
EFFIECENT FE METHODOLOGY FOR
RTL INTEGRATION IN LARGE CPU

DESIGN

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGINEERING

(VLSI Design)

By
PRAJAPATI PINKESHKUMAR HARISH

12MECV22

Department of Electronics & Communication Engineering

Institute of Technology, Nirma University

Ahmedabad

May, 2014

EFFIECENT FE METHODOLOGY FOR
RTL INTEGRATION IN LARGE CPU

DESIGN

Major Project

Submitted in partial fulfillment of the requirements
for the degree of

M.TECH in VLSI

By
PRAJAPATI PINKESHKUMAR HARISH

12MECV22

Guided By
Internal Guide

Dr. Usha Mehta
External Guide

Mr. R, Satish Kumar
Mr. Sandip Rajput

Department of Electronics Communication Engineering

Institute of Technology, Nirma University
Ahmedabad

May, 2014

iii

Declaration

This is to certify that

i) I, Pinkesh Prajapati a student of Master in Technology in VLSI Design, Nirma
University, Ahmedabad hereby declare that the project work EFFICIENT FE
METHODOLOGY FOR RTL INTEGRATION IN LARGE CPU DESIGN has
been independently carried out by me under the guidance of Mr. R, Satish
Kumar and Mr. Sandip Rajput, Intel Technology India Private Limited, Banga-
lore and Prof. Usha Mehta, Program coordinator, Department of VLSI Design,
Nirma University, Ahmedabad. This Project has been submitted in the partial
fulfillment of the requirements for the award of degree Master of Technology
(M.Tech.) in VLSI Design, Nirma University Ahmedabad during the year 2013
- 2014.

ii) I have not submitted this work in full or part to any other University or Institu-
tion for the award of any other degree.

- Prajapati Pinkeshkumar Harish
12MECV22

iv

Certificate

This is to certify that the Major Project entitled Efficient FE methodology for RTL
integration in large CPU design submitted by Pinkesh Prajapati H (12MECV22),
towards the partial fulfillment of the requirements for the degree of Master of Tech-
nology in VLSI Design of Nirma University of Science and Technology, Ahmedabad
is the record of work carried out by him under my supervision and guidance. In my
opinion, the submitted work has reached a level required for being accepted for ex-
amination. The results embodied in this major project, to the best of my knowledge,
haven’t been submitted to any other university or institution for award of any degree
or diploma.

Dr. Usha Mehta
Internal Project Guide,
Institute of Technology,
Nirma University, Ahmedabad

Dr. N.M. Devashyaree ,
Program Coordinator

Institute of Technology,
Nirma University, Ahmedabad

Mr. R, Satish Kumar
Mr. Sandip Rajput
External Project Guide
Intel Technology India Pvt. Ltd.,
Bangalore

Prof. P N Tekwani
Head of EE Dept

Institute of Technology,
Nirma University,Ahmedabad

Dr. K Kotecha
Director, IT-NU
Nirma University, Ahmedabad

Date: Place:Ahmedabad

v

Abstract

RTL (register transfer level) integration is an important part of a VLSI design flow.
It basically define the quality of the full chip system. Also in large CPU design, whole
design are partitioned in different parts to reduce the complexity of the design and at
the end all individual RTL logic are integrated to get full chip design. Thus for good
quality and well featured chip we need to have a good quality RTL integration in our
design. This can be achieved by having well defined FE (front end) methodology or
flow. This report will give different FE flow example for different design or application
and will explain in detail how we can modify the flow for getting better and verified
RTL integration at the end. It will also demonstrate some example which will explain
how proper FE methodology can reduce the initial bugs in the design. At the end will
also explain the efficient, simple and much faster method to testing the system/tool
functionality.

vi

Acknowledgements

First and foremost, sincere thanks to Mr. R, Satish Kumar, Manager, Intel Tech-
nology India Private Limited, Bangalore for assigning me such project and guide me
through. I would like to thank my Mentors, Mr. Sandip Rajput, Intel Technology
India Private Limited, Bangalore for valuable guidance. Through- out the training,
he had given me much valuable advice on project work which I am very lucky to
benefit from. I would also like to thank my teammates, form Intel India Technology
for their valuable time in ramping me up on some basic flow of different projects. I
would also thank to my Project Co-ordinator, Professor Usha Mehta and Dr. N.M.
Devashrayee, VLSI Design, Institute of Technology, Nirma University, Ahmedabad
for giving valuable support for project work and also teaching me some very intersect-
ing subject in post-graduate programs. I also owe my colleagues in the Intel, special
thanks for helping me on this path and for making project at Intel more enjoyable
and more memorable.

Prajapati Pinkeshkumar Harish
12mecv22

vii

Abbreviation Notation and Nomenclature

RTL . Resister Transfer Level
API . Application Programming Interface
FE . Front End
TTM . Time To Market
QA .Quality Analysis
FEV .Formal Equivalence verification
HDL . Hardware Description Language
MUT . Module Under Test

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgements vi

Abbreviation Notation and Nomenclature vii

List of Figures 1

1 Introduction 2

2 Project Details 5
2.1 Introduction . 5
2.2 FE Methodology For RTL Integrations 5

2.2.1 Definitions:- . 5
2.2.2 Challenges . 5

3 Enhancement Made In Different FE Flow For Increasing Module
Quality 10
3.1 Introduction . 10
3.2 Efficient FE Design Equivalence Flow For Different Designs 11
3.3 Automating Regression Test For Different Linting Tool Vesion 14
3.4 Improving Linting Tool Waiver Mechanism:- 16
3.5 Interconnection Mismatch Detection Flow 20
3.6 Debugging And Enhancement . 20
3.7 Other Tool Flows Ramping Up . 22

4 Testing Tool Features 23
4.1 Introduction . 23
4.2 Automated Funtional Regression System 24

5 Conclusion 28

viii

CONTENTS ix

Appendices 29
.1 Appendix A . 30

.1.1 Automatic Functional Regression Test Flow(example for expla-
nation of Perl test system) . 30

