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Abstract

Verification plays a major role in any SOC development. But however with increas-

ing complexity of the SOCs , the process of verification is turning out to be the major

bottleneck in any device development. More than 50% of the overall time spent for the

project is consumed in verification and the scenario is getting worse day by day . There

is a need to speed up the verification process.

The project assigned targeted the scalable verification environment of IA based hard-

ware accelerators. The assigned SOC had various scalable entities, the verification envi-

ronment of which was first studied and was made scalable. The remaining automating

tasks had been performed using scripts resulting into faster testbench development for

any scaled version of the assigned SOC.

The user only needs to give inputs corresponding to the no. of various scalable com-

ponents in the SOC from the GUI and the memory map associated with the slave pe-

ripherals. The backend scripts would then scale up the existing verification environment

hence saving the overall time spent for verification.The project implemented has been

tested for different scalable versions of the RTL and is working fine.
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Chapter 1

Introduction

1.1 Motivation

The complexity of SOC devices are increasing day by day, along with them the time spent

in verification is also increasing exponentially. According to recent statistics the mean

time spent in verification of the total project time is more than 50%. As shown in the

figure 1.1 the mean time spent in verification in the year 2007 was around 46 % which

got increased to 51% in 2010 and to 53% in 2012 . Owing to this there is a very high

need to speed up the verification process. The following figure taken from [6] depicts the

same.

Figure 1.1: Mean Time spent in Verification

1
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1.2 The Verification Process

The entire verification process can be sub-divided as shown in figure 1.2 which is taken

from [7].

Figure 1.2: Verification process division

As depicted in the figure 1.2 the major time spent in verification is in functional

debugs, the next portion of time is taken by the test bench development the next is

consumed by creating and running test cases and the remaining is consumed from test

planning.

A similar analogy can also be applied to developing a verification environment of a

scaled up verision. If some of these tasks can be automated the device can be verified

faster. This is the main goal of project to automate as many tasks as possible and thereby

speeding up the verification process.
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1.3 Targeted SOC

The scalable verification environment associated with intel processor based hardware

accelerators has been targeted. An outline of the architecture is provided in the figure

1.3.

Figure 1.3: The SOC used for implementation

The SOC targeted has an Intel processor along with two AHB fabrics, an APB fabric,

various peripherals and system memory. There are many scalable components such as

external ports associated with AHB fabric 1 and 2, peripherals associated with the APB

fabric and so on. The verification Environment associated with the SOC was first stud-

ied and made scalable. The process of generating verification environment for different

scalable versions is fully automated using scripts made in PERL.

1.4 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 describes the Universal Verification Methodology(UVM) which is the used
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methodology for the assigned project for coding the verification IPs. The need and vaious

features of UVM are discussed.

The verification environment once coded is compiled and simulated using the tool

VCS(Verilog Compiler and Simulator) and for carrying out the debugs one of the tools

which is a part of VCS is DVE(Discovery Visual Environment). For generating various

RTL configurations based on the AMBA subsystem another tool CoreAssembler can be

used. Chapter 3 has a description regarding the same. These tools have been extensively

used throughout the project work. Also the chapter describes the various languages used

for designing the utility such as system verilog which is used for coding the verification

environment and Perl which is used for developing scripts for automating the tasks.

The SoC used has a couple of busses belonging to AMBA sub-system such as AHB

Lite and APB. An extensive knowledge of these busses such as their signal description,

the type of transfers supported need to be known for carrying out the debugs when er-

rors occur. Chapter 4 gives an overview of all the busses that are a part of AMBA

sub-system, and more significance is given to AHB Lite which is a part of the assigned

SoC.

Chapter 5 gives the actual implementation details of the work carried out, the ap-

proach followed and the results obtained. It gives an overview of the way the existing

code is first made scalable and what role the Perl scripts are making and other details of

the GUI used.

The scalablity in addition to number of AHB Fabric masters and slaves and APB

peripherals can also be targeted pertaining to data width of AHB fabric 2 and RAM

size.Chapter 6 describes the way the verification environment is made scalable w.r.t

data width of AHB fabric 2 - an option to select between the data width of 32 bit/ 64

bit and also how support is provided for a scalable RAM size.

Once the verification environment is scaled the test regression suite cant be run

straight away. Few of the files specifying the order of compilation and elaboration need

to be modified. Chapter 7 gives a description regarding the additional script that auto-

mated the compilation and elaboration process resulting into an additional 2 hours saving

in time spent for verification.

Chapter 8 has the final conclusion regarding the outcome of the project and the

future scope for implementation.
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1.5 Summary

The chapter provided an overview of the project. The need for the utility which would

automate the verification environment for a scalable design is discussed. An overview

of the architecture of the SoC is also provided. The last section describes about the

organization of the thesis, a short description of various chapters in the thesis is provided.



Chapter 2

UVM : The Universal Verification

Methodology

2.1 Intoduction

UVM - Universal Verification Methodology is a methodology for functional verification

using SystemVerilog, complete with a supporting library of SystemVerilog code. UVM

was created by Accellera based on the OVM (Open Verification Methodology) version

2.1.1. The roots of these methodologies lie in the application of the languages IEEE 1800

SystemVerilog, IEEE 1666 SystemC, and IEEE 1647 e.

UVM is a methodology for the functional verification of digital hardware, primarily using

simulation. The hardware or system to be verified would typically be described using Ver-

ilog, SystemVerilog, VHDL or SystemC at any appropriate abstraction level. This could

be behavioral, register transfer level, or gate level. UVM is explicitly simulation-oriented,

but UVM can also be used alongside assertion-based verification, hardware acceleration

or emulation.

When we run RTL simulations in Verilog or VHDL, we can think of UVM as replac-

ing whatever framework and coding style we use for our test benches. But UVM test

benches are more than traditional HDL test benches, which might wiggle a few pins on the

design-under-test (DUT) and rely on the designer to inspect a waveform diagram to verify

correct operation. UVM test benches are complete verification environments composed

of reusable verification components, and used as part of an overarching methodology of

constrained random, coverage-driven, verification.

6
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2.2 UVM- Need and features

Simulation might be caricatured as the process of poking test vectors into a model of

the design-under-test and observing how that model behaves. A traditional Verilog or

VHDL test bench might contains processes to read raw vectors or commands from a file,

use those to change the values of the wires connected to the DUT over time, and perhaps

collect output from the DUT and dump it to another file. This is fine as far as it goes,

but this process does not scale up well to support the reliable verification of very complex

systems.

A good verification methodology starts with a statement of the function the DUT is

intended to perform. From this is derived a verification plan, broken down feature-by-

feature, and agreed in advance by all those with a specific interest in creating a working

product. This verification plan is the basis for the whole verification process. Verifi-

cation is only complete when every item on the plan has been tested to an acceptable

level, where the meaning of ”acceptable” and the priorities assigned to testing the various

features have also been agreed in advance and are continually reviewed during the project.

Verification of complex systems should not be reliant on manual inspection of de-

tailed waveforms and vector sets. Functional checking must be automated if the process

is to scale well, as must the collection of verification metrics such as the coverage of

features in the verification plan and the number of bugs found by each test. Along with

the verification plan, automated checking and functional coverage collection and analysis

are cornerstones of any good verification methodology, and are explicitly addressed by

SystemVerilog and UVM. Checkers and a functional coverage model, linked back to the

verification plan, take engineering time to create but result in much improved quality of

verification.

All simulation-based verification suffers from the issue that you can never run enough

test vectors to exhaustively test the whole design, or even any significant part of a com-

plex design. One way to address this issue is using constrained random stimulus. The

use of random stimulus brings two very significant benefits. Firstly, random stimulus is

great for uncovering unexpected bugs, because given enough time and resources it can
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allow the entire state space of the design to be explored free from the selective biases of a

human test writer. Secondly, random stimulus allows compute resources to be maximally

utilised by running parallel compute farms and overnight runs. Of course, pure random

stimulus would be nonsensical, so adding constraints to make random stimulus legal is an

important part of the verification process, and is explicitly supported by SystemVerilog

and UVM.

A. Checkers, Coverage and Constraints

Constrained random verification relies on Checkers, Coverage and Constraints.

Each of these ”three C’s” plays a key role in the verification process and is supported

by explicit features of the SystemVerilog language. Firstly, checkers ensure func-

tional correctness. Nothing is gained by throwing more and more random stimulus

into a design to take functional coverage to ever higher levels unless the design-

under-test is being checked automatically for functional correctness. Checkers can

be implemented using SystemVerilog assertions or using regular procedural code.

Assertions can be embedded within the design-under-test, placed on the external

interfaces, or can be part of the verification environment. UVM provides mecha-

nisms and guidelines for building checkers into the verification environment and for

logging reports.

