
SoC Development Containing the
Teststructures for SiVal of

Memories/IO’s/Efuses/Standard Cells

Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

Gaurav A. Lalani

(12MECV15)

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481

Dec 2013



ii

SoC Development Containing the
Teststructures for SiVal of

Memories/IO’s/Efuses/Standard Cells

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

In

Electronics & Communication Engineering

(VLSI Design)

By

Gaurav A. Lalani

(12MECV15)

Under the Internal Guidance of

Dr. N.P.Gajjar

and

External Guidance of

Mr. Parvez Zaman

Department of Electronics & Communication Engineering

Institute of Technology

Nirma University

Ahmedabad-382 481



iii

Declaration

This is to certify that

1. The thesis comprises of my original work towards the degree of Master of

Technology in VLSI Design at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material used.

Gaurav A. Lalani



iv

CERTIFICATE

This is to certify that the Major Project entitled “SoC Development Containing

the Teststructures for SiVal of Memories/IO’s/Efuses/Standard Cells”

submitted by Mr. Gaurav A. Lalani (12MECV15), towards the partial ful-

fillment of the requirements for the degree of Master of Technology in VLSI

Design of Nirma University of Science and Technology; Ahmedabad is

the record of work carried out by him under our supervision and guidance. In my

opinion, the submitted work has reached a level required for being accepted for the

examination. The results embodied in this major project, to the best of our knowl-

edge, haven’t been submitted to any other university or institution for award of any

degree or diploma.

External Guide Internal Guide

Mr. Parvez Zaman Dr. N.P.Gajjar

Manager Sr. Associate Professor

TSO VLSI Design

Freescale India Pvt. Ltd. Nirma University

PG Co-ordinator HOD

Dr. N. M. Devashrayee Dr. P. N. Tekwani

VLSI Design Professor, EE

Director

Dr. K Kotecha

Director, IT-NU

Date: Place: Ahmedabad



v

Acknowledgement

I would have never succeeded in completing my Thesis without the cooperation,

Encouragement and help provided to me by various people.

Firstly, my sincere thanks to the TSO team, especially the Test Vehicle Group(TVG)

team, for their help during this training. Their wisdom, clarity of thought and sup-

port motivated me to bring this project to its present state.

I am highly indebted to my Group manager Mr. Parvez Zaman ,my imme-

diate supervisors Mr. Nitin Dhamija and Mr. Puneet Sharma for providing

necessary information regarding the project and also for their constant guidance,

supervision, kind co-operation, and invaluable support in all aspects. My thanks

and appreciations also go to my colleagues and team members in developing the

project and for providing me with a lively and energetic work environment.

I would like to express my sincere gratitude to Dr. Ketan Kotecha (Director,

Nirma University, Ahmedabad) for his continuous guidance, support and enthusi-

asm. I would take this opportunity to thank Dr. P. N. Tekwani (Head of Depart-

ment, Electrical Engineering), Dr. N. M. Devashrayee (Professor and Program

Coordinator, M.Tech - EC (VLSI Design)), Internal Guide Dr. N.P.Gajjar (Sr.

Associate Professor, M.Tech - EC (VLSI Design)) and all the faculties at Nirma

University (VLSI Design), for their vision and relentless effort, support, and en-

couragement to provide me with this excellent opportunity to carry out my project

work in such a highly renowned and esteemed organization, Freescale Semiconductor

India Ltd. I am equally thankful to Freescale Semiconductor for providing me

the invaluable exposure to the industry and the current market trends.

Finally, I would like to express my heartfelt thanks to my parents and colleagues

for their blessings and for their constant love and support.

Gaurav Lalani A.

(12MECV15)



vi

Abstract

Systems-on-chip (SoCs) has become reality now, driven by fast development

of CMOS VLSI technologies. Complex system integration onto one single die in-

troduces a set of various challenges and perspectives for industrial and academic

institutions. Important issues to be addressed here are cost-effective technologies,

efficient and application-tailored hardware/software architectures, and correspond-

ing IP-based EDA methods. Due to exponentially increasing CMOS mask costs,

essential aspects for the industry are now adaptivity of SoCs, which can be realized

by integrating reconfigurable re-usable hardware parts on different granularities into

configurable systems-on-chip (CSoCs).

SoC development involves combining different IP’s in a single integrated cir-

cuit(chip). SoC development infers the advantages like lower cost,re-usability, high

performance, high reliability, and reduced chip size. The design complexity and den-

sity of a SoC is very high. The design complexity can be reduced by partitioning the

system into hardware and software based on functionality. Modelling at higher level

of abstractions also helps in reducing the issue of high complexity to manageable

level.

The SoC containing test-structures for memories, IO’s, Efuse and standard cells

is used as test chip for silicon validation. These test-structures containing reticle is

used as a reference for development of such structures in a particular process node.

The advancement to a particular lower process node will be carried out only if the

reticle containing test-structures is successfully implemented. As from front-end

point of view the verification of such test-structures is very important and should

be thoroughly performed. Several testcases are written to verify the functionality of

each module/structure.
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Freescale Semiconductor At A Glance

• A world leader in providing the semiconductor solutions that help our cus-

tomers improve quality of life for everyone, both today and in the future.

• Freescale Semiconductor, Inc. is an American company that produces and

designs embedded hardware, with 17 billion semiconductor chips in use around

the world. The company focuses on the automotive, consumer, industrial

and networking markets with its product portfolio including microprocessors,

microcontrollers, digital signal processors, digital signal controllers, sensors,

RF power ICs and power management ICs. In addition, the company offers

software and development tools to support product development.

• Among the world’s largest semiconductor companies

• A leading technology innovator

• A pioneer and visionary leader in sustainability

• President and CEO: Gregg Lowe

• The company is headquartered in Austin, Texas with design, research and

development, manufacturing and sales operations in more than 20 countries.

• Freescale is currently ranked 7th among the semiconductor sales leaders in the

United States and is ranked 16th worldwide.
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• The company also holds an extensive patent portfolio, including approximately

6,100 patent families.

• Freescale filed to go public on February 11, 2011 and completed its IPO on

May 26, 2011. Freescale is traded on the New York Stock Exchange under the

ticker symbol FSL.

• Freescale is a leader in embedded processing solutions for the automotive,

consumer, industrial and networking markets. From microcontrollers and mi-

croprocessors to sensors, analog ICs and connectivity, our technologies are

fueling the next great wave of innovation.

• Earlier known as MOTOROLA and later in 2004 as FREESCALE.
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Chapter 1

Introduction

Over the past ten years, as integrated circuits became increasingly more complex

and expensive, the industry began to embrace new design and reuse methodologies

that are collectively referred to as system-on-chip (SoC) design. The reusable com-

ponents, called intellectual property (IP) blocks or cores, are typically synthesizable

register-transfer level (RTL) designs (often called soft cores) or layout level designs

(often called hard cores). The concept of reuse can be carried out at the block, plat-

form, or chip levels, and involves making the IP sufficiently general, configurable, or

programmable, for use in a wide range of applications. Verification issues must be

addressed when integrating reusable components.

The purpose of this section is to briefly explain the typical SoC design flow in

vogue for 130 and 90nm high performance designs. Individual functional tasks are

explained in greater detail in the sections that follow. This section identifies the

various functional tasks and data transfer processes among them.

