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Abstract

Graphics System Features are global functionalities that are applicable across each

and every media unit. Every media test uses an outer cache - either L3 or external

LLC (Last Level Cache). So, the outer cache is a global system feature. Yet, there

is no universal way of accessing those outer caches and controlling their cacheability.

My proposed solution is to use Memory Object Control State (MOCS) as a way of

accessing the outer caches. A script needs to be developed which could resolve events

that would eventually cause cache failures; like memory issues, invalid translations

and cache misses. This script needs to be added and executed with a certain number

of media tests to see if the intent is met.

The second scope of work is to enable preemption among media workloads. Tra-

ditionally, the graphics driver is used to enable preemption. This is done in the User

mode, i.e. the calls (or preemption requests) made by the application have to go

through several layers of hardware abstraction (OS, Kernel) to reach the hardware

and get the task done. This means a time delay between when the request for preemp-

tion is issued and when it is serviced/executed. There are many overhead challenges.

My proposed way is to use the graphics microcontroller (GuC) itself for scheduling

and preemption of media workloads. This microcontroller is present on the Graphics

Processing Engine (GPE) and any task run by it would talk directly to the hardware,

and finish sooner. There is also a huge plus of using the microcontroller when it came

to power savings - it could run independently in low power mode; even when the main

core was in OFF state. Additionally, it has the authority to schedule workload on

graphics sub-systems directly, without Host intervention. GuC is also a global system

feature.
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Chapter 1

Introduction

The term System features refers to the global features that impact most of the graphics

system units. Typically, these features are related to memory accesses, work load

scheduling (to match usage models), etc.

Traditionally, these system features are validated using simple (and representative)

workloads.

In this work, the validation coverage of the system features shall be enhanced by

validating them with actual media workloads, rather than representative workloads.

1.1 Scope

For complex systems like graphics which occupies nearly 50 % of the die in the regular

client Central Processing Units (CPU), there is a pressing need to find bugs as early

as possible in the design and validation cycle. Emulation platforms enable functional

validation teams like System Validation (SV) to execute more cycles much faster.

The basic reason for using emulation is to identify the bugs as soon as possible in

pre-silicon phase and have minimal bugs post silicon. Traditionally, media system

validation involved validation of each individual unit in isolation. However, as the

SOCs become more advanced (and complex), additional system level improvements

are needed in each generation of the SoC. This mandates that the individual media

1
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units too exercise these system level advancements early in the validation cycle.

The scope of this work is to define and implement a process to exercise media tests

(workloads) focused on system level changes in the Graphics sub system.

1.2 Goals

• Defining and implementing methodology for system features validation using

media workloads

• Documenting the methodology for re-use in future programs

1.3 Project Flow Of Activities

It is wise to have a sequence of steps that you intend to follow in order to complete

and deliver your project on time.

For me, the first requirement was to ramp up on Intel Graphics architecture. Under-

standing Emulation infrastructure used in the graphics system validation team came

next.

I analyzed validation data from Intel’s previous platform in order to define a problem

statement. The main error buckets were defined. Clearly, there was a pressing need

to define a way of outer cache access and controlling the cacheability of the outer

caches.Also, graphics microcontroller based preemption in media tests was an unval-

idated scenario. By this time, I had a fair idea of what my Ruby script should do.

So, we defined a problem statement and also the areas that we would target.

Once the scripts were ready, the next phase was to enable and characterize Media

tests under both the scenarios. This would be followed by execution and debug of

these tests in emulation. The end goal was to achieve atleast 75 % pass rate in system

features tests in each validation cycle.
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1.4 Organisation of thesis

The rest of the thesis is organised as follows:

Chapter II - Literature Survey, gives a brief overview of media basics, the encode and

decode pipelines used; the hardware and software blocks.

Chapter III - Overview of System Features, describes what essentially are system

features. It describes MOCS (Memory Object Control State) and graphics microcon-

troller; as well as the need for preemption.

Chapter IV - Implementing MOCS (outer cache access mechanism), describes the

methodology and implementation I laid out for enabling MOCS; the media units I

covered, the scripting involved and the results across two vallidation cycles.

Chapter V - Enabling Preemption, descibes why graphics microcontroller was used

for preemption among two media workloads. It also has pseudo-codes of the scripting

involved and the units I covered.

Chapter VI describes Conclusion and Future scope of work.

1.5 Summary

System features are those functionalities which are applicable at the system level in

the graphics sub-system. The problem statement is to define a mechanism of outer

cache access and microcontroller based preemption for media tests. For this, focussed

scripts were developed in Ruby.
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Literature Survey

System Features are those functionalities that are applicable across every media unit.

The script that I developed was applied onto every media base test for effective

enabling of that feature. There are multiple media units - decoder blocks (one for

each codec - vp8, mpeg4, avc, vc1, jpeg and a few more), encoder blocks, a memory

interface unit, sampler, quantizer, video motion estimation unit and a few more. Each

test uses one or more of these units. Hence, it was necessary for me to know what

each media unit was meant to do; and to understand the basics of various codecs

from a industry specification point-of-view.

