 14

– Digital Thermal Sensor and out of specification detection.

– Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2

(TM2) in case of unsuccessful TM2 transition.

2.4.3 CPU States

CPU consumes a significant amount of power and so, it should be considered for

power management. This gave rise to CPU States.

2.4.3.1 C States

In order to save energy when CPU is idle, the CPU can be commanded to enter a

low-power mode. Each CPU has several power modes and they are collectively called

“C States”.

The basic idea of these modes is to cut the clock signal and power from idle units inside

the CPU. The more units are stopped or partially stopped by completely shutdown

or reducing voltage respectively, more energy is saved, but time required for the CPU

to wake up and become 100% operational is more.

These modes are known as C States. They are numbered starting at C0, which is the

normal CPU operating mode, i.e. CPU is 100% turned on. The higher the C number

is, deeper is the CPU sleep mode, i.e. more circuits and signals are turned off and

more time the CPU will take to go back to C0. In the Table I [7, 8], all C States are

summarized.

C1 State [7, 8]

All x86 CPUs have an instruction called “HLT”, where the CPU remains idle, doing

nothing when it ran. CPU becomes operative when it receives an interrupt. Since

in halt mode, CPU is completely idle, Intel added the Auto Halt mode known as C1

state. When HLT instruction is executed, CPU enter halt mode and internal CPU

clock signal is stopped. Only two units inside CPU remain on. They are Bus Interface

and the Interrupt Controller. This is done to allow the CPU to wake up if request

CHAPTER 2. LITERATURE SURVEY 15

State Name CPU
Internal
Clock

Bus In-
terface/
Inter-
rupt
Con-
troller

L1 Cache L2
Cache

CPU
Voltage

Wake
up
Time

C0 Operating
State

On On - - - Less

C1 Halt Stop via
SW

On - - - More
than
C0

C1E Enhanced
Halt

Stop via
SW

On - - Reduced More
than
C0

C2 Stop Clock Stop via
HW

On - - - More
than
C1

C2E Extended
Stop Clock

Stop via
HW

On - - Reduced-
Less
than C2

More
than
C1

C3 Sleep Stops
all

Stops
all

- - - More
than
C2

C4 Deeper
Sleep

Stops
all

Stops
all

Flushed Partial
Flush

Reduced-
Less
than C3

More
than
C3

C4E/C5 Enhanced
Deeper
Sleep

Stops
all

Stops
all

Off Flushed Reduced-
Less
than C4

More
than
C4

C6 Deep
Power
Down

Stops
all

Stops
all

Off Off Reduced-
Less
than C5

More
than
C5

Table I: CPU - C-States

CHAPTER 2. LITERATURE SURVEY 16

comes through the CPU external bus. As soon as CPU receives an interrupt signal

it goes to C0 State with clock signal being restored.

C2 State [7, 8]

C2 State was introduced by adding a extra pin to the CPU called “STPCL” (Stop

Clock). When it is activated, CPU core clock is stopped. This is same as C1 state

with only difference in how they achieve the state. C1 state is activated by software

while C2 is activated by hardware i.e. by sending a signal to CPU pin “STPCLK”.

Here also, Bus Interface and the Interrupt Controller remain on to serve important

request. Some CPU have enhanced Halt/Stop state i.e. C1E/C2E, which reduces the

CPU voltage to save power.

C3 State [7, 8]

C3 is called Sleep state. It cuts all internal clock signals from CPU including bus

interface unit and interrupt controller. This means that when CPU is in sleep mode

it cannot answer to important request coming from CPU external bus or interruption.

C4 State [7, 8]

Modes C1, C2 and C3 deals basically with the clock signal. Since in C3 state all

clocks are stopped there is no way to save power controlling clock signal. The next

step is to control CPU voltage. By reducing CPU voltage power can be saved since

power consumption is directly proportional to square of voltage. C4 is called Deeper

sleep state where L2 cache is partially flushed and voltage is reduced to save power.

When CPU is waked up it loads the previous state of all internal units from static

RAM. Waking up the CPU from this state takes longer time than the previous states.

C6 State [7, 8]

When CPU enters C6 state it saves its entire architectural state inside a special static

RAM, which is fed from an independent power source. This allows CPU internal volt-

CHAPTER 2. LITERATURE SURVEY 17

age to be lowered to any value, which completely turn off the CPU when it is idle.

When CPU is waked up it loads the previous state of all internal units from static

RAM. Waking up the CPU from this state takes longer time than the previous states.

2.4.3.2 P States

P States are called performance states of CPU. P-state is both a frequency and volt-

age operating point. Both are scaled as the P-state increases. When a core is in the

C0 state, it can attain one of the performance states P0 − Pn [7, 9].

P0: Highest performance/frequency also called HFM

P1: Intermediate frequency

P2:

...

Pn: Lowest frequency also called LFM

Performance is directly related to frequency. As operating frequency increases, per-

formance of processor increases. The same applies for decreasing the frequency. If

frequency is made half, a compute bound task runs half as fast. For example, if a

task is compute bound and requires 100% of the CPU for 1 second at 2 GHz, it will

take 2 seconds to execute at 1 GHz. (This is roughly correct. There are other factors

influencing runtime, such as cache size and speed, interrupts, etc.)

If frequency is decreased, CPU utilization increases and % idle time reduces. This

shouldn’t have any effect on the power usage of the processor. Here voltage scaling

comes into play.

There are two primary reasons for P-states, one is to reduce the peak thermal load,

and the other is to save power.

Reducing Peak Thermal Load

The instantaneous energy usage (power) of the processor is related to its activity. If

CHAPTER 2. LITERATURE SURVEY 18

the processor is very busy, it runs hotter. So, reducing the frequency reduces the

peak thermal output even if the total energy usage is not reduced. The advantage

of reducing peak thermal load has also to do with maximum skin temperature. So,

if peak power is reduced; the maximum skin temperature is reduced which directly

impact user experience [7, 9].

Chapter 3

Power and Performance

Measurement

Measurement is the first step for any optimization. It shows how different workloads

behave on different platforms and where optimization can be done. There are three

basic and most important things for measurement.

• Power

• Performance

• Characterization of Workload

The power tool helps to measure power consumed by different platform components

for specific workload by looking at the various power rails going to the components.

The performance measurement of different benchmarks which are basically Android

Applications running on the platform depends on the type of Workload. For browsing

case time is important. Lesser the time better the performance. Whereas for work-

load such as games, FPS is considered for performance measurement. Measurement

done for characterization of any workload is basically for debugging. It is used to

evaluate the performance and utilization of the different components of the system

viz. CPU, GPU, Memory, etc.

19

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 20

Figure 3.1: Power Measurement Setup

This chapter ends with an experiment for Atom LFM. By characterizing and measur-

ing energy for different workloads options/optimizations is suggested for next gener-

ation platforms. This experiment recommends for Atom LFM.

3.1 Power Measurement

A computer platform consists of many components viz., CPU, Memory, Display etc.

These behave differently and consume different amount of power for various work-

loads. Understanding the impact on various platform components because of work-

loads is necessary. Thus power measurement is an important aspect for testing and

optimizing a platform. Usually DAQs (Data Acquisition Systems) are being used for

power measurements.

DAQ are basically used for two reasons:

a. For accurate power measure

b. To get the result in PC

The basic concept is as follows (Refer Figure. 3.1).

• A sense resistor is connected in series with the component whose power con-

sumption is to be calculated. Power rails from sense resistor are given to the

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 21

DAQ.