1
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1.1 Overview Of the Flow

1.1.1 Specifications

A product is born out of necessity or requirement. A potential customer iden-

tifies a set of requirements, which, if and when endorsed by the marketing team (of

the vendor), is called an L1 specification. The systems team then swings into action

and begins creation of the Architecture or L2 specification which identifies IPs and

protocols that should belong to the envisioned ASIC. Once the L2 specifications

are frozen, the design or integration team creates the IC Design Specification Doc-

ument or the L3 specification, which describes in detail the function of each IP and

protocol. The L3 specification is considered as the Bible by every IP designer.

1.1.2 IP Delivery

An IP is essentially an independent unit catering to certain predefined func-

tionality. Therefore, an IP can be reused in multiple SoCs that require the same

functionality to be satisfied. An IP owner is responsible for delivering completely

verified IPs (in form of RTL/gates) along with data such as stub netlists (consist-

ing of input/output information in verilog format), timing exceptions, verification

patterns, timing constraints etc.

1.1.3 Top Level Netlist Delivery

This activity is owned by the Frontend Integration team, that stitches together

a verilog top level netlist based on the delivered stub netlists and IC architecture

specifications.

1.1.4 Initial Constraints Delivery

The STA team releases initial timing constraints based on the Architecture

and Design Specifications and the top level netlist. The constraints are verified for
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bottlenecks through an established QTM flow prior to release. These constraints get

refined as more accurate data is made available and the design progresses. Timing

constraints drive synthesis, clock tree synthesis, placement, routing, floorplan etc.

and is one of the most crucial deliverables from the STA team. The delivered

constraints need to describe all the clocks in the design.

1.1.5 Silicon Virtual Prototyping

The Virtual Prototyping flow reads in very preliminary data and attempts to

estimate issues that might arise later in the design cycle. Therefore, Virtual Proto-

typing is a very handy tool that can be used by the Physical Integration team to

aid them in their floorplanning efforts. The STA team can also prototype the design

to refine timing constraints and identify timing bottlenecks very early in the design

cycle.

1.1.6 Floorplanning

Floorplanning can commence once a fairly comprehensive top level netlist is

available. The chip is partitioned into physical hierarchies based on connectivity,

functionality, timing and placement constraints, power and signal integrity require-

ments. All concerned functional teams need to sign off on the final floorplan and be

actively involved at all intermediate stages. The floorplanning team is also respon-

sible for providing frames (with size and pin descriptions) to the Physical Synthesis

team.

1.1.7 Chip Level Power Grid Design

This stage is intricately associated with the floorplanning process, and begins

as soon as the initial floorplan is ready. The chip level power grid design needs to

be signed off once the floorplan is frozen and considered final.
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1.1.8 RTL Verification

The IPs are put together and verified on the chip before each RTL is considered

final. The verification team is responsible for running typical functional patterns to

check for connectivity mismatches or RTL bugs.

1.1.9 RTL Level Power Estimation

Each RTL is also analyzed for power consumption estimates and power reduc-

tion opportunities before they are considered frozen.

1.1.10 Physical Synthesis

The physical synthesis flow reads in IP netlists (RTL/Gates), frame definitions,

timing and physical libraries and timing constraints to synthesize and place designs

concurrently so as to ensure placement-aware synthesis. Parasitic information for

the routes is estimated through global routes and a scan-stitched gate level netlist

and placement DEF file is dumped out for clock tree synthesis and routing flows.

1.1.11 Prelayout DFT

The gatelevel netlists dumped out from physical synthesis are used to generate

DFT patterns and simulated subsequently to get early estimates of DFT issues.

1.1.12 Prelayout STA

The STA process reads in data output from physical synthesis and parasitic

information for the top level nets to obtain early estimates of chip level timing

issues.
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1.1.13 Clock Tree Synthesis

The clocks in the chip need to be balanced (in terms of delay) in accordance with

the limits laid down in the timing constraints file. This is one of the most crucial

steps in an IC design flow, since clock tree synthesis is fine art of achieving an optimal

balance between clock path delay (insertion delay/latency), skew (uncertainty) and

clock path active current drain.

1.1.14 Block Level Routing

Once clock tree synthesis is complete, the database is shipped to the router

to route the design. Current generation routers need to consider issues like timing,

functional and delay noise and signal net electromigration during the routing process.

The routing process delivers gate level postlayout netlists, extracted parasitics (in

SPEF format) and LEF/DEF files.

1.1.15 Top Level Routing

A frozen floorplan with the power grid laid out can be routed to complete

the connections between the various physical hierarchies in the chip, as also the

external pins. It is the physical integration teams responsibility to ensure that top

level routing does not interfere with block level routing (or vice versa) in any way

whatsoever. Routing Blockages (at the block or macro level) are thus specified to

minimize or prevent the above from occurring.

1.1.16 Extraction

A routed database is fed to a 2.5D or 3D extraction engine to create a parasitic

netlist consisting of distributed RC pi networks. Extraction is performed indepen-

dently at the block and top levels. The extracted netlist(s) is (are) then used by the

STA and Functional Noise Analysis processes to estimate delay and noise glitches
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respectively. An R-only network for the power grid is also extracted for the power

grid and ground bounce analysis processes.

1.1.17 Postlayout STA

The postlayout gate level netlists and parasitics are read in by the delay cal-

culator and timing analysis tool to check for timing and delay noise violations in

the partitioned physical block as well as the full chip. Violations are fixed by pass-

ing appropriate directives to the router or placement engine. The STA process is

also required to deliver delay numbers, for DFT and Functional simulations, in the

industry standard SDF format.

1.1.18 Functional Noise Analysis

This process analyzes the design (both block as well as top level) for noise glitch

violations. If found, directives are passed on to the router or placement engine to

fix them.

1.1.19 Power and IR Drop Analysis

The power analysis process calculates active and leakage current drain in de-

signs based on connectivity, activity information and interconnect parasitics. The

calculated power numbers are then used to analyze the chip power grid to ensure

compliance with the IC specifications pertaining to IR drop and technology bounds

for current density (electromigration).

1.1.20 Postlayout DFT

DFT simulations are run on the postlayout netlist in presence of delay numbers

(in form of an SDF file) delivered by the STA process. Postlayout simulations check

for scan chain discontinuities, races, glitches etc.
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1.1.21 Postlayout Functional Verification

Chip level and/or system level patterns are analyzed on the postlayout database

consisting of gate level netlists and SDF files delivered from STA. Postlayout func-

tional simulation focusses on detecting races, glitches and timing bugs in the design.

1.1.22 Physical Integration and Verification

Once the physical partitions and the top level are complete in isolation, the

integration process begins to put them together on the chip. Physical Verification

broadly relates to checking for consistency between the layout (GDS format) and the

schematic (spice netlists created out of gate level verilog netlists), called LVS (Layout

Versus Schematic), and DRC (Design Rule Checking), which addresses geometrical

rules that have to be met for the polygons (metal, poly, wells, substrates etc.) so as

to ensure zero defects during manufacture in the fabrication facilities. The physical

verification step can begin only once the rest of the design processes have been

completed. Physical verification is typically the final process before tapeout.
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Figure 1.1: SoC Design Flow



Chapter 2

Test Chip Architecture

2.1 Test Chip IP’s

This CMOS SoC has integrated multiple instances of Digital Design Kit standard

cells, dual port register files, RAMs and ROMs, Standard cells , Ring Oscillators

and 2PRFs have been tested in two orientations 0 degree and 90 degree. Following

is the list of IP’s being integrated in this SOC.