2.1 Codec overview

Codec means compression and decompression of digital video. A lot of media tests

use the H.264 codec. To understand it, I studied the following article.

The article by Iain E. Richardson, The H.264 Advanced Video Compression Standard,

published in John Wiley & Sons (2010) described the methods of predicting intra-

coded macroblocks in an H.264 video compression codec [1]. If a block or macroblock

is encoded in intra mode, a prediction block is formed based on previously encoded

and reconstructed (but un-filtered) blocks. This prediction block P is subtracted from

the current block prior to encoding.

4
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The paper by Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay

Luthra, Overview of the H.264/AVC Video Coding Standard, published in IEEE

Transactions On Circuits And Systems For Video Technology ( Vol. 13, No. 7, July

2003) provided an overview of the technical features of H.264/AVC [3]. It described

profiles and applications for the standard and outlined the history of the standard-

ization process.

H.264 is different from existing standards in the following ways:

• Enhanced motion-prediction capability

• Use of a small block-size exact-match transform

• Adaptive in-loop deblocking filter

• Enhanced entropy coding

These helped me to gain a fair understanding of the H.264 standard. Other codecs

like avc, vc1 etc. were studied from Intel internal presentations. Some are described

in brief below.

I. MPEG-2

• Most used compression technology

• From DVD, terrestrial broadcasting (ATSC/DVB), to cable and satellite

broadcasting

• Simple and elegant, with limited compression

• Artifacts noticeable for SD under 4mbps, or HD under 12mbps

II. AVC - Advanced Video Coding

• Also referred as MPEG-2 part 10, and H.264

• Aggressively pursuing better compression with heavy toll on complexity
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• 4X complexity for 2x compression

III. VC1

• A SMPTE Video standard (Society of Motion Picture and Television En-

gineers)

• Used to be a proprietary codec of Microsoft

• Complexity and gain are close to that of AVC

• It is today a supported standard found in Blu-ray Discs, Windows Media,

Microsoft’s Silverlight framework, Slingbox and the now-discontinued HD

DVD.

2.2 Media compression

For a few MOCS (Memory Object Control State) tests, there was a need to enable a

compression-decompression mode. I needed to know why compression was needed and

how to enable it. For this, I went through some internal trainings and the following

paper.

The paper by Ian H. Witten, Radford M. Neal, And John G. Cleary, Arithmetic

Coding For Data Compression, published in IEEE Transactions on Communications

(2007) dealt with arithmetic coding [2]. In arithmetic coding, a message is represented

by an interval of real numbers between 0 and 1.

Successive symbols of the message reduce the size of the interval in accordance with

the symbol probabilities generated by the model. Hence, fewer bits are added to the

message.

Arithmetic coding gives greater compression.

2.2.1 The need for compression

Raw data requires a large number of storage. Consider the following:
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• SD 720 x 480 x 30fps x 60sec/min x 60 min/hr x 2hr x 3 byte per pixel = 223

GB per disk

• HD(p) 1920 x 1080 x 60fps x 60sec/min x 60 min/hr x 2hr x 3 byte per pixel

= 2687 GB per disk

Uncompressed video (and audio) data are huge. In HDTV, the bit rate easily exceeds

1 Gbps; which is a big problem for storage and transport.

Consider the HDTV broadcasting format - 1920 pixels horizontally by 1080 lines ver-

tically, at 30 frames per second. If these numbers are all multiplied together, along

with 8 bits for each of the three primary colors, the total data rate required would

be approximately 1.5 Gb/sec. Because of the 6 MHz channel bandwidth allocated,

each channel will only support a data rate of 19.2 Mb/sec, which is further reduced

to 18 Mb/sec by the fact that the channel must also support audio, transport, and

ancillary data information.

As can be seen, this restriction in data rate means that the original signal must be

compressed by a figure of approximately 83:1. This number seems all the more im-

pressive when it is realized that the intent is to deliver very high quality video to the

end user, with as few visible artifacts as possible.

Video Compression can achieve 100 to 1 compression. It means getting rid of redun-

dant data and throwing away details which are not easily noticeable.

Lossy methods have to be employed since the compression ratio of lossless meth-

ods (e.g., Huffman, Arithmetic) is not high enough for image and video compression,

especially when distribution of pixel values is relatively flat. The following compres-

sion types are commonly used in Video compression:

• Spatial Redundancy Removal - Intraframe coding (JPEG)

• Spatial and Temporal Redundancy Removal - Intraframe and Interframe coding

(H.261, MPEG)
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2.3 Documentations obtained from the extranet

As my project is pertaining to media validation, a pre-requisite was to have a thorough

understanding of Intel Graphics Architecture. To achieve the same, I studied the

below listed topics:

• Understanding basics of video [8]

• Understanding video encoding and decoding basics [8]

• Overview of Intel Media pipelines[4, 5]

• Understanding Graphics Media System Features [5]

• Understanding System Validation execution environment

• Learning Ruby (developing test content) and Perl (scripting for automation) [7]

• Motion estimation and motion compensation concepts [8]

• Learning Video codecs - AVC,VC1,MVC etc. [3]

• Video compression concepts [6]

2.4 Overview of Media

This section gives an overview of Media basics, the need for video compression, the

type of macroblocks and basic Video Encoder and Video Decoder diagrams.

