
Headed Gateway System Integration

& Full Validation

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGINEERING

(VLSI Design)

By

Jaimin N. Panchal
(12MECV19)

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382 481

MAY 2014

ii

Headed Gateway System Integration

& Full Validation

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

MASTER OF TECHNOLOGY

IN

ELECTRONICS & COMMUNICATION ENGINEERING

(VLSI Design)

By

Jaimin N. Panchal
(12MECV19)

Under the Internal Guidance of

Dr. Nagendra Gajjar

and

External Guidance of

Mr. Vaibhav Pathak

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY

AHMEDABAD-382 481

Declaration

This is to certify that

• The thesis comprises of my orginal work towards the degree of Master of Technology in

VLSI Design at Nirma University and has not been submitted elsewhere for a degree.

• Due acknowledgement has been made in the text to all other material used.

- Jaimin N. Panchal [12MECV19]

i

Certificate

This is to certify that the Major Project entitled ”Headed Gateway System Integra-

tion & Full Validation” submitted by Mr. Jaimin N. Panchal (12MECV19), towards

the partial fulfillment of the requirements for the degree of ”Master of Technology” in

”VLSI-Design” of Nirma University of Science & Technology; Ahmedabad is the

record of work carried out by him under our supervision and guidance. In my opinion, the

submitted work has reached a level required for being accepted for the examination. The

results embodied in this major project, to the best of our knowledge, haven’t been submitted

to any other university or institution for award of any degree or diploma.

External Guide: Internal Guide:

Mr. Vaibhav Pathak Dr. Nagendra Gajjar

Senior Project Manager Sr. Associate Professor

DCG Deparment M.Tech (Embedded System)

STMicroelectronics India Pvt. Ltd. Nirma University

PG Co-ordinator: HOD:

Dr. N. M. Devashyaree Dr. P. N. Tekwani

VLSI Design Professor, EC

Director:

Dr. K. Kotecha

Director, IT-NU

Date: Place: Ahmedabad

ii

Acknowledgements

No work can be completed by an individual effort. The success of this project largely depends

on intensity, drive and technical competence of many individuals, who contributed to make

this project a reality even in face of in surmountable obstacles.

“Words are a dress of thoughts, appreciating and acknowledging those who are responsible

for the success of a project”.

First and foremost, sincere thanks to Dr. N. M. Devashrayee, P.G. Coordinator of VLSI

design,Institute of technology,Nirma University,Ahmedabad.I enjoyed his vast knowledge and

thank him a lot for giving valuable support for project work.

I would also like to thank Dr. K. R. Kotecha, Director & Dr. P. N. Tekwani, Head

of Department, Institute of Technology, Nirma University, Ahmedabad for providing me an

opportunity to get an internship at STMicroelectronics India Private Limited, Greater Noida.

I would also like to thank my internal guide Dr. Nagendra Gajjar of Nirma University,

Ahmedabad and all the faculty member of Electronics & Communication Department for

their effort of constant co-operation which have been significant factor in the accomplishment

of my industrial training.

It is my proud privilege and pleasure to bring my indebtedness and warm gratitude to

Mr.Vaibhav Pathak, Senior Project Manager, STMicroelectronics, Greater Noida, for his

support during my project work.

I express my sincere gratitude and thanks to Mr. Manish Kumar Sharma and Mr. Saurabh

Kumar Awasthi, who has always been a guide during my work. I have warm regards for my

team mates in ST Microelectronics, who have obliged me with their time to time guidance.

Finally, my thanks to everyone who has in some way or other helped me in completing this

project successfully. I should not fail to mention my parents who have always been a source

of inspiration. I am grateful to my friends for their valuable support and help.

- Jaimin N. Panchal [12MECV19]

iii

Abstract

”Headed Gateway System Integration & Full Validation”

Electronic products have long become an integral part of the modern lifestyle. Demand and

supply of such products with smaller size, lower power consumption and better performance

are ever increasing. The evolution of home entertainment and computing mirrors can in-

creasingly digital and networked lifestyle of the new millennium. A new kind of “wireless

video” is currently entering consumers’ homes – Digital Television. From digital TV (DTV)

to Digital Video Recorder (DVR), the living room is going digital.

I-STB means Interactive Set-top Box. It gives user the flexibility of interaction with two

worlds (TS based Linear TV and Internet-based Operator Services). This term has a breadth

from kind of Modem (DOCSIS currently) to variety of Back-End. It provides user with variety

of options for services it can address (depending on region/market).

I-STB is composed of Back End and Front End. Both are self-sufficient and independent

enough. There are scenarios where the synchornization of both entities are required to take

some decisisve action as per Quality Standards. To satisfy such sceanrios, focus has been

given to make the system robust enough such that ongoing activities in the system are not

disturbed due to faulty behaviour of one activity.

For example :

1. During Linear TV, if there is some fault in Modem, there should not be any impact on

Linear TV sceanrio. User is able to view the channel without major glitch.

2. During Software upgrade, if there is issue in new image, System should be able to revert

to previous good image. Scenarios may vary as per customer requirements.

Power is managed as per standard requirements. As per Quality of Service expectations of

customer, BE or FE may need to go into Low Power state. Various ongoing services in I-STB

need to be stopped accordingly, and when System comes out of Low power, it may resume

from previous ongoing services. From Battery Management aspect, Architectural activities

are going on and not finalized yet.

v

Linear TV is a television service where the viewer has to watch a scheduled TV program

at the particular time it’s offered and on the particular channel. It therefore pertains to

broadcast TV programs.

• Use-Cases

Target for I-STB and derivatives is to provide a complete Home Connected Multimedia

Solution with one Server and various Clients connected in the home. Server has the capability

to get Video streams via RF (cable, terrestrial, etc) and transmit them to connected IP

clients.

Digital video recorders are also changing the way television programs advertise products.

Watching pre-recorded programs allows users to fast-forward through commercials, and some

technology allows users to remove commercials entirely. This feature has been controversial

for the last decade, with major television networks and movie studios claiming it violates

copyright and should be banned.

Company Profile

ORGANISATION PROFILE:

STMicroelectronics is the world’s fifth largest semiconductor company with net revenues of

US$8.51 billion in 2009. Offering one the industry’s broadcast product portfolios, ST serves

customers across the spectrum of electronics applications with innovative semiconductor

solutions by leveraging its vast array of technologies, design expertise and combination of

intellectual property portfolio, strategic partnerships and manufacturing strength. STMicro-

electronics was created in 1987 by the merger of SGS Microelectronic of Italy and Thomson

Semiconductors of France with the aim of becoming a world leader in the sub-micron area.

The new company pursued on aggressive growth strategy, investing Heavily in R&D, forging

strategic alliances with blue-chip customers and academia, building up an integrated pres-

ence in major economic regions, and honing one of the world’s most efficient manufacturing

operations.

According to the latest industry data, ST is the world’s fifth largest semiconductor com-

pany with market leadership in many fields. For example, ST is the leading producer of

application-specific analog chips and power conversion devices. It is also the #1 supplier

of semiconductors for the Industrial market and for set-top-box applications, and occupies

leading positions in fields as varied as discrete devices, camera modules for mobile phones

and automotive integrated circuits.

CORPORATE RESPONSIBILITY:

STMicroelectronics was one of the first global industrial companies to recognize the impor-

tance of environmental responsibility and, over the past 15 years, the Company’s sites have

received more than 100 awards for excellence in all areas of Corporate Responsibility, from

quality to corporate governance, social issues and environmental protection. The Company’s

corporate responsibility policy is detailed in its Principles for Sustainable Excellence.

vi

vii

PRODUCT PORTFOLIO:

ST offers one of the world’s broadest product ranges, with over 3,000 main types of products.

The carefully balanced portfolio includes both application-specific products containing a

large proprietary IP content and multi-segment products that range from discrete devices to

high-performance microcontrollers. St pioneered and continues to refine the use of platform-

based design methodologies for complex ICs in demanding applications such as set-top-boxes,

secure smart cards And mobile multimedia, which minimizes development time and cost. The

balanced portfolio approach allows ST to address the needs of all microelectronics users, from

global strategic customers for whom ST is the partner of choice for major System-on-chip

(SoC) projects to local enterprises that need fully-supported general-purpose devices.

MANUFACTURING MACHINE:

To provide its customers with an independent, secure a cost-effective manufacturing machine,

ST operates a worldwide network of front-end (wafer fabrication) and back-end (assembly

and test and packaging) plants. ST’s principal wafer tabs are presently located in Agrate

Brianza and Catania (Italy), Crolles, rousset and Tours (France), and Singapore. The wafer

tabs are complemented by world-class assembly-and-test facilities located in China, Malaysia,

Malta, Morocco and Singapore.

RESEARH AND DEVELOPMENT:

Since its creation, ST has maintained an unwavering commitment to R&D and in 2009 it

spent US$2.37 billion I n R&D, which is approximately 28% of its revenue, and includes the

R&D activities related to ST Ericsson, as consolidated by St. Among the industry’s most

innovative companies ST draws on a rich pool of chip fabrication technologies, including

advanced CMOS (Complementary Metal Oxide Semiconductor), mixed-signal, analog and

power processes, and is a partner in the International Semiconductor Development Alliance

(ISDA) for the development of next-generation CMOS technologies.

THE KNOWLEDGE NETWORK:

ST has developed a worldwide network k of strategic alliances, including product develop-

ment with key customers, technology development with customers and other semiconductor

manufacturers, and equipment-and Cad-development alliances with major suppliers. These

industrial partnerships are complemented by a wide range of research programs conducted

with leading universities and research institutes around the world. By augmenting its rich

portfolio of proprietary technologies and core competencies with complementary expertise

from a variety of carefully chosen strategic partners, ST has developed an unsurpassed capa-

bility to offer leading-edge solutions to consumers in all segments of the electronics industry.

viii

Many of ST’s research and development programs are managed by its AST (Advanced System

Technology) organization, whose mission is to develop the strategic system knowledge that

will be required within 3-5 years by St’s product divisions. Among AST’s significant recent

achievements are innovative technologies for digital consumer, networking, mobile security,

and on-chip interconnect.

SUSTAINABLE EXCELLENCE:

ST’s technical, marketing, and manufacturing strengths are matched and further enhanced

by au unswerving commitment to Sustainable excellence that has earned prestigious awards

around the world. Since 1991, the Company’s sites have received more than 70 awards for

excellence in all areas of Corporate Responsibility, from quality to corporate governance,

social issues a d environmental protection.

ST’s commitment to environmental responsibility has resulted in substantial reductions over

the years in the consumption of energy, water, paper, and hazardous chemicals, increased re-

cycling of waste products and a significant cut in greenhouse-gas emissions. St has constantly

pushed the boundaries of excellence in Corporate Responsibility, achieving outstanding per-

formance in key areas such as occupational health and safety- including the certification of

16 manufacturing sites and 4 non-manufacturing sites to the international standard OHSAS

18001; the application of low-power technology to its wad e product range; an bridging the

digital divide through the Digital Unify Program, led by the STMicroelectronics Foundation.

FACTS AND FIGURES:

The group totals approximately 50,000 employees, 16 advanced research and development

units, 39 design and application centers, 17 main manufacturing sites and 78 sales offices

in 36 countries. Corporate Headquarters, as well as the head quarters for Europe and for

Engineering Markets, are in Geneva. The Company’s U.S. Headquarters are in Carrollton

(Texas); those for Asia-Pacific are based in Singapore and Japanese operations are head-

quarters in Tokyo. The recently- established “Greater China” region, which includes Hong

Kong, China and Taiwan, is head quartered in Shanghai.

The Company now has around 900 million outstanding shares, 72.4% of which are publicly

traded on the various stock exchanges. The balance of the shares is held by STMicro-

electronics Holding II B.V., a company whose shareholders are CassiaDeposite Prestiti and

Finmeccanica of Italy, and Areva of France.

APPLICATIONS:

The application ground of this company deals under the following heads:

• Automotive

ix

• Communication, Consumer and Commercial

• Computer & peripherals

Software Requirement Specification

1. INTRODUCTION

1.1 PURPOSE: The purpose of this SRS is to present a detailed description of the solutions

provided by ST DVR and MEDIAPLAYER. It will explain the purpose and features of the

system, the interfaces of the system, what the system will do, the constraints under which

the system must operate.

1.2 SCOPE:

ST delivers its own solution of Digital Video Recorder and Media Player and already has

presence across the globe. The scope of this project is to do automation, benchmarking and

analysis of ST’s digital Video recorder and Media player solution.

1.3 DEFINITIONS AND ABBREVIATIONS:

Set-top-box: a small box sits on the standard Television which internally receives input

signal coming from cable, satellite of terrestrial, and converts its content into specific form

and display it onto the TV screen.

Tuner: A module or device which converts low-amplitude radio-frequency signals into a

form suitable for processing by further modules or equipment. Here suitable format is error-

corrected (Transport Stream) format.

TS Demux: Demultiplexes the Audio, Video and Data packets accordingly and forward

them to respective decoders. The main challenging part of the Set-top-box is at TS Demux.

AV Decoder: Decodes the Audio and/or Video packets, following diagram shows the MPEG

AV Decoder.

Digital Video Encoder: Encode the elementary stream data, extract actual video informa-

tion and convert into proper display format like NTSC/PAL format.

Audio DAC: Same as Digital Video decoder this converts digital audio (came from digital

medium) into analog and passes it to speaker into TV.

CPU with on site memory: CPU handles all the tasks with the use of SDRAM as primary

memory and FLASH as secondary memory.

DVR: A digital video recorder (DVR) or Personal Video Recorder (PVR) is a device that

records video in a digital format to a disk drive or other memory medium within a device.

x

xi

DVR/MP: Digital Video Recorder/Media Player

1.4 OVERVIEW:

The next section, Overall Description of this document gives an overview of the functionality

of the product. It also describes the informal requirements of the product. The third

section, Requirement Specification of this document, is primarily written for the developer

and describes in technical terms the details of the functionality of the product.

