
Software Device Driver Development &
Automation of Test Framework

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

in

Electronics and Communication Engineering

(Communication Engineering)

By

Patel Bhavin M.

(12MECC18)

Electronics and Communication Engineering Branch

Electrical Engineering Department

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Software Device Driver Development &
Automation of Test Framework

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

in

Electronics and Communication Engineering

(Communication Engineering)

By

Patel Bhavin M.

(12MECC18)

Under the guidance of

Assi. Prof. Sachin Gajjar

Electronics and Communication Engineering Branch

Electrical Engineering Department

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

iii

Declaration

This is to certify that

i) The thesis comprises my original work towards the degree of Master of Technol-

ogy in Electronics and Communication Engineering (COMMUNICATION) at Nirma

University and has not been submitted else where for a degree.

ii) Due Acknowledgment has been made in the text to all other material used.

Patel Bhavin M.

(12MECC18)

iv

Certificate

This is to certify that the Major Project entitled“ Software Device Driver De-

velopment & Automation of Test Framework ” submitted by Patel Bhavin

M.(12MECC18), towards the partial fulfillment of the requirement for the degree

of the degree of Master of Technology in Electronics and Communication Engineering

(COMMUNICATION) of Institute of Technology, Nirma University, Ahmedabad is

the record of work carried out by him under my supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for ex-

amination. The result embodied in this major project, to the best of my knowledge,

haven’t been submitted to any other university or institution for award of any degree

or diploma.

Date: Place: Ahmedabad

Internal Guide Program Coordinator

Mr. Sachin H Gajjar Dr. D K Kothari

(Assi. Prof.,EC) (Professor,EC)

HOD Director

Dr. P N Tekwani Dr. K Kotecha

(Professor,EE) (Director,IT-NU)

v

Acknowledgement

With immense pleasure, I would like to show my gratitude to those who have helped

me directly and indirectly for the successful completion of the dissertation and for

providing valuable guidance throughout the project work.

First and foremost,I would like to thank my institution guide Assi. Prof. Sachin

Gajjar for his continuous support, encouragement and stimulating suggestions for

this project.I am deeply indebted to Mr. Nabrun Dasgupta, Project Manager

and Mr. Amitkumar Pathak,Mentor at STMicroelectronics Pvt Ltd.,Greater

Noida for their constant guidance and motivation. I would also like to thank Head

of EE Dept Prof. P N Tekwani and our PG Co-ordinator Dr. D K Kothari for

his valuable guidance during the review process.

I would also like to thank our Director Dr. K Kotecha for encouragement for

project work and also to the Nirma University for providing excellent infrastructure

and facilities whenever and wherever required.

I also wish to thank my team members Hemendra Singh, Subrata Chatterjee,

Manu Sharma, Ankur Tyagi , Ankush Sabharwal, Shantanu Dey, Sanket

Parmar, Dipak Goel and Rupesh Shrivastav for their valuable help and support.

Without their experience and insights, it would have been very difficult to do quality

work.

Lastly I would like to thank GOD, my Family especially my Mother for support

and encouragement. I would also like to thank all my Friends who have directly or

indirectly helped.

Patel Bhavin M.

12MECC18

vi

Abstract

Digital TV is becoming an emerging consumer electronics appliance. Set-Top-

Box (STB) is the migration from analog to digital broadcasting. Set top Box is an

instrument which converts the transmitted digital video signals to the data or the

signals which can be displayed on the standard LCD, LED, and Analog TVs. In this

report, basic overview and essential fundamentals of Set-Top-Box are discussed. For

successful launch of any product and application, development and validation has to

follow designing. Hence, validation approach is dealt in detail and it is following by

testing of real time embedded systems like STB development board.

This report includes the generalize development procedure of the frontend device

drivers of STB like Tuner, Demodulator and Forward error correction (FEC),Device

driver testing and debugging techniques have been explained, as a part of embed-

ded software development. Finally Automation of test framework in Set-Top-Box

integration has been included.

Contents

Coverpage i

Details ii

Declaration iii

Certificate iv

Acknowledgement v

Abstract vi

List of Figures xi

List of Tables xii

1 Introduction to Set Top Box 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Objective . 3

1.4 Organization of Thesis . 3

2 Literature Survey 5

2.1 Device Architecture . 5

2.1.1 Front-End . 5

vii

CONTENTS viii

2.1.2 Back-End . 7

2.2 Broadcast Systems . 9

2.2.1 Satellite Systems(DVB-S) . 9

2.2.2 Cable Systems(DVB-C) . 9

2.2.3 Terrestrial Systems(DVB-T) 10

2.3 Modulation Techniques for different broadcast systems 10

2.3.1 Satellite Transmission-QPSK Modulation 10

2.3.2 CATV Transmission - QAM 11

2.3.3 Terrestrial Transmission - OFDM. 13

3 Device Driver Development for STB Application 15

3.1 Overview of Device Driver Development 15

3.1.1 Device Drivers . 16

3.1.2 Linux Kernel Overview . 18

3.2 Writing Linux Driver . 22

3.3 Features of Set Top Box Device Drivers 26

3.4 Summary . 27

4 Drivers Test Environment Setup with STAPI-SDK 30

4.1 STAPI-SDK (ST Application Programmable Interface-Software Devel-

opment Kit) . 30

4.2 Generalize hardware setup . 30

4.3 Configuring the ST Micro Connect 2 for serial data out 31

4.4 STAPI installation . 32

4.5 Apilib . 34

4.6 Patches . 34

4.7 OS21 . 34

4.8 STLinux . 34

4.9 Compiling and running STAPI-SDK(OS21) 35

4.10 Board configuration for MS Windows machine 35

CONTENTS ix

4.11 Board configuration for Linux/UNIX machine 37

4.12 Compiling STAPI-SDK . 39

4.13 Compiling the STAPI libraries . 41

4.14 Compiling and linking the STAPI application 42

4.15 Running the STAPI application on the target 43

4.15.1 Configure the ST Micro Connect 43

4.15.2 Running the software . 44

4.15.3 Debugging the Software . 44

4.16 Compiling and running STAPI-SDK (STLinux 45

4.16.1 Clean current STLinux distribution 45

4.16.2 Installing STLinux . 46

4.17 Board configuration for STLinux . 48

4.17.1 Customized configuration for STLinux 50

4.18 STAPI-SDK makefile . 50

4.19 Building the kernel . 52

4.20 Compiling the STAPI-SDK tree for Linux 53

4.20.1 Compiling the STAPI-SDK tree for Linux with uclibc 54

4.21 Running STAPI-SDK for STLinux 55

5 Testing of STB Frontend Drivers & Results 57

5.1 Hardware Setup . 57

6 Automation of Test Framework in STB 69

6.1 Automated Testing . 69

6.2 Automated Testing for Set-Top Box Integration 70

6.3 Features of an Automated Testing System for STBs 72

6.3.1 Client/Server Architecture . 72

6.3.2 Remote Control of Set-Top Box 72

6.3.3 Programmable Test Cases . 73

6.3.4 Logging of serial output . 73

CONTENTS x

6.3.5 Image Analysis and OCR . 73

6.3.6 Transport Independent . 74

6.3.7 Offline Review Mode . 74

6.3.8 User Interface . 74

6.3.9 Configuration Management Integration 74

6.3.10 Integration with Defect Tracking system 75

7 Conclusion and Future Scope 76

7.1 Conclusion . 76

7.2 Future Scope . 77

Publication List 77

References 80

List of Figures

2.1 Digital Set-Top-Box . 8

3.1 Place of Device Driver in Linux . 17

3.2 Linux device driver partition . 18

3.3 Linux Kernel Overview . 20

3.4 Sample Driver Program(ofc.c) . 24

3.5 Makefile . 25

3.6 Building Driver using Make Command 25

4.1 STAPI-SDK development environment 31

4.2 Schematic representation of the STAPI-SDK 33

4.3 Extract from setenv.bat . 36

4.4 Extract from setenv.bat . 38

5.1 Live Streaming Setup . 58

xi

List of Tables

I DVB Transmission Modulation Schemes 8

I Functions to Develop Drivers . 29

4.1 Targets available with the STAPI-SDK make file 40

4.2 Additional Linux-specific environment variables in setenv.sh 51

4.3 Targets available with the STAPI-SDK makefile for STLinux 52

5.1 Test List . 59

xii

Chapter 1

Introduction to Set Top Box

1.1 Background

Digital television is a completely new way of broadcasting and is the future of televi-

sion. It is a medium that requires new thinking and new revenue-generating business

models. Digital TV is the successor to analog TV and eventually all broadcasting

will be done in digital format. Around the globe, satellite, cable and Terrestrial oper-

ators are moving to a digital environment. The digital age will improve the customer

viewing experience through cinema-quality pictures, CD-quality sound, hundreds of

new channels. Television will become more fun and powerful to use, yet at the same

time simpler and friendlier. Digital TV also opens up new world of opportunities

for companies who want to develop content and applications for the new paradigm.

This includes the creative communities within the TV and film industry, internet con-

tent providers and software development houses. Finally, the new medium will allow

viewer from the comfort of their homes to use a simple remote control to electronically

purchase goods and service offered by various content providers. Digital TV uses the

same language as computers a long stream of binary digits, each of which is either 0

or 1. With digital TV, the signal is compressed and only the updated data is trans-

mitted. As a result, it is possible to squeeze 6 or 8 channels into a frequency range

1

CHAPTER 1. INTRODUCTION TO SET TOP BOX 2

that was previously occupied by only one analog TV channel. The digital TV cycle

begins by recording a particular event or program with digital equipment and is relay

to a redistribution centre. In most cases, the redistribution centre will be a satellite,

cable or terrestrial operator. The operator uses specific transmission techniques to

broadcast the digital signal to viewers on their network.

The development of the digital TV and interactive services is already underway

in various locations around the globe. During this transition period, TV operators

will continue to broadcast analog signal in parallel to the new digital transmissions.

And now a day’s Indian government has announced to shutdown analog transmission

and migrates to on digital transmission only. Central to this migration from analog

to digital broadcasting is a small black box called Set-Top-Box. This Set-Top-Box

(STB) sites on the top of a standard TV set which enable consumers to use their

existing analog TV to participate in the digital revolution of the 21st century. These

STB will provide consumers with a much better picture and sound quality. Experts

are predicting that these STB will become a gateway to the much-hyped digital in-

formation superhighway.