2.5 Video - Overview

Video is an electronic medium for the recording, copying and broadcasting of moving

visual images. It basically involves playing a series of still images at a certain speed

(frames per second); and the mind perceives that as a continuous video.
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Each video file contains several GOPs (or Group Of Pictures). These in turn, are

composed of several frames, namely:

• I - Intracoded frame, does not need reference picture to decode, decompress or

encode

• B - Bipredictive frame, uses difference between current and successive or previ-

ous frame

• P - Predicted frame, uses data from previous frame to decode or encode

Next, each frame is composed of multiple slices. A slice is a spatially distinct region

of frame that is encoded separately from any other region in the same frame.

Each slice is composed of Macroblocks (size of 16x16), which are subdivided into

blocks (usually 8x8 pixel matrix).

Macroblocks (MBs) have the following modes:

• Intra - encoded without past reference frame

• Inter - forward or backward predicted macroblock

• Skipped - when background content remains the same in several frames, you

can skip encoding those MBs altogether

• IPCM - macroblocks are sent as they are, without any encoding. This mode

consumes high bit rate, but there is the advantage of zero distortion.
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Figure 2.1: A typical video sequence

2.6 Video Decoding - Hardware solution

Multi-Format Codec (MFX) engine contains a full-hardware decoder. It allows Multi-

format encode and decode and has a shared data path optimized for area & power.
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Figure 2.2: Decoder engine

• Ring interface maps to memory.

• VCS (Video Command Streamer) looks at opcodes, MB state and object type

and passes it on to VIN.

• VIN (Video input) parses this data, forwards it to every block.

Now, MB modes, as parsed by VIN can be of several types:

I. Intra - encoded without past reference frame

II. Inter - forward or backward predicted macroblock
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III. Skipped - when background content remains the same in several frames, you can

skip encoding those MBs altogether

IV. IPCM - macroblocks are sent as they are, without any encoding. This mode

consumes high bit rate, but there is the advantage of zero distortion.

Bit stream decode unit can decode MPEG2, AVC and VC1 data by employing ei-

ther Variable Length Decoder (VLD) or Arithmetic Decoding. Video dispatcher unit

forwards data streams to the following:

• Motion Compensation block - to predict a MB or block using a weighed com-

bination of 1 or 2 prediction blocks of the same pixel size and block dimension

• Intra-prediction block - to predict a MB without any reference block

• Inverse transform block - employs IDCT and does dequantization

Previously decoded frame is used as a reference to encode the current frame. De-

blocking filter smoothens the output.

2.7 Video Encoding - software/hardware solution

Encoding occurs in two phases:

I. ENC maps to Programmable EU Array, runs in GPU (Graphics Processing

Unit) in the CPU. It enables algorithm tuning & feature additions

II. PAK maps to MFX hardware pipeline, i.e. it reuses decoders pixel reconstruction

circuitry and some units in the MFX pipeline.
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Figure 2.3: Video encoding

2.8 Video Encode - PAK in MFX

Multi-Format Codec (MFX) Engine is the hardware fixed function pipeline for decode

and encoding. It includes multi-format decoding (MFD) and multi-format encoding

(MFC).

Many decoding function blocks in MFD such as VIP (Video Intra-Prediction), VMC

(Video Motion Compensation), IQT (Inverse Quantisation and Inverse Transform),

etc. are also used in encoding mode. Two blocks FTQ (Forward Transform and

Quantisation) and BSE (Bitstream Encode) are encoding only.
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The encoding process is partitioned across host software, GPE (Graphics Process-

ing Engine) engine and the MFX engine. The generation of transport layer, sequence

layer, picture layer and slice header layer is required to be done in the host software.

GP hardware is responsible for compressing from Slice Data Layer down to all macro-

block and block layers. Specifically, GPE w/ VME acceleration is for motion vector

estimation, motion estimation, and code decision.

The VME (Video Motion Estimation) is located next to all image processing units,

such as DN (denoise) and DI (deinterlace) in sampler in GPE.

MFX is for final bit packing and reconstructed picture generation.

MFC is operated concurrently with and independently from the GPE (3D/Media)

pipeline with separate command streamer. The two parallel engines have similar

command protocol. They can be executed in parallel with different context. For en-

coding, motion search, MB mode decision and rate control are performed using GPE

pipeline resources.
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Figure 2.4: MFX - full stack

Bitstream encode block and Forward Transform block is employed for encoding, the

Bitstream decode block is used for decoding; the rest of the blocks are shared between

MFX and PAK.

As the result of this hardware partitioning, VPP(Video Pre-Processing) and ENC are

always running in GPE, and PAK is what runs exactly in MFC.

Functions of PAK:

• Residue packing and entropy coding, including block transformation, quantiza-

tion, data prediction, bitrate tuning and reference decoding.
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• It delivers final packed bitstream and decoded key-frame reference.