• DAQ measures two voltages.

a. Differential voltage across the sense resistor (dV)

b. Voltage at point B with respect to ground (V)

• Differential voltage is sampled at regular interval and is divided with the value

of the sense resistor to get the current (I) through the rail. Samples are taken

for accuracy. Smaller the interval, better the results.

• Computed current (I) is multiplied with absolute rail voltage (V) to get the

instantaneous power of the component and average is taken over all the samples

for a specific period.

• P = VI gives the input power. Similarly output power is calculated and there

difference gives power consumed by the component.

3.2 Performance Measurement

Performance measurement is way to evaluate devices. There are various ways to

measure performance. Performance can be in terms of time or FPS depending on the

type of workload and what needs to be evaluated. For example,

• For graphics benchmark FPS or score helps to evaluate/compare devices. Each

benchmark calculates score using FPS of the test running which is displayed

at the end of the test like AnTuTu, Quadrant 2D, etc. Some benchmark even

gives FPS number also like GLBenchmark, BaseMark X, etc.

• For games workload time and FPS, both matters depending on what is the focus

on. If the focus is on application launch then time is important and if the focus

is on the display and game experience then FPS is important.

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 22

• For browsing benchmarks, how fast the page load is important so, time is mea-

sured to evaluate performance of such benchmarks.

• For CPU intensive workload/benchmark like Core Mark, Caffeine Mark, etc.

time taken to complete the benchmark evaluates the CPU performance. So,

time is measured for performance.

To evaluate the performance of any device choosing proper benchmark is very impor-

tant. Benchmark should depict the real workloads in the platforms. The benchmarks

instead of real use-case are usually choosen to have repeatability.

3.3 Characterization Measurement

Any measurement that is done for characterization of any workload is basically for

debugging purpose like reason for low FPS, effect of increasing CPU frequency, uti-

lization of the different components of the system viz. CPU, GPU, Memory, etc.

Various internal/external tools are used to measure such characteristics.

There are three mechanisms to capture residencies/utilization.

• Snapshot : This collects data at start and end of the specified time.

Features such as C State, south complex residency are measured using snap-

shot. This has minimum overhead.

• Polling: This collects data at regular interval for specified time.

Most of the feature residencies are calculated using this method. Features such

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 23

as Graphics C State, Graphics P State, Memory BW, Temperature, etc. are

measured using polling. This has maximum overhead.

• Tracing: This collects data only at the change between specified time.

Features such as wakelock, interrupts request are measured using tracing. For

this overhead depends on number of times it has to measure.

The overhead for all the mechanics are within the acceptable limits, it affects only 2

- 3% of the result.

Power and performance measurement together called energy is important for evalu-

ating any platform. Performance/watt is important for a particular platform. Char-

acteristic measurement helps debugging and understanding the workload behavior.

3.4 Case Study: Recommendation for Atom LFM

This case study presents an analysis on CPU frequency scalability for different work-

loads on Intels upcoming Platform for Android devices. Workloads/Benchmarks are

set of android applicationsthat are formed to stress different parts of the system. This

chapter uses basic benchmark/workload of Android devices like video playback, audio

playback, etc. to observe frequency scalability.

Objectives

• Present an analysis on CPU Frequency scalability for different workloads

• Recommendation to Atom CPU about LFM

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 24

3.4.1 CPU Frequency Scalability

CPU runs at different frequency depending on the workload to save power. Each

platform has some lowest and highest frequency supported. Workload utilizes these

range of frequency based on the requirement to give better performance at minimum

power consumption. An analysis is presented on CPU utilization and power consumed

for different CPU frequency for different workloads.

3.4.1.1 Video Playback

A real world workload of video playback was chosen first as this is the most used load

on any android device. Here a video of 1080 pixel resolution at 30 FPS was chosen

for test. Intel has already defined particular videos of different resolution and FPS

for comparing across platform. Same video was chosen for test. Here platform is

multi-core but for better understanding of scalability, platform is converted to single

core and single thread by switching off other core and multi-threading property. The

trend remains same for single core and multi-core. Figure. 3.2 shows CPU utilization

for core 0 and core 1 with frequency of CPU.

Figure 3.2: Video Playback - Dual Core Frequency Scaling

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 25

Figure. 3.3 shows same with core 1 off. It can be seen that trend of the curve for both

is same.As the trend is same, only single core results are used for better understanding.

Figure 3.3: Video Playback - Single Core Frequency Scaling

Inference

CPU utilization decreases with increasing frequency but scaling drops post second

frequency point. Scaling saturates with increasing frequency. CPU power increases

with frequency. Power delta between lowest and second lowest is less and that is due

to voltage increase. For Video playback no significant difference for LFM at 1st or

2nd frequency point.

3.4.1.2 Video Record

Video record is the other workload which is widely used in mobile world. For exper-

iment, video is recorded with 1080 pixel resolution set and measurements are done.

Figure. 3.4 shows the scaling of CPU utilization and power with different operating

frequency of CPU.

The FPS of recorded video was measured and it comes to be 30 FPS, which is good.

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 26

Figure 3.4: Video Record - Single Core Frequency Scaling

Inference

CPU utilization decreases with increasing frequency. But decrease for lowest and

second lowest frequency is much less. CPU power increases with frequency. Power

delta between lowest and second lowest is less due to voltage increase. Same as Video

playback, for HW accelerated workload there is no higher frequency LFM gain or loss.

Depending on other workload like graphics, LFM at 1st frequency or 2nd frequency

point may help to achieve energy efficiency gain.

3.4.1.3 Basemark Taiji

Basemark Taiji is a graphics benchmark. This characterizes the graphics of the sys-

tem.

Inference

CPU Utilization scales with frequency up to second frequency point. Performance is

24 FPS for all frequency. May be gain in power as CPU utilization is significantly

less.

CHAPTER 3. POWER AND PERFORMANCE MEASUREMENT 27

Figure 3.5: Basemark Taiji - Single Core Frequency Scaling

3.5 Conclusion

Workload scales non-linearly. Higher CPU frequency doesn’t reduce C0 residency in

step. Workload scales nicely till second operating frequency. CPU Utilization does

not scale beyond this knee point. Power increases with frequency due to voltage

scaling. If power gain is obtained for Graphics workload (Taiji), recommend “Second

Frequency” point as optimal point. Scalability determines the most energy efficient

LFM even with higher voltage.

Chapter 4

Case Study: Android Graphics

Graphics intensive computer games are no longer restricted to high performance desk-

tops, but are also available on a variety of portable devices ranging from notebooks

to tablets and mobile phones. Battery life has been a major concern in the design of

both the hardware and the software for such devices. Energy efficiency is one of the

most critical issues in the design of such battery-powered portable devices. Motivated

by the below mention facts this chapter attempts to characterize various games and

graphics benchmarks.

• Increasing availability of game applications in Android world

• All unit of platforms are utilized like display is 100% ON, GPU and CPU

• It is most interactive. Accelerometer and touch are used.

Due to all these reasons, this is the most energy constraint and so, characterization

become important.

There are two fundamental differences between the workloads arising from game and

video decoding applications [10]:

• The magnitude of the variation in the number of processor cycles required to

process a frame is significantly higher in case of games compared to video de-

coding. However, the frequency of this variation is much higher in the case

28

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 29

Figure 4.1: Frame Processing in Game Application

of video decoding applications. In other words, compared to workload arising

from a game, a video decoding workload exhibits a smaller but more rapid vari-

ation. This observation indicates that the potential energy savings that may be

obtained from applying DVFS to games is higher than what may be obtained

from video decoding applications.