Set top Box is an instrument which converts the transmitted digital video sig-

nals to the data or the signals which can be displayed on the standard LCD, LED,

and Analog TVs. Front end in STB consists of tuner and demodulator.Digital video

broadcasting of TV signals can be done over three different mediums viz., terrestrial,

cable, and satellite. TV signals use DVB-C as the standard for transmission over the

cable, DVB-T for terrestrial transmission; DVB-S for the Satellite transmission. The

compression of TV signal can be done by standard MPEG-2 compression in all cases.

But the modulation scheme used in each case is different[1].

CHAPTER 1. INTRODUCTION TO SET TOP BOX 3

1.2 Motivation

As Digital TV is becoming an emerging consumer electronics appliance and Set Top

Box is the migration from analog to digital broadcasting. Development of Linux based

hardware devices is on the centre point of the current industry trends. Developing

software drivers of set top box front-end systems under Linux kernel results in low

cost solution to the customers. For successful launch of any application, validation

and testing has to follow designing development. So it’s a challenging task to develop

software drivers for Tuner,Demodulator and FEC.

1.3 Objective

• To understand the System and its work-functionality.

• To provide an understanding of the essentials of device drivers.

• To achieve practical experience in developing device drivers.

• The steps necessary to add devices to a system

• How to determine what hardware is present on a system

• The purpose and functionality of device drivers

• Compiling and linking device drivers

• Generate the test cases to automate the testing.

• Integrate, build up the functionality and stability of the software.

1.4 Organization of Thesis

• Chapter 3 Describes the basic overview of linux device drivers and generic

methodology to develop drivers. Driver development and run procedure is ex-

plained by writing a sample code of drivers. It also includes the role of device

CHAPTER 1. INTRODUCTION TO SET TOP BOX 4

driver development in Digital Set Top Box system. A brief view on features of

set top box device drivers is also included.

• Chapter: 4 This chapters provides all the details about set top box hardware

setup, Application programmable interface SDK kit, software configuration en-

vironment, frontend driver’s compilation and run procedure on two different

STB oprating systems OS21 and STLinux.

• Chapter: 5 This chapter includes Testing procedure of all STB frontend devices

like tuner, demodulator and Forward Error Correction(FEC) with hardware

arrangement and results.

• Chapter: 6 How automation in software test framework results in low time

consumption, less human error and less human interaction, reduction in devel-

opment cost and increment in end product quality.

• Chapter: 7 Finally the title Device Driver development and Automation of

test framework has been concluded with future scope.

• Document ends with Publication list and References which includes some

extra work while training.

Chapter 2

Literature Survey

2.1 Device Architecture

As shown in Figure 2.1 Set Top Box architecture is separated in two sub-systems.

2.1.1 Front-End

The front-end block is comprised of a tuner and a demodulator. It translates a RF

signal into a digital-corrected stream, also called the transport stream. The digital

demodulator in the cable is QAM, QPSK for satellite, and COFDM for terrestrial

connection. Front-end devices are now embedded into the tuner can. The integration

of complete tuner functions on silicon is now available for satellites, while silicon tuner

for cables is still under development[1]. The front-end components are:

1. Tuners: Tuner receives a digital signal from a network and tunes to a particular

channel in the corresponding frequency range. Basic purpose of a tuner is to

amplify, detect, select and convert a desired RF signal from an antenna (or cable)

to a demodulator while keeping the signal quality as much as possible. Main

features and qualities of a tuner are:

a. Sensitivity: defines the lowest RF signal power that can be received.

5

CHAPTER 2. LITERATURE SURVEY 6

b. Selectivity: capability of the tuner to discriminate the desired signal out of all

others received signals.

c. Dynamic range: span of acceptable of input desired signal power from the lowest

to the highest.

d. Fidelity: capability to keep the desired signal characteristics.

Three types of tuners are generally being used in STBs:

• In-band tuners: The tuner is generally controlled by an I2C bus to select the

required channel in the cable band (VHF/UHF from 50MHz to 860MHz),

converts it into an IF, then feeds to a QAM demodulator.

• Out-of-band tuners: They facilitate the transfer of data between the head-end

systems and the STB. They are typically used in a cable box when providing

interactive services, and operate within the 100MHz to 350MHz frequency

band.

• Return-path tuners: These tuners allow for activation of the return path and

send data back to the head-end station. The frequency band allocated to the

upstream is located between 5MHz to 65MHz frequency band.

2. Demodulators, modulators: The baseband output signal from the tuner continues

on to the QAM demodulator and FEC, which performs sampled IF to bit streams

that are fully compliant with ITU-T J83 annexes A/B/C or DVB-C specification.

These bit streams contain A/V and data in the backend demultiplexer for MPEG-

2 block processing. The modulator is to reverse the demodulator’s actions and

use the STB to deliver a signal to the return-path tuner. Type of demodulation

depends on the type of tuner being used as given below.

QPSK demodulator is used in case of satellite transmission.

OFDM demodulator is used in case of terrestrial transmission.

QAM demodulator is used in case of Cable transmission.

CHAPTER 2. LITERATURE SURVEY 7

Digital demodulator embedded into tuner is called Network Interface Module

(NIM). NIM is controlled using I2C bus to select required channel, converts it

into IF signal and feeds it to the demodulator.

2.1.2 Back-End

Back-end basically comprises of TS demultiplexer, A/V decoder, digital video en-

coder, DAC and CPU with on-site memory. These components are described as

follows:

1. Demultiplexer: Demultiplexer (demux) extracts all the useful information from

the TS, since MPEG-2 data streams consist of a number of unique data packets

and uses packet ID to identify each packet that contains data, A/V and interactive

services. The demux examines every packet ID, selects packets, decrypts them,

and then forwards them to their specific decoder.

2. Decoders: Decoders are required to convert the digital bit stream back into the

format accessible by the subscriber. The video decoder converts video packets into

a sequence of pictures. Next, the audio bit stream is sent to the audio decoder for

decompression so it can be sent to the speakers. Table formats are decompressed

using data decoders. Then, the decoded data is presented to the set-top processor.

Sometimes, JPEG and MP3 decoder are also embedded to process digital still

picture and compressed music.

3. CPUs and memory: CPUs initialize various STB hardware components, process

Internet and interactive TV applications, manage hardware interruptions, pull

data from memory and run programs. CPU in STB is typically a 32bit processor

with speed ranges from 50MHz to 300MHz. It always contains an arithmetic logic

unit, a control unit and a clock.

Set top Box (STB) is instrument which converts the transmitted digital video

signals to the data or the signals which can be displayed on the standard LCD, LED,

CHAPTER 2. LITERATURE SURVEY 8

Standard Modulation
DVB - S QAM(Quadrature Amplitude modulation) and

QPSK (Quadrature Phase shift keying)
DVB - C QAM(Quadrature Amplitude modulation) and

QPSK (Quadrature Phase shift keying)
DVB - T OFDM (Orthogonal Frequency Division Multiplexing)

Table I: DVB Transmission Modulation Schemes

and Analog TVs. Front end in STB consists of tuner and demodulator and FEC. The

hardware configuration of all DVB-receivers is same except for demodulator, which is

different for different DVB receivers as their transmission schemes are different. This

leads to the cost reduction in the set top boxes which can be used to receive all the

three broadcasting signals.

Figure 2.1: Digital Set-Top-Box

CHAPTER 2. LITERATURE SURVEY 9

Digital demodulator embedded into tuner is called Network Interface Module

(NIM). NIM is controlled using I2C bus to select required channel, converts into

IF and feed to demodulator.

2.2 Broadcast Systems

2.2.1 Satellite Systems(DVB-S)

Satellite-based systems deliver programs and multimedia content from broadcasters,

who use a number of geostationary satellites to relay their signals to customers back

on earth. Customers must be within the ”footprint” of a given satellite in order to

receive the transmission. The set-top-boxes designed for receiving broadcasts from

satellite-based systems were the first to be deployed. It is a system which will deliver

a system which would improve reception quality and allow them to bring in services

which would not be possible with conventional TV systems. A set-top-box decodes

the incoming data from the satellite transponder. Each manufacturer has specified the

requirements for their own particular system, and to a large extent this has governed

the choice of as soon as possible used in the set-top-box designed for their system.

The audio and video data from the studio is compressed using MPEG-1 and MPEG-

2 and up linked to the satellite. This data is the transmitted by the satellite. The

transmission frequency of the communication satellites ranges from 10-17 GHZ (KU-

Band)[2].

2.2.2 Cable Systems(DVB-C)

In cable systems, broadcasts are sent to the home via coaxial or optical fiber based

cable. In the near future, DSL systems will also be able to deliver these services

over normal twisted pair telephone wire. Cable-based systems are beginning to ramp

up significantly in volume. The rapid deployment of satellite systems is seen as an

CHAPTER 2. LITERATURE SURVEY 10

obvious threat by the cable companies. They are meeting the challenge, and are

also looking to the future to how their set-top-boxes may evolve into the primary

means for accessing the internet. This will open up the market and allow them to

compete in areas normally associated with the PC systems. In the long run some

industry analysts predict that cable based set-top-boxes could become the hub of a

media-centric system, connecting systems and appliances within the home to their

own network and acting as a bridge to the internet[2].

2.2.3 Terrestrial Systems(DVB-T)

In a terrestrial system, digital broadcast signals are transmitted via ground based

transmitters in exactly the same way as analog television signals are transmitted. In

fact, in the majority of cases exactly the same aerial can be used. Systems designed

for terrestrial systems are limited in terms of the number of channels they can offer

compared to both satellite and cable based systems. The modulation scheme required

is more complex than that required for cable or satellite. In this system the data is

spread over a number of frequency channels. A concatenated error correction system

is used, and other techniques such as the use of ”guard intervals” are also employed in

order to ensure as robust a scheme as is practical. The system needs to be practical

in order to overcome the effects of multi-path echo and noise effects which occur when

the signals transmitted by a terrestrial system are reflected around objects[2].

2.3 Modulation Techniques for different broadcast

systems

2.3.1 Satellite Transmission-QPSK Modulation

Satellite transmissions have a few unique characteristics viz.:

• The signal has to travel an extremely large distance (36,000 kilometres) from

CHAPTER 2. LITERATURE SURVEY 11

the ground to the satellite and then another similar distance back to the earth.

• The satellite transmission is subjected to a broadband noise which is practically

uniform at all frequencies.

• Since multiple channels are broadcast from the same satellite, the modulation

technique should not be prone to Inter Channel interference.