1) 21 instances if 2PRF

2) 12 instances of ROM

3) 6 instances of ST-RAM

4) Standard cells including core, clk, srpg, multibit srpg, sequential cells

5) Ring oscillators

6) Clock and reset control

7) 24 instances of frequency counters to measure frequency of different clocks,

tap delay chains and Ring Oscillators.

There are 5 instances of FSL BIST engine implemented for testing these mem-

ories. All BIST engines memory testing and access time characterization logic has

been encapsulated in MTR The registers used for memory characterization and

DMA control are implemented in MTR. The registers for controlling clock, reset

9
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and frequency counters are implemented in core logic.

2.2 Test Chip’s Architectural Overview

This cmos testchip architecture is based on the skyblue bus protocol structure,

which is the primary functional mechanisms for accessing the devices on the chip.

In this architecture following buses are used:

1) Skyblue bus Standard skebpue IPS bus for accessing the SOC devices

2) System Control Bus for reset and system clocking

3) Memory Control Bus for providing the control signals for memories in DMA

mode

4) Test bus for checking scan capabilities of individual memories

This chip hosts different two port register files, ROMs, ST provided RAMs and

e-fuse devices. In this CMOS SOCs the functional access to all the devices under

test is provided through skyblue bus. The bus has 32 bit addresses and different

schemes of addressing the RAMs, ROMS and dual port register files have been

adopted. There is a separate read and write data bus in the Skyblue protocol. The

chip is enabled using a module enable pin and read and write signal is controlled by

another pin on the IPS bus. Chip id module is inside MTR and can be referred in

MTR section.

This soc also tests standard cells library and Ring Oscillator structures. All the

memories are encapsulated in a memory test and repair framework 〈MTR〉 which has

5 BIST engines to test different types of memories and a repair processor connected

to e-fuse. This architecture is open and flexible because it allows to add or remove

any CUTs from the core or MTR as well as to add or remove a whole core without

any changes in bus structure, access and addressing methods. The skyblue bus is

byte aligned and the chip is aligned on 32-bit word boundary.

The memories are tested using FSL BIST and also are accessible from the direct
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memory access enabled through skyblue bus The memories are tested for functional

correctness using BIST and characterized through a tap delay chain mechanism. All

memory accesses are enabled either through BIST engine or through direct memory

access DMA. The DMA mode also provides a provision for a bypass mode of memory

access where the pipeline flops are bypassed. The chip can drive the ipt bus from

top and debug the memories in scan mode.

Other important blocks to enable the testing of the above are frequency coun-

ters, clock and reset generators.
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2.3 Standard Cell Core

2.3.1 All Cell Block Description

There will be a total of 8 blocks for all cells namely SEQ, CLK, CORE, MULTI-

BIT, MULTIBITSRPG, SRPG, DELAY, METSTABILITY. These blocks are based

on library grouping of cells.

Figure 2.1: All Cell Core

For any given cell, the output of the cell across all pvts, channel lengths ,

rotations will be available at dout at the same time.
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The cut select will act as gating element for the inputs. i.e if the cut is selected the

block will get the inputs as it is otherwise it will be tied to zero.

Figure 2.2: Standard cell Layout - Inverter

Cell libraries determine the overall performance of the synthesized logic.

Synthesis engines rely on a number of factors for optimization. The cell library

should be designed catered solely towards the synthesis approach. Here are some

guidelines:

• A variety of drive strengths for all cells especially for inverters and buffers.

• Cells with balanced rise and fall delays (for clock tree buffers/gated clocks).

• Same logical function and its inversion as separate outputs, within same cell.

• Complex cells (e.g. AOI, OAI)and High fanin cells.

• Using high fan-in reduce the overall cell area, but may cause routing congestion

inadvertently causing timing degradation. Therefore they should be used with

caution.
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• The cell height/width must be a multiple of the horizontal/vertical grid spac-

ing. All cells must have the same height, but some complex cells can be

designed with double height.

2.4 Clock Generation and Control Register

The CMOS Architecture requires one external clock that is a clock generated

off-chip and used as system clock. This clock is named ipg clock and is an ungated

continuous clock. The external clock frequency has the limitation of pads i.e. approx

25 MHz. All internal clocks are generated and controlled in the module clock gen.

Due to the requirements of running BIST at speed, bist clocks are generated sep-

arately and have an internal oscillator muxing option to route ipg clk or internal

oscillator clock to the BIST engines.

2.4.1 Clock Control Register

The memories are not gated in this SOC as the memories stop their clocks if the

enable to memories is stopped. The two clock control registers are for controlling

bist clock generation and selection.

The clock gate is enabled when 1b0 is programmed in relevant clock control register.

Thus at reset all clocks are free and will be gated only by programming.

Address Register Name width Type Reset Value
13’h00 bist clk ctrl [31:0] R/W 25’h000 0000
13’h04 all cell clk ctrl [31:0] R/W 21’h1F FFFF

Table 2.1: Clock Register
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2.5 Reset Generation

A reset generation module generates the asynchronous hard reset with syn-

chronous de-assertion. This block also provides an early reset for REP processor

and a seperate reset for different qreset pins of the memories. The reset signal is

active low, asserts asynchrounously and deasserts synchronously to system clock

ipg clk. The SOC system reset is generated when ipg hard asynch reset b signal

is asserted and the uppermost address of address map that is 0xFFFF FFFF is

asserted. To generate the qreset signal for each individual memory devices, the

memory device needs to be addressed as per the address memory map and the

ipg hard asynch reset b signal needs to be asserted.

The system resets the entire soc i.e. it resets every block of the chip.

To generate system reset follow the steps below:

1. Drive ips addr 0xFFFF FFFF on address bus - ips adddr pins

2. Drive ipg hard asynch reset b signal to low. For generating a CUT specific

reset cut Module
0 All
1 Early Reset for REP
2 Frequency Counter block reset
3 MTR Register block reset

7-45 Individual memory device output reset

Table 2.2: Reset Table

reset an address in the devices system address map is driven on address bus i.e.

ips Addr and then asynchronous reset signal is asserted.

It is required to clear frequency counter registers to be cleared with software control.

This LMTV would not have separate resets for register blocks. The reset genera-

tion is fully controllable by a combination of external asynchronous reset signal

ipg hard asynch reset b and ips address. The repair processor needs to be driven

by early reset as it has to ensure that the power on reset does not write the data
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accidentally on the effuse while repair processor is still busy.

2.6 Ring Oscillator

This test-chip is proposing to have 891 ROs in different cells of the DDK. These

ROs will have two orientations of 0 and 90 degrees. The OCV ROs are repeated ,

i.e. have two instances each close to each other. The ROs will be using L,H and S

Vt cells. At one point there are maximum 24 ROs that can be active and read in

parallel. The expected number of rows is 48 and maximum 24 columns.

Ips addr[6:2] are used for column addressing and ips addr[12:7] for address decoding.

Ips addr[15] will select all the columns.

There are two orientations:

1. First block is having 60 unique RO in R90 orientation.Since these are OCV cells

hence these ROs are repeated so there are 120 ROs in 90 degree rotation block.

2. Second block is having 773 ROs and in R0 orientation and 120 RO instances of

the same cells that are in 90 degree rotation block.