• In the case of game applications, the frames contain structure, which can be

exploited to predict their workload or processor cycle requirements. While

processing a frame, the workload depends heavily on the scene that the frame is

depicting. More specifically, the workload depends on the content of the frame

or the constituting objects that need to be processed. In contrast, video frames

offer much less structure.

Before going to actual game/graphics benchmark characterization, how actually frame

is processed in a game application and various ways to render a frame is discussed.

4.1 Anatomy of a Game Engine [10]

A game engine runs in an infinite loop, where the body of this loop consists of task

responsible for processing a single frame. This loop body is shown in Figure. 4.1

Event denotes the user inputs or interactions with the game, which along with the

current state of the game is used to generate the next frame to be displayed. This

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 30

involves two sequential steps, computing and rendering which describe below.

Computing

The computing step comprises tasks such as collision detection, AI, simulation of

game physics and particle systems. Collision detection includes algorithms for check-

ing collisions between the different objects and characters in the game. Such al-

gorithms compute intersections between two given solids, their trajectories as they

move, impact times during a collision and their impact points. In some engines, the

AI tasks determine the movement of the characters in the game. Game physics in-

corporates physical laws into the game engine so that different effects (e.g. collisions)

appear more realistic to a player. Typically, simulation physics is only a close ap-

proximation ofreal physics, and computation is performed using discrete rather than

continuous values. Finally, a particle system model allows a variety of other physical

phenomenon to be simulated. These include smoke, moving water, blood, explosions

and gun fires. The numbers of particles that may be simulated are typically restricted

by the computing power of the machine on which the game is being played.

The rendering step involves algorithms to generate an image (or a frame) from a

model, which is then displayed as shown in Figure. 4.1. In this case, the model is typ-

ically a description of several three dimensional objects using a predefined language

or data structure. It consists of geometry, viewpoint, texture and lighting informa-

tion. In the case of 3D graphics, rendering may be done offline, as in pre-rendering,

or in real time. Pre-rendering is a computationally intensive process that is typically

used for movie creation, while real-time rendering is commonly done in 3D computer

games, which often rely on the use of a specialized processor called a Graphics Pro-

cessing Unit (GPU).

The rendering steps include the transformation of the vertices of solid objects to the

screen space, deletion of invisible pixels by clipping, rasterization, and interpolation

of various parameters. The outcome of these steps is the transformation of the 3D

data onto the 2D screen. Rendering is computationally expensive and occupies a

significant fraction of the total processing time of a frame.

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 31

4.2 Hardware Acceleration

Hardware acceleration is the use of computer hardwareto perform some functions in

computing faster than possible than running software on the CPU.

Generally, processors are sequential, and instructions are executed one by one. Var-

ious techniques are used to improve performance; hardware acceleration is one of

them. The main difference between hardware and software is concurrency, allowing

hardware to be much faster than software. Hardware accelerators are designed for

computationally intensive software code.

The hardware that performs the computation and is responsible for accelerating the

task is a separate unit from the CPU. It is referred as a hardware accelerator, or GPU

(Graphics Processing Unit).

The 2D operations are done on GPU instead of CPU. 2D operations are translated

into equivalent 3D operations and processed in GPU. The performance will be faster

but GPU power will be more compared to software rendering.

4.3 Software Rendering

Software rendering refers to a rendering process in absent of graphics hardware, such

as a GPU. The rendering takes place entirely in the CPU. Rendering everything with

the CPU has the main advantage that it is not limited to the capabilities of graphics

hardware, but the disadvantage is that it gives lower performance and speed. Software

rendering can be split into two main categories:

a. Real Time Rendering or Online Rendering

b. Pre-rendering or Offline Rendering

Real-time rendering is used to render an interactive scene, like in games, and generally

each frame must be rendered in a few miliseconds. Offline rendering is used to create

images and movies, where each frame can take hours or days to complete.

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 32

Real Time Software Rendering - Online Rendering

In real-time rendering, all the images from 3D geometry, textures, etc. are produced

on the fly and displayed to the user as fast as possible. The user can interact with

the 3D scene using a variety of input devices.

Offline rendering

Offline rendering refers to anything where the frames are rendered to an image format,

and the images are displayed later either as a still, or a sequence of images. Images

are rendered on a frame buffer and when frame is ready it is displayed as an image.

4.4 Case Study: Quadrant 2D - Analysis of HW/

SW Rendering

The Quadrant benchmark application for Android runs a series of processor intensive

tests to determine the performance of Android device for comparison to other Android

devices. The purpose of a benchmark is to provide a consistent standard by which

things can be measured. Quadrant runs a total of 21 tests covering the processor,

memory, input, output, 2D graphics and 3D graphics performance.

Quadrant 2D test is primarily for testing 2D graphics performance of a phone/device.

2D graphics is used in case of basic UI of android and games like angry birds etc.

As discussed in section 4.2 and 4.3 there are two ways to render 2D graphics on an

android system. One is HW accelerated and second is through SW library i.e. on

CPU.

a. SW Rendering: For using CPU for 2D rendering, there is library called lib-

skia.so, which is being used and there is more load on CPU than on GPU. So

VCC power (CPU power) would be more. At the same time performance of the

test is not so good i.e. not reaching 60 FPS [or score of 1000] due to limitation

on CPU for doing these operations. So, in this case CPU utilization will be

high, GPU utilization will be low and performance will be low.

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 33

Figure 4.2: Quadrant 2D - Score Comparison

b. HW Accelerated Rendering/Force GPU Rendering: In this case, the

2D operations are done on GPU instead of CPU. 2D operations are translated

into equivalent 3D operations and process it in GPU. The performance will be

faster and will reach 60 FPS [score of 1000]. But the GPU power will be more

compared to SW rendering i.e. VNN is more.

Considering all these a test was carried out on all the platforms of Intel to see per-

formance/ Watt for HW Rendering and SW rendering. Here, performance is nothing

but the score which is reported at the end of the test. This score is calculated from

the FPS of the test running on the platform.

Figure 4.2 compares score for HW and SW rendering for different Intels android

devices. It can be seen that HW rendering scores are better than SW Rendering.

For a portable device it is not only performance that matters but, better performance

at lower power consumption is required. For considering power and performance at a

time, unit of performance/watt (perf/W) is used. Goal is to achieve perf/W as high

as possible.

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 34

Figure 4.3: Quadrant 2D - Performance/Watt Comparison

Figure. 4.3 shows perf/W for different Intels device with SW and HW rendering. Only

platform power is taken into consideration as it includes CPU as well as GPU power.

4.4.1 Conclusion

HW rendering gives better performance/Watt. This is because, due to hardware

rendering performance increase and at the same time load on CPU decrease so power

consumption on CPU decrease and power on GPU increase. As a result power remains

almost constant and performance increase. So, performance/Watt improves.

4.5 Case Study: Graphics Benchmark - Charac-

terization with Display Resolution

This case study presents characterization with display resolution. Performance changes

with display resolution because, as number of pixel increases; GPU has to do more

task and so, performance decrease with increasing resolution. Also, GPU task increase

so power increase. This case study attempts to understand and answer following is-

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 35

sues.

a. Correct/Best Display Resolution

b. Behaviour of Graphics Benchmark with Display Resolution

c. Scaling Ratio with respect to Perforamance and Power

There are benchmarks which scales with display resolution but few benchmarks shows

no impact of resolution on performance or power as they are designed to render at

particular resolution and then scaled to display resolution so, energy remains same.

This case study presents characterization for both type of graphics benchmark. This

analysis helps setting display resolution for next platform and helps predicting values

for other display resolutions.

