
i | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

NEXT GENERATION RTL SIMULATION

TECHNOLOGY FOR GRAPHICS DESIGN

Major Project

Submitted in Partial Fulfillment of the Requirements

For the Degree of

Master of Technology (M.Tech.)

In

VLSI Design

By

ABHISHEK D SAVALIA

12MECV01

Department of Electronics & Communication Engineering
Institute of Technology

Nirma University
Ahmedabad
May-2014

ii | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

NEXT GENERATION RTL SIMULATION

TECHNOLOGY FOR GRAPHICS DESIGN

Major Project

Submitted in Partial Fulfillment of the Requirements

For the Degree of

Master of Technology (M.Tech.)

In

VLSI Design

By

ABHISHEK D SAVALIA

12MECV01

 Mr. Anees Sutarwala

Prof. Usha Mehta Mr. Nilay Desai

Internal Guide External Guide

Department of Electronics & Communication Engineering
Institute of Technology

Nirma University
Ahmedabad
May-2014

iii | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

i | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Declaration

This is to certify that

1. I, Abhishek D Savalia a student of semester IV Master of Technology in VLSI Design,

Nirma University, Ahmedabad hereby declare that the project work “NEXT

GENERATION RTL SIMULATION TECHNOLOGY FOR GRAPHICS DESIGN” has

been independently carried out by me under the guidance of Mr. Anees Sutarwala and

Mr. Nilay Desai, Intel Technology India Private Limited, Bangalore and Prof. Usha

Mehta, Program coordinator, Department of VLSI Design, Nirma University,

Ahmedabad. This Project has been submitted in the partial fulfillment of the

requirements for the award of degree Master of Technology (M.Tech) in VLSI Design,

Nirma University Ahmedabad during the year 2013 - 2014.

2. I have not submitted this work in full or part to any other University or Institution for

the award of any other degree.

Abhishek D Savalia

12MECV01

ii | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Certificate

This is to certify that the Major Project entitled “NEXT GENERATION RTL SIMULATION

TECHNOLOGY FOR GRAPHICS DESIGN" submitted by Abhishek D Savalia

(12MECV01) towards the partial fulfillment of the requirements for the degree of Master of

Technology in VLSI Design of Nirma University of Science and Technology, Ahmedabad is

the record of work carried out by him under my supervision and guidance. In my opinion, the

submitted work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven't been submitted to any

other university or institution for award of any degree or diploma.

Mr. Anees Sutarwala

 (External Project Guide

Intel Technology India Pvt. Ltd.,

Bangalore)

Mr. Nilay Desai

(External Project Guide

Intel Technology India Pvt. Ltd.,
Bangalore)

Prof. Usha Mehta

(Internal Project Guide

Institute of Technology,

Nirma University, Ahmedabad)

Dr. N. M. Devashrayee

(Program Coordinator

Institute of Technology,

Nirma University, Ahmedabad)

Dr. P. N. Tekwani

(Professor & Head EE Dept.

Institute of Technology,

Nirma University, Ahmedabad)

Dr. K Kotecha

(Director,

Institute of technology,

Nirma University, Ahmedabad)

Date: Place:

ii | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Acknowledgement

First and foremost, sincere thanks to Mr. Nilay Desai, Intel Technology India Private

Limited, Bangalore for valuable guidance. Through- out the training, he had given me much

valuable advice on project work which I am very lucky to benefit from.

I would like to thank to Mr. Anees Sutarwala, Mr. Narasimhan Iyengarand my manager Mr.

Jayant Deodhar, Intel Technology India Private Limited, Bangalore for assigning me such

project and guide me through.

I would also like to thank my teammates, form Intel India Technology for their valuable time

in ramping me up on some basic flow of different projects.

I would also like to thank Dr. K.R.Kotecha, Director, Institute of Technology, Nirma

University, Ahmedabad for providing me an opportunity to get an internship at Intel

Technology India Private Limited, Bangalore.

I would also thank to my Project coordinator, Professor Usha Mehta and Dr. N.M.

Devashrayee, VLSI Design, Institute of Technology, Nirma University, Ahmedabad for

giving valuable support for project work and also teaching me some very intersecting subject

in post-graduate programs.

I also owe my colleagues in the Intel, special thanks for helping me on this path and for

making project at Intel more enjoyable and more memorable.