2. OVERALL DESCRIPTION

ST delivers its own solution of DVR & MP and already has presence across the globe. The

scope of this project is to do automation, benchmarking and analysis of the ST’s DVR &

MP solution.

The key features to be targeted are:

Multiple record and playback

Time shift and catch live

Forward and backward trick modes

2.1 PRODUCT PRESPECTIVE

VCRs enjoyed a long run as the number device for recording TV. Today, digital video recorders

have changed the way we watch and record our favorite TV shows and are better than VCRs

in many ways. The set-top-boxes have brought a revolution in the history of television.

2.1.1 System Interface

To use this, the user should have a set-top-box with ST chip.

2.1.2 Hardware Interface:

• Mother board with set-top-box chip

• EXTERNAL data storage (SATA hard disk/ USB hard disk/ USB pen drive)

• Micro connect

• Packet injector

• Television set (SD/HD)

• UART

• MTX-100 (MPEG RECORDER AND PLAYER) with standard keyboard and mouse

2.1.3 Communication Interfaces:

UART cable, ETHERNET cable, HDMI cable, Audio/Video cable

xii

2.1.4 Operations:

The key features to be targeted are:

• Multiple record and playback

• Time shift and catch live

• Forward and backward trickmodes

2.2 PRODUCT FUNCTIONS:

Set-top-boxes are very popular these days; ST provides its own set of solutions to these

boxes. The DVR team is aiming at providing features like:

• Multiple record and playback

• Timeshift and catch live

• Forward and backward trickmodes

Functions of MediaPlayer are:

• Support various container formats

• Trickmodes

• Pause and seek

2.3 CONSTRAINTS

• The user has the access to ST specific operating systems.

• The user has the ST chip boards.

2.4 ASSUMTIONS AND DEPENDENCIES

• The application will work only with ST chips.

• The application will only work with ST specific operating systems.

• The user is assumed to have knowledge about the SET-TOP-BOX.

3. SPECIFIC REQUIREMENTS:

3.1 External Interface:

To have the various solutions of ST DVR and MEDIAPLAYER, one should have access to

the ST boards. The input can be any program from satellite, or through the packet injector.

To check the various operations, as output we need to have a television set.

3.2 Functional Requirements:

The various functions that can be performed by the DVR:

Contents xiii

• Trickmodes

• Multiple records and playback

• Timeshift and catch-live

The various functions that can be performed by the Media Player:

• Trickmodes

• Support different container formats.

• Pause and seek operations.

3.3 Software System Attributes:

• Reliability: The solutions are reliable enough to support on various set top boxes.

• Consistency: The solutions are consistent with the growing market requirements.

• Portability: The solutions can be supported by operating systems that can support

the hardware configuration.

Contents

Declaration i

Cetificate ii

Acknowledgements iii

Abstract iv

Company Profile vi

Software Requirement Specification x

Contents xiii

List of Tables xvii

List of Figures xviii

1 Introduction 1

1.1 Introduction to Digital Video Recorder(DVR) 2

1.1.1 Stand alone DVRs . 2

1.1.2 Computer DVRs . 2

1.1.3 Portable DVRs . 2

1.1.4 Set Top Boxes with DVR capability 3

1.2 Why DVR? . 3

2 Set Top Box 5

2.1 Introduction . 5

2.2 STB Hardware Architecture . 7

3 GStreamer 20

3.1 GStreamer . 20

4 Transport Stream 23

4.1 Transport Stream . 23

xiv

Contents xv

4.2 The MPEG-2 standard allows two forms of multiplexing 24

4.2.1 MPEG Program Stream . 24

4.2.2 MPEG Transport Stream . 24

4.2.2.1 MPEG Transport Streams 24

4.2.2.2 Transmission of MPEG-TS 25

4.2.2.3 Single and Multiple Program Transport Streams 25

4.2.2.4 Signaling Tables . 26

4.2.2.5 MPEG-2 Signaling Tables 27

5 Digital Video Broadcasting 31

5.1 Digital Video Broadcasting . 31

5.1.1 DVB-S . 32

5.1.2 DVB-T . 33

5.1.3 DVB-C . 34

5.1.4 DVB-H . 34

6 Digital Video Recorder 35

6.1 Digital Video Recorder . 35

6.2 DVR Operations . 36

6.2.1 Recording: . 36

6.2.2 Play Back . 36

6.3 Features of DVR . 36

6.4 Timeshift . 37

6.5 Trickmodes . 38

7 Testing 39

7.1 Testing . 39

7.2 Different types of testing . 39

7.2.1 Functional vs. Non-functional Testing 39

7.2.2 Full Sub-system Testing . 40

7.2.3 Mediaplayer Testing . 40

7.2.4 DVR Testing . 40

7.2.5 IPSTB Testing . 41

7.2.6 System Testing . 41

7.2.7 Sanity Testing . 41

7.3 Python . 41

8 Linux and Hardware Environment Setup 43

8.1 Linux Environment Setup . 43

8.1.1 ssh key generation . 43

8.1.2 Installation of required packages . 44

8.1.3 Patches . 49

8.1.4 Build Process . 50

8.1.5 Test execution . 51

8.2 Hardware Set up . 52

9 Automation Through Testframework 54

9.1 Flow To Set An Environment of SDK2: . 54

Contents xvi

9.1.1 Starting the Test Framework: . 54

9.1.1.1 Prerequisite: . 54

9.1.1.2 Make file Command . 54

9.1.1.3 Framework Execution from the Command Line: 55

9.1.1.4 Description: . 55

9.1.1.5 How to Execute Test Cases Uses Test Framework: 58

9.1.1.6 Different Types Of Test Cases: 58

9.1.1.7 Flow to execute a particular test: 59

10 Technology Used 65

10.1 Technology Used . 65

10.1.1 Source Insight . 65

10.1.2 Novel features . 65

10.1.3 Supported languages . 66

10.1.3.1 Features . 66

10.1.4 VMWare . 67

10.1.4.1 Core product design . 67

10.1.4.2 Desktop software . 69

10.1.5 JTAG . 69

List of Tables

2.1 Software Architecture of STB . 17

9.1 Verdict Description . 63

xvii

List of Figures

2.1 Block Diagram of STB . 6

2.2 Inside View of STB . 8

2.3 STB Hardware Blocks . 8

2.4 Set Top Box Decoder blocks . 10

2.5 Set Top Box Mixer operation . 11

2.6 ST Micro Connect . 13

2.7 JTAG . 13

3.1 GStreamer . 21

4.1 Transport Stream . 23

4.2 Audio and Video Packets in TS . 25

4.3 MPEG-2 TS Layered Architecture . 26

4.4 Packet Consisting of PID, PAT,PMT . 27

4.5 Transport Stream Header Structure . 28

4.6 PES Header Structure . 30

6.1 Block Diagam . 36

6.2 Working of Live Normal Playback . 37

6.3 Rocord . 37

8.1 GIT Clone . 48

8.2 Patch Example - 1 . 49

8.3 Patch Example - 2 . 50

8.4 Hardware Arrangement . 52

9.1 Arrangement of files in Test Framework . 57

9.2 Starting Live Use-case Manually . 59

9.3 Zapping Live Use-case Manually . 60

9.4 Zapping Live Use-case Automatic . 61

9.5 Verdict window . 62

9.6 Failed Test Report . 62

9.7 Passed Test Report . 63

9.8 Execution Flow of Test Frame work . 64

xviii

Chapter 1

Introduction

When we think about the history of television, there are a handful of events that stand out as

extremely important. The invention of the Black-and-white TV set and the first broadcasts

of television signals in 1939 and 1940 were obviously important. Then there is an advent of

color TV and its huge popularity starting in the 1950s. Theirs is the rise of cable television

and cable channels like HBO and CNN in the 1970s. In this same list must certainly go

the development and popularization of the VCR starting in the 1970s and 1980s. The VCR

(Video Cassette recorder) marks one of the most important events in the history of the TV

because, for the first time, it gives people control of what they could watch on their TV

sets. Prior to the VCR, there was no such thing as a video store.

When the VCR was first introduced to the public, the television industry reacted with panic.

Then came a device that would let people record programs, watch them when they felt like

as opposed to when the programming staff decided they should, and (scariest of all) skip

through the commercials.

But the television industry survived despite the widespread popularity of VCRs. Now the

dreaded VCR is in its death throes and a more modern innovation ahs come along that

makes recording television programs even easier. The Digital Video Recorder, or DVR. The

concept behind Digital Video Recorders originated in 1985, and Honeywell Inc. obtained a

patent for the device in 1988.

The Digital Video Recorder (or DVR) is one of the most miraculous technological inventions

of the 21st century. Digital Video Recording is a method of recording TV and Video digitally,

by means of compressing the video signal using a Video Encoder, such as MPEG-2 (Motion

Picture Experts Group-2), A DVR is essentially made up of two elements: the device that

stores the hard disk drive and power supply,, and some type of Electronic Programming

Guide (EPG) that allows the user to program recordings.

1

Chapter 1. Introduction 2

1.1 Introduction to Digital Video Recorder(DVR)

A digital video recorder (DVR) or personal video recorder (PVR) is a device that records

video in a digital format to a disk drive, USB key drive, SD memory card or other memory

medium within a device.

Since the video images are stored digitally, the image quality will not degrade overtime. As

would a VHS tape when recorded over multiple times. There are main four types of DVR’s:

• Standalone DVR’s

• Computer DVR’s

• Portable DVR’s

• Set Top Boxes (STB) with DVR capability.

1.1.1 Stand alone DVRs

Stand alone DVRs have been made popular by brands such as TiVo which can be bought

from most electronic stores and hooked up to most TV sets. These DVR’s offer large storage

capacities, usually coming in 30 or 60 GB’s as well as fully functional TV viewing guides

so that users can easily and effectively record their favorite TV show. Standalone DVR’s

usually cost a onetime fee for the purchase of the device and then charges an additional

fee for each month of service which includes listing guide and features understanding your

viewing choices and automatically recording shows for you that you might like.

1.1.2 Computer DVRs

Computer DVR’s are one of the newer ways many people are recording and watching their

favorite TV shows. Most people watch broadcast TV, cable TV or satellite TV on their

computer LCD monitors with the help of a tuner card. Computer DVR’s use the internet

to find TV listings, the tuner card can pipe in the video into the computer and it is easily

stored on the computer’s hard drive.

1.1.3 Portable DVRs

Portable DVR’s are growing in popularity and are sometimes referred to as portable media

devices. Not only can they transfer and store videos, but music, photos and other types of

media. Some portable DVR’s usually consist of just a small function screen, USB port and

hard drive. Others include an LCD screen to watch video directly on the unit.

Chapter 1. Introduction 3

1.1.4 Set Top Boxes with DVR capability

Cable and satellite TV companies also offer many of their customer DVR’s. These DVR’s

come with large storage capacity for recording or storing TV shows and movies at home to

each at later rime. These DVRs are usually built into set top boxes, so one box fulfills all

your cable or satellite TV needs. Most cable and satellite companies allow their subscribers

to rent these DVR’s directly from them usually for small monthly fee. There is no additional

membership for TV listing services.

1.2 Why DVR?

VCRs enjoyed a long run as the number one device for recording TV. Today, Digital video

recorders have changed the way we watch and record our favorite TV shows and are better

than VCRs in many ways.

• When using a VCR, you could set a program to record and then watch it at a later time.

You could also watch one program while recording another. Digital video recorders with one

TV tuner built-in allow users to record one show and watch a previously recorded program

at the same time. DVRs with two TV tuners (the most common type today) allow you to

record one program while watching another, or record two shows at the same time, all while

watching a third previously recorded program. Very cool!! DVRs also give you the ability

to start watching the beginning of a show while the show continues to record, something a

VCR could never do.

• VCRs record to tapes while Digital Video Recorders record to a built-in hard drive. It’s

great not to have to use tapes; everything is recorded right in the DVR box.

• Digital Video Recorders record digital signals, while VCRs are analog machines. This

means that DVRs can record digital cable and satellite channels, and more

• Importantly the ever increasing lineup of HDTV channels. While VCRs can be set up to

record digital and Hi-def channels, the playback is downgraded to analog quality. Not so

with a DVR, whatever quality you record in, HD, digital or analog, the playback quality is

the same.

• The biggest difference that makes a DVR better than a VCR, however, is a DVR’s ability

to Pause and Rewind Live TV. Pause your favorite TV show when the phone rings, and

resume where you let off at a later time, or rewind=d some missed dialog in a movie or a

great play in the big game. With a VCR you must record a program first before you can

pause, rewind of Fast-Forward.

Chapter 1. Introduction 4

• VCR images wear out quickly and degraded over time. They are often damaged as tapes

can stretch or even tear; leaving images that simply cannot be trusted and used effectively

as evidence in court. However, digitally recorded images can be stored, transferred and

transmitted over networks and phone lines with no loss of image were recorded. Encrypted

Watermarks and Thumbprints offer a level of security that your video image is always au-

thentic and can be used as evidence in court.

• One more benefit of DVDs is the unprecedented control over playback. With a VCR, you

have to wait for a program to finish recording before you can start watching it. Since there’s

no tape to rewind, digital recording doesn’t have this limitation. A program that started

recording 10 minutes ago can be viewed at any time, even while it’s still recording.

DVR’s are better than VCR’s for these primary reasons:

• No more tapes to change every day.

• Better picture quality on playback.

• Instantly search through recorded images by time and date, without spending hours in

front of a VCR trying to find the event you are looking for.

• Remote viewing and recording makes managing your business easy from any off-site loca-

tion.

• Extended storage capabilities without long-term maintenance.

Chapter 2

Set Top Box

2.1 Introduction

A set-top box (STB) is a device that connects to an external signal source and Decodes

that signal into content that can be presented on a display unit such as a TV.

Set Top Box or STB has become an integral part of TV viewing in many Parts of the world.

We commonly see this sleek looking device sitting on side of TVs. Though this device looks

slim and simple but it is one of the most complexes Embedded systems today. STBs are

increasing their feature set day by day. Few Of the common features in current generation

STBs are time shift mode viewing,Recording, Internet based viewing, video on demand, Full

High definition video output etc.

