Enablement of Optimal and Fast
Timing Convergence for High speed

I/O designs

Major Project
Submitted in Partial Fulfilment of the Requirements
for the Degree of
Master of Technology(M.Tech.)
in
VLSI Design
by
Saifee Shabbir S.
12MECV 32

ij NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

Department of Electronics & Communication Engineering
Institute of Technology
Nirma University
Ahmedabad
May-2014

Enablement of Optimal and Fast
Timing Convergence for High speed

I/O designs

Major Project
Submitted in Partial Fulfilment of the Requirements
for the Degree of
Master of Technology(M.Tech.)
in

VLSI Design

by
Saifee Shabbir S.
12MECV 32
Dr. Amisha Naik Mr. Kaushik Saiprasad
Internal Guide External Guide
= NIRMA
UNIVERSITY

INSTITUTE OF TECHNOLOGY

Department of Electronics & Communication Engineering
Institute Of Technology
Nirma University
Ahmedabad
December-2013

i

Declaration

This is to certify that

1. I, Shabbir Saifee, a student of semester IV Master of Technology in VLSI Design,
Nirma University, Ahmedabad hereby declare that the project work “Enablement
of Optimal and Fast Timing Convergence for High speed 1/O designs "has been
independently carried out by me under the guidance of Mr. Kaushik Saiprasad,
Tech-Lead, Intel Technology India Private Limited, Bangalore and Dr. Amisha
Naik, Professor, Department of VLSI Design, Nirma University, Ahmedabad. This
Project has been submitted in the partial fulfillment of the requirements for the
award of degree Master of Technology(M.Tech.) in VLSI Design, Nirma University,
Ahmedabad during the year 2013 - 2014.

2. I have not submitted this work in full or part to any other University or Institution
for the award of any other degree.

Shabbir Saifee
12MECV32

il

Certificate

This is to certify that the Major Project Part-I entitled “Enablement of Optimal and
Fast Timing Convergence for High speed 1/O designs” submitted by Shabbir Saifee
(12MECV32), towards the partial fulfillment of the requirements for the degree of Master
of Technology in VLSI Design of Nirma University of Science and Technology, Ahmed-
abad is the record of work carried out by him under my supervision and guidance. In my
opinion, the submitted work has reached a level required for being accepted for examina-
tion. The results embodied in this major project, to the best of my knowledge, haven’t
been submitted to any other university or institution for award of any degree or diploma.

Dr. Amisha Naik

Internal Project Guide,
Institute of Technology,
Nirma University, Ahmedabad

Mr. Kaushik Saiprasad
External Project Guide, Tech-Lead,
Intel Technology India Pvt. Ltd.,

Bangalore

Mr. Dilip Kothari Prof. P N Tekwani
Section Head, M.tech. EC Head of EE Dept
Institute of Technology, Institute of Technology,

Nirma University,Ahmedabad Nirma University,Ahmedabad

v

Date: Place:Ahmedabad

Certificate

This is to certify that Mr. Shabbir Saifee, 12mecv32, a student of M.Tech. (VLSI
Design), Institute of Technology, Nirma University was working with this organization
since 26/6/2014 and carried out his thesis work titled “Enablement of Optimal and Fast
Timing Convergence for High speed 1/0 designs”. He was working in the IPG, HIP DA-L
division under the supervision of Mr. Kaushik Saiprasad, Tech Lead, Intel Technology.
He has successfully completed his assigned work and is allowed to submit his dissertation.
We wish him all the success in the future.

Mr. Kaushik Saiprasad

External Project Guide, Tech-Lead,
Intel Technology India Pvt. Ltd.,
Bangalore

Date: Place:Bangalore

vi

Acknowledgement

With immense pleasure, I would like to present this report on the dissertation work re-
lated to ”Enabling Optimal and Fast Timing Convergence for High speed 1/O designs”.
I am very thankful to all those who helped me for the successful completion of the dis-
sertation and for providing valuable guidance throughout the project work.

First of all, T would like to thank Mr. Thameem Syed for providing me with an op-
portunity to work at this esteemed organization and for continuous encouragement and
motivation. I would like to express my deepest thanks and gratitude to Mr. Kaushik
Saiprasad for providing constant support and guidance required to understand the project
work and the platform required to carry out the project work.

I would also like to thank my internal guide , Dr. Amisha Naik, Professor, VLSI Design,
Institute of Technology, Nirma University, Ahmedabad for giving valuable support for

project work.

I also owe my colleagues at Intel, special thanks for helping me on this path and for
making project at Intel more enjoyable.

Shabbir Saifee
12MECV32

vil

Abstract

The ASIC devices are often composed of third-party IP (Intellectual Property), custom
or semi-custom functional blocks, fab-vendor memory macros, standard cell logic, etc.
As design sizes increase and customers migrate to static timing analysis solutions that
incorporate delay calculation using parasitic information and signal integrity analysis,
capacity and runtime issues for full-chip analysis becomes increasingly important.

For Static Timing Analysis, timing abstractions of designs for complex blocks or IP
blocks can improve capacity and runtime while preserving reasonable accuracy. Usually,
the digital blocks of an IP are modeled into a library and analog parts are used as it is
for timing analysis. This report addresses the issue and implementation of bounding the
analog modules of an IP into a timing model or a Liberty Syntax file. For the design
convergence, making the flows optimal is required. The effect of variation is observed on
the design parameters.

Proprietary Note: The names of the tools PrimeTime and IC Compiler provided by
Synopsys that are mentioned in my thesis are the proprietary names and copyrights of
Synopsys and I have used these tools as part of my internship work at Intel.

viil

Contents

Declaration
Certificate
Certificate
Acknowledgement
Abstract

1 Introduction
1.1 Background and problem statement
1.2 Imtroduction to STA
1.3 Noise and Crosstalk
1.4 Setting up the STA environment

2 Standard cell libraries, timing and noise characterization
2.1 Non-Linear Delay Models
2.2 Composite Current Source Models (CCS)
2.2.1 Receiver Pin capacitance oL
2.2.2 Output Current
2.2.3 CCSN model and parameters
2.3 NLDM table look up and delay calculations

3 Timing abstraction
3.1 Timing Models
3.2 Extracted Timing Models L.
3.2.1 Model Extraction
3.2.2 Model Validation o
3.2.3 Flow/Methodology

4 Implementation vs. Sign-off Timing Correlation
4.1 Introduction
4.1.1 Advanced On-Chip Variation derates (AOCV)
4.1.2 AOCV file format
4.2 Application of AOCV during implementation and impact on timing . . .

X

ii

iii

v

20
21
22
22
24
25

28
29
29
29
30

4.2.1 Methodology 31

422 Results. 32

4.3 Impact of AOCV on buffer count and TNS/WNS 36
4.3.1 Configuration of experiments 37

4.3.2 Flow/Methodology 37

4.3.3 Results. 38

5 Conclusion 40
References 41

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

STA in ASIC design 3
STA basic flow 5
Coupled interconnects 6
STA Environment 7
Timing Flow 8
Inverter NLDM tableo 11
Lookup table template 12
Setup and Hold tables 13
Receiver Pin capacitance oL 14
Output current specification 15
CCSN example e 16
Inverter delay calculation example 18
Delay table for inverter Lo 18
ASIC structure 21
ETM generation-netlist 0L 23
ETM generated modelo 23
ETM model arcs 24
ETM methodology 26
AOCV file format 30
Important required variables Lo 31
Setup histogram without AOCV 33
Setup histogram with AOCV 34
Hold histogram without AOCV 35
Hold histogram with AOCV 36
Buffer count and timing values oL 38
Timing values 38

Chapter 1

Introduction

The STA (Static Timing Analysis) refers to the method of validating the tim-
ing performance of a design by checking all possible paths for timing violations. It is
a complete and exhaustive verification of all timing checks of a design. Other timing
analysis methods such as simulation can only verify the portions of the design that get
exercised by stimulus. Verification through timing simulation is only as exhaustive as the
test vectors used. To simulate and verify all timing conditions of a design with 10-100
million gates is very slow and the timing cannot be verified completely. Thus, it is very
difficult to do exhaustive verification through simulation. Static timing analysis on the
other hand provides a faster and simpler way of checking and analyzing all the timing
paths in a design for any timing violations. Given the complexity of present day ASICs,
which may contain 10 to 100 million gates, the static timing analysis has become a ne-
cessity to exhaustively verify the timing of a design.

1.1 Background and problem statement

An Intellectual Property (IP) is made up of many blocks connected together. Some
of these blocks are analog in nature and some are digital. The timing analysis of the dig-
ital blocks is easier than analog blocks. Also the analog blocks are more complex in
design and analysis than digital. There are smaller libs that are present inside the analog
blocks. Along with the other digital /analog logic, these libs form an analog block. There
are multiple analog blocks in an IP interfaced with other digital blocks. These analog
blocks are also called Custom Macros (CM’s).

In the present process of sign-off, at the design level, the digital and analog blocks
are put together and the STA is performed. The parameters that are needed to be pro-
vided to the tool are Verilog netlists, the constraints for each and every block, a flat RC
extraction i.e. spef for the whole design, the smaller libs in the analog blocks and other
parameters required. Hence in order to do the analysis of the analog blocks, we have to
open them up and provide the Verilogs for the digital parts along with smaller analog
libs. Because of this , the runtime is huge. Also in case of violations the resolution time
and turnaround time is high. As a result the number of iterations for sign-off increases,
hence the time to market. Now as the no of transistors increases, CM’s become more
complex and timing analysis becomes more and more difficult.

The solution to all these problems is to box up the CM’s. PrimeTime provides a
facility to generate the timing models for a particular block which can be used at the top
hierarchy of the design instead of the netlist and all the smaller intcin libs. Hence at the
top level, we can replace the analog blocks with their corresponding timing models or libs
and perform the timing analysis. This way the number of iterations that are required
can significantly be reduced. This report deals with the extraction, modeling and use of
these timing models.

The sign-off process is very important in ASIC design. The complete design is
performed in an implementation tool and then it is taken to a timing analysis tool to
perform sign-off. Presently, there is a big difference in timing numbers between these
tools. The idea is to introduce the Advanced On Chip Variation derates in both tools
and try to bring the timing closer.

1.2 Introduction to STA

In a CMOS digital design flow, the static timing analysis can be performed at many
different stages of the implementation. Figure 1 shows a typical flow.

RTL Constraints (SDC)

Logical design

N N
(Synthesis) ~Gate-level netlist
J - unoptimized
— V¥ - ideal clock trees
/ (Logic optimization) - O routes

P i . Gate-level netlist
C— ey

Static timing Physical design - optimized
analysis v

ement) | Gate-level netlist

\ (Plac
- global routes
\J
A 4
Clock tree s_vnthesis)
| Gate-level netlist

Static timing / N <———| -real clock trees
analysis incl. :
5 7 Routing
noise, crosstal i

v
Gate-level netlist
- real routes

- real clock trees

Figure 1.1: STA in ASIC design

STA is rarely done at the RTL level as, at this point, it is more important to
verify the functionality of the design as opposed to timing. Also not all timing infor-
mation is available since the descriptions of the blocks are at the gate level; the STA is
used to verify the timing of the design. STA can also be run prior to performing logic
optimization - the goal is to identify the worst or critical timing paths. STA can be rerun
after logic optimization to see whether there are failing paths still remaining that need
to be optimized, or to identify the critical paths.

At the start of the physical design, clock trees are considered as ideal, that is,
they have zero delay. Once the physical design starts and clock trees are built, STA
can be performed to check the timing again. In physical implementation, the logic cells
are connected by interconnects metal traces. The parasitic RC (Resistance and Capaci-
tance) of the metal traces impact the signal path delay through these traces. In a typical
nanometer design, the parasitics of the interconnect can account for the majority of the
delay and power dissipation in the design.

At the logical design phase, ideal interconnect may be assumed since there is
no physical information related to the placement; there may be more interest in viewing
the logic that contributes to the worst paths. Another technique used at this stage is
to estimate the length of the interconnect using a wireload model. The wireload model
provides estimated RC based on the fanouts of a cell. Before the routing of traces are
finalized, the implementation tools use an estimate of the routing distance to obtain RC
parasitics for the route. Since the routing is not finalized, this phase is called the global
route phase to distinguish it from the final route phase. In the global route phase of the
physical design, simplified routes are used to estimate routing lengths, and the routing
estimates are used to determine resistance and capacitance that are needed to compute
wire delays. During this phase, one cannot include the effect of coupling.

After the detailed routing is complete, actual RC values obtained from extrac-
tion are used and the effect of coupling can be analyzed. However, a physical design
tool may still use approximations to help improve run times in computing RC values.
An extraction tool is used to extract the detailed parasitics (RC values) from a routed
design. Such an extractor may have an option to obtain parasitics with small runtime
and less accurate RC values during iterative optimization and another option for final
verification during which very accurate RC values are extracted with a larger runtime.

The STA is static since the analysis of the design is carried out statically and
does not depend upon the data values being applied at the input pins. This is in contrast
to simulation based timing analysis where a stimulus is applied on input signals, resulting
behavior is observed and verified, then time is advanced with new input stimulus applied,
and the new behavior is observed and verified and so on.

Given a design along with a set of input clock definitions and the definition of
the external environment of the design, the purpose of static timing analysis is to vali-
date if the design can operate at the rated speed. That is, the design can operate safely
at the specified frequency of the clocks without any timing violations. Figure 2 shows
the basic functionality of static timing analysis. The DUA is the design under analysis.
Some examples of timing checks are setup and hold checks. A setup check ensures that
the data can arrive at a flip-flop within the given clock period. A hold check ensures that
the data is held for at least a minimum time so that there is no unexpected pass-through
of data through a flip-flop: that is, it ensures that a flip-flop captures the intended data
correctly. These checks ensure that the proper data is ready and available for capture
and latched in for the new state.

External environment \
of design
(including clock definitions)

Design
under
analysis

_ (DUA) /

\ 4 \ 4
Static Timing Analysis
(STA)

Timing reports
(include violating
paths, if any)

Figure 1.2: STA basic flow

1.3 Noise and Crosstalk

In semiconductor devices, metal interconnect traces are typically used to make the
connections between various portions of the circuitry to realize the design. As the process
technology shrinks, these interconnect traces have been known to affect the performance
of a design. For deep submicron or nanometer process technologies, the coupling in the
interconnect induces noise and crosstalk - either of which can limit the operating speed of
a design. While the noise and coupling effects are negligible at older generation technolo-
gies, these play an important role in nanometer technologies. Thus, the physical design
should consider the effect of crosstalk and noise and the design verification should then
include the effects of crosstalk and noise.

The crosstalk noise refers to unintentional coupling of activity between two or
more signals. The crosstalk noise is caused by the capacitive coupling between neighbor-
ing signals on the die. This results in switching activity on a net to cause unintentional
effects on the coupled signals. The affected signal is called the victim, and the affecting
signals are termed as aggressors. Note that two coupled nets can affect each other, and

often a net can be a victim as well as an aggressor. Figure 3 shows an example of a few
signal traces coupled together. The distributed RC extraction of the coupled intercon-
nect is depicted along with several drivers and fanout cells. In this example, nets N1 and
N2 have Ccl + Cc4 as coupling capacitance between them, whereas Cc2 + Ccb is the
coupling capacitance between nets N2 and N3.

There are two types of noise effects caused by crosstalk glitch, which refers to
noise caused on a steady victim signal due to coupling of switching activity of neigh-
boring aggressors, and change in timing (crosstalk delta delay), caused by coupling of
switching activity of the victim with the switching activity of the aggressors.

L > AMY— 1AM — 1AM —

¥

<+
I
[
[
]

-~
Lyl

[
]
[l
-~
L]

ey

\V,
.§
=
ki
Y

|
|
1
1l

LA A

Cc = Coupled interconnect

|
-

Figure 1.3: Coupled interconnects

There are several reasons why the noise plays an important role in the deep
submicron technologies:

e Increasing number of metal layers: For example, a 0.25mm or 0.3mm process has
four or five metal layers and it increases to ten or higher metal layers in the 65nm
and 45nm process geometries.

e Vertically dominant metal aspect ratio: This means that the wires are thin and
tall unlike the wide and thin in the earlier process geometries. Thus, a greater
proportion of the capacitance is comprised of sidewall coupling capacitance which
maps into wire to wire capacitance between neighboring wires.

e Higher routing density due to finer geometry: Thus, more metal wires are packed
in close physical proximity.

e Larger number of interacting devices and interconnects: Thus, greater number of
active standard cells and signal traces are packed in the same silicon area causing
a lot more interactions.

e Faster waveforms due to higher frequencies: Fast edge rates cause more current
spikes as well as greater coupling impact on the neighboring traces and cells.

e Lower supply voltage: The supply voltage reduction leaves little margin for noise.

1.4 Setting up the STA environment

Specification of correct constraints is important in analyzing STA results. The
design environment should be specified accurately so that STA analysis can identify all
the timing issues in the design. Preparing for STA involves amongst others, setting up
clocks, specifying 10 timing characteristics, and specifying false paths and multicycle
paths. Most digital designs are synchronous where the data computed from the previous
clock cycle is latched in the flip-flops at the active clock edge. Consider a typical syn-
chronous design shown in Figure 4. It is assumed that the Design Under Analysis (DUA)
interacts with other synchronous designs. This means that the DUA receives the data
from a clocked flipflop and outputs data to another clocked flip-flop external to the DUA.

[e e T R Lt e e AN o e e LR |
UFF1 | UFF2 UFE3 | UFF4
b q—{ch-H—P P M (P °
| S |
| |
CK | hCK S CK | — hCK
syscix | | I
| |
-

Figure 1.4: STA Environment

To perform STA on this design, one needs to specify the clocks to the flip-flops,
and timing constraints for all paths leading into the design and for all paths exiting the
design. The example in Figure 4 assumes that there is only one clock and C1, C2, C3,
C4, and C5 represent combinational blocks. The combinational blocks C1 and C5 are
outside of the design being analyzed. In a typical design, there can be multiple clocks
with many paths from one clock domain to another.

The tool used for the purpose of timing analysis is Synopsys PrimeTime. Prime-
Time is a full-chip, gate-level static timing analysis tool targeted for complex, multimillion-
gate designs. It accepts design information in a wide range of industry-standard formats,
including gate-level netlists in .db, Verilog, and VHDL formats; delay information in
Standard Delay Format (SDF); parasitic data in Standard Parasitic Exchange Format
(SPEF), Synopsys Binary Parasitic Format (SBPF) and Reduced Standard Parasitic
Format (RSPF) formats; and timing constraints in Synopsys Design Constraints (SDC)
format.

RTL Logic library | .db
description
e T Timing consfraints for 3 3
resynthesis and logic Cell delays, transition time
optimization capacitance, wire load
] . models, design rules,
Synthesis Jjcctcl, .sdc operating conditions
=Rl Design dafa PrimeTime - - sclferggzgf
Gate-level _ - stattic timing analysis = ondi
description .db, Verilceg, =
F YHDL -S0C,
g ‘. Pt

Path constraints

=i

I - -

Tirming

Delay data; detailed parasitic models timing medels

Chip layout data for back-annotation
description o w

.5df, RSPF, SPEF, SBPF

— I

:

Design signoff

Figure 1.5: Timing Flow

Figure 5 shows how PrimeTime is used in a typical synthesis flow. Starting
from an RTL design description, a synthesis tool generates a gate-level design descrip-
tion. PrimeTime reads this description and verifies the design timing using information
provided in the logic library. If PrimeTime finds any timing violations, the design needs
to be resynthesized using new timing constraints (generated by PrimeTime) to fix the
conditions that are causing the timing violations. When the gate-level design is free of
timing violations, you can proceed to placement and routing. This produces a chip layout
database from which accurate delay information or detailed parasitic information can be
extracted. This data, when back-annotated on the design in PrimeTime, results in a
physically-accurate timing analysis. A successful validation of the circuit timing at this
point leads to signoff of the completed design.

From the figure 5 we can gather that the RTL generated is synthesized into a gate
level netlist using a synthesis tool. The design is then translated in terms of pre-defined
standard cells and libraries. This serves as a design input to the tool in the form of a
Verilog or VHDL format files. Also the standard cells and libraries have to be provided
in the form of .db and .lib files. These files contain the cell delays, transition times,

.db, interface logic
models, esxtractad

capacitances, operating conditions (PVT), design rules and other information in them in
the form of NLDM tables.

The Synopsys Design Constraint (.sdc) file is also an important input to the tool.
Basically, the sdc files contain the setup information wrt design. They are:

Clock definitions at various pins/ports and the period and waveforms of the clock.

Setting the input transition values at various pins/ports

Setting up false paths between various parts of design.

Setting derates to various clock paths and data paths.

Various other types of constraints wrt design and technology.

The timing models that are extracted for the bigger modules are also instantiated
along with the standard cell libs and Verilog netlists. They can be in the form of Interface
Logic Models (ILMs) or Extracted Timing Models (ETMs).

The parasitic information of the circuit is vital in order to calculate the detailed
delays of the nets and determine accurate timing information. The tool basically accepts
the three types of parasitic file formats:

e Reduced Standard Parasitic Format (RSPF)
e Detailed Standard Parasitic Format (DSPF)
e Standard Parasitic Exchange Format (SPEF)

Usually the SPEF is used in order to provide the RC information of the nets. It
is very complete and compact way of representing the parasitics. The RC information
is back annotated in the design and real time delay values can be used to calculate the
delay arcs.

This chapter so far we have seen the basic introduction of timing, setting up
the STA environment and timing flow used for it. In the next chapter we will look over
the standard cell libraries and how timing and noise are characterized in a .lib.

Chapter 2

Standard cell libraries, timing and
noise characterization

The ASIC design involves the use of standard cell libraries and timing models
for the purpose of design and timing analysis. The timing information of any cell or
block is represented in the .1ib files in the Non-Linear Delay Model (NLDM) format. The
noise representation is done in the form of Composite Current Source (CCS) models.
This chapter will cover the basics of the NLDM and CCS models.

10

2.1 Non-Linear Delay Models

The cell timing models are intended to provide accurate timing for various in-
stances of the cell in the design environment. The timing models are normally obtained
from detailed circuit simulations of the cell to model the actual scenario of the cell op-
eration. The timing models are specified for each timing arc of the cell. The delay for
the timing arc of any cell is dependent on two parameters; 1) the input transition time
of the signal and 2) The capacitance load at the output pin of the cell. The delay values
have a direct correlation with the load capacitance the larger the load capacitance, the
larger the delay.

Most of the cell libraries include table models to specify the delays and timing
checks for various timing arcs of the cell. The table models are referred to as NLDM
and are used for delay, output slew, or other timing checks. The table models capture
the delay through the cell for various combinations of input transition time at the cell
input pin and total output capacitance at the cell output. An NLDM model for delay is
presented in a two-dimensional form, with the two independent variables being the input
transition time and the output load capacitance, and the entries in the table denoting
the delay. An example of such a table for a typical inverter cell is:

pin (OUT) {
max_transition: 1.0;
timing() {

related pin: "INP1";

timing_sense - negative_1umate;

cell rise{delay template 3x3){
index 1("0.1,0.3, 0.7"); /* Input transition *
index 2("0.16,0.35,1.43"); /* Output capacitance */
values (/* 016035143 */
/*0.1%* "0.0513,0.1537, 0.5280", \
03*/"0.1018,0.2327, 0.6476", \
0.7 % "0.1334,0.2973, 0.7252™);
¥

cell_fall{delay_template 3x3) {
index 1("0.1,0.3, 0.7"); /* Input transition *,
index 2 ("0.16,0.35, 1.43"); /* Output capacitance */
values (/*0.160.351.43 */"
/*0.1*/"0.0617,0.1537, 0.5280",\
/®*0.3 */"0.0918,0.2027, 0.5676",
0.7 % "0.1034,0.2273, 0.6452");

Figure 2.1: Inverter NLDM table

In the above example, the delays of the output pin OUT are described. This
portion of the cell description contains the rising and falling delay models for the tim-
ing arc from pin INP1 to pin OUT, as well as the max_transition allowed time at pin
OUT. There are separate models for the rise and fall delays (for the output pin) and
these are labeled as cell rise and cell _fall respectively. The type of indices and the or-
der of table lookup indices are described in the lookup table template delay_template_3x3.

11

lu_table template(delay template_3x3){
variable_1:input_net_transition;
variable 2 -total_output_net capacitance;
index_1("1000, 1001, 1002"),
index 2("1000, 1001, 1002"),

¥
Figure 2.2: Lookup table template

The input transition and the output capacitance can be in either order, that
is, variable_1 can be the output capacitance. However, these designations are usually
consistent across all templates in a library. This lookup table template specifies that
the first variable in the table is the input transition time and the second variable is the
output capacitance. The table values are specified like a nested loop with the first index
(index_1) being the outer (or least varying) variable and the second index (index_2) being
the inner (or most varying) variable and so on. There are three entries for each variable
and thus it corresponds to a 3-by-3 table. In most cases, the entries for the table are also
formatted like a table and the first index (index_1) can then be treated as a row index and
the second index (index_2) becomes equivalent to the column index. The index values
(for example 1000) are dummy placeholders which are overridden by the actual index
values in the cell fall and cell_rise delay tables.

The setup and hold constraints for a synchronous pin of a sequential cell are

normally described in terms of two-dimensional tables as illustrated below. The example
below shows the setup and hold timing information for the data pin of a flip-flop.

12

pin (D) {
direction - input;

timing () {
related pin:"CK";
timing_type : "setup_rising";

rise_constraint ("setuphold_template_3x3"){
index_1("0.4, 0.57, 0.84"); /* Data transition */
index_ 2("0.4, 0.57,0.84"); /* Clock transition */
values{ /~0.4 0.57 0.84 %\
0.4 % "0.063, 0.093, 0112)
087 % "0.526, 0.644, 0.824" 1\
0847 "0.720,0.839, 0.930");

fall_constraint ("setuphold_template_3x3")
index_1("0.4, 0.57, 0.84"); /* Data transition */
index_2("0.4, 0.57, 0.84"); /* Clock transition
values(/*0.4 0.57 0.84 */ \
/*0.4 % "D.762, 0.895, 0.969", \
/*0.57 %/ "0.804, 0.952, 0.166", \
/*0.84 % "0.159, 0.170, 0.245");

h

timing () {
related_pin : "CK";
timing_type - "hold_rising":

rise_constraint ("setuphold_template_3x3"){
index_1("0.4, 0.57, 0.84"); /* Data transition =/
index_ 2("0.4, 0.57,0.84"); /* Clock transition */
values{ /0.4 0.57 0.84 %\
0470220, -0.339_-0.584" 1\
08T % "-0.247,-0.381,-0.729" \
~0.84 7 "-0.398, -0.516, -0.864");

h

fall_constraint ("setuphold_template_3x3"){
index_1("0.4, 0.57, 0.84"): /~ Data transition */
index_2("0.4, 0.57, 0.84"):/* Clock transition */
vajues(/ 0.4 0.570.84 %\
/*0.4 % "-0.028, -0.307, -0.489", \
/*0.57 * "-0.408, -0.527, -0.649", \
/*0.84 * "-0.705, -0.839, -0.580");

h

Figure 2.3: Setup and Hold tables

13

2.2 Composite Current Source Models (CCS)

The timing models, such as NLDM, represent the delay through the timing arcs
based upon output load capacitance and input transition time. In reality, the load seen by
the cell output is comprised of capacitance and interconnect resistance. The interconnect
resistance becomes an issue since the NLDM approach assumes that the output loading
is purely capacitive. Even with non-zero interconnect resistance, these NLDM models
have been utilized when the effect of interconnect resistance is small. As the feature
size shrinks, the effect of interconnect resistance can result in large inaccuracy as the
waveforms become highly non-linear. Various modeling approaches provide additional
accuracy for the cell output drivers. Broadly, these approaches obtain higher accuracy by
modeling the output stage of the driver by an equivalent current source. The CCS timing
models provide the additional accuracy for modeling cell output drivers by using a time-
varying and voltage-dependent current source. The timing information is provided by
specifying detailed models for the receiver pin capacitance and output charging currents
under different scenarios.

2.2.1 Receiver Pin capacitance

The receiver pin capacitance can be specified with the help of a one dimensional
table as follows:

pin (IN) {

receiver_capacitance1_rise ("Lookup_table_4"){
index_1-("0.1.0.2. 0.3 0.4"): /* Input transition
| values("0.001040, 0.001072, 0.001074. 0.001085"):
h

Figure 2.4: Receiver Pin capacitance

The index_1 specifies the indices for input transition time for this pin. The one-
dimensional table in values specifies the receiver capacitance for rising waveform at an in-
put pin for the leading portion of the waveform. Similar to the receiver_capacitancel _rise
shown above, the receiver_capacitance2_rise specifies the rise capacitance for the trail-
ing portion of the input rising waveform. The fall capacitances (pin capacitance for
falling input waveform) are specified by the attributes receiver_capacitancel fall and re-
ceiver_capacitance2_fall respectively.

2.2.2 Output Current

The non-linear timing is represented in terms of output current. The output cur-
rent information is specified as a lookup table that is dependent on input transition time

14

and output load. The output current is specified for different combinations of input tran-
sition time and output capacitance. For each of these combinations, the output current
waveform is specified. Essentially, the waveform here refers to output current values
specified as a function of time.

pin (OUT){

timing () {
related pin "IN";
output_current fall () {
vector ("LOOKUP _TABLE 1x1x5"){
refarence time :5.06;/* Time of input crossing threshold =/
index_1("0.040"); /* Input transition =/
index_2("0.900"); / Output capacitance */
index_3("5.079e+00, 5.093e+00, 5.152e+00,
9.170e+00, 5.352e+00"),/* Time values */
f* Qutput charging current: =
valulps("-5.784e-02, -5.980e-02,-5.417e-02,
-4.257e-02, -2.184e-03");}

Figure 2.5: Output current specification

The index_1 and index_2 refer to the input transition time and the output load
used and index_3 is the time. The index_1 and index_2 (the input transition time and
output capacitance) can have only one value each. The index_3 refers to the time values
and the table values refer to the corresponding output current. Thus, for the given input
transition time and output load, the output current waveform as a function of time is
available.

2.2.3 CCSN model and parameters

The CCB refers to the source-drain channel connected portion of a cell. For ex-
ample, single stage cells such as an inverter, nand and nor cells contain only one CCB
- the entire cell is connected through using one channel connection region. Multi-stage
cells such as and cells, or or cells, contain multiple CCBs.

The CCSN models are usually specified for the first CCB driven by the cell input,
and the last CCB driving the cell output. These are specified using steady state current,
output voltage and propagated noise models. For single stage combinational cells such as
nand and nor cells, the CCS noise models are specified for each timing arc. These cells
have only one CCB and thus the models are from input pins to the output pin of the cell.
An example model for nand cell is:

15

pin (OUT){

timing () {
related_pin - "IN1"

cesn_first_stage() { /* First stage CCB */

B

is_needed :true;

stage_type : both; /*CCB contains pull-up and pull-down®/
is_inverting : true;

miller_cap_rise - 0.8;

miller_cap_fall - 0.5;

dc_current (tcsn_dc){

index_1("-0.9, 0, 0.5, 1.35, 1.8"); /* Input voltage */
index_2 ("-0.9, 0, 0.5, 1.35, 1.8"); /* Output voltage™/
values (\

"1.56,0.42, .. "):/* Current at output pin *}

output_voltage rise (){

vector (ccsn_ovrf) {
index_1("0.01"); /™ Rail-to-rail input transition */
index_2("0.001"); /~ Output net capacitance */
index_3("0.3,0.5,0.8"); /~Time */
values ("0.27, 0.63,0.81")].

output_voltage fall(){
vector (ccsn_ovrf)
index_1 ("0.01"); / Rail-to-rail input transition */
index_2 ("0.001"); /* Output net capacitance *f
index_3("0.2, 0.4, 06" /Time ™
values ("0.81, 0.63, 0.27"):}.

propagated noise low (){

vector(ccsn_pnih) {
index_1("0.5"); /* Input glitch height */
index_2 ("0.6"); /* Input glitch width =/
index_3 ("0.05"); /* Output net capacitance */
index_4("0.3,0.4,0.5,0.7"): /* Time *
values ("0.19, 0.23,0.19, 0.11");

propagated_noise_high () {

Figure 2.6: CCSN example

The attribute ccsn_first_stage indicates that the model is for the first stage CCB
of the nand cell. As mentioned before, the nand cell has only one CCB. The attribute
is_needed is almost always true with the exception being that for nonfunctional cells such
as load cells and antenna cells. The stage_type with value both specifies that this stage
has both pull-up and pull-down structures. The miller_cap_rise and miller_cap_fall repre-
sent the Miller capacitancesl for the rising and falling output transitions respectively.

The dc_current tables represent the DC current at the output pin for different
combinations of input and output pin voltages. The index_1 specifies the input voltage

16

and index_2 specifies the output voltage. The values in the two-dimensional table spec-
ify the DC current at the CCB output. The input voltages and output currents are all
specified in library units (normally Volt and mA).

The output_voltage rise and output_voltage_fall constructs contain the timing in-
formation for the CCB output rising and falling respectively. These are specified as
multi-dimensional tables for the CCB output node. The multidimensional tables are or-
ganized as multiple tables specifying the rising and falling output voltages for different
input transition time and output net capacitances. Each table has index_1 specifying the
rail-to-rail input transition time rate and index_2 specifying the output net capacitance.
The index_3 specifies the times when the output voltage crosses specific threshold points.
In each multi-dimensional table, the voltage crossing points are fixed and the time values
when the CCB output node crosses the voltage are specified in index_3.

The propagated_noise_high and propagated noise_low models specify multidimen-
sional tables which provide noise propagation information through the CCB. These mod-
els characterize the crosstalk glitch (or noise) propagation from an input to the output
of the CCB. The characterization uses symmetric triangular waveform at the input. The
multi-dimensional tables for propagated_noise are organized as multiple tables specifying
the glitch waveform at the output of the CCB. These multi-dimensional tables contain:
1. input glitch magnitude (in index_1), 2. Input glitch width (in index_2), 3. CCB output
net capacitance (in index_3), and 4. time (in index_4).

2.3 NLDM table look up and delay calculations

As illustrated above, an inverter cell with an NLDM model has the following tables:

Rise delay

Fall delay

Rise transition

Fall transition

Given the input transition time and output capacitance of such a cell, as shown
in Figure 12, the rise delay is obtained from the cell_rise table for 15ps input transition
time (falling) and 10fF load, and the fall delay is obtained From the cell fall table for
20ps input transition time (rising) and 10fF load.

17

/L

20ps 15ps i

<

Figure 2.7: Inverter delay calculation example

The info about the inverting nature of the cell is present in the field called
timing_sense which specifies whether the timing arc is positive_unate or negative_unate.
For the example inverter cell, the timing arc is negative_unate which implies that the out-
put pin transition direction is opposite (negative) of the input pin transition direction.
Thus, the cell_rise table lookup corresponds to the falling transition time at the input pin.

If the input transition time and the output capacitance correspond to a table
entry, the table lookup is trivial since the timing value corresponds directly to the value
in the table. The example below corresponds to a general case where the lookup does not
correspond to any of the entries available in the table. In such cases, two-dimensional
interpolation is utilized to provide the resulting timing value. The two nearest table in-
dices in each dimension are chosen for the table interpolation.

Consider the table lookup for fall transition (example table specified above) for the
input transition time of 0.15ns and an output capacitance of 1.16pF. The corresponding
section of the fall transition table relevant for two-dimensional interpolation is reproduced
below.

fall transition(delay_ template 3x3) {
dndex 1 (P0L008. . ")
index 2 (". . . 0.35, 1.43");

values [%
T oo B821937; 0272807, 0N
o 02327, 076 TET

Figure 2.8: Delay table for inverter

In the formulation below, the two index_1 values are denoted as x1 and x2;
the two index_2 values are denoted as y1 and y2 and the corresponding table values are
denoted as T11, T12, T21 and T22 respectively. If the table lookup is required for (x0,
y0), the lookup value T00 is obtained by interpolation and is given by:

TO0 = x20 * y20 * T11 + x20 * yO1 * T12 + x01 * y20 * T21 + x01 * y01

*T22
where,

18

Substituting 0.15 for index_1 and 1.16 for index_2 results in the fall transition value

of:

T00 = 0.75 * 0.25 * 0.1937 + 0.75 * 0.75 * 0.7280 + 0.25 * 0.25 * 0.2327
+ 0.25 * 0.75 * 0.7676
= 0.6043

Note that the equations above are valid for interpolation as well as extrapolation - that
is when the indices (x0, y0) lie outside the characterized range of indices. As an example,
for the table lookup with 0.05 for index_1 and 1.7 for index_2, the fall transition value is
obtained as:
T00 = 1.25 * (-0.25) * 0.1937 + 1.25 * 1.25 * 0.7280 + (-0.25) * (-0.25) * 0.2327
+ (-0.25) * 1.25 * 0.7676
= 0.8516

Hence, we can understand how the delay values are calculated by looking up
trans and cap values from the tables.

In this chapter, we discussed the concept of NLDM and CCSN tables and also

how the delay values are calculated. In the next chapter we’ll discuss how the timing libs
are generated and different concepts of it.

19

Chapter 3

Timing abstraction

In any ASIC Design, the design is made up of many analog as well as digital
blocks. Timing models are generated for the complex and big logic blocks from Prime-
Time in order to increase the accuracy and reduce the runtime of the whole design. These
models are either generated by using Interface Logic Models (ILM), Extracted Timing
Models (ETM) or Quick models. The ETMs are usually used because they are more
accurate, compact and very advantageous from the security point of view of an IP ven-
dor. This chapter covers the details of ETM models, their extraction, validation and
corresponding methodology.

20

3.1 Timing Models

A typical chip can contain synthesized logic, netlist-based cores, and predesigned
custom blocks, as shown in figure 14.

OO0
DP Memory Custom block
uP
Data uc Cells Netlist-based core

Control Logic Synthesized logic

| S

NN O O O Y W
Oopodg@Uoo o

OOt

Figure 3.1: ASIC structure

Before you can perform static timing analysis on a chip using PrimeTime, every
leaf cell must have a timing model. For static timing purposes, a leaf cell can be a simple

macro cell (such as a NAND, NOR, or flip-flop) or a complex block (such as a RAM or
microprocessor).

Synthesized logic is modeled as a netlist containing gates such as NANDs, NORs,
and flip-flops. The gates are modeled using the standard Synopsys modeling language.
They are then compiled into a logic library database (.db) file using Library Compiler.
This logic library is the same library used by Design Compiler. A predesigned custom
block is defined at the transistor level and imported into the chip as a fixed unit, such as
a RAM or microprocessor block. Because a gate-level netlist does not exist for this type
of block, the Liberty modeling language can be used to describe the timing behavior of
the block.

PrimeTime provides three kinds of modeling techniques for creating timing models:

e Interface Logic Models (ILM’s)
e Quick Timing Models (QTM’s)
e Extracted Timing Models (ETM’s)

21

The ILMs are the kinds of models which capture the cells that are at the boundary
of the particular design. Hence the name Interface logic models. It captures the flops
that are connected to the input and output pins and also the combinational logic. It
generates a Verilog for such config and corresponding extraction in the form of parasitics
file (.spef). As it exposes the boundary info and the elements present, it is not usually
used because it does not provide required security wrt design that is required for an IP
design particularly. Also the accuracy of the model is not up to the mark. Hence in order
to avoid all of this the ETMs are used.

3.2 Extracted Timing Models

PrimeTime can generate a static timing model for the current design from its gate-
level netlist. The generated model has the same timing behavior as the original netlist,
and can be used in place of the original netlist in a hierarchical timing analysis. Using
an extracted timing model has these advantages:

e The generated model is usually much smaller than the original netlist. When you
use extracted models in place of netlists in PrimeTime, you can significantly reduce
the time needed to analyze a large design.

e Using a model in place of a netlist prevents a user from seeing the contents of the
block, allowing the block to be shared while protecting the intellectual property of
the block creator.

The ETMs are an abstraction of the block using sequential and combinational
timing arcs. NLDM tables are extracted for each of the timing arcs whose delay is a
function of input transitions and output loads. The extraction process requires the block
level netlist, logic libraries and clocks and constraints. PrimeTime takes all of these as
inputs and generates a timing model for that block.

3.2.1 Model Extraction

Timing model extraction creates a timing arc for each path in the design from an
input port to a register, an input port to an output port, and from a register to an output
port. Figure 7 and 8 show an example of a gate-level design named simple and the model
extracted from the netlist.

22

simple

J out2

i3 I "
"> P G_LDH[\.— - [>—{ outt
i
L

iy

clkin b= clk

clkin2

Figure 3.2: ETM generation-netlist

simple
simple_core
8 53_1 out2 out2
i
i2 i2
clkin clkin
clkin2 ol MK outt

Figure 3.3: ETM generated model

The generated timing model is another design containing a single leaf cell, as
shown in Figure 3. The core cell is connected directly to input and output ports of the
model design. This cell contains the pin-to-pin timing arcs of the extracted model. Figure
4 shows the timing arcs of the core cell. These arcs are extracted from the timing paths
of the original design.

23

|3:;‘_ T 3 GUT.E
' 1 out2
i2 w
1|1 clkin 'ﬁ
". ". I| i3_clkin2
i i outi
i2_clkin I| I| '."
| /
| I:'l f I
f / / 7
/ i ,/
i g
clkin 12— / T
_ 7 ckin2_outd
clking 4—=—"

Figure 3.4: ETM model arcs

The delay data in the timing arcs is accurate for a range of operating envi-
ronments. The extracted delay data does not depend on the specific values from input
transition times, output capacitive loads, input arrival times, output required times, and
so on. When the model is used in a design, the arc delays vary with the input transition
times and output capacitive loads. This is called a context-independent model because
it works correctly in a variety of contexts.

The characteristics of the extracted model depend on the operating conditions
and wire load model in effect at the time of extraction. However, clocking conditions and
external constraints do not affect the model extraction process. But for the validation of
the model, these parameters are very important as the model is sensitive to the changes
in them. Also at the time of model extraction it should be made sure that the design
for which the model is being extracted is free from any violations. The extract_model is
the command used for the extraction and it supports a number of switches to include the
presence of latches at the interface, noise of the design. It also generates a test design
model which can be used for the validation purposes. The model after generation can be
further validated in order to see the functionality under same working constraints and
conditions.

3.2.2 Model Validation

The extracted model has to be validated against the original netlist for the timing
characteristics. During validation, there might be timing mismatches between the model
and netlist. These failures could occur because of setup issues, pessimism in graph-based
analysis, or limitations in modeling. The validation can be done in two ways 1. Auto

24

validation; 2. Manual validation. PrimeTime provides the option of the auto validation
which can be used while extracting the model. It extracts the model and automatically
validates it wrt netlist design. The other option is to manually validate the model.

For the manual validation, PrimeTime has provided two commands: write_interface_timing
and compare_interface_timing which can be used to generate various reports and do the
validation.

e write_interface_timing

This command is used to write the timing report for the design wrt to the in-
terface. It goes through all the elements that are present at the interface and
generates a timing report for each of them. The parameters in the report include
the worst path timing arc of each pin/port wrt to the clock, the lumped and total
capacitances, transition times at each pin and design rules. The multiple arcs that
can be included are setup, hold, min_seq_delay, max_seq_delay, recovery, removal,
clock_gating_setup, clock_gating_hold, min_combo_delay and max_combo_delay.

e compare_interface timing

The previous command is used at the netlist level as well as model level. It gen-
erates two reports at the netlist as well as model level which can be compared in
order to find the differences in the parameters.

By doing this procedure we can make sure that the model that is generated can be used at
the hierarchy level instead of the whole netlist. Violations can be seen in the comparison
reports which can be resolved by looking at the individual paths and changing certain
parameters that can alter the delays in the design.

3.2.3 Flow/Methodology

The model extraction and validation basically follows the following flow /methodology:

25

Read netlist design
and create
environment with
constraints

v

Extract the model with
required options

Write the interface
timing report for the
netlist design

v

Remove the original
design

v

Read the test design
and link the model lib

A4
Apply the same
constraints as in netlist
design and Write the
interface timing report
for the model

Compare the interface
reports for netlist and
the model

Figure 3.5: ETM methodology

e Load the design with netlist

The initial step is to load the design as is with the netlist, constraints and the
spef. The netlists of all the small and big modules that are required in the timing
analysis of a design have to be included here in form of Verilog. The standard cell
libraries have also to be included based on which the synthesized netlist is gener-
ated. The constraints that are to be specified are clock definitions, the transition
time values to the specific pins/ports, setting up the false paths, timing derates to
the clock and data paths, the other PrimeTime related files etc. The spef is the
parasitic RC data extraction for the whole design. Hence, the whole environment
has to be setup like this in PrimeTime.

26

e Extract model

Now that the design is setup, we can extract the model for the design. We have
to make sure that the design is free from violations and that many constraints
like false paths, multicycle paths, clock definitions, latch declarations, removing
the unnecessary constraints etc. are specified properly. Then we can extract the
model with the required options. The model can be extracted using the command
extract_model with appropriate switches.

e Write the interface report

The interface timing report is now generated for the netlist design. The input/output
constraints like input and output delays have to be applied before writing the report.

o Model Instantiation

Now that the model has been extracted we will have to validate it. In order to
do that we have to instantiate it in place of the netlist design. Hence we remove
the original design and link the created model lib to the test design that is created.
We have to apply the same constraints that we applied in the netlist design and
create the same environment for the model design.

e Interface report generation and comparison

Now we can write the interface timing report for the model design provided we
have specified the same input/output delay constraints to that of the netlist design.
The report will contain the values for the same parameters mentioned above. Then
we can compare the interface timing reports for the netlist and model design.

o Remove violations

The comparison report will show violations if any and we can debug further in
order to determine which parameters are changing the incremental delays in the
timing reports. The report_etm_arc is a command that is used at the netlist level
design in order to determine the path delays for the netlist as well as the extracted
model. The probable parameters that can be responsible for the changes can be
derates, transition time and capacitance. By making appropriate changes, we can
remove the violations.

This methodology can be incorporated in the main flow and automation can be brought
in action in order to resolve the violations observed.

27

Chapter 4

Implementation vs. Sign-off Timing
Correlation

The basic process of an IP design includes the physical design steps that are
carried out in any physical implementation tool. After the physical design is finished and
the design is optimized for timing, it is taken to Timing analysis tool for timing sign-off.
The timing between implementation and sign-off is varying because of several parameters
like AOCV derates, fill, spef etc. Also the correlation can be based on the factors like
buffers/inverters added while the timing optimization is done during implementation and
sign-off and increase in design area. The purpose is to reduce the timing gap between
these two and introduce the use of AOCV derates in physical design and look at the
impact of it on the timing and area requirements.

28

4.1 Introduction

The IP design follows a flow that includes the physical design steps like Floor-
plan, placement, CTS, hold fixing, routing, DRC and LVS checks that are performed in
IC Compiler. This design after completion of all these steps is taken to PrimeTime for
timing sign-off. The ECO (Engineering Change Order) is performed here and timing is
optimized to make the design timing violation free. The changes in the design are taken
back to ICC and the design again undergoes the physical design steps. The timing be-
tween ICC and PT can be very different because of certain parameters like AOCV, spef
and fill. The description of some parameters can be given as follows:

4.1.1 Advanced On-Chip Variation derates (AOCYV)

Usually, global flat derates value are applied to a design to add margin to ac-
count for On Chip Variation. While this traditional approach is a reasonable method
to bind the process variations for 130-nm and 90-nm designs, it can add excessive and
pessimistic margins for designs at smaller geometries and result in over-design, reduced
design performance, and longer design cycles. Advanced OCV (AOCYV) analysis naturally
extends OCV analysis and delivers an improved method of adding margin in the design.
AOCYV models the random and systematic variations across an IC that affect timing by
using variable derating factors that consider the location and the logic depth of each
path being analyzed. By using context-specific derating values instead of a single global
derating value, you can reduce excessive design margins and have fewer timing violations.

The pessimism-reducing approach of AOCV minimizes unnecessary over-design
and enables you to reach timing closure more quickly and with greater confidence. Prime-
Time uses derating tables to specify the AOCV information. PrimeTime calculates and
applies variable derating factors that consider the location and the depth of each path
being analyzed. AOCV analysis uses metrics such as path-depth and location based
bounding box to calculate a context-specific AOCV derating factor to apply to the path,
replacing the use of a global derating factor.

To perform graph-based AOCV analysis, PrimeTime chooses conservative values of
path-depth and location-based bounding box to bind the worst-case path through a cell.
PrimeTime uses the AOCV depth and bounding box metrics to lookup the appropriate
derating factor from the derate tables and applied to the timing arc. The AOCV metrics
computation is different for graph-based and path-based AOCV. In graph-based AOCV,
the AOCV metrics are calculated for all paths through each timing arc. In path-based
mode, the AOCV metrics are calculated specific to the path being analyzed.

4.1.2 AOQOCYV file format

You must specify the AOCV derating tables in the AOCYV file format. The follow-
ing table types are supported:

29

e One-dimensional tables in either depth or distance

e Two-dimensional tables in both depth and distance

PT supports the two dimensional tables containing both distance and depth. ICC
doesnt support this type of AOCV specification. It supports only single row from the
specified two dimensional tables. The example of an AOCYV file can be given as:

rf tvpe: rise fall

delay tvpe: cell net

derate type: early

object_sapec:

depth: 0.1 2 3

distance: 100 200

table: 0,87 0.93 0.95 0.96
B3 ac a7 ._':,.:|

Figure 4.1: AOCV file format

The design when taken for sign-off, AOCV derates are applied and timing anal-
ysis is performed. But when physical design is performed the flat derates are applied.
As a result there is a difference in sign-off and implementation timing. So there are a
number of experiments that are performed in order to check the timing between them
and also the effects on the design area and other parameter changes when AOCV derates
are introduced in implementation. The experiments can be broadly categorized into two
categories:

e Introducing AOCYV in implementation and compare the timing between it and sign-

off.

e Observing the number of buffers required for the timing fix, timing numbers and
area increase.

4.2 Application of AOCYV during implementation and
impact on timing

The physical design steps till now included the flat derates. Now we will intro-
duce the AOCV derates in design steps and observe the effects of it on timing. Also the
sign-off sessions will have the AOCV derates applied for all the experiments. Now for
the same design we will run two sessions; 1. Whole design flow with flat derates applied
and 2. With AOCV derates applied. This has been done in order to clearly see the slack
differences and compare them.

30

There is a small procedure that has to be followed in order to properly anno-
tate these derates in the design flow. Since the tool doesnt support the full 2 dimensional
tables we have to specify the row number of the table that we want to annotate and use
for the respective cells. The command to read the aocv files is given as:

read_aocvm <aocv_file_name>

This command is modified as follows:

read_aocvm distance_row <no. of the row> -<min/max corner> <file_name>

This command specifies the no. of the row that is to be read, for a min or max
corner from a specified aocv file. The no of row specification is important because the
value of AOCV derates increase/decrease diagonally depending upon the type of the cell it
is used on. Hence with the help of this we can control the derate value applied to the cells.

Also while setting up the design and sign-off sessions, there are certain variables that
are to be set to a certain value in order to enable/disable AOCV analysis in the tool.
The setting of these variables is very important. The variables are listed in the table
below with their corresponding values in the tools.

Variables

Sign-off

Implementation

timing aocvm_analvsis mode

combined launch capture depth

Combined clock and data metrics

timing aocvimn_ocv_precedence | True True
compatibility

Timing_aocvm_enable analvsis True True
Timing_remove clock reconver | True True
gence_pessimism

Pba_aocvm_onlv_mode True -Not Available-

Figure 4.2: Important required variables

4.2.1 Methodology

The following methodology is used in order to conduct the experiments and get

the desired results.

e Generate the final databases from design sessions (with and w/o AOCV derates).
Pick up the spef, UPF, Verilog netlist and the constraints file .sdc from the databases.

31

e Run the sign-off sessions for the setup and hold corners for both the databases.
Now for the timing comparisons, we will keep PT as benchmark and compare the
ICC slacks to it. To make sure that we are comparing the slacks of same paths,
generate the timing slacks for a large number of paths and list out the startpoint,
startpoint clock, endpoint and endpoint clock for each path.

e For each of these pairs, well generate a timing report in ICC and compare its slack
wrt PT. After generating a histogram of all the slack differences for all the paths,
well be able to see how close Implementation timing is to sign-off.

e This procedure has to be followed separately for both setup and hold corners and
respective histograms have to be generated to see the timing correlation for each.

4.2.2 Results

Now in order to perform these experiments, two implementations of the same de-
sign were fired with AOCYV enabled in one and flat derate in another. Also timing sessions
were setup for setup and hold corners for each design session. The results that I found
are as follows. The following figures show the setup histograms.

32

El R2 ACT CUM PER
N/A 0 0 0 0.00
< -600 57 E7 0.89
-550 -600 0 57 0.00
=500 =550 18 5 0.28
-450 =500 9 B4 0.14
=400 -450 0 84 0.00
-350 -400 o 84 0.00
-300 -350 0 g4 0.00
=250 =300 0 B4 0.00
-200 -250 0 B4 0.00
=150 200 0 B4 0.00
-100 -150 2 86 0.03
-90 -100 0 8c 0.00
-0 =80 4 90 0.06
=70 -80 0 80 0.00
-0 -T0 [95 0.00
-50 -&0 26 122 0.41
-40 -E50 128 250 2.00
=30 =40 216 466 3.38
=20 =30 439 805 6.87
-10 -20 bEd 1573 10.46
o -1l 575 2148 9.00

10 0 997 3145 15 61
&0 10 105 J250 1.64
a0 20 135 J3gs 2,11
40 30 289 3674 4.52
=1 40 E76 4350 10.58

B0 50 854 524 13 37
70 60 TBE 880 12.31
B0 70 306 6296 4.79
a0 80 E4 6350 0.85
100 90 13 6363 0.20
150 100 24 387 0. 38
200 150 0 5387 0.00
250 200 0 6387 0.00
300 250 0 6387 0.00
350 300 0 6337 0.00
400 350 0 £387 0.00
» 400 0 5387 0.00

Figure 4.3: Setup histogram without AOCV

33

El R2 ACT CUM PER

N/& 0] g 0.00
< -600 57) L
-550 -&600 27 84 42
=500 =550 0 84 oo
=450 -500 0 B4 0o
-400 -450 0 a4 on
-350 -400] 84 on
-300 350 0 84 on
=250 =300 0 84 00
-200 -250 0 B4 oo
-150 -Z00] 24 on
-100 -150 0 a4 on
-50 -100 1] B84 oo
-80 -90 0 84 0o
-70 =80 0 84 0o
-60 =70 0 24 on
-50 -&0 0 84 on
-40 =50 0 54 oo
-30 -40 0 84 oo
=20 =30 0 24 oo
-10 -20 0 a4 on
0 =10 218 anz

10 0 1450 1752
20 10 825 8577
30 20 189 2766
40 a0 282 3048
B0 40 712 3760

[[y -]
OO CP O PCONNLEHANPER WO D000 NO00EDOEREREe0d
L
L=

B0 50 1232 4592 15
70 60 8BS 5877 76
Bl 10 360 6237 &0
ao a0 140 6377 18
100 90 a3 6410 51
150 100 22 B4 32 3
200 150] 6432 oo
250 Z00 0 6432 on
aon 250 0 £432 on
350 300 0 B432 oo
400 350 0 E432 oo
» 400 0 6432 oo

Figure 4.4: Setup histogram with AOCV

The above figures show the setup histogram for the PT session from each ICC
session. The 1st and 2nd columns show the range in which the slack of the path is falling.
The 3rd column shows the number of paths falling in that range. The 4th column shows
the accumulative no of paths and the 5th shows the percentage of the particular range of
the total paths. The first figure is from the session with flat derates and second is that
with AOCV derates. As we look at Figure 2, we can see that the setup for all the paths
for the session with flat derates is uniformly distributed and almost half of the paths lie
in the negative slack region. That means that the implementation slack is more than the
other. Now if we look at the setup values with AOCV then a significant improvement can
be seen in the slack differences. The distribution has become tighter than the other and
the slacks have come in the positive part of the distribution that means formers slack is
becoming closer to that of the latters. Now well look at the hold results.For the timing
experiments, the hold fixing has been done during implementation and ECO has been
done during sign-off. Also for all the experiments, AOCV has been enabled. The below
figures show the histograms for the hold corners with and without AOCV.

34

El R2 ACT CUM PER
H/A 1] 0 0 .00
< =600 0] oo
=550 -c00 0 0 .no
-500 -550 0 0 .00
=450 =500 8 8 12
=400 -450 1 9 .0
-350 -400 0 g 0o
=300 -350 0 9 oo
=250 -300 I 9 .00
-200 -250 0 o .00
=150 =200 0 g .o
-100 -150 5 14 .07
-90 -100 i 15 .m
-80 =90 0 15 .00
=70 =-BO [21 .09
-60 -70 11 a2 .16
-50 -60 25 57 .36

-40 -B0 130 196
=30 =40 310 EDg
-20 -30 1289 1795

.00
.47
58

bt D L

-10 -20 2185 3960 .21
o -1@ 1765 L5725 45
10 1] 1025 6750 .78
20 10 1B6 6936 68
30 20 0 B936 .00
40 30 o 6936 .00
&0 40 0 E936 -0o
60 50 0 6938 0o
10 B 0 6936 oo
B0 10 o 6036 .00
=] a0 0 6936 .00
100 a0] 6236 .00
150 100 0 E936 .00
200 150 0 5936 0o
250 200 o 6936 .00
300 250 0 E936 .0a
350 300 0 6936 .0o
400 350 0 B936 .00
» 400 0 B936 .00

Figure 4.5: Hold histogram without AOCV

From the figure we can see that majority of the paths fall in the negative slacks region.
That means that the formers slacks are more than latters. i.e. Implementation results
are more pessimistic than sign-off. Now we will look at the results for AOCV enabled
design session.

35

El
N/&

-550
-500
-450
=400
-350
-300
=250
-200
-150
=100
-90
-80
=10
-60
-E0
=40
=30
=20
-10

10
20
a0
40
=0
&0
70
B0
a0
100
150
200
250
300
350
400

Figure 4.6: Hold histogram with AOCV

From the above figure it is evident that AOCV enablement brings the slacks in Im-
plementation closer to sign-off ultimately leading to bringing the majority of the paths
in the positive slacks range. Hence we can conclude that the timing between sign off and
implementation is becoming closer and tighter by introduction of AOCV in design steps.