Also, characterization becomes important when performance is good i.e. 60 FPS for

Graphics Benchmark. With 60 FPS, GPU must be getting some time to sleep so

characterizing the sleeping time of GPU and how it affects the power is important.

If two platforms with performance for some benchmark are 60 FPS, then it is the

processing time that matters. How fast it completes the process and goes to sleep to

save power becomes important . So, energy characterization becomes important.

Instead of the real workloads, benchmarks are taken for experiment as they are re-

peatable and it becomes easy to compare platform. Here, characterization is done on

Intels platform.

4.5.1 Quadrant

Quadrant is a benchmark for mobile devices, capable of measuring CPU, memory,

I/O, 2D and 3D graphics performance. Quadrant runs several tests to evaluate per-

formance of different components of the platform. Graphics point of view 2D and 3D

are important. Only 3D test is consider and presented here as they are the most com-

puting task and it is possible to redirect the computing to CPU or GPU. To evaluate

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 36

Figure 4.4: Quadrant 3D Score v/s Display Resolution

3D performance, Quadrant runs 3 test namely Corridor, Planet and DNA.The score

for 3D for different display resolution is as shown in Figure. 4.4.

From the figure, it can seen that 3D score scales with resolution. As resolution

increases performance drops. But out of the three tests running which test is/are the

reason for drop and what is the drop in FPS is important. Characterization of FPS

is carried out as shown in Figure. 4.5.

Figure. 4.5 shows FPS for DNA is same and maximum for all the cases. Till 1080

pixel resolution even Planet test is also good. But there is a large drop of FPS for

Corridor at 2560 x1440 resolution. To under the reason of such behaviour, Corridor

3D test is analysed in details. First Graphics C State residency is analysed and results

are as shown in Figure. 4.6

From Figure. 4.6, even with maximum resolution, GPU has some time to sleep. So,

GPU is not the bottle neck here. To understand the behaviour further, memory BW

for all the 3 tests is carried out and Figure. 4.7 shows the results.

In Figure. 4.7, all tests shows same behaviour but for corridor at 1080 pixel, it reaches

the peak and then if resolution increases; BW become bottle neck and performance

drop and so the BW. Even for Planet; it is the same case but still it is less than

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 37

Figure 4.5: Quadrant 3D Score v/s Display Resolution

Figure 4.6: Quadrant 3D - Corridor Graphics C-State Residency

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 38

Figure 4.7: Quadrant 3D - Memory BW analysis

maximum available. For DNA, BW is comparatively less and so does not affect

performance.

4.5.2 AnTuTu

AnTuTu is a Graphics Benchmark same as Quadrant but here 2D and 3D by default

goes through HW rendering. For testing, 2D AnTuTu have 2 tests; Particle and Spirit

whereas for 3D it runs only one test, Orge Activity. Figure. 4.8 shows 2D and 3D

score with Display Resolution. 2D score is in primary axis in terms of hundreds and

3D score is in secondary axis in terms of thousands.

The 2D test runs multiple tests. So, to characterize the performance for individual

test becomes important. Figure. 4.9 shows the FPS for all the individual test for 2D

and 3D.

From Figure. 4.9, it is clear that 2D particle test is the main test due to which overall

score is less. To understand the behaviour of Particle test Graphics C0 residency is

measured, which is as shown in Figure. 4.10

For Particle test even with lowest resolution Graphics is saturated. So, clearly Graph-

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 39

Figure 4.8: AnTuTu - Score v/s Display Resolution

Figure 4.9: AnTuTu - 2D and 3D test FPS v/s Display Resolution

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 40

Figure 4.10: AnTuTu 2D - Graphics C0 Residency

ics is the bottle neck.

4.5.3 Basemark X

Basemark X workloads is a Graphics benchmark designed according to the usage pro-

file of modern and future 3D games targeted for smart phones and tablets. Basemark

X features game like content, including particle effects, advanced lighting effects and

post processing. It has two rendering options, Online and Offline. Figure. 4.11 shows

the FPS for Online as well as Offline rendering.

Offline rendering does not show any performance change with resolution as it is al-

ways rendered at particular resolution; here 1080 pixel and then scales to the display

resolution. But for online rendering this is not the case, FPS drop is almost lin-

ear with the increasing resolution. To under such behaviour of Onscreen rendering

Figure. 4.12 shows the Memory BW characterization.

Memory BW for offscreen is almost constant but for onscreen it continuously increas-

ing with initial BW itself is high, which becomes the bottle neck for lower performance.

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 41

Figure 4.11: Basemark X - FPS v/s Display Resolution

Figure 4.12: Basemark X - Memory BW Characterization

CHAPTER 4. CASE STUDY: ANDROID GRAPHICS 42

4.5.4 Summary and Conclusion

Graphics benchmarks show a huge performance drop at higher resolution. As display

resolution increases performance drop is also increases. Figure. 4.13 summaries all the

benchmark discussed above showing performance drop for increasing display pixels

from x to 8x.

Figure 4.13: Performance Drop Characterizations with Increasing Display Pixels

Figure. 4.13 shows that till 2x display pixel values, performance drop is not significant

except for Basemark X online but for 4x and 8x performance drops significantly. This

helps to characterize performance for even higher resolution and helps to set proper

display resolution for next platform. This case study suggests 1080 pixel display

resolution for next generation platform which gives better performance and display

to user at acceptable power.

Chapter 5

Platform Architecture Modeling &

Simulation

Modelling and simulation (M&S) is getting information about how something will

behave without actually testing it in real life. More generally, M&S is using models,

including emulators, prototypes, and simulators to develop data as a basis for making

technical decisions. M&S helps to reduce cost and increase the quality of products

and systems.

Using simulations is generally cheaper and safer than conducting experiments with a

prototype of the final product. Simulations can be more realistic, as they allow the

free configuration of environment parameters found in the operational application field

of the final product. Simulations allow setting up a coherent synthetic environment

that allows for integration of simulated systems in the early analysis phase via mixed

virtual systems with first prototypical components to a virtual test environment for

the final system.

Modelling of actual mobile platform is done and then it is simulated for a particular

use case for power and performance analysis. This help to have a picture of energy for

the next platform without having the actual hardware. But it is necessary to check

the stability and accuracy of the data from the simulation. This chapter presents a

43

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 44

SYSTEM approach for modelling platform and a “Real Life Use-Case using a Platform

Architect Tool. It attempts to present a model for a platform whose silicon is available

and a real life use case like Video Playback using SYSTEM Task Flow approach. It

then shows the correlation of simulation results with measured results for accuracy

of the approach.

Section 5.1 is about the System Task Flow approach and its benefits. Section 5.2

describes on PA Tool, how it supports the Task Flow approach, its features and

output. Section 5.3 and 5.4 includes Platform modelling and Workload modelling.

Section 5.5 presents the simulation results and correlation with measured.

5.1 SYSTEM Task Flow Approach

Platforms are getting increasingly complex due to the advances of technology. As

discussed in section 2.3, platform is an integrated set of ingredients such as the pro-

cessor, the chipset, a lightweight form-factor for mobility, technologies to provide

great battery life, enabling the ability to work anywhere you want without needing

a power socket, wireless capabilities that enable the ability to connect in almost any

location equipped with private and public hotspots, and sophisticated applications

that use the mobile form-factor efficiently. The final shipped product is the sum of a

set of parts that provides the valuable end user experience - it is not just a device,

but a platform [2]. Evaluation of whole system/platform performance and power is

a critical part of system optimization and validation. The two main performance

metrics are DDR transaction or throughput. Throughput can be expressed as MB/s.

Power can be estimated using residency of each IP in the highest power state.

There are various approaches for modelling and simulation of workload, static and

dynamic. Static is simulating without the actual use-case like a high level spread sheet

analysis and dynamic includes simulation of actual workload. But there remains a

significant gap to analyse real world Use Cases at SYSTEM level and appropriately

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 45

co-design HW/SW for optimal Power/Performance. It is important to analyse and

optimize for real world Use cases accounting for end-to-end SYSTEM behaviour using

both measurements and modelling approaches. This approach is a static approach

where the details of various parameters of particular workload is used but has ad-

vantages as compared to static approach. In this chapter a workload simulation is

presented which shows that a real life use-case like Video Playback can be modelled

on a particular system. It allows us to examine the performance behaviour of very

complex use cases before the hardware prototypes are available. This is essential when

feasibility of architecture needs to be evaluated or to optimize the system parameters

for some application scenario.

In Task Flow approach each workload is divided into several system level logical tasks.

These tasks have specific bandwidth and processing time as per the platform. It may

or may not scale with platform depending on the platform specification changes. They

are interconnected to form a logical flow. These tasks are interdependent running se-

rial or parallel according to the architecture of the platform. Also, each task may

be a processing task or a memory task; mapped to different hardware in the system.

All these information is given as an input in this approach. Few dummy tasks are

included in the system for replicating a real use case scenario. User interaction or

program interrupts are taken care of and is modelled using dummy tasks. A generic

flow of Task Flow approach is as shown in Figure. 5.1 . With this approach it is

very easy to add features to a workload like HDMI Display for Video Playback, and

increase the sensitivity to various parameters of the system and workload. Detail

explanation of this with example is discussed in section 5.4.

This System level Task Flow approach has many benefits. It represents the be-

haviour of the real applications. It is possible to give priority to the task as in real

use-case which is not possible in high level spread sheet analysis. This helps to study

the peaks in the system. Parallel execution of task possible and this will help to

study the performance improvement. It is also possible to add entry and exit latency

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 46

Figure 5.1: Generic Workload Task Flow

for each CPU state and so power analysis is also possible. Task flow approach is a

generic approach where adding a feature like CPU C states, GFX C States, GFX

frequency, CPU frequency, etc. is feasible. This approach is very useful to assess

system scalability of both HW and SW, as large number of derivative SOCs and

Platforms are produces to meet specific customer needs. Task Flow models helps

to establish a common language between SOC, Platform Architects, SW developers

and Validation Engineers, and enable significant improvement in platform definition

and HW/SW development. This approach is a significant step in studying Use Cases

at a much higher abstraction than cycle accurate models and thus enables to take

Systems approach for Power/Performance efficiency - an absolute need of the hour to

win Phone/Tablet segments.

Platform Architect tool from Synopsys supports the system approach, is designed

according to Y-chart model [11, 12 and 13] and consists of the following components

(Figure. 5.2):

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 47

Figure 5.2: Y-Chart Model of PA Tool

a. HW (Hardware) Topology

b. Task Flow

HW topology is Platform Architecture specific; mainly concentrate on modelling the

actual platform parameters and configuration whereas Task flow is of particular Use-

Case like Video Playback, Audio Playback, Image Capture, etc.

5.2 Platform Architect Tool

Platform Architect tool is developed by Synopsys and is designed according to Y-chart

model. It has one input as platform model and other input as workload model. Also,

it has inputs for CPU scheduling algorithm for multi-core processors. It supports

task flow approach as describe in section 5.1. For a user point of view as described

it basically require two inputs namely, HW model and Task flow. CPU scheduling

algorithm can be changed but at present the default algorithm as provided by the

Synopsis is used.

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 48

Figure 5.3: Hardware Configuration

5.2.1 Hardware Model

Hardware model file consist of several information about the actual hardware model

which is to be built. It is basically in 4 sections.

a. Hardware configuration

b. Bus configuration

c. Memory configuration

d. Clock configuration

5.2.1.1 Hardware Configuration

For any simulation a hardware model or the environment on which it will run is

needed. Hardware configuration section in the model file contains of information re-

garding different fabrics, IPs connected to fabric, fabric frequency, fabric bandwidth,

memory configuration, etc. A sample Hardware configuration is as shown in Fig-

ure. 5.3.

In this configuration there are 4 IPs / VPUs (Virtual Processing Unit), CPU0,

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 49

CPU1, GFX and SCHEDULER Parameters

• vpu buswidth : Number of data bits that connect the VPU to the bus

• vpu freq : The frequency in MHz that the VPU clock is running

• vpu bus : To which bus/fabric this VPU is connected to

• vpu prio : The priority used by the bus to order different transactions from

different VPUs (0 highest)

• vpu gpu cores: Number of cores each VPU have. Not used in this lab so, 0

• vpu burst : Data in byes that the VPU can send in a single transaction

• vpu *credits : The VPU read and write bus credits. This defines the number

of request the VPU can put before any request is served. A VPU here a send

15 read and write request before waiting for 1st one to be served.

• vpu dma : Not used in this lab use 0

• vpu vc : VPU virtual channels, prioritize virtual channels list, you can map

memory transaction to any channel of your choosing

• vpu categories: Depends on vpu gpu cores. GPU for multi core and CPU for

single core

• vpu power * : Power in W for the different power states

• vpu enable : Must be 1

5.2.1.2 Bus Configuration

This defines the bus/fabric used in the model. It also defines the fabric connection,

frequency and bandwidth.A sample Bus configuration is as shown in Figure. 5.4.

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 50

Figure 5.4: Bus Configuration

In this configuration there are 2 buses, MAIN and PSF

Parameters

a. bus freq: The frequency in MHz that the bus clock is running

b. bus buswidth: Number of data bits that connect the bus to the target bus (if

exists)

c. bus prio: The bus priority used by the target bus to order different transactions

from different VPUs/buses (0 highest)

d. bus connection: This array describe the bus topology, in this case (PSF MAIN),

the PSF is the initiator and the target is MAIN, any number of pairs can be

added to describe the topology

5.2.1.3 Memory Configuration

This section defines the memory. It defines the type of memory, frequency, bandwidth,

etc. A sample memory configuration is as shown in Figure. 5.5.

In this configuration only one memory, SRAM is used.

Parameters

• bus buswidth : Number of data bits that connect the memory to the bus

• bus freq : The frequency in MHz that the memory clock is running

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 51

Figure 5.5: Memory Configuration

Figure 5.6: Clock Configuration

• mem bus : To which bus this memory is connected to

• mem type : The memory type, currently supported SRAM and DDR only

• mem addr width: Address width in bits of this memory

• mem power * : Power in Watt for the different power states

5.2.1.4 Clock Configuration

This section defines all the clocks used in the system. All frequency is given in MHz.

5.2.2 Task Flow

Task Flow is specific to workload and has two files as an input to PA tool.

a. Task Graph Configuration

b. Mapping file

These are .csv files each defining various parameters.

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 52

5.2.2.1 Task Graph Configuration

Task Graph is the main input to the tool, since after building the platform, the

use-case desired to run is defined in a task graph. Task Graph file including 4 tables:

• Task Table: Used to define all the tasks and general parameters on each one of

the tasks such as wait latency, number of instances and priorities

• Connection Table: Used to define the connectivity between the tasks (which

task is enabler to which task)

• Function Table: Used to define the behavioural model of the task. Whether its

a memory transaction task or a processing task

• Memory table: Used to define all memory transactions address widths

Task Table

Task table defines different task used for a particular workload. Any name can be

given to a task. A sample task table is as shown in Figure. 5.7.

Figure 5.7: Task Table

Parameters Description (Table I)

Connection Table

Connection table specifies the whole data flow for the task. How the different tasks

are connected and who will initiate data for whom. A sample connection table is as

in Figure. 5.8.

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 53

Name Data Type Description
instances Iinteger Specifies the amount of task instances this task

block will span
start delay in ns Integer Specifies the initial delay and is executed when

the task start for the first time
wait delay in ns Integer Specifies the self-activation delay and is exe-

cuted after each iteration
iterations Integer Specifies the number of activations during a

simulation
job id Integer Specifies the job ID to which task instance 0

of this block belongs to. This enables multiple
task instances to be associated with one job for
simultaneous start and stop

priority Integer This parameter is used to give priority to the
task running on same IP/VPU. It influences the
priority scheduler

or gating Boolean If false (default), the task executes when all the
get ports have data. If true, the task executes
as soon as one get port has data

Table I: Task Table - Parameter Description

Figure 5.8: Connection Table

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 54

Name Data Type Description
rate samples Integer It determines the number of samples gen-

erated per activation
p put.rate activations Integer One source token activates p put number

of destination token
p get.rate activations Integer After 4 source tokens, a single destination

token is activated
init put samples Integer Specifies the number of samples generated

initially
offset Integer This allows to shift the activation in which

the put samples are generated
p get.get samples Integer Specifies number of samples to wait before

finish
aut resize / size Boolean/ Integer Used to define the buffer between two

tasks Task A pushes Task B and it sends
10 tokens to it, if Task B is stuck for some
reason, Task A can either get stuck after
N iterations (N < 10) or continue run-
ning and pass the 10 tokens. If true then
Task A never gets stuck and it continues
to run. If Auto resize is false then the
size comes in the picture and defines the
N iterations Task A can pass before it also
gets stuck.

Table II: Connection Table - Parameter Description

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 55

Parameter Description (Table II)

Function Table

Function table specifies the details of each task. It specifies the type of task and

processing cycle for processing task and number of bytes for read and write task. A

sample function table is as shown in Figure. 5.9.

Figure 5.9: Function Table

Parameter Description

a. Function Name : rd,wr or proc , based on the functionality of the task

b. Function Type : for rd/wr tasks must be scml tm mem fucntionand for proc

task must be scml tm cpu function

c. Processing Cycles : Number of cycles needed to process processing task

d. Memory Name : Used for rd/wr tasks and defines the symbolic naming of the

memory transaction for that task

e. burst size in bytes : Is responsible for quantity of memory calls

f. read : 1 for rd tasks 0 for wr tasks and ”” for proc tasks

g. total data size in bytes : Is responsible for the amount of activation after which

the accesses start at local address 0x0 again

h. data size per activation in bytes : Specifies amount of bytes transferred per

activation

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 56

Memory Table

This is used to define all memory transactions address widths. A sample table is as

shown in Figure. 5.10.

Figure 5.10: Memory Table

5.2.2.2 Mapping file configuration

For any taskgraph to simulate on the given model, mapping file is needed. This

defines which task will run on which IP/VPU. A sample mapping file is as shown in

Figure. 5.11.

Figure 5.11: Mapping File

5.2.3 Steps to Build, Simulate and Analyse

Once the model file and task graph is ready, next step is to build the platform and

simulate it. Following are the steps.

a. Run PA

$> pct &

b. Create platform

Plugins -> vpp -> create system. This flow will take the information from

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 57

model file, platform parameters.tcl and create the system. A sample platform

created by tool is shown in Figure. 5.12.

Figure 5.12: System Model

c. Create Task Graph

The Application parameters in the HW parameters tree should match the task

graph which needs to be loaded.(Figure. 5.13)

Create the task graph by running: Plugins -> vpp -> create tg. This will create

the task graph as defined in the connection table. A sample task graph is as

shown in Figure. 5.14.

d. Build: Plugins -> vpp -> build

e. Simulate: Plugins -> vpp -> simulate

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 58

Figure 5.13: HW Parameters

Figure 5.14: Task Graph

f. Analyze: Plugins -> vpp -> analyze

This will open VP explorer, loading MCO Trace will show the time based simu-

lation of each task (Figure. 5.15).

Figure 5.15: MCO Trace Sample Results

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 59

5.2.4 Features of PA Tool

• Syntax and number of parameters in any model file can be modified or added as

per the requirement. Like as present there is no parameter for memory efficiency

in the model file. So, simulation assumes that 100% memory is available. But

in real scenario it is not the case. Particular use case can only use the 70% of

the memory and then it starts degrading the performance. This can be handled

by adding a parameter of memory efficiency in the model.

• Algorithm for scheduling of CPU task for multicore processor can be modified.

At present it uses priority scheduling. Last core is given highest priority. Any

thread is first mapped to last core. If other thread comes, it will be scheduled

to next CPU core only if the last core is busy. This algorithm can be modified

as per the requirement.

• It allows assigning priority to each task and to the IPs.

• Any task can initiate more than one token for destination and similarly after

more than one token a single task can be initiated. This helps in batching

or buffering. Like if in the video pipeline video decode takes maximum time,

decode of frames can be done in advance as per the memory availablility and

this improve the performance. This is done in real world use-case and PA Tool

helps to model such scenarios.

• Any task specifications can be made sensitive to workload parameters and sys-

tem parameters. For example, a task of Video Decoding can be made sensitive

to change in clip resolution, FPS, etc. as real workload behaves.

• Tool presents the results for task as time based execution of the task. Parallel

task or series execution as per the task flow can be easily viewed.

• It gives bus BW and IP BW in MB/s.

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 60

• It supports addition of post processing scripts for detail analysis as per require-

ment. Like each IP residency, total memory transactions in an interval, etc.

• It also supports to add power features like IPs connected to which rail and what

is the voltage and frequency. This will help in power analysis.

5.3 Platform Modelling

Typically a platform is an integrated set of ingredients such as the processor, fabrics,

IPs, memory, bus interconnecting different IPs and sophisticated applications that

use the form-factor efficiently. As the emerging and the most hot spot today is the

android based mobile/tablets, platform modelling is done for android based mobile

platform. A generic mobile platform based on android operating system is as shown

in Figure. 5.16.

Figure 5.16: Generic SOC of Mobile/Tablet Platform [14]

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 61

At the centre of the “North Complex” above primary switching fabric is the system

agent. The SA is the traffic cop that directs the flow of data between the major

functional blocks in north complex. The system agent employs crossbar architecture,

like a network switch, to ensure high-bandwidth communication from any one com-

ponent to any other. The SA is linked to the processor cores using a point-to-point

interface known as IDI. A multicore processor - main block of the SOC connected

to system agent, consists of several processing units, interconnection, consists one or

more memory interfaces and a group of peripherals. Often most resources are shared

between processor cores but some of them may also be dedicated to a single unit.

Simulation helps to analyse the performance of processor and helps to optimize it.

Also, as discussed the embedded systems and various computing devices such as

smart phones, tablets, are often used for prolonged periods without being connected

to a power outlet. This usage pattern poses a new set of challenges related to power

and performance. The challenge is to balance the performance and power so that

the device can be used for an acceptable duration within acceptable performance

bounds. Performance without power considerations is meaningless, especially in the

smartphone world. Thus a power analysis is equally important. Simulation helps

to analyse the residency of each IP like CPU, GPU, Memory, Display, etc. in the

different power states mostly C0 and C6.

As discussed in section 5.2.1, typically for modelling a platform, a topology diagram

is required where it has information of different fabrics, IPs connected to fabric, fab-

ric interconnection, IP frequency, IP priority, bus width and frequency, number of

cores for each IP, virtual channels, priorities of virtual channel, memory configura-

tions, clock configurations, etc. All this are given as an input for platform modelling.

Basically for making the platform modelling simple only IPs used for a particular

workload are modelled. For example, IPs required for Video Playback workload are

CPU, GFX, Media, LPE, SDIO, G-unit, and Display and hence only these IPs and

related fabrics and clock are modelled. But for a generic platform modelling support-

ing all workload, it is required to model every IP of the platform. Here for simplicity;

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 62

only IPs related to Video Playback are modelled.

5.4 Use-Case Task Flow Modelling

Workload or Use-case is the amount of processing that the computer needs to do

in a given time. It is composed of particular application, operating system, drivers

which in turn consist of data and control flow structure and their functions [15]. The

objective of Use-Case modelling is to analyse the chosen use-case in terms of the

task involved, functionality of the task, HW/SW execution and create a model that

represents it as closely as possible to the real life. Modelling use-case correctly is

important as it affects the result accuracy.

Here approach is to break the use-case into several tasks, model the connection,

control and data flow for each. It also consists of mapping of the task to different

hardware units of the platform. It models the actual flow structure with dependencies

on system and workload parameters and hence the function of workload is dynamic.

A generic Task Flow model of Video Playback on mobile devices is as shown in

Figure. 5.17.

The whole video playback is divided into general task like eMMC driver loading,

de-muxing (separating audio and video stream), audio and video codec (remove over-

heads), loading video drivers (if video decoding is done in separate hardware), audio

and video decode, sync signal, frame flip, display driver and display. The specification

for each task in terms of bandwidth and processing time is through measurement and

from Architects. For simulation purpose few dummy tasks are included. Token Gen-

eration, Buffer Empty, End of Video Decode and Video Codec Request are mainly

included for buffering the video frames. Start UI path is for profiling the user itera-

tion while playing video which is player coming up when screen is touched.

The task flow and mapping also depends on Architecture of platform. For some ar-

chitecture video decode is done by CPU whereas for some there is a separate HW for

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 63

Figure 5.17: Generic Task Flow for Video Playback [16]

video decode. Thus task graph varies from platform to platform but the idea remains

same and can easily be adopted for future platforms. Similarly specification for each

task is platform dependent. IPC (Instruction per cycle) is different form platform

to platform and hence the processing time. Also, HW gets optimized with the next

generation platform and so specification changes. But modelling with different spec-

ification and dependencies to the past specification can be easily done with this task

flow approach.

This approach also helps to simulate for different clip parameter like clip resolu-

tion, FPS, bit rate and different system configuration like display resolution, memory

channels, MTs, CPU frequency, GPU frequency, etc. This is very useful for studying

the effect of each parameter on the platform performance and power. This chapter

presents for Video Playback use case but can be extended to video capture, HDMI,

Wi-Di display, etc. Thus simulation of such real world use case helps to analyse

the power and performance of a platform and also helps for scalability studies. It

is possible to simulate with any workload parameter and system configuration and

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 64

analysis the behaviour of platform. The simulation approach saves time, cost and

helps in optimization. It also helps for predicting power and performance values and

in optimization for future platform where silicon is not available for measurement.

5.5 Simulation and Results

Video Playback is modelled using the task flow approach as discussed in section

5.1 and 5.4. It is however, measured on HW also for comparison. Correlation for

throughput (BW in MB/s) of simulation with actual measurement is presented in

Table III.

Error between measured and simulated is calculated as

Error% = (|Measured− Simulated|)/Measured ∗ 100% (5.1)

The correlation is done for 8 different clips and Table III shows that the BW cor-

relation verified for 8 different clips and error for CPU BW is within 6%, GFX is

within 8%, Display is within 2% and DDR in within 7%. Considering details of Read

and Write BW, error is within 14%.These errors are within the acceptable range as

measurement results vary within 10% range. Similarly even the residencies of the IPs

are also measured and correlation with simulation result is as shown in Table IV.

The residency correlation in Table IV shows an error of less than 5% for CPU, less

than 2% for GFX and less than 10% for media except for one clip that is due to

measurement variation.

Correlation results for different CPU frequency are also presented. CPU frequency, do

not affect the throughput but affect the CPU residency. Table V shows the correlation

for 3 frequency points for 8 different clips. For all the combination, error is within

10%.

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 65

Clip
Pa-
rame-
ters

1080p,
10Mbps,
30 FPS

1080p,
20Mbps,
30 FPS

1080p,
40Mbps,
30 FPS

1080p,
10Mbps,
60 FPS

1080p,
20Mbps,
60 FPS

1080p,
40Mbps,
60 FPS

720p,
10Mbps,
30 FPS

720p,
10Mbps,
60 FPS

%Error %Error %Error %Error %Error %Error %Error %Error
DDR
BW

4.2% 4.4% 5.2% 6.8% 4.9% 6.0% 3.8% 6.3%

DDR
BW -
Read

5.3% 5.6% 6.8% 8.6% 8.8% 8.4% 2.0% 3.6%

DDR
BW -
Write

1.8% 1.8% 2.0% 3.6% 2.0% 1.7% 8.3% 11.5%

Disp
BW

1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9%

GFX
BW

4.9% 4.9% 4.9% 7.6% 7.9% 7.6% 0.9% 2.9%

GFX
BW -
Read

7.8% 7.9% 8.4% 12.0% 12.7% 12.6% 6.6% 6.6%

GFX
BW -
Write

1.1% 1.0% 0.3% 1.9% 1.8% 1.2% 8.8% 13.4%

CPU
BW

4.7% 3.3% 5.7% 4.1% 2.9% 1.3% 5.7% 2.4%

CPU
BW -
Read

5.6% 3.7% 5.1% 6.2% 4.6% 1.9% 7.0% 5.2%

CPU
BW -
Write

1.4% 2.2% 7.6% 3.0% 2.3% 0.5% 1.8% 6.9%

Table III: Simulation v/s Measurement Correlation of BW

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 66

Clip Parameters % Error % Error % Error
CPU Resi-
dency

Media Resi-
dency

GFX Resi-
dency

1080p, 10Mbps,30 FPS 4.3% 0.0% 1.0%
1080p, 20Mbps, 30 FPS 1.5% 1.3% 1.0%
1080p, 40Mbps, 30 FPS 1.9% 5.7% 1.0%
1080p, 10Mbps, 60 FPS 1.3% 6.6% 0.0%
1080p, 20Mbps, 60 FPS 0.5% 7.8% 0.0%
1080p, 40Mbps, 60 FPS 0.8% 5.1% 0.0%
720p, 10Mbps, 30 FPS 9.1% 1.5% 1.0%
720p, 10Mbps, 60 FPS 0.7% 13.1% 2.0%

Table IV: Simulation v/s Measurement Correlation of Residency

Clip Parameters % Error % Error % Error
CPU freq -
532 MHz

CPU freq -
655 MHz

CPU freq -
931 MHz

1080p, 10Mbps,30 FPS 8.2% 6.0% 8.4%
1080p, 20Mbps, 30 FPS 1.3% 1.3% 2.6%
1080p, 40Mbps, 30 FPS 9.4% 11.9% 9.6%
1080p, 10Mbps, 60 FPS 4.1% 4.0% 4.7%
1080p, 20Mbps, 60 FPS 0.3% 0.0% 1.0%
1080p, 40Mbps, 60 FPS 4.4% 6.8% 4.6%
720p, 10Mbps, 30 FPS 8.5% 6.7% 7.5%
720p, 10Mbps, 60 FPS 3.9% 0.3% 9.3%

Table V: Simulation v/s Measurement Correlation of CPU Residency at Different
CPU Frequency

CHAPTER 5. PLATFORM ARCHITECTURE MODELING & SIMULATION 67

5.6 Summary and Conclusion

PA Tool enables modelling a system level use-case using task graph approach. Such

a system level task flow approach and tool would be very useful to assess system

scalability of both HW and SW, as large number of derivative SOCs and Platforms

are coming up to meet specific Customer needs. Task Flow models helps to establish

common language between SOC, Platform Architects, SW developers and Validation

Engineers and enable significant improvement in platform definition and HW/SW

development. This approach is a significant step in studying Use Cases at a much

higher abstraction than cycle accurate models and thus enabling to take Systems

approach for Power/Performance efficiency - an absolute need of the hour to win

Phone/Tablet segments. Also, as there are no limitations on simulation for memory,

display resolution or clip FPS, it allows scalability studies across different platforms

configuration and simulate cases that may not be possible on current system.

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

This report is about Android workload characterization in silicon and simulation.

First part of report deals with workload characterization on silicon and suggests

methodologies for optimization like about choosing proper LFM and display resolution

for next generation platform. Second frequency point is more optimum as compare

to the lowest frequency at which today all CPU cores are working. Also, to be

competitive it is better to use optimum display resolution. 1920x1080 pixel is the

best resolution to choose which gives better performance. Second part of the report

is about modelling and simulation of video playback and correlation with silicon

measurement. This project explores that Task Flow approach and PA Tool helps

to model a complex environment like smart phone and simulate a system level use-

case. It present a video playback use-case and shows that in IPs, BW and residency

correlate the measurement results with an error under accepatable limit. The error is

mainly due to variation in measurent numbers. This also shows that various features

can be added to the model like CPU frequncy effect on CPU residency, effect of GFX

frequency, etc. This project shows a scope of platform and use-case modelling at

much higher abstraction layer.

68

CHAPTER 6. CONCLUSION AND FUTURE SCOPE 69

6.2 Future Scope

Exploring different methods to optimize power, performance and expanding features,

uses of PA Tool :

• Optimization of platform/ suggestion for future platform in terms of better

performance and low power consumption. One such experiment is to check

power/performance improvement by limiting the P-State.

• Study scalability for different configurations for memory and display resolution

and correlate with silicon

• Add features like GFX frequency effect, DDR Self Refresh, CPU Core and

Package C0 Residency and correlate with the silicon

• Add new use-cases like video playback with external HDMI connected and Video

Record

• Extend model to core platforms and to future platforms

References

[1] CPU Governor overview, https: // www. kernel. org/ doc/ Documentation/

cpu-freq/ governors. txt

[2] Sheran A. Gunasekera. “Android Apps Security, ISBN 978-1-4302-4062-4, Apress
Publication. pp 1- 7.

[3] R. M. Ramanathan, Mary Doylt, “Intel Platforms Innovation Beyond Processors,
Intel Software Library, March,2012.

[4] Clover Trail Plus SOC, http: // arstechnica. com/ gadgets/ 2013/ 02/

intel-gets-aggressive-with-new-smartphone-and-tablet-chips

[5] Mohamed Shalam and Dina El-Sissy, “Online Power Management using DVFS
for RTOS, Design and Test Workshop (IDT), IEEE Conference, 2009.

[6] Intel Corporation, “Intel Atom Processor Z5xx Series Datasheet, June 2010.

[7] Intel Corporation, “Power Use Case Analysis Document (UCAD), Revision 0.8,
June 19th,2013.

[8] CPU C States description, http: // www. hardwaresecrets. com/ printpage/
Everything-You-Need-to-Know-About-the-CPU-C-States-Power-Saving-Modes/

611

[9] CPU P States description, https: // software. intel. com/ en-us/ blogs/

2008/ 05/ 29/ what-exactly-is-a-p-state-pt-1

[10] Yan Gu, Samartjit Chakraborty and Wei Tsang Ooi, “Games are up for DVFS
Design Automation Conference, IEEE, July 24-28, 2006, San Fransisco, Califor-
nia, USA.

[11] James Lapalme, Bart theelen, Nikolay Stoimenov, Jeroen Voeten, Lathar Thiele,
El Mostapha Aboulhamid, “Y-Chart Based System Design: A Discussion on
Approaches, ACM Journal, Vol 5, March 2009.

70

https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://arstechnica.com/gadgets/2013/02/intel-gets-aggressive-with-new-smartphone-and-tablet-chips
http://arstechnica.com/gadgets/2013/02/intel-gets-aggressive-with-new-smartphone-and-tablet-chips
http://www.hardwaresecrets.com/printpage/Everything-You-Need-to-Know-About-the-CPU-C-States-Power-Saving-Modes/611
http://www.hardwaresecrets.com/printpage/Everything-You-Need-to-Know-About-the-CPU-C-States-Power-Saving-Modes/611
http://www.hardwaresecrets.com/printpage/Everything-You-Need-to-Know-About-the-CPU-C-States-Power-Saving-Modes/611
https://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
https://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1

REFERENCES 71

[12] Jari Kreku, Jani Penttila, Janne Kangas, Juha-Pekka Soininen. “Workload Sim-
ulation Methods for Evalution of Application Feasibility in a Mobile Multipro-
cessor Platform, IEEE Comuputer Society, Proceedings of the EUROMICRO
Systems on Digital System Design, 2004.

[13] Subayal Khan, Eila Ovaska, Kari Tiensyrja, Jari Nurmi, “From Y-Chart to Seem-
less integration of Application Design and Perforamance Simulation, System on
Chip, IEEE Conference, 2010.

[14] Intel Corporation,“ValleyView2 Primary Scalable Fabric (PSF), November 2012.

[15] Workload definition, http: // www. techopedia. com/ definition/ 13544/

workload

[16] Intel Corporation, “Video Playback Task Flow Graph for BYT, October 2012.

http://www.techopedia.com/definition/13544/workload
http://www.techopedia.com/definition/13544/workload

	Declaration
	Certificate
	Acknowledgements
	List of Abbreviations
	Abstract
	List of Figures
	List of Tables
	Introduction
	Project Definition
	Motivation
	Organization of the Report

	Literature Survey
	Exploring CPU of the Android Device Using Command Line
	General Commands to Explore CPU
	Governors [1]

	Android Architecture
	Mobile Platform
	CPU Power Management
	Power and Performance Trade-Off
	Enhanced Intel SpeedStep Technology
	CPU States

	Power and Performance Measurement
	Power Measurement
	Performance Measurement
	Characterization Measurement
	Case Study: Recommendation for Atom LFM
	CPU Frequency Scalability

	Conclusion

	Case Study: Android Graphics
	Anatomy of a Game Engine [10]
	Hardware Acceleration
	Software Rendering
	Case Study: Quadrant 2D - Analysis of HW/ SW Rendering
	Conclusion

	Case Study: Graphics Benchmark - Characterization with Display Resolution
	Quadrant
	AnTuTu
	Basemark X
	Summary and Conclusion

	Platform Architecture Modeling & Simulation
	SYSTEM Task Flow Approach
	Platform Architect Tool
	Hardware Model
	Task Flow
	Steps to Build, Simulate and Analyse
	Features of PA Tool

	Platform Modelling
	Use-Case Task Flow Modelling
	Simulation and Results
	Summary and Conclusion

	Conclusion and Future Scope
	Conclusion
	Future Scope

	References