.2 Appendix B . 38
.2.1 List of the usefull Perl APIs 38
.2.2 Useful Perl Test API . 38
.2.3 Useful Perl Test Function Used in Project 38
.2.4 Some Trick/Tips . 39

References 40

List of Figures

1.1 Basic Steps to Create Efficient Flow 4

2.1 Original Design Flow which Required Some Module Quality Checking 7
2.2 Flow With Interconnection Mismatch Detection System 8
2.3 Sub Steps of Interconnection Mismatch Detection System 8

3.1 Step of Efficient FE FEV Flow . 12
3.2 Inclusion of Email Notification . 13
3.3 Automatic Regression Test Flow . 17
3.4 Flow For Removing Unused Waiver List 19
3.5 Hierarchy Interface Tools Example 21

4.1 Simplified Test Environment . 24

1

Chapter 1

Introduction

In order to compete in modern era for getting high performance, low power and
less area chip, we need to find more efficient methodology and flow starting from
start to end level of designing. Also In order to go parallel to Moores law we need
to reduce the size of the chip for same number of the transistor in specific period of
time and in process we need to increase the performance, reduce the power and cost.
And for achieving this goal one of the important step is to have good quality RTL
integration. Here RTL integration means integration of small or low level design to
form top module and in order to have good quality chip we need to have this RTL
integrate to be of high quality.

The good quality RTL integration can be done by having efficient front end method-
ology and flows. This front end methodology basically contains the flow development
for different design as per their requirement. Also by having good flow at the start
will reduced the number of the bugs at later stages. FE methodology is basically the
different Front end method/flow/solutions/innovations which can results in better
quality and enhance RTL integration.

Basic process that need to be follow while defining proper FE flow are as follow

• Clear Specification

• Dividing design in different process step as per the complexity of the design

• Defininf each steps in detail

• Making wrapper system with all the steps included in it.

• Testing each step functionality by running system on proper test cases.

• Making modification in flow if specification doesn’t met.

• Testing whole system in design environment and validating the results it pro-
duce.

2

CHAPTER 1. INTRODUCTION 3

• Implementing the system in design for customer use.

Level at which all FE methodology can be define, can be anywhere, starting from
specification to RTL integration step. The level at which I had normal worked is at
RTL stage i.e. the stage after all the designing of different module has been done and
there is need to have flows for checking the module quality of the design.

Below are few things which I have worked on developing/testing and deploying to
different design in Intel.

• Efficient front end design equivalence flow for different designs

• Automating regression test for different Linting tool version

• Interconnections mismatch detection system

• Test script deployment for system feature verifications

• And some supporting system.

Above all work is basically done for enhancing the quality of the module or system
for getting better results. Brief description of all the topics is done in chapter 3.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Basic Steps to Create Efficient Flow

Chapter 2

Project Details

2.1 Introduction

This chapter will explain briefly the motivation of efficient FE methodology and
explains different terms like RTL integrations, different challenges that need to be
taken care while integrations and importance of having efficient FE methodology.

2.2 FE Methodology For RTL Integrations

2.2.1 Definitions:-

In simple words it is defined as different methods/flow for good quality RTL integra-
tion. This include defining the efficient flow for front end and implementing the flows
for same. This flows include the basic step, by which we can make good quality, cost
efficient, bug free RTL integration.

The flow step may differs as per the requirement of the design. While making
an efficient flow we may need to consider all customer requirement, feature that we
required or quality that we may need to maintain throughout our design

Thus, in general to provide stable, good quality, time efficient, bug free design at
initial phase and somewhat automating RTL integrations we make some FE method-
ology which can fulfill our basic requirement.

2.2.2 Challenges

The basic challenges for making and efficient FE methodology of RTL integration
are as follow:-

• Design Complexity

5

CHAPTER 2. PROJECT DETAILS 6

• Automating the design flow

• Module quality

Design Complexity: Now a days the design complexity of the whole chip is getting
increased, because of many reason like integrating more and more component in single
chip, cost of the product, power requirement and less area The system design problem
describes the process used to translating the need or requirement for a system into
an actual design and this is an NP- hard problem.

Thus it important that we should include some well-defined flows in the design by
which we can meet all our requirements and reduce the design complexity. We can
even divide the complex area in the flow with some sub flow for further reducing the
complexity of the flow and thus defining each of the steps in the flow in more detail.

Automating the design flow: As the time to market of any product in VLSI is
very important, if our product in not available in market in specified period of time,
then we can lose our pride of our product quiet easily.

Thus its important that our product reached the customer in minimum time. In
order to reduce the time consumed while going through all the steps of the flow
manually we can automate the whole flow as much as possible and can reduce the
flow time. This can be done by using many scripting language. The selection of the
scripting language is totally depended on user who is going to automate the system.
I had mostly used Perl as a scripting language as it is very strong language if we want
to deal with string operation (i.e. extracting the information from result created by
different tools). Also by creating whole single system will results in better user usage
i.e. other user who dont have the knowledge about all the steps in flow can also
run the whole flow with single command. Also Less TTM can also be achieved by
inheriting some good features of other design and include same flow with some minuet
changes in it.

Module Quality Its an important aspect of any design. If we cannot maintain the
quality of the module in our design, whole design is of no use. So in order to maintain
the quality of the design we need to monitor the quality of the modules. This can be
done by including the some quality check steps in the flow and thus confirming the
functionality of each steps in the flow. We can also may need to modify the steps
in flow for better quality of the module, we can also may need to include some more
steps of quality checking of the module.

Such one step which we had included in the FE RTL integration flow is interconnec-
tion mismatch detection system. This basically finds the interconnection mismatch

CHAPTER 2. PROJECT DETAILS 7

Figure 2.1: Original Design Flow which Required Some Module Quality Checking

between the golden and modified RTL module. By finding such interconnection mis-
match we can identify which interconnection are changed or are getting effected by
modifying the original RTL module.