STB is very complex embedded system; it consists of 30+ hardware blocks And similar num-

ber of software drivers. STB has lot of computing power distributed across main processor

and various co-processors. In few of top end STBs if we add Operating frequencies of all

co-processors then it would be in range of 3-4 GHz.

Modern day set-top boxes generally are digital devices that communicate us-In computer

language. In the past when the set-top box functions were built in to another device,

such as a TV, it might have been referred to as a device with a built-in. Now-a-days the

phrase built-in has been superseded by the phrase ”integrated”. Now a TV with set-top box

functionality built into it is more often called an ”Integrated TV”. If it’s a digital TV, it

would be known as an ”Integrated Digital TV” (iDTV). Do note that just because a TV has

set-top box functions built in to it, that doesn’t mean it’s a digital TV. In that case it’s just

an analog TV with set-top box functions built into it.

A set-top box is a computerized device that processes digital information. Set-top boxes

(STB) come in many forms and can have a variety of functions. Digital Media Adapters,

5

Chapter 2. Set Top Box 6

Digital Media Receivers, Windows Media Extender and most video game consoles are also

examples of set-top boxes. Currently the type of TV set-top box most widely used is one

which receives encoded/compressed digital signals from the signal source (perhaps your cable

or telecom TV provider’s head end) and decodes/decompresses those signals, converting

them into analog signals that your analog (SDTV) television can understand. The STB

accepts commands from the user (often via the use of remote devices such as a remote

control) and transmits these commands back to the network operator through some sort of

return path.

Most set-top boxes deployed today have return path capability for two-way communication.

Figure 2.1: Block Diagram of STB

STBs can make it possible to receive and display TV signals, connect to net- works, play

games via a game console, surf the Internet, and interact with Interactive Program Guides

(IPGs), virtual channels, electronic storefronts, walled gardens, send e-mail, and videocon-

ference. Many STBs are able to communicate in real time with devices such as camcorders,

DVD and CD players, portable media devices and music keyboards. Some have huge hard-

drives and smart card slots to put your smart card into for purchases and identification.

Generally put, to provide interactive services, the set-top box might need some or all of the

below

• A network that offers the potential for interactivity.

• The network interface - This connects the STB to a network which makes it possible to

communicate with the servers.

• A tuner is electronics that ’catch’ the incoming signal.

Chapter 2. Set Top Box 7

• The decoder - In order to save storage space, disk bandwidth, and network bandwidth,

programming is usually encoded (compressed) before being sent over the network to the

STB. Thus, the end-user (subscriber) needs a decoder to decode (uncompressed among other

things) the incoming stream’s data before it can be viewable on the TV. This is part of what

a modem does. The decoding process may be known as (or include) Demodulation (Heavy

Lifting.) It could include Demultiplexing. Also see Codec. H.264 (MPEG-4)compression

technology utilizes up to 40 percent less network bandwidth than the MPEG-2 compression

used in most systems to date.

• The buffer - Due to delay jitters in the network, the exact arrival time of a video stream

often cannot be determined. In order to guarantee continuous and consistent playback for

the viewer, the video and/or data stream(s) may be received one or even a few seconds

before it’s actually seen by the end-user. This way if there are actuations in the transport

time of the streams to that receiver (aka set-top box, decoder), the viewer won’t know the

difference as their buyer has a bit of time to spare.

• Synchronization software/hardware Video and audio streams must be synchronized with

each other before viewing. Other streams may be added including those related to enhance-

ments (such as metadata.)

• Middleware

• Platform

• Applications

• Any additional software and/or hardware.

• A return path (back channel).

2.2 STB Hardware Architecture

A typical STB would look similar to one shown in following image. This is picture of standard

definition (SD) satellite based STB being used at my home. Number of components used

are fairly less compared to complexity of this system. This credit goes to the main STB

decoder chip which integrates a lot of hardware components required into a single chip.STB

Blocks:

• Power Supply

• Smart Card Slot

• RAM

Chapter 2. Set Top Box 8

• STB Decoder

• Flash

• DVB-CI Slot

• Satellite Front End

• RF Modulator

Figure 2.2: Inside View of STB

The above picture shows STB circuit board and major components on the board. A more

logical relationship between various components is shown in following block diagram.

Figure 2.3: STB Hardware Blocks

STB Decoder: This is heart of the whole system. In current generation STBsmost of

the features required by STB system are integrated in STB decoder chips. This level of

integration is called System on Chip (SoC). STB SoCs contain a large number of block

Chapter 2. Set Top Box 9

ranging from de-multiplexer to decoders and peripherals like USB, SATA etc. We will discuss

STB SoC in more details in next post Inside Set Top Box Part 2.

Front End: Front End part of STB is responsible for receiving the broad- casted signal,

demodulating the signal and outputting digital data output for STB decoder chip. Depending

upon broadcasting environment terrestrial or satellite or cable front end will be used. Front

end unit consist of 3 main blocks tuner to tune correct frequency, demodulator to demodulate

as per standard and forward error correction (FEC) unit for data recovery.

Power Supply: This is the main power source for board. This unit generates different

voltage required by various components on board. Input to this unit can be main line AC

(220/110) or DC 12V via standalone power adapters.

Flash: This is used to store boot loader, main application and other use specific nonvolatile

data. Different STBs uses different sizes of ash ranging from 8MB to 64MB.

RAM: RAM is used to store all intermediate data (such as decoded video/audio buyers) and

application variables. In many cases main application is also copied to RAM and is executed

from RAM to speed up the operation (as RAM is faster compared to Flash). RAM size

ranges from 32MB in standard definition STBs to 256MB in some top end Full HD STBs.

Video Interfaces: STB decoder chip outputs video data in analog or digital format. To make

these signals compatible with external devices, special cir- circuitry like filter and physical

connector are required. Current generation STBs provide many video output formats such

as CVBS, S Video, and Component video HDMI.

Audio Interfaces: STB decoder chip outputs audio data in analog as well as digital format.

In some cases high quality DACs are used to convert digital data into analog format. Digital

data is also transmitted in digital format using SPDIF standard.

Storage: Few STBs also work as digital video recorders. To aid storage of programs some

storage device (HDD) is added via any of the interfaces (SATA, eSATA, ATAPI or USB)

provided by decoder chip.

Front Panel: This is STBs interface to external world. Front panels are dif- ferent for

different boxes. But most of them provide IR input/output, Status LEDs, 7 segments or

LCD and few switches to configure set top box. These features are controlled by parallel

IOs of main decoder chip. In some cases a dedicated microcontroller is added to front end

to reduce processing load for main chip and also to reduce the number of wires going from

front panel to main PCB.

DVB-CI Slot:This slot is provided to support various conditional accesses schemes. Condi-

tional Access providers provide compatible DVB-CI cards to be used with STB. The DVB-

Chapter 2. Set Top Box 10

CI card decrypts the channels encrypted by Conditional Access provider as per user’s sub-

scription policies.

Smart Card Slot: This slot is provided to use smart card for Conditional Access implemen-

tation. Unique subscriber ID is stored on each card. Smart card is also used in decrypting

the channels.

RF Modulator: This is used to modulate Audio and video into RF signal. This is mainly

to be used with older TVs which have only RF input and no composite (CVBS) input.

STB Decoder SoC: STB Decoder is one of the most complex systems on chip (SoC).

There is generally one main processor and lot of co-processor do- in dedicated processing.

A typical decoder SoC will have following blocks.

Figure 2.4: Set Top Box Decoder blocks

Main CPU: This is the main CPU executing the STB application. It is a general purpose

CPU with lot of development tools available. Its speed range from 200MHz on standard

definition devices to near 1GHz on High Definition devices. The main CPU is generally based

on industry standard core such Super H or ARM to improve ease of tools and reusable stack

availability.

Chapter 2. Set Top Box 11

Demux: Demux is a dedicated co-processor to de-multiplex the digital trans- port stream

into audio, video and other data. Demux checks the input stream for errors and protocol

compliance and filters the required data into desired buyers (Audio, video)

Video Decoder: This co-processor is responsible for converting compressed video (MPEG)

data into basic video format. Current generation decoders have programmable video de-

coders, so video decoders can support a variety of formats such as MPEG2, H264, VC1

etc.

Graphics Engine: This co-processor is dedicated to graphics acceleration. Its main task

is to draw pictures and menus for user interface (UI). This unit is becoming more powerful

these days with introduction of 3D menus.

Mixer: This block is responsible for mixing the video output and graphics output and

producing a signal single image. This is also responsible for ordering of video and graphics

plane and transparency settings. As shown is image there are two planes one video in

background on video plane and other is rectangular window showing program information

on graphics plane. These two planes are mixed by mixer to generate a single image.

Figure 2.5: Set Top Box Mixer operation

Video Output: Final result after mixing video decoder and graphics accel- erator outputs is

provided to video output block. This block is responsible for outputting data as per required

standards (PAL, NTSC, SECAM, HDMI). This block generates output in analog format

using DACs. This block also generates output in digital format using HDMI convertors.

Chapter 2. Set Top Box 12

Audio Decoder: Audio decoder converts the compressed audio data into basic audio data.

Audio decoders are also programmable these days. They can be programmed to support any

audio standard. Audio decoder generally supports MPEG, AAC, Dolby formats.

Audio Output: Audio output is fed to audio output block. This block provides audio output

in analog format using internal DACs and in digital format using SPDIF convertor.

CPU (Processor): Just as in a regular PC, the processor inside the CPU takes care of

interactions of all the hardware peripherals and software modules inside a set-top box. It

manages the Real Time Operating System (RTOS). The processor also takes care of memory

devices and other forms of digital storage like hard disks or flash drives.

Digital Storage: Digital storage is another optional component inside a set-top box. It is

needed for persistent storage of any kind of data including audio/video. It communicates

with the processor and is controlled by STB software modules and storage drivers. In fact,

it is a hard disk which acts as a digital storage media inside an STB.

CA Module: The conditional access (CA) module can be considered as the most important

component of a set-top box. This module is virtually the lifeline of all the leading set-top box

solution providers. This peripheral, called Integrated Conditional Access Module (ICAM), is

placed before the demultiplexer to be used for descrambling the encrypted signal, and also

provide a smartcard interface for various security features.

Return Path: This is an optional component. A return path is used by an STB to com-

municate back with the Head End and send data packets. The return path can be present

in various forms like a PSTN line connection, a cable modem in case of cable STBs or an

Ethernet jack in IP set-top box using ADSL broadband modems. For example, a return path

becomes a necessary component if a user needs to purchase PPV (pay per view) events

directly from the set-top box using credit cards.

Peripherals: Other than main decoders and CPU a lot of peripheral devices are supported

by STB SoCs for providing various features.

USB: For record/playback on external storage

SATA: Used to connect HDD for providing digital video recording facility.

Ethernet: Input source for IP based STBs

UART: Debug port. Sometimes also used for software upgrade in field.

I2C: Used by main STB SoC to communicate with external peripheral devices such as front

end, SCART controller, HDMI controller etc.

SPI: Used for connecting to non-volatile storage on serial ash devices.

Typical Set Up Architecture of Set-Top Box

Chapter 2. Set Top Box 13

ST Micro Connect The kernel image compiled on the PC is loaded in to the SoC memory

using the STMicro connects. ST Micro connect is a host-target interface from STMicro-

electronics. It connects to a target development board’s JTAG connector and provides host

software with the ability to start up the target board, download programs and debug them in

the target. It is easy to install and use the ST Micro Connection Package provides software

utilities and firmware, including Target Packs for certain ST evaluation boards.

Figure 2.6: ST Micro Connect

JTAG: The JTAG cable facilitates the transfer of the kernel image from the PC to the SoC.

UART: The UART transmits the serial output from the board to the PC; it is useful in

getting the debug information.

Figure 2.7: JTAG

TV: Serves as the receiver for digital output in various formats like HDMI, AV, SPDIF.

Chapter 2. Set Top Box 14

Digital Television: • Digital TV (DTV) is becoming an emerging consumer electronics

appliance.

• It is a new way of broadcasting and is the future of Television.

• Digital Television is the successor of analog TV. All broadcasting will be done in digital

format.

• Around the globe, Satellite, Cable and Terrestrial operators are moving to digital envi-

ronment.

SATELLITE SYSTEMS: Satellite based systems deliver programs and multimedia content

from broadcasters, who use a number of geostationary satellites to relay their signals to

customers back on Earth. Customers must be within the “footprint” of a given satellite in

order to receive the transmission. The STB’s designed for receiving broadcasts from satellite

based systems were the first to be deployed. It’s a system which would improve reception

quality and allow them to bring in services, which could not be possible with conventional

TV system, and to a large extent this has governed the choice of as soon as possible used

in the set top designed for their system.

CABLE SYSTEMS: In cable systems, broadcasts are sent to the home via coaxial or

optical fiber based cable. In the near future, x-DSL systems will also be able to deliver

these services over normal twisted pair telephone wire. Cable-based systems are beginning

to ramp up significantly in volume. The rapid deployment of satellite systems is seen as an

obvious threat by the cable companies. They are meeting the challenge, and are also looking

to the future to how their set top boxes may evolve into the primary means for accessing

the internet. This will open up the market and allow them to compete in areas normally

associated with the PC systems.

TERRESTRIAL SYSTEM: In a terrestrial system, digital broadcast signals are transmit-

ted via ground-based transmitters in exactly the same way as analog television signals are

transmitted. In fact, in the majority of cases exactly the same aerial can be used. Systems

designed for terrestrial systems are limited in terms of the number of channels they can offer

compared to both satellite and cable based systems. The modulation scheme required is

more complex than that required for cable or satellite. In this system the data is spread

over a number of frequency channels. A concatenated error correction system is used, and

the use of “guard intervals” is also employed in order to ensure as robust a scheme as is

practical.

• DTV will provide cinema quality pictures, CD quality sound and hundreds of new channels.

• A small box sits on top of a standard TV set is called Set-top Box (STB).

• STB is central to this migration from analog-to- digital broadcasting.

• STB will become a gateway to the digital information super highway.