The ro block will have 3 inputs and a 24 bit wide output bus.

The inputs are :

Ips addr[15:0] To select the ros.

Block en To enable the ring oscillators block. (gets enabled when ips address is in

RO address memory map range.

Osc En to enable the oscillations in the ro’s 1 is written on the RO address. (Con-

nected to ips wdata[00] pad). [Active high]

To enable parallel testing a maximum of 24 ring oscillators output can be observed

parallel based on the addr.

The RO block is selected whenever there is an ips access to this block of RO ad-

dresses. To enable the oscillations, select the ring oscillators block by programming

the ips address correctly as given in the RO names and address maps. Now pro-
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gram the address based on the rings that needs to be tested. The oscillations are

enabled whenever the data 0x0000 0001 is written on the selected address. Enable

the oscillations by asserting the en pin. The output of the oscillators pass through

a 32 bit divider (four stages of dividers) before it reaches the frequency counters i.e.

if the period of oscillations is say 20 ns from the rings a pulse of period 320 ns will

reach the frequency counter inputs. The period can then be calculated by using the

frequency counters.

The addr pins are used as follows:

Address Pin Function
addr[15]=1’b1 Parallel Output

addr[12:7] Decoder to rows
addr[6:2] To select individual RO output column

Table 2.3: RO Selection Address Range

Here is an example of testing the RO and reading the frequency from the

frequency counters.

To count oscillations on

1. Set calibr data sel register for frequency counter input select write 4b1001 in

fq calibr data input register.

2. Select the RO by addressing the RO from the table.

3. Enable oscillations in the RO block by writing 0x0000 0001.

4. Assert start counting.

5. Wait for desired time.

6. Deassert start counting.

7. Read the frequency counter by providing the correct address.
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2.7 Frequency Counter

This CMOS test-chip has 24 addressable (for read only) 32 bit counters.

Figure 2.3: Frequency Counter Block Diagram

As shown in the block diagram Oscillating delay chains get multiplexed in cal-

ibr data mux. These are further supplied as clocks each supplying to one counter.

The start counting input is synchronized to local clock for each counter. The coun-

ters can be read after start counting is deasserted at dout when cut sel = 7’b0110001.

Also the seventh bit of every counter can be read as a frequency divided output when

dmux is set to 4b0101 at cut sel = 7’b0110001 value. Note that dmux value should

be other than 4b0101 for normal read operation of o/p multiplexer. The counters

can be read as registers provided start counting is deasserted atleast 2 clock cy-

cles prior. They are mapped from 5h00 to 5h1f on addr bits[4:0]. Delay line n

corresponds to counter n.
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2.8 Memory IP

Semiconductor Memories are classified according to the type of datastorage and

the type of data access mechanism into the following two main groups:

• Non-volatile Memory (NVM) also known as Read-Only Memory(ROM) which

retains information when the power supply voltage is off. With respect to the

data storage mechanism NVM are divided into the following groups:

– Mask programmed ROM. The required contents of the memory is pro-

grammed during fabrication,

– Erasable PROM (EPROM). Data is stored as a charge on an isolated

gate capacitor (floating gate). Data is removed by exposing the PROM

to the ultraviolet light.

– Electrically Erasable PROM (EEPROM) also known as Flash Memory.

It is also base on the concept of the floating gate. The contents can be

re-programmed by applying a suitable voltages to the EEPROM pins.

The Flash Memories are very important data storage devices for mobile

applications.

• Read/Write (R/W) memory, also known as Random Access Memory (RAM).

From the point of view of the data storage mechanism RAM are divided into

two main groups:

– SRAM (Static Random Access Memory)

– DRAM (Dynamic Random Access Memory)

2.9 Static RAM

The memory cell is a 6 transistor circuit which is a flip flop comprising two cross-

coupled inverters and two access transistors, the access transistors turn on when the
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word line is selected (high) and its voltage rises to Vdd, and they connect the flip

flop to the bit lines. Sizing of the transistors in the memory cells is very important

especially for speed and chip cost.

The sense amplifier is important in the total performance of the SRAM chip

since the sense delay time directly affects the access time. Sense amplifier is used

to sense the small changes in voltage that results when a particular cell is switched

onto the bit line. One stage differential pair of sense amplifier is utilized here. The

sense amplifier circuit is controlled by a clock signal, which is synchronized with the

pre-charging and word-line signals.

• TYPE OF SRAM:-

– Single Port static Random Access Memory (SPRAM)

– Dual Port static Random Access Memory (DPRAM)

2.9.1 Single Port Random Access Memory (SPRAM)

SPRAM is a single-port synchronous static RAM contains single port to used

for read and write operation.

When clock goes to negative to positive edge, CSN and WEN is low, Memory is

written whatever data is given to data port at current address given at address bus.

When WEN is HIGH, CSN is low and CLK goes to POSEDGE, Memory is read at

current address given by address bus and data reflects on the Output Bus.

• Memory has logic low control pin of CSN and WEN.

• WEN - Write Enable logic low Write when Logic low otherwise read.

• CSN - Chip select logic low Chip selected Write when Logic low otherwise

disable.



CHAPTER 2. TEST CHIP ARCHITECTURE 21

• Memory has SLEEP which is used to switch off peripheral. Memory also has

test mode,scan chain pins,special testing pins.

Figure 2.4: SINGLE PORT SRAM

2.9.2 DUAL Port Static Random Access Memory (DPRAM)

DUAL Port SRAM gives advantage of read and write perform simultaneously

by adding extra data bus, address bus and extra control signal.In some application

like Video RAM , Elevators to Robot Control, Commercial Aircrafts to Unmanned

Flight Controls, Surveillance cameras to Night vision systems.Dual Port Memory

has increased bandwidth approximately 2x the speed of a similar single port RAM.

2.9.2.1 DUAL Port Static Random Access Memory TYPE-1

This type of dual port memory has only one data port though it contains read

and write different address bus as well as different chip selection bit. It has one

write enable signal common for both.

When Memory is going to read, Address is captured from read address bus and

when Memory is going to write, address is captured from write address bus. Both
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read and write also have different chip selection pins.This dual port memory has

limitation that it can read or write at a time.

Figure 2.5: DUAL PORT RAM TYPE - 1

2.9.2.2 DUAL Port Static Random Access Memory TYPE-2

Figure 2.6: DUAL PORT RAM TYPE - 2

This type of dual port memory has two data port though it contains read

and write different address bus as well as different chip selection bit. It also contains

different write enable signal which gives permission to read and write at a time.
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Memory has 2 data port , 2 CSN, 2 WEN , 2 Address Bus as well as 2

Output Data port. It is same like two SPRAM (Single Port SRAM) are going to

attached together.

DUAL PORT SRAM port is independent of each other. Both port has their

own WEN and CSN signals as well as their operating frequency.
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Front End Integration

3.1 Introduction

Front end integration is the process of integrating the design database, based on

the L3 specification of the chip. The process involves generation of top-level chip

netlist and providing a testbench in which the module owners can start verification

of their modules. Front-end integration is not completed until and unless clearance

is given by the verification team on the connectivity of all the modules.

To verify a module, for its functionality, at different stages in the design, a

testbench is required. At the stand alone stage, only the module under test (MUT)

is instantiated inside the testbench, and requires the Bus Functional Models (BFMs)

of the cores.