2.9 Processor Graphics - Unified 3D and Media

architecture

The Main Render Engine is unified for 3D Graphics and Media.

Fixed Function (FF) Pipelines have been implemented which do the following

functions

• Thread generation and control

• 3D Graphics or Media FF controls EU array at a given time

The Execution Unit (EU) Array is a programmable entity which is shared between

3D and Media.

Shared Functions

• Accelerators for filtered load, scatter & gather, filtered/ blended store operations

MFX: A parallel codec engine runs on a separate context
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Figure 2.5: Unified architecture

2.10 Scripting language used - Ruby

Test content development as well as scripting to enable System Features is in Ruby.

There are several reasons for choosing Ruby.

• Object oriented

Every value in Ruby is an object, even the most primitive things: strings,

numbers and even true and false. Even a class itself is an object that is an

instance of the Class class.

Consider the following example where we apply an action to a number
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For example :

3.times print ”Ishani *at* Intel - from Nirma!”

• Flexibility

Ruby is seen as a flexible language, since it allows its users to freely alter its

parts. Essential parts of Ruby can be removed or redefined, at will. Existing

parts can be added upon.

For example :

class Numeric

def plus(x)

self.+(x)

end

end

y = 5.plus 6

(y is now equal to 11)

• Single Inheritance only

Unlike many object-oriented languages, Ruby features single inheritance only.

class Wood

def foo a

puts”Here”

end

end

class Teak <Wood

def foo b

puts ”There”

end

end

user=Teak.new

user.foo a
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user.foo b

<implies inheritance in Ruby. Teak becomes a derived class of parent class

Wood. The object ’user’ will inherit the function foo a from the parent class.

Ruby has a wealth of other features, among which are the following:

I. Ruby has exception handling features, like Java or Python, to make it easy to

handle errors.

II. Ruby features a true mark-and-sweep garbage collector for all Ruby objects. No

need to maintain reference counts in extension libraries.

III. Writing C extensions in Ruby is easier than in Perl or Python, with a very

elegant API for calling Ruby from C. This includes calls for embedding Ruby in

software, for use as a scripting language.

IV. Ruby can load extension libraries dynamically if an OS allows.

V. Ruby features OS independent threading. Thus, for all platforms on which Ruby

runs, you also have multithreading, regardless of if the OS supports it or not,

even on MS-DOS.

VI. Ruby is highly portable: it is developed mostly on GNU/Linux, but works

on many types of UNIX, Mac OS X, Windows 95/98/Me/NT/2000/XP, DOS,

BeOS, OS/2, etc.

2.11 Summary

This chapter gave an overview of several media codecs and why Ruby was chosen as

the scripting language for the project.

It also discussed the need for video compression and why bitstream packing is needed.

Next, a few Encode/decode block diagrams were described. In Intel’s media engine,

MFX (Multi-format codec) Engine is the hardware fixed function pipeline for decode



CHAPTER 2. LITERATURE SURVEY 20

and encoding. It includes multi-format decoding (MFD) and multi-format encoding

(MFC). PAK runs in MFC and is responsible primarily for bitsream packing.
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Overview of System Features

System features are global functionalities that are applicable across each and every

media unit. My scope of work in the System Features unit in Media is subdivided into

two portions (or functionalities) - implementation and validation of MOCS (Memory

Object Control State) across two validation cycles; and creating focussed tests to

enable preemption of media decoder workloads using graphics microcontroller.

3.1 MOCS

MOCS, or Memory Object Control State, is a per-surface state definition of memory

accesses.

The memory object control state defines behavior of memory accesses beyond the

graphics core, including graphics data type that allows selective flushing of data from

outer caches, and ability to control cacheability in the outer caches.

This control uses several mechanisms. Control state for all memory accesses can

be defined page by page in the GTT entries. Memory objects that are defined by

state per surface generally have additional memory object control state in the state

structure that defines the other surface attributes.

The driver can program a lookup table of memory attribute combinations. Each sur-

21
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face created by driver can have an index to this lookup table rather than defining all

the attributes repeatedly.

3.1.1 End user perspective

From the perspective of an end user, MOCS not getting validated could result in a

variety of issues:

• Graphics unresponsiveness/Application hangs

• Exceptions

• Page faults

I developed a testing framework from scratch for Intel’s upcoming processor platform.

MOCS was not validated for Intel’s previous processor platform. There was, hence,

a gap in validation which I aimed to fill.

3.2 Global MicroController (GuC) or General pur-

pose Microcontroller

A microcontroller (sometimes abbreviated µC or uC) is a small computer on a sin-

gle integrated circuit containing a processor core, memory, and programmable in-

put/output peripherals. Program memory (Flash or ROM) is also often included on

chip, as well as a typically small amount of RAM. Microcontrollers are designed for

dedicated tasks, in contrast to the microprocessors; which are used for general pur-

pose applications.

The target segment for a microcontroller is diverse - Digital Signal Processing, Com-

munication and networking, Embedded devices etc.

Tasks:
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The microcontroller employed by Intel in media is responsible for graphics workload

scheduling on graphics engines.