Abhishek D Savalia

12MECV01

iii | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Abstract

Silicon like behavior at the RTL simulation level is a necessary requirement now days as

design complexity increase. Gate Level Simulation (GLS) is useful to achieve this but as

design complexity increase it becomes more expensive and time consuming. There are some

limitations with System Verilog semantics, one of the limitation is X value simulation

semantics. In the first part this report describes this limitation and the enhancement to

overcome the problem by next generation simulation technology.

System Verilog has several drawback with X value simulation semantics that may be results

in simulated X being improperly propagated which in turn may lead to initialization and

power related failures in Silicon. Even RTL bugs can be masked and thus RTL simulation

may pass incorrectly and would fail at silicon level [3].

System Verilog uses different X semantics for different parts of the design flow. For

synthesis X represents Don‟t Care Boolean Values (0 or 1), while for simulation it represents

an unknown value (0, 1 or Z). Verilog RTL simulation semantics often mask propagation of

an unknown value by converting the unknown to a known, while gate-level simulations show

additional X that will not exist in real hardware. The result is that bugs get masked in RTL

simulation, and while they show up at the gate level, time consuming iterations between

simulation and synthesis are required to debug and resolve them [1]. Resolving differences

between gate and RTL simulation results is painful because synthesized logic is less familiar

to the user, and Xs make correlation between the two harder. Enhancing the RTL simulator

for finding X issues will be one of the best ways. This project is about bringing up the new

simulation mode on the next-generation servers and graphics design.

Second important aspect of this project is improvement in simulation performance by

reducing simulation run time & run time memory requirement. There are very big and

complex designs and need so much run time while debugging, there is a new debug

methodology which gives better run time performance with the same debug capability over

existing methodology, second part of the project describes the new debug methodology as a

next generation simulation technology.

iv | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Contents

Declaration .. i

Certificate .. Error! Bookmark not defined.

Acknowledgement ... iii

Abstract ... iii

List of Figures ..vi

List of Tables .. vii

Part-1 X-propagation

Chapter 1. Introduction ... 2

1.1 What is X? .. 3

1.2 Source of X in RTL .. 3

1.3 Ambiguous RTL Construct .. 4

1.3.1 IF/ELSE Statements .. 4

1.3.2 Case Statements .. 4

1.3.3 Bit Selects and Indexing .. 5

1.3.4 Ambiguous Edge .. 5

Chapter 2. Approaches to Manage the X optimism in RTL Simulation .. 6

2.1 Gate Level Simulation .. 6

2.2 RTL Coding Guidelines .. 7

2.3 X Randomization in RTL or Gates .. 8

2.3.1 Static X Randomization ... 8

2.3.2 Dynamic X Randomization .. 8

Chapter 3. X-Propagation .. 9

3.1 What is X-propagation?.. 9

3.2 How X-prop works? .. 9

Chapter 4. Ambiguous RTL construct with X-propagation .. 11

4.1 X-Propagation on if Statement ... 12

4.2 X-Propagation on case Statement .. 14

4.3 X-Propagation on Edge Sensitive Process ... 16

4.4 X-Propagation on Latches .. 18

v | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 5. Bugs/Issues found .. 19

Issue 1. X-propagation on if statements ... 19

Issue 2. X-propagation on case statement. .. 21

Issue 3. X-propagation on Edge sensitive process .. 23

Chapter 6. Limitation ... 25

Chapter 7. Conclusion ... 26

Chapter 8. References ... 27

Part-2 A new debug methodology

Chapter 1. Introduction ... 29

Chapter 2. Current flow ... 30

Chapter 3. A new debug (force) methodology ... 31

Chapter 4. Experiments ... 32

Chapter 5. Problem faced for the debug methodology .. 34

Chapter 6. Bugs found ... 35

6.1 Signals under structure in design.. 35

6.2 Issue when any signal doesn’t exist. ... 36

6.3 Issue when any module doesn’t exist. .. 36

Chapter 7. Results ... 37

Chapter 8. Conclusion ... 38

Chapter 9. Other Contribution ... 39

vi | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

List of Figures

2.1 A Gate level circuit - 1 .. 6

3.1 Gate level circuit-2 .. 9

5.1 problem code – if statements .. 19

5.2 Simulation results without Xprop... 20

5.3 Simulation results with Xprop .. 20

5.4 Problem code – case statement ... 21

5.5 Simulation results without Xprop... 22

5.6 Simulation results with Xprop .. 22

5.7 Problem code – Edge sensitive process .. 23

5.8 Simulation results without Xprop... 24

5.9 Simulation results with Xprop .. 24

3.1 Flow diagram for debug methodologies ... 31

6.1 ripple counter.. 34

6.2 ripple counter test bench .. 34

vii | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

List of Tables

1.1 sources of X in RTL #ref. Ref. Xprop_user_guide_Oct_2012, by Synopsys, Inc. : 3

2.1 RTL Coding Guidelines ... 7

3.1 Truth table for gate-level circuit -2 .. 10

4.1 If/else Truth table without xprop ... 12

4.2 If/else Truth table with xprop .. 12

4.3 case Truth table without xprop .. 14

4.4 case Truth table with xprop ... 14

4.5 Edge sensitive process Truth table without xprop .. 16

4.6 Edge sensitive process Truth table with xprop ... 17

4.7 Latch Truth Table with Xprop ... 18

5.1 Truth table regular mode – if statement .. 19

5.2 Truth table Xprop mode – if statement .. 19

5.3 Truth table regular mode – case statement ... 21

5.4 Truth table xprop mode – case statement ... 21

5.5 Truth table normal mode – edge sensitive process .. 23

5.6 Truth table xprop mode – edge sensitive process .. 23

6.1 Time analysis with & without Xprop .. 25

7.1 Run time comparison normal/new debug methodology .. 36

1 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Part -1
X-propagation

2 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 1. Introduction

Intel has extremely high complex codes for various graphics design, millions of gates/flip-

flops. There are many possibilities of X generation in design if coding is not accurate. Even

many designers are not aware of codes that may become sources of X. This project is focused

on sources of X and gets silicon like results within RTL simulation only by enhancing

simulation technology.

Simulation semantics of X values in Verilog RTL are problematic because they may hide

functional bugs that allow RTL simulations to incorrectly succeed, and thereby gate-level

simulation and/or silicon may fail.

Understanding problems caused by X semantics is extremely important. Many designers are

unaware of the issues around X, which can have devastating effects on many different parts

of the design flow including [3]:

1. RTL Simulation: X semantics in RTL can mask bugs - expensive validation tests can

pass because they are not being used effectively to stress the design.

2. Synthesis: designers often rely on don‟t -cares to produce efficient logic, but can be

disappointed with their non-minimal results and long critical paths

Often due to limited understanding of X issues, bugs can be missed and left in the shipped

product (discovery then is far more expensive) or left inactive and those only to reappear

when a new version of synthesis tool chooses a different logic minimization.

X issues can be caught through Gate Level Simulation (GLS) mechanism. But GLS is

extremely costly in terms of setup, debug and simulation performance. Enhancing the RTL

simulator for finding X issues will be one of the best ways. This project is about bringing up

the new simulation mode on the next-generation servers and graphics design.

3 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

1.1 What is X?

X is an abstract value introduced for the sake of algebraic semantics, and different tools

interpret them differently [1].

Simulators interpret an X as a value in 4-state logic (0, 1, X, Z) that represents an “unknown”

logic value. There are four data types defined in the standard that use 4-state logic: logic,

reg, integer, and time. All of these data types have a default value of X. Synthesis tools treat

Xs differently. They interpret the X value as a “don‟t care” instead of an “unknown”,

allowing for greater synthesis optimizations. [2]

1.2 Source of X in RTL

Source Description

Uninitialized state

All flip-flops and memories in a design will start with a 'X'

value, until they are initialized through a reset or a write to

a non-X value.

RTL Assignment to 'X' Designers may assign the outputs of their circuit to 'X', as a

means of expressing an output don‟t care condition.

Logic synthesis tools uses the freedoms of output don‟t

care conditions to minimize the logic.

Test bench The bus protocol may specify that a given signal should

not be consumed under some conditions (e.g. valid=0). The

test bench can drive 'X' into the DUT, to ensure that it is

indeed not sensitive to the signal value.

Table 1.1 sources of X in RTL #ref. Ref. Xprop_user_guide_Oct_2012, by Synopsys, Inc.:
https://solvnet.synopsys.com/retrieve/040022.html

4 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

1.3 Ambiguous RTL Construct

Since an 'X' value represents either a ‟0‟ or a ‟1‟, it is difficult for a single threaded

simulator to simultaneously explore both cases. An optimistic approach is to only explore

one of the possibilities. An approach that is potentially pessimistic is to propagate the 'X'

value forward to all dependent variables [1].

1.3.1 IF/ELSE Statements

The classic example of optimistic RTL simulation behavior is an if/else statement. The code

inside the „IF‟ clause is only executed when the condition evaluates to a non-zero, known

value. If the condition expression evaluates to true, the first statement shall be executed. If it

evaluates to false, the first statement shall not execute. If there is an else statement and the

condition expression is false, the else statement shall be executed.

Example:

 always@ (A or B or sel)
 begin
 if (sel)
 Y= A;
 else
 Y= B;
 end

When sel is a „1‟, the output is the value of A and when sel is ‟0‟, the output is the value of

B. But notice what happens when sel is X. Here, the X value is interpreted as other than „1‟

and the output is the value of B. The “unknown X” is now misinterpreted as a known value.

In real hardware the sel signal might in fact have been a „1‟, which means that the correct

value could have been the value of A.

1.3.2 Case Statements

In regular Verilog case statement (e.g. not casex, not casez) match only occurs if the case

expression exactly matches the case item expression.

In a case expression comparison, the comparison only succeeds when each bit matches

exactly with respect to the values 0, 1, x, and z. As a consequence, care is needed in

specifying the expressions in the case statement.

The problematic behavior of the previous example could be coded as a case statement and

produce the same problem.

5 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Example:

 always@ (A or B or sel)
 begin
 case (sel)
 1’b1: Y = A;
 1’b0: Y = B;
 endcase
 end

1.3.3 Bit Selects and Indexing

In Verilog, bit-selects are used to select a bit from a vector and indexing is used to select an

entry from an array [2].

If an index expression is out of the address bounds or if any bit in the address is X or Z, then

the index shall be invalid. The result of reading from an array with an invalid index shall

return the default uninitialized value for the array element type. Writing to an array with an

invalid index shall perform no operation. Implementations may issue a warning if an invalid

index occurs for a read or write operation of an array [2].

We see that when bit-selects or indexing is used on the LHS of an assignment, the normal

Verilog semantics cause the vector or memory to be unmodified, whereas in a real circuit,

one of the entries would have been updated.

1.3.4 Ambiguous Edge

When a signal transitions to or from a 'X' value, it is ambiguous as to whether there is really a

transition.[2]

• A negedge shall be detected on the transition

From 1 X, z, or 0, and

From x or z 0

• A posedge shall be detected on the transition

From 0 x, z, or 1, and

From x or z 1

As a result of these semantics, a clock that is alternating between „0‟ and 'X' would activate

any sequential always blocks as if the clock were transitioning normally. If in the real circuit,

where there are only two states, the 'X' resolved to a zero, the logic would not be clocked and

the behavior would be very different [2].

6 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 2. Approaches to Manage the X optimism in RTL Simulation

There are several approaches present to manage the X optimism.

 Gate Level Simulation (GLS)

 Different approach to RTL coding

 Static & Dynamic X randomization in RTL or Gates.

2.1 Gate Level Simulation

The most robust approach to ensuring that the final circuit implementation will behave the

same as RTL simulations is to perform extensive gate-level simulations. One of the reasons

that gate-level simulations are tedious to debug, is that the 'X' simulation behavior of a gate-

level netlist can be pessimistic due to re-convergent paths. Consider the following gate level

circuit [2].

Fig. 2.1 A Gate level circuit - 1

We can see that D=1, regardless whether A=0 or if A=1. However, in gate simulation, if A is

'X', then D would also be 'X'. This is a classic problem in gate-level simulation, and each

instance of this type of re-convergent logic needs be identified. Generally, the resolution is to

manually initialize one of the signals to zero or one, using a force statement or through a

VPI. In a large team, managing the list of signals that need to be manually initialized is error-

prone and multiple engineers may spend time debugging the same issue [1].

Though GLS helps in X related bugs, it becomes more expensive and time consuming as

design complexity increases.

7 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

2.2 RTL Coding Guidelines

Problematic RTL Structure Coding Guideline

IF/ELSE Combinatorial logic using IF/ELSE constructs can be replaced

with assign statements using the ternary operator (? :).

CASE statement If the default of every CASE statement drives all the outputs to

'X' then, if there is a 'X' in either the case item or case-

expression, there is no match and the 'X' propagates. There is

some residual risk, because if the case item and case-expression

are both 'X', then they will match, according the Verilog

semantics.

Ambiguous Edges There is no direct coding guideline that will ensure that a

posedge will not be falsely triggered by a transition to X or Z.

X Assignment It is difficult to produce RTL code that robustly models Xs. To

minimize the risk, assignments of outputs to X can be avoided.

However, assignment to X is a means of expressing an output

don‟t care which allows logic minimization in synthesis.

Table 2.1 RTL Coding Guidelines [2]

8 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

2.3 X Randomization in RTL or Gates

2.3.1 Static X Randomization

Another way to deal with Xs in RTL simulation is to use a tool or utility to remove them

from the design and replace them randomly with 1s or 0s. This, effectively, models the

behavior of the real design where all the flip-flops and memories have a random initial value.

There are two problems with this approach [3].

 The first is that Xs can be re-introduced during the simulation from the sources

identified in chapter 1.

 The second problem is that a few simulation runs using random 0, 1 value only

provides superficial coverage of the full state space of the design. A design containing

N state-elements (flip-flops or memory bits) has 2N possible initial states. Some

constructs only cause problems for a specific value of initial conditions.

2.3.2 Dynamic X Randomization

The main problem with static 'X' randomization is that Xs can be re-introduced into the

design, after startup for the reasons identified earlier. This can be addressed by continuously

replacing all Xs with a random value on every clock cycle. Continuously traversing the

design performing X replacement introduces a significant run-time penalty and it still only

provides a statistical coverage of the full set of possible initial states based on the number of

simulation runs.

9 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 3. X-Propagation

3.1 What is X-propagation?

X-Propagation is an enhancement in simulator. This feature changes the way Xs are

simulated with the intent of removing the optimistic 'X' behavior that is intrinsic in the

standard Verilog semantics [2]. For example, with X-Propagation, when the condition of an

IF statement evaluates to ‟X ‟, this ‟X ‟ can propagate to the variables that are assigned in

both the IF and the ELSE branches. Similarly, if a case item or case expression evaluates to

'X', then the 'X' propagates to the variables that are assigned in the case statement.

Ambiguous edges on clocks are handled by considering the behavior when there are only

definite edges (e.g. 0->1) and the behavior when there are ambiguous edges (e.g. X->1) it

merging the results. The key to the X-Propagation semantics is the ability to merge the

multiple values which could be assigned to an output variable.

X-propagation helps to enter in next generation RTL simulation technology for graphics

design. It can find X-related bugs in RTL simulation only. X-propagation is an advanced

simulation technology. The RTL simulations semantics are capable to expose X related bugs.

We can say in X-propagation X propagates; not absorbs.

3.2 How X-prop works?

There are 3 types of merge[5].

 T-merge (Traditional merge)

 X-merge (Pessimistic merge) and

 V-merge (Standard Verilog)

In traditional merge the output is driven X only when the condition is X and the inputs are

different. On other hand in pessimistic merge the output is driven X when the condition is X

irrespective of inputs. V-merge is same as standard Verilog semantics. This is explained in

the following gate level circuit and truth table.

Fig.3.1 Gate level circuit-2

10 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Here is the truth table for above circuit

sel A B T-merge X-merge

X 0 0 0 X

X 0 1 X X

X 1 0 X X

X 1 1 1 X

Table 3.1 Truth table for gate-level circuit -2

Here is sel line is X then X-prop check the output by putting 1 and 0 respectively if both the

answers are same then it gives same output in T-merge. While in X-merge regardless the

values of A and B it gives X as output whenever sel is X.

11 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 4. Ambiguous RTL construct with X-propagation

X-propagation considering the effect of both Boolean values of X (either 1 or 0) for every

statement whose execution controlled by X and by merging their results changes the standard

simulation behavior.

There are 3 merging options with Xprop:

 T-merge

 X-merge

 V-merge

T-merge(optimistic): has same semantics as Verilog ternary operator (? :) when all variables

in a merge have the same deterministic value, then the result of the merge is the given value,

otherwise the result is X.

X-merge(pessimistic): it yields X when the selecting condition is X, it models the behavior

of synthesis more accurately by ensuring that that it will not result in cases where simulation

would result in a deterministic value, while the post synthesis model would result in an X.

V-merge(normal verilog): it yields standard Verilog result.

12 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

4.1 X-Propagation on if Statement

X-Propagation affects the behavior on control logic. Shown below is the code for a simple if

statement. This code represents a simple multiplexor.

Example
 if (sel)
 Y= A;
 else
 Y= B;

In normal verilog semantics the truth-table for above code is:

sel Y

1 A

0 B

x B
Table 4.1 If/else Truth table without xprop

Here if select line is X then output goes to else part and hence is B.

While we use X-propagation the truth-table for the same code is below:

Sel A B V-merge T-merge X-merge

X 0 0 0 0 X

X 0 1 1 X X

X 1 0 0 X X

X 1 1 1 1 X

Table 4.2 If/else Truth table with xprop

13 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

The first column shows the value of the condition to the IF statement which is unknown. The

second and third column shows their respective values for A and B. The value of Y is shown

in columns 4-6 for different merge options.

V-merge, shown in the fourth column always gives the same value as signal B, as this is

standard Verilog behavior for an IF statement. In the fifth column T-merge is shown. When

the condition is unknown, the values of 0, 1 are substituted for X.

The IF statement is executed once with sel=0, and once with sel=1, and the value of Y is

computed. If the values forY in each of the branches are the same, then the merge value will

be that value. If the values for Y in each of the branches are different, the merge value will

be X. So, when A and B are the same, T-merge will give that value. If the value of A and B

are different, then T-merge will give an X. In the last column the value of Y is shown when

the merge option used is X-merge.The output is always an X, because whenever there is a

merge, the resultant with be an X.

14 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

4.2 X-Propagation on case Statement

Shown below is the code for a simple case statement. This code represents a simple

multiplexor. Below the code is the truth table when the value of the case expression is

unknown.

Example
 case (sel)
 1’b1: Y = A;
 1’b0: Y = B;
 endcase

Here is the truth table for normal Verilog semantics:

sel Y

1 A

0 B

X prev value

Table 4.3 case Truth table without xprop

Here when select line is X then output is the same as previous value.

When we use X-prop then the truth table for the same code is:

Sel A B V-merge T-merge X-merge

X 0 0 r(t-1) 0 X

X 0 1 r(t-1) X X

X 1 0 r(t-1) X X

X 1 1 r(t-1) 1 X

Table 4.4 case Truth table with xprop

15 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Here the first column shows the value of the condition to the case statement which is here

considered to be unknown. The second and third column shows their respective values for A

and B.

The value of Yis shown in columns 4-6 for different merge options. V-merge, shown in the

fourth column always gives the value of Ythat was present before the case statement is

executed.This is standard Verilog behavior for a case statement. In the fifth column T-merge

is shown. When the condition is unknown,the values of 0, 1 are substituted for Xs.The case

statement is executed once with sel=0, and once with sel=1, and the value of Y is computed.

If the values for Y in each of the branches are the same, then the merge value will be that

value.

If the values for Yin each of the branches are different, the merge value will be X. So, when

A andB are the same, T-merge will give that value. If the value of A and B are different,

then T-merge will give an X. In the last column the value of Y is shown when the merge

option used is X-merge.

The output is always an X, because whenever there is a merge, the resultant with be an X. A

case condition that contains X may result in wildcard-like behavior with more than one

matching case item, including the default, therefore Xprop treats each matching case item as

a possible branch and applies the same merging function it used to handle the if statements.

16 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

4.3 X-Propagation on Edge Sensitive Process

Edge sensitivity expression must be handled carefully under X-prop semantics. In legacy

Verilog, a posedge expression will occur for the following transitions:

0 -> 1

0 -> X

0 -> Z

X -> 1

Z -> 1

The issue here is that Verilog will optimistically consider all of these transitions as if a rising

edge of the signal occurred, which is not necessarily true. For example, let‟s consider the 0-

>X transition. X can represent either a 0 or a 1, which means a rising transition may have

happened, or may not have happened. Both cases need to consider.

The code represents a simple D-flip flop, where there reset is inactive.

Example
 always@(posedge clk ornegedge rst)
 if (! rst)
 Y <= 1’b0;
 else
 Y <= A ;

For normal Verilog semantics truth table for the above code is:

Clk Rst Y

0 -> 1 1 A

0 -> x 1 A

x -> 1 1 A

0 1 -> 0 0

0 1 -> x A

0 x -> 0 0

Table 4.5 Edge sensitive process Truth table without xprop

17 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Below is the truth table for xprop for all merge types. If there is a clean edge (0->1), then the

next value for the flop output will be the A input. If there is an unclean edge, then the current

value of the flop is merged with the d input.

Clk rst V-merge T-merge X-merge

0 1 1 A A A

0X 1 A Merge(A,Y(t-1)) X

X1 1 A Merge(A,Y(t-1)) X

0 1X 0 Merge(A,Y(t-1)) X

0 X0 A Merge(A,Y(t-1)) X

0 10 0 Merge(A,Y(t-1)) X

Table 4.6 Edge sensitive process Truth table with xprop

18 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

4.4 X-Propagation on Latches

Latches are described in Verilog with an IF statement that does not have an else branch, as

shown below.

Example

 always@(*)

 if(sel)

 Y <= A ;

Because of the missing branch, whenever the clock to the latch is X, this causes a merge of

the current value of the latch with the data input.

Here is the truth table below:

Sel A V-merge T-merge X-merge

X 0 Y(t-1) Merge(0,Y(t-1)) X

X 1 Y(t-1) Merge(1,Y(t-1)) X

Table 4.6 Latch Truth Table with Xprop

19 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 5. Bugs/Issues found

Enabled X-propagation on graphics design and found some bugs, mentionedthem below.

Issue 1. X-propagation on if statements

Below is the problem code.

Fig 5.1 problem code – if statements

In regular mode truth table is

Sel Y

1 A

0 B

X B
Table 5.1 Truth table regular mode – if statement

While in X-propagation mode,

Sel A B Y

X 0 0 0

X 0 1 X

X 1 0 X

X 1 1 1
Table 5.2 Truth table Xprop mode – if statement

Figure 1 and 2 shows the behavior of output signal when select line is X for normal Verilog

semantics and with X-prop respectively. When select line is X then in normal scenario output

follows B while in case of X-prop when both signals (A and B) are same then it gives the

same value as output otherwise X

20 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Fig 5.2 Simulation results without Xprop

Fig 5.3 Simulation results with Xprop

21 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Issue 2.X-propagation on case statement.

Problem code

Fig 5.4Problem code – case statement

In regular mode truth table is

Sel Y

1 A

0 B

X prev Y
Table 5.3 Truth table regular mode – case statement

While in X-propagation mode

Set A B Y

X 0 0 0

X 0 1 X

X 1 0 X

X 1 1 1
Table 5.4 Truth table xprop mode – case statement

The output is always an X, because whenever there is a merge, the resultant with be an X. A

case condition that contains X may result in wildcard-like behavior with more than one

matching case item, including the default, therefore Xprop treats each matching case item as

a possible branch and applies the same merging function it used to handle the if statements.

Here are the waveforms for above example with normal scenario and with xprop.

22 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Fig 5.5 Simulation results without Xprop

Fig 5.6 Simulation results with Xprop

23 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Issue 3. X-propagation on Edge sensitive process

Problem code

Fig 5.7 Problem code – Edge sensitive process

In regular model truth table is

Clk Rst Y

0 1 1 A

0 X 1 A

0 1 0 0

0 1 X A

Table 5.5 Truth table normal mode – edge sensitive process

While in case of X-propagation

Clk Rst Y

0 1 1 0

0 X 1 X

0 1 0 0

0 1 X X
Table 5.6 Truth table xprop mode – edge sensitive process

24 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Here are the wave forms for normal Verilog semantics and with x-prop respectively.

Fig 5.8 Simulation results without Xprop

Fig 5.9 Simulation results with Xprop

25 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 6. Limitation

Limitation of xprