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Abstract

Wireless networks are characterized by a fixed spectrum assignment policy. With

the advancement of wireless communications, the problem of bandwidth scarcity has

become more prominent. As per Federal Communications Commission (FCC), large

portion of the spectrum lies vacant most of the time and that portion is the licensed

spectrum band; which is utilized by licensed users only. The temporal and geograph-

ical variation in the usage of the assigned spectrum ranges from 15% to 85%. So,

to solve this problem of spectrum under-utilization, FCC allowed secondary users to

utilize the licensed band when it is not in use and named it as Cognitive Radio.

To sense the existence of licensed users or in other words, to utilize the unused spec-

trum, spectrum sensing techniques are used. Energy detection, Matched filter de-

tection and Cyclo-stationary feature detection are the three conventional methods

used for spectrum sensing. Each technique has its own advantages and drawbacks.

Matched filter spectrum sensing technique requires a priori information about each

primary user and a dedicated cognitive radio receiver is required for every primary

user. Cyclostationary feature Detection is computationally complex and requires sig-

nificantly long observation time to extract the features of primary user signal. Energy

detection is the most simplest to implement, but the performance of energy detector

is susceptible to uncertainty in noise power. This report discusses the conventional

energy detection method in case of AWGN channel and Rayleigh fading channel. The

performance is improved by introducing diversity in fading channels. The generalized

energy detection method is discussed where squaring operation of conventional energy

detection is replaced by any positive power constant, which is known as generalized

energy detector. Also, effect of noise uncertainty is studied in this generalized energy

detector. The performance of energy detector degrades significantly under low SNR

circumstances and detection becomes impossible below certain critical values called

SNR Walls. To improve the detection probability under such case, Stochastic Res-

onance (SR) based energy detection approach is used. It significantly reduces the

SNR wall. A novel combination of generalized energy detector and SR phenomenon

vi



is presented here and improved results have been obtained. Mathematical Analysis

has been illustrated for all these cases. Simulation and analytical results have also

been included in this report.
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Chapter 1

Introduction

The need for a flexible and robust wireless communication is becoming more evident

in recent times. Conventionally, the policy of spectrum licensing and utilization lead

to inefficient usage of the available spectrum. The requirement of different technolo-

gies and market demand leads to spectrum scarcity and non uniform utilization of

frequencies.

It has become essential to introduce new licensing policies to enable dynamic way of

utilizing the available spectrum efficiently. One promising solution is the Cognitive

Radio. Cognitive radio is an intelligent wireless communication system that is aware

of its surrounding environment (i.e., outside world) and dynamically adapts the en-

vironment by making changes in certain operating parameters (e.g., transmit-power,

carrier-frequency, and modulation strategy) in real-time.

The limited available spectrum and the inefficiency in the spectrum usage necessitate

use of existing wireless spectrum opportunistically [1]. Dynamic spectrum access is

proposed to solve these current spectrum underutilization problems. Dynamic Spec-

trum Access network exploits NeXt Generation (xG) netwoks that aim to implement

the policy based intelligent radios known as cognitive radios. Cognitive radio tech-

niques provide the capability to use or share the spectrum in an opportunistic manner.

Dynamic spectrum access techniques allow the cognitive radio to operate in the best

1
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available channel. The cognitive radio technology will enable the users to ,

• determine which portions of the spectrum is available and detect the presence

of licensed users when a user operates in a licensed band (spectrum sensing),

• select the best available channel (spectrum management),

• coordinate access to this channel with other users (spectrum sharing), and

• vacate the channel when a licensed user is detected (spectrum mobility).

Among these operations, Spectrum Sensing is the most crucial operation to establish

a Cognitive Radio. Sensing spectrum holes which are also referred to as White Space

and vacant them as licensed user is detected requires binary decision for fast spectrum

sensing.

1.1 Overview of Cognitive Radio

Cognitive Radio is a new paradigm that has been proposed so that the frequency spec-

trum can be efficiently utilized. The formal definition for Cognitive Radio is given as :

Cognitive Radio is a radio for wireless communications in which either a network or

a wireless node changes its transmission or reception parameters based on the inter-

action with the environment to communicate effectively without interfering with the

licensed users. [3]

In Fig. 1.1, the signal strength distribution over a large portion of the wireless

spectrum is shown. The spectrum usage is concentrated on certain portions of the

spectrum while a significant amount of the spectrum remains unutilized [2].

Dynamic spectrum access is proposed to solve these current spectrum inefficiency

problems. DARPAs approach on Dynamic Spectrum Access network, the so-called
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Figure 1.1: Spectrum Utilization

NeXt Generation (xG) program aims to implement the policy based intelligent radios

known as cognitive radios. The key enabling technology of xG networks is the cog-

nitive radio [1]. Cognitive radio provides the capability to use or share the spectrum

in an opportunistic manner. Dynamic spectrum access allows the cognitive radio to

operate in the best available channel.

1.1.1 Evolution of Cognitive Radio

The evolution of cognitive radio has been presented here:
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In 1999, Joseph Mitola coined the term Cognitive Radio for the first time. In 2002, the

Defense Advanced Research Projects Agency (DARPA) funded the NeXt Generation

(DARPA-XG) program whose purpose was to define a policy based spectrum man-

agement framework such the radios can make use of the spectrum holes. This drew

the attention of the Federal Communications Commission (FCC) which then found

the underutilization of the bands based on the research conducted by it. Later the

FCC issued a Notice for Proposed Rule Making (NPRM) , whose main purpose was

to explore the cognitive radio technology to improve spectrum utilization. In 2004,

the Institute of Electrical and Electronic Engineers (IEEE) formed the IEEE 802.22

working group for defining the Wireless Regional Area Network (WRAN) Physical

(PHY) and Medium Access Control (MAC) layer specifications. By end 2005, IEEE

launched the Project 1900 standard task group for next generation radio and spec-

trum management. It was related to giving standard terms and formal definitions

for spectrum management,spectrum utilization, interference and co-existence analysis

and policy architecture, dynamic spectrum access radio systems. In 2006, IEEE or-

ganized the first conference on cognitive radio CROWNCOM so as to bring together

new ideas regarding the cognitive radio from a diverse set of researchers around the

world. By 2008 end, the FCC established rules to allow cognitive devices to operate

in TV White Spaces on a secondary basis. In 2010, FCC released a Memorandum

Opinion and Order that defined the final rules for the use of spectrum holes by un-

licensed wireless users. In July, 2011, the IEEE published IEEE 802.22 (WRAN)

as an official standard.Currently, IEEE is working on the standard for recommended

practice for installation and deployment of 802.22 systems.

1.1.2 Cognitive Radio Features

Cognitive Radio Characteristics:

Reconfigurability: This property of cognitive radios means their ability to modify

their configuration dynamically. Reconfigurability can be realized through the use of
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elements that can dynamically alter the performance parameters of their operation

to improve the Quality of Services. Reconfigurations are software-defined, that is,

they can be accomplished by activating the appropriate software at the transceiver.

Followings are the capabilities of Reconfiguratability:[1]

• Frequency Agility: It is the ability of a radio to change its operating frequency.

This ability is combined with a method to dynamically select the appropriate

operating frequency based on the sensing of signals from other transmitters or

on other method.

• Dynamic Frequency Selection: It is defined as a mechanism that dynamically

detects signals from other radio frequency systems and avoids co- channel op-

eration with those systems.

• Adaptive Modulation/Coding: A cognitive radio could select the appropriate

modulation type for use with a particular transmission system to permit inter-

operability between systems.

• Transmit Power Control: Transmit power control is a feature that enables cog-

nitive radio to dynamically switch between several transmissions power levels

in the data transmission process.

Cognition: The stochastic nature of the environment conditions raises the need for

the second main attribute of cognitive radio systems, namely, cognition. Cognition

refers to the process of knowing through perception, reasoning, knowledge and intu-

ition with a focus on information available from the environment . Thus, Cognitive

capability includes the features of spectrum sensing, spectrum sharing, location iden-

tification, network and service discovery.

Self-management: Each transceiver should be able to do self-adaption to its en-

vironment without the need to be instructed by a central management entity. This
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concept provides significant reduction of system complexity because it does not call

for a centralized management entity. It has the following features:

• Spectrum/Radio Resource Management: To efficiently manage and organize

spectrum holes information among cognitive radios, good spectrum manage-

ment scheme is necessary.

• Mobility and Connection Management: Due to the heterogeneity of Cognitive

Radio Networks (CRNs), routing and topology information is more complex.

Good mobility and connection management can help neighbourhood discovery,

detect available Internet access and support handoffs, which can help cognitive

radios to select route and networks.

• Trust or Security Management: AS CRNs are heterogeneous networks in nature,

various heterogeneities (i.e. wireless access technologies, system or network

operators) introduce lots of security issues. Trust among the users is one of the

requirement for secured operations in CRNs .

1.2 Spectrum Hole

Since most of the spectrum is already assigned, the most important challenge is to

share the licensed spectrum without interfering with the transmission of other licensed

users as illustrated in Fig. 1.2. The cognitive radio enables the usage of temporally

unused spectrum, which is referred to as spectrum hole or white space. If this band

is further used by a licensed user, the cognitive radio moves to another spectrum hole

or stays in the same band, altering its transmission power level or modulation scheme

to avoid interference as shown in Fig. 1.2 [1].

1.3 Cognitive Cycle

The cognitive ability of a cognitive radio allows real time interaction with its environ-

ment to determine appropriate communication parameters and adapt to the dynamic
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Figure 1.2: Spectrum Hole or White Space

environment. The main tasks required for dynamic operation in spectrum are shown

in Fig. 1.3 [1] that is referred to as the cognitive cycle.

The steps of the cognitive cycle as shown in Fig. 1.3 are as follows:

• Spectrum sensing: A cognitive radio continuously monitors the available

spectrum bands, captures their information, and detects the spectrum holes or

white space.

• Spectrum analysis: The characteristics of the spectrum holes that are de-

tected through spectrum sensing are estimated.

• Spectrum decision: A cognitive radio determines the data rate, the trans-
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Figure 1.3: Cognitive Radio

mission mode, and the bandwidth of the transmission. Then, the appropriate

spectrum band is chosen according to the spectrum characteristics and user

requirements.

Spectrum sensing is the most essential requirement for the establishment of cognitive

radio. Spectrum sensing is to be aware of about the spectrum usage and existence

of primary users (PUs) in a geographical area of interest. This awareness can be

obtained by using geolocations and database, by using beacons, or by local spec-

trum sensing at cognitive radios. Once the operating spectrum band is determined,

the communication can be performed over this spectrum band. However, since the

radio environment changes, the cognitive radio should keep track of the changes in
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the radio environment. If the current spectrum band in use becomes occupied, the

spectrum mobility function is performed to provide a seamless communication. Any

environmental change during the transmission such as presence of primary user, user

movement, or variation of traffic can start these adjustments. Different methods are

proposed for identifying the presence of signal transmissions. The most commonly

used methods are energy detection , matched filter detection, cyclostationary feature

detection and cooperative detection.

There are certain Challenges associated with spectrum sensing techniques. One of

the main requirements of cognitive networks is the detection of licensed users in a

very short time. It is very necessary to develop an interference detection model by

effectively measuring the interference temperature. The required SNR for detection

might be very low. Multipath fading and time dispersion of the wireless channel com-

plicate the sensing problem. Multipath fading may cause the signal power to fluctuate

around 20 dB, and the time dispersion in wireless links may turn the coherent detec-

tion unreliable. The noise or interference level may have temporal and geographical

variations which yields the noise power uncertainty issue for detection. For selecting

a sensing technique some tradeoffs should be considered such as accuracy, computa-

tional complexity, sensing duration requirements, network requirements.

1.4 Motivation

Cognitive radio (CR) technique has been proposed to solve the conflicts between

spectrum scarcity and spectrum under utilization. It allows the CR users to share

the spectrum with primary users (PUs) by opportunistic spectrum accessing. The

CR can use the spectrum only when it does not cause interference to primary users.

Therefore, spectrum sensing is the most critical issue of cognitive radio technologyas

it requires to detect the presence of primary users accurately and immediately. In

many wireless applications, it is of great interest to check the presence and avail-
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ability of an active communication link when the transmitted signal is unknown.

There are number of techniques for spectrum sensing like matched filter detection,

cyclostationary feature detection and energy detection. Matched filter maximizes the

received signal to noise ratio (SNR) but it requires a priori knowledge of the Pri-

nary User signal. Cyclostationary feature detection is computationally complex and

requires significantly long observation time to extract the features of the signal to

be detected. In such scenarios, one appropriate choice consists of using an energy

detector which measures the energy in the received waveform over an observation

time interval. Energy Detection is the most common type of spectrum sensing be-

cause of its low computational as well as implementation complexities. It is a more

generic method as the receivers do not need any knowledge of the primary users signal.

This leads to the implementation of energy detectors in wireless communication.

Performance of various energy detectors is found to be susceptible to noise and de-

teriorates under the circumstances of low SNR. Thus, further improvement in the

performance in energy detection is required which leads to improved energy detection

technique. The thesis presents mathematical analysis for implementation of energy

detector in wireless fading channels, improvement in performance by introducing di-

versity, the generalized energy detector, the effect of noise uncertainty which is present

in actual practice and Stochastic Resonance based energy detector as well as reduc-

tion in sample complexity by using generalized energy detection in SR based energy

detection.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 describes various spectrum sensing techniques which is the most essential

task of cognitive radio. It focuses on Transmitter Detection techniques of spectrum



CHAPTER 1 INTRODUCTION 11

sensing. This chapter describes advantages and disadvantages of various techniques.

It also gives significance of performance parameters of detection like Probability of

detection and Probability of false alarm. It discusses challenges of spectrum sensing

in cognitive radio in detail.

Chapter 3 focuses on energy detection technique as it is simple to implement and

presents the mathematical analysis to evaluate the performance criteria over AWGN

channel, wireless fading channel and by incorporating diversity in wireless fading

channel. It also represents analytical and simulation results showing Receiver operat-

ing characteristics (ROC) curves for the above mentioned cases. It also explains the

concept of Improved Energy Detection technique which is also known as Generalized

Energy Detection to further improve the performance in the case of low SNR. It also

shows the effect of adding noise uncertainty in the above case. Analytical and simu-

lation results are presented in this chapter.

Chapter 4 represents a study of a novel spectrum sensing technique in cognitive ra-

dio based on Stochastic Resonance phenomenon. It explains the SR phenomenon

in detail. The distinguished performance in comparison with other techniques is

represented in terms of SNR wall. This chapter introduces a new energy detection

technique based on the combination of generalized energy detector explained in chap-

ter 3 and SR based energy detector. It claims great reduction in sample complexity

which is one of the limiting factors of energy detection.

Chapter 5 includes the conclusion on the basis of work done and scope for further

studies to mitigate challenges in energy detection technique.



Chapter 2

Spectrum Sensing Techniques

An important requirement of the xG network is to sense the spectrum holes. A cog-

nitive radio is designed to detect and adapt the changes in its surrounding. The

spectrum sensing function enables the cognitive radio to adapt to its environment by

detecting spectrum holes. The most efficient way of detecting spectrum holes is to de-

tect the primary users (PUs) that are receiving data within the communication range

of an secondory user. However, in practice it is difficult for a cognitive radio to have a

direct measurement of a channel between a primary receiver (user) and a transmitter.

Thus, the most recent work focuses on primary transmitter detection based on local

observations of xG users. Generally, the spectrum sensing techniques can be classified

as transmitter detection, cooperative detection, and interference-based detection, as

shown in Fig. 2.1 [1].

2.1 Transmitter detection

The cognitive radio should distinguish between used and unused spectrum bands.

Thus, the cognitive radio should have capability to determine if a signal from pri-

mary transmitter is locally present in a certain spectrum. Transmitter detection

approach is based on the detection of the weak signal from a primary transmitter

through the local observations of xG users. Basic hypothesis model for transmitter:

12
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Figure 2.1: Spectrum Sensing techniques

x(t) =

 n(t), H0

h.s(t) + n(t), H1

Where

H0: Primary user is absent.

H1: Primary user is present.

The goal of spectrum sensing is to decide between the following two hypotheses.

There are two basic hypothesis testing methods in spectrum sensing: the Neyman-
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Pearson (NP) test and the Bayes test. In an NP test, the objective is to maximize

the detection probability Pd given the constraint of Pf < α, where α is the maximum

false alarm probability. In a Bayes test, the objective is to minimize the expected

cost called the Bayes Risk. the Bayes risk to be minimized is the sum of all possible

costs weighted by the probabilities of two incorrect detection cases (false alarm and

miss detection) and two correct detection cases.

Performance Parameters are:

• Probability of detection (Pd): Determines the level of interference-protection

provided to the primary licensed user.

• Probability of false-alarm (Pf): The percentage of white spaces falsely de-

clared occupied (i.e. the percentage of missed opportunities).

• Probability of miss detection (Pm): Pm=1-Pd

To achieve the goal of CR, it is a fundamental requirement that the cognitive user

performs spectrum sensing to detect the presence of Primary User (PU) signal. The

spectrum sensing is often considered as a detection issue where the CUs have to scan

a vast range of frequencies to observe available spectrum white spaces or holes that

are temporarily and spatially out of service.

2.1.1 Challenges of Spectrum Sensing

Hardware Requirements:

The requirements of Spectrum sensing in cognitive radio applications are high sam-

pling frequency, high resolution analog to digital converters (ADCs), and high speed

signal processors. It requires complex signal processing algorithms for ex., noise vari-

ance estimation,variable information generation, channel estimation as well as for

improved handoff, power control, and channel allocation techniques to implement on



CHAPTER 2 SPECTRUM SENSING TECHNIQUES 15

hardware. It is easier to estimate the noise/interference as receivers are tuned to

receive signals that are transmitted over a desired bandwidth. Further, receivers are

able to process the narrowband baseband signals with reasonably low complexity and

low power processors. But, in cognitive radio, receivers are required to process trans-

mission over a very wide band to search for any opportunity. Hence, cognitive radio

should be able to capture and analyze a quite larger band for identifying spectrum

holes. The large operating bandwidths impose additional requirements on the radio

frequencies (RF) components such as antennas, power amplifiers etc. Also, high speed

signal processing units like DSPs, FPGAs are needed for performing computationally

demanding signal processing tasks at relatively small time delay. There are very few

hardware and software platforms are available for the cognitive radio. GNU Radio,

Universal Software Radio Peripheral (USRP) and Shared Spectrums XG Radio are

some.

Hidden Primary Terminal Problem:

It can be caused by many factors including severe multipath fading or shadowing

observed by secondary users while scanning for primary users transmissions. Fig.2.2

[1] shows the problem of hidden node where the circles show the operating ranges of

the primary user and the cognitive radio terminal. Here, cognitive radio device causes

unwanted interference to the primary user (receiver) as the primary transmitters sig-

nal could not be detected because of the locations of devices. Cooperative sensing is

used to solve hidden primary user problem.

Detecting Spread Spectrum Primary Users:

There are two types of technologies: Fixed Frequency and Spread Spectrum. The two

main spread spectrum technologies are frequency hoping spread-spectrum (FHSS) and

direct sequence spread spectrum (DSSS). Fixed frequency devices operate at a single

frequency or channel. FHSS devices may change their operational frequencies dynam-
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Figure 2.2: Hidden Terminal problem

ically towards multiple narrowband channels. This is called hopping.It is performed

as per the sequence that is known by both transmitter and receiver. DSSS devices are

similar to FHSS devices, but, they use a single band to spread their energy. Primary

users which are using spread spectrum signaling are difficult to detect as the power

of the PU is distributed over a wide frequency range.

Sensing Time (Duration) and Frequency:

Whenever primary user is detected, secondary user has to vacate the frequency band

in which it is operating. In order to prevent interference to primary users, cognitive

radio should be able to identify the presence of primary users as fast as possible and

should vacate the band immediately. Hence, sensing methods should be such that it

can identify the presence of primary users within a certain short duration. This re-

quirement imposes a limitation on the performance of spectrum sensing algorithm and

generates a challenge for the design of cognitive radio. There is a trade off between

selection of sensing parameters: the speed (sensing time) and reliability of sensing.
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Sensing frequency, i.e. rate at which cognitive radio should perform spectrum sensing,

is one of the design parameter which should be chosen carefully. The optimum value

of sensing frequency depends on the capabilities of cognitive radio and the temporal

characteristics of primary users in that network. In addition to sensing frequency, the

channel detection time, channel move time and other temporal parameters are also

defined in the standard.

Quick detection:

It is a very crucial challenge, when the conditions are more dynamic. The chal-

lenge is to detect the beginning of a primary users transmission as quickly as possible

after it happens. Similar issues with unknown parameters also occur in this detection

problem.

Security:

In cognitive radio, a malicious user can modify its air interface to mimic a primary

user. Hence, it can mislead the CR. Such a behavior or attack is known as primary

user emulation (PUE) attack. Its harmful effects on the cognitive radio network are

investigated. A more challenging problem is to develop effective countermeasures

once an attack is identified. Public key encryption based primary user identication

can be used to prevent secondary users mimicking as primary users. Legitimate pri-

mary users are required to transmit an encrypted value (signature) along with their

transmissions which is generated using a private key. This signature is, then, used

for validating the primary user. This method, however, can only be used with digital

modulations. Furthermore, secondary users should have the capability to synchronize

and demodulate primary users signal. [5]
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2.1.2 Matched Filter Detection

When the information of the primary user signal is known to the secondary user, the

optimal detector in stationary Gaussian noise is the matched filter since it maximizes

the received signal-to-noise ratio (SNR).

The main advantage of the matched filter is that it requires less time to obtain high

processing gain due to coherency. It requires a priori knowledge of the primary user

signal such as the modulation type and order, the pulse shape, and the packet format.

Hence, if this information is not accurate, then the matched filter performs poorly.

However, since most wireless network systems have pilot, preambles, synchronization

word or spreading codes, these can be used for the coherent detection. Block diagram

of Matched Filter Detection is given in Fig.2.3 [32].

Figure 2.3: Block Diagram of Matched Filter Detection

Matched filter is the optimum detector of a known signal in the presence of Gaus-

sian noise. It is the linear filter that maximizes the output signal-to-noise ratio (SNR).

The matched filter requires explicit knowledge of the transmitted signal and the noise.
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Hence, the usability of the matched filter is limited to cases where explicit informa-

tion about the waveform such as pilot signals or preambles is known. In addition, the

performance may severely deteriorate with synchronization errors.

Advantages: Matched filter detection needs less detection time. When the informa-

tion of the primary user signal is known to the cognitive radio user, matched filter

detection is optimal detection in stationary gaussian noise.

Disadvantages: Matched filter detection requires a priori knowledge of every primary

signal. If the information is not accurate, MF performs poorly. Also the most signifi-

cant disadvantage of MF is that a CR would need a dedicated receiver for every type

of primary user.

2.1.3 Cyclostationary Feature Detector

Another detection method is the cyclostationary feature detection. Modulated sig-

nals are in general associated with sine wave carriers, pulse trains, hopping sequences,

repeating spreading or cyclic prefixes, which result in built-in periodicity. These

modulated signals are characterized as cyclostationarity since their mean and auto-

correlation exhibit periodicity. These features are detected by analyzing the spectral

correlation function. The purpose to obtain the spectral correlation function is that

it differentiates the noise energy from modulated signal energy, because the noise is a

wide-sense stationary signal which has no correlation, while modulated signals have

cyclostationary characteristics with spectral correlation due to the embedded redun-

dancy of signal periodicity. The block diagram is shown in Fig. 2.4 [32]. Therefore,

a cyclostationary feature detector can perform well in discriminating against noise

due to its robustness to the uncertainty in noise power. The main drawback is that

computationally complex and requires significantly long observation time. Distinct

features of the received signal are extracted using cyclic spectral analysis and repre-

sented by both spectral coherent function and spectral correlation density function.
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Figure 2.4: Block Diagram of Cyclostationary Feature Detection

It exploits the periodicity in the received primary signal to identify the presence of

primary users (PU). The periodicity is commonly embedded in sinusoidal carriers,

pulse trains, spreading code, hopping sequences or cyclic prefixes of the primary sig-

nals. Due to the periodicity, these cyclostationary signals exhibit the features of

periodic statistics and spectral correlation, which is not found in stationary noise and

interference.

Thus, cyclostationary feature detection is robust to noise uncertainties and performs

better in low SNR regions. Although it requires a priori knowledge of the signal

characteristics, cyclostationary feature detection is capable of distinguishing the CR

transmissions from various types of PU signals. This eliminates the synchronization

requirement of energy detection in cooperative sensing. Moreover, CR users may not

be required to keep silent during cooperative sensing and thus improving the over-

all CR throughput. This method has its own shortfalls like its high computational

complexity and long sensing time. Due to these issues, this detection method is less

common than energy detection in cooperative sensing.



CHAPTER 2 SPECTRUM SENSING TECHNIQUES 21

2.1.4 Energy Detector

Energy Detector simply measures the energy in the received waveform over an ob-

servation time window. Energy Detection is the most common way of spectrum

sensing because of its low computational and implementation complexities. It is a

more generic method as the receivers do not need any knowledge of the primary users

signal. Urkowitz [7] has derived both the probability of detection (Pd) and the prob-

ability of false alarm (Pf ). This energy detection problem has been revisited recently

by Kostylev [8] for signals operating over a variety of fading channels.

Figure 2.5: Block Diagram of Energy Detection

The input band pass filter selects the center frequency fc , and bandwidth of interest,

W. This filter is followed by a squaring device to measure the received energy and

an integrator which determines the observation interval, T. Finally, output of the in-

tegrator, Y, is compared with a threshold,λ to decide whether signal is present or not.



CHAPTER 2 SPECTRUM SENSING TECHNIQUES 22

2.2 Literature Review

I. F. Akyildiz et al.,2006 [1] presented a survey on xG networks which are also known

as Cognitive Radio networks to solve wireless network problems resulting from the

limited available spectrum and the inefficiency in the usage of spectrum by exploiting

the current wireless spectrum opportunistically. xG networks, which are equipped

with the inbuilt capabilities of the cognitive radio, will provide an ultimate spectrum-

aware communication paradigm in wireless communications. In this survey, intrinsic

properties and current research challenges of the xG networks are presented. They

have also given overview and comparison of various spectrum sensing techniques.

A survey of spectrum sensing methodologies for cognitive radio is presented by Yucek

and Arselan, 2009 [5]. Various aspects of spectrum sensing problem are studied from a

cognitive radio perspective and multi-dimensional spectrum sensing concept is intro-

duced. Challenges associated with spectrum sensing are given and enabling spectrum

sensing methods are reviewed.The paper also explains the cooperative sensing con-

cept and its various forms.

Urkowitz, 1967 [7] has discussed the detection of a deterministic signal of unknown

structure in the presence of band-limited Gaussian noise. Urkowitz derived both the

probability of detection (Pd) and the probability of false alarm (Pf ).

This energy detection problem has been revisited recently by Kostylev, 2002 [8] for

signals operating over a variety of fading channels. In this paper, signal with random

(Rayleigh, Rice, Nakagami, and other) amplitude is considered. For such amplitude

a distribution of a decision statistic of an energy detector is retrieved and expressions

for a detection probability are obtained.

F. F. Digham et al., 2003 and 2007 [9], [10] present another look at the problem

of energy detection of unknown signals over different fading channels. The analysis
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has been started with the no diversity and presents alternative closed form equa-

tions for the probability of detection (Pd). The system performance when different

diversity schemes are employed is analyzed. Also, receiver operating characteristic

(ROC) curves to compare the performance of equal gain combining (EGC), selection

combining (SC), and switch and stay combining (SSC) are presented. For example,

EGC diversity introduces a gain of two orders of magnitude from the probability of

miss perspective compared to the no diversity case while both SC and SSC introduce

a gain of about one order of magnitude.

Y. Chen et al., 2009 [15] proposed new and improved energy detector for random

signals in Gaussian noise by replacing the squaring operation of the signal ampli-

tude in the conventional energy detector with an arbitrary positive power operation.

Numerical results show that the best power operation depends on the probability

of false alarm, the probability of detection, the average signal-to-noise ratio or the

sample size. By choosing the optimum power operation according to different system

settings, new energy detectors with better detection performances can be derived.

These results give useful guidance on how to improve the performances of current

wireless systems using the energy detector.

Performance of energy detector is susceptible to noise uncertainty. Sanket Kamalakar

and Adrish Banerjee , 2013 [16] presents study of generalized energy detector (GED),

obtained by replacing squaring operation of amplitude of the received signal in con-

ventional energy detector (CED) with an arbitrary positive power operation p under

noise uncertainty. For the worst case of noise uncertainty, SNR wall is not dependent

on the value of p. The detection performance of GED for different values of p under

uniformly distributed noise uncertainty is investigated and it has been shown that

CED is the best ED under noise uncertainty. When noise uncertainty is greater than

0.5 dB, the performance gap between different EDs almost vanishes and the detection

performances of all EDs almost become the same for all values of p.
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Detection performance of energy detector (ED) deteriorates in low signal-to-noise ra-

tio (SNR) conditions, specifically for SNR<-10 dB. Di He et al., 2010 [20] proposed

a novel spectrum-sensing method for cognitive radio (CR) based on stochastic res-

onance (SR). The spectral power of primary users (PUs) can be amplied, and the

signal-to-noise ratio (SNR) of a received signal can be increased using SR. This en-

sures that the detection probability of the proposed approach is higher than that

of the traditional energy detector. Performance analyses and computer simulation

results indicates that the effectiveness of the proposed SR-based spectrum-sensing

approach, particularly under low SNR circumstances, is better than that of the tradi-

tional energy-detection method. This approach is helpful in enhancing the spectrum

utility in CR networks basically with acceptable computational complexity.

F. Chapeau-Blondeau, 2000 [21], [25] explains Stochastic Resonance phenomenon,

which is a nonlinear effect wherein the noise turns out to be benecial to the trans-

mission or detection of an information-carrying signal. Stochastic resonance can take

place under various forms, according to the types considered for the noise, for the

information-carrying signal, for the nonlinear system realizing the transmission or de-

tection, and for the quantitative measure of performance receiving improvement from

the noise. S.M. Kay, Pramod Varshney et al., 2007 [22] also presented the mathemat-

ical framework to analyze the stochastic resonance (SR) effect in binary hypothesis

testing problems. The mechanism for SR noise enhanced signal detection is explored.

The detection performance of a noise modified detector is derived in terms of the

probability of detection Pd and the probability of false alarm Pf. Bruce McNamara

and Kurt Wiesenfeld, 1989 [26] introduced a general theory for stochastic resonance

in bistable systems subject to both periodic and random forcing. The theory has been

applied to the two important cases of the double-well and two-state systems and it

has been shown that signal power reaches a maximum when there is a matching of

the signal frequency and the rate of hopping between the two states, which in turn is

a function of the noise strength, which leads to an increase in SNR.
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Di He, 2010 [29] has demonstrated that there is a significant decrease in SNR wall by

introducing the received signal into the chaotic stochastic resonance (CSR) system.

According to the properties of linear response theory and optimum stochastic reso-

nance, the SNR of the received signal can be increased, thus will break the SNR wall

and decrease the sample complexity under the same false alarm rate and detection

probability requirements.

2.3 Objectives

Primary objectives of this thesis are:

• To study detailed mathematical analysis of energy detector and simulate the

performance curve (ROC) for AWGN channel and wireless fading channel (Rayleigh

fading channel).

• To obtain improved performance of energy detection by incorporating diversity

in wireless fading channel.

• To show that the performance of energy detector can be further improved by

Improved Energy Detector (Generalized Energy Detector).

• To study and analyze the impact of noise uncertainty in case of Generalized

Energy detector.

• To study the Stochastic Resonance phenomenon and obtain the improved detec-

tion probability under low SNR circumstances by performing energy detection

on the signal received through SR system.

• To propose a novel spectrum sensing technique that can mitigate the important

challenges of spectrum sensing like SNR wall and sample complexity while ob-

taining improved detection probability and to validate the effectiveness of this

method by simulation results.
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2.4 Summary

Initially, introduction and classification of various spectrum sensing techniques are

given. In section 2.1, various transmitter detection (non cooperative detection) tech-

niques are briefly discussed. Also, various challenges of spectrum sensing are discussed

in detail, which can be motivation factor for people interested in cognitive radio. Lit-

erature review is given in section 2.2. Finally, the objectives of the thesis are discussed

in section 2.3.



Chapter 3

Performance Analysis of Energy

Detector

Energy Detection is the most simplest method of spectrum sensing because of its

low computational and implementation complexities. It is a more generic method

as the receivers do not need any knowledge of the primary users signal. The signal

is detected by comparing the output of the energy detector with a threshold which

depends on the noise floor. The important challenge with the energy detector based

sensing is the selection of the threshold for detecting primary users. The other chal-

lenges include inability to differentiate interference from primary users and noise and

poor performance under low signal-to-noise ratio values.

Probability of detection (Pd) and Probability of false alarm (Pf) are the important

factors for energy based detection which gives the information of the availability of

the spectrum.

27
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3.1 System Model :

The received signal r(t) takes the form [9],

rk = h.sk + nk k=1,2,,N

where h=0 or 1 under hypothesis H0 or H1, respectively. s is primary signal, n

is modeled as a zero-mean white Gaussian random process. The received signal is

first pre-filtered by an ideal band pass filter. The output of the filter is then squared

and integrated over a time interval T to finally produce the measure of the energy of

the received wave. The output of the integrator denoted by, Y, will act as the test

statistic to test the two hypotheses H0 and H1.

When primary signal is not present, only noise is received through channel. So,

test statistics can be expressed as

Y =
N∑
k=1

n2
i (3.1)

Y can be viewed as the sum of the squares of N standard Gaussian variates with zero

mean and unit variance. Therefore, Y follows a central chi-square distribution with

N degrees of freedom.

When signal S is present, we can replace each ni by ni + si. The decision statistic Y

will have a noncentral chi-square distribution with N degrees of freedom and a non

centrality parameter 2γ.

Thus, decision statistics can be represented as,

Y ∼

 X2
N , H0

X2
N(2γ), H1

(3.2)
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The probability density function (PDF) of Y can then be written as [13],

fY (y) =


1

2N/2Γ(N/2)
yN/2−1e−y/2, H0

1
2
( y

2γ
)
N/2−1

2 e−
2γ+y

2 IN/2−1(
√

2γy), H1

(3.3)

where γ = Nγa. γa is SNR of one sample of the received signal and γ is the total

SNR of the received signal. Γ(.) is the Gamma function and I(.) is the modified

Bessel function of the first kind [13].

3.2 Detection and False Alarm probabilities over

AWGN channels

The probability of detection and false alarm can be generally computed by

Pd = P (Y > λ/H1) (3.4)

Probability of detection is obtained when hypothesis H1istrue, i.e., thesignalispresentandtheteststatisticsisgreaterthanthresholdλ.

Pf = P (Y > λ/H0) (3.5)

Probability of false alarm is obtained when hypothesis H0 is true, i.e., the signal is

not present and the test statistics is greater than threshold λ.

Probabily of False Alarm given by,

Pf =

∫ ∞
λ

f(y/H0)dy (3.6)
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Subtituting pdf of Y under H0 from eq. (3.3),

Pf =
1

2N/2Γ(u)

∫ ∞
λ

yN/2−1 exp(−y/2)dy (3.7)

This integration can be transformed into incomplete Gamma function [13].

Γ(a, x) =

∫ ∞
x

exp(−t)ta−1dt (3.8)

Using this,

Γ(N/2,
λ

2
) =

∫ ∞
λ
2

exp(−y)yN/2−1dy (3.9)

Dividing and multiplying RHS of the eq. (3.7) by 2N/2−1,

Pf =
2N/2−1

2N/2−1Γ (N/2)

∫ ∞
λ

e−y/2 (y/2)N/2−1 dy (3.10)

Let y/2=x, dy=2dx and accordingly changing the limits,

Pf =
Γ(N/2, λ/2)

Γ(N/2)
(3.11)

Now, Probability of detection Pd,

Pd =

∫ ∞
λ

fy (y/H1) dy (3.12)
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Substituting pdf of Y under H1 from eq. (3.3),

Pd =

∫ ∞
λ

1

2
(y/2γ)

N/2−1
2 e−

2γ+y
2 IN/2−1

(√
2γy
)
dy (3.13)

There is no closed form expression for this integral. CDF can be expressed in

terms of the generalized Marcum Q-function which is given as [13],

Qm(a, b) =

∫ ∞
b

(
x

a

)m−1

e−
x2 + a2

2
Im−1(ax)dx (3.14)

Now,

Pd =

∫ ∞
λ

1

2
(y/2γ)

N/2−1
2 e−

2γ+y
2 IN/2−1

(√
2γy
)
dy (3.15)

Let y = x2 , and dy=2xdx, a2 = 2γ and m=N/2,

Pd =

∫ ∞
√
λ

1

2

(
x

a

)m−1

e−
x2 + a2

2
Im−1(ax)2xdx (3.16)

Pd = Qm(a, b) = QN/2(
√

2γ,
√
λ) (3.17)

3.2.1 Simulation for AWGN channel

For simulation to obtain ROC (Pd vs. Pf), Monte Carlo simulation is used. Define

no. of Monte carlo simulations, say M= 5000, 10000 etc. Define Range of Pf . Define

SNR of received signal. (γ=-2 dB) Define no. of samples of received signal (N=10).

For AWGN channel, we take h=1 i.e. channel gain=1. Generate a BPSK signal s
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having total N no. of samples. Then, generate AWGN signal n with zero mean and

unit variance. Received signal is rk =
√
γa.sk + nk. Now, apply the received signal r

to squaring device and do summation of all samples (i.e. square of received signal).

This is called Test Statistics. Detection Threshold can be calculated for each specific

value of Pf. Then compare Test Statistics with detection Threshold. If Test Statistics

is greater than Detection Threshold , Detection count can be incremented (initially

declare detection count is zero).

The entire process have been repeated a large number of times (5000 times) and then

the average value of Pd and Pm have been estimated.
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Figure 3.1: ROC for AWGN Channel: SNR=-2 dB, N=103

Pf versus SNR curve for AWGN channel:

The decision threshold setting procedure is very crucial as it directly affects the

performance of the detector. The threshold should be chosen such that the probability

of detection is maximized and the probability of false alarm is minimized. Achieving

both these criteria cannot be realized in practice. Also, this requires the knowledge

of signal and noise powers. The noise power can be estimated while the estimation

of signal power is difficult.Thus the threshold is normally selected to satisfy a fixed

Pf, which depends only on noise power. Thus the performance improvement of any

detection method should not be achieved at the greater expense of degradation in the

false alarm. However, it can be verified from the Pf versus SNR curves presented Fig
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3.2. This curve is obtained for N=50. For different values of number of samples, the

curve may vary.

Figure 3.2: Pf versus SNR curve for AWGN channel, N=50

3.3 Average Detection Probabilities over Rayleigh

Fading channel

3.3.1 Significance of Fading:

Fading is the significant effect in any wireless communication design and is impor-

tant to predict about it. There are two different types of fading: small scale fading

and large scale shadowing. Small scale fading is often handled in a wireless system
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with diversity schemes, redundancy, or even retransmit. Large scale shadowing on

the other hand is very dependent on location with respect to obstacles, and cannot

always be fixed; its modeling consists in predicting the likelihood of outage.

Small Scale Fading: this effect of multipath causes deep fades within small distances

and is referred to as small-scale fading. Another important yet different cause of small

scale fading is that of small frequency variations such as Doppler effect.

Multipath Fading: Multipath fading is significant for both mobile and fixed wireless

systems. Intuitively that type of fading varies with surrounding scatterers which re-

flect differently the wavefront between transmitter and receiver. In reality, it is very

important to quantify this aspect of the propagation environment, and to draw out

the standard to perform well in such kind of environment.

Doppler Spread: Another aspect of wireless communication, different from the above,

is the concept of how fast things are changing in the wireless channel. In the time

domain, that aspect is referred to as time dispersion and is measured by coherence

time; the coherence time describes how fast the wireless channel is changing. In the

frequency domain the effect is best described by the Doppler spread: it describes how

fast transmitter, receiver, and scatterers in-between are moving; the faster they are

moving, the faster the wireless channel changes, and the more Doppler shift will be

present.

Small-scale fading is caused by different reflections of the signal (delayed, frequency

shifted, constructive or destructive) and is usually modeled by a random variable with

a certain probability distribution, which may be given as Rayleigh fading, Nakagami

fading, Rician fading etc.
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3.3.2 Rayleigh Fading Channel:

If the signal amplitude follows a Rayleigh distribution, then the SNR γ follows an

exponential PDF given by

f(γ) =
1

γ̄
e−
(
γ

γ̄

)
(3.18)

Where γ̄ is the average SNR. The probability of detection for Rayleigh channel is

obtained by averaging its pdf over probability of detection over AWGN channel.

Pd,Ray =

∫ ∞
λ

QN/2(
√

2γ,
√
λ)

1

γ̄
e−(

γ

γ̄
)dγ (3.19)

Substituting
√
γ = x and dγ = 2xdx and using [11],

P̄d,Ray = e−
λ

2

N/2−2∑
k=0

1

k!
(λ/2)k +

(
1 + γ̄

γ̄

)N/2−1(
e−

λ

2(1 + γ̄)
− (3.20)

e−
λ

2

N/2−2∑
k=0

1

k!

(
λγ̄

2(1 + γ̄)

)
k

)

3.3.3 Simulation for Rayleigh Fading channel:

For simulation to obtain ROC (Pd vs. Pf) , Monte Carlo simulation is used. Define

no. of Monte carlo simulations, say M= 5000, 10000 etc. Define Range of Pf . Define

SNR of received signal. (γ=-2 dB) Define no. of samples of received signal (N=10).

Channel h ∼ CN(0, 1) is Rayleigh fading channel. Generate a BPSK signal is having

total N no. of samples. Received signal is rk =
√
γa.sk +nk. Now, apply the received

signal r to squaring device and do summation of all samples (i.e. square of received
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signal). This is called Test Statistics. Detection Threshold can be calculated for each

specific value of Pf. Then compare Test Statistics with detection Threshold. If Test

Statistics is greater than Detection Threshold , Detection count can be incremented

(initially declare detection count is zero).

The entire process have been repeated a large number of times (5000 times) and then

the average value of Pd and Pm have been estimated.

Figure 3.3: ROC for Rayleigh fading Channel: N=10
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Figure 3.4: Analytical and Simulation Result for ROC of Rayleigh fading Channel:
N=10
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Pf versus SNR curve for Rayleigh channel:

The importance of the Pf versus SNR curve is mentioned in section 3.2. The same

curve has been obtained for Rayleigh fading channel also in Fig 3.5.

Figure 3.5: Pf versus SNR curve for Rayleigh fading Channel: N=50



CHAPTER 3 PERFORMANCE ANALYSIS OF ENERGY DETECTOR 40

3.4 Average Detection Probability with Diversity

Reception

3.4.1 Significance of Diversity in Wireless Fading Channel:

Diversity is a powerful technique to combat the wireless fading impairment. Diversity

refers to transmitting and/or receiving the same information via different indepen-

dent ways. In such a system, multiple copies of the same information signal are being

transmitted to the receiver over two or more real or virtual communication channels.

Thus the basic idea of diversity is repetition or redundancy of information. There are

various diversity schemes like time diversity, frequency diversity, space diversity etc.

Diversity Combining Techniques:

Equal Gain Combining (EGC): In Equal Gain Combining (EGC), all the received

signals simply added together at the receiver.

Selection Combining (SC): From the number of antennas, the branch that receives

the signal with the largest signal-to-noise ratio is selected.

Switch and Stay Combining (SSC): Stay with the signal branch until the envelop

drops below a predefined threshold. Only one receiver is needed.

Probability of Detection can be improved when different diversity schemes like Equal

gain Combining (EGC), Selection Combining (SC) and Switch and Stay Combining

(SSC) are employed. For simplicity, it is considered that the diversity paths are

independent and identically distributed (IID) and are subjected to Rayleigh fading.

Here,EGC scheme has been considered.
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3.4.2 Equal Gain Combining (EGC):

The output SNR of the EGC combiner is the sum of the SNRs on all branches, i.e.

γt =
L∑
l=1

γl

where L is the number of diversity branches.

Adding L IID noncentral χ2 variates with N degrees of freedom and non-centrality

parameter 2γl each results in another noncentral χ2 variate with LN degrees of free-

dom and non-centrality parameter
∑L

l=1 γl .Hence, the Pd at the EGC output for

AWGN channels can be evaluated as,[9]

Pd,EGC = QLN/2(
√

2γt,
√
λ) (3.21)

The PDF of γt for IID Rayleigh branches is known to be given by,

f(γt) =
1

(L− 1)!γL
γL−1
t e−

(
γt
γ

)
(3.22)

The average Pd for the EGC diversity scheme can be obtained by averaging this pdf

over PdEGC . This probabilty of detection is similar to probability of detection for

Nakagami channel, which is given by,

Pd = α[G1 + β

N/2−1∑
n=1

(λ/2)n

2(n!)
1F1(L;n+ 1;

λ

2

γ

L+ γ
)] (3.23)

Where 1F1(.; .; .) is the confluent hypergeometric function,
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α =
1

Γ(L)2L−1

(
L

γ

)L
(3.24)

β = Γ(L)

(
2γ

L+ γ

)L
e−(λ/2) (3.25)

and

G1 =
2L−1(L− 1)!

(L/γ)L
γ

L+ γ
e−
λ

2

L

L+ γ

[(
1 +

L

γ

)(
L

L+ γ

)L−1

× A
]

(3.26)

A = Lm−1

(
− λ

2

γ

L+ γ

)
+

L−2∑
n=0

(
L

L+ γ
)nLn

(
− λ

2

γ

L+ γ

)
(3.27)

3.4.3 Simulation for Diversity reception

Generate two branches of diversity reception by generating two received signals which

are independent of each other. i.e., r1 and r2. The received signal is addition of two

signals generated. The SNR will be total of two branches. Now, apply the received

signal r to squaring device and do summation of all samples (i.e. square of received

signal). This is called Test Statistics. Detection Threshold can be calculated for each

specific value of Pf . Then compare Test Statistics with detection Threshold. If Test

Statistics is greater than Detection Threshold , Detection count can be incremented

(initially declare detection count is zero).

The entire process have been repeated a large number of times (5000 times) and then

the average value of Pd and Pm have been estimated.
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Figure 3.6: ROC for Rayleigh fading Channel with Diversity: N=5000

The curve obtained in Fig 3.7 indicates that the performance of energy detection in

terms of Pf is highly improve with diversity reception.
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Figure 3.7: Pf versus SNR curve for Rayleigh fading Channel: N=50

3.5 Improved Energy detector

Energy detection is a popular spectrum sensing technique. But detection performance

of energy detector (ED) deteriorates in low signal-to-noise ratio (SNR) conditions and

under noise uncertainty.

Conventional energy detector (CED) can be generalized by replacing squaring opera-

tion of received signal amplitude by an arbitrary positive power operation constant p.

This modified ED is known as generalized energy detector (GED). i.e., CED becomes

a special case of GED with p = 2. [15],[16]
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In conventional energy detector (CED), the received signal samples are first squared,

then summed over the number of samples collected and then compared with a pre-

determined threshold to take decision regarding presence or absence of Primary user

(PU). The test statistic TCED for conventional energy detector is given as

TCED =
1

N

N∑
n=1

|y(n)|2 (3.28)

Where N is the number of samples.

We can transform conventional energy detector to generalized energy detector by

replacing squaring operation by an arbitrary positive operation p. Then the test

statistic for GED is given as

TGED =
1

N

N∑
n=1

|y(n)|p (3.29)

where p > 0 is an arbitrary constant. It can be seen that CED is a special case

of GED with p = 2. For large N and thus invoking central limit theorem (CLT),

Probabilty of Detection and Probabilty of False Alarm can be expressed as [16]:

Pd = Pr(TGED > T | H1) = Q

(
T − µ1

σ1/
√
N

)
(3.30)
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Pf = Pr(TGED > T | H0) = Q

(
T − µ0

σ0/
√
N

)
(3.31)

Where,

Q(t) =
1√
2π

∫ ∞
t

e−
x2

2
dx (3.32)

and T is the predetermined threshold which can be obtained by fixing probability

of false alarm, µ1 and µ0 are means of TGED under H1 and H0 respectively, and σ2
1

and σ2
0 are variances of TGED under H1 and H0 respectively, which can be given as

[16] and as given in [13, eq. 3.462.9]:,

µ0 =
2p/2√
π

Γ

(
p+ 1

2

)
σp (3.33)

σ2
0 =

2p√
π

[
Γ

(
2p+ 1

2

)
− 1√

π
Γ2

(
p+ 1

2

)]
σ2p (3.34)

µ1 =
2p/2(1 + γ)p/2√

π
Γ

(
p+ 1

2

)
σp (3.35)

σ2
1 =

2p(1 + γ)p√
π

[
Γ

(
2p+ 1

2

)
− 1√

π
Γ2

(
p+ 1

2

)]
σ2p (3.36)

where γ is average received signal-to-noise ratio.



CHAPTER 3 PERFORMANCE ANALYSIS OF ENERGY DETECTOR 47

Figure 3.8: ROC for different p values: N=1000

However, it can be shown that the best power operation depends on the proba-

bility of false alarm, the probability of detection, the average signal-to-noise ratio or

the sample size [15].
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3.6 Noise Uncertainty Model for Generalized En-

ergy Detector

3.6.1 Introduction of Noise Uncertainty

Probability of detection and probability of false alarm depend on the threshold T and

noise variance σ2 , and to set the threshold one needs exact knowledge of noise power.

In general it is assumed that noise power is known a priori. But in practical scenario

this is not the case. Variance/power of white noise is the only parameter on which

noise distribution is dependent. In practice there exists noise uncertainty since noise

power may change with time and location and is not known exactly. The presence

of noise uncertainty makes it very difcult to obtain exact noise power at a particular

time and location [18].

In practice, the average noise power is known. Let the average noise power be σ̂2
ω. At

a xed time and location, let the actual noise power be σ2
ω which may be different from

than that of the average noise power σ̂2
ω , which gives rise to the noise uncertainty.

So we can dene the noise uncertainty factor as ,

β =
σ̂2
ω

σ2
ω

(3.37)

Let the upper bound on noise uncertainty factor in dB be L which is dened as

[16], where L = 10Log10β.

Assume that noise uncertainty factorβ in dB is uniformly distributed in the range

[-L, L].

Let kσ̂2
ω be the threshold for GED, where k is constant and σ̂2

ω is average noise

power as dened earlier.
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For this noise uncertainty case, means and variances under H0 and H1 for TGED

can be obtained by replacing σ with σω and adding noise uncertainty factor β, and

are given as [16],

µ0,nu =
2p/2√
π

Γ

(
p+ 1

2

)
σpω (3.38)

σ2
0,nu =

2p√
π

[
Γ

(
2p+ 1

2

)
− 1√

π
Γ2

(
p+ 1

2

)]
σ2p
ω (3.39)

µ1,nu =
2p/2(1 + βγ)p/2√

π
Γ

(
p+ 1

2

)
σpω (3.40)

σ2
1,nu =

2p(1 + βγ)p√
π

[
Γ

(
2p+ 1

2

)
− 1√

π
Γ2(

p+ 1

2
)

]
σ2p
ω (3.41)

Define,

Gp =
2p/2√
π

Γ

(
p+ 1

2

)
(3.42)

Kp =
2p√
π

[
Γ

(
2p+ 1

2

)
− 1√

π
Γ2

(
p+ 1

2

)]
(3.43)

Then the probability of detection PD and probability of false alarm PFA for xed
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can be given as [16]:

PD = P (TGED > kσ̂2
ω | H1) (3.44)

PD = Q

((
kβp/2 −Gp(1 + βγ)p/2

(1 + βγ)p/2

)√
N

Kp

)
(3.45)

PF = P (TGED > kσ̂2
ω | H0) (3.46)

PF = Q

(
(kβp/2 −Gp)

√
N

Kp

)
(3.47)
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Figure 3.9: ROC for Noise Uncertainty: N=1000

Under the noise uncertainty, generalized energy detector with p = 2 i.e. conventional

energy detector, is the best energy detector. But conventional energy detector may

not be the best energy detector in the absence of noise uncertainty. Also as the noise

uncertainty increases and becomes signicant (generally greater than 0.5 dB), the de-

tection performance of generalized energy detector becomes independent of p.
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3.7 Summary

Detailed analysis of energy detection technique of spectrum sensing has been given

in this chapter. Section 3.1 represents system model to measure the performance

of energy detector over AWGN channel. Probability of Detection and Probabilty of

False alarm are derived for AWGN channel in section 3.2. The performance of energy

detector over Rayleigh fading channel is discussed in section 3.3. The performance of

energy detector is further improved in case of Rayleigh fading channel by introducing

EGC diversity scheme in section 3.4. Introduction and need for Improved Energy

detector is given in section 3.5. Performance of Generalized Energy detector can be

observed for different values of positive power constant p is obtained by doing mathe-

matical analysis and simulations in the same. Section 3.6 discusses the effect of noise

uncertainty on the performance of the generalized energy detector.



Chapter 4

Energy detection through

Stochastic Resonance

4.1 Introduction of Stochastic Resonance

Stochastic resonance is a nonlinear effect wherein the noise turns out to be benecial to

the transmission or detection of an information-carrying signal. This paradoxical ef-

fect has now been reported in a large variety of nonlinear systems, including electronic

circuits, optical devices, neuronal systems, material-physics phenomena, chemical re-

actions. Stochastic resonance can take place under various forms, according to the

types considered for the noise, for the information-carrying signal, for the nonlinear

system realizing the transmission or detection, and for the quantitative measure of

performance receiving improvement from the noise [21], [23].

Stochastic resonance, as illustrated by Fig. 4.1, involves four essential ingredients:

• an information signal s(t), which can be of many different types, deterministic,

periodic or non, random;

• a noise η(t), whose statistical properties can be of various kinds: white or

colored, Gaussian or non;

53
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Figure 4.1: Stchastic Resonance system as a black box

• a transmission or processing system, which generally is nonlinear, receiving s(t)

and η(t) as inputs under the inuence of which it produces the ouput signal y(t);

• a measure of performance, which quanties the efficacy of the processing or trans-

mission of s(t) into y(t) in the presence of η(t), and which can also be of many

different types, according to the context: signal-to-noise ratio, correlation co-

ecient, Shannon mutual information, etc.

Stochastic resonance then takes place each time it is possible to improve the measure

of performance by means of an increase in the level of the noise η(t).

SR studies have concentrated on a periodic coherent signal s(t), transmitted by nonlin-

ear systems of a dynamic and bistable type. There are two classes of bi stable system:

the double-well (continuous) system and the two-state (discrete) system.Stochastic

resonance has essentially been addressed with a sinusoidal s(t) added to a white

Gaussian η(t) transmitted by a nonlinear dynamic system governed by a double-well

potential and measured by a signal-to-noise ratio in the frequency domain.
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SR in bistable dynamic systems:

This form of SR is based on the evolution equation,

τaẋ(t) = −dU(x)

dx
+ s(t) + η(t) (4.1)

Such an equation represents a dynamic system whose state x(t) is forced by the input

s(t)+η(t),and whose free relaxation τaẋ = −dU/dx is governed by a potential U(x)

which generally is a double-well potential. A form of the potential is

U(x) = −x
2

2
+

x4

4X2
b

(4.2)

with parameter Xb > 0, whose shape is depicted in Fig. 4.2.

Because of its double-well potential U(x), the dynamic system of eq. (4.1) has two

stable stationary states. A mechanical interpretation of this system allows a concrete

description of the occurence of the SR phenomenon. In such an interpretation, eq.

(4.1) describes the motion in an overdamped regime, of a particle in a potential U(x)

subjected to the external force s(t) + η(t). If a periodic input s(t) = Acos(2πt/Ts) is

applied alone and with a too weak amplitude A, then the particle cannot jump over

the potential barrier between the two wells; it remains confined in one of the wells

around a potential minimum, with no transitions between wells. One can introduce

here a binary output signal y(t), with two states say y(t) = ± 1, indicating which of

the two wells the particle is in at time t, for instance

y(t) = sign [s(t) + η(t)− θ] = ±1 (4.3)

When the amplitude of s(t) is below the quantization threshold , no transition is
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Figure 4.2: Double-well potential

induced in y(t) in the absence of noise. As the input noise level is raised above zero,

a cooperative effect can take place where the noise η(t) assists the periodic input s(t)

in overcoming the threshold. As no transitions take place between wells, y(t) remains

stuck in one of its two states. Then, if a small noise η(t) is added, a cooperative

effect between the signal s(t) and the noise becomes possible, enabling occasionally

the particule to jump over the potential barrier. This translates into transitions be-

tween wells which are correlated with the periodic input s(t) as it plays a part in

their production (in conjunction with the noise). When the noise level is raised, the

probability of occurence of such coherent transitions first increases, thus reinforcing

the correlation of the output y(t) with the periodic input s(t). For stronger noise

levels, incoherent transitions induced by the noise alone will become more and more
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frequent, and will gradually destroy the correlation of the output with the periodic

input. The noise thus has a nonmonotonic influence, first enhancing the correlation

of the output with the periodic input, up to an optimum, after which the correlation

is gradually destroyed.

The output y(t) is a random signal, because of the influence of the noise inputη(t),

yet it bears correlation with the periodic input s(t). To quantify the correlation of

y(t) with s(t), the standard method starts with the calculation of the autocorrelation

function of y(t), and then through Fourier transform, to its power spectral density.

In the power spectral density of y(t), the inuence of the periodic input s(t) shows

up as spectral lines at integer multiples of the coherent frequency 1/Ts. These lines

emerge out of a broadband continuous noise background stemming from incoherent

transitions due to η(t).

Fig. 4.3 shows that when a sinewave is applied at the input of SR system, the overall

spectral power at the output of the system increases. Similarly, the same SR system

model is verified for different types of i/p signals like BPSK signal, QPSK signal,

unipolar signal, bipolar signal, FSK signal, PSK signal, etc.

4.2 Energy Detection through Stochastic Resonance

system

4.2.1 Introduction

A novel spectrum-sensing approach based on the stochastic resonance (SR) technique

can be employed. By introducing the received signal into a dynamic SR system, the

SNR of PU signals can be increased. This enlarges the spectrum power of PU signals

and improves spectrum-sensing performance in CR networks, particularly under low

SNR conditions, i.e., SNR<-10 dB. The detection probability using this SR approach
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Figure 4.3: input and putput of SR system

can be improved [20].

The energy detection problem considered over here can be again started with the

binary hypothesis model:

H0 : r(t) = n(t)

H1 : r(t) = h.s(t) + n(t) (4.4)

where t = 1, . . . , N indexes the samples of received signal at cognitive receiver

end bycognitive radio user, where r(t) is the received signal, s(t) is sinewave PU

signal represented by s(t) = AP sin (ωP t+ φP ) to be detected in CR end, and h is
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the channel gain of the sensing channel between the PU and the SU, which can be

supposed to be Rayleigh distribution with second-order moment E[h2] = m2
h and is

independent to s(t). n(t) is the additive white Gaussian noise (AWGN) with mean

zero and variance σ2
n.

In conventional energy detector (CED), the received signal samples are rst squared,

then summed over the number of samples collected and then compared with a prede-

termined threshold to take decision on presence or absence of PU. The test statistics

(T) can be represented as

T =
1

N

N∑
t=1

|r(t)|2 (4.5)

where N is the number of samples.

The probability of detection and false alarm can be represented as

Pd = P (T > λ | H1)

Pf = P (T > λ | H0) (4.6)

λ is a predetermined threshold.

Where N is the number of samples.

The false-alarm rate Pf(ED) and the detection probability Pd(ED) of the energy detec-

tor can be calculated by the following expressions [20]:

Pf(ED) = Pr {T (r) > γED;H0}

Pf(ED) = Pr

{
T (r)
σ2
n
> γED

σ2
n

;H0

}

Pf(ED) = Qχ2
N

(
γED
σ2
n

)
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And

Pd(ED) = Pr {T (r) > γED;H1}

Pd(ED) = Pr

{
T (r)

m2
hσ

2
s+σ2

n
> γED

m2
hσ

2
s+σ2

n
;H1

}

Pd(ED) = Qχ2
N

(
γED

m2
hσ

2
s+σ2

n

)

where Qχ2
N

(.) is the right-tail probability of the central chi- squared pdf with N de-

grees of freedom.

The proposed SR based energy detection approach is shown in Fig. 4.4.

A unique property of SR is that it can be used to amplify the SNR of the input

signal, which makes it more suitable for the weak target detection problem, particu-

larly under low SNR circumstances such as SNR < -10 dB. In the SR system, when

the input signal, the SR noise, and the systems nonlinearity can reach the given

match point, noise energy can be converted into signal energy, which results in the

enhancement of the output SNR toward maximization (peak point). In Fig. 4.4 a

novel spectrum-sensing approach is presented based on the combination of SR and

energy detection. By passing the received signal in CR receiving end through an

SR system, an amplied response to the input signal can be observed at the output.

The amplied signal is then passed through the energy detector to get the nal decision.

In this proposed scheme based on SR [20], first, we set the normalized signal of r(t)

in eq. (4.4), for example, r0(t), as the input of an SR system f[·]. Then, we have
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Figure 4.4: Block Diagram of Energy Detedtion through SR system

Ẋ(t) = f [X(t), r0(t) + n0(t)]

r0(t) =
r(t)√
var [r(t)]

, (t = 0, 1, ...., N − 1) (4.7)

where x(t) is the SR system status vector, and n0(t) is the introduced SR noise with

mean zero and variance σ2
n0

; therefore, r0(t)+ n0(t) can be regarded as the drive signal

to the SR system.

A kind of discrete overdamped bistable oscillator is usually discussed and utilized,

which can be expressed as

x(t) + x(t+ ∆t)

∆t
= 2x(t)− x3(t) + k.r0(t) + n0(t) (4.8)

where ∆t is the sampling interval, k is a constant driving parameter (k=0.3), and the

initial value of the status variable x(0) can be randomly selected within (-1,+1).
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When the energy detection is used after the SR process, a new test statistic T(x) is

established as

T (X) =
N−1∑
t=0

‖X(t)‖2 > γSR−ED (4.9)

where γSR−ED is the decision threshold that is used by the SR-based energy detector.

Based on the linear response theory in SR [12], the output of the SR system can also

be divided into two additive parts, that is

X(t) = SSR(t) + nSR(t) (4.10)

Where SSR(t) represents system response corresponding to normalized PU signal

h.s(t)/
√
var [r(t)], and nSR(t) is the system response corresponding to the noise signal

n(t)/
√
var [r(t)]+n0(t).

4.2.2 Optimum value of SR noise to be added

Dene SNRi as the SNR of the SR systems input signal r(t) under hypotheses H1 and

SNR0 as the output SNR of the SR system status vector x(t). Then, we can get,

SNRi =
limN→∞

1
N

∑N−1
t=0 h2s2(t)

limN→∞
1
N

∑N−1
t=0 n2

=
m2
hσ

2
s

σ2
n

(4.11)

SNR0 =
limN→∞

1
N

∑N−1
t=0 ‖SSR(t)‖2

limN→∞
1
N

∑N−1
t=0 ‖nSR(t)‖2

=
σ2
s(SR)

σ2
n(SR)

(4.12)

where ‖·‖ is the modulus function, σ2
s and σ2

s(SR) are the power of s(t) and sSR(t),

respectively, and σ2
n(SR) represents the variance of nSR(t). For example, when the

discrete overdamped bistable oscillator in eq. (4.8) is used and assuming that a
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sinusoidal PU signal is introduced as

s(t) = AP .sin(ωP t+ φP ) (4.13)

Where AP , ω P , and φ P are the amplitude, angular frequency, and phase of the

PU sinusoidal signal, then SNRi and SNRo of the bistable oscillator can be expressed

by

SNRi =
1
2
m2
hA

2
P

σ2
n

(4.14)

SNR0 =
4
√

2k2m2
hA

2
P

(k2σ2
n + σ2

n0)
e
− 2

k2σ2n+σ2n0 (4.15)

From the above analyses, to reach a maximal SNR0, the optimal variance of the

introduced SR noise σ2
n0 can be calculated by

σ2
n0(opt) = arg max

σ2
n0

SNR0 = arg max
σ2
n0

σ2
s(SR)

σ2
n(SR)

(4.16)

It can be found in the figure that SNR0 will reach a maximal value when an optimal

σn0 is selected. In other words, due to the reason that the SNR of the input signal

is fixed and is not adjustable, an SR noise n0(t) is then introduced here to reach the

optimal performance or maximal SNR0. The power of the introduced SR noise will

transfer to that of the PU signal s(t) to enlarge the SNR0, which reveals the physical

phenomenon of SR . Under hypotheses H1, r0(t) is composed of the PU signal and

AWGN; therefore, according to the requirement that the total noise n(t)/
√
var[r(t)]+

n0(t) be even symmetric in the SR system and n(t) takes part in the SR system as a

part of the SR noise, the introduced SR noise n0(t) should have the same pdf with n(t)

as an AWGN signal. Furthermore, when σ2
n0(opt) = 0, it becomes a special case that

no more SR noise n0(t) needs to be introduced to the SR system, and the additive



CHAPTER 4 ENERGYDETECTION THROUGH STOCHASTIC RESONANCE64

channel noise n(t) can fully play the role of the SR noise. Thus, the SNR0 can be

changed to

SNR0 =
4
√

2k2m2
hA

2
P(

k2σ2
n + σ2

n0(opt)

)e− 2

k2σ2n+σ2
n0(opt) (4.17)

To get the optimal value of σ2
n0(opt), let ∂SNR0

∂σ2
n0

= 0 and we have,

σ2
n0(opt) = 1− k2σ2

n (4.18)

Output SNR of the discrete overdamped bistable oscillator versus is shown in

Figure 4.5

4.2.3 Performance Analysis

When the energy detection is used after the SR process, a new test statistic T(x) is

established as

T (X) =
N−1∑
t=0

‖X(t)‖2 > γSR−ED (4.19)

The false-alarm rate using the proposed SR-based approach, i.e., Pf(SRED), can

then be expressed as [20]

Pf(SR−ED) = Pr {T (X) > γSR−ED;H0}

Pf(SR−ED) = Pr

{
T (X)

σ2
n(SR)

> γSR−ED
σ2
n(SR)

;H0

}

Pf(SR−ED) = Qχ2
N

(
γSR−ED
σ2
n(SR)

)



CHAPTER 4 ENERGYDETECTION THROUGH STOCHASTIC RESONANCE65

Figure 4.5: Output SNR versus noise power

The detection probability of the proposed SR-based energy detection approach,

which is denoted by Pd(SR−ED) can be calculated by

Pd(SR−ED) = Pr {T (X) > γSR−ED;H1}

Pd(SR−ED) = Pr

{
T (X)

σ2
s(SR)

+σ2
n(SR)

> γSR−ED
σ2
s(SR)

+σ2
n(SR)

;H1

}

Pd(SR−ED) = Qχ2
N

(
γSR−ED

σ2
s(SR)

+σ2
n(SR)

)
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4.2.4 Simulation Result

In the computer simulations, the discrete overdamped bistable oscillator in Eq. (8)

is utilized as the SR system model, where k is the constant set as k=0.3, and r0(t)

is the normalized received signal, which is also a part of the SR system input. Here,

PU sinusoidal signal through a Rayleigh fading channel with AWGN noise are used

as the input of discrete overdamped bistable oscillator, that is

r(t) = h. [AP sin (ωP t+ φP )] + n(t) (4.20)

where h is rayleigh channel gain with mean 1, AP , ωP , and φP are the amplitude,

angular frequency, and phase of the PU sinusoidal signal. Power of AWGN noise signal

n(t) is σ2
n = 1. The optimal variance of the introduced white Gaussian SR noise [10]

with mean 0 can be calculated as σ2
n0(opt)

= 1 − k2. Fig. 4.6 shows the receiver

operating characteristic (ROC) curves of the proposed SR-based energy detector and

the traditional energy detector under SNR = -15 dB. The sample number is chosen as

N=103. Fig. 4.7 shows Pd vs. SNR curves of the proposed SR-based energy detector

and the traditional energy detector.

Pf versus SNR curve for Rayleigh Channel with SR noise:

The curve obtained in Fig 4.7 shows that the performance of energy detector with

SR noise in terms of Pf is as good as AWGN channel. That is detection probability

is increased without sacrifice in terms of Probability of false alarm.

4.2.5 Computational Complexity Analysis

For CR applications, spectrum sensing should not take a long time to perform and

should result in a reliable detection outcome. Robust techniques, relatively low

computational complexity, and/or a high-performance processing architecture are re-
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Figure 4.6: ROC for energy detection (with and without SR noise)

quired to achieve this. By using the energy detector, given the sample number N and

the threshold γED, one has to carry out N times of multiplication operations; there-

fore, the computational complexity can be regarded as O(N). On the other hand, in

the proposed SR-based approach, the normalized received signal has to be sent into

the SR system first and then must carry out the energy detection; therefore, the SR

process will produce extra computational costs compared with the traditional energy

detector. As in most commonly used SR systems such as the bistable oscillators,

the dynamic equation shown in eq. (4.1) has an ordinary explicit expression, or at

least it possesses the same computational costs with the linear dynamic equation,

for example, O(N). For example, if the discrete overdamped bistable oscillator in eq.

(4.1) is utilized, it can be observed that an output sample x(t) requires just four

multiplication operations. The next stage of injecting this sample into the energy

detection only requires an additional multiplication operation. A total of ve mul-

tiplication operations per sample are required to implement the proposed SR-based
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Figure 4.7: Pd Vs. SNR curve (with and without SR noise)

detection scheme. The computational complexity is O(N), which is similar to that

of a traditional energy detection approach. However, the key difference is that the

detection performance is improved under low SNR conditions and that the SNR of

the output signal using an SR-based approach is also increased. This represents a

signicant enhancement when compared with existing spectrum-sensing methods.

4.3 Generalized Energy Detection through Stochas-

tic Resonance system

4.3.1 Introduction of Generalized Energy Detection

The test statistic TCED for conventional energy detector is given as
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Figure 4.8: Pf versus SNR curve for Rayleigh fading Channel with SR noise

TCED =
1

N

N∑
t=1

|r(t)|2 (4.21)

We can transform conventional energy detector to generalized energy detector (GED)

by replacing squaring operation by an arbitrary positive operation p [16]. Then the

test statistic for GED is given as
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TGED =
1

N

N∑
t=1

|r(t)|p (4.22)

where p> 0 is an arbitrary constant. It can be seen that CED is a special case of

GED with p = 2. For large N and thus invoking central limit theorem (CLT), we can

define probability of detection Pd and probability of false alarm Pf for GED as [17]

Pf = Pr (TGED > T | H0) = Q

(
T − µ0

σ0/
√
N

)
(4.23)

Pd = Pr (TGED > T | H1) = Q

(
T − µ1

σ1/
√
N

)
(4.24)

where

Q(t) =
1

2π

∫ ∞
t

e−
x2

2 dx (4.25)

and T is the predetermined threshold which can be obtained by fixing probability

of false alarm, µ1 and µ0 are means of TGED under H1 and H0 respectively, σ2
1 and σ2

0

are variances of TGED under H1 and H0 respectively, which can be given as sec. 3.5.

µ0 = 2p/2√
π

Γ
(
p+1

2

)
σp

σ2
0 = 2p√

π

[
Γ
(

2p+1
2

)
− 1√

π
Γ2
(
p+1

2

)]

µ1 = 2p/2(1+γ)p/2√
π

Γ
(
p+1

2

)
σp
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σ2
1 = 2p(1+γ)p√

π

[
Γ
(

2p+1
2

)
− 1√

π
Γ2
(
p+1

2

)]
σ2p

with γ is received signal-to-noise ratio.

This Generalized Energy Detection can be performed on received signal after passing

received signal through SR system. Probability of detection can be improved further.

Fig. 4.8 shows simulation results for generalized energy detector for the same system

parameters as considered in section 4.2.4 and introducing SR noise. This ROC plot

is obtained at SNR=-20 dB.

Figure 4.9: ROC for Generalized Energy Detection (with SR noise)

Pf versus SNR curve for Generalized Energy detector with SR noise:

Fig 4.9 shows that the probability of False alarm remains almost same in case of

generalized energy detector with SR noise for value of p=3. As number of samples
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and value of p changes Pfwillbechanged.

Figure 4.10: Pf versus SNR curve for GED with SR noise

4.3.2 Performance of SR based GED under noise uncertainty

Concept of SNR wall:

The sensitivity of detectors can be improved by increasing the sensing time and so

the sample complexity gives us an actual way to compare different spectrum sensing

methods. However, one must also consider the impact of real-world uncertainties on

the performance of detectors since robustness is important. Doing this reveals that

the sample complexity blows up to innity as the detector sensitivity approaches cer-



CHAPTER 4 ENERGYDETECTION THROUGH STOCHASTIC RESONANCE73

tain critical values called SNR walls [30]. Below these SNR walls, it is completely

impossible to robustly distinguish the two hypotheses. The location of the walls

themselves depends on what is known about the signal being sensed as well as the

size of certain critical uncertainties in the noise distribution and fading process.

Sample Complexity Analysis:

Under the noise uncertainty model given in [30], the sample complexity of detection

also depends on the parameter ρ = 10x/10. Sample complexity with noise uncertainty

for a fixed value of Pd and Pf is given as

N =
2[Q−1(Pf )−Q−1(1− Pd)]2

[SNRi − (ρ− 1
ρ
)]2

(4.26)

The fundamental effect of stochastic resonance is improvement in the received signal

SNR. This improvement is given by [29]

SNRgain = SNR0 − SNRi (4.27)

Where SNR0 is the SNR of SR system output signal and SNRi is the SNR of SR

system input i.e. received signal in CR receiving end. Thus, sample complexity in

case of SR based energy detector is given by

NSR =
2[Q−1(Pf )−Q−1(1− Pd)]2

[SNR0 − (ρ− 1
ρ
)]2

(4.28)

As SNR0 > SNRi, sample complexity will be reduced in SR based energy detector

compared to traditional energy detector.

This can be represented in terms of SNR wall also. For traditional energy detector,

SNRwall =
(
ρ− 1

ρ

)
.The improvement in SNR for SR based energy detector is given

by SNRgain. Thus, reduction in SNR wall for SR based energy detector is given by
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SNRSR
wall =

(
ρ− 1

ρ

)
− SNRgain (4.29)

Fig. 4.8 shows the sample complexities of traditional energy detector, SR based

energy detector and SR based GED under noise uncertainty (x=0.3 dB). The fixed

values of Pf=1-Pd=0.1. It shows the reduction in SNR wall for SR based energy

detector compared to traditional energy detector, which is about 7 dB. It has been

shown that sample complexity is greatly reduced for GED (for power constant p=3)

for the same value of SNR compared to SR based conventional energy detector (p=2).

Figure 4.11: Sample complexity of traditional ED, SR based ED and SR based GED
under noise uncertainty
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4.4 Summary

Detailed analysis of energy detection technique of spectrum sensing has been given

in this chapter. Section 3.1 represents system model to measure the performance

of energy detector over AWGN channel. Probability of Detection and Probabilty of

False alarm are derived for AWGN channel in section 3.2. The performance of energy

detector over Rayleigh fading channel is discussed in section 3.3. The performance of

energy detector is further improved in case of Rayleigh fading channel by introducing

EGC diversity scheme in section 3.4. Introduction and need for Improved Energy

detector is given in section 3.5. Performance of Generalized Energy detector can be

observed for different values of positive power constant p is obtained by doing mathe-

matical analysis and simulations in the same. Section 3.6 discusses the effect of noise

uncertainty on the performance of the generalized energy detector.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Spectrum Sensing is the most important task to use the spectrum opportunistically

in cognitive radio network. Various techniques have been proposed and in use for

spectrum sensing. In transmitter Detection technique (Non cooperative Detection),

the weak primary transmitter signal is detected based on the local observation of Cog-

nitive Radio user. Matched filter detection is the most complex but most accurate

method of spectrum sensing. Cylostationary Feature Detection is computationally

complex and may require significantly long observation time. Energy Detection is the

least complex and does not require a priori information of primary user signal. The

aim of this thesis is to study energy detection technique in detail because of its above-

mentioned advantage and analyze the performance of energy detection over AWGN

channel and Rayleigh fading channel. Performance improvement can be obtained by

introducing diversity in fading channel. Also, performance of energy detector dete-

riorates under low SNR. Under the condition of low SNR, probability of detection

can be improved by using generalized energy detector. Also, noise uncertainty exists

in actual practice. Effect of noise uncertainty is studied in generalized energy de-

tection and it has been found that conventional energy detector is best under noise

uncertainty. The spectral power of primary users (PUs) can be amplied, and the

signal-to-noise ratio (SNR) of a received signal can be increased using Stochastic
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Resonance (SR). Detection probability has been increased significantly and drastic

reduction in SNR wall has been obtained. Further, by combining Generalized Energy

Detector and Stochastic Resonance, improvement in detection probability as well as

significant reduction in sample complexity is achieved.

5.2 Future Work

There exist certain challenges in energy detection technique. The performance of

energy detector is susceptible to noise uncertainty, which exist in practice. Stochas-

tic Resonance based energy detector can be evaluated by adding noise uncertainty.

Under the constraint of the false alarm probability, energy detction with stochastic

resonance can be applied for multiple nodes i.e., cooperative sensing for maximizing

the probability of detection. Further, diversity techniques like Equal gain Combining

(EGC) or Selection Combining (SC) can be applied. This can achieve much better

performance than traditional energy detectors [31].
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