A full functional testbench consists of the following:

• Micro Operating System (MOS) - Responsible for booting and initialization

of the cores.

• Embedded codes - to program the cores in the required state and to check the

desired functionality.

• Verilog stimulus - to provide external stimulus (if required)

24
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• Drivers/Monitors/Transactors - required for different transactions e.g driving

a pin, monitoring an output or interacting with the external world etc.

• Boot Loaders:- In order to load the code inside the memories, boot load-

ers/memory loaders are required.

3.2 Deliverables to Front-end Integration

The following bullets are the deliverables to the FE team:-

• Integration guide of the modules.

• Preliminary and final stubs of the modules and platforms.

• Preliminary and final RTLs of the modules.

• All the behavioral models of the analog portions of the design.

3.3 Deliverables from Front-end Integration

The following bullets are the deliverables from the FE team:-

• Verilog compatible and correctly connected Toplevel netlist of the chip.

• A Testbench in which RTL and post-layout verification of the modules can be

done.
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3.4 Flow

The top-level netlist generation involves the following stages:

3.4.1 Phase 0

Stage1:-

The module stub file is delivered by the module design owners.The initial

platform netlist is generated using the module stub files based upon L3 specifica-

tions of the chip.

Stage2:-

The final stubs and preliminary RTLs are delivered by the module designers.

Using the platform level netlists and the module level stubs of the hard blocks, an

initial toplevel chip netlist is generated. Hard blocks are the modules whose GDSII

is delivered by the designers and they are not included in the PC and APR flow of

the platforms.

The netlists are usually integrated either manually or by using tools like

Flexior and Rabbit.

3.4.2 Phase 1

Stage1:-

Final module RTLs are delivered by the module design owners.The module

RTL port list is compared with the module stub portlist. Final stubs should match

the port-list in the RTLs. If there is no issue in the port-lists, the module RTL is

used for generating the platform netlist.

Stage2:-

The platform netlists, generated by the platform owner, is used for integrating

the top-level netlist. A final toplevel netlist is generated by integrating all the



CHAPTER 3. FRONT END INTEGRATION 27

platform netlists and the hard macros which are outside the platforms.

Stage3:-

Platform owner delivers the postlayout platform netlist. Hard module design

owners for the modules which are outside any platform, deliver the blocks postlay-

out netlist.Postlayout platform netlist and the postlayout block netlist is used for

integrating the top-level netlist.

Figure 3.1: Front End integration/Verification Flow
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3.5 Functional Verification

3.5.1 Introduction

Verification is a process of verifying the design for any incompatibility with the

desired specifications. The process includes, checking for the basic functionality,

checking for the inter-module interaction, checking for the interaction with the cores

and the memories, checking for the interaction between the module and the external

chip-sets etc. Verification of a chip requires, the design database (RTLs, platforms,

top-level netlist, SDFs etc.), stimulus files (written in verilog, C, C++, Vera, Sys-

temC etc.) and a verification environment.

3.5.1.1 Deliverables to Verification Team

The following bullets are the deliverables to the verification team:-

• A toplevel netlist and testbench from the front end integration team.

• Chip verification methodology.

• SDFs and post-layout netlists from STA and APR teams.

3.5.1.2 Deliverables from Verification Team

The following bullets are the deliverables from the verification team:-

• Sign off on the RTLs and post-layout netlists of the modules.

• Vectors of the modules for regressions.

3.5.2 The Flow

Verification process basically involves following 3 stages:
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3.5.2.1 Phase 0:

Stand-alone verification of the modules- Stand-alone verification is done for

checking the basic functionality of the module (e.g register rd/wr tests). Almost all

the modules, interact with one or more cores. The Bus Functional Models (BFM)

are used for the testcases involving interaction with the core. If the module interacts

with the memories, the behavioral models of the memories are used.

During standalone verification, there are several corner cases which are not

thought of by the designer.In order to attain maximum functional coverage, random

verification is used.Vera is the tool of choice for doing random verification.Functional

coverage is the term which is used to determine if all the states in the design are

exercised in proper sequence.

3.5.2.2 Phase 1:

Full Functional verification of the modules - Almost all the functionality of the

modules are verified in the full functional verification. Full functional verification

requires a Micro Operating System (MOS), which is capable of feeding inputs (stim-

ulus) to the design and reading the outputs and verifying it against the specifications

at RTL level and later on at post-layout level both for the timing and functionality.

3.5.2.3 Phase 2:

System level verification - The functionality which is not covered in the FF

verification is covered in the system level verification. This includes, intermodule

interaction, data path checks, external module interaction, pad connectivity checks

etc.

Verification process is not complete until the functional coverage has been checked.
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Synthesis

4.1 Introduction

Logic Synthesis is the process by which an abstract form of desired circuit be-

haviour, typically Register Transfer Level(RTL), is turned into design implementa-

tion in terms of logic gates.

4.2 RC Synthesis Flow

4.2.1 Prerequisites for Synthesis with RC

(i) Liberty files(.lib)

(ii) Library Exchange Format(.lef)

(iii) Verilog and/or VHDL and/or System Verilog File(s)

RC accepts verilog/vhdl and even mixed style of RTL. The RTL files can

contain structural code for combining lower level modules, behavioral design speci-

fications, or RTL implementations.

Synopsys Design Constraints (.sdc) File(s)

RC supports reading SDC format for constraints. Make sure that all clock

definitions, proper i/o delays ,correct uncertainty and derates included in the sdc

30
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file.

(v) Dont Use Cell List.

(vi) Dont touch cells/instances/modules: There might be certain cells/instances/modules

in the design which have to be kept as dont touch during synthesis. So, the dont

touch list is needed.

In order to preserve these cells/instances, use the following command in RC:

set attr preserve true [find / -instance 〈 instance name 〉]

If it is desired to preserve a particular cell with upsizing and downsizing, use:

set attr preserve size ok [find / -instance 〈 instance name 〉]

To allow the tool to resize or delete a mapped subdesign or child instance during

optimization, but not rename or remap it, use :

set attr preserve size delete ok [find / -instance 〈 instance name 〉]

(vii) Optional but Recommended Files:

• Capacitance Table File (.captbl)

• Design Exchange Format (.def) Floorplan File

• Switching Activity File(s): .saif, .tcf, .vcd

• Common Power Format (.cpf) File

4.2.2 What Tool does during Synthesis

RC Synthesis involves the following stages:

(i) Elaboration

(ii) Generic Synthesis

(iii) Global Mapping

(iv) Incremental Optimization
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(i) Elaboration:

Before Elaboration the design should be read in along with other inputs. Make sure

that general compiler settings are done.

Elaboration is required on the top level design which automatically elaborates all

its references. The elaborate command does following things:

• Builds Data structures and infers registers in the design.

• Performs High level HDL optimization, such as dead code removal.

• Identifies Clock Gating and operand isolation candidates.

• During elaboration, the tool reports the following :

• Unresolved references, that is the instances found with no corresponding mod-

ule or library cell.

• Semantic problems, including unused ports, inconsistent resets.etc

• check design command can be used to report all these things in detail.

(ii) Generic Synthesis:

• A technology independent synthesis is done during this stage. Following are

some of the optimizations done in this stage:

• Carry save arithmetic optimization

• Logic Pruning

• Resource Sharing

• Implementation Selection

• Redundancy Removal

• Mux Optimizations
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• Common Sub-expression sharing

(iii) Global Map:

• The global mapping process in RC involves:

– Structuring

– Mapping

– Target setting

– Restructuring/Mapping as per target settings

(iv) Incremental Optiization :

• Incremental Mapping Performs:

– Critical Range Re-synthesis

– DRC fixing

– Buffering

– Area Recovery

4.2.3 Area-based Optimization

(i) Analyze the timing reports prior to synthesis, i.e., at pre-synthesis diagnosis

stage. If the I2C, I2O paths are already meeting timing, then area can be recovered

from these paths. For this, under constrain these path groups before the global

mapping stage:

Ex: The following command will relax the timing on I2O paths by 200 ps. So, now

the effective clock-period for these paths are [Clock period + 200].

path adjust name UNDER CON delay 200 from [all::all inps] to [all::all outs]

After global mapping phase, remove the path-adjust, so that timing reports would

be accurate and with respect to the actual clock period.

(ii) Synthesize -to generic effort medium
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As per LEC requirement,it is preferred to use medium effort for synthesize to generic.

In cases where timing is critical ,the effort level can be set to high if and only if

LEC is not an issue.Here ,RC uses more aggressive csa optimization algorithms for

better timing. This might result in larger area as well.

(iii) Set the attribute drc first to false, in case if you have set it to true (default is

false). This has to be set to false, so that RC does not fix DRCs aggressively &

bump up the area.

(iv) Review and remove any preserve attributes (dont touch) that are not needed.

This will help RC to optimize the results better.

(v) Check if there are any datapath elements in the critical paths with preserve

attributes.

(vi) Set the attribute dp postmap downsize to true on data path elements present in

the design before incremental synthesis. This will perform architecture downsizing

after mapping. This attribute is effective only in incremental optimization.

(vii) If timing is not critical in the design, you do not need to turn on the attribute

tns opto.

(viii) Area multiplier: The area of a cell can be modified by using the attribute

area multiplier. The default value for this attribute is 1.0. When set to a value

less than default value can favor a cell to be picked up by the tool. For example,

when applied on complex cells, it can bias the tool for mapping them on non-critical

paths. To do so, one could set the area multiplier value to less than one 1.0 for these

kind of cells. However, for accurate area reporting, you should change the multiplier

to 1.0 before issue any cell or area reporting command.

(ix) Check if proper complex libcells are selected when needed. Otherwise one can

bias the tool to pick them up using area multiplier trick discussed above.

(x) If you have a max delay constraint set on your design, RTL Compiler inter-

prets the constraint more restrictively and may produce larger area and instance

count. To improve area, check for these and convert them in to set input delay

set output delay constraints that refererence to the appropriate clock.
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4.2.4 Timing-based Optimization

Following are the important steps in addition to those mentioned in the flow, which

will improve the performance:

(i) Do a detail analysis of timing reports in RC just prior to synthesis, i.e., just

after loading the RTL into RC (Pre-synthesis Diagnosis). If there is some MACRO,

which is in the critical path of reg-to-reg path groups and which has huge delay, then

make a separate path group for all the paths passing through that MACRO. This

will greatly improve the optimizations of all the other reg-to-reg paths not passing

through that MACRO.This MACRO path can also be optimized in a better way by

over constraining it.

(ii) At the beginning of global mapping, based on the libraries, logic structure and

constraints RC will estimate a target slack for all cost groups. RC tries to meet

these numbers. In the logfile look for the word target slack. If there is a cost group

with large negative slack normally is a problem area. If the constraints are clean,

one could set the initial target to 0 or some positive value using the initial target

attribute. This forces the mapper to do aggressive structuring and optimization on

them to meet the target set.

set attribute initial target 0 [find / -cost group name cg]

Note : This may increase area.

(iii) Over constrain the paths, which are not meeting timing.

Ex: The following command will over constrain the reg-to-reg paths by 200 ps. So,

the effective clock-period for these paths is now [Clock period 200 ps]. Hence, the

tool will try to meet its target in this effective clock-period.

path adjust name OVER CON delay -200 from [all::all seqs] to [all::all seqs]

This command is to be used before global mapping stage. After global mapping,

remove the over constraint and do report timing, so that the timing reports are with
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respect to the actual clock-period.

(iv) If timing degradation is due to high fanout nets in the design, idealizing those

nets improves timing at the synthesis stage. In the later stages a place and route

tool can build a better buffer tree for these nets. The script mentioned in the Tcl

procedures section can be used to find out the high fanout nets and idealizing them.

(v) Usage of Low Vth cells significantly improves timing. But usage of these cells

significantly increases the power numbers as these have high leakage power.

(vi) Set the attribute tns opto to true. When set, it forces the tool to consider all

the endpoints for the optimization.

Note: This may increase the area.

(vii) Make sure that the attribute drc first is not set to true. By default it is set to

false. If set to true the tool will give higher priority to design rule constraints than

the timing constraints.

(viii) Set the attribute iopt ultra optimization to true .When set, it enables ultra

optimization in incremental optimization to achieve best QOR with higher runtime.

4.2.5 Special Care abouts and Recommendations

1. Boundary Optimization

By default, RTL Compiler performs boundary optimization during synthesis for all

subdesigns in the design. It controls boundary optimization on the subdesign and

hierarchical pin inversion. To preserve the input and output pins of a subdesign, you

can turn off the boundary optimization. In this case, no hierarchical pin inversion

will be done either for this subdesign.

Note: To exclude individual pins from boundary optimization, use the preserve at-

tribute

The boundary optimization can be turned off as below :

set attr boundary opto false [find / -subdesign 〈 subdesign name 〉]
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2. Retiming

Improves the performance of the design by either optimizing the area or the clock pe-

riod (timing) of the design. Retiming moves the registers across the combinational

logic to improve the performance without changing the input/output behavior of

the circuit .Generally it is not recommended retiming on the whole design due to

multiple reasons :

• You will lose traceability of the flops since all the retimed flops will become

retime*reg. Verification could be a major issue for both formal and simulation.

The retiming space explodes to the complete design and flops can get spread

out e from one module to one or more others.

• There will be runtime increase since the Retiming flow would require an initial

mapping during prepare phase, retiming step and a final mapping on the whole

design.

• It is recommended to use Retiming only on selected subdesigns. The ideal

subdesign would those which have been designed for pipelining or if not choose

that would benefit from register spreading based on unbalanced paths paths

which have positive slack on one side and negative slack on the other side.

So moving the registers in the direction of positive slack would reduce the

negative slack.

• On a Post-mapped design, you could try incremental retiming which makes

use of the unbalanced paths. But on typical designs, if the negative slack

cannot be improved by incremental retiming, then success would be limited.

3. Ungrouping

RC by default ungroups the user created hierarchies during synthesis to improve

area and timing during synthesis. This can be controlled by setting the attribute
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auto ungroup to both/none and must be specified before synthesis.

none Ungrouping will not be performed.

Both Ungrouping will be performed with an emphasis on both optimizing timing

and area.

You can also set the ungroup ok attribute to false to control any subdesign/hierarchy

not to ungrouped. This way, while achieving better QoR, you can also keep the hi-

erarchy of interest intact.

Note: Ungrouping of user hierarchies happens during

• RTL optimization synthesize -to gen -effort high

• Technology mapping synthesize -to map -effort high

4. Information to be looked in log files

(i) For unresolved instances during elaboration. The command for checking unre-

solved instances is check design unresolved

(ii) check if any sdc errors exist and verify the SDC summary report in the log file.