Chapter 2. Set Top Box 15

For digital broadcasting, TV signal is:

1. Digitized.

2. Compressed and.

3. Digitally modulated.

Digitization:

• Digitization of TV signal is carried out using Pulse code Modulation (PCM)

• Digital signal consists of 1’s and 0’s which are not affected by interference and noise.

• Digital signals are easy to process by standard techniques.

• PCM process needs.

1. Sampling.

2. Quantization and.

3. Encoding.

• Sampling determines samples corresponding to instantaneous amplitude of the input signal

at uniform intervals.

• Input signal is divided into number of levels.

• Quantization allocates levels to the amplitude of sample values.

• Each sample peak falls within some specific level.

• This value is translated into binary code using encoder.

• N = Log2 (Number of levels) where N is number of bits

• Total bit rate = Fs X N

• For example: for TV signal Fm=5MHz with N=8 bits

• Then bit rate= 13.5X8=108Mb/s (CCIR 601 standard)

• After digitization the BW is increased by 21 times.

The details of compression would be elaborately put forth in subsequent chapters. Before

divulging in details, the basic operation of SET-TOP box would be placed to keep the driving

force and the whole working environment intact in the mind of the readers. The important

point to keep in mind is:

• QPSK demodulator is used in case of Satellite transmission.

• OFDM demodulator is used in case of Terrestrial transmission.

• QAM demodulator is used in case of Cable transmission.

Flow of Data: Let’s move on to the next level, where we’ll go through the flow of data

between this hardware while we tune an STB to a particular channel. The tuner receives

modulated digital transmission from the antenna and passes it on to the demodulator.

This demodulator takes into account the type of demodulation (like QPSK) and forward error

correction to give out a transport stream, which is a digital stream of bytes known as data

Chapter 2. Set Top Box 16

packets. According to DVB standards, a transport stream is of the size of 188 bytes. It then

goes into the Demux where the content is separated in audio/video packetized elementary

stream (PES) and data packets known as sections, as per DVB standards.

PES is a mechanism to carry audio/video elementary streams in packet format inside an

MPEG-2 transport stream. Sections are the data packets containing information regarding

the audio/video content and other metadata. Once the Demux does its job, audio/video is

sent to MPEG-2/MPEG-4 decoder which gives the output to the Report to display the video

on television.

The data packets are sent to the processor used by the STB software to enable viewing. This

data can be persistent or kept in RAM as per the needs and performance. Any kind of user

request, be it tuning or a purchase, goes through the CPU. In between, the most important

functionality of descrambling is performed by a descrambler embedded inside the ICAM part

of the chipset. In some variants of STBs, a descrambler can be a part of a decoder, or it

can exist independently.

The descrambler takes care of decrypting the encrypted transport stream using the control

word technique. Generally, these descramblers and control word algorithms are closely-

guarded secrets with CA solution providers to prevent hackers from decrypting the signal.

These are developed in conjunction with chipset vendors in a much secured environment.

STB Software Architecture: STB Software is organized as layered architecture as shown

in block diagram below. RTOS is generally STB company proprietary or some industry

standard OS such as Linux. Software drivers are written for all hardware blocks and some

software components. A typical STB has 30-40 different drivers.

Middleware is generally used to standardize the interfaces from drivers to application so that

device independence can be provided. Final application is on top of middleware and it usually

remains same for one service provider across different STBs. There are normally two applica-

tions loaded on each STB. One is the boot loader and other is main application. Boot loader

is responsible for downloading main application Over the Air (Application broadcasted over

air by service provider) and updating the main application. The main application is respon-

sible for all the features/functionality which the end user sees. STB software application has

very high complexity. Atypical STB application including drivers consists of 0.5-0.6 million

lines of code.

So STB does a great job of hiding this advance level of complexity in its simple form factor.

Its application is also designed by keeping various users in mind, so the complexity of software

is completely hidden from end users perspective.

Chapter 2. Set Top Box 17

Table 2.1: Software Architecture of STB

Application

Middleware

Driver Layer

OS

Hardware

Software Architecture of Set Top Box

Drivers and OS: An operating system is the most important piece of software in a STB. An

OS is a suitable of programs used to manage the resources in a STB. In particularity is the

OS, which talks to the STB hardware and manage their functions such as scheduling real

time tasks, managing limited memory resources, etc. A STB OS is arranged in layers with

each layer adding new capability. At the heart of any STB OS is the ”Kernel” layer, which

is stored in ROM. Once the STB is powered up, the kernel will be loaded first and remains

in memory until the STB is powered down again. Typically the kernel is responsible for

managing memory resources, real time applications and high-speed data transmission. The

kernel supports multi-threading and multi-tasking which allows a STB to execute different

sections of a program and different programmers simultaneously. The STB also requires

’drivers’ to control the various hardware devices. Every hardware component in the STB

must have a driver. A driver is a program that translates commands from the TV viewer to

a format that is recognizable by the hardware device.

Finally a STB OS needs to incorporate a set of Application Program Interfaces which are used

by the programmers to write high-level applications for a specific API. An API is basically a

set of building blocks used by software developers to write programs that are specific to a

STB OS environment.

Middleware layer: Central to the new software architecture of a STB is a connection layer

that acts as a communications bridge between the OS and the ’subscriber applica- tions’

called ’Middleware’. Middleware is a relatively new term in the set top business. It represents

the logical abstraction of the middle and upper layers of the communication software stack

used in set top software and communication system. Middleware is used to isolate set top

application programs from the details of the underlying hardware and network components.

Thus set top applications can operate transparently across a network without having to be

concerned with the underlying network protocols. This considerably reduces the complexity

of content development because applications can be written to take advantage of a common

API. The terms API (Application Programmers Interface) and middleware are sometimes

interchangeably used. The API is the standard environment that an application program

Chapter 2. Set Top Box 18

expects to see. The API itself consists of a set of well-defined and specified functions

accessed using a well-defined and specified called mechanism. Early generation of STBs had

no APIs but only a very basic operating system. As costs have fallen and processing power

has increased, more recent STBs have included APIs. In order to progress beyond ordinary

broadcasting to the new emerging interactive services an API is essential.

Application Layer: All the applications that run in a STB can broadly be classified into two

main categories Enhanced and Interactive. An Enhanced TV application is the one which is

based on ’local interactivity’ and which does not require a return path back to the service

provider. As opposed to this an interactive application is based on ’two way interactivity’.

Here the viewer issues a request for extra information to the service provider, which travels

along a return path and the service provider sends the requested data back either via the

return path itself or ’over the air’. A good example of this would be calling up a home

shopping application via the TV screen.

Set-top boxes may be associated with these major categories

Broadcast TV Set-top Boxes: (a.k.a. Thin Boxes) - A more primitive set-top box with

no back channel (return path.) These might come with interface ports, some memory and

some processing power.

Enhanced TV Set-top Boxes: (May be known as: Smart TV Set-top Box, Thick Boxes)

These have a back channel (return path), often through a phone line. These may be capable

of Video on Demand, e-commerce, Internet browsing, e-mail communications, chat and

more.

Advanced Set-top Boxes: (a.k.a. advanced digital Set-top boxes, Smart TV Set-top Box,

Thick Boxes, All-in-one Set Top Box, Media Center) - A fully integrated set-top box. These

have good processors, memory, middleware, software applications and optional hard-drives.

They’re often used with high- speed (broadband) connections. Features could include high-

speed Internet access, Interactive TV, digital video and gaming. Instead of this, a ”sidecar”

might be used in tandem with the set top box and/or TV. Advanced set-top boxes are more

likely to be integrated with DVRs and high-definition TV.

Sidecar: This type of set-top box provides an additional transport stream of data from

the network operator to compliment the main stream. With Charter Communications, the

BMC-8000 (Broadband Media Center) is/was a sidecar box that works in tandem with the

Motorola DCT-2000. A fully integrated unit would not require a Sidecar.

Hybrid Digital Cable Box: A Hybrid Digital Cable Box is a specialized cable TV set-top

box with high end functions. Motorola Broad bands DCP501 home theater system is/was

Chapter 2. Set Top Box 19

an example. It has/had a DVD player and high-end stereo output. This term may be

antiquated.

Over-the-top Boxes: Electronic device manufacturers are providing DVD play- ers, video

game consoles and TVs with built- in wireless connectivity. These devices piggy back on

an existing wireless network and pull content from the Internet and deliver it to the TV

set. Typically these devices need no ad- additional wires, hardware or advanced knowledge

in how to operate. Content suited for TV can be delivered via the Internet. These OTT

applications include Facebook and YouTube. Also see Internet-connected TV.

Chapter 3

GStreamer

3.1 GStreamer

GStreamer is a framework for creating streaming media applications. GStreamer’s devel-

opment framework makes it possible to write any type of streaming multimedia application.

The GStreamer framework is designed to make it easy to write applications that handle

audio or video or both. It isn’t restricted to audio and video, and can process any kind

of data flow. The pipeline design is made to have little overhead above what the applied

filters induce. This makes GStreamer a good framework for designing even high-end audio

applications which put high demands on latency.

One of the most obvious uses of GStreamer is using it to build a media player. GStreamer

already includes components for building a media player that can support a very wide va-

riety of formats, including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, mod, and more.

GStreamer, however, is much more than just another media player. Its main advantages are

that the pluggable components can be mixed and matched into arbitrary pipelines so that

it’s possible to write a full-fledged video or audio editing application.

The framework is based on plugins that will provide the various codec and other functional-

ity. The plugins can be linked and arranged in a pipeline. This pipeline defines the flow of

the data. Pipelines can also be edited with a GUI editor and saved as XML so that pipeline

libraries can be made with a minimum of effort.

Specifically, GStreamer provides:

• an API for multimedia applications

20

Chapter 3. GStreamer 21

• a plugin architecture

• a pipeline architecture

• a mechanism for media type handling/negotiation

• a mechanism for synchronization

• over 250 plug-ins providing more than 1000 elements

• a set of tools

GStreamer plug-ins could be classified into:

• protocols handling

• Sources: for audio and video (involves protocol plugins)

• Formats: parsers, formatters, muxers, demuxers, metadata, subtitles

• Codecs: coders and decoders

• Filters: converters, mixers, effects, ...

• Sinks: for audio and video (involves protocol plugins)

Figure 3.1: GStreamer

GStreamer is packaged into:

• gstreamer: the core package

• gst-plugins-base: an essential exemplary set of elements

• gst-plugins-good: a set of good-quality plug-ins under LGPL

• gst-plugins-ugly: a set of good-quality plug-ins that might pose distribution problems

Chapter 3. GStreamer 22

• gst-plugins-bad: a set of plug-ins that need more quality

• st-libav: a set of plug-ins that wrap libav for decoding and encoding a few others package.

Chapter 4

Transport Stream

4.1 Transport Stream

Transport Stream is an audio, video and data communication transmission protocol that is

specified in MPEG-2. TS allows multiplexing of digital video and audio, which means the

data is combined in to a single synchronous transmission bit stream for transmission over a

variety of standard mediums such as DSL, cable TV network. The TS is only designed to

address only delivery. Storage application uses the program stream. Figure shows transport

stream.

Figure 4.1: Transport Stream

23

Chapter 4. Transport Stream 24

4.2 The MPEG-2 standard allows two forms of multiplexing

4.2.1 MPEG Program Stream

A group of tightly coupled PES packets referenced to the same time base. Such streams

are suited for transmission in a relatively error-free environment and enable easy software

processing of the received data. This form of multiplexing is used for video playback and for

some network applications.

4.2.2 MPEG Transport Stream

Each PES packet is broken into fixed-sized transport packets forming a general purpose way

of combining one or more streams, possibly with independent time bases. This is suited

for transmission in which there may be potential packet loss or corruption by noise, or/and

where there is a need to send more than one program at a time. The Program Stream is

widely used in digital video storage devices, and also where the video is reliably transmitted

over a network (e.g. video-clip download). Digital Video Broadcast (DVB) uses the MPEG-

2 Transport Stream over a wide variety of underlying networks. Since both the Program

Stream and Transport Stream multiplex set of PES inputs, interoperability between the two

formats may be achieved at the PES level.

4.2.2.1 MPEG Transport Streams

A transport stream consists of a sequence of fixed sized transport packet of 188 bytes. Each

packet comprises 184 bytes of payload and a 4 byte header. One of the items in this 4 byte

header is the 13 bit Packet Identifier (PID) which plays a key role in the operation of the

Transport Stream.

The format of the transport stream is described using the Figure below (a later section

describes the detailed format of the TS packet header). This Figure shows two elementary

streams sent in the same MPEG-2 transport multiplex. Each packet is associated with a

PES through the setting of the PID value in the packet header (the values of 64 and 51

in the Figure). The audio packets have been assigned PID 64, and the video packets PID

51 (these are arbitrary, but different values). As is usual, there are more video than audio

packets, but you may also note that the two types of packets are not evenly spaced in time.

The MPEG-TS is not a time division multiplex.

Packets with any PID may be inserted into the TS at any time by the TS multiplexer. If no

packets are available, it inserts null packets (denoted by a PID value of 0x1FFF)to retain the

Chapter 4. Transport Stream 25

specified TS bit rate. The multiplexer also does not synchronize the two PESs, indeed the

encoding and decoding delay for each PES may (and usually is)slightly different. A separate

process is required to synchronize the two streams. The audio and video packets in TS

shown below. Figure shows audio and video packets in TS.

Figure 4.2: Audio and Video Packets in TS

4.2.2.2 Transmission of MPEG-TS

Although the MPEG TS may be directly used over a wide variety of media (as in DVB),

it may also be used over a communication network. It is designed to be robust with short

frames, each one being protected by a strong error correction mechanism. It’s constructed

to match the characteristics of the generic radio or cable channel and expects an uncorrected

Bit Error Rate (BER) of better than 10-10. (The different variants of DVB each have their

own outer coding and modulation methods designed for the particular environment.) The

MPEG-2 Transport Stream is so called, to signify that it is the input to the Transport Layer

in the ISO Open System Interconnection(OSI) seven-layer network reference model. It is

not, in itself, a transport layer protocol and no mechanism is provided to ensure the reliable

delivery of the transported data. MPEG-2 relies on underlying layers for such services.