Interconnection mismatch detection system:- The concept of the applying different
FE methodology can be understand by taking understanding problem statement of
interconnection mismatch detection system. This is basically enhancing the feature
of existing flow. Suppose you had made some RTL logic and suppose if there are
some modification or enhancement are required in the design and because of this you
make some changes in it. While requirement of the design is that there should not be
any mismatch in interconnecting signals between original RTL design and new RTL
design.

This requirement can be achieve by including one intermediate stage in between.
This stage will contain the system which can compare the interconnection mismatch
between the two modules and can identified the list of the mismatches. By doing so,
we can analyze the list of mismatch interconnection between original and new RTL
modules. Thus we can increase the quality of the new RTL by removing the bugs at
the initial stage only.

Figure2.1 show the original flow, and Figure2.2 show the modified flow with in-
terconnection mismatch detection system step placed in flow. As shown the figure
interconnection mismatch system will find the list of interconnection mismatch be-
tween original and modified design.

CHAPTER 2. PROJECT DETAILS 8

Figure 2.2: Flow With Interconnection Mismatch Detection System

Figure 2.3: Sub Steps of Interconnection Mismatch Detection System

CHAPTER 2. PROJECT DETAILS 9

This interconnection mismatch system can be included in any design flow and can
be used in any design flow, where it is necessary to find the changes in interface
made by the modified RTL module. By including this kind of system in between can
increase the module quality and thus can reduce the number of bugs at initial phase
of design.

This concept can be shown by block diagram as follow:

This interconnection mismatch detection system can be further be divided in three
basic step as follows:-

i) Checking that all required files are in place.

ii) Running port listing script for each module in a design both golden/modified.

iii) Comparing interconnection list and report any mismatch found in the module.

While running interconnection mismatch system, if we get the interconnection mis-
match list between some golden and modified module we have to report that to design
team and should have some reasoning for having such mismatch. If this mismatch
are valid and approved by the design teams, then that interconnection we can ignore
and design can processed to next step of the flow. Thus by this mechanism we can
at least reduce the bugs related to interconnection mismatch in any design and thus
increase the design quality.

Thus in general, we can enhance the quality of the module by putting some in-
termediate quality checks steps which verify the result produce by preview flow step
and thus this will reduce the number of the bugs at initial stage of the design. Also
automating the flow steps will results in very less flow time.

Chapter 3

Enhancement Made In Different
FE Flow For Increasing Module
Quality

3.1 Introduction

This chapter specify the summary all the enhancement done in different FE flow
for increasing the module quality of model and will explain in detail each of the
enhancement with appropriate example.

The list of the things that we had developed or in progress or had worked on are
as follows with some brief point that I had done on it

• Efficient FE design equivalence flow for different design:-

1. Wrapper systems

2. Deploying the systems

3. Testing the systems for both negative/positive conditions.

4. Implementing whole system in design.

• Automating regression test for different Linting tool version:-

1. Collecting the steps which are necessary.

2. Making the wrapper systems.

3. Running the wrapper systems in different design environment.

4. Testing and analysing the results.

5. Enhancing the system as per user requirement.

• Improving waiver mechanism in Linting tool

10

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY11

1. Analyzing the requirement and creating required specification out of it.

2. Dividing the complex flow in to different stages for making it simple

3. Implementing each stages

4. Testing in whole RTL model

• Interconection mismatch detection system:-

1. Wrapper system, specific to particular design

2. Testing the system

3. Implementing system in design.

• Test script development for system feature verifications

• Debugging and enhancement (side work)

• Others tools flow ramping up.

3.2 Efficient FE Design Equivalence Flow For Dif-

ferent Designs

In VLSI design flow, its very important that whenever some modification/enhancement
are made in RTL, we need to verify the change/enhancement in RTL first. Thus for-
mal equivalence checking of the modified module with golden module is very impor-
tant to verify or prove the correctness of designs. This formal equivalence verification
can be done by comparing the mathematical module of both golden and modified
module. There are many other way by which we can to FEV between two modules.

There are many vendors providing the Formal equivalence verification (FEV) tools
for different stage in design. We can use any of it as per our requirement and cost of
product. Now in using FEV in any of the stage required some basic steps to follow for
quality checking of the module. This steps includes taking proper golden reference
module, proper environment setup for FEV tool, proper modified module design files,
creating proper configuration files for different feature checking of the module while
running FEV and more steps like this.

Thus, in order to have quality FEV checking with minimum bugs at the initial
stage we need to create efficient flow of it, with all the required steps. In between
this steps we can include verification steps which can verify the results produce by
the preview step in flow. By combining this all point we had made an efficient FEV
flow. We had made this full flow fully automated.

The basic steps included in this flow are shown in Figure3.1.

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY12

Figure 3.1: Step of Efficient FE FEV Flow

Details of the each steps:- Initial setup for flow: - This step contain all the en-
vironment setup of the tools or system to work properly.

Putting all the files in proper areas: - for running FEV tool we required modules
files, one golden one and other is modified one and this list of files which are required
in the FEV should be placed in proper directory format. This format may differ as
design get changed.

Next step to check that whatever the files are being using are placed in proper
format as per requirement

Running FEV tool: - After getting all the required files we can run our FEV
tool in it, which will does the formal equivalence verification between two specified
modules.

Checking results: - after running FEV tool we need to analyze report generated
by it and by doing so we can report the type of result produce by FEV tool.

At later stage, in this system/flow there was a need to create some notification
features in the case of the any failures. This type of notification where required, as
this equivalence flow was used in some top flow were it was very difficult to find any

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY13

Figure 3.2: Inclusion of Email Notification

failure cause of full run. Thus, if by some means we can include some notification
for failure cases with some debugging message then this will help designer to notify
and debug the issue in right direction. Thus if equivalence flow can include some
notification method for same then it can help user/developer to find out the root
cause of the failure.

Notification mechanism with debugging message:- In equivalence flow there
are many stage where chances of RTL module getting failed will be present. Some of
the failure causes which can occur are as follow.

• System somehow is not able to setup initial setting.

• System is not able to copy the files due to some permission problem

• If some of the required files like some golden RTL module files are not present.

• If system is not able to run FEV tool (may be due to some license error).

There are many chances of getting above mentioned errors while running flow
and because of this error, flow will fail and will exit with some exit status. In our
notification mechanism we will list down all such kind of the error/failure and will
send email to user/developer notifying them that their run had failed with some

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY14

errors. Corresponding notification message that can be send for above four failure
types are as follow

• Error: - system is not able to set environment variables.

• Error: - Not able to copy file ¡file name¿ : permission denied

• Error: - Cannot find required file ¡file name¿

• Error: - Cannot run FEV tool, Please check the proper license file

Above notification mails to user/developer will allow them to debug the issue in
the case of any failures. Thus this kind of notification mechanism can reduce the user
time while debugging the cause of failures.

Now in order to include this type of feature, we had used some mailing Perl API
for sending proper formatted email notification. Small example showing the way we
can enable mailing feature is shown in Appendix A. it uses library MIME::LITE for
mailing. Please follow the comments in code for understanding mail notification.

3.3 Automating Regression Test For Different Lint-

ing Tool Vesion

In general Lint tools that flag suspicious and non- portable usage of language
construct in any programming language. It points out the code where it likely to
be bugs. In chip design world Lint tools (some time referred as Design Rule Checker)
check the cleanness and portability of the HDLs code for various EDA tools. Usually
compiler does not show the errors and warnings which detected by lint tools.

Linting tool offers you a simple but fast method to improve the quality of the HDL
code. It is intended to find all kinds of language constructs that are formally correct
but probably not intended. Examples are signals that are defined but never used;
signals that are on the sensitivity list of a process but not used inside the process;
etc. You can run the Lint tool on the whole design or on packages, entities or modules
separately.

Linting tool library will have all the list of such rule and also one may include its
own rule i.e. user defined rules in it. This rule can be classified by different severity
types. Some of the example of it are as follow:

• Error

• Warnings

• Fatal

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY15

The type of severity that the rule will have will all depend on how critically the
rule is defined in a design.

Some of the attribute which define the linting rules are as follow

• Syntax and semantic rules that needs to be followed.

• Non-Synthesizable logic in the design.

• Implicit latches formation.

• Violation in some downstream tools.

Syntax and semantic rules check: For having proper working design logics. It is
necessary that design logics are free from syntax and semantic error. For this we can
include different kind of syntax and semantic rules in linting tools which can reduce
it.

Non-Synthesizable logic in the design: HDL language can be used for making both
simulation code and synthesizable code. Thus it is necessary that while making
synthesizable code, we dont include any non-synthesizable thing in it, because it will
not be able to create logical hardware from it. This can be achieved by including
non-synthesizable codes type on linting rule library.

mplicit latches: Sometime while writing HDL code, we might forget to include all if
else or case conditions, which can be unintentional in some design cases. Synthesizing
tool will generate the latches for all the remaining conditions which are not mention
and this can results into undesirable latches in the design. Such kind of latch gen-
eration points in the design can be highlighted by linting tool by including the rules
related to such conditions.

Violation in some downstream tools: Some linting rules will also depend on the
downstream tools which will be run after the completion of synthesizing step. There
can be some cases in which violation on such tools can occur due to the bug in design
logic. Such kind of the bug can be pointed out by the linting tool by including rules
related to such conditions.

In order to improve the quality of the design style and reduce the number of the
bugs in the design code, we goes on including the different types of rules in the linting
tool system. By adding new rules in the linting tool library and thus enhancing the
capability of linting tool to catch the violation in design, can results into new linting
tool version.

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY16

Now changing the tools version in any design is not that easy. We must test the
new version tool in many design and then after validating we can implement it in real
design environment. Thus for good quality checking we need some well-defined flow
for testing the migration of the linting tools version.

This flow should include running different linting tool version on all test cases of
design. Some basic step of such flows are shown in Figure3.3.

Detail of each step:- Taking proper input commands:- In this step user need to
specify the linting tool version by which the all test case need to be ran on all the
given modules.
Initial Setup:- Placing all the required design files in their proper structure and cre-
ating proper system environment.

Checking for required files:- Confirming that all the required module file are in
place and this can be used by regression tools ahead.

Running all the test cases on each module for given linting tool version:- This test
cases are run by a regression tool which will create violation report of each module.
The violation report basically is a report which will contain all the rules which are
not follow by the module design.

Merging all the violation reports:- In this step all the individual violation reports
are merged and formed a single merge report which will contain all the violations of
each module.

Comparing the violation reports:- The merged violation report is compared with
golden violation report. This golden violation report is the report which is generated
by running the older linting tool versions on all the modules.
Extracting the information form violation reports:- In this step many information like
same violation and different violation list are made and according to this it will pro-
duce the summary of the result.

While changing the linting tool version if we find any difference in the original and
new violation report. Then we need to analyze this result and validate the results
produce by it or debug the false violation differences.

3.4 Improving Linting Tool Waiver Mechanism:-

Waiver Mechanism:- Linting tool is defined by set of rules that need to be followed
by the designer for efficient RTL integration. This set of rules can also be created by

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY17

Figure 3.3: Automatic Regression Test Flow

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY18

any designer as per his requirement. Linting tool when ran on whole RTL model will
generate list of violation that designer had violated in his RTL code. This violation
can be validated by the designer and can be waived as per requirement (i.e. remove it
temporarily or permanently). The mechanism used to waive this violation are called
waiver mechanism.

For understanding this waiver mechanism one need to have some understanding of
violations definition (i.e. how violation are defined). Lets take simple example of one
violation/rule defined for some Verilog file module.v. it can be defined in many ways
one of it are as follow

For Module.v file coded as Line 1: .
Line 2:
.
Line 4: module <> ();
.
Line 12: int [7:0] system bus;
..

Line 100: Endmodule

Below is the one method by which violation/rule can be defined
Violation id = 001
Verilog file = .*/module.v
Line number = 12
Reason = “invalid ’system bus’ port type “
Types = “Error”
Waiver = “ “

Thus by providing different field (like mention above) one can define his own vi-
olation, which he/she wants to include while running Linting tool. Now in order to
waive this violation one create waiver as follow.

Waiver id = <any id which define this waiver>
Violation id = 001
Messages = “Invalid ’system bus’ port type”
Line number = 12
Type = “Error”

By comparing different field of this waiver with the corresponding field of violation
list, we can waive that particular violation (temporary or permanently). If the waiver

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY19

Figure 3.4: Flow For Removing Unused Waiver List

is successfully applied to violation, then “waiver” field in that particular violation will
have the value equal to applied waiver id.

Actual violation list and waiver list can be very huge and complex. Also different
operation and system involved in this can be very complex. In any of the project we
ran whole linting tool flow and generate the violation report which contain whole list
of violation that were found in design. Also if all this violations were waived then all
the violation in violation report will have “waiver” field with value equal to applied
waiverpar id. All applied waiver list will be kept at some directory in a project (this
can also be called as waiver library).

Waiver list which are created may depend on the designer who wants to waive
some violation in it design. Also there is good possibility that two designer may
define similar type of waiver and there is also a good possibility of having extra
waiver list which are never being used in the project.

While running Linting tool, this unused waiver list may create some unnecessary
load in a machine. Thus its better to remove this unused waiver from waiver library.
For that we had created a system which can find the unused waiver from waiver
library and can remove them. Basically the whole system was divided into three
main operation.

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY20

Stage 1: This will generate unused and used id list for each individual modules in
project
Stage 2: After creating unused/used id list for each module in whole project, we
combine them and create common unused/used id list and store them in some file for
analysis purpose.
Stage 3: After getting common unused id list we search each id from all waivers file
and delete them from waiver library. All deleted waiver are stored in some file for
analysis purpose.
System was design in such a way that we can ran system in following modes

• Run only Stage1 and Stage2

• Run only Stage3

• Run whole flow

Figure 8 shows the optimized flow for removing unused waiver list. Each block
in the flow was implemented using Perl language and after implementation of each
block, had combined all the stages to form whole single system.

3.5 Interconnection Mismatch Detection Flow

This flow included comparing the interface between two modules and listing the in-
terface mismatch between them.
This flow was explained in chapter 2 while explaining the different FE methodology
challenges. Brief step that I had done are as follow:

• Making wrapper system (initial dummy system).

• Testing wrapper system on some test cases

• Implementing the system on specific design.

3.6 Debugging And Enhancement

1. Made an enhancement in the existing supporting systems for migrating it to
new control systems. Control system: - Its a control system used to control
data of the project. It includes transferring, updating or creating repository
of project. It helps in handling the project data and its changes/enhancement
more efficiently. There are different script or system used in the front end flow
which are designed/coded according to control system that it uses. Thus while

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY21

Figure 3.5: Hierarchy Interface Tools Example

shifting to other control system we need to make corresponding changes in this
system for making them supportive to new control system

There was similar type of migration of control system in different projects in
Intel for increasing data handling techniques. Thus it was necessary to make
corresponding changes in different system/script (which uses old control system
features) for making them compatible to this new control system.

Mostly the changes that need to be done were as follow.

• Changing all old control system command with corresponding/equivalent
command in new control system (this required knowledge of both control
system).

• Making directory structure of all data as per new control system require-
ment.

• Processing the data, while putting into consideration the directory struc-
ture of new control structure.

2. Debugged the supporting script used in Linting tool waiver system. We had
discussed about waiver mechanism in section 3.4. There was one bug in system
which was used to update waivers list. It was originally made for overcoming
the waiving issue in waiver mechanism, during the linting tool version migra-
tion. During migration there was some list of new/old violation having only

CHAPTER 3. ENHANCEMENTMADE IN DIFFERENT FE FLOWFOR INCREASINGMODULE QUALITY22

message difference. Thus, if waiver was applied in old violation, then ideally
same waiver should also waive the corresponding violation in new violation re-
port. But this was not the case, actually because of message differences, waiver
list was not able to waive the corresponding violation in new violation report.
This was debugged by providing proper message field to waiver list for applying
them in violation list found in newer violation reports.

3. Created documentation of the all the system that I was involved in making and
had uploaded in Intel documentation site. Using this documentation any user
can use this system more efficiently and can do some first level of debugging in
the case of any failures or issues.

3.7 Other Tool Flows Ramping Up

To provide stable, good quality, time efficient and automated hierarchy manage-
ment in RTL. Take cares connectivity of the different modules. Consider simple
example for understanding how this tool works. As shown in the figure 6. Input
file to the module will be the module and hierarchy file of the top and intermediate
modules and module file of leaf modules

Tools will first takes the module and hierarchy file of top module and will in depth
of hierarchy up to leaf module. This is shown in the figure 7. While going to the leaf
module it will go on making the connection between the blocks in the same hierarchy.
At final it will generate single module file which will contain all the information about
the module starting from top module to leaf module.

List of the thing which I had done are as follows

• Made a system which uses the file generated by tool and find the interconnection
mismatches detection system.

• Had run the connectivity tools on different design units and analyzed the results

• Made a script for automatic generation of the collateral for tool new version
test case.

In future deployment of new version of hierarchy interface tool with enhanced
quality is required for different designs.

Chapter 4

Testing Tool Features

4.1 Introduction

This chapter focus on method of testing feature of different Tools and motivation
dehind such methodology. It also specify the different advantage and disadvantage of
this methodology with appropriate examples.