Secondly, coverage provides a measure of the functional completeness of the test-

ing, and tells you when you’ve met the goals set out in the verification plan, and

thus when you have finished simulating. SystemVerilog offers two separate mecha-

nisms for functional coverage collection; property-based coverage (cover directives)

and sample-based coverage (covergroups). Both can be used in a UVM verification

environment. The specification and execution of the coverage model is intimately

tied to the verification plan, and many simulation tools are able to annotate cover-

age information onto the verification plan document, facilitating tight management

control.

Thirdly, constraints provide the means to reach coverage goals by shaping the ran-

dom stimulus to push the design-under-test into interesting corner cases. Without

shaping, random stimulus alone may be insufficient to exercise many of the deeper

states of the design-under-test. Constrained random stimulus is still random, but
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the statistical distribution of the vectors is shaped to ensure that interesting cases

are reached. SystemVerilog has dedicated language features for expressing con-

straints, and UVM goes further by providing mechanisms that allow constraints

to be written as part of a test rather then embedded within dedicated verification

components. This and other features of UVM facilitate the creating of reusable

verification components.

B. Tests and Coverage

The features enumerated in the verification plan should be captured as a set of

coverage statements that together form an executable coverage model. With many

simulation tools, the verification plan will include references to the corresponding

coverage statements, and as simulation runs, coverage data is back-annotated from

the simulator onto the verification plan feature-by-features. This provides direct

feedback on the effectiveness of any given test. Holes in the coverage goals can be

plugged by writing further tests. The verification plan itself is not part of UVM

proper, but is a vital element in the verification process. UVM provides guidance

on how to collect coverage data in a reusable manner.

With directed testing, tests are written with the purpose of pushing the design into

specific states and exercising specific cases. With constrained random testing, the

role of the tests shifts slightly. Although a constrained random test may be writ-

ten with specific coverage goals in mind, it is not assumed before-the-fact that any

particular test will actually test one feature rather than another. The constrained

random test is run, and the coverage model is used to empirically measure which

features the test did in fact exercise. Tests can be graded after-the-fact using the

coverage data, and the most effective tests, that is those that achieve the highest

coverage in the fewest number of cycles, can be used to form the basis of a regression

test set.

C. Engineering Effort

With constrained random verification, the focus of the engineering effort changes

from writing directed tests to building automated checkers and an executable cov-
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erage model. Random stimulus then enables compute resources to be fully utilized

in the pursuit of hitting coverage goals. The total number of man-hours dedicated

to verification will not necessarily decrease, but verification quality will be dra-

matically improved, and the verification process will become far more transparent

and predictable, both to the verification team itself and to outside observers. Auto-

mated coverage collection gives accurate feedback on the progress of the verification

effort, and the emphasis on verification planning ensures that resources are focussed

on achieving agreed goals.

D. Verification Reuse

UVM facilitates the construction of verification environments and tests, both by

providing reusable machinery in the form of a library of SystemVerilog classes, and

also by providing a set of guidelines for best practice when using SystemVerilog for

verification. Verification productivity can be enhanced by reusing verification com-

ponents, and this is an important objective of UVM. Verification reuse is enabled

by having a modular verification environment where each component has clearly

defined responsibilities, by allowing flexibility in the way in which components are

configured and used, by having a mechanism to allow imported components to be

customized to the application at hand, and by having well-defined coding guidelines

to ensure consistency.

The architecture of UVM has been designed to encourage modular and layered ver-

ification environments, where verification components at all layers can be reused in

different environments. Low-level driver and monitor components can be reused

across multiple designs-under-test. The whole verification environment can be

reused by multiple tests and configured top-down by those tests. Finally, test

scenarios can be reused from application to application. This degree of reuse is

enabled by having UVM verification components able to be configured in a very

flexible way without modification to their source code. This flexibility is built into

the UVM class library.
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2.3 UVM Test Bench components

An UVM testbench is composed of reusable verification environments called verification

components. A verification component is an encapsulated, ready-to-use, configurable

verification environment for an interface protocol, a design submodule, or a full system.

Each verification component follows a consistent architecture and consists of a complete

set of elements for stimulating, checking, and collecting coverage information for a specific

protocol or design. The verification component is applied to the device under test (DUT)

to verify your implementation of the protocol or design architecture.

The following subsections describe the components of a verification component.

• Data Item (Transaction) Data items represent the input to the device under

test (DUT). Examples include networking packets, bus transactions, and instruc-

tions. The fields and attributes of a data item are derived from the data items

specification. For example, the Ethernet protocol specification defines valid values

and attributes for an Ethernet data packet. In a typical test, many data items are

generated and sent to the DUT. By intelligently randomizing data item fields using

SystemVerilog constraints, you can create a large number of meaningful tests and

maximize coverage.

• Driver (BFM) A driver is an active entity that emulates logic that drives the

DUT. A typical driver repeatedly receives a data item and drives it to the DUT

by sampling and driving the DUT signals. (If you have created a verification en-

vironment in the past, you probably have implemented driver functionality.) For

example, a driver controls the read/write signal, address bus, and data bus for a

number of clocks cycles to perform a write transfer.

• Sequencer A sequencer is an advanced stimulus generator that controls the items

that are provided to the driver for execution. By default, a sequencer behaves

similarly to a simple stimulus generator and returns a random data item upon

request from the driver. This default behavior allows you to add constraints to the

data item class in order to control the distribution of randomized values. Unlike

generators that randomize arrays of transactions or one transaction at a time, a

sequencer captures important randomization requirements out-ofthe- box. A partial
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list of the sequencers built-in capabilities includes:

– Ability to react to the current state of the DUT for every data item generated.

– Captures the order between data items in user-defined sequences, which forms

a more structured and meaningful stimulus pattern.

– Enables time modeling in reusable scenarios.

– Supports declarative and procedural constraints for the same scenario.

– Allows system-level synchronization and control of multiple interfaces

• Monitor A monitor is a passive entity that samples DUT signals but does not drive

them. Monitors collect coverage information and perform checking. Even though

reusable drivers and sequencers drive bus traffic, they are not used for coverage and

checking. Monitors are used instead. A monitor:

– Collects transactions (data items). A monitor extracts signal information from

a bus and translates the information into a transaction that can be made

available to other components and to the test writer.

– Extracts events. The monitor detects the availability of information (such

as a transaction), structures the data, and emits an event to notify other

components of the availability of the transaction. A monitor also captures

status information so it is available to other components and to the test writer.

– Performs checking and coverage. Checking typically consists of protocol and

data checkers to verify that the DUT output meets the protocol specification.

Coverage also is collected in the monitor.

– Optionally prints trace information.

A bus monitor handles all the signals and transactions on a bus, while an agent

monitor handles only signals and transactions relevant to a specific agent. Typically,

drivers and monitors are built as separate entities (even though they may use the

same signals) so they can work independently of each other. However, you can reuse

code that is common between a driver and a monitor to save time. Do not have

monitors depend on drivers for information so that an agent can operate passively

when only the monitor is present.
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• Agent

Sequencers, drivers, and monitors can be reused independently, but this requires

the environment integrator to learn the names, roles, configuration, and hookup

of each of these entities. To reduce the amount of work and knowledge required

by the test writer, UVM recommends that environment developers create a more

abstract container called an agent. Agents can emulate and verify DUT devices.

They encapsulate a driver, sequencer, and monitor. Verification components can

contain more than one agent. Some agents (for example, master or transmit agents)

initiate transactions to the DUT, while other agents (slave or receive agents) react

to transaction requests. Agents should be configurable so that they can be either

active or passive. Active agents emulate devices and drive transactions according

to test directives. Passive agents only monitor DUT activity.

• Environment

The environment (env) is the top-level component of the verification component.

It contains one or more agents, as well as other components such as a bus monitor.

The env contains configuration properties that enable you to customize the topology

and behavior and make it reusable. For example, active agents can be changed into

passive agents when the verification environment is reused in system verification.

2.4 UVM Class Library

The UVM Class Library provides all the building blocks you need to quickly develop well-

constructed, reusable, verification components and test environments (as shown in the

below figure). The library consists of base classes, utilities, and macros. Components may

be encapsulated and instantiated hierarchically and are controlled through an extendable

set of phases to initialize, run and complete each test. These phases are defined in the base

class library but can be extended to meet specific project needs. A pictorial description

of UVM Class Heirarchy taken from [1] is depicted in the below figure.

The advantages of using the UVM Class Library include:

• A robust set of built-in features

The UVM Class Library provides many features that are required for verification,

including complete implementation of printing, copying, test phases, factory meth-
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Figure 2.1: UVM Verification Environment

ods, and more.