• A satellite transponder has a fairly large bandwidth. Full transponders often

have a bandwidth of 72 MHz This is fairly a wide bandwidth, particularly when

compared with the 7 or 8 MHz allotted to a channel on a cable systems.

Hence a Digital Modulation technique used for Satellite Broadcasting (DVB-S)

can use a fairly large bandwidth but should be capable of preserving the signal and

maintaining a low Bit Error Rate (BER) even for very low signal strength. The QPSK

Modulation system provides an ideal solution for this.

The word Quadrature simply means - Out of Phase by 90 Degrees. QPSK pro-

vides for 4 different states or possibilities for encoding a Digital Bit. This is because

2 components are used - one In Phase (I) & the other Out of phase or Quadrature

(Q). This doubles the number of possible variations, from 2 to 4, that simple PSK

offers. The QPSK system is now universally used, for all satellite DVB broadcasts.

2.3.2 CATV Transmission - QAM

• Quadrature Amplitude Modulation (QAM) systems utilize changes of both,

Phase Shift Keying and Amplitude Shift Keying to increase the number of

states per symbol.

• Each state is defined with a specific variation of both - Amplitude AND Phase.

CHAPTER 2. LITERATURE SURVEY 12

• This means that the generation and detection of symbols is more complex than

simple phase detection as in QPSK employed for Satellite Transmissions (DVB-

S) because in QAM. The Amplitude changes have also to be detected.

QAM modulation is ideal for use in CATV networks. A cable system provides

different transmission characteristics compared to satellite transmissions.

• The bandwidth allocated per channel is restricted - just 6 to 8 MHz Hence

the Digital Modulation system must densely pack the digital data in a small

bandwidth (unlike a satellite based transmission).

• The signal levels are significantly higher than for satellite transmissions. Since

the Carrier (signal strength) is larger, the Carrier to Noise (C/N) ratio is always

fairly good in a CATV network.

• A large number of channels are modulated and carried simultaneously on the

same cable. Hence the modulation scheme should provide good Inter Channel

Interference suppression.

QAM comfortably meets all these requirements:

• Since the Phase and Amplitude are varied in QAM Modulation, a large number

of states or possible discreet values can be created to provide dense Digital

Modulation.

• Each time the number of states or options per symbol is increased, the band-

width efficiency also increases. This bandwidth efficiency is measured in bits per

second/Hz. As higher density modulation schemes are adopted, the Decoder or

Demodulator gets progressively more complex.

CHAPTER 2. LITERATURE SURVEY 13

2.3.3 Terrestrial Transmission - OFDM.

• The biggest concern for proper reception of terrestrial broadcast is multi path

distortion, or ” Ghosts ”.

• This happens when a signal arrives at the receiving antenna from multiple paths

or direction.

• These multiple signals add up at the antenna, creating multiple images or

”Ghosts” on the TV screen.

• Analog transmissions cannot prevent ”Ghosts”.

• Terrestrially transmitted Television signal should preferably not interfere with

other terrestrial transmissions such as those for wireless radio etc.

Orthogonal Frequency Division Multiplexing (OFDM) is a type of Frequency Mul-

tiplexing.

• In Frequency Multiplexing, multiple carriers are used at different frequencies;

each carrier is separated by an unused band of frequencies called a ”Guard

Band”.

• A Digital Terrestrial transmission (DVB-T) for a single television channel can

utilize up to 8000 separate carriers.

• Orthogonal here refers to a phase difference of 90 Degrees between two adjacent

carriers. Using Orthogonal Frequency Division Multiplexing (OFDM) Modula-

tion, 2 Adjacent Carriers will overlap without causing any interference because

the two carriers are out of phase by 90 degrees.

• The overlapping of carriers avoids wastage of frequency bandwidth.

CHAPTER 2. LITERATURE SURVEY 14

• OFDM causes less interference to analog transmissions than an analog signal

would, because it doesn’t have the same strong carrier and subcarrier elements.

Also, because there is a specific spacing between carriers of the same phase

(guard interval), the signal is immune to multi path reflections or ”Ghosts ”.

Chapter 3

Device Driver Development for

STB Application

3.1 Overview of Device Driver Development

A driver drives, manages, controls, directs and monitors the entity under its com-

mand. What a bus driver does with a bus, a device driver does with a computer

device (any piece of hardware connected to a computer) like a mouse, keyboard,

monitor, hard disk, Web-camera, clock, and more.A specific piece of hardware could

be controlled by a piece of software (a device driver), or could be controlled by an-

other hardware device, which in turn could be managed by a software device driver.

In the latter case, such a controlling device is commonly called a device controller.

This, being a device itself, often also needs a driver, which is commonly referred to

as a bus driver[3].

Place of a Device Driver in Linux

Figure 3.1. shows the place of a device driver in linux relative to the device:

• User program or utility

A user program, or utility, makes calls on the kernel but never directly calls a

device driver.

15

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION16

• Kernel

The kernel runs in supervisor mode and does not communicate with a device

except through calls to a device driver.

• Device driver

A device driver communicates with a device by reading and writing through a

bus to peripheral device registers.

• Bus

The bus is the data path between the main processor and the device controller.

• Controller

A controller is a physical interface for controlling one or more devices. A con-

troller connects to a bus.

• Peripheral device

A peripheral device is a device that can be connected to a controller, for ex-

ample, a disk or tape drive. Other devices (for example, the network) may be

integral to the controller.

3.1.1 Device Drivers

• Device Specific: The device-specific portion of a device driver remains the

same across all operating systems, and is more about understanding and de-

coding the device data sheets than software programming. A data sheet for a

device is a document with technical details of the device, including its operation,

performance, programming, etc.

• Operating system Specific: OS-specific portion is the one that is tightly

coupled with the OS mechanisms of user interfaces, and thus differentiates a

Linux device driver from a Windows device driver and from a MacOS device

driver.

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION17

Figure 3.1: Place of Device Driver in Linux

Drivers are small programs that enable the linux kernel to communicate and han-

dle hardware or protocols (rules and standards). Without a driver, the kernel does not

know how to communicate with the hardware or handle protocols (the kernel actually

hands the commands to the BIOS and the BIOS passes them on the the hardware).

The Linux Kernel source code contains many drivers (in the form of source code)

in the drivers folder. Each folder within the drivers folder will be explained. When

configuring and compiling the kernel, it helps to understand the drivers.

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION18

Figure 3.2: Linux device driver partition

3.1.2 Linux Kernel Overview

A kernel is the core of an operating system. The operating system is all of the pro-

grams that manages the hardware and allows users to run applications on a computer.

The kernel controls the hardware and applications. Applications do not communicate

with the hardware directly, instead they go to the kernel. In summary, software runs

on the kernel and the kernel operates the hardware. Without a kernel, a computer is

a useless object[2].

In Linux, a device driver provides a ”system call” interface to the user; this is the

boundary line between the so-called kernel space and user-space of Linux, as shown

in Figure 3.3. Based on the OS-specific interface of a driver, in Linux, a driver is

broadly classified into three types:

• Network device drivers: A network device driver attaches a network sub-

system to a network interface, prepares the network interface for operation,

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION19

and governs the transmission and reception of network frames over the network

interface. This book does not discuss network device drivers.

• Block device drivers: A block device driver is a driver that performs I/O by

using file system block-sized buffers from a buffer cache supplied by the kernel.

The kernel also provides for the device driver support interfaces that copy data

between the buffer cache and the address space of a process.Block device drivers

are particularly well-suited for disk drives, the most common block devices. For

block devices, all I/O occurs through the buffer cache.

• Character device drivers: A character device driver does not handle I/O

through the buffer cache, so it is not tied to a single approach for handling I/O.

You can use a character device driver for a device such as a line printer that

handles one character at a time. However, character drivers are not limited to

performing I/O one character at a time (despite the name “character” driver).

For example, tape drivers frequently perform I/O in 10K chunks. You can also

use a character device driver when it is necessary to copy data directly to or

from a user process.

Because of their flexibility in handling I/O, many drivers are character drivers.

Line printers, interactive terminals, and graphics displays are examples of de-

vices that require character device drivers.

A terminal device driver is actually a character device driver that handles I/O

character processing for a variety of terminal devices. Like any character device,

a terminal device can accept or supply a stream of data based on a request from

a user process. It cannot be mounted as a file system and, therefore, does not

use data caching.

User space and Kernel space

When you write device drivers, it’s important to make the distinction between ”user

space” and ”kernel space”.

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION20

Figure 3.3: Linux Kernel Overview

• Kernel space: Linux (which is a kernel) manages the machine’s hardware in a

simple and efficient manner, offering the user a simple and uniform programming

interface. In the same way, the kernel, and in particular its device drivers, form

a bridge or interface between the end-user/programmer and the hardware. Any

subroutines or functions forming part of the kernel (modules and device drivers,

for example) are considered to be part of kernel space.

• User space: End-user programs, like the Linux shell or other GUI based appli-

cations are part of the user space. Obviously, these applications need to interact

with the system’s hardware . However, they don’t do so directly, but through

the kernel supported functions.

Interfacing functions between user space and kernel space

The kernel offers several subroutines or functions in user space, which allow the end-

user application programmer to interact with the hardware. Usually, in UNIX or

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION21

Linux systems, this dialogue is performed through functions or subroutines in order

to read and write files. The reason for this is that in Unix devices are seen, from the

point of view of the user, as files.

On the other hand, in kernel space Linux also offers several functions or subroutines to

perform the low level interactions directly with the hardware, and allow the transfer

of information from kernel to user space.

Usually, for each function in user space (allowing the use of devices or files), there

exists an equivalent in kernel space (allowing the transfer of information from the

kernel to the user and vice-versa)

Device driver events and their associated interfacing functions in kernel space and

user space are listed below.

• Load Module

• Open device

• Read device

• Write device

• Close device

• remove Module

Interfacing functions between kernel space and the hardware device

There are also functions in kernel space which control the device or exchange infor-

mation between the kernel and the hardware. Which are illustrated below.

• Read data

• Write data

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION22

3.2 Writing Linux Driver

As we know, a typical driver installation on Windows needs a reboot for it to get

activated. That is really not acceptable; suppose we need to do it on a server? That’s

where Linux wins. In Linux, we can load or unload a driver on the fly, and it is active

for use instantly after loading. Also, it is instantly disabled when unloaded. This is

called dynamic loading and unloading of drivers in Linux.