4.3 Impact of AOCV on buffer count and TNS/WNS

During the physical design steps, after the Clock Tree Synthesis (CTS) stage the
tool performs a hold optimization. In this stage, for hold optimization, it adds buffers to
all the paths in order to decrease the slacks and thus reducing the Worst Negative Slack
(WNS) and Total Negative Slack (TNS). In order to determine how the AOCV usage is
impacting the buffer count and WNS TNS of design, I ran multiple sessions of the same

R2

~600
-600
-550
=500
=450
=400
=350
=300
-a50
=200
-150
-100
=90
-80
=70
-60
=50
-40
=30
=20
-10
0

10
20
30
40
50
60
70
a0
90
100
150
200
250
300
350
400

design with different configuration.

oSO ooooRoO0uoeoooaH

nE R
ﬁwh
W ro

3556

]
B
=

[N e B e e T o Y e e e e e e e e

36

10
1152
2186
2710
E266
7006
7014
7014
7014
7014
7014
7014
7014
7014
7014
7014
7014
7014
7014

L I
ttatatatatatatadititst i tatatatata e e L e L e L L YT

4.3.1 Configuration of experiments

The Implementation sessions were configured in four different aspects keeping the
AOCV enablement and hold fixing to be variables.

AOCYV enabled and hold fixing performed (AOCV_HOLD).

AOCV enabled and hold fixing not performed (AOCV_NOHOLD).

AOCYV disabled and hold fixing not performed (NOAOCV_NOHOLD).

AOCYV disabled and hold fixing performed (NOAOCV_HOLD).

These configurations define the basic platform on which we can determine how
the AOCV application is affecting the hold optimization, and whether or not not fixing
hold in Implementation helps to our purpose. Whether or not AOCYV is applied or hold
fixing is done,, when the design is taken for sign-off, ECO is performed which optimizes
the design timing with AOCV enabled. This will also lead to changes in the buffer count
and TNS/WNS of the design.

In the AOCV tables, as you move from the first element towards the last ele-
ment diagonally, the derate value increases. By default, design tool takes the last row of
the table unless specified like discussed in the section 4.2 above. Hence we will specifi-
cally provide the number of row to be 0 in order to make slacks less pessimistic and avoid
over-optimization.

4.3.2 Flow/Methodology

e According to the configuration, change the settings in the flow such that the de-
sired design parameters are obtained. For example, if we want a design with
AOCV_NOHOLD configuration, then make sure that the variables are being set
to their values properly and that the AOCV files are being sourced completely.
Also make sure that the design does not undergo the hold optimization stage.

e After the design is finished, dump out a qor report. This report contains the number
of buffers/inverters present in the design. Also it contains the TNS/WNS of the
design at that stage.

e Setup the timing sessions for each of these design sessions as discussed earlier for
both setup and hold corners. These timing sessions have AOCV enabled with the
variables set to the values specified.

e Now perform the ECO on the design, so that the timing optimization is done. Here
also buffer addition/removal is done here in order to optimize hold. Generate a qor
report and determine the number of buffers added and the final TNS and WNS.
The entire path timing reporting is done path based in PT because it gives a clearer
picture regarding the timing.

37

4.3.3 Results

After doing all the experiments, we have the values of number of buffers that are
added for each configuration at the respective stage and also TNS and WNS for each of
them. They can be tabulated as follows:

Configuration PT- ICC- Total Pre-Fix-PT-hold Post-fix-PT-hold
Buffers | Buffers | Buffers | WNS/TINS WNS/TNS
WNS TNS WNS TNS
AOCV_HOLD 364 18390 | 35700 |-1100 -5069 -273.7 -3
AOCV_NOHOLD 3643 71312 24291 | -1096 45234 | -273 -800
NOAOQOCV_HOLD 1705 13000 | 30264 | -1097 -23960 | -273 -690
NOAOCV_NOHOLD | 3570 7300 24300 | -1096 43133 | -274 -689

Figure 4.7: Buffer count and timing values

Configuration Pre-ICC Post- ICC Pre-Fix-PT-setup | Post-fix-PT-setup
WNS/TNS WNS/TNS
WNS TNS WNS | TNS WNS | INS WNS TNS
AOCV_HOLD -303 -7932 -86.2 [-2392 | -1087 | -60200 | -1080 -60200
AOCV_NOHOLD -337 -150155 | -131 | -26800 | -2048 | -97570 | -2020 -102200
NOAOCV_HOLD -92 -2736 -64 -1400 | -1088 | -57122 | -1080 -37100
NOAOCV_NOHOLD | -294 49600 | -62 -3367 | -2079 | -95361 | -2070 -101500

Figure 4.8: Timing values

The above tables depict the results for the multiple experiments performed.
The pre and post hold values are from PT, taken before and after the ECO is performed.
Same thing is valid for setup values. The pre ICC values are obtained from the final
database of the design before it is taken to sign-off. After performing ECO, changes are
reverted back to implementation tool for design improvement and the post ICC values

38

are obtained after the changes are implemented faithfully.

The buffer counts refer to the number of buffers added at a particular stage in
PT or ICC. PT buffers are the number of buffers added in PT after performing ECO.
Same goes for the ICC when it fixes hold in one of its design stage. The total is the total
numbers of buffers in a design after all the fixes are performed.

Now well look at the results wrt the buffers added and the final timing values
obtained. Of all the sessions, the hold values for the sessions where hold fixing is done in
ICC are the best. The remaining two sessions have bad values for hold timing. So from
a practical standpoint, these configurations are less useful than others.

Now the other two sessions where the hold fixing is performed has AOCV en-
abled and disabled. The session where it is enabled, has better hold nos. than the other
one. But, there is another side of it. If we look at the buffer count of both the ses-
sions, the latter is far better than the former. There is an almost 5k difference in buffer
count between them and that too for the same hold values. So this is a negative point for
the former. Also the setup values and ICC hold values for the latter is better than former.

So when there are area considerations, the latter has an edge over the former
and should be used for the design purposes. Hence, we can conclude that even though
the AOCV application brings the timing between sign-off and implementation closer, the
buffer count values and final timing values are affected to some extent and hence the
AOCYV application cannot be used during design in ICC.

39

Chapter 5

Conclusion

The IP group delivers the quality IPs to various vendors for integration to the
SoCs and processor chips. Now as the complexity of IPs and technology is growing leaps
and bounds, there has arisen a need to reduce the sign off time and delivery time of
the IP. The TP block contains various digital and analog blocks/CBBs (Custom Building
Blocks) put together. The signoff is done by putting the digital and CBBs opened up
in the form of Verilogs. This leads to a greater runtime, huge usage of resources, large
memory requirements and large violation resolution time. As a result, the idea of boxing
up the CBBs has come into picture.

This can be done by generating the timing models for the CBBs individually.
The generated blocks can be validated then using the derived ETM validation method-
ology so that we can make sure that the lib when used at the upper level of hierarchy
will not cause any violations. Hence during signoff process these libs for the CBBs can
be directly used in place of the whole netlist design.

The advantages of boxing up the CBBs are many; firstly the runtime for the
whole design comes down significantly. Secondly the resource usage and memory require-
ments also decrease. The SPEF that has to be generated at the main design level does not
contain the CBB SPEF's; the constraints that are used also contain the most abstract con-
straints for the CBBs. As a result, the complexity of the STA environment also decreases.

Also, the whole designing today is done using automated tools and a number
of parameters are incorporated while using them. One of such tools is PrimeTime, which
is primarily focused to focus on the timing part of a design. The timing sign-off is usually
done in PT.

In order to reduce the iterations during sign-off and bring the ICC timing closer
to PT, several parameters were tested like introduction to AOCV in ICC. The results
were generated by doing multiple experiments and it was concluded that even though the
overall ICC timing is becoming closer to PT, it is affecting the other design parameters
like area and timing values. Hence the use of AOCV will not be incorporated in the flow.

40

References

1) Synopsys, PrimeTime User Guide,H-2013.

2) J.Bhasker, Rakesh Chadha, Static Timing Analysis for Nanometer Designs.
3) Synopsys, ETM Appnote 1.0.

4) Intelpedia.

5) Synopsys,IC Compiler User Guide,H-2013.
6) Synopsys,AOCVM Appnote 1.0.

7) INTEL Internal Documents.

)

8) Synopsys,CCS Noise Liberty Syntaz.

41