• Correctly-implemented UVM concepts

Each component in the block diagram in Figure 2.2 is derived from a corresponding

UVM Class Library component. Figure 2.3 shows the same diagram using the

derived UVM Class Library base classes. Using these base-class elements increases

the readability of your code since each components role is predetermined by its

parent class. A pictorial description of a typical UVM Environment which is taken

from [1] is shown in the below figure.

2.5 Other UVM Facilities

The UVM Class Library also provides various utilities to simplify the development and

use of verification environments. These utilities support debugging by providing a user-

controllable messaging utility. They support development by providing a standard com-

munication infrastructure between verification components (TLM) and flexible verifica-

tion environment construction (UVM factory).

The UVM Class Library provides global messaging facilities that can be used for failure
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Figure 2.2: UVM Class Heirarchy

reporting and general reporting purposes. Both messages and reporting are important

aspects of ease of use.

• UVM Factory

The factory method is a classic software design pattern that is used to create generic

code, deferring to run time the exact specification of the object that will be created.

In functional verification, introducing class variations is frequently needed. For ex-

ample, in many tests you might want to derive from the generic data item definition

and add more constraints or fields to it; or you might want to use the new derived

class in the entire environment or only in a single interface; or perhaps you must

modify the way data is sent to the DUT by deriving a new driver. The factory

allows you to substitute the verification component without having to provide a

derived version of the parent component as well.

The UVM Class Library provides a built-in central factory that allows:

– Controlling object allocation in the entire environment or for specific objects.

– Modifying stimulus data items as well as infrastructure components (for ex-

ample, a driver).
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Figure 2.3: Typical UVM Environment using UVM Library Classes

Using the UVM built-in factory reduces the effort of creating an advanced factory

or implementing factory methods in class definitions. It facilitates reuse and adjust-

ment of predefined verification IP in the endusers environment. One of the biggest

advantages of the factory is that it is transparent to the test writer and reduces the

object-oriented expertise required from both developers and users.

• Transaction-Level Modeling (TLM)

UVM components communicate via standard TLM interfaces, which improves reuse.

Using a SystemVerilog implementation of TLM in UVM, a component may com-

municate via its interface to any other component that implements that interface.

Each TLM interface consists of one or more methods used to transport data. TLM

specifies the required behavior (semantic) of each method, but does not define their

implementation. Classes inheriting a TLM interface must provide an implementa-

tion that meets the specified semantic. Thus, one component may be connected at

the transaction level to others that are implemented at multiple levels of abstrac-
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tion. The common semantics of TLM communication permit components to be

swapped in and out without affecting the rest of the environment.

2.6 Summary

This chapter described about the Universal Verification Methodology (UVM) which is

used in the project for coding the verification IPs. The chapter has a complete description

of the methodology ranging from its need, to the various features of it.



Chapter 3

The AMBA sub-system

A set of AMBA on chip busses are a part of the SoC architecture. The main ones are

AHB Lite and APB and multi layer AHB-Lite. The same are studied . The current

chapter includes a brief overview of the AMBA busses.

3.1 Introduction

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an onchip

communications standard for designing high-performance embedded microcontrollers.

Three distinct buses are defined within the AMBA specification:

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB)

• the Advanced Peripheral Bus (APB).

• Advanced High-performance Bus (AHB) The AMBA AHB is for high-performance,

high clock frequency system modules.The AHB acts as the high-performance system

backbone bus. AHB supports the efficient connection of processors, on-chip mem-

ories and off-chip external memory interfaces with low-power peripheral macrocell

functions. AHB is also specified to ensure ease of use in an efficient design flow

using synthesis and automated test techniques.

• Advanced System Bus (ASB) The AMBA ASB is for high-performance system

modules.AMBA ASB is an alternative system bus suitable for use where the high-

performance features of AHB are not required. ASB also supports the efficient

18
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connection of processors, on-chip memories and off-chip external memory interfaces

with low-power peripheral macrocell functions.

• Advanced Peripheral Bus (APB) The AMBA APB is for low-power peripherals.AMBA

APB is optimized for minimal power consumption and reduced interface complex-

ity to support peripheral functions. APB can be used in conjunction with either

version of the system bus.

3.2 The AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the requirements

of high-performance synthesizable designs. It is a high-performance system bus that

supports multiple bus masters and provides high-bandwidth operation. AMBA AHB

implements the features required for high-performance, high clock frequency systems

including:

• burst transfers

• split transactions

• single-cycle bus master handover

• single-clock edge operation

• non-tristate implementation

• wider data bus configurations (64/128 bits).

Bridging between this higher level of bus and the current ASB/APB can be done efficiently

to ensure that any existing designs can be easily integrated. An AMBA AHB design may

contain one or more bus masters, typically a system would contain at least the processor

and test interface. However, it would also be common for a Direct Memory Access (DMA)

or Digital Signal Processor (DSP) to be included as bus masters. The external memory

interface, APB bridge and any internal memory are the most common AHB slaves. Any

other peripheral in the system could also be included as an AHB slave. However, low-

bandwidth peripherals typically reside on the APB. A typical AMBA AHB system design

contains the following components: AHB master A bus master is able to initiate read

and write operations by providing an address and control information. Only one bus
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master is allowed to actively use the bus at any one time. AHB slave A bus slave

responds to a read or write operation within a given address-space range. The bus slave

signals back to the active master the success, failure or waiting of the data transfer.

AHB arbiter The bus arbiter ensures that only one bus master at a time is allowed

to initiate data transfers. Even though the arbitration protocol is fixed, any arbitration

algorithm, such as highest priority or fair access can be implemented depending on the

application requirements.An AHB would include only one arbiter, although this would be

trivial in single bus master systems. AHB decoder The AHB decoder is used to decode

the address of each transfer and provide a select signal for the slave that is involved in

the transfer.A single centralized decoder is required in all AHB implementations.

3.3 The AMBA ASB

Introducing the AMBA ASB ASB is the first generation of AMBA system bus. ASB

sits above the current APB and implements the features required for high-performance

systems including:

• burst transfers

• pipelined transfer operation

• multiple bus master.

A typical AMBA ASB system may contain one or more bus masters. For example, at least

the processor and test interface. However, it would also be common for a Direct Memory

Access (DMA) or Digital Signal Processor (DSP) to be included as bus masters. The

external memory interface, APB bridge and any internal memory are the most common

ASB slaves. Any other peripheral in the system could also be included as an ASB slave.

However, low-bandwidth peripherals typically reside on the APB. An AMBA ASB system

design typically contains the following components: ASB master A bus master is able

to initiate read and write operations by providing an address and control information.

Only one bus master is allowed to actively use the bus at any one time. ASB slave

A bus slave responds to a read or write operation within a given address-space range.

The bus slave signals back to the active master the success, failure or waiting of the

data transfer. ASB decoder The bus decoder performs the decoding of the transfer

addresses and selects slaves appropriately. The bus decoder also ensures that the bus
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remains operational when no bus transfers are required. A single centralized decoder is

required in all ASB implementations. ASB arbiter The bus arbiter ensures that only

one bus master at a time is allowed to initiate data transfers. Even though the arbitration

protocol is fixed, any arbitration algorithm, such as highest priority or fair access can be

implemented depending on the application requirements. An ASB would include only

one arbiter, although this would be trivial in single bus master systems.

3.4 The AMBA APB

The APB is part of the AMBA hierarchy of buses and is optimized for minimal power

consumption and reduced interface complexity. The AMBA APB appears as a local

secondary bus that is encapsulated as a single AHB or ASB slave device. APB provides

a low-power extension to the system bus which builds on AHB or ASB signals directly.

The APB bridge appears as a slave module which handles the bus handshake and control

signal retiming on behalf of the local peripheral bus. By defining the APB interface

from the starting point of the system bus, the benefits of the system diagnostics and

test methodology can be exploited. The AMBA APB should be used to interface to

any peripherals which are low bandwidth and do not require the high performance of

a pipelined bus interface. The latest revision of the APB is specified so that all signal

transitions are only related to the rising edge of the clock. This improvement ensures

the APB peripherals can be integrated easily into any design flow, with the following

advantages:

• high-frequency operation easier to achieve

• performance is independent of the mark-space ratio of the clock

• static timing analysis is simplified by the use of a single clock edge

• no special considerations are required for automatic test insertion

• many Application Specific Integrated Circuit (ASIC) libraries have a better selec-

tion of rising edge registers

• easy integration with cycle-based simulators.

These changes to the APB also make it simpler to interface it to the new AHB. An

AMBA APB implementation typically contains a single APB bridge which is required to
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convert AHB or ASB transfers into a suitable format for the slave devices on the APB.

The bridge provides latching of all address, data and control signals, as well as providing

a second level of decoding to generate slave select signals for the APB peripherals. All

other modules on the APB are APB slaves. The APB slaves have the following interface

specification:

• address and control valid throughout the access (unpipelined) zero-power interface

during non-peripheral bus activity (peripheral bus is static when not in use)

• timing can be provided by decode with strobe timing (unclocked interface)

• write data valid for the whole access (allowing glitch-free transparent latch imple-

mentations).

3.5 Choice of the right bus

A full AHB or ASB interface is used for:

• bus masters item on-chip memory blocks

• external memory interfaces

• high-bandwidth peripherals with FIFO interfaces

• DMA slave peripherals.

A simple APB interface is recommended for:

• simple register-mapped slave devices

• very low power interfaces where clocks cannot be globally routed

• grouping narrow-bus peripherals to avoid loading the system bus.

3.6 AHB Lite

The AHB Lite bus was a part of the targeted SoC hence an in details description has been

included of the same. AMBA AHB-Lite addresses the requirements of high-performance

synthesizable designs. It is a bus interface that supports a single bus master and provides

high-bandwidth operation.A pictorial description of same which is taken from [8] is shown

AHB-Lite implements the features required for high-performance, high clock frequency

systems including:
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• burst transfers

• single-clock edge operation

• non-tristate implementation

• wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory in-

terfaces, and high bandwidth peripherals. Although low-bandwidth peripherals can be

included as AHB-Lite slaves, for system performance reasons they typically reside on the

AMBA Advanced Peripheral Bus (APB). Bridging between this higher level of bus and

APB is done using a AHB-Lite slave, known as an APB bridge. Figure shows a single

master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves.

The bus interconnect logic consists of one address decoder and a slave-to-master multi-

plexor. The decoder monitors the address from the master so that the appropriate slave

is selected and the multiplexor routes the corresponding slave output data back to the

master.
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Figure 3.1: AHB Lite Block Diagram

3.6.1 Signal descriptions

The various signals along with their description have been listed in the following tables

which are taken from [8].

Name Source Description
HCLK Clock source The bus clock times all bus transfers. All signal timings

are related to the rising edge of HCLK
HRESETn Reset controller The bus reset signal is active LOW and resets the system

and the bus. This is the only active low AHB-Lite signal.

Table 3.1: Global signals
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Name Source Description
HADDR[31:0] Slave and decoder The 32-bit system address bus.
HBURST[2:0] Slave The burst type indicates if the transfer is a sin-

gle transfer or forms part of a burst. Fixed length
bursts of 4, 8, and 16 beats are supported. The
burst can be incrementing or wrapping. Incre-
menting bursts of undefined length are also sup-
ported.

HMASTLOCK Slave When HIGH, this signal indicates that the current
transfer is part of a locked sequence. It has the
same timing as the address and control signals.

HPROT[3:0] Slave The protection control signals provide additional
information about a bus access and are primar-
ily intended for use by any module that wants to
implement some level of protection. The signals
indicate if the transfer is an opcode fetch or data
access, and if the transfer is a privileged mode ac-
cess or user mode access. For masters with a mem-
ory management unit these signals also indicate
whether the current access is cacheable or buffer-
able.

HSIZE[2:0] Slave Indicates the size of the transfer, that is typically
byte, halfword, or word. The protocol allows for
larger transfer sizes up to a maximum of 1024 bits.

HTRANS[1:0] Slave Indicates the transfer type of the current transfer.
HWDATA[31:0] Slave The write data bus transfers data from the master

to the slaves during write operations. A minimum
data bus width of 32 bits is recommended. How-
ever,this can be extended to enable higher band-
width operation.

HWRITE Slave Indicates the transfer direction. When HIGH this
signal indicates a write transfer and when low indi-
cates a read. It must remain constant throughout
a burst transfer.

Table 3.2: Master Signals

3.6.2 Transfers

An AHB-Lite transfer consists of two phases: Address Lasts for a single HCLK cycle

unless its extended by the previous bus transfer. Data That might require several HCLK

cycles. Use the HREADY signal to control the number of clock cycles required to complete

the transfer. HWRITE controls the direction of data transfer to or from the master.

Therefore, when:

• HWRITE is HIGH, it indicates a write transfer and the master broadcasts data on
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Name Source Description
HRDATA[31:0] Multiplexor During read operations,the read data bus transfers data

from the selected slave to the multiplexor. The multi-
plexor then transfers the data to the master. A mini-
mum data bus width of 32 bits is recommended. How-
ever this can be extended to enable higher bandwidth
operation.

HREADYOUT Multiplexor When HIGH, the HREADYOUT signal indicates that
a transfer has finished on the bus . The signal can be
driven LOW to extend a transfer.

HRESP Multiplexor The transfer response, after passing through the multi-
plexor, provides the master with additional information
on the status of a transfer. When LOW, the HRESP sig-
nal indicates that the transfer status is OKAY. When
HIGH , the HRESP signal indicates that the transfer
status is ERROR.

Table 3.3: Slave Signals

Name Source Description
HSELx Slave Each AHB-Lite slave has its own slave select signal HSELx and this

signal indicates that the current transfer is intended for the selected
slave. When the slave is initially selected it must also monitor the
status of HREADY to ensure that the previous bus transfer has
completed before it responds to the current transfer.The HSELx
signal is a combinatorial decode of the address bus.

Table 3.4: Decoder Signals

Name Source Description
HRDATA[31:0] Master Read data bus, selected by the decoder
HREADY Master and slave When HIGH, the HREADY signal indicates to the

master and all slaves, that the previous transfer is
complete.

HRESP Master Transfer response, selected by the decoder

Table 3.5: Multiplexor Signals

the write data bus, HWDATA[31:0]

• HWRITE is LOW, a read transfer is performed and the slave must generate the

data on the read data bus, HRDATA[31:0].

The simplest transfer is one with no wait states, so the transfer consists of one address

cycle and one data cycle. Following figures show a simple read transfer and a simple

write transfer. In a simple transfer with no wait states:

• The master drives the address and control signals onto the bus after the rising edge
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Figure 3.2: Read Transfer

Figure 3.3: Write transfer

of HCLK.

• The slave then samples the address and control information on the next rising edge

of HCLK.
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• After the slave has sampled the address and control it can start to drive the ap-

propriate HREADY response. This response is sampled by the master on the third

rising edge of HCLK.

This simple example demonstrates how the address and data phases of the transfer occur

during different clock cycles. The address phase of any transfer occurs during the data

phase of the previous transfer. This overlapping of address and data is fundamental to the

pipelined nature of the bus and enables high performance operation while still providing

adequate time for a slave to provide the response to a transfer. A slave can insert wait

states into any transfer to enable additional time for completion. A pictorial description

of read transfer with wait states which is taken from [8] is shown in the following figure

3.4 and a write transfer with wait states also taken from [8] is reproduced in figure 3.5.

Figure 3.4: Read Transfer with Wait states
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Figure 3.5: Write transfer with Wait states

3.7 MultiLayer AHB Lite

Multi-layer AHB is an interconnection scheme based on the AHB protocol that allows for

parallel access paths between multiple masters and slaves in a system. This is achieved

by using a more complex interconnection matrix and gives the benefit of increased overall

bus bandwidth as well as a more flexible choice of system architecture. A key advantage of

Multi-layer AHB is that standard AHB master and slave modules may be used without the

need for modification. In situations where the system bottleneck is the result of limited

bandwidth across the system bus, Multi-layer AHB solves the issue by multiplying the

available bandwidth in proportion to the number of bus layers. Additional benefits arise

from the reduction in bus transaction latency as a result of the increased bus capacity.

Using Multi-layer AHB, a wide variety of bus structures can be created. With a single

layer the structure is identical to the conventional AHB bus structure. Full Multi-layer

AHB consists of a bus layer for each of the bus masters, with each layer connected to

every slave through the slave multiplexor. Typical systems are more likely to fit between

these structures with slaves connected to a sub-set of the layers, or multiple bus masters

on a single layer. A simple block diagram of multi layer AHB fabric which is taken from

[9] is shown in figure 3.6. The Key Benifits of the Multi Layer AHB are as follows:
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• Complex multi-master systems can be constructed which have a flexible architec-

ture. This removes the need to fix design decisions about the allocation of system

resources to particular masters at the hardware design stage.

• Each AHB layer can be very simple if it only has one master, so no arbitration or

master-to-slave muxing is required. These layers can use the AHB-Lite protocol,

described below.

• Arbitration effectively becomes point arbitration at each peripheral, and is only

necessary when more than one master wants to access the same slave simultaneously.

• The only hardware that needs to be added to the standard AHB transport infras-

tructure is the multiplexor block to connect the multiple masters to the peripherals.

• Previously designed masters and slaves can be reused without modification because

the multi-layer architecture is compatible with the existing AHB protocol.

Figure 3.6: Multi Layer AHB Block Diagram

Implementation In the simplest implementation of a multi-layer system, each master

has its own AHB layer and is connected to the slave devices by an interconnect matrix.

The implementation details can be shown as in figure 3.7. The figure has been taken

from [9]. Within the interconnect matrix:



CHAPTER 3. THE AMBA SUB-SYSTEM 31

Figure 3.7: Multi Layer AHB Implementation Details

• Every layer has a Decode stage that determines which slave is required for a transfer.

• A mux routes the transfer from the appropriate layer to the required slave.

If two layers require access to the same slave at the same time, the arbitration within the

interconnect matrix must determine which layer has highest priority. The layer that is

not given access is waited using HREADY until it is given access to the required slave.

When a layer is waited an Input Stage is used to store a copy of the pipelined address

and control information until the access to the shared slave is given. Each slave port has

its own arbitration and a number of different schemes can be used. For example:

• input layers can be serviced in round-robin manner, changing every transfer or every

burst

• the arbitration can use a fixed priority scheme where certain high priority lay-

ers are always given access in preference to lower priority layers. The number of

input/output ports on the interconnect matrix is completely flexible and can be

adapted to suit the system requirements.

3.8 Summary

The chapter has a a brief description of the busses which come under the AMBA sub-

system. A brief overview is provided about the AHB, ASB and APB busses. A more
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detailed description is provided about the AHB Lite and Mullti Layer AHB Lite which

are a part of the targeted SoC.



Chapter 4

Tools and Languages used

4.1 Tools

A set of EDA tools are used for the project. For carrying out the compilation and

simulation the tool used is VCS (Verilog Compiler and simulator) from Synopsys and

for generating the various configurations of RTL the tool used is coreAssembler which

is another tool available from the same vendor Synopsys. The following sections give a

brief overview of the tools.

4.1.1 VCS- Verilog Compiler and Simulator

Verilog simulators are software packages that emulate the Verilog hardware description

language. Verilog simulation software has come a long way since its early origin as a single

proprietary product offered by one company. Today, Verilog simulators are available from

many vendors, at all price points. The suites bundle the simulator engine with a complete

development environment: text editor, waveform viewer, and RTL-level browser.

Synopsys Verilog Compiler Simulator is a tool from Synopsys specifically designed to

simulate and debug designs. VCS also uses VirSim, which is a graphical user interface to

VCS used for debugging and viewing the waveforms.

There are three main steps in debugging the design, which are as follows

• Compiling the VerilogVHDL source code.

• Running the Simulation.

• Viewing and debugging the generated waveforms.

33
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You can interactively do the above steps using the VCS tool. VCS first compiles the

verilog source code into object files, which are nothing but C source files. VCS can com-

pile the source code into the object files without generating assembly language files.VCS

then invokes a C compiler to create an executable file. We use this executable file to

simulate the design. You can use the command line to execute the binary file which

creates the waveform file, or you can use VirSim.

Apart from this VCS offers industry-leading performance and capacity, complemented

by a complete collection of advanced methodology-aware testbench and constraint de-

bug features, bug-finding, coverage, planning and assertion technologies. VCS multicore

technology delivers a 2x verification speed-up and cuts down verification time by running

the design, testbench, assertions, coverage and debug in parallel on machines with mul-

tiple cores . VCS Partition Compile flow allows users to achieve up to 10 times faster

compile turnaround time by only recompiling code that has changed. VCS also supplies

a comprehensive suite of diagnostic tools, including simulation memory and time pro-

filing, interactive constraint debugging, smart logging, and more to help users quickly

analyze issues. VCS with native low power simulation and UPF support, delivers inno-

vative voltage-aware verification techniques to find bugs in modern low power designs

with integrated debug and high performance. With its built-in debug and visualization

environment; support for all popular design and verification languages, including Ver-

ilog, VHDL, SystemVerilog, OpenVera, and SystemC; and the VMM, OVM, and UVM

methodologies, VCS helps users develop high-quality designs.

• High-Performance, Full-Featured, Native Testbench and Industry-Leading

Systemverilog Support

VCS Native Testbench (NTB) technology provides built-in natively-compiled sup-

port for full-featured SystemVerilog and OpenVera testbenches, including object-

oriented, constrained-random stimulus and functional coverage capabilities. VCS

industry-leading, high-performance constraint solver technology is powered by mul-

tiple solver engines that simultaneously analyze all user specified constraints to

rapidly generate high-quality random stimulus that verifies corner case behavior.

The constraint solver engines will find a solution to user constraints, if one exists,

minimizing constraint conflicts and maximizing verification productivity.
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VCS further expands its capabilities with Echo constraint expression convergence

technology. Echo automatically generates stimuli to efficiently cover the testbench

constraint space, significantly reducing the manual effort needed to verify large num-

bers of functional scenarios. Echo is a perfect fit for all teams using SystemVerilog

testbenches with random constraints.

VCS also provides a rich set of engines for reducing compile turnaround time and

runtime, including pre-compiled IP support targeted at IP integration, Partition

Compile to isolate portions of the testbench that are not changing during develop-

ment cycles, dynamic reconfiguration to compile for a target and select which model

is used at runtime, and save and restore functionality to save common states and

apply them to subsequent runs reducing simulation time. Combined, these tools

offer the most comprehensive set of solutions to maximize simulation efficiency and

reduce turnaround time.

• Comprehensive Coverage

VCS provides high-performance, built-in coverage technology to measure verifi-

cation completeness. Comprehensive coverage includes code coverage, functional

coverage and assertion coverage as well as user-defined metrics. Unified coverage

aggregates all aspects of coverage in a common database, thereby allowing powerful

queries and useful unified report generation. The unified coverage database offers

2x to 5x improvement in merge times and up to 2x reduction in disk space usage,

which is critical for large regression environments

• Complete Assertion Technologies

The native assertion technology in VCS enables an efficient methodology for deploy-

ing design-for-verification (DVF) techniques. The built-in support of SystemVerilog

and OpenVera assertions allows designers to easily adopt DFV and find more bugs

quickly. A rich assertion-checker library and a unique library of Assertion IP make

it even easier to deploy assertions across teams and improve verification quality.

The assertions serve both simulation and formal property verification environments.

• Advanced Debugging and Visualization Environment DVE
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VCS includes the Discovery Visualization Environment (DVE), an advanced, full-

featured debug and visualization environment . DVE has been specifically archi-

tected to work with all of the advanced bugfinding technology in VCS and shares

a common look and feel with other Synopsys graphical-based analysis tools. DVE

enables easy access to design and verification data along with an intuitive drag-

and-drop or menu-andicon driven environment.

Figure 4.1: DVE top level window

Transaction-level debug is seamlessly integrated into DVE, allowing users to analyze

and debug transactions in both list view and waveform view. Its debug capabil-

ities include: tracing drivers, waveform compare, schematic views, path schemat-

ics, and support for the highly efficient Synopsys compact VCD+ binary dump

format. It also provides elegant mixed-HDL (SystemVerilog, VHDL and Verilog)

and SystemC/C++ language debugging windows, along with next-generation asser-
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tion tracing capabilities, that help automate the manual tracing of relevant signals

and sequences.DVE further provides powerful capabilities for SystemVerilog test-

bench debug (including UVM, VMM and UVM methodologies) with several key

features, including methodologyaware debug panes, object and component hierar-

chy browsers, and detailed constraint debug and constraint conflict resolution .

Figure 4.2: DVE waveform viewer

• Support for Accellera UVM,VMM, and OVM

VCS powerful testbench engines are complemented by support for VMM, OVM

2.1.1, and the Accellera UVM methodologies. With these methodologies, users

adopt industry best practices to get the optimum results from VCS. In addition, the

VMM methodology provides a number of applications, such as Register Abstraction

Layer (RAL) and others, to cut down on the time it takes to set up a powerful

verification environment.

VCS support for Accellera UVM also includes access to the VMM/UVM inter-

operability kit, which enables the use of VMM with UVM and vice versa. VCS
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also provides a rich set of template generators for UVM, VMM, and the Regis-

ter Abstraction Layer as well as wrappers for automatic TLM connectivity. All

methodology applications, a detailed reference manual and examples are provided

with the VCS solution.

4.1.2 Core Assembler

The various scaled up versions of the RTL have been obtained using the coreAssembler

tool .The coreAssembler product is part of the complete set of IP reuse tools available

from Synopsys. coreAssembler provides a graphical or command-based environment that

guides the designer through the assembly and configuration of an IP-based subsystem.

With coreAssembler, designers can easily generate the configured RTL of a subsystem

based on the AMBA IP from the DesignWare Library or from IP with an interface that

has been packaged for use with coreAssembler with coreBuilder or has an IP-XACT de-

scription of the IP to be integrated. IP that has not been packaged for re-use can also

be directly imported into the subsystem. With coreAssembler, you can also easily create

and package the complete IP-based subsystem for reuse.

• Intuitive graphical or command based environment

• Guides the IP integrator through the assembly of an IP-based subsystem

• Guides the IP integrator through the configuration of the components contained in

the subsystem

• Generates the RTL configuration and interconnect logic

• Supports subsystem packaging

• Includes built-in interfaces to Synopsys tools including:

– Design Compiler

– Physical Compiler

– Power Compiler

– PrimeTime

– Formality
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– VCS

– TetraMAX

– Synplify Premier

• Flexible TCL interface for tool customization

• Supports multi-language designs

• Supports the import of unpackaged IP

• Automatic generation of the IP-XACT XML representing the subsystem

• VMM or directed test-bench generation with DesignWare VIP

• Customizable activity list for design flow customizations

4.2 Languages

The languages learnt and used during project execution are:

• System Verilog

System Verilog was used for coding the verification environment using the Universal

Verification Methodology.

• PERL

Automating tasks and preparation of GUI involved certain scripts usage which were

made using PERL.

4.2.1 System Verilog

SystemVerilog is a Hardware Description and Verification Language based on Verilog.

Although it has some features to assist with design, the thrust of the language is in ver-

ification of electronic designs. The bulk of the verification functionality is based on the

OpenVera language donated by Synopsys. SystemVerilog has just become IEEE standard

P1800-2005.SystemVerilog is an extension of Verilog-2001; all features of that language

are available in SystemVerilog.

The following are some of the new features in System Verilog as compared to Verilog:



CHAPTER 4. TOOLS AND LANGUAGES USED 40

• New data types

Multidimensional packed arrays unify and extend Verilog’s notion of ”registers”

and ”memories”: Classical Verilog permitted only one dimension to be declared to

the left of the variable name. SystemVerilog permits any number of such ”packed”

dimensions. A variable of packed array type maps 1:1 onto an integer arithmetic

quantity. In the example above,each element of my var may be used in expressions

as a six-bit integer. The dimensions to the right of the name (32 in this case) are

referred to as ”unpacked” dimensions. As in Verilog-2001, any number of unpacked

dimensions is permitted.

• Enumerated data types allow numeric quantities to be assigned meaningful

names. Variables declared to be of enumerated type cannot be assigned to variables

of a different enumerated type without casting. This is not true of parameters,

which were the preferred implementation technique for enumerated quantities in

Verilog-2001.

• New Integer types System Verilog defines byte, shortint, int and longint as two-

state integral types having 8, 16 ,32 and 64 bits respectively. A bit type is a variable

width two state type that works much like reg. Two -state types lack the X and

Z metavalues of classical Verilog; working with these types may result in faster

simulation.

• Structures and unions work much like they do in the C programming language.

A SystemVerilog enhancement is the packed attribute, which causes the structure

or union to be mapped 1:1 onto a packed array of bits.

• Procedural blocks

In addition to Verilog’s always block, SystemVerilog offers new procedural blocks

that better convey the intended design structure. EDA tools can verify that the be-

havior described is really that which was intended. An always comb block creates

combinational logic. The simulator infers the sensitivity list from the contained

statements.

always comb begin
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tmp = b * b - 4 * a * c;

no root = (tmp ¡ 0);

end

An always ff block is meant to infer synchronous logic:

always ff @(posedge clk)

count ¡= count + 1;

An always latch block is meant to infer a level-sensitive latch. Again, the sensitivity

list is inferred from the code:

always latch

if (en) q ¡= d;

• New data types The string data type represents a variable-length text string.

In addition to the static array used in design, SystemVerilog offers dynamic arrays,

associative arrays and queues:

int da[]; // dynamic array

int da[string]; // associative array, indexed by string

int da[$]; // queue

initial begin

da = new[16]; // Create 16 elements

end

A dynamic array works much like an unpacked array, but it must be dynamically

created as shown above. The array can be resized if needed. An associative array

can be thought of as a binary search tree with a user-specified key type and data

type. The key implies an ordering; the elements of an associative array can be read

out in lexicographic order. Finally, a queue provides much of the functionality of

the C++ STL deque type: elements can be added and removed from either end

efficiently. These primitives allow the creation of complex data structures required

for scoreboarding a large design.

• Classes SystemVerilog provides an object-oriented programming model. SystemVer-

ilog classes support a single-inheritance model. There is no facility that permits
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conformance of a class to multiple functional interfaces, such as the interface fea-

ture of Java. SystemVerilog classes can be type-parameterized, providing the basic

function of C++ templates. However, function templates and template specializa-

tion are not supported.

The polymorphism features are similar to those of C++: the programmer may

specify write a virtual function to have a derived class gain control of the function.

Encapsulation and data hiding is accomplished using the local and protected key-

words, which must be applied to any item that is to be hidden. By default, all class

properties are public.

SystemVerilog class instances are created with the new keyword. A constructor de-

noted by function new can be defined. SystemVerilog supports garbage collection,

so there is no facility to explicitly destroy class instances.

• Constrained random generation

Integer quantities, defined either in a class definition or as stand-alone variables in

some lexical scope, can be assigned random values based on a set of constraints.

This feature is useful for creating randomized scenarios for verification. Within

class definitions, the rand and randc modifiers signal variables that are to undergo

randomization. randc specifies permutation-based randomization, where a variable

will take on all possible values once before any value is repeated. Variables without

modifiers are not randomized.

• Assertions SystemVerilog has its own assertion specification language, similar to

Property Specification Language. Assertions are useful for verifying properties of a

design that manifest themselves over time. SystemVerilog assertions are built from

sequences and properties. Properties are a superset of sequences; any sequence may

be used as if it were a property, although this is not typically useful. Sequences

consist of boolean expressions augmented with temporal operators. The simplest

temporal operator is the ## operator which performs a concatenation

• Coverage Coverage as applied to hardware verification languages refers to the



CHAPTER 4. TOOLS AND LANGUAGES USED 43

collection of statistics based on sampling events within the simulation. Coverage is

used to determine when the device under test (DUT) has been exposed to a suffi-

cient variety of stimuli that there is a high confidence that the DUT is functioning

correctly. Note that this differs from code coverage which instruments the design

code to ensure that all lines of code in the design have been executed. Functional

coverage ensures that all desired corner cases in the design space have been ex-

plored.

A SystemVerilog coverage group creates a database of ”bins” that store a histogram

of values of an associated variable. Cross coverage can also be defined, which cre-

ates a histogram representing the Cartesian cross-product of multiple variables. A

sampling event controls when a sample is taken. The sampling event can be a

Verilog event, the entry or exit of a block of code, or a call to the sample method

of the coverage group. Care is required to ensure that data is sampled only when

meaningful.

• Synchronization A complex test environment consists of reusable verification

components that must communicate with one another. SystemVerilog offers two

primitives for communication and synchronization: the mailbox and the mutex.The

mutex is modeled as a counting semaphore. The mailbox is modeled as a FIFO .

4.2.2 PERL

Perl is an interpretd programming language .Most programming languages–such as C,

C++, VisualBasic, etc.–are compiled languages. To run a program, you create a text

document with the code, run a compiler on it to convert it into machine code for your

OS, and then run it. Perl in an interpreted language, like Java, Pascal, awk, sed, Tcl,

or Smalltalk. To run a program in such a language, you create a text document and tell

the interpreter (or Virtual Machine) to run it as a program. The interpreter checks it,

compiles it into machine code, and runs it. The 2-step process of interpreted languages

makes them slightly easier to work with. You can constantly check your code by running

it after every change.

Perl was designed in the mid 1980s by Larry Wall, then a programmer at Unisys. He
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combined useful features of several existing languages with a syntax designed to sound

as much as possible like English. Since then, Perl has mushroomed into a powerful and

popular language, with lots of modules contributed by the open-source community. Perl

is designed to be flexible, intuitive, easy, and fast; this makes it somewhat ”messy”.

Perl has been called ”a Swiss-Army chainsaw”. Perl is also known as ”the duct-tape of

the Internet”. At the most basic level, all windowing platforms (Apple Macintosh, X

Windows, and Microsoft Windows) are very simple. They provide a low-level API to

create and manage windows, to report interesting events such as mouse and keyboard

events, and to draw graphical elements such as lines, circles, and bitmaps. The problem

is that drawing even a simple form takes a considerable amount of code and reading

thousands of pages of documentation (literally). As Perl is a much older language as

compared to Python , Perl was preferred for the project. The way simple perl had been

used in the project is explained in the subsequent chapters.

4.2.3 Building GUI using Perl Tk

Often-used patterns of GUI code have evolved into widgets (called ”controls” in the

Microsoft Windows world); examples include buttons, scrollbars, and listboxes. Build-

ing a GUI is now a simple matter of launching an interactive form designer and drag-

ging and dropping these ready-made components into a layout of your choice. Object-

oriented programming has never been easier. It turns out that widgets and scripting

languages are a perfect match. Widgets have simple interfaces, and form-based GUIs

are not performance-critical. Both of these attributes make GUIs a very fertile ground

for scripting.Unlike other widget toolkits, Tk was developed expressly to be driven by a

scripting language.

Perl/Tk (also known as pTk) is a collection of modules and code that attempts to wed the

easily configured Tk 8 widget toolkit to the powerful lexigraphic, dynamic memory, I/O,

and object-oriented capabilities of Perl 5. In other words, it is an interpreted scripting

language for making widgets and programs with Graphical User Interfaces (GUI).

Tk, the extension(or module) that makes GUI programming in perl possible, is taken

from Tcl/Tk. Tcl(Tool Command Language) and Tk(ToolKit) was created by Professor

John Ousterhout of the University of California, Berkeley. Tcl is a scripting language

that runs on Windows, UNIX and Macintosh platforms. Tk is a standard add-on to Tcl
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that provides commands to quickly and easily create user interfaces. Later on Tk was

used by a lot of other scripting languages like Perl, Python, Ruby etc.

There are many number of widgets available such as: Button ,Entry,Label,Frame,Text,

Scrollbar,Scale, Grid,Radiobutton,Checkbutton,Listbox,Menubutton,Menu,OptionMenu,

Canvas,Message,Adjuster,Scrolled etc . Each of the widget has got options to configure

itself .

The main widgets used for making the GUI for the project are: Entry, label and button.

4.3 Summary

The chapter provided information about the various tools being used in the project. The

main two EDA tools that are discussed are VCS(Verilog Compiler and Simulator) and

CoreAssembler both from Synopsys. The chapter also has an overview of the languages

used such as System Verilog which is used for coding the verification environment and

Perl which is used for preparing scripts and Perl along with Tk package which can be

used for preparing the gui.



Chapter 5

Implementation Details of Project

The final outcome is to evolve a tool which would take scalable parameters as inputs and

would be able to scale up or down the existing verification environment. The following

points were thought about:

• Exploring the availability of any tools available in the market, the output of which

that can be used partially or fully.

• Make a customized tool that generates the entire verification Environment , pro-

viding a push button setup- a more useful but much time consuming process.

• Adapting a new coding style which supports scalablity including paramters, along

with scripts to get a solution.

On exploring all the options we decided to go along with the third approach of adapting

a new coding style and make all the necessary modifications in the existing code and take

help of scripts for automating the entire process.

5.1 Project Implementation Outline

The following figure describes the way the utility is developed from the scratch. The

approach followed can be used in general for developing a similar kind of utility for any

SoC.

46
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5.2 Modications in the Existing Verification

Environment

Once the details of verification environment has been understood we started modifying

the verification environment . The main changes made can be listed as follows:

• Arraying each of the objects associated with each of the sub base envs , configuration

objects, agents

• In class based files usage of dynamic arrays and simple arrays in other module based

files .

• Using set config db in the base env , for defining the integer fields associated with

number of scalable components , these fields can then be used using get config db

in each of the respective files.

• Usage of normal for loops for signal assignments and placement of various virtual

interfaces in the configuration database with the upper limit for the for loops defined

by the various integer fields defined and stored in the configuration database

• Usage of generate for loops in the module based files for performing similar tasks.

Usage of UVM Configuration mechanism

The uvm config db class is the recommended way to access the resource database.

A resource is any piece of information that is shared between more than one compo-

nent or object. We use uvm config db::set to put something into the database and

uvm config db::get to retrieve information from the database. The uvm config db class is

parameterized, so the database behaves as if it is partitioned into many type-specific ”mini

databases.” There are no limitations on the the type - it could be a class, a uvm object,

a built in type such as a bit, byte, or a virtual interface.

The set method The full signature of the set method is:

void uvm config db #( type T = int )::set( uvm component cntxt , string inst name ,

string field name , T value );
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• T is the type of the element being configured - usually a virtual interface or a

configuration object.

• cntxt and inst name together form a scope that is used to locate the resource

within the database. The scope is formed by appending the instance name to the

full hierarchical name of the context, i.e.cntxt.get full name(),”.”,inst name.

• Field name supplies the name of the resource

• value is the thing which is actually going to be put into the database.

In our case the syntax required is as follows :

uvm config db#(uvm bitstream t)::set(null,uvm test top*,parameter,value);

where the parameter may be any parameter denoting the name of the field associated

with any of the scalable component and the value would be the number of components

required. This parameter would be stored in the uvm configuration database and anyone

below the heirarchy from uvm test top would be able to use it using an equivalent get

config db.

The get method:

The general syntax of get config db would be :

uvm config db #( type T = int )::get( uvm component cntxt , string inst name ,

string field name , ref T value );

where the various fields significances is similar to that of set config db . In our case

the syntax implemented was something like:

uvm config db#(uvm bitstream t) :: get(this,,parameter name in config db,the name

to which it has to be assigned)

All the files where the associated number of a particular scalable component is required

would be using the get config within them.

Usage of UVM Configuration Mechanism For Placing virtual interfaces in

the configuration database:

Apart from the various paramters denoting the number of scalable components , the vir-

tual interfaces of each of the components need to be placed in the configuration databases

with their appropriate scope defined.

The syntax required is as follows:
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for(int i=0;i¡parametername;i++) begin

uvm config db #(virtual intftype)::set(uvm root::get(),

$sformatf (uvm test top.env.subenv[%0d],i) ,fieldname , intfname[i] );

end

As mentioned earlier the upper limit for the for loop is defined by the parameter

giving number of components which itself is stored in the configuration database.

Each virtual interface should be visible only in its corresponding sub env or agents ,

the second field in our case hence employs $sformatf which would set the scope of intf[0]

to subenv[0] only and subenv[1] would only be able to access intf[1] and so on.

Usage of UVM configuration mechanism for placing various configuration

objects:

For(int i=0;i¡no components;i++) begin

Sub cfg[i]=cfg type::type id::create(sub cfg);

uvm config db#(configobjtype)::set(this,$sformatf(sub env[%0d],i),cfg,sub cfg[i]);

end

The configuration objects creation and making them visible in the corresponding sub

envs gets taken care in a similar manner as above.

Usage of GENERATE statements in tb top for signal assignments

In the tb top various signals need to be assigned to each of the interfaces like clock,

reset etc. The generate for loops can be used to assign these signals to similar interfaces.

The syntax can be given as follows:

for(genvar i=0;i¡parametername;i++) begin

assign intf[i].signal1=signalname;

assign intf[i].signal2=signalname;

end

5.3 Scripts and GUI

Apart from the modifications in the code the role played by the scripts is summarized as

follows:

Getting values from the GUI:

The parameters associated with the newer scaled up version have been provided from
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the GUI. Apart from the number of scalable components the memory map associated

with the slaves are also being taken.The GUI has been made using Perl/Tk. Availability

of wide variety of widgets with the Tk package has been highly helpful in implementing

various features of the GUI.

A snapshot of the GUI :

Figure 5.1: Front end GUI

Error checking mechanisms employed in the GUI:

For each entry of the various scalable components a range has been decided . If the

user enters a value outside the range or the user forgets to enter a value then a new pop

up window would be shown denoting an error.

Apart from detecting the invalid entries if the addresses entered are overlapping then

a mechanism has been employed to report that too. It would show by itself the names of

slaves whose addresses are overlapping.
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Figure 5.2: Invalid entries error checking mechanism

Figure 5.3: Address Overlapping error checking mechanism

Once the parameters have been entered and the user presses the enter button, a back-

end script modifies the parameters in the inputfile which is taken as a source file for

another script which is invoked once the parameters are written, the corresponding pa-

rameters are modified with the help of this script in the tb top and also the modifications

associated with the address map of various slave peripherals in the subsequent env files

is carried out.

The memory map associated with the various slave peripherals is also entered in

another file. Once the process is completed a new window pops up which shows the

processes carried out:

Various buttons have been a part of it such as opening the input file, opening the

memory map file and exiting the GUI.
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Figure 5.4: Process completion window

The backend scripts functioning:

The parameters associated with the no. of scalable components have been defined in

the tb top. The script takes these values from the input file which contains the values as

entered in the GUI. It modifies these parameters in the tb top and some other env files.

There is another script which takes care of modifying the memory map of the associ-

ated slave peripherals. If the existing verification environment has more number of slaves

then the script is able to delete the extra entries and if the existing verification environ-

ment has less number of slaves then the script adds by itself the additional entries. If the

number of slaves is the same the script simply modifies the address ranges as entered.