Dynamically loading drivers

These dynamically loadable drivers are more commonly called modules and built into

individual files with a .ko (kernel object) extension. Every Linux system has a stan-

dard place under the root of the file system (/) for all the pre-built modules. They are

organised similar to the kernel source tree structure, under /lib/modules/(kernel version)/

kernel, where(kernel version) would be the output of the command (uname -r) on the

system.

To dynamically load or unload a driver, use these commands, which reside in the

/sbindirectory, and must be executed with root privileges:

• lsmod - lists currently loaded modules

• insmod (module file) - inserts/loads the specified module file

• modprobe (module) - inserts/loads the module, along with any dependencies

• rmmod (module) - removes/unloads the module

Let’s look at the FAT filesystem-related drivers as an example. The module files

would be fat.ko, vfat.ko, etc., in the fat (vfat for older kernels) directory under

/lib/modules/‘uname -r‘/kernel/fs. If they are in compressed .gz format, you need to

uncompress them with gunzip, before you can insmod them.

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION23

The vfat module depends on the fat module, so fat.ko needs to be loaded first. To au-

tomatically perform decompression and dependency loading, use modprobe instead.

Note that you shouldn’t specify the .ko extension to the module’s name, when using

the modprobe command. rmmod is used to unload the modules.

Example of writing Linux driver

Before we write first driver, let’s go over some concepts. A driver never runs by itself.

It is similar to a library that is loaded for its functions to be invoked by a running

application. It is written in C, but lacks a main() function. Moreover, it will be

loaded/linked with the kernel, so it needs to be compiled in a similar way to the

kernel, and the header files you can use are only those from the kernel sources, not

from the standard /usr/include.

One interesting fact about the kernel is that it is an object-oriented implementation

in C, as we will observe even with our first driver. Any Linux driver has a constructor

and a destructor. The module’s constructor is called when the module is successfully

loaded into the kernel, and the destructor when rmmod succeeds in unloading the

module. These two are like normal functions in the driver, except that they are

specified as the init and exit functions, respectively, by the macros module init() and

module exit(), which are defined in the kernel header module.h.

Figure 3.4 shows the complete code for our first driver; let’s call it ofd.c. Note

that there is no stdio.h (a user-space header); instead, we use the analogous kernel.h

(a kernel space header). printk() is the equivalent of printf(). Additionally, version.h

is included for the module version to be compatible with the kernel into which it is

going to be loaded. The MODULE * macros populate module-related information,

which acts like the module’s ”signature”.

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION24

Figure 3.4: Sample Driver Program(ofc.c)

Building Linux driver

Once we have the C code, it is time to compile it and create the module file ofd.ko.

We use the kernel build system to do this. The following Makefile invokes the kernel’s

build system from the kernel source, and the kernel’s Makefile will, in turn, invoke

our first driver’s Makefile to build our first driver. To build a Linux driver, you need

to have the kernel source (or, at least, the kernel headers) installed on your system.

The kernel source is assumed to be installed at /usr/src/linux. If it’s at any other

location on your system, specify the location in the KERNEL SOURCE variable in

the Makefile shown in Figure 3.5.

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION25

Figure 3.5: Makefile

With the C code (ofd.c) and Makefile ready, all we need to do is invoke make to

build our first driver (ofd.ko) as shown in Figure 3.6.

Figure 3.6: Building Driver using Make Command

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION26

Loading Driver modules

Once we have the ofd.ko file, perform the usual steps as the root user, or with sudo.

su

insmod ofd.ko

lsmod — head -10

lsmod should show you the ofd driver loaded.

running dmesg — tail. We can found the printk output here.

dmesg — tail

Output:

KERN INFO ”Welcome: ofd registered

KERN INFO ”Bye: ofd unregistered

3.3 Features of Set Top Box Device Drivers

• Fully multi-instance -more than one set of Front End chipsets can be active at

any time.

• Multi-standard support: Instances of devices receding signal different transmis-

sion media can co-exist e.g. record from satellite while watching terrestrial on

appropriate HW platform.

• Extensible driver based model:

– Higher level satellite, cable and terrestrial device (manager) code is driver

independent.

– Uniform interface with low level device specific drivers

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION27

– Memory saving build options -Only those drivers required in a specific

build can be selected.

– Drivers are selected from a pool of those available during initialization(installation)

– All platform/ application specific configuration is done in one file

– Low level driver code has one to one correspondence with ST’s PC based

GUI.

• Uniform APIs across device and technology.

• I/O is handled for all device-drivers through an I/O manager enabling routing

and easy debug.

• Debugging build flags are on a file by file basis for all files in STFROTNEND

(including drivers).

• API function STFRONTEND CustomiseControl enables low-level access to de-

vice managers and device-drivers enabling external intellectual property (IP)/

changes to be built on top of driver and device probe and register dump. This

function also provides rarely used features. Minor changes can be accommo-

dated without change in driver code.

• Extendibility: Template provided for easy addition and support of new tuners

etc.

• Driver code is HW SOC platform is Independent. In addition, operating system

calls are abstracted through STAPI driver STOS.

3.4 Summary

Having followed this chapter we have an understanding of linux kernel and its role to

serve hardware resources to user demands via user space and driver functionality. we

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION28

Function Description
STFRONTEND Init Initialise an instance of the named

Frontend driver.
STFRONTEND Term Terminate instance of the Frontend
STFRONTEND Open Open a initialized instance and

obtain a handle
STFRONTEND Close Close instance of the Frontend.
STFRONTEND GetRevision Returns the revision of the

Frontend driver.
STFRONTEND SetFrequency Scan to an exact frequency
STFRONTEND Unlock Unlock or abort the current scan
STFRONTEND GetTunerInfo Get the current driver scan

status and tuning information
STFRONTEND GetStatus Get the current driver scan status
STFRONTEND Scan Scan a Band, Stops at first valid signal

and reports lock.
Can be used for Blindscan features.

STFRONTEND ScanContinue Continue the previous
STFRONTNED Scan() till the
next valid signal in the band.

STFRONTEND DiSEqCSendReceive Send Tone signals/ DiSEqC
Command and receive corresponding
reply if any.

STFRONTEND SetLNBConfig STB co-ax (LNB) output voltage
and tone state

STFRONTEND OutdoorUnitConfigure To select DiSEqC/FSK in path 2
STFRONTEND OutdoorUnitControl To control FSK modulator
STFRONTEND StandByMode Invoke /terminate standby power mode
STFRONTEND CustomiseControl Low-level access to device. Register

Dump; Non standard settings.

Table I: Functions to Develop Drivers

CHAPTER 3. DEVICE DRIVER DEVELOPMENT FOR STB APPLICATION29

should now be capable of writing our own complete device driver for simple hardware

or a minimal device driver for complex hardware. Learning to understand some of

these simple concepts behind the Linux kernel allows you, in a quick and easy way,

to get up to speed with respect to writing device drivers.

Chapter 4

Drivers Test Environment Setup

with STAPI-SDK

4.1 STAPI-SDK (ST Application Programmable

Interface-Software Development Kit)

The STAPI-SDK provides a unified software development platform for a range of

set-top box(STB) devices and operating systems. In brief, the software stack consists

of a set of low-level STAPI drivers and an application layer. The application layer

supports an in-built diagnostic tool, testtool, that provides a wide range of testing

and debugging functions.

In this section, we will see that instructions on how to install, compile and run the

STAPI-SDK libraries and application

4.2 Generalize hardware setup

• A host PC (For compiling STAPI-SDK)

30

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 31

• A development board (For testing and debugging the compiled STAPI-SDK ap-

plication) an ST Micro Connect 2 (which provides the physical interface between

the host PC and the development board)

• A USB cable or Ethernet cable (To connect the ST Micro Connect 2 to the host

PC directly or through a network)

• An LVDS target board connection cable (To connect the development board to

the ST Micro Connect 2)

Figure 4.1: STAPI-SDK development environment

4.3 Configuring the ST Micro Connect 2 for serial

data out

To configure the ST Micro Connect 2 to receive the serial data output from the target

board:

1. For Windows, check that the PATH variable includes the correct STMC bin

path. (For example: C:\ STM\ STMCR1.6.0\ bin.)

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 32

2. At command prompt, enter the following command:

stmcconfig –ip <microconnect-ip> –serial-relay

The command returns a response similar to the following:

Starting serial relay : ip: <microconnect-ip> port: 5331

3. Run Telnet to receive serial output from the target board. Use the following

command:

syntax to specify the port number from the response at step 2.

In this example, the port number is 5331.

telnet <microconnect-ip> 5331

Toolsets and other software

To compile the STAPI-SDK for a given core, make sure that the appropriate toolset

for that core is installed on the host PC. For example, the ST40 Micro Toolset is

required to compile STAPI for an ST40 core running OS21, and the ST200 Micro

Toolset is required to compile STAPI for an ST200 core.

4.4 STAPI installation

STAPI is supplied as a compressed archive file. This is a .ZIP file for MS Windows

users, and a gzip-compressed tar file for Linux users. The release notes for each ver-

sion of STAPI provide information on how to obtain the release, including the names

of the archive files.

To install STAPI, uncompress the contents of the archive in a suitable location, using

the archive utility that is appropriate to the host operating system.

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 33

aplib/ This directory contains the source code of all the STAPI drivers.
bin/ The directory contains the configuration file (setenv.bat or setenv.sh)

and various other tools.
docs/ This directory contains the user documentation for STAPI-SDK,

including this user manual
stapp/ This directory contains all the initialization and set up files

for the STAPI drivers. The built STAPI executables are
also located here. It also contains the makefile for
compiling the STAPI-SDK tree.

stdebug/ This directory contains all the source files that define
the testtool commands.

In this User manual, the root directory of the STAPI-SDK installation is <SDK ROOT>

in pathnames. This directory contains the following directories:

The STAPI-SDK is available for two different host operating systems: MS Win-

dows or a standard Linux distribution, such as Red Hat Enterprise Linux, or Fedora.

The STAPI-SDK can be compiled to run on target platforms running either OS21

(with OSPlus) or STLinux.

• On a Linux host environment, STAPI-SDK can be built for both OS21 and

STLinux targets.

• On an MS Windows host environment, STAPI-SDK can be built for OS21

targets only

Figure 4.2: Schematic representation of the STAPI-SDK

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 34

4.5 Apilib

The apilib/ directory contains the low level drivers that provide an interface with

specific devices. The library consists of a number of different modules. A full list of

the modules is given in the release notes. Each module has its own API, which is

documented separately.