(iii) Warnings pertaining to sequential logic deletion.

(iv) Clock gating fanout statistics.

(v) At the beginning of the global mapping step, RC will estimate a target slack for

each cost group. This estimated target is based on the libraries, the logic structure,

and the constraints. RC will work toward this target number during the optimiza-

tion process. In the logfile, search for the keyword target slack, as it will be printed

before and after the global mapping step for each cost group in the design. A cost

group with large negative target slack would normally indicate a problem area. Also

check whether these targets are met after mapping or not.

(vi) On some designs RC might spend time in incremental optimization. To debug

such cases one should have set the debug variable iopt stats to 1 and the attribute

information level to 9.

(vii) Before attempting to run synthesis, the user should check the input data, pay



CHAPTER 4. SYNTHESIS 39

attention to the warning messages and correct any obvious issues.



Chapter 5

Configuring SDC

5.1 Specifying Clocks

To define a clock, we need to provide the following information:

i) Clock source: it can be a port of the design, or be a pin of a cell inside

the design (typically that is part of a clock generation logic).

ii) Period: the time period of the clock.

iii) Duty cycle: the high duration (positive phase) and the low duration(negative

phase).

iv) Edge times: the times for the rising edge and the falling edge.

By defining the clocks, all the internal timing paths (all flip-flop to flip-flop

paths) are constrained; this implies that all internal paths can be analyzed with just

the clock specifications. The clock specification specifies that a flip-flop to flip-flop

path must take one cycle.

Here is a basic clock specification1.

create clock -name SYSCLK -period 20 -waveform 0 5 [get ports2 SCLK]

The name of the clock is SYSCLK and is defined at the port SCLK. The period

of SYSCLK is specified as 20 units - the default time unit is nanoseconds if none

has been specified. (In general, the time unit is specified as part of the technology

40
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library.) The first argument in the waveform specifies the time at which rising edge

occurs and the second argument specifies the time at which the falling edge occurs.

There can be any number of edges specified in a waveform option. However all

the edges must be within one period. The edge times alternate starting from the

first rising edge after time zero, then a falling edge, then a rising edge, and so on.

This implies that all time values in the edge list must be monotonically increasing.

-waveform time rise time fall time rise time fall ...

In addition, there must be an even number of edges specified. The waveform

option specifies the waveform within one clock period, which then repeats itself.

5.2 Clock Uncertainty

The timing uncertainty of a clock period can be specified using the set clock uncertainty

specification. The uncertainty can be used to model various factors that can reduce

the effective clock period. These factors can be the clock jitter and any other pes-

simism that one may want to include for timing analysis.

set clock uncertainty -setup 0.2 [get clocks CLK CONFIG]

set clock uncertainty -hold 0.05 [get clocks CLK CONFIG]

Note that the clock uncertainty for setup effectively reduces the available clock

period by the specified amount.

5.3 Clock Latency

Latency of a clock can be specified using the set clock latency command.

There are two types of clock latencies: network latency and source latency.

Network latency is the delay from the clock definition point (create clock) to the

clock pin of a flip-flop. Source latency, also called insertion delay, is the delay from

the clock source to the clock definition point. Source latency could represent either



CHAPTER 5. CONFIGURING SDC 42

on-chip or off-chip latency. Figure shows both the scenarios. The total clock latency

at the clock pin of a flip-flop is the sum of the source and network latencies.

Figure 5.1: Clock Latency

One important distinction to observe between source and network latency is that

once a clock tree is built for a design, the network latency can be ignored (assuming

set propagated clock command is specified). However, the source latency remains

even after the clock tree is built. The network latency is an estimate of the delay

of the clock tree prior to clock tree synthesis. After clock tree synthesis, the total

clock latency from clock source to a clock pin of a flip-flop is the source latency plus

the actual delay of the clock tree from the clock definition point to the flip-flop.

5.4 Generated Clocks

A generated clock is a clock derived from a master clock. A master clock is a

clock defined using the create clock specification.

When a new clock is generated in a design that is based on a master clock, the

new clock can be defined as a generated clock. For example, if there is a divide-by-3

circuitry for a clock, one would define a generated clock definition at the output of

this circuitry. This definition is needed as STA does not know that the clock period
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has changed at the output of the divide-by logic, and more importantly what the

new clock period is.

create clock -name CLKP 10 [get pins UPLL0/CLKOUT]

# Create a master clock with name CLKP of period 10ns with 50% duty cycle at

the CLKOUT pin of the PLL.

create generated clock -name CLKPDIV2 -source UPLL0/CLKOUT -divide by

2 [get pins UFF0/Q]

# Creates a generated clock with name CLKPDIV2 at the Q pin of flip-flop UFF0.

The master clock is at the CLKOUT pin of PLL. And the period of the generated

clock is double that of the clock CLKP, that is, 20ns.

Defining a master clock instead of a generated clock creates a new clock domain.

This is not a problem in general except that there are more clock domains to deal

within setting up the constraints for STA. Defining the new clock as a generated

clock does not create a new clock domain, and the generated clock is considered to

be in phase with its master clock. The generated clock does not require additional

constraints to be developed. Thus, one must attempt to define a new internally

generated clock as a generated clock instead of deciding to declare it as another

master clock.

Another important difference between a master clock and a generated clock is

the notion of clock origin. In a master clock, the origin of the clock is at the point

of definition of the master clock. In a generated clock, the clock origin is that of the

master clock and not that of the generated clock. This implies that in a clock path

report, the start point of a clock path is always the master clock definition point.

This is a big advantage of a generated clock over defining a new master clock as the

source latency is not automatically included for the case of a new master clock.
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5.5 Typical Clock Generation Scenario

Figure below shows a scenario of how a clock distribution may appear in a

typical ASIC. The oscillator is external to the chip and produces a low frequency

(10-50 MHz typical) clock which is used as a reference clock by the on-chip PLL to

generate a high-frequency low-jitter clock (200-800 MHz typical). This PLL clock

is then fed to a clock divider logic that generates the required clocks for the ASIC.

On some of the branches of the clock distribution, there may be clock gates that

are used to turn off the clock to an inactive portion of the design to save power when

necessary. The PLL can also have a multiplexer at its output so that the PLL can

be bypassed if necessary.

Figure 5.2: Clock distribution in a typical ASIC

A master clock is defined for the reference clock at the input pin of the chip

where it enters the design, and a second master clock is defined at the output of

the PLL. The PLL output clock has no phase relationship with the reference clock.

Therefore, the output clock should not be a generated clock of the reference clock.

Most likely, all clocks generated by the clock divider logic are specified as generated

clocks of the master clock at the PLL output.
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5.6 Timing Path Groups

Timing paths in a design can be considered as a collection of paths. Each path

has a startpoint and an endpoint. In STA, the paths are timed based upon valid

startpoints and valid endpoints. Valid startpoints are: input ports and clock pins

of synchronous devices, such as flip-flops and memories. Valid endpoints are output

ports and data input pins of synchronous devices. Thus, a valid timing path can be:

i. from an input port to an output port

ii. from an input port to an input of a flip-flop or a memory

iii. from the clock pin of a flip-flop or a memory to an input of flipflop

iv. from the clock pin of a flip-flop to an output port

Figure 5.3: Path Groups

5.7 Virtual Clocks

A virtual clock is a clock that exists but is not associated with any pin or port of

the design. It is used as a reference in STA analysis to specify input and output
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delays relative to a clock. An example where virtual clock is applicable is shown in

figure below. The design under analysis gets its clock from CLK CORE, but the

clock driving input port ROW IN is CLK SAD.

To specify the IO constraint on input port ROW IN or STATE O, a virtual clock

can be defined with no specification of the source port or pin. In the example of

figure below, the virtual clock is defined for CLK SAD and CLK CFG.

create clock -name VIRTUAL CLK SAD -period 10 -waveform 2 8

create clock -name VIRTUAL CLK CFG -period 8 -waveform 0 4

create clock -period 10 [get ports CLK CORE]

Figure 5.4: Virtual Clock Example

5.8 Refining the Timing Analysis

Four common commands that are used to constrain the analysis space are:

i. set case analysis: Specifies constant value on a pin of a cell, or on an input

port.

ii. set disable timing: Breaks a timing arc of a cell.

iii. set false path: Specifies paths that are not real which implies that these

paths are not checked in STA.

iv. set multicycle path: Specifies paths that can take longer than one clock cycle.
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5.8.1 Specifying Inactive Signals

In a design, certain signals have a constant value in a specific mode of the chip.

For example, if a chip has DFT logic in it, then the TEST pin of the chip should

be at 0 in normal functional mode. It is often useful to specify such constant values

to STA. This helps in reducing the analysis space in addition to not reporting any

paths that are irrelevant. For example, if the TEST pin is not set as a constant,

some odd long paths may exist that would never be true in functional mode. Such

constant signals are specified by using the set case analysis specification.

set case analysis 0 TEST

set case analysis 0 [get ports testmode[3]]

set case analysis 0 [get ports testmode[2]]

set case analysis 0 [get ports testmode[1]]

set case analysis 0 [get ports testmode[0]]

If a design has many functional modes and only one functional mode is being

analyzed, case analysis can be used to specify the actual mode to be analyzed.

set case analysis 1 func mode[0]

set case analysis 0 func mode[1]

set case analysis 1 func mode[2]

Note that the case analysis can be specified on any pin in the design. An-

other common application of case analysis is when the design can run on multi-

ple clocks, and the selection of the appropriate clock is controlled by multiplex-

ers. To make STA analysis easier and reduce CPU run time, it is beneficial to

do STA for each clock selection separately. Figure below shows an example of the

multiplexers selecting different clocks with different settings. set case analysis 1

UCORE/UMUX0/CLK SEL[0]

set case analysis 1 UCORE/UMUX1/CLK SEL[1]

set case analysis 0 UCORE/UMUX2/CLK SEL[2]

The first set case analysis causes PLLdiv16 to be selected for MIICLK. The clock
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Figure 5.5: Selecting Clock mode for timing analysis

path for PLLdiv8 is blocked and does not propagate through the multiplexer. Thus,

no timing paths are analyzed using clock PLLdiv8 (assuming that the clock does

not go to any flip-flip prior to the multiplexer). Similarly, the last set case analysis

causes SCANCLK to be selected for ADCCLK and the clock path for CLK200 is

blocked.

5.8.2 Breaking Timing Arcs in Cells

Every cell has timing arcs from its inputs to outputs, and a timing path may

go through one of these cell arcs. In some situations, it is possible that a certain

path through a cell cannot occur. For example, consider the scenario where a clock

is connected to the select line of a multiplexer and the output of the multiplexer is

part of a data path. In such a case, it may be useful to break the timing arc between

the select pin and the output pin of the multiplexer. An example is shown in figure

below. The path through the select line of multiplexer is not a valid data path.

Such a timing arc can be broken by using the set disable timing SDC command.

set disable timing -from S -to Z [get cells UMUX0]

Since the arc no longer exists, there are consequently fewer timing paths to

analyze. Another example of a similar usage is to disable the minimum clock pulse

width check of a flip-flop.
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Figure 5.6: disable timing example

One should use caution when using the set disable timing command as it re-

moves all timing paths through the specified pins. Where possible, it is preferable

to use the set false path and the set case analysis commands.

5.8.3 False Paths

It is possible that certain timing paths are not real (or not possible) in the

actual functional operation of the design. Such paths can be turned off during STA

by setting these as false paths. A false path is ignored by the STA for analysis.

Examples of false paths could be from one clock domain to another clock domain,

from a clock pin of a flip-flop to the input of another flip-flop, through a pin of a

cell, through pins of multiple cells, or a combination of these. When a false path

is specified through a pin of a cell, all paths that go through that pin are ignored

for timing analysis. The advantage of identifying the false paths is that the analysis

space is reduced, thereby allowing the analysis to focus only on the real paths. This

helps cut down the analysis time as well. However, too many false paths which are

wildcarded using the through specification can slow down the analysis. A false path

is set using the set false path specification. Here are some examples.

set false path -from [get clocks SCAN CLK] -to [get clocks CORE CLK]

# Any path starting from the SCAN CLK domain to the CORE CLK domain
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is a false path.

set false path -through [get pins UMUX0/S]

# Any path going through this pin is false.

5.8.4 Multicycle Paths

In some cases, the combinational data path between two flip-flops can take more

than one clock cycle to propagate through the logic. In such cases, the combinational

path is declared as a multicycle path. Even though the data is being captured by the

capture flip-flop on every clock edge, we direct STA that the relevant capture edge

occurs after the specified number of clock cycles. Figure below shows an example.

Since the data path can take up to three clock cycles, a setup multicycle check of

three cycles should be specified.

The multicycle setup constraints specified to achieve this are given below.

create clock -name CLKM -period 10 [get ports CLKM]

set multicycle path 3 -setup -from [get pins UFF0/Q] -to [get pins UFF1/D]

The setup multicycle constraint specifies that the path from UFF0/CK to UFF1/D

can take up to three clock cycles to complete for a setup check. This implies that

the design utilizes the required data from UFF1/Q only every third cycle instead of

every cycle.
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Figure 5.7: Multicycle path example



Chapter 6

Results

6.1 Results

Figure 6.1: Top Level Instantiation
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Figure 6.2: Core Module

Figure 6.3: Core Submodules
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Figure 6.4: Clock Generator Block

Figure 6.5: All Cell Block
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Figure 6.6: Memory Test and Repair Block

Figure 6.7: Memory Instance
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Figure 6.8: Synthesis Summary Report



Chapter 7

Conclusion

7.1 Tasks handled

The following is a short description of tasks performed during internship phase:

• Performed Verification of LMTV Test-Chip.

– Several TestCases were written for verification of standard cells(All Cell

block).

– Testcases for verification of Memory Structures.

• Performed Synthesis at SoC level.

• Developed SDC file for Synthesis and Static Timing Analysis(STA).

• Executed RTL to GDS flow at Module level for All Cell block.

• Performed simulation for analog block i.e MICA simulation.

• Learned Perl, shell and Tcl scripting languages.

• Understood the concepts of STA.

57
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7.2 Conclusion

The test-structures that are implemented on silicon are used for characterization,

which provides necessary data for analysis. The data available for analysis provides

necessary information as to whether the structures implemented are suitable for

realization in a particular technology node. Thus test chip SoC helps in advancement

of technology to even lower technology nodes.
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