5.4 Summary

The chapter provides the details of the approach followed for designing the utility for

obtaining a completely automated scalable verification environment solution. It discusses

the coding guidelines that need to be followed for making a verification environment

scalable. Also the part being played by Perl scripts is explained.



Chapter 6

Compatiblity for scalable data width

and RAM size

6.1 Introduction

Scalability until now is targeted at number of different agents associated with AHB Fabric

1 and Fabric 2 masters/slaves as well as APB peripherals. The user had been provided

with a choice of selecting the number of external master / slaves associated with AHB

Fabric 1, masters associated with AHB Fabric 2, various number of peripherals associated

with APB Fabric.

A new kind of scalability had to be taken to account consisting of scalable data width

corresponding to AHB F2 Masters- a choice had to be provided between data width of

32 bit or 64 bit. The DMA peripheral is attached to the AHB Fabric 2 which could be

either a 32 bit one or 64 bit one. Hence the need for adding the additional scalablity.Also

the RAM was acting as a slave to AHB Fabric 2 Masters. The size of same was limited

to 256Kb. An additional option for the user to select any size of RAM is also needed to

be provided.

6.2 The modifications in the RTL

The RTLs for other configurations were uptil now tool generated . CoreAssembler a

tool from Synopsys was used for the same, but for this particular configuration the RTL

needed to be handcoded. The various RTL files associated with memory at various level

of heirarchy were identified. The corresponding signal widths, the parameters that needed

54



CHAPTER 6. COMPATIBLITY FOR SCALABLE DATA WIDTH AND RAM SIZE55

a change were identified and correspondingly modified and a newer version of RTL with

32 bit of AHB Fabric 2 data width and 1MB of RAM size is generated.

6.3 The modifications in the Verification Environ-

ment

6.3.1 Modifications for supporting the scalable data width

The verification environment now had to support the scalable data width . The file in

the verification env that corresponded to configuring of the AHB F2 Master had various

options in it. These options included configuring the type of master to active/passive,

selecting the address and data width of masters as well as slaves, selecting the number of

master and slaves etc. The only change needed to support the AHB F2 data width was

configuring the bit associated with the data width . The script was assigning the value

to the bit as 32 or 64 as per the requirement from the user.

6.3.2 Modifications for supporting scalable RAM size

The verification files that had to be modified for supporting any RAM size were quite

a few. First of them was associated with assigning the bits associted with total no. of

RAM bytes, the no. of RAM banks.These bits needed to be changed with the change of

RAM size. The same had to be taken care by a Perl script.

The other one was related to an active interface which had various tasks that performed

operations with the RAM such as initializing the RAM with default values, reading RAM

entries, writing to RAM. Each of these tasks had different macros associated with each of

the memory banks.With increase or decrease in RAM size the number of these memory

banks also would increase / decrease. The associated macros also needed to be added or

removed.

The third thing was modifying the software test associated with memory. The modifica-

tions were quite minor only limiting to modifications to fields associated with the RAM

block size and number of memory banks.
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6.4 Simulations and Debug

Once the modifications had been done in the verification env, the test regression suite

had been run.

The memory arbitration test cases were failing and the scoreboard was throwing failures.

The working of the scoreboard was understood and various uvm info statements had been

added to help the debug. The mismatching transaction, the targeted memory bank to

which the transaction belonged and the seed at which the test case was failing had been

figured out. The mismatching transaction had been tracked manually on the waveforms

at various levels of hierarchy of the rtl. The same transactions had been compared with

the transactions being printed by the uvm info statements. At first instance it seemed the

scoreboard didnt support the parameterized data width. Inorder to test the same a new

test case with variety of different sequences were prepared. Various sizes of transactions

were sent from the AHB F2 Master to the memory. A write was performed and a

simulataneous read was performed. The transactions seemed to match. Similar writes

and reads were performed with a variety of different types of transactions with various

burst sizes. But a match occured with all types. Hence a conclusion was made that the

Scoreboard did support scalable data width.

The next step was to figure out the bugs in the RTL as the verification environment did

seem to be supporting the scalable data width. The memory arbitration test case which

were failing were re-run and the mismatching transaction was tracked right begining from

the actual ram memory bank to the ram-top to the mcu-top. The transaction was seen

at the ram-top but was found to be missing at the mcu-top. Another module of the rtl

which lied in between the ram-top and mcu-top was found to be having issues. The said

transaction was getting lost in the same module. The coding of the RTL was outside of

the scope of our project. The same was conveyed to the concerned person and was to

be fixed later. As far as the scalable verification environment supporting a scalable data

width and scalable ram size, the same had been achieved.

6.5 Summary

The chapter has an explaination of the way an additional scalablity in terms of data

width of AHB Fabric 2 and RAM size is provided. It describes about the modification
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needed in the RTL design as well as that needed in the verification environment for the

same. The end part of the chapter has a discussion about the way the debug is carried

out and the simulation results that are obtained.



Chapter 7

Automation of Compilation and

Elaboration

7.1 Introduction

Once the verification environment has been scaled, the test regression suite couldnt run

before modifying a certain set of files specific to an Intel simulation environment relating

to the order of compilation and elaboration. Inorder for specifying the order for compi-

lation and elaboration for an Intel specific simulation environment there are a set of hdl

and udf files. With the change in RTL for different configurations these files needed to be

modified manually. Missing a mention of a particular file relating to a component added

or removing the mention of that file from the corresponding hdl or udf files in the case if

the component is removed would result into a failure of simulation. The error only would

be known after the simulation is run which would sometimes taken much time. There

was a need of a mechanism to modify the files with the help of script, an automatic way

which would nullify the human prone error.

7.2 The working of script

The script prepared would sense the RTL and based on the available Fabric 1 and Fabric

2 masters, APB peripherals and AHB F1 slaves would modify the associated hdl files

and base udf file. It would check for each of the available rtl components, their number

and based on the count and availablity would make necessary modifications in the below

mentioned files and also generate some new files. The files being modified are as follows:
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• ia mcu ahb.udf

• ia mcu ahb.hdl

• ia mcu icm.hdl

• ia mcu spi.hdl

• ia mcu i2c.hdl

• ia mcu tmr.hdl

• ia mcu gpio.hdl

• ia mcu uart.hdl

• ia mcu wdt.hdl

A brief description of the above files is provided below:

• ia mcu ahb.udf Describes the entire rtl design as a whole . Specifies the compilation

flow of the entire rtl.

• ia mcu ahb.hdl Describes the compilation order of the components associated with

the AHB fabric 1.

• ia mcu icm.hdl Describes the compilation order of the components associated with

slaves attached to AHB fabric 1.

• ia mcu spi.hdl Describes the compilation order of the files associated with the spi

APB peripheral.

• ia mcu i2c.hdl Describes the compilation order of the files associated with the i2c

APB peripheral.

• ia mcu tmr.hdl Describes the compilation order of the files associated with the

timers APB peripheral.

• ia mcu gpio.hdl Describes the compilation order of the files associated with the gpio

APB peripheral.



CHAPTER 7. AUTOMATION OF COMPILATION AND ELABORATION 60

• ia mcu uart.hdl Describes the compilation order of the files associated with the uart

APB peripheral.

• ia mcu wdt.hdl Describes the compilation order of the files associated with the wdt

APB peripheral.

7.3 Outcome

The addition or deletion of any of the peripherals is being taken care by the script itself

and the corresponding files get modified accordingly. The script is tested for different

configurations as well. Once the main script is run, and then this particular script, the

verification environment is ready to run the test regression suite. This script provides

another time saving of two hours per configuration.

7.4 Summary

The chapter has a description of the additional script that automates the process of

compilation and elaboration. For specifying the order of compilation and elaboration

certain set of files specific to a Intel Simulation environment need to be modified. The

chapter provides an overview of the different types of files that need to be modified and

also the way the script modifies these files is discussed.



Chapter 8

Conclusion and Future Work

The project implemented is able to provide any scaled version of verification environment

as per the need. The overall time spent for creating a verification environment for dif-

ferent scalble versions of the assigned SOC has been reduced and thereby speeding up

the process of verification.The project has been tested for different scalable versions of

the SOC and is working fine.The scalablity addresed at the various levels such as no. of

AHB fabric masters/slaves, various number of APB peripherals, scalable data width of

AHB fabric master and scalable RAM size.

Future Work

The work aimed at delivering a push button solution for a scalable verification environ-

ment as per the need. A similar utility can be designed for generating a scalable RTL

and both can be integrated together. The SoC currently supports multi layer AHB Lite

fabric in which there can exist only a single master per layer, an additional support can

be provided for additional multiple masters per layer.The utility has been designed for a

specific IA based SoC , a more generic tool can be made which is able to provide a similar

utility for any of IA or perhaps any kind of SoC irrespective of IA being a part of it.
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