The make apilib command generates a separate library (∗.a file) for each of the

apilib/ modules. These are located in a sub directory of <SDK ROOT>/apilib/lib

which is named for the target board, SoC type and operating system for which it has

been compiled.

4.6 Patches

For older versions of operating systems, toolsets or both, it may be necessary to

apply patches before compiling STAPI-SDK. The release notes provide details of the

patches that are required for any given release of operating system or toolset.

4.7 OS21

The patches for OS21 are provided as zip files, and are found in the <SDK ROOT> \

bin\ patches\ os21\ directory. If a patch exists for a given version of toolset, then it

should be applied to that toolset before building the SDK.

4.8 STLinux

STAPI-SDK is compatible with STLinux-2.3. However, the kernels of both versions

of STLinux must be patched with the appropriate patches included with the STAPI-

SDK distribution before being compiled. The patches for STLinux are provided as

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 35

.tgz tar balls and located in the <SDK ROOT>/bin/patches/linux/ directory.

The release notes accompanying the STAPI-SDK distribution provides full details

of the various versions of toolset and operating system that require patching. This is

likely to change for different revisions of STAPI-SDK and different versions of each

toolset and operating systems.

4.9 Compiling and running STAPI-SDK(OS21)

The STAPI-SDK is provided in the form of source files that must be compiled for

the required target using the toolset that is appropriate for the platform. There are

slight differences in the compilation procedure, depending on whether STAPI-SDK is

being compiled on an MS Windows or Linux host. The two compilation procedures

are described below.

Following installation of the STAPI-SDK package, the next step is to configure the

compilation environment for a specific target and then compile the libraries and the

STAPI application. This chapter provides instructions for compiling STAPI-SDK for

an SoC running the OS21 real time operating system.

4.10 Board configuration for MS Windows machine

Before compilation, the STAPI-SDK environment must first be configured for a spe-

cific target platform. The STAPI-SDK installation includes a batch file for windows

machine that performs the required configuration. The batch file for MS Windows is

called <SDK ROOT> \bin\setenv.bat.

Several of the environment variables in setenv.bat reference the paths of specific

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 36

directories on the host. Although the version of setenv.bat included in the STAPI-

SDK distribution contains default values for the standard STAPI-SDK and toolset

installation, it may be necessary to modify some of the environment variables to suit

your particular installation. In particular, the variable STSDKROOT must be set to

<SDK ROOT>, the root directory of the STAPI-SDK installation. Before running

the batch file, check that the SET commands listed in Figure 3.3 do correspond with

the file paths of the various toolsets and other resources that are installed on the host

system, and modify them if required.

Figure 4.3: Extract from setenv.bat

NOTE: If setenv.bat is run with incorrect file paths, the user must close the

current DOS window and open a new one before running the updated setenv.bat

again. Although environment variables are defined for the full range of toolsets, only

the toolsets required for the platforms you are working with need to be installed.

NOTE:

1. In most cases, OSPlus is mandatory if compiling for OS21.

2. Before running setenv.bat, either make sure that the <SDK ROOT>/bin/ di-

rectory is in the PATH, or run setenv directly from the bin directory.

To configure the STAPI-SDK environment for a specific platform, run the config-

uration file as follows:

setenv <platform> <SoC>

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 37

where <platform> is the name of the board and <SoC> is the name of the back-

end SoC that is mounted on that board.

For example, to configure the environment for an MB680 board with an STb7105

SoC, enter the following:

setenv MB680 7105

The batch file responds with the following message:

MB680 7105 Configuration selected!

Run setenv without any arguments to display a list of all the platform and SoC

combinations that it currently supports.

Note: The arguments passed to setenv.bat are case sensitive. Enter the arguments

with exactly the same capitalization as in the list generated by the setenv.bat script.

If a platform and SoC are specified, but setenv.bat outputs a list of all the plat-

form and SoC combinations it supports instead of giving the Configuration selected!

Message, then either the configuration is not supported, or the platform and SoC

names were entered wrongly.

4.11 Board configuration for Linux/UNIX machine

Before compilation, the STAPI-SDK environment must first be configured for a spe-

cific target platform. The STAPI-SDK installation includes a shell script file for

UNIX or Linux machine that performs the required configuration. The shell script

for UNIX or Linux machine is called <SDK ROOT> \bin\setenv.sh

Several of the environment variables in setenv.sh reference the paths of specific direc-

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 38

tories on the host. Before running the batch file, edit the export commands listed in

Figure 4 so that they correspond with the filepaths of the various toolsets and other

resources that are installed on the host system.

Although environment variables are defined for the full range of toolsets, only the

Figure 4.4: Extract from setenv.bat

toolsets required for the platforms you are working with need to be installed.

Note:

1. In most cases, OSPlus is mandatory if compiling for OS21.

2. Before running setenv.sh, either make sure that the <SDK ROOT>/bin/ di-

rectory is in the PATH, or run setenv directly from the bin directory.

To configure the STAPI-SDK environment for a specific platform, run the config-

uration file as follows:

source setenv.sh <platform> <SoC>

where <platform> is the name of the board and <SoC> is the name of the backend

SoC that is mounted on that board. For example, to configure the environment for

an MB680 board with an STb7105 SoC, enter the following:

source setenv.sh MB680 7105

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 39

The shell scripts responds with the following message:

MB680 7105 Configuration selected!

Run setenv without any arguments to display a list of all the platform and SoC

combinations that it currently supports.

Note: The arguments passed to setenv.sh are case sensitive. Enter the arguments

with exactly the same capitalization as in the list generated by the setenv.sh script.

To compile STAPI-SDK for OS21 on Linux or Unix Machine, ensure that all the

required versions of tools as listed in Figure 3.4 are properly installed on the appro-

priate machine.

If a platform and SoC are specified, but setenv.sh outputs a list of all the plat-

form and SoC combinations it supports instead of giving the Configuration selected!

Message, then either the configuration is not supported, or the platform and SoC

names were entered wrongly.

4.12 Compiling STAPI-SDK

Compiling the STAPI-SDK tree is a two stage operation. The first stage is to compile

theSTAPI libraries, and the second stage is to compile the application itself and link

it with the STAPI libraries. The reason for the two stage compilation is because

compiling the STAPI drivers can be very time consuming.

For MS Windows, the STAPI distribution includes a copy of gmake.exe. The config-

uration script setenv.bat automatically adds this executable to the PATH. Use this

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 40

Target Description
help Display help text.
all Compile stdebug -stapp and link it with the

apilib library.
apilib Compile apilib library only.
apilib MODULE=< module > Compile the specified module in the

apilib directory. The release notes provide
full list of module names for the current release
of STAPI-SDK.

Stapp Compile contents of stapp directory only.
stdebug Compile contents of stdebug directory only.
Purge all Clean the stapp and stdebug directories

for the currently specified platform.
Purge Clean stapp directory only
Purge apilib Clean apilib directory only
Purge apilib MODULE=< module > Clean specified module in the apilib directory.
run Run the application without debug.

Table 4.1: Targets available with the STAPI-SDK make file

version of make in preference to any other make program that may already be in-

stalled on the host. All compilation activities are carried out from within the stapp/

directory. The STAPI-SDK makefile is located in this directory, so all make opera-

tions can be initiated from this directory by typing gmake followed by the relevant

target. A list of the available targets is given in Table 3.1.

Note: Combinations of targets are permitted. The following example is an ac-

ceptable gmake command:

gmake purge apilib purge all apilib all run

gmake makes each of the named targets in the order in which they are given on

the command line, reading from left to right.

The following commands are available if the $(MODULES) variable is set to 1. (The

default is 0.)

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 41

4.13 Compiling the STAPI libraries

The gmake command for compiling the STAPI libraries is:

gmake apilib

This command builds all the modules in the <SDK ROOT>/apilib/ directory

and installs the resulting object files so that they can be linked to the STAPI appli-

cation.

To clean the apilib/ directory by removing all the intermediary files generated by

an earlier build, enter the command: gmake purge apilib

To compile a single STAPI driver, use the MODULE command line argument.

For example, to compile just the stvid driver, enter the command:

gmake apilib MODULE=stvid

To clean the files for a specific STAPI driver only, use the MODULE argument

to the purge apilib command. For example, to clean the stvid driver directory, enter

the command:

gmake purge apilib MODULE=stvid

Object directory

During the operation to build the STAPI libraries, make constructs a name for the

directory in which object files and the libraries are placed which includes some or all

of the following elements:

• Target platform name (for example, mb618 or mb680)

• Backend SoC name (for example, 7111 or 7105)

• Operating system (OS21 or Linux)

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 42

• Address mode (29 or 32)

For example, the library directory for the MB680 platform with 7105 backend has

the path:

<SDK ROOT> \ apilib\lib\mb680 7105 ST40 OS21 32BITS

This means that if an application is generated on the same machine for different

platforms, the libraries and binary files for each platform are kept separate from one

another. Recompiling any item for one platform has no effect on the software already

compiled for a different platform. Also, the purge operation only removes files relating

to the platform currently selected, and leaves all the files relating to other platforms

untouched.

4.14 Compiling and linking the STAPI application

When the apilib libraries have been compiled, the next step is to compile the STAPI

application itself.The source files for STAPI are located in the <SDK ROOT> \

stapp directory. The gmakecommand for compiling the application and linking it

with the pre-compiled libraries is:

gmake all

This generates an executable file in the stapp directory for the target with the

name:

main $(DVD PLATFORM) $(DVD BACKEND) (ARCHITECTURE) (DVD OS)

[29—32]BITS.out

DVD PLATFORM and DVD BACKEND are the values of the %DVD PLATFORM%

and %DVD BACKEND% environment variables, as set by the setenv.bat batch file.

This naming convention ensures that is possible to build different applications for

different platforms within the same build environment.

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 43

4.15 Running the STAPI application on the target

When the STAPI-SDK libraries have been compiled, the resulting executable can be

run on the target. The executable file is first transferred to the target using an ST

Micro Connect.

4.15.1 Configure the ST Micro Connect

STAPI-SDK supports both the ST Micro Connect 1 (STMC1) and the ST Micro

Connect 2 (STMC2). The SoC determines which ST Micro Connect is selected as the

default: generally, the default for older SoCs (such as STi7109) is the STMC1 and

the default for newer SoCs (such as the STi7111) is the STMC2.

Note: If the environment variable USE TARGETPACK is set to 1, then the sys-

tem is forced to use the STMC2, irrespective of the default. This is because only the

STMC2 supports ST Targetpacks.

Use the environment variable $TARGET to identify the ST Micro Connect to the

system. If you are using an STMC1 through a USB connection, then set $TARGET

as follows:

set TARGET=usb

Note: The gmake tool is case-sensitive, so make sure that you enter usb as written,

in lower case.

For the STMC2, set $TARGET to the IP address of the ST Micro Connect, or to a

name that can be translated into an IP address. For example:

set TARGET=192.168.1.101

or:

set TARGET= mystmc

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 44

4.15.2 Running the software

Having configured the ST Micro Connect, the next step is to run the STAPI applica-

tion on the target. This is done by executing the following gmake command: gmake

run

The ST Micro Connect loads the software onto the target and runs it. The make-

file configures the connection.

Note:

1. When the application is running, it displays the testtool prompt.

2. If the Windows Data Execution Protection system (DEP) has been switched

on for gdb, this may prevent gdb running executable code when gmake run is

invoked. To prevent this, ensure that the Windows Data Execution Protection

system is switched off for gdb. This is done in Control Panel > System > Ad-

vanced > Performance > Data Execution Prevention.

4.15.3 Debugging the Software

To run the application using the debug interface, enter the following command: gmake

debug

To run the application using the console debugger interface, enter the following

command:

gmake debug CONSOLE=1

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 45

To run the application using STWorkbench, enter the following command: gmake

debug STWORKBENCH=1

This command launches STWorkbench with the appropriate command line pa-

rameters to create a new STWorkbench project containing the STAPI executables.

The application stops at a breakpoint on the first line of the main() function.

Note: The CONSOLE and STWORKBENCH options are only available for ST40

based platforms. The STWORKBENCH option is only available if STWorkbench is

installed.

4.16 Compiling and running STAPI-SDK (STLinux

Following installation of the STAPI-SDK package, the next step is to configure the

compilation environment for a specific target and then compile the libraries and the

STAPI application. This chapter describes these operations for a host machine run-

ning Linux compiling STAPI-SDK for an SoC running STLinux.

It is not possible to build STAPI-SDK for STLinux on a host that is running MS

Windows XP.STAPI-SDK for STLinux can only be built on a host running a standard

Linux distribution,such as Red Hat Enterprise Linux, or Fedora.

4.16.1 Clean current STLinux distribution

When installing STAPI-SDK on a board that already has STLinux installed, STMi-

croelectronics recommend that you first clean the entire installation to ensure that

there is no extra software installed that may interfere with the operation of the STAPI-

SDK.

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 46

SDK supports both STLinux 2.3 and STLinux 2.4. In the instructions given

throughout this chapter, substitute x for either 3 or 4, as appropriate to the version

of STLinux that you are using.

For STLinux 2. x, the command for removing any currently installed rpm pack-

ages is:

rpm -qa — grep stlinux2.x

Within a bash shell, enter the following for STLinux 2.x:

rpm -e –nodeps ’rpm -qa — grep stlinux2.x

rm -rf /opt/STM/STLinux-2.x

Under certain circumstances, the removal of some packages may fail due to script

failures.To prevent this happening, add the option –noscripts to the rpm command.

The following command line provides a more ”verbose” output of the process to

remove packages:

rpm -qa — grep stlinux2x — xargs -i -t rpm -e –nodeps –noscripts

4.16.2 Installing STLinux

The installation package for STLinux 2.x is located at ftp://ftp.stlinux.com/pub/stlinux/2.x/.

There is a README file at this location that gives current information concerning

this release of STLinux2.x.

There are two different methods for completing the installation: either downloads

the ISO image from the URL given above and then run the install script, or just

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 47

download the install script ftp://ftp.stlinux.com/pub/stlinux/2.x/install to a Linux

host and complete the installation over the network.

You can download the files you require either through a web browser or using an

FTP client.

Install script

To see a list of all the available installation options, including the current install pro-

files, run the install script as follows:

./install –help

Install the profile that you want by giving it as a parameter to the install script. For

example, the following command installs all the packages for the ST40 architecture

and glibc tool chain.

./install all-sh4-glibc

To install the uclib toolchain in place of glibc, use the following command:

./install all-sh4-uclibc

Verify the installation

Verify that the installation was successful by inspecting the name of the Linux kernel.

ls /opt/STM/STLinux-2.x/devkit/sources/kernel -l

• For STLinux version 2.3, the default name of the linux-sh4 kernel is linux-

sh42.6.23.1 stm23 0102

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 48

• For STLinux version 2.4, the default name of the linux-sh4 kernel is linux-

sh42.6.32.10 stm24 0201

The installation creates a root file system for the target, which includes device

files and setuid programs.

4.17 Board configuration for STLinux

Before compilation, the STAPI-SDK environment must first be configured for a spe-

cific target platform. The STAPI-SDK installation includes a batch file (for MS

Windows) and a shell script file (for Linux) that performs the required configura-

tion. The shell script for Linux is called setenv.sh and is located in the directory

<SDKROOT>/bin.

There are certain environment variables in setenv.sh that must be modified to

correspond with your installation. These variables are:

• LINUX TARGETIP (Target IP address)

• LINUX SERVERIP (Server IP address)

• LINUX GWIP (Network gateway IP address)

• LINUX NETMASK (Network subnet mask)

• LINUX NAME (The name of the host)

• LINUX SERVERDIR (The path of the root of the target’s file system)

• LINUX PARAMETERS (The kernel parameters for the host)

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 49

Also, it is important to check that the definition of the variable KDIR (the path

to kernel source code) is correct, as the default value:

/opt/STM/STLinux-$LINUX VERSION/devkit/sources/kernel/linux-sh4 may not be

correct for all installations.

To configure the STAPI-SDK environment for a specific platform, ensure that

<SDKROOT>/bin is on the path, and then run the configuration file as follows:

source setenv.sh ¡platform¿ <SoC> <LINUX>

where <platform> is the name of the board and <SoC> is the name of the back-

end SoC that is mounted on that board. For example, to configure the environment

for an MB411 board with an STb7109 SoC, enter the following:

source setenv.sh MB411 7109 LINUX

The batch file responds with the following message:

MB411 7109 LINUX Configuration selected!

Run setenv without any arguments to display a list of all the platform and SoC

combinations that it currently supports.

Note: The arguments passed to setenv.sh are case sensitive. Enter the arguments

with exactly the same capitalization as in the list generated by the setenv.sh script. If

a platform and SoC are specified, but setenv.sh outputs a list of all the platform and

SoC combinations it supports instead of giving the Configuration selected! Message,

then either the configuration is not supported, or the platform and SoC names were

entered wrongly.

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 50

4.17.1 Customized configuration for STLinux

It is possible to create a customized environment by editing the values of these envi-

ronment variables. This may be necessary, for example, when using STAPI-SDK for

a platform not listed in the default configuration file.

Table 1: Environment variables in setenv.bat and setenv.sh gives a list of the

environment variables in setenv.sh that are common to all operating systems (OS21

and ST Linux) and which may be edited in order to customize the configuration.

The Linux only version of the configuration file, setenv.sh, contains some addi-

tional environment variables that are only applicable when running ST Linux on the

target. These variables are listed in Table 3.2.

Note: In some cases, the values of the modified environment variables may not be

exported. In order to avoid this problem; run the modified version of setenv.sh in a

new shell.

4.18 STAPI-SDK makefile

All compilation activities are carried out from within the stapp/ directory. The

STAPI-SDK makefile is located in this directory, so all make operations can be initi-

ated from this directory by typing make followed by the relevant target.

For STLinux, the makefile accepts a number of additional targets. These are listed

in Table 3.3. The important targets are described in greater detail in the following

sections.

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 51

Variable Default Values Comments
DVD OS LINUX Use this variable to indicate

that the SDK is to be compiled
for Linux. The variable DVD OS
is not initialized for non-Linux
configurations (such as OS21)
because the makfiles for these
operating systems already define
the OS value used by default

PATH /opt/STM/STLinux2.x/ Use this variable to add
devkit/sh4/bin:$PATH the the Linux cross compiler

in the path (sh4-linux-*).
Here the cross compiler is
installed in /opt/STM/
STLinux-2.x/devkit/*.For
uclibc support, set this
variable to the default
uclibc path:opt/STM/
STLinux-2.x/devkit/sh4
uclibc/*

KDIR /opt/STM/STLinux2.x/ Use this variable to
devkit/sources/kernel define the root path of
/linux-sh4 kernel source code.

KTARGET /opt/STM/STLinux2.x/ Use this variable to define
devkit/sh4/target the path where all the STAPI
/root kernel objects and scripts are

to be installed during the SDK
compilation process.For uclibc
support, set this variable
to:/opt/STM/STLinux-2.x/devkit
/sh4 uclibc/target/root

LINUX VERSION Use this variable to define
the version of the STLinux
distribution.The value given
to this variable is used to
construct path names needed
to compile or run the Linux
distribution

LINUX TARGETIP 192.168.1.50 This variable contains the
IP address to be given to
the platform.

LINUX SERVERIP 192.168.1.51 This variable contains the
IP address of the NFS server
used by the platform. In most
the cases, this is the IP
address of the Linux Host
machine.

Table 4.2: Additional Linux-specific environment variables in setenv.sh

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 52

Target Description
Kernel Compile the Linux kernel without the configuration menu.

The kernel is compiled with the default configuration.
purge kernel Clean the Linux kernel directories.
run kernel Load the Linux kernel on the target (using the

ST Micro Connect) and run the kernel without debug.
run kernel DETACH=1 Load the Linux kernel on the target

(using the ST Micro Connect) and run the
kernel with debug. The command can also be used
to perform the debug from the console with the
following parameters :
debug kernel CONSOLE=1

debug kernel Load the Linux kernel on the target
(using the ST Micro Connect) and run
the kernel with debug. The command can
also be used to perform the debug from
the console with the following parameters :
debug kernel CONSOLE=1

Install Copy apilib modules and main.out to the relevant
installation directories

Table 4.3: Targets available with the STAPI-SDK makefile for STLinux

4.19 Building the kernel

To build a new kernel for the target system, use the command make kernel.

Note: The make kernel command must be executed as the root user. This oper-

ation builds the STLinux kernel using a kernel configuration file. The kernel config-

uration files are located in the stapp/platform directory. make constructs the path

of the appropriate configuration file using the values of the DVD PLATFORM and

DVD BACKEND environment variables, according to the following template:

$(DVD PLATFORM)/$(DVD BACKEND)/linux/$(DVD PLATFORM)

$(DVD BACKEND) kernel-2.x.cfg

For example, the configurations file for the kernel for the mb704 board with a

STx5197 SoC has the following path: <SDK ROOT>/stapp/platform/mb704

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 53

/5197/linux/mb704 5197 kernel-2.x.cfg

make builds the kernel using the configuration defined in the selected .cfg file.

To customize the configuration, invoke make with the command make kernel

MENUCONFIG=1. This option displays the configuration menu; additional options

for configuring the kernel can be selected from this menu.

The target purge kernel purges all the object files created by make kernel and also

cleans up the Multicom directories.

To debug the kernel, enter make debug kernel. This command loads the kernel on

the target (using the ST Micro Connect referenced by the $TARGET environment

variable) and runs the kernel in the graphical debugger.

4.20 Compiling the STAPI-SDK tree for Linux

The process of compiling the STAPI-SDK tree on Linux is a three step process:

1. Compile Multicom with the command make multicom. This generates library

files in the form of *.ko files. These are loaded at run time before the STAPI

libraries.

2. Compile the apilib libraries with the command make apilib. This generates the

library files in the form of *.ko files, which are loaded dynamically when the

kernel is running.

3. Compile the STAPI application with the command make all. This operation

generates the *.out file, and also performs the make install step, copying all the

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 54

relevant modules to the final target directory (as specified by the $KTARGET

environment variable.

Note: Both the make apilib command and the make all command must be exe-

cuted as the root user.

4.20.1 Compiling the STAPI-SDK tree for Linux with uclibc

Before compiling the STAPI-SDK tree for Linux with uclibc support, the uclibc

toolchain for ST40 must first be installed When this toolchain is successfully in-

stalled, you will be able to see the path:

opt/STM/STLinux-$LINUX VERSION/devkit/sh4 uclibc

Compile STAPI-SDK as follows:

1. Set an additional environment variable: CROSS COMPILE=sh4-linux-uclibc-

2. Set the relevant environment variables PATH, KTARGET and SERVER DIR

to take account of the uclibc path.

3. Build STAPI-SDK.

4. The uclibc compliant library can be seen in the folder

STAPI SDK/STAPP/playrec/< uclibc >. This library replaces the default

library delivered with the SDK (STAPI SDK/STAPP/playrec/*) to make it

uclibc compliant.

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 55

4.21 Running STAPI-SDK for STLinux

The following example assumes that the host PC is the host of the the STLinux root

filesystem. Make sure that the filesystem of the host PC is visible to the target board

on the network before attempting to run STAPI-SDK on the target. The path to

the root of the visible directories on the host is defined by the environment variable

$LINUX SERVERDIR; this path must correspond with the host directory exported

by NFS (that is, the path returned by the showmount -e command).

1. Load the kernel onto the target and run it. This is initiated with the command

make run kernel. The variable $TARGET provides the IP address of the ST

Micro Connect to use.

2. Open a console on the target board. This can be done by connecting to the

ST Micro Connect’s telnet port. The first step is to configure telnet on the ST

Micro Connect using stmconfig:

/opt/STM/STMCR1.6.0/bin/stmcconfig –ip ¡MicroConnect IP¿ –serial-relay 0115200

8 none 1 0 Starting serial relay : ip: ¡MicroConnect IP¿ port: 5331

Note: The ST Micro Connect telnet port must be reconfigured using the above

command every time that the Micro Connect IP is restarted.

3. It is then possible to connect to the ST Micro Connect with telnet: telnet

< MicroConnect IP > 5331

4. When the kernel has booted without reporting any problems, it displays a login

prompt. Enter the username root. There is no password.

5. The next step is to load the STAPI library modules. At the shell prompt, type:

source /root/modules/load modules.sh

CHAPTER 4. DRIVERS TEST ENVIRONMENT SETUP WITH STAPI-SDK 56

As the modules are downloaded to the target using the ethernet port, this op-

eration could take as much as ten seconds to complete.

If you want to run the STAPI-SDK application in a different telnet session, open

and log in to that session, and then set up the environment with the command:

source /root/modules/load env.sh

Note: The location of the filesystem root on the host PC is determined by the

environment variable KTARGET.

6. To run the STAPI application, execute the .out file that was created. For exam-

ple, for an mb680 board with an STx710x SoC, this file is: /root/main mb680

710x ST40 LINUX 32BITS.out When the application is running, it displays

the testtool prompt.

An alternative method is to run STAPI in user space using gdbserver. In place of

step 6. above, invoke gdbserver on the target with the following command:

gdbserver < HostMachineIP >:5555 /root/main mb411 710x LINUX.out.

On the host machine, enter make debug. This attempts to connect to the gdb-

server running on the platform.

Chapter 5

Testing of STB Frontend Drivers &

Results

5.1 Hardware Setup

Figure 5.1 shows the general setup of the live streaming test where video stream

has been fed to Set-Top-Box by satellite antenna through RF cable. User compiles

the STB Frontend Drivers on Server PC remotely using PuTTy client where required

environment for compilation and build has been setup. After compilation final .out

file loaded to the Set-Top-Box development board through STmicroconnect which is

a emulator for STB. UART connection has been used to see the ongoing activity log

on STMicroconnect.

This chapter defines the test procedures carried out on STFRONTEND for testing

the FE device functionality and verify performance of driver APIs. The test result

obtained provides typical use case statistics for reference.

All the tests to be performed have a test harness within the stfrontend/tests sub-

directory directories. Tests that are not applicable for particular devices are skipped

57

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 58

Figure 5.1: Live Streaming Setup

through inbuilt intelligence. The test harness also provides reference for typical use

of APIs.

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 59

Target Name of test Test Description Acceptance Criteria
ID function
1 TunerAPI Test the stability Test the stability of APIs

of STFRONTEND APIs by whether appropriate
and memory leak test errors are passing invalid

parametersand check
returned.Memory pool to
be unchanged after
a series of function
init,open etc..

2 TunerReLock Relock channel test Driver should relock
afterthe input signal
is reapplied after
the short interval

3 TunerSetFrequency Performs a typical run- Scan to an exact
through of the API calls Frequency and signal
such as initialize,open, parameters
attempt to scan across
known Frequencies.

4 TunerTermTest Termination during a scan STFRONTEND TERM
should return
ST NO ERROR

5 TunerTracking Test tracking of a locked Each time the driver
Frequency with option is polled the Front End
to change default status should indicate
duration of tracking it is still locked

6 TunerBlindScan BlindScan test to scan The scan should lock
channels in the band onto all the frequencies

specified in thex
high to low

7 TunerScan Scan Test to acquire The scan should look
channels in band onto all the frequencies
in both scan direction specified in the scan

listing.The scan should
obtain identical results
for both scan directions
i.e low to high or
high to low

Table 5.1: Test List

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 60

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 61

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 62

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 63

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 64

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 65

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 66

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 67

CHAPTER 5. TESTING OF STB FRONTEND DRIVERS & RESULTS 68

Chapter 6

Automation of Test Framework in

STB

6.1 Automated Testing

Automated product testing is widely used in the production of both hardware and

software. It allows a sequence of tests to be run at the push of a button, and a

log to be generated showing which tests passed and which failed. This log can then

be reviewed manually or processed automatically to determine whether all the test

results are as expected for the current state of the product.

Generally, the same tests can be run manually, but running these is usually a labo-

rious and time-consuming process not to mention prone to human errors. A manual

testing model makes testing on any level of scale very costly and time consuming.

This is particularly so if the production process requires tests to be run frequently

and repetitively, for instance for regression testing when changes are made to the

product under test.

Automating a set of tests can be expensive in terms of the purchase of test equipment,

69

CHAPTER 6. AUTOMATION OF TEST FRAMEWORK IN STB 70

and also for the design and implementation of the tests themselves which are typically

coded in software. However, the return-on-investment in a testing solution can be

seen quite rapidly particularly if tests are run many times over. Test cases only have

to be created once, and the incremental cost of each test run can become very low

compared to the cost of a manual test run. Typically the design and implementation

of tests themselves, which are coded in software, can mean an investment of resources

at the set-up phase however after this time the benefits of full automation can be

enjoyed.

It is important to remember however that the value of an automated test system

will be affected by the degree of automation that it supports. If there remains a very

large subset of tests which cannot be automated, then the cost advantages of having

the automated test system are eroded. This will depend on the nature of the product

under test and the sophistication of the automated test equipment being used. In

cases where an appropriate subset of the tests can be automated (generally 70% or

greater) and especially in cases where it is necessary to run the full set of tests very

frequently, the argument in favour of investing in an automated testing system is

compelling[4].

6.2 Automated Testing for Set-Top Box Integra-

tion

In S3 Group, we have completed several projects which involved the full software

integration of a Set-Top Box (STB) for various Digital TV networks worldwide. Such

projects are generally very complex and involve the integration of multiple software

components from third-party software suppliers. Our preferred way of working in

CHAPTER 6. AUTOMATION OF TEST FRAMEWORK IN STB 71

such projects is to integrate early and then gradually build up the functionality and

stability of the software. For a long time S3 Group has worked with an automated

nightly build process which ensures that the integrity of the build is maintained at all

times. This is particularly useful in projects where we are responsible for some of the

main components of the build, for instance the low-level drivers. Having a nightly

build verifies that any new code or bug fixes added to the head of development in our

software repository have not broken the build.

S3 Group had a desire to take this nightly build to the next level, by not only build-

ing the software each night but also running it. An automated test system for STBs

would allow this.The build is automatically generated by our Configuration Manage-

ment system and could then be loaded into a STB in a test system which would then

run through a sequence of tests, checking that the output of the box matches the

result expected for each test case.

In the case of a STB, the minimum requirement for such a test system would be

a device that allows Infra-Red (remote control) key-presses to be sent to the box

under test, and collection of debug output from the box via the serial log. The log

could then be examined the next morning for any abnormal events.

Such an automated testing system would be a huge step forward from a system

that only provides integrity checking of the build itself, and would provide at least

the ability to verify that the basic operation of the STB is unaffected by any recent

code updates. However, it would fall a long way short of a fully automated testing

system outlined in Section 1 above. Therefore, we in S3 GROUP began to consider

what that fully automated test system might look like for a set-top-box product. In

order to have any chance of achieving a suitable level of automation of a set of tests

for a set-top box, some way of automatically capturing the video output of the box

and comparing it to a pre-defined video capture would be essential. We realized that

CHAPTER 6. AUTOMATION OF TEST FRAMEWORK IN STB 72

we would also need some way of programming the set of test cases, so that the degree

of flexibility required to run a full range of test cases for the product would be sup-

ported. Finally, to be able to simulate real-world duration tests (stress tests) of the

box, we wanted to be able to run tests on several boxes at the same time, possibly

quite a large number of boxes, rather than just on one single box[4].

6.3 Features of an Automated Testing System for

STBs

In the previous section we mentioned some features of an automated testing system

that are essential to provide a high degree of automation. However, there are many

more features that would be required in order to achieve a high degree of automation

of the test regime of a digital set-top box. The following features are those which S3

Group regard as mandatory for an automated testing environment and which have

been included in S3 Groups StormTest STB solution discussed below:

6.3.1 Client/Server Architecture

A client/server model which supports physically separate tester and STB locations

client can be anywhere with a good network connection.

6.3.2 Remote Control of Set-Top Box

Each box in the test rack must be individually controlled by means of an IR device

attached to the box. The IR commands are sent to the box under software control

by the client machine, where the test engineer has selected the test case(s) to be run

CHAPTER 6. AUTOMATION OF TEST FRAMEWORK IN STB 73

for each box. We also need to be able to remotely power cycle each box individually,

since some test cases can require this.

6.3.3 Programmable Test Cases

The test system must be easily programmable using a scripting language that can be

easily learned by a typical test engineer. This will allow the test engineer to create

new test cases when this is required.

As mentioned above, this is essential to automate testing of the basic operation

of the box.

6.3.4 Logging of serial output

Typically a set-top box, particularly during the integration phase, will deliver debug

output via its serial port. This will often provide useful information when a fault

condition occurs that will allow the developers to understand the cause of the problem.

The test system must capture and store the serial log from each box in the rack during

testing, for possible later analysis.

6.3.5 Image Analysis and OCR

It must be possible to capture full resolution images from the live video stream for

each STB and compare it against either images taken from other boxes or reference

images previously stored. The image comparison must be fast and dependable. UI

text recognition through an integrated OCR engine is also required, and this should

support the majority of worldwide languages.

CHAPTER 6. AUTOMATION OF TEST FRAMEWORK IN STB 74

6.3.6 Transport Independent

S3 GROUP is involved in the development of digital STBs for OEMs and Operators

worldwide, consequently an automated test system will have to support cable, satellite

and IPTV transport networks.

6.3.7 Offline Review Mode

Use of an automated test system means there is an increased quantity of test results

which require human post-analysis. Provision of support to ensure that this can be

done efficiently would be a very valuable feature of the automated testing system.

6.3.8 User Interface

The user of the system (typically a test engineer) should have a user interface on the

client machine that allows at least the following:

• Start-up of sequences of tests on each slot in the rack individually

• Monitoring of the status of tests in progress and completed

• Screenshot comparison (for automatic detection of deviations from expected

behaviour on the video output)

• Automatic motion detection on the video output (lack of motion may indicate

a box under test has stopped responding to IR commands)

6.3.9 Configuration Management Integration

The testing system should integrate tightly with the Configuration Management sys-

tem in use on the development/integration project so that it is, for instance, possible

to configure the system to do a nightly build of the latest code and then load it in

some of the boxes in the rack and run a chosen set of tests. These tests would most

likely be a standard set of stress tests, so that project management continually has a

CHAPTER 6. AUTOMATION OF TEST FRAMEWORK IN STB 75

measure of the stability of the current build throughout the integration work of the

project.

6.3.10 Integration with Defect Tracking system

The testing system should integrate tightly with whatever defect tracking database

is in use in the STB integration project. In particular, it should be possible for the

system to automatically raise or update a defect when a test is found to fail.

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

As Digital TV is becoming an emerging consumer electronics appliance and Set Top

Box is the migration from analog to digital broadcasting. In this report basic but

essential fundamentals of Set top box frontend system are discussed. Brief overview

of Linux device driver, Linux kernel and device driver development has been given

along with an example of simple device driver code. As development of Linux based

hardware devices is on the center point of the current industry trends. we choose

Set top box system as an application in which all drivers of set top box systems are

designed and implemented under Linux kernel which results in low cost solution to

customer.For successful launch of any application, validation and testing has to fol-

low designing development. We also discussed system setup, software environment

required for testing and debugging the STB system, and finally the testing procedure

followed by results.

Manual testing of STBs is time-consuming, expensive and error prone and most

routine STB testing can be automated. An obvious use of automated STB testing is

for final QA cycles and approvals at the Operators site prior to product launch, but

76

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 77

significant cost savings and project efficiencies can also be generated by the correct

use of automation throughout the STB integration phase. Additionally the auto-

mated test cases developed during STB integration can be re-used during testing at

the Operators site as part of the final test cycles pre-launch and again in testing dur-

ing legacy maintenance. The benefits of identifying and resolving problems as early

as possible in a product development lifecycle are well known and applicable to STB

integrations. Use of automated testing throughout the STB integration can greatly

reduce time and cost and ultimately increase the end product quality.

7.2 Future Scope

As a future enhancement in driver development we can start our work from a clean

base code systematically developed instead of an unverified open source code and

extend more features to the base code at a higher abstraction level. Thus, out ap-

proach will improve various quality attributes of device drivers such as productivity,

reliability, and extensibility.

To develop the GUIs of various test cases in software framework. An effective ap-

proach to automate software framework is to develop test cases in a way that we

can optimize the testing time and which requires less human interaction while test-

ing. By doing automation in various test report generation and management tools

we can easily manage and handle Test report generated by automation process. So it

provides the results of all testing process in format in which it has been demanded.

Publication List

1. Preeti Dewani,Ankit Prajapati and Bhavin Patel ,“BER Improvement with com-

bination of FEC and MDC in Heterogeneous Environment” TechWeek-2014 at

STMicroelectronics Pvt. Ltd,Greater Noida,FEB24-28,2014

Abstract: In a heterogeneous environment, packet loss rate and packet length

is varying. Data sent via communication channel is very much sensitive to losses.

So, there is a need to recover the data at the receiver end even in the worst

environment conditions by error correction and detection techniques. Today

Forward error correction (FEC) is used as an approach meeting the require-

ments but there are some limitations of this technique i.e. its performance is

not considerable when packet loss rate is higher and packet length is larger.

MDC (Multiple Description Coding) is the one which outperforms FEC in that

situations where FEC fails to perform well.

The performance of MDC is even better when HEVC (High Efficiency Video

Coding) is used as a source coding standard. On considering this point, we have

proposed a scheme in which HEVC is used as a prior stage of MDC and we use

FEC as the standard encoder to implement MDC. In this scheme, three routes

are defined for sending the packets, according to the environment conditions

and available bandwidth the one which best suits will be selected.

78

As HEVC is used to support the demand of increasing bit rate for high resolu-

tion video by providing better coding efficiency which is the key point of using

it in our scheme. Due to this, better video quality will be obtained for 4k x 2k

resolution and even the problem with the heterogeneous environment will be

solved.

By the results we have observed that at low bit rate performance of HEVC

is better than H.264 in terms of PSNR and when packet length is large and

packet loss rate is high then combination of MDC and FEC(a double or mul-

tiple description coding scheme) outperforms FEC(a single description coding

scheme).

79

References

[1] Dr. P.C.Jain, “Set-Top-Box”, Document, STmicroelectronics Pvt. Ltd.(Internal)

[2] Dr.P.C.Jain, Sushil Dutt, Joydip Chaudhary, Smita Joshi, S.Ahmed, Ashutosh
Alok, V.Mitra, “Digital Satellite, Cable and Terrestrial Set-Top- Box with
conditional Access System”, Himachal Futuristic communication Ltd,Gurgaon

[3] Asim Kadav and Michael M. Swift,“Understanding Modern Device Drivers
ASPLOS12,March3-7,2012

[4] Charlie OBrien,“The Importance of Automated Testing in Set-Top-Box Integra-
tion”, Report on Quarter 4, 2009, S3 Group 2009-2010

[5] Mr.Nabrun Dasgupta,“STFRONTEND BASICS Test Specification”, STmicro-
electronics Pvt. Ltd.(internal), Document 0.9.0, 2008

80

	Coverpage
	Details
	Declaration
	Certificate
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction to Set Top Box
	Background
	Motivation
	Objective
	Organization of Thesis

	Literature Survey
	Device Architecture
	Front-End
	Back-End

	Broadcast Systems
	Satellite Systems(DVB-S)
	Cable Systems(DVB-C)
	Terrestrial Systems(DVB-T)

	Modulation Techniques for different broadcast systems
	Satellite Transmission-QPSK Modulation
	CATV Transmission - QAM
	Terrestrial Transmission - OFDM.

	Device Driver Development for STB Application
	Overview of Device Driver Development
	Device Drivers
	Linux Kernel Overview

	Writing Linux Driver
	Features of Set Top Box Device Drivers
	Summary

	Drivers Test Environment Setup with STAPI-SDK
	STAPI-SDK (ST Application Programmable Interface-Software Development Kit)
	Generalize hardware setup
	Configuring the ST Micro Connect 2 for serial data out
	STAPI installation
	Apilib
	Patches
	OS21
	STLinux
	Compiling and running STAPI-SDK(OS21)
	Board configuration for MS Windows machine
	Board configuration for Linux/UNIX machine
	Compiling STAPI-SDK
	Compiling the STAPI libraries
	Compiling and linking the STAPI application
	Running the STAPI application on the target
	Configure the ST Micro Connect
	Running the software
	Debugging the Software

	Compiling and running STAPI-SDK (STLinux
	Clean current STLinux distribution
	Installing STLinux

	Board configuration for STLinux
	Customized configuration for STLinux

	STAPI-SDK makefile
	Building the kernel
	Compiling the STAPI-SDK tree for Linux
	Compiling the STAPI-SDK tree for Linux with uclibc

	Running STAPI-SDK for STLinux

	Testing of STB Frontend Drivers & Results
	Hardware Setup

	Automation of Test Framework in STB
	Automated Testing
	Automated Testing for Set-Top Box Integration
	Features of an Automated Testing System for STBs
	Client/Server Architecture
	Remote Control of Set-Top Box
	Programmable Test Cases
	Logging of serial output
	Image Analysis and OCR
	Transport Independent
	Offline Review Mode
	User Interface
	Configuration Management Integration
	Integration with Defect Tracking system

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Publication List
	References