Each tools are implemented through some languages like Python, Perl, C++ or
mixture of any languages. Now a day the complexity of the tools are increasing sig-
nificantly, as complexity of the data handling, different operation that to be done
and inclusion of intelligence in tools are increasing. As design complexities increases
or design type changes, for getting efficient model quality, we need to make corre-
sponding or equivalent changes in tool also. Thus while making any changes it is very
important that we test all the old/new features of the tools. Also, Its very important
that while including any feature in tool, old features of tool should not be effected.

Normally, testing any type of feature in tools is very time consuming process and
will also required some manual efforts. Thus, in order to reduce time spend in test-
ing, we need to have some mechanism, which can test features of tool and which is
somewhat automated. One such mechanism can be made using Perl Test API (if
system/tool is written in Perl language). We had designed similar testing system for
testing Front End setup flow system, called Automated Functional Regression Sys-
tem. It was designed using different feature of Perl test API.
Front End setup flow system: - It is a part of FE flow which produce an efficient
simulated model. It will setup the flows basic requirement like stages that need to
be ran, dependences of all stages/tools, setting up proper tool version and so on. It
is written in Perl languages and thus we can make use of Perl Test API for creating
test mechanism of it. This will enable us to test the basic feature of the flow and
will reduce the time of testing & effort required in testing while doing enhancement
in existing flow.

23

CHAPTER 4. TESTING TOOL FEATURES 24

Figure 4.1: Simplified Test Environment

4.2 Automated Funtional Regression System

Motivation:- In order to generate proper simulated model in complex design we
need well defined FE flow steps, which can work accurately. This FE flow steps get
on changing as per requirement and thus to maintain the better quality of flow, there
should be some system for testing basic feature of flows itself.

Example for understanding the Perl test flow.

• Test inputs creations: - It will contain mechanism (automated or hard code)
for generating test inputs, which need to be applied to module under test for
testing its features. This can either be coded in automated form or can be hard
coded as per options that are available. If possible, automated test creations is
more preferred.

• Module under test: - It include the module code whose features need to be
tested.

• reference: - It will contain the list of the golden output that we expect to get,
after applying corresponding input to module under test.

• reference: - This block are required only in the case when expected output which
are there in golden reference are getting changed after doing some enhancement

CHAPTER 4. TESTING TOOL FEATURES 25

in module under test.

• Comparison: - It will compare the output of the module under test and Golden
reference output for specific input types. This block can be designed by using
Perl test APIs like Test::More, Test::Exception or Test::Trap (so on as per re-
quirement).

After doing different study in Perl test, main features that we found are

Features:-

1. Can be used to test any Perl module.

2. Have an access to global variable defined in any of the Perl script used.

3. Can generate code coverage report for finding the code covered by Test script.

4. Can give input to any of the method define in Perl module and can check the
return output of it.

5. Can use different kind Perl test API for testing purpose.

6. Can run any specific methods/function/subroutines in the class and check its
output.

7. Can create any number of test case for given Perl module.

Using above basic feature of Perl test we had made an automated functional Regres-
sion System for testing basic features of frontend setup flow (mainly main machine of
it). Appendix B contain some list of Perl test API which are important, its preferred
to look at that first.

In order to explain in detail I had made very small and simple example. Please
refer the Appendix A for getting detail of each codes.

List of files which are required: -

1. MUT.pm (module under test)

2. Dummy.pl

3. Test.t

4. TestCreation.pm

CHAPTER 4. TESTING TOOL FEATURES 26

Brief Descriptions of each file:-

MUT (module under test):- Its a Perl module which is under test, basic feature
that it contains are as follow.

• Checking Input Hash syntax and semantics.

• Checking Input Hash keys and fields.

Dummy.pl:- It is a supporting script which is used to provide Flow specification
to MUT. (Using this only MUT check the syntax and semantics of it.)

Test.t:- Its a test script for testing MUT using different Perl test API features.

TestCreation.pm:- It will create input test vector. It will generate the input test
vector as per the specification defined in Dummy.pl. Thus its in automated form.

General Step to run Perl test:-

1. Source <setting of variables required by MUT for running it smoothly> (if
required then).

2. Perl/prove/cover should be pointing to latest version (preferred is more than
5.11.1).

• Alias perl <path to latest version>

• Alias prove <path to latest version>

• Alias cover <path to latest version>

3. Prove t/ :- this will run all the *.t file in the directory t/

Equivalent step that need to follow in for example mentioned in Appendix A are..

1. $ Cd <working directory>

2. Copy MUT.pm and Dummy.pl file at working directory area.

3. $ mkdir t/

4. Copy Test.t and TestCreation.pm file in t/ directory.

5. $ alias prove <path to latest version> (5.14.1 is preferred)

6. $ prove v t/

Note: - line starting with $ indicates that its shell command that need to be
printed.

CHAPTER 4. TESTING TOOL FEATURES 27

Tips/tricks:-

• You can generate coverage report of the all test case by including include De-
vel::cover in test script.

1. In this case previous prove statement will also generate coverage report
with it.

2. Use cover command for converting the cover reports in html format.

3. In order to open coverage report type

– Firefox ./cover db/coverage.html

• Use v switch with prove for detailed of each test while running. (i.e. prove v
t/).

Limitation: -

i) If the complexity of the Perl module is large (complexity here is defined as depth
of modules called by it i.e. its hierarchy depth.), then its become difficult to
prepare test mechanism in it.

ii) If some global variable is defined in the Perl module, then after the completion
of one run, I should reset the value of the variable before applying second input
to module. This is because of the fact that global variable value in second run
will remain as it is.

iii) For creating the Perl test system, one should either be having all list of inputs &
corresponding output or should have good understanding of the MUT for making
proper inputs which can test Perl module more efficiently.

Chapter 5

Conclusion

• For efficient RTL integration we need to have proper front end flow or method-
ology with all well-defined steps in it.

• We can enhance the quality of the module by putting some intermediate quality
check steps which verify the result produce by preview flow step and thus this
will reduce the number of the bugs at initial stage of the design. Also automating
the flow steps will results in very less flow time.

• Also we can reuse the some well-define flow steps in different design environment
with some modification in it.

• We can also test our system flow by using much faster, simple and efficient
method. i.e. By using Perl test module APIs.

28

Appendices

29

30

.1 Appendix A

.1.1 Automatic Functional Regression Test Flow(example for
explanation of Perl test system)

A.1 MUT.pl(module under test)

#!/usr/pinkesh/bin/perl -w

package MUT;

use strict;

use warnings;

use Data::Dumper;

require (Dummy.pl);

1. Should check whether this was "KEY1" field was same as define in global variable of the on DUMMY.pl file

2. Should check whether ref. of all the keys are are proper types.. as in define in the global variable of DUMMY.pl file.

Input 1;

$flow_name = "FE_flow1";

$spec = {

"Stage" => [

stage1, stage2],

"subflow" => [],

"pre_stage" => {},

},

Input2;

$flow_name = "FE_flow2"

$spec = {

"pre_stage" => {},

"Stage" => [],

"subflow" => [],

"post_stage" => sub{"DUMMY"}

}

#

##3

syntax checking.. ..

##

sub syntac_check

31

{

my $flow_name = shift;

my $spec = shift;

my %global_hash = %Spec_hash;

print Dumper(%global_hash);

checking_data();

checking the type of the value that will exists in input hash

foreach my $key (keys %{$spec})

{

my $type = ref($spec{$key});

unless(exists $global_hash{$type})

{

Print_Error("Invalid type of the spec for $key");

}

}

}

###

Sub will check for some invalid data

###

sub checking_data

{

unless(exists $global_hash->{$flow_name})

{

Print_Error("Please enter valid flow_name");

}

foreach my $key (keys %{$spec})

{

unless(exists $global_hash->{$flow_name}->{$key})

{

Print_Error("spec ’$key’ doesn’t exists in the global spec variable");

}

}

}

sub Print_Error

{

my $msg = shift;

print("ERROR : $msg \n");

exit 1;

}

1;

32

A.2 Dummp.pl file:- used to get the some flow specification (This is very simple
example for explanation only, actual flow specification were very complex)

#!/usr/intel/bin/perl -w

use strict;

use warnings;

our %Spec_hash; // Note variable spec_hash is defined as global variable.

############################

We are making simple Two flow spec, defining the type of the value they can have.. :-)

Note:- this is an very simple example for explaining the use of perl test

##

%Spec_hash = {

"FE_flow1"

=>{ "Stage" => { ’ARRAY’ => "it should contain all type of stages names",

’Help’ => "Stage name"},

"Subflow" => { ’ARRAY’ => "it will contain all type of stage value"},

"pre_stage" => { ’Hash’ => "list the pre_stage and its corresponding value"}

},

"FE_flow2" => { "Stage" => { ’ARRAY’ => "it should contain all type of stages names",

’Help’ => "Stage name"},

"Subflow" => { ’ARRAY’ => "it will contain all type of stage value"},

"pre_stage" => { ’HASH’ => "list the pre_stage and its corresponding value"},

"post_stage" => { ’CODE’ => "give code/subrouting which need to execute" },

},

};

A.3 TestCreation.pl

#!/usr/pinkesh/bin/perl5.14.1 -w

package TestCreation;

use strict;

33

use warnings;

require(Dummy.pl)

sub extracting

{

my $flow_name = shift;

my $Input_test;

my $Flow_spec = \%Dummy::Spec_hash; # check it..

($Input_test->{Positive},$Input_test->{Negative}) = create_input();

return($Input_test);

}

sub create_input

{

my $positive;

my $negative;

foreach my $key (keys %{$Flow_spec->{$flow_name}})

{

my @types;

foreach my $inner_key (keys %{$Flow_spec->{$flow_name}->{$key}})

{

push @types, $inner_key;

}

if(grep{/ARRAY/} @types)

{

$positive->{$key} = [];

$negative->{hash}->{$key} = {};

$negative->{scalar}->{$key} = "";

}

elsif(grep{/SCALAR/} @types)

{

$positive->{$key} = "";

$negative->{array}->{$key} = [];

$nagative->{hash}->{$key} = {};

}

elsif(grep{/HASH/} @types)

{

$positive->{$key} = {};

$negative->{array}->{$key} = [];

$negative->{scalar}->{$key} = "";

}

}

34

return($positive, $negative);

}

1;

A.4 Test.t:

#!/usr/pinkesh/bin/perl -w

use strict;

use warnings;

use FindBin qw($RealBin);

push @INC, $RealBin;

use lib "$RealBin";

use Test::More "no_plan";

use Test::Trap;

use_ok(’MUT’); # This will check whether MUT module is able to load or not if not then it will fail the test

can_ok(’MUT’,qw(syntex_check)); # This will check whether MUT module has any "syntex_check" method in it or not..!!

##

Call the test_creation.pm and gathering all types of inputs.. pos/neg.. :-)

##

use TestCreation;

my $flow_name = "FE_flow1"

my $Test_Input = &TestCreation::extracting($flow_name);

my $positive = $Test_Input->{Positive};

##

running the MUT for positive type of inputs. i.e it is expected to pass in this case

##

foreach my $key (keys %{$positive})

{

$testname = "Testing for $key positive type of inputs";

trap{&MUT::syntex_check($flow_name,$positive->{$key})};

$debug = "MUT was expected to pass for this condition, but it is exiting with some message";

pos_status($trap,$testname,$debug);

}

###

running the MUT for negative type of inputs. i.e. it is expected to fail in this cases

35

##

foreach my $key (keys %{$Test_Input->{Negative}})

{

my $negative = $Test_Input->{Negative}->{$key};

foreach my $inner_key (keys %{$negative})

{

$testname = "Testing for $key negative type of inputs";

trap{&MUT::syntex_check($flow_name,$negative->{$inner_key})};

$debug = "MUT was expected to fail for this condition, but it is passing negative inputs";

neg_status($trap,$testname,$debug);

}

}

##

for positive type of the inputs it will check proper exit status of MUT and indicate

whether test had passed or not

##

sub pos_status

{

my $trap = shift;

my $testname = shift;

my $debug = shift;

if(!(exists $trap->{exit}) && !(exists $trap->{die}) && (exists $trap->{return}))

{

pass("$testname");

}

elsif(((exists $trap->{exit}) && !(exists $trap->{die}) && !(exists $trap->{return})) && ($trap->{exit} == ’0’))

{

pass("$testname");

}

else

{

fail("$test_name");

diag("$debugmsg");

}

}

##

for negative type of input it will check for proper exit status of MUT and indicate

whether test has pass/failed with some debugging msg if required

##

sub neg_status

36

{

my $trap = shift;

my $testname = shift;

my $debug = shift;

if((exists $trap->{die}) && !(exists $trap->{return}) && !(exists $trap->{exit}))

{

pass("$testname");

}

elsif ((!(exists $trap->{die}) && !(exists $trap->{return}) && (exists $trap->{exit})) && !($trap->{exit} == ’0’))

{

pass("$testname");

}

else

{

fail("$test_name");

diag("$debug_msg");

}

}

A.5 Notification Method Example

#!/usr/pinkesh/bin/perl5.14.1 -wait

use strict;

use warnings;

use MIME::Lite;

#######################################.....

#.....

#... Equvilance flow code and librarys

#...

In the case of any failure we call the suboutine sending and exit the flow

For example:- sending(<failure_message>,<email_address_of user>,<email_address_of developer>)

##

sub sending

{

my $failure_message = shift;

my $to = shift;

my $cc = shift;

my $project_type;

37

my $cmd = "equivalence_flow.pl -run_full_flow ";

my $email;

my $failure_cause;

my $date = ‘date‘; chomp $date;

##

Main Body part of the email. Its in HTML format. This will enable proper formatting

formatting of messages

###

$email = <<MSG;

<body style="font-family: Arial; font-size: 11pt;">

<p>

$date</p>

<p>Project:- $project_type

Command:- $cmd</p>

<p>Your run has equivalence_flow Failures.\n</p>

<p>Failed due to: $failure_messages </p>

<p>Please verify the logs

Log File:- $opts->{’logfile’} </p> # this will be the path the logfile of whole system run.

<p> For more information on equivalence_flow Please type the command:- script/equivalence_flow --help </p>

<p>Note:- In order to debug please read failure message clearfull and in the case of any issue please contact system developer
 </p>

MSG

creating object of MIME::LITE and setting html file types

setting To, Cc, Subject

my $message = MIME::Lite->new(

To => $to,

Cc => $cc,

Subject => "Notification for equivalence_flow failure",

Type => ’text/html’,

Data => $email,

);

call the send() method and thus will send the email according to required data

which are set.

$message->send();

&$pr("Sending the Notification mail");

}

38

.2 Appendix B

.2.1 List of the usefull Perl APIs

use Getopts::Long :- It is used to processes switches given with Perl file. It parses the
command line from @ARGV, recognizing and removing specified options and their
possible values.
use Data::Dumper :- stringified Perl data structures, suitable for both printing and
eval, the complex data structures.
use XML::Simple :- used for reading/writing XML files. Using different function in
it we can read/write XML file quick easily.
use Cwd :- used to get pathname of current working directory
use lib :- it is typically used to add extra directories to perls search path so that later
use or require statements will find modules which are not located on perls default
search path.
And many more as per requirement try to search in www.cpan.org

.2.2 Useful Perl Test API

• Test::More:- it include basic Perl test function like ok(), use ok(), can ok() etc.

• Test::Trap: - Used typically for traping the exit, return, stdout, stderr, die
status.

• Test::Exception: - this module provides a few convenience methods for testing
exception based code.

• Test::Group: - use for grouping the list of tests

• And many more as per requirement

.2.3 Useful Perl Test Function Used in Project

• ok()

• use ok()

• can ok()

• trap

• pass()

• fail()

• is()

www.cpan.org

39

• SKIP block

• TODO block

.2.4 Some Trick/Tips

1. Try to use hash more in the case if you want to access the some particular field
type many time from huge file. This will reduce the run time of your system.

2. Try to make your code some generic and independent (i.e all type of required
operation should be handed by single command line only i.e. command line of
system itself).

References

[1] Intelpedia;

[2] www.wikipedia.org

[3] Training Material and Foils on Different FE flow, Intel doc.

[4] http://perldoc.perl.org/ :- for understanding Perl, Perl OOP Concepts

[5] www.cpan.org :- for getting useful Perl module API and understanding Perl Test

[6] http://stackoverflow.com/ - FAQ in Perl

[7] Larry Wall, Tom Christiansen & Jon Orwant, “Programming Perl”.

40

www.wikipedia.org
http://perldoc.perl.org/
www.cpan.org
http://stackoverflow.com/

	Declaration
	Certificate
	Abstract
	Acknowledgements
	Abbreviation Notation and Nomenclature
	List of Figures
	Introduction
	Project Details
	Introduction
	FE Methodology For RTL Integrations
	Definitions:-
	Challenges

	Enhancement Made In Different FE Flow For Increasing Module Quality
	Introduction
	Efficient FE Design Equivalence Flow For Different Designs
	Automating Regression Test For Different Linting Tool Vesion
	Improving Linting Tool Waiver Mechanism:-
	Interconnection Mismatch Detection Flow
	Debugging And Enhancement
	Other Tool Flows Ramping Up

	Testing Tool Features
	Introduction
	Automated Funtional Regression System

	Conclusion
	Appendices
	Appendix A
	Automatic Functional Regression Test Flow(example for explanation of Perl test system)

	Appendix B
	List of the usefull Perl APIs
	Useful Perl Test API
	Useful Perl Test Function Used in Project
	Some Trick/Tips

	References