4.2.2.3 Single and Multiple Program Transport Streams

A TS may correspond to a single TV program, or multimedia stream (e.g. with a video PES

and an audio PES). This type of TS is normally called a Single Program Transport Stream

(SPTS).An SPTS contains all the information required to reproduce the encoded TV channel

or multimedia stream. It may contain only an audio and video PESs, but in practice there

will be other types of PES as well. Each PES shares a common time base. In the DVB case,

one or more SPTS streams are combined to form a Multiple Program Transport Stream

(MPTS). This larger aggregate also contains all the control information (Program Specific

Information (PSI)) required to co-ordinate the DVB system, and any other data which is to

be sent.

Figure shows MPEG-2 TS layered architecture.

Chapter 4. Transport Stream 26

Figure 4.3: MPEG-2 TS Layered Architecture

Most transport streams consist of a number of related elementary streams (e.g. the video

and audio of a TV program). The decoding of the elementary streams may need to be

co-ordinated (synchronized) to ensure that the audio playback is in synchronism with the

corresponding video frames. Each stream may be tightly synchronized(usually necessary

for digital TV programs, or for digital radio programs), or not synchronized (in the case of

programs offering downloading of software or games, as an example). To help synchronization

time stamps are sent in the transport stream.

They are two types of time stamps:

1. The first type is usually called a reference time stamp. This time stamp is the indication

of the current time. Reference time stamps are to be found in the PES syntax (ESCR), in

the program syntax (SCR), and in the transport packet adaption Program Clock Reference

(PCR) field.

2. The second type of time stamp is called Decoding Time Stamp (DTS) or Presentation

Time Stamp (PTS). These time stamps are inserted close to the material to which they refer

(normally in the exact moment where a video frame or an audio frame has to be decoded or

presented to the user respectively. These rely on reference time stamps for operation.

4.2.2.4 Signaling Tables

For a user to receive a particular transport stream, the user must first determine the PID

being used, and then filter packets which have a matching PID value. Because VBrick sends

a Single Program Transport Stream, we have a special capability to automatically detect

the PID and automatically configure the decoder to display the correct content. To help

the user identify which PID corresponds to which program, a special set of streams, known

as Signaling Tables, are transmitted with a description of each program carried within the

MPEG-2 Transport Stream.

Chapter 4. Transport Stream 27

Signaling tables are sent separately to PES, and are not synchronized with the elementary

streams (i.e. they are an independent control channel).

The tables (called Program Specific Information (PSI) in MPEG-2) consist of a description

of the elementary streams which need to be combined to build programs, and a description

of the programs. Each PSI table is carried in a sequence of PSI Sections, which may be of

variable length (but are usually small, c.f. PES packets).

Each section is protected by a CRC (checksum) to verify the integrity of the table being

carried. The length of a section allows a decoder to identify the next section in a packet. A

PSI section may also be used for down- loading data to a remote site.

Tables are sent periodically by including them in the transmitted transport multiplex. Figure

shows packet consisting of PID, PAT, PMT.

Figure 4.4: Packet Consisting of PID, PAT,PMT

4.2.2.5 MPEG-2 Signaling Tables

PAT: Program Association Table (lists the PIDs of tables describing each program).The PAT

is sent with the well- scrambling used and PID values of transport streams which contain

the conditional access management and entitlement information (EMM)). The PAT is sent

with the well-known PID value of 0x001.

PMT: Program Map Table defines the set of PIDs associated with a program, e.g. audio,

video, etc.

Chapter 4. Transport Stream 28

NIT: Network Information Table (PID=10, contains details of the bearer network used to

transmit the MPEG multiplex, including the carrier frequency).

DSM-CC: Digital Storage Media Command and Control (messages to the receivers) Pro-

gram Service Information (SI) provided by MPEG-2 and used by DVB. To identify the re-

quired PID to de-multiplex a particular PES, the user searches for a description in a particular

table, the Program Association Table (PAT). This lists all programs in the multiplex. Each

program is associated with a set of PIDs (one for each PES) which correspond to a Program

Map Table (PMT) carried as a separate PSI section. There is one PMT per program.

Format of a Transport Stream Packet: Each MPEG-2 TS packet carries 184 byte of

payload data prefixed by a 4 byte (32 bit) header. A TS header structure is shown in below.

Figure 4.5: Transport Stream Header Structure

The header starts with a well-known synchronization byte (8 bits). This has the bit pattern

0x47 (0100 0111). A set of three flag bits are used to indicate how the payload should be

processed.

1. The first flag indicates a transport error.

2. The second flag indicates the start of a payload (payload unit start indicator).

3. The third flag indicates transport priority bit.

The flags are followed by a 13 bit Packet Identifier (PID). This is used to uniquely identify the

stream to which the packet belongs (e.g. PES packets corresponding to an ES) generated

by the multiplexer. The PID allows the receiver to differentiate the stream to which each

received packet belongs. Some PID values are predefined and are used to indicate various

streams of control information. A packet with an unknown PID, or one with a PID which

Chapter 4. Transport Stream 29

is not required by the receiver, is silently discarded. The particular PID value of 0x1FFF is

reserved to indicate that the packet is a null packet (and is to be ignored by the receiver).

The two scrambling control bits are used by conditional access procedures to encrypt the

payload of some TS packets. Two adaption field control bits which may take four values.

1. 01 – no adaptation field, payload only

2. 10 – adaptation field only, no payload

3. 11 – adaptation field followed by payload

4. 00 - reserved for future use

Finally there is a half byte Continuity Counter (4 bits). Two options are possible for inserting

PES data into the TS packet payload:

The simplest option, from both the encoder and receiver viewpoints, is to send only one

PES (or a part of single PES) in a TS packet. This allows the TS packet header to indicate

the start of the PES, but since a PES packet may have an arbitrary length, also requires the

remainder of the TS packet to be padded, ensuring correct alignment of the next PES to

the start of a TS packet. In MPEG-2 the padding value is the hexadecimal byte 0xFF.

In general a given PES packet spans several TS packets so that the majority of TS packets

contain continuation data in their payloads. When a PES packet is starting, however, the

payload unit start indicator bit is set to ‘1’ which means the first byte of the TS payload

contains the first byte of the PES packet header. Only one PES packet can start in any

single TS packet. The TS header also contains the PID so that the receiver can accept or

reject PES packets at a high level without burdening the receiver with too much processing.

This has an impact on short PES packets. Figure shows PES header structure.

Option Transport Packet Adaption Field: The presence of an adaptation field is indicated

by the adaption field control bits in a transport stream packet. If present, the adaption field

directly follows the 4 B packet header, before any user payload data. It may contain a variety

of data used for timing and control.

One important item in most adaption packets is the Program Clock Reference (PCR) field.

Another important item is splice countdown field. This field is used to indicate the end of

a series of ES access units. It allows the MPEG-2 TS multiplexer to determine appropriate

places in a stream where the video may be spliced to another video source without introducing

undesirable disruption to the video replayed by the receiver. Since MPEG-2 video uses inter-

frame coding a seamless switch-over between sources can only occur on an I-frame boundary

(indicated by a splice count of 0). This feature may, for instance, be used to insert a news

flash in a scheduled TV transmission.

Chapter 4. Transport Stream 30

Figure 4.6: PES Header Structure

One other bit of interest here is the transport private data flag which is set to 1 when the

adaptation field contains private data bytes. Another is the transport private data length

field which specifies how many private data bytes will follow the field. Private data is not

allowed to increase the adaptation field beyond the TS payload size of 184 bytes. A typical

representation of PAT, PMT, NIT, CAT is shown in Figure below.

Chapter 5

Digital Video Broadcasting

5.1 Digital Video Broadcasting

DVB, short for Digital Video Broadcasting, is a suite of internationally accepted, open

standards for digital television. DVB standards are maintained by the DVB Project, an

industry consortium with more than 300 members, and published by an Joined Technical

Committee (JTC) of European Telecommunications Standards Institute (ETSI), European

Committee for Electro technical Standardization (CENELEC) and European Broadcasting

Union(EBU). The interaction of the DVB sub-standards is described in the DVB cookbook.

Many aspects of DVB are patented, including elements of the MPEG video coding and audio

coding.

However, the DVB is not itself a standards making body; it provides a forum for suppliers

to agree specifications which are then passed to existing standards making bodies (ETSI,

ISO) for ratification DVB passes so called “commercial modules” requirements to “technical

modules “And not the other way around.

The core standards of DVB are:

• DVB-S (satellite)

• DVB-C (cable) and

• DVB-T (terrestrial)

All the core standards are based upon MPEG-2 (DVB-MPEG) for audio and video coding

as well as the transport stream and are capable of high definition television (HDTV) as well.

The encoder processing in DVB-C, DVB-S and DVB-T is based on the same fundamental

concept. These flavors differ mainly in the modulations used. The high frequency DVB-S

31

Chapter 5. Digital Video Broadcasting 32

uses QPSK, DVB-c uses QAM (64-QAM in general) and DVB-T(in VHF and/or UHF band)

uses COFDM.

New standard upcoming is DVB-H for mobile reception in cellular phone frequency bands.

Besides audio and video transmission, DVB also defines data connections (DVB-DATA)

with return channels DVB-RC for several mediums (GSM, PSTN/ISDN etc.) and protocols

(DVB-IP : Internet Protocol, DVB-NPI : network protocol independent).

DVB describes a lot of (network) interfaces, but most importantly the Common Interface

(DVB-CI) for Conditional Access (DVB-CA) with the Common Scrambling Algorithm(DVB-

CSA) required for (de-)scrambling pay TV.

5.1.1 DVB-S

DVB-S is the original Digital Video Broadcasting forward error coding and modulation

standard for satellite television and dates from 1995. It is used via satellites serving every

continent of the world. DVB-S is used in broadcast network feeds, as well as for direct

broadcast satellite services. The transport stream delivered by DVB-S is mandated as MPEG-

2.

In particular it describes the modulation and channel coding system for satellite digital

multi programme Television(TV)/ High Definition Television(HDTV) services to be used

for primary and secondary distribution in fixed satellite services(FSS) and Broadcast Satellite

Service(BSS) bands.

DVB-S is intended to provide Direct-To-Home (DTH) services for consumer Integrated De-

coders (IRD), as well as collective antenna systems and cable television head-end stations.

DVB-S is suitable for use on different Satellite transponder bandwidths and is compatible

with Moving Pictures Experts Group 2(MPEG 2) coded TV services. Flexibility defined

within the specification enables the transmission capacity to be used for a variety of TV

service configurations, including sound and data services.

Digital Video Broadcasting : Satellite- Second Generation (DVB-S2) is an enhanced

specification to replace the DVB-S standard, developed in 2003 and ratified by ETSI (EN302307)

in March 2005. DVB-S2 will probably be used for all future new European digital satellite

multiplexes, and satellite receivers will be equipped to decode both DVB-S and DVB-S2.

Today the main use for this new standard is the distribution of HDTV while the original

standard was used mainly for SDTV services. The development of DVB-S2 coincided with

the introduction of HDTV and H.264(MPEG-4) video codecs.

Chapter 5. Digital Video Broadcasting 33

The system allows transmission of one or more MPEG-2 audio/video streams, using QPSK or

8PSK or MAPSK (M-ary amplitude and phase-shift keying) modulation with concatenated

encoding. DVB-S2 is based on the DVB-S standard which is used for satellite broadcasting,

and the DVB-DSNG standard, which is used by mobile units for sending external footage

back to television stations.

Two new key features which were added to DVB-S are:

1. Changing encoding parameters in real time (VCM, Variable Coding and Modulation)

2. ACM (Adaptive Coding and Modulation) which optimizes the transmission parameters

for various users.

5.1.2 DVB-T

DVB-T stands for Digital Video Broadcasting- Terrestrial and it is the DVB European

consortium standard for the broadcast transmission of digital terrestrial television. This

system transmits a compressed digital audio/video stream, using OFDM modulation with

concatenated channel coding(i.e. COFDM). The adopted source coding methods are 2 and,

more recently, H.264.

In June 2006, a study group named TM-T2 (Technical Module on Next Generation DVB-T)

was established by the DVB group to develop an advanced modulation scheme that could

be adopted by a second generation digital television standard, to be named DVB-T2.

According to the commercial requirements and call for technologies issued in April 2007, the

first phase of DVB-T2 will be devoted to provide optimum reception for stationary (fixed)

and portable receivers (i.e. units which can be nomadic, nut not fully mobile) using existing

aerials, whereas a second and third phase will study methods to deliver high payloads (with

new aerials) and the mobile reception issue. The novel system should provide a minimum

30 percentage increase in payload, under similar channel conditions already used for DVB-T.

expected technologies will probably include:

• LDPC coding in compliance with the technique already adopted in the DVB-S2 satellite

standard.

• MIMO and antenna diversity systems.

• More than 8k carriers (a requirement being to provide a 30 percentage increase in the size

of single frequency networks);

• Flexible multiplexing;

• Variable coding and modulation.

Chapter 5. Digital Video Broadcasting 34

5.1.3 DVB-C

DVB-C stands for Digital Video Broadcasting – Cable and it is the DVB European consor-

tium standard for the broadcast transmission of digital television over cable. This system

transmits an MPEG-2 family digital audio/video stream, using a QAM modulation with

channel coding.

In 2007 a study mission of the DVB Technical Module produced a report identifying some

possible technologies which considered as alternatives succeeding the existing DVB-C specifi-

cation. The DVB-TM-C2 ad-hoc was requesting the submission of proposals for technologies

which could be considered as candidates for a second generation DVB cable transmission

system DVB-C2.

5.1.4 DVB-H

A more flexible and robust digital terrestrial system DVB-H has also recently been developed.

The system is intended to be receivable on handheld receivers. DVB-H services will also use

more efficient video compression systems such as MPEG-4 AVC (Advanced Video Coding).

DVB-H is an extension of DVB-T with some backwards compatibility, i.e. it can share the

same DVB-T multiplex.

Chapter 6

Digital Video Recorder

6.1 Digital Video Recorder

When the VCR was first introduced to the public, the television industry reacted with panic.

Here was a device that would let people record programs, watch them when they felt like

it as opposed to when the programming staff decided they should, and (scariest of all) skip

through the commercials!

But the television industry survived despite the widespread popularity of VCRs. Now the

dreaded VCR is in its death throes and a more modern innovation has come along that

makes recording television programs even easier: the Digital Video Recorder or DVR.

A Digital Video Recorder (DVR) or Personal video recorder (PVR) is a device that

records video in a digital format to a disk drive, USB key drive, sd memory card or other

memory medium within a device. The television signal comes into the DVR’s built-in tuner

through antenna, cable or satellite, if the signal comes from antenna or cable, it goes into

an MPEG-2 Encoder, which converts the data from analog to digital (MPEG-2, by the

way, is the compression standard used to fit information onto a DVD).form the encoder,

the signal is shipped off to two different places: first, to the hard drive for storage, and

second, to an MPEG-2 decoder, which converts the signal back to analog and sends it to

the television for viewing.

Some systems use dual tuners, allowing users to record different programs on different chan-

nels at the same time. On a few systems, you can even record two programs while watching

a third pre-recorded show.

35

Chapter 6. Digital Video Recorder 36

Figure 6.1: Block Diagram

6.2 DVR Operations

6.2.1 Recording:

We can record the live program and watch it at some later instance. We can pause the live

and start recording the live. We can also record two programs at the same time as well as

watch one live program and record another program.

6.2.2 Play Back

We can playback the Live, recorded. Also can play while recording is going on.

6.3 Features of DVR

Digital Video Recorder supports the features, such as, Live playback, recording and then its

playback, Trickmodes etc. The various features supported are:

1 Live Playback

2 Playback from Local Storage

3 Record

4 Dual Record

5 Live and Record (same channel)

6 Live and 2 Records

7 Play and record

Chapter 6. Digital Video Recorder 37

8 Play and 2 Records

9 Timeshift and record

The working of live playback is shown in Fig.

Figure 6.2: Working of Normal Live Playback

Normal live Playback:

Figure 6.3: Rocord

6.4 Timeshift

Timeshift means program to be displayed on the TV with a delay as compared to LIVE. This

operation is performed in three steps:

Chapter 6. Digital Video Recorder 38

• Live pause

• Live Resume

• Catch Live

After resuming Live, timeshifted playback is shown; and after catching Live, we get the live

playback but still from the hard disk.

Live Pause: when Live is paused, the program starts recorded in the hard disk. When Live

is paused, the coming program starts recording in the hard disk.

Live Resume: When Live is resumed, playback starts from the hard disk recorded file,

exactly from the location where we left and recording still going on in background.

Catch Live: If we want to catch Live, we can do this by doing some trickmodes. After

catching live, we still playing our program from the hard disk.

Timeshift operation can be performed in combination with other applications like Timeshift

and record, Timeshift and Live Playback.

6.5 Trickmodes

We call trickmode the playback of a video file at any speed different than the nominal speed.

This includes slow or fast playback in forward or backward direction. Smooth trickmode is

a trickmode where all frames are displayed. We speak about scan mode when only I frames

are decoded and displayed. The audio is always muted during trickmodes.

Trickmode can be simply stated as “ setting speed or changing the speed of the current

playback”. This is implemented in both DVR and MEDIAPLAYER. The speed can be set in

both, the forward and backward, for a recorded playback.

Chapter 7

Testing

7.1 Testing

A primary purpose of Testing is to detect software failures so that defects may be discovered

and corrected. Testing cannot establish that a product functions properly under all conditions

but can only establish that it does not function properly under specific conditions. The scope

of software testing often includes examination of code as well as execution of that code in

various environments and conditions as well as examining the aspects of code: does it do

what it is supposed to do and do what it needs to do. In the current culture of software

development, a testing organization may be separate from the development team. There are

various roles for testing team members. Information derived from software testing may be

used to correct the process by which software is developed.

7.2 Different types of testing

7.2.1 Functional vs. Non-functional Testing

Functional testing refers to activities that verify a specific action or function of the code.

These are usually found in the code requirements documentation, although some develop-

ment methodologies work from use cases or user stories. Functional tests tend to answer

the question of ”can the user do this” or ”does this particular feature work.”

Non-functional testing refers to aspects of the software that may not be related to a specific

function or user action, such as scalability or other performance, behavior under certain

constraints, or security. Testing will determine the flake point, the point at which extremes

of scalability or performance leads to unstable execution. Non-functional requirements tend

39

Chapter 7. Testing 40

to be those that reflect the quality of the product, particularly in the context of the suitability

perspective of its users.

7.2.2 Full Sub-system Testing

Full sub-system testing is done for each new release of SDK after low level code freeze to

avoid regressions in compared to previous release. This is customer level testing and it is

done so that customer face less issue at own end.

We can say this also unit testing. Our full sub-system testing is divided in different types:

• Mediaplayer

• DVR

• IP

7.2.3 Mediaplayer Testing

It is also categorized in diiferent types as:

HDD Testing:

In this testing, we apply different operations like seek, pause-resume, applying different

speeds from -128x to 128x, display of subtitle, closed caption and teletext on the test vec-

tors which are stored in a hard disk.

HTTP & RTSP Testing:

In this testing also, we apply the different operations like seek, pause-resume, applying

different speeds from -128x to 128x but test vectors are stored at a server.

7.2.4 DVR Testing

Personal video recorder software requires changes not only for adding new features but also

for solving customer issues that they may face. So to check all the basic functionality of the

software is working properly, a test suite has been developed. On running the test, it would

check for the chosen functionality and will return the status; PASS or FAIL and then ask for

user comments.

Chapter 7. Testing 41

The test cas are in accordance to features of system. These may include:

Test for dual recording: Dual recording for same or different program.

Test for record and playback in timeshift mode.

Test for playback with trickmodes:

Playback the recorded file and we can apply positive speed form 0.1x to 128x and negative

speeds like form -0.1x to -128x.

Test for variations in trickmodes:

Playback the recorded file with changing speed from positive to negative, negative to nega-

tive, negative to positive or positive to positive.

Test for checking display of subtitle & teletext:

7.2.5 IPSTB Testing

IPSTB testing is done using a server which broadcasts the data. And different types of

streamers are used for this purpose. Different type of testcases are written for IPSTB testing:

Test for dual recording: Dual recording for same or different program. Test for record and

playback in timeshift mode. Test for streaming through different types of protocols. Test

for applying trickmodes on recorded file.

7.2.6 System Testing

This testing is done when a patch is applied for adding functionality or some modifications

are done in existing stack for any improvement. This is done to avoid lower level regressions.

This testing is done for every new release.

7.2.7 Sanity Testing

Sanity testing determines whether it is reasonable to proceed with further testing. It is done

for every new release or for generating patch. For all these types of testing above mentioned

some test cases are designed and new test cases are added acc. to our requirement to check

testing of different functionality.

7.3 Python

Python is a widely used general-purpose, high-level programming language. Its design phi-

losophy emphasizes code readability, and its syntax allows programmers to express concepts

Chapter 7. Testing 42

in fewer lines of code that would be possible in languages such as C.

Like other dynamic languages, Python is used as a scripting language, but is also used in a

wide-range of non-scripting contexts. Python interpreters are available for many operating

systems.

Python is a multi-paradigm programming language:

object-oriented programming and structured programming are fully supported, and there are

a number of language features which support for functional programming and aspect-oriented

programming.

Most uses of python:

• Python is strongly typed.

• Python is used as a scripting language for web applications.

• Python has also been used in artificial intelligence tasks.

** Most user friendly method to:

• Scan a file

• Search for a given pattern

• Extract the information

• Considerable speed

• Easy to learn.

• Fast development time

Typical Uses of Python:

• Web and Internet Development

• Database Access

• Desktop GUIs

• Scientific and Numeric

• Education

• Network Programming

• Software Development

• Game and 3D Graphics

• Python is a superb language for teaching programming, both at the introductory level and

for more advanced courses.

Chapter 8

Linux and Hardware Environment

Setup

8.1 Linux Environment Setup

The hardware and software environment in which tests will be run.

8.1.1 ssh key generation

Secure Shell (SSH) is a cryptographic network protocol for secure data communication,

remote shell services or command execution and other secure network services between two

networked computers that connects, via a secure channel over an insecure network, a server

and a client.ssh-keygen creates the public and private keys.ssh-copy-id copies the local-

host’s public key to the remote-host’s authorized keys files.ssh-copy-id also assigns proper

permission to the remote-host home, /ssh; and /ssh/unauthorized keys: Skip the below

steps if you already have an access to git repository. Under user use following command:

ssh-keygen -t rsa -C

emailaddress : f /.ssh/id rsa

43

Chapter 8. Linux and Hardware Environment Setup 44

8.1.2 Installation of required packages

Repo is a tool that Google built on top of Git to manage the many Git repositories, do the

uploads to revision control system, and automate parts of the Android development work-

flow. Repo is not meant to replace Git, rather to make it easier to work with Git

A tool on top of Git

Git is an open source revision control system designed to handle projects that are distributed

over multiple repositories. In the context of Android, Git is used for local operations such

as local branching, commits, diffs, and edits. Repo is used for across-network operations.

For example, with a single Repo command it is possible to download files from multiple

repositories into your local working directory. This option provides the user with freedom to

install the components at desired location. But with this option, you should create a local

working directory. Packages required to be installed are:

• ARMV7

• KPI drivers

• Build folder

For complete installation follow the steps:

Download source code from git repository: Git is a free and open source, distributed version

control system designed to handle everything from small to very large projects with speed

and efficiency. Git was initially designed and developed by Linux To rvalds for Linux kernel

development. Every Git working directory is a full- edged repository with complete history

and full revision tracking capabilities, not dependent on network access or a central remote

repository.

GIT Properties:

• Git is fully distributed

• Almost everything is local

• Everything is very fast

• Every clone of a repository is a backup

• The main branch is master

• You can work online

• Every Git repository is a client and a server

Create a new repository:

To Create your own directory that contain your project

$ mkdir training.git

Chapter 8. Linux and Hardware Environment Setup 45

$ cd training.git

– Then ,initialize your new repository

$ git init

– Now git repository is created your directory (simply a new hidden directory .git was cre-

ated).

– Next step is to create your project files and directories and commit them to be integrated

to your GIT repository.

Clone an existing repository:

– Clone does mean that you will get the project history and source code.

– Git clone support many network protocols such as:

http://; git://;ssh://

$ git clone ssh://root@10.157.7.171/root/training.git

– ” Git clone ” command support also the locals paths

$ git clone /root/training.git

– Git automatically compresses transferred and stored data in order to save disk space and

network bandwidth.

Modify source code and commit:

Generally when you are working with GIT you will follow these steps:

(a) Modify source code

(b) Test if your program is working fine

(c) Do a commit to save your modifications and record them in git database.

(d) Restart with the first step for another modification

Git Branching:

By default git store your commit in the master branch

To create a new branch:

$ git branch testing

The question now is how Git know what branch you’re currently on ? Git keeps a special

pointer called HEAD to the branch that you are currently connected.

$ git checkout testing

Switched to branch ”testing”

After merging your work in master branch you can delete testing branch by using Git check

that your work in the branch ”testing” was well merged in ”master”. Otherwise, it warns

you of it and forbids you to delete eliminate the branch (you would otherwise risk to lose all

your work in this branch!). If you want to delete a branch even if it contains changes which

you did not merge, use the option-D. Suppose you have to run some tests ,you decided to

Chapter 8. Linux and Hardware Environment Setup 46

work in the testing branch. This situation can be also seen by using a graphic tool of git

such as gitk, giggle etc.

Rebasing:

– In Git there are two main ways to integrate changes from branch to another; the merge

and rebase.

– If you diverged from master branch.

• You want to integrate the branches.

• $ git checkout testing

• $ git rebase master

– By doing a rebase, git go to the common ancestor of the two branches (getting the diff

introduced by each commit, resetting the current branch to the same commits as the branch

you are rebasing into and finally applying each change in turn).

Tracking branches:

– Checking out a local branch from a remote branch automatically creates what is called a

tracking branch.

– Tracking branches are local branches that have a direct relationship to a remote branch.

If you’re on a tracking branch and type git push, Git automatically knows which remote

repository and branch to push to.

– Also, running git pull while on one of these branches fetches all the remote references and

then automatically merges in the corresponding remote branch.

– When you clone a repository, it generally automatically creates a master branch that tracks

origin/master.

– That’s why git push and git pull work out of the box with no other arguments...

• The simple case is the example you just saw, running

• git checkout -b [branch] [remotename]/[branch].

• $ git checkout track [local branch] origin/[branch].

– If the remote repository contains another branch, for example ”origin / master”, and then

you wish to work with it.

– It is necessary to create a copy of this branch on your computer which is going ”to follow”

the changes in the remote repository. $ git checkout -b master local origin/master

– When you will make a pull from the branch ”testing”, the changes will be fetched to

origin/testing in your ”testing” premises.(this is also available for master branch).

Chapter 8. Linux and Hardware Environment Setup 47

$ git pull

Unpacking objects: 100

remote: Counting objects: 7, done.

remote: Compressing objects: 100remote: Total 6 (delta 2), reused 0 (delta 0)

From /home/ipreeti/training.git/

1ab6129..cef4d87 master - origin/master

Updating1ab6129..cef 4d87

Fastforward

file5.txt—1 +

file6.txt—1 +

2fileschanged, 2insertions(+),

createmode100644f ile5.txt

createmode100644f ile6.txt

– git pull will automatically fetch from origin and merge origin master into your local testing

branch, without having specified it.

Useful features in GIT:

Git stash:

– Before changing branch, you must have committed all your changes.

Plainly a git status should show no file under modification.

– If you have changes that are not ” committed ” and you change branch, the modified files

will stay as they were in the new branch (and it is not generally what you want!).

– To avoid having to make a commit in the middle of a current work, type:

$ git stash

• Your modified files will be saved. Now, git status should show any more no file (we say

that your working directory is clean).

• You can then change branch, make your modifications, ” commit ”, then return on the

branch where you were.

• To get back the changes which you had put aside in your branch,

type:

$ git stash pop

• Git under Codex:

– SHARK Validation project can be accessed on this urn

https://codex.cro.st.com/projects/sharkvalidation/

Chapter 8. Linux and Hardware Environment Setup 48

– To contribute to the git project, you have to generate a public key and export it to the

codex remote repository.

This is done by following these steps:

ssh-keygen

– Generating public/private rsa key pair.

– Enter file in which to save the key (/home/jaimin/.ssh/id rsa):

– /home/jaimin/.ssh/id rsa already exists.

– Overwrite (y/n)?

– $ cat /home/jaimin/.ssh/id rsa.pub

– Then, copy the content of ” /home/jaimin/.ssh/id rsa.pub ” to the codex web site

https://codex.cro.st.com/account/editsshkeys.php

– If someone wants to access the git validation project from his unix account in ST,VMWare

machine or a Windows machine, he will have to generate the public keys in all his accounts

and export them to Codex web site. Now you can clone for example sbag repository.

Figure 8.1: GIT Clone

Set IP Address To download the object:

File of the code this can run on the target platform from the host, and to observe the

logs of the executing test on the integrator, we need to connect target board to the host,

as it cannot be directly connected, we require a Micro connect to provide the interfacing

equipment between host and target board. For that we need to assign IP address to the

target board and Micro connect Go to build path/build/config.in Set the JEI, TARGET IP

and Gateway IP.

• JEI = To download and boot kernel using Micro connect, provide the IP address of Micro

connect.

• TARGETIP = IP address to be assigned to the target board after kernel is up and running.

• GWIP = IP address of Gateway.

Chapter 8. Linux and Hardware Environment Setup 49

8.1.3 Patches

A patch is a piece of software designed to fix problems with, or it’s supporting data. This

includes fixing security vulnerabilities and other bugs, and improving the usability or perfor-

mance. Though meant to fix problems, poorly designed patches can sometimes introduce

new problems (see software regressions). Patch is a UNIX program that updates text files

according to instructions contained in a separate file, called a patch file. The patch file (also

called a patch for short) is a text file that consists of a list of differences and is produced by

running the related diff program with the original and updated file as arguments. Updating

files with patch is often referred to as applying the patch or simply patching the files.

Figure 8.2: Patch Example - 1

To apply patch follow the below command.

A patch is a structured file that consists of a list of differences between one set of files and

another.

All code changes, additions, or deletions to Drupal core and contributed modules/themes

between developers are done through patches.

Patches make development easier, because instead of supplying a replacement file, possibly

consisting of thousands of lines of code, the patch includes only the exact changes that were

made.In effect, a patch is a list of all the changes made to a file, which can be used to

re-create those changes on another copy of that file.

Chapter 8. Linux and Hardware Environment Setup 50

Patch -dry-run -p1 -I ”patchname” : This is used to dry run the patch file i.e. which will

give the error details if there are some error in applying patch file.

Patch -p1 -I ”patchname” : This is to apply patch

git apply index path/file.patch: This is used when you are using git

The -p option tells patch how many leading prefixes to strip. For patches created using git,

-p1 is normally the right option, and is the default for git apply.

Figure 8.3: Patch Example - 2

8.1.4 Build Process

The term build refers either to the process of converting source code files into standalone

software artifact(s) that can be run on a computer, or the result of doing so. One of the

most important steps of a software build is the compilation process where source code files

are converted into executable code. In software version, the build number is often used as a

versioning identifier. To Build all the modules, kernel, It is necessary to have Makefile.

(a) Compiler takes the source files and outputs object files.

(b) Linker takes the object files and creates an executable.

• Go to /build path/build/sdk2-build.b2112-d127 a9/ as a normal user and follow the below

commands.

• make clean: To clean everything

Chapter 8. Linux and Hardware Environment Setup 51

• make modules: To build all sdk2 modules

• make module name: To build specific module

• make .clean module name: To clean specific module

• make .modules install module name: To install specific component

• make all: To build and install kernel, all sdk modules

8.1.5 Test execution

After build process, the executable files of the source code is generated, to test the STB

drivers of the STB devices, we need to install this on to target and need to run the different

test cases. The test cases are provided by the customer. For each devices and its function

test cases are provided in the tool. To execute this test cycle we need to boot the target

board. For this, The file config.in in build directory must be updated for JEI, Target IP and

Gateway IP.

• make run

This will boot the board, i.e. VMLinux image will be loaded to the board memory. VM Linux

is a executable file that contains Linux kernel in one of the object file formats supported by

Linux.

Booting is the process in which your computer gets initialized. This process includes initial-

izing all your hardware components in your computer and get them to work together and to

load default operating system which will make your system operational.

When computer’s power is switched on, control is transferred by hardware to the bootstrap

procedure of BIOS in Rom. The bootstrap procedure carries out some hardware test to

check whether the memory and other devices are functioning properly.

• telnet IP address of target -l root

Log in as a root user on the target platform. This should be done on different terminal as

done to boot kernel

• ./framework go.sh

Load Modules: To make the kernel aware to use the module. Mode probe insert the module

and also the dependency of that mode. Mode probe loads the modules in to the kernel

When we insert the device driver, To make it visible, we make a device nodes.

• Run /Application

This will do some initialization, load its database, load test suit and finally display test menu.

Now the software set up is ready for the driver testing.

Chapter 8. Linux and Hardware Environment Setup 52

8.2 Hardware Set up

To set up the hardware to carry out the driver testing following are the required component

details. Hardware Requirements

• STMC

• Target board

• Stream server

• JTAG

• UART

• HDMI cable for connection with TV

• Four Power Adapter (Each for Micro Connect and Board)

Figure 8.4: Hardware Arrangement

The different hardware components used are:

SoC:

The System on chip contain two ARM processors, one SH-4 (used for floating point calcu-

lations), one ARMv7

Micro Connect:

The kernel image compiled on the PC is loaded in to the SoC memory using the Micro

connect. ST Micro connect is a host-target interface from STMicroelectronics. It connects

to a target development board’s JTAG connector and provides host software with the ability

to start up the target board, download programs and debug them in the target. It is easy to

Chapter 8. Linux and Hardware Environment Setup 53

install and use the ST Micro Connection Package provides software utilities and firmware,

including Target Packs for certain ST evaluation boards.

Stream Server:

The stream server contains all the required streams provided by the customer to be viewed

on the receiver in digital format, during testing of audio video playback. Normally Tuner

receives the stream via dish antenna. Here, to give streams to the board we connect stream

modulator. Particular stream has its frequency, symbol rate, data rate, FEC. But we have to

perform so many tests on different channel and symbol rate, so, we use the stream server.

We have modulator card which is connected to the stream server. Modulator card is con-

nected to the RF Tuner on the board via RF cable. We need the modulator card to convert

the signal to the RF frequency to send it to the RF tuner card on the board via RF cable.

JTAG:

The JTAG cable facilitates the transfer of the kernel image from the PC to the SoC.

UART:

The UART transmits the serial output from the board to the PC; it is useful in getting the

debug information.

TV:

Serves as the receiver for digital output in various formats like HDMI, AV, SPDIF

Chapter 9

Automation Through Testframework

9.1 Flow To Set An Environment of SDK2:

9.1.1 Starting the Test Framework:

9.1.1.1 Prerequisite:

Once SDK2 is installed on our system and the application compiled, we can launch the

Test Framework. At this point, we should have installed the SDK2 and the STLinux files,

launched the sdk2.sh script and generated the SDK2 executable.

We have two ways to start the Test Framework: 1. We can run a make file command from

the same directory where we launched our SDK2 compilation 2. We can execute the main.py

Python file located in the tests/Test Framework directory for a more flexible usage

9.1.1.2 Make file Command

After compiling the SDK2 stack, stay in the directory where we launched our make command.

For example:

• sdk2/Wavefront/pltf/build/build/sdk2-build.b2120-h410 a9/

Running:

• $ make

Without any argument will display the list of available targets.

54

Chapter 10. Automation Through Testframework 55

9.1.1.3 Framework Execution from the Command Line:

We can launch the Test Framework before or after the target has booted.

COMMAND LINE OPTIONS

• General syntax:

main.py [session options] root file.xml[root name]* [additional path] * [targetIP]

The [session options] can be:

1. -initialboot

Reboots the board once before launching the tests

2. -initialbootonly

Reboots the board from the framework and exits

3. -listfiles

Provides the list of parsed files for this test

4. -skipnn

nn is an integer value, skips the first nn files

5. -startboard

When running on board framework execution, apply (Remote Shell Command) tags from

(board configuration) file

6. -stop-on-first-error For helping some debug cases, the framework exits on the first iden-

tified error, stops the streaming and provides the error code to the shell.

• [root name] is the optional name we can encounter within a launch description of the root

file. It helps launching only specific tests of a large program.

• [additional path] is here for extending the PATH search of the python and XML files within

the Framework.

• [targetIP] must be an ipv4 address.

9.1.1.4 Description:

The framework is made of data stored in XML format, and python code. General mindset is to

maximize declarations and minimize code both on application side and in python interpreter

side.

Chapter 10. Automation Through Testframework 56

Declarations are made of:

1. Stream descriptions:

• This structure provides a unique file name, container, duration, codex for all tracks, reso-

lutions, rates, stream ids.

• First parses directory tree and calls mediainfo for deep description of multimedia files.

• A second step is made of an xsl sheet transform that provides the compatible stream

description XML required. We need a Mediainfo version installed in your Linux system for

performing that import.

2. Stream locations:

• Aim is to make independent the way the file is accessed from the board and its properties.

Role of Stream locations.xml is to tell depending on the modes (local, http . . .), the Path

in our system. Predefined given locations generally start with “mounted”. To make this

match on our board please ensure a “mounted” directory exists under /root of the board.

3. Application abstraction:

• Set of applications is providing an abstraction layer, and information for the framework

such as startup options for the launching command and interactive commands. Remark:

The XML description of interactive commands gives the names of the functions to be called

during tests.

• The command line options are bringing a number of options but need some python specific

code for making proper use of them. This work is done today within module dvbtest.py and

module gstapps.py.

• The interactive commands are simply storing node names that user script shall use for

accessing abstracted names from application. Node content contains the application com-

mand.

4. Test cases, or Calls:

• This level is application independent. We should not take care of which application is

running the test case (except testing advanced features only available on one application).

Each test case defines:

• A file selection. This let choose between modes of accessing data from board, either

locally (local keyword used) from any mounted device, or remotely (http keyword used). As

usual with XML we can define our own definition, except those starting with “Streamer”:

Exclusively reserved for driving the packet injector.

• A file selector. This is an XPath expression based on the contents of the Stream descrip-

tions. It provides a list of files and applies the test case on them.

Chapter 10. Automation Through Testframework 57

• The name of the python module containing user script (¡use case script¿ node) and in the

following launching order:

1. (¡pre command¿) System call such as an fbset

2. ¡use case pre launch¿ Python function accessed before program is launched [let prepare

the context]

3. ¡use case execution¿ Python function performing the test itself

4. ¡use case post launch¿ Python function after application exits, let perform real time ver-

dicts with full statistics

5. ¡post command¿ System call

Figure 9.1: Arrangement of files in Test Framework

Chapter 10. Automation Through Testframework 58

All python function receive as parameter (optionally) the Python dictionary of the stream

properties to know duration, resolution, codex, and so on . . . They return a value that is

passed of failed, ruled by the framework to the reporting.

9.1.1.5 How to Execute Test Cases Uses Test Framework:

Step 1: Boot the Board

Step 2: View the UART logs via serial-relay

• Wait till the log shows login message by username

Step 3: Telnet the TARGETIP (IP of Board) as root

Step 4: Load the modules like media player, HDMI Manager etc.

Step 5: Mount the SCSI Disk in root folder inside opt directory.

Step 6: Change the directory to mainline manifest’s test framework directory.

Step 7: Export some of the environmental variables in initial.sh file.

These variables are:

• SERVERIP : IP of host machine

• TARGETIP : IP of the board

• JEI : STMC (ST Micro Connect) IP

• GWIP : Gateway IP

• NFS-SERVER : Network File System IP

• STREAM SERVER : Used for special cases of HTTP

Step 8: Source the above mentioned file

Step 9: Execute the script “main.py” along with required arguments to start the tests.

• Even we can give some options along with above command. If we give option ”initialboot”

then we have to follow from step 6.

Step 10: See the Reports in RESULT folder of that particular test framework.

9.1.1.6 Different Types Of Test Cases:

1. LIVE

2. DISPLAY PIP LIVE

3. DISPLAY PIP MIXED

4. DISPLAY ASPECT RATIO

5. DISPLAY SUBTITLE

6. DVR TIMESHIFT

7. DVR TRICKMODE

8. PLAYBACK CONTAINERS

Chapter 10. Automation Through Testframework 59

9. PICTURES

10. IP VOD HTTP

11. IP VOD RTSP

12. IP LIVE

13. IP PIP

9.1.1.7 Flow to execute a particular test:

It can be done in two ways:

1. Manually by application.

2. By Test Framework

1. Manually By Application:

The Applications used to launch any of the test cases are:

• gst-apps

• dvbtest

Example: Running LIVE Test Case by gst-apps:

o All these are started after telnet and loading modules.

o Configure the dvb-channel-config.conf file according to the availability of channels.

o Executing the command:

• gst-apps - N0 dvb://[channel-name]

• This will lock the tuner according to the frequency of that particular channel and then

start playing the channel on display via using all kernel modules.

Figure 9.2: Starting Live Use-case Manually

Chapter 10. Automation Through Testframework 60

o Introducing ZAPPING in live manually:

- Zapping implies changing channel while one is already running.

- Executing the command:

gst-apps –N0 dvb://[channel-name], then give run time: commands:

• d: channel-down

• u: channel-up

Figure 9.3: Zapping Live Use-case Manually

Chapter 10. Automation Through Testframework 61

Figure 9.4: Zapping Live Use-case Automatic

2. By Test Framework:

• There are some xml files used for executing each of the test cases. Each of the have

different purpose.

• Few of them are:

Declarations are made of several xml files listed in the following paragraphs:

- Root

- Stream descriptions

- Stream locations

- Application abstraction

- Test calls

- Board configuration

• Test Result:

The Test Framework provides a test status based on the launched application execution.

The table below classes the priority from highest to lowest:

Chapter 10. Automation Through Testframework 62

Figure 9.5: Verdict window

Figure 9.6: Failed Test Report

Chapter 10. Automation Through Testframework 63

Table 9.1: Verdict Description

ABORTED User termination of the test Execution

CRASHED Execution leading to a KERNEL crash, system need to reboot

TIMEOUT The application didn’t succeed to exit, need to reboot

XFAIL The test result is fail but it is a known issue and specified in a file

FAILED Execution or verdict has failed but system is still considered as safe.

SKIPPED Test listed in the test plan but not executed

PASSED Execution and verdict (if exist) OK

MISSING The file is missing

XPASS The result was expected as False but it is passed

Figure 9.7: Passed Test Report

Chapter 10. Automation Through Testframework 64

 EXECUTION FLOW OF TEST FRAMEWORK::

In root.xml :

1. Test cases are defined

2. Paths to all other xmls are

defined.

By this paths will be set for all xml

files required to execute the

application via Test Framework

One of them path is to calls .xml

file:

1. It is used to define the pre-launch

commands.

2. Define the use case script used

for execution. Here it is

apps_run_usecase.py

3. Define the post commands used

for execution.

From Use case script execution,

gst-apps command will be send by

starting a “ssh” connection

Command line arguments will be

send by the script:

test_environment_execute.py.

For each app there are arguments

Figure 9.8: Execution Flow of Test Frame work

Chapter 10

Technology Used

10.1 Technology Used

10.1.1 Source Insight

It is a source code editor by Source Dynamics. Source Insight provides syntax highlighting,

code navigation and customizable keyboard shortcuts. It bills itself not just as an editor but

a tool to understand a large source code base, and for this reason is called ”program editor

and analyzer.” It is agile and lightweight providing useful features such as relation, context,

and symbol windows. It also can display reference trees, class inheritance diagrams, and call

trees, as it builds an internal database of symbolic information as it self-parses the source.

Its greatest benefit is to speedup code comprehension on an unfamiliar project.

10.1.2 Novel features

Source Insight provides all the features of the venerable scope in a GUI environment along

with a program editor. These C features are extended to object oriented domain and made

more robust by being tolerant of the ’typedefs’ or ’pragmas’ of embedded processor C ex-

tensions. Further innovative features such as ’ifdef support’ and conditional parsing allows

view of the code with inactive code visually and thus aiding speedy comprehension. As more

code is added, Source Insight automatically keeps its database updated, displaying variables

in different colors depending on if they are local, global, static, function arguments, or yet

undefined.

65

Chapter 11. Technology Used 66

10.1.3 Supported languages

Source Insight supports a wide variety of programming languages but primarily geared towards

C/C++, C# and Java.

10.1.3.1 Features

Source InsightTM is a project-oriented program editor and code browser, with built-in analysis

for C/C++, C#, and Java programs. Source Insight parses your source code and maintains

its own database of symbolic information dynamically while you work, and presents useful

contextual information to you automatically. Not only is Source Insight a great program

editor, but it also can display reference trees, class inheritance diagrams, and call trees.

Source Insight features the quickest navigation of source code and source information of any

programming editor. Source Insight features quick and innovative access to source code and

source information. Unlike many other editor products, Source Insight parses your source

code and gives you useful information and analysis right away, while you edit.

• Always Up-To-Date Information

• Call Graphs and Class Tree Diagrams

• Context Sensitive Dynamic Type Resolution

• Symbol Windows For Each File

• Automatic Display of Declarations in the Context Window

• Syntax Formatting

• Context-Sensitive Smart Rename

• Mixed Language Editing

• Keyword Searches Like an Internet Search on Your Code Base

• Symbolic Auto-Completion

• Quick Access to All Symbols and Files

• Project Level Orientation

• Team Programming Support

• Finds References Quickly

• Hyper Source Links to Link Compiler Errors and Search Results

• Fast Project-Wide Search and Replace

• Project Window With Multiple Views

• Integrates with External Compilers and Tools

• Clip Window for Storing Multiple Clipboards and Boiler Plate Code

• Two-Stage Line Revision Marks and Selective Line Restoration

• Extensible Document Types and Languages

Chapter 11. Technology Used 67

• Crash Recovery Offers Full-Time Protection

• Persistent Workspaces

• Customizable Menus and Keyboard

• Special Support for Remote Terminal Server Sessions

• Windows 7/Vista/2000/XP Support

• Outstanding Windows User Interface

• Full Featured Editor

• Drag and Drop Editing

• Real World Tested

• Speed and Convenience

10.1.4 VMWare

10.1.4.1 Core product design

VMware developed a range of products, most notable of which are their hypervisors. VMware

became well known for their first type 2 hypervisor known as GSX. This product has since

evolved into two hypervisor products lines, VMware’s type 1 hypervisors running directly on

hardware, along with their hosted type 2 hypervisors.

VMware software provides a completely virtualized set of hardware to the guest operating sys-

tem. VMware software virtualizes the hardware for a video adapter, a network adapter, and

hard disk adapters. The host provides pass-through drivers for guest USB, serial, and parallel

devices. In this way, VMware virtual machines become highly portable between computers,

because every host looks nearly identical to the guest. In practice, a system administra-

tor can pause operations on a virtual machine guest, move or copy that guest to another

physical computer, and there resume execution exactly at the point of suspension. Alter-

natively, for enterprise servers, a feature called vMotion allows the migration of operational

guest virtual machines between similar but separate hardware hosts sharing the same storage

(or, with vMotion Storage, separate storage can be used, too). Each of these transitions

is completely transparent to any users on the virtual machine at the time it is being migrated.

VMware Workstation, Server, and ESX take a more optimized path to running target operat-

ing systems on the host than emulators (such as Bochs) which simulate the function of each

CPU instruction on the target machine one-by-one, or dynamic recompilation which com-

piles blocks of machine-instructions the first time they execute, and then uses the translated

Chapter 11. Technology Used 68

code directly when the code runs subsequently (Microsoft Virtual PC for Mac OS X takes

this approach.) VMware software does not emulate an instruction set for different hardware

not physically present. This significantly boosts performance, but can cause problems when

moving virtual machine guests between hardware hosts using different instruction-sets (such

as found in 64-bit Intel and AMD CPUs), or between hardware hosts with a differing number

of CPUs. Software that is CPU agnostic can usually survive such a transition, unless it is

agnostic by forking at startup, in which case, the software or the guest OS must be stopped

before moving it, then restarted after the move.

VMware’s products predate the virtualization extensions to the x86 instruction set, and do

not require virtualization-enabled processors. On newer processors, the hypervisor is now

designed to take advantage of the extensions. However, unlike many other hypervisors,

VMware still supports older processors. In such cases, it uses the CPU to run code directly

whenever possible (as, for example, when running user-mode and virtual 8086 mode code

on x86). When direct execution cannot operate, such as with kernel-level and real-mode

code, VMware products use Binary translation (BT) to re-write the code dynamically. The

translated code gets stored in spare memory, typically at the end of the address space,

which segmentation mechanisms can protect and make invisible. For these reasons, VMware

operates dramatically faster than emulators, running at more than 80% of the speed that

the virtual guest operating-system would run directly on the same hardware. In one study

VMware claims a slowdown over native ranging from 0–6 percent for the VMware ESX Server.

VMware’s approach avoids some of the difficulties of virtualization on x86-based platforms.

Virtual machines may deal with offending instructions by replacing them, or by simply run-

ning kernel-code in user-mode. Replacing instructions runs the risk that the code may fail

to find the expected content if it reads itself; one cannot protect code against reading while

allowing normal execution, and replacing in-place becomes complicated. Running the code

unmodified in user-mode will also fail, as most instructions which just read the machine-

state do not cause an exception and will betray the real state of the program, and certain

instructions silently change behavior in user-mode. One must always rewrite; performing

a simulation of the current program counter in the original location when necessary and

(notably) remapping hardware code breakpoints.

Although VMware virtual machines run in user-mode, VMware Workstation itself requires

the installation of various drivers in the host operating-system, notably to dynamically switch

the Global Descriptor Table (GDT) and the Interrupt Descriptor Table (IDT).

Chapter 11. Technology Used 69

The VMware product line can also run different operating systems on a dual-boot system

simultaneously by booting one partition natively while using the other as a guest within

VMware Workstation.

10.1.4.2 Desktop software

• VMware Workstation (first product launched by VMware in 1999). This software suite

allows users to run multiple instances of x86 or x86-64 -compatible operating systems on a

single physical PC.

• VMware Fusion provides similar functionality for users of the Intel Mac platform, along

with full compatibility with virtual machines created by other VMware products.

• VMware Player is for users without a license to use VMware Workstation or VMware

Fusion. VMware offers this software as a freeware product for noncommercial personal use.

While initially not able to create virtual machines, this limitation was removed in version

3.0.1.

10.1.5 JTAG

Joint Test Action Group (JTAG) is the common name for the IEEE 1149.1 Standard

Test Access Port and Boundary-Scan Architecture. It was initially devised by electronic

engineers for testing printed circuit boards using boundary scan and is still widely used for

this application.

JTAG allows device programmer hardware to transfer data into internal non-volatile device

memory (e.g. CPLDs). Some device programmers serve a double purpose for programming

as well as debugging the device. In the case of FPGAs, volatile memory devices can also

be programmed via the JTAG port, normally during development work. In addition, internal

monitoring capabilities (temperature, voltage and current) may be accessible via the JTAG

port.

JTAG programmers are also used to write software and data into flash memory. This is

usually done using data bus access like the CPU would use, and is sometimes actually han-

dled by a CPU, but in other cases memory chips have JTAG interfaces themselves. Some

modern debug architectures, like ARM CoreSight and Nexus, provide internal and external

Chapter 11. Technology Used 70

bus master access without needing to halt and take over a CPU. In the worst case, it is

usually possible to drive external bus signals using the boundary scan facility.

As a practical matter, when developing an embedded system, emulating the instruction store

is the fastest way to implement the ”debug cycle” (edit, compile, download, test, and debug).

This is because the in-circuit emulator simulating an instruction store can be updated very

quickly from the development host via, say, USB. Using a serial UART port and bootloader

to upload firmware to Flash makes this debug cycle quite slow and possibly expensive in

terms of tools; installing firmware into Flash (or SRAM instead of Flash) via JTAG is an

intermediate solution between these extremes.

Bibliography

[1] ST Internal Document.

[2] Set-top box software architectures for digital video broadcast and interactive services,

Jaeger, R. ; BetaResearch, Germany.

[3] Inside the set-top box, Ciciora, W.S.

[4] Gateway, multi-service, home, network, IEEE1394, web, MPEG.

[5] Software Engineering P practitioner’s approach, 4th edition, Roger S. Pressman.

[6] Software Engineering K.K. Aggarwal, Yogesh Singh.

71

	Declaration
	Cetificate
	Acknowledgements
	Abstract
	Company Profile
	Software Requirement Specification
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Introduction to Digital Video Recorder(DVR)
	1.1.1 Stand alone DVRs
	1.1.2 Computer DVRs
	1.1.3 Portable DVRs
	1.1.4 Set Top Boxes with DVR capability

	1.2 Why DVR?

	2 Set Top Box
	2.1 Introduction
	2.2 STB Hardware Architecture

	3 GStreamer
	3.1 GStreamer

	4 Transport Stream
	4.1 Transport Stream
	4.2 The MPEG-2 standard allows two forms of multiplexing
	4.2.1 MPEG Program Stream
	4.2.2 MPEG Transport Stream
	4.2.2.1 MPEG Transport Streams
	4.2.2.2 Transmission of MPEG-TS
	4.2.2.3 Single and Multiple Program Transport Streams
	4.2.2.4 Signaling Tables
	4.2.2.5 MPEG-2 Signaling Tables

	5 Digital Video Broadcasting
	5.1 Digital Video Broadcasting
	5.1.1 DVB-S
	5.1.2 DVB-T
	5.1.3 DVB-C
	5.1.4 DVB-H

	6 Digital Video Recorder
	6.1 Digital Video Recorder
	6.2 DVR Operations
	6.2.1 Recording:
	6.2.2 Play Back

	6.3 Features of DVR
	6.4 Timeshift
	6.5 Trickmodes

	7 Testing
	7.1 Testing
	7.2 Different types of testing
	7.2.1 Functional vs. Non-functional Testing
	7.2.2 Full Sub-system Testing
	7.2.3 Mediaplayer Testing
	7.2.4 DVR Testing
	7.2.5 IPSTB Testing
	7.2.6 System Testing
	7.2.7 Sanity Testing

	7.3 Python

	8 Linux and Hardware Environment Setup
	8.1 Linux Environment Setup
	8.1.1 ssh key generation
	8.1.2 Installation of required packages
	8.1.3 Patches
	8.1.4 Build Process
	8.1.5 Test execution

	8.2 Hardware Set up

	9 Automation Through Testframework
	9.1 Flow To Set An Environment of SDK2:
	9.1.1 Starting the Test Framework:
	9.1.1.1 Prerequisite:
	9.1.1.2 Make file Command
	9.1.1.3 Framework Execution from the Command Line:
	9.1.1.4 Description:
	9.1.1.5 How to Execute Test Cases Uses Test Framework:
	9.1.1.6 Different Types Of Test Cases:
	9.1.1.7 Flow to execute a particular test:

	10 Technology Used
	10.1 Technology Used
	10.1.1 Source Insight
	10.1.2 Novel features
	10.1.3 Supported languages
	10.1.3.1 Features

	10.1.4 VMWare
	10.1.4.1 Core product design
	10.1.4.2 Desktop software

	10.1.5 JTAG