It does the following tasks:

• Deciding which workload to run next

• Submitting work to Command Streamer (CS)

• Pre-empting existing workloads as per need

• Notifying host software when work is done

Code that runs on GuC is provided by graphics driver during boot-up and graphics

initialization page.

There was a need to validate preemption scenarios using graphics microcontroller. I

created ten test cases that would involve preemption among codecs on the MFX (Multi

Format Encode and Decode) engine. Characterization (simply put, characterization

means verifying if the intent of the test has been met) was done by taking waveform

captures.

3.3 Need for Emulation

Emulation is the process of imitating the behavior of one or more pieces of hardware

(typically a system under design) with another piece of hardware (called an emulator).

To understand why emulation is needed, consider the scenario when validation is

not done at the pre-silicon stage. A huge number of bugs would be found at the RTL

stage. That would result in the company making another stepping of the chip; which

would increase the Time-To-Market as well as increase production and transportation

costs. Thus, functional validation is of utmost importance. Emulation can be used

to minimise the number of bugs at the RTL stage of the design process.
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3.3.1 Emulation vs. Simulation vs. FPGA prototyping

There are pros and cons to each one of them.

Simulation is often not fast enough for large designs and almost always too slow to

run complex or stressful tests or application software against the hardware design.

FPGA-based prototypes are fast and inexpensive, but the time required to implement

a large design into several FPGAs can be very long and is error-prone. Changes to

fix design flaws also take a long time to implement and may require board wiring

changes. Traditional FPGA prototypes may have little debugging capability, probing

signals inside the FPGAs in real time is very difficult, and recompiling FPGAs to

move probes takes too long.

The usual compromise is to use simulation early in the verification process when

bugs and fixes are frequent, and prototyping at the end of the development cycle

when the design is basically complete and speed is needed to get sufficient testing to

uncover any remaining system-level bugs.

Emulation improves somewhat on FPGA prototypings implementation times, and

provides a comprehensive, efficient debugging capability.However, it is a scarce re-

source due to the heavy cost.

3.3.2 Emulation

Verification through emulation reduces project schedules and cost by enabling vali-

dation engineers to maximise bugs at the pre-silicon stage.

Steps followed:

• Model is loaded on emulator.

• The test is run through a hardware functional simulator first. Errors are cleaned

up. Passes are queued onto the hardware emulator.

• Errors on the emulator require extensive debugging.
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– Debugging techniques include setting breakpoints and using conditional

triggers to explore the system.

– A trigger is used to stop execution when an error condition occurs and

allows us to take a waveform capture around the trigger point. This is due

to the limitation that we can take a capture only over few cycles.

– Signal waveforms can be used to analyze relevant hardware signals and

events.

3.4 Summary

This chapter aimed to give an overview of system features - MOCS and GuC based

preemption of media workloads. The need for emulation was explained and the emu-

lators used at Intel were desribed in brief. My scope of work in the System Features

unit in Media is subdivided into two portions (or functionalities).

• Obtaining L3/LLC Coverage by MOCS

• Creating focused GuC tests
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Implementing Memory Object

Control State (MOCS)

Often identifying the problem and implementing its solution is the toughest task.

This chapter deals with the methodology I proposed for MOCS (way of outer-cache

access), work flow, execution, results across two validation cycles and a basic idea of

the scripting involved.

4.1 Identifying and implementing Methodology

Traditionally the system level features were validated using focused test development

and execution. This involved a lot of manual effort in test development and had

limited coverage with respect to media functionality within a specific system feature

scenario.

To overcome these issues, I developed a methodology to make a comprehensive script

which could be appended onto a few media tests from each unit (for example - across

encoders, decoders, motion compensation engine etc.) to enable the specific feature.

This ”helper” file was validated and characterized to ensure it created the required

system feature scenarios in each of the media pipelines. Once the file was validated

with each pipeline, we identified more media tests that need to be validated in system

26
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features scenarios.

In this manner, a set of 183 tests were included in the test plan for execution with

the aim of enabling MOCS. These tests were executed in emulation and the failures

were debugged.

My contributions

I shall go through my contributions for implementing MOCS. First, I developed a

Ruby script that defined MOCS and additional randomisations like L3 cache random

size configurations and memory buffer size configurations. Next, I added that script

onto 183 tests and began execution. Execution is at two levels - first being on a

hardware simulator; and then on a hardware emulator. Passes on the simulator were

queued onto the emulator and failures were debugged. This was done across two

validation cycles.

Figure 4.1: Work flow
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4.2 Execution

Implementing MOCS functionality across:

• Video decoders - The MFX (Multi Format Codec) engine has a variety of de-

coders - vc1, vp8, mpeg2, avc, hevc, jpeg to name a few. I took a certain number

of tests using source clips of each codec, enabled that particular decoder block

and then ran the MOCS script alongwith the decoder base test.

• Video encoders - The PAK (Bitstream Packing and Encoding) engine has an

equal number of encoder blocks. A procedure similar to that used in decoders

was followed, the only difference being that I enabled the corresponding codec

encoder.

• Video enhancement engine - To improve the end user’s experience, video en-

hancement techniques are employed. This includes smoothing the image, ap-

plying certain filters to reconstruct damaged pixels, motion compensation, de-

interlacing etc. To enable MOCS across this, I first made a generic template

(script) that selectively enabled different functions of the video enhancement

engine, and appended the MOCS helper file onto this. The resulting tests were

executed.

• VME (Video Motion Estimation) unit - VME performs a sequence of operations

to find the best mode (i.e. one out of Backward/Forward/Intrapredicted modes)

for a given macroblock. It includes motion estimation for various block sizes.

It runs only for AVC, MPEG2 and VC1.

To enable MOCS across this unit, I took a few tests that were developed to run

on this unit; and executed them with my MOCS script.

• Audio Video Standard (AVS) - This is a compression standard for digital audio

and video. I used a few tests that used the same macroblock and scan specifi-

cations as set by the industry standard; and then executed those tests with the

MOCS file.
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All tests were characterized on the hardware simulator first (checking if they are

meeting the intent) and then executed in emulation. The tests that failed in in

compiling or in emulation were debugged and fixed.

4.3 Scripting for MOCS

For implementing MOCS across media tests, a comprehensive script was developed.

The script defined the MOCS way of cache access, enabled bypassing of L3 cache

randomizations as well as some additional randomisations (like memory buffer ran-

domizations).

In the script, a look-up table of memory attribute combinations is defined. Subse-

quently, the script fixed up a random index in this look-up table.

The script was appended as a helper file above media tests to enable MOCS.

Figure 4.2: Outer cache access script
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4.4 Code snippets

The following code snippets are given below for different scenarios. The next few

lines enable media tests to bypass L3 cache randomization settings and go only for

LLC randomization. Some media tests do not require the use of L3 cache, and hence

the validation engineer can directly specify the same via the command line.

Figure 4.3: L3 cache randomizations

The next snippet shows some of the parameters that were hardwired for outer

cache access.

Figure 4.4: Programming MOCS parameters for L3 cache
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This snippet shows additional randomizations that were done - for example, mem-

ory buffer randomizations.

Figure 4.5: Additional randomizations

At the end, we have a snippet showing the code to print MOCS values for the

cache used by the media test.

Figure 4.6: Printing MOCS values

4.5 Cache failure buckets: Start of Validation Cy-

cle

The Media pipeline heavily relies upon using L3 cache and LLC (external DRAM Last

Level Cache). Yet, there was no universal way of accessing those outer caches and

controlling their cacheability. It was a big gap in validation and I aimed to resolve it.
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To begin with, I took validation data from the previous processor platform to analyze

why cache failures were occuring. This gave me a fair idea of what my script should

focus on resolving.

From the previous procesor platform, I took 183 tests to identify and categorize major

cache failure buckets. Analysis of errors helped me to narrow down on the possible

reasons for it.

Figure 4.7: Error buckets at the start of first validation cycle

One of the main reasons for cache failure is Memory issues. This could be due to

several reasons. Consider the scenario where the test is trying to access the outer

cache (say, L3) but there is no space in the cache; or the waiting queue to access the

cache is full.

The next major reason is cache miss. Due to large size of cache, there might be a

failed attempt to read or write a piece of data in the cache, which results in a main

memory access with much longer latency.
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Ideally, every media test runs with a specific surface definition. If the processing

surface does not match with the one defined in the test, then it causes screen garbage

or corruption. It causes a ”bad surface”.

Another reason is an invalid address translation. Simply put, it means a wrong vir-

tual to physical memory mapping; mainly due to a test content fault or driver fault.

Another reason is Tool errors. We often face software hangs due to a wrong tool

version used, or inappropriate command line used to run the test. This is a manual

fault and can be avoided if due attention is put.

Lastly, hardware faults also exist. They are due to overheating of the emulator. The

only solution to this is to replace the broken fuse

Once I became aware of these errors, I started developing a script that could resolve

these errors - mainly memory issues, invalid translations and cache misses. Once the

script was ready, I started executing a few tests with my script and checking if MOCS

was getting enabled.

4.6 Results

MOCS was enabled and validated across two validation cycles. The process is the

same - run the tests first on a hardware simulator, then on a hardware emulator,

debug and fix the errors.

4.6.1 Results for first validation cycle

At the end of the first validation cycle, I had a pass rate of 86.96 %; i.e. roughly 157

tests were passing with my MOCS script.

The number of tests failing due to memory issues was reduced to 6 % (10 in number)

as opposed to 44 % (80 in number) before enabling MOCS. The number of tests

failing due to invalid translations was also reduced to roughly 1 % from 5 % before

validation.
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Cache misses were also significantly reduced to roughly 1 %; as opposed to 20 %

earlier. Bad surface errors were reduced to 1.09 % from 12 % before MOCS enabling.

Figure 4.8: Error buckets at the end of first validation cycle

4.6.2 Results for second validation cycle

At the end of the second validation cycle, the results were even more promising.

The pass rate was 96.22 %. The bad surface error was completely removed; invalid

translations were at a minimum 0.01 % and memory issues were down to 1.85 % (they

were at 5 % and 44 % before enabling and validating MOCS).
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Figure 4.9: Error buckets - current status, second validation cycle

4.7 Summary

I have enabled the MOCS component of system features. Scripting was done in Ruby

and Intel tools were used for execution and debug.

For the first validation cycle, the unit had a pass rate of 86.96%. Currently,for the

second validation cycle, the unit has a 96.22% pass rate. This has been achieved by

continous debug and re-execution of tests on software and later,emulation.

The second area of work was to enable scheduling and preemption of media workloads.
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Enabling Preemption

Preemption of media workloads using graphics microcontroller was a scenario that

was not validated in the previous processor platform. This chapter deals with the

methodology I proposed for graphics microcontroller based scheduling and preemp-

tion, execution, results and a basic idea of the scripting involved (through pseudo-

codes).

5.1 Identifying and implementing Methodology

Traditionally, the graphics driver used to enable preemption. This used to be done

in the User mode, i.e. the calls (or preemption requests) made by the application

had to go through several layers of hardware abstraction (OS, Kernel) to reach the

hardware and get the task done. This only meant a time delay between when the

request for preemption was issued and when it was serviced/executed. There would

be many overhead challenges.

My proposed way is to use the graphics microcontroller (GuC) itself for scheduling

and preemption of media workloads. This microcontroller is present on the Graphics

Processing Engine (GPE) and any task run by it would talk directly to the hardware,

and finish sooner. There is also a huge plus of using the microcontroller when it came

to power savings - it could run independently in low power mode; even when the main
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core was in OFF state. Additionally, it has the authority to schedule workload on

graphics sub-systems directly, without host intervention.

Figure 5.1: Traditional workload scheduling vs. microcontroller based scheduling

As seen in the above figure, there are two kinds of workloads. One that are executed

traditionally, by the User mode driver (UMD) and one that are aware of the graphics

microcontroller (GuC). The latter are also initiated by the UMD; however they con-

tain instructions to write to dedicated registers that would signal the GuC to wake

up, schedule and execute these workloads.

Consider a traditional workload. It is at the highest layer of hardware abstraction

(Ring Z); it cannot talk to the hardware directly. Every workload had multiple

threads, or contexts. Each thread may require to be run on a different batch, or tar-
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get engine. In media terminology, batch may refer to MFX engine, or PAK engine,

or Render (display) engine; and so on.

It is the job of the OS schedulerto maintain a queue of incoming contexts and their

target batches. The Kernel Mode Driver (KMD) comes in next. It picks up similar

contexts and schedules them on the target hardware. Scheduling is done on a first-

come-first-serve basis. If a critical context that requires access to MFX engine arrived

late, it must wait in queue to get its run on MFX. The time delay is not much, only

some nanoseconds, but it is a delay nevertheless.

Now consider a workload that is scheduled by the graphics microcontroller (GuC). It

will bypass the OS scheduler, KMD and will directly talk to the hardware. GuC will

make sure that there are minimal page faults, it will also ensure optimum usage of

target hardware using a priority algorithm. Low priority threads can be preempted

by high priority ones.

As is evident, the advantages of using GuC are multifold. It results in the workload

getting executed faster and gives better CPU utilisation.

5.2 Work flow

My contributions to the project are:

• Creating focused GuC tests - enabling preemption of media workloads using

graphics microcontroller

• Characterisation of the same using pulse triggers and waverform captures

5.3 Execution

I created 10 comprehensive tests which would use the graphics microcontroller to

schedule two workloads, and preempt each other once a frame was completed for ei-
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ther codec.

For powering on the graphics microcontroller, my script would need to write to dedi-

cated registers in Intel’s memory configuration. Once those registers were set, a GuC

Interrupt would be raised and GuC would take control from there on.

This was successfully characterised for the following decoder blocks - avc, vc1, vp8,

mpeg2 and jpeg. Some additional methods were employed which would preserve the

integrity of the data - in simple terms, save the data before the context switch is

made and return to the same instruction after preemption is serviced.

5.4 Scripting for Microcontroller based preemp-

tion

For enabling scheduling and preemption among media workloads, a comprehensive

script was developed.

The basic idea here was to create multiple workloads for MFX (decode engine). The

workloads could be any of the following codecs - mpeg2, jpeg, avc, vc1 or vp8. A new

workload would be dispatched every time a timer expires. Graphics microcontroller

would be used to schedule those workloads on the hardware. Also, the timer would

be reset to a pre-defined value after dispatching the workload.

Care was taken to keep the timer value to a moderate value. If it was set too low,

then the number of preemptions would increase and no workload would complete its

execution. The testing environment would crash. On the other hand, too high a value

of the timer would decrease the chances of one codec getting preempted by the other.

Hence, i set the timer to a moderate value.

To verify that preemption is indeed happening, captures were taken on emulation.
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Figure 5.2: Microcontroller based preemption script

5.5 Code snippets

The below snippet shows basic media parameters that were hardwired (coded) to

define a media clip - i.e. to define a workload. Workload could be any one out of

jpeg, mpeg2, avc, vc1 or vp8.
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Figure 5.3: Defining a workload

Next, a timer was defined with a small value, say X. It was decremented to zero. Upon

reaching zero, the preemption request was sent alongwith the new workload. After

ensuring that the first frame was completed, the graphics microcontroller switched

from one workload to another. The timer would then be reset to the same X value.

Figure 5.4: Enabling preemption

This snippet shows how multiple instances of different workloads were created.
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Figure 5.5: Creating a context per workload

This snippet shows how GuC is invoked by setting dedicated registers. Once invoked,

Guc schedules the workload on the hardware and also checks for preemption scenarios.

It schedules workload based on a priority algorithm.

Figure 5.6: Invoking GuC

5.6 Performance Comparison

I used a generic Intel microcontroller and compared it with GuC on the basis of the

time taken for operations like context switch, context save, overheads involved etc.

The data was collected by reading the value of dedicated context switch registers

when I ran the same media test on both the microcontrollers. The resulting graph is

shown below.
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As mentioned earlier, the overheads reduce significantly when we use GuC to schedule

a workload on the hardware. It can be also seen that in the case of GuC, context

switch and execution of the new context takes much less time as compared to that

using a generic microcontroller. So, a process scheduled by GuC would finish much

sooner than a process scheduled by the generic microcontroller.

Figure 5.7: Comparison graph

5.7 Intel specific work

Apart from project work, I have gained exposure to what my team does in the Intel

framework.

The Graphics System Validation (SV) team is a functional validation team. For

complex systems like graphics which occupies nearly 50% of the die in the regular

client Central Processing Units (CPU), there is a pressing need to find bugs as early
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as possible in the design and validation cycle. Emulation platforms enable the team

to execute more cycles much faster. The basic reason for using emulation is to identify

the bugs as soon as possible in pre-silicon phase and have minimal bugs post silicon.

Traditionally, media system validation involved validation of each individual unit in

isolation. However, as the SOCs become more advanced (and complex), additional

system level improvements are needed in each generation of the SoC. This mandates

that the individual media units too exercise these system level advancements early in

the validation cycle.

5.8 Summary

Graphics microcontroller based preemption was effectively enabled for Intel’s sixth

generation processor platform. A set of 10 tests were developed in Ruby, which aimed

at preempting two decoder workloads every time a dedicated timer expired. These

tests were added in the Media SV validation queue.
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Conclusion

This chapter deals with conclusion and future scope.

6.1 Conclusion

Graphics System Features are global functionalities that are applicable across each

and every media unit. Every media test uses an outer cache - either L3 or external

LLC (Last Level Cache). So, the outer cache is a global system feature. Yet, there

was no universal way of accessing those outer caches and controlling their cacheabil-

ity. My proposed solution was to use Memory Object Control State (MOCS) as a

way of accessing the outer caches. I developed a script that could resolve the main

errors that caused cache failures - mainly memory issues, invalid translations, cache

misses and bad surfaces. I executed media tests with my script, validated MOCS

across two validation cycles. By doing effective execution and debugging of tests; the

MOCS unit is now having a pass rate of 96.22% for the second validation cycle. For

the first validation cycle, the unit had a pass rate of 86.96%.

The second scope of work was to enable preemption. Traditionally, the graphics

driver was used to enable preemption. This was done in the User mode, i.e. the calls

(or preemption requests) made by the application had to go through several layers
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of hardware abstraction (OS, Kernel) to reach the hardware and get the task done.

This meant a time delay between when the request for preemption was issued and

when it was serviced/executed.

My proposed way was to use the graphics microcontroller (GuC) itself for scheduling

and preemption of media workloads. This microcontroller is present on the Graphics

Processing Engine (GPE) and any task run by it would talk directly to the hardware,

and finish sooner. There was also a huge plus of using the microcontroller when it

came to power savings - it could run independently in low power mode; even when the

main core was in OFF state. Additionally, it has the authority to schedule workload

on graphics sub-systems directly, without Host intervention. GuC is also a global

system feature.

A set of 10 tests were developed in Ruby, which aimed at preempting two decoder

workloads every time a dedicated timer expired. It was verified that the overheads

reduce significantly when we used GuC to schedule a workload on the hardware. Also,

context switch and execution of the new context took much less time as compared to

when a generic microcontroller was used. So, a process scheduled by GuC finished

much sooner than a process scheduled by the generic microcontroller.

6.2 Future scope

• Coverage analysis of the tests developed.

Media tests are executed on emulation to maximise the number of bugs found

at the pre-silicon stage. However, when silicon arrives, it arrives in a very small

number and multiple teams at Intel want to validate their features. Its usage,

per team and per individual, is limited.

It is, hence, a good practise to run the tests for each unit through a Coverage

Analysis tool and find out what microarchitectural points are being hit (which

registers etc.). That way, if it is found that some tests are hitting the same

registers, we can go ahead and run only one or two of those tests on the silicon.
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• Create and execute tests to plug the gaps identified in coverage analysis.

If it is found out by the Coverage Analysis tool that some intended registers are

not getting hit at all, then additional tests have to be developed that will hit

those registers and complete the system coverage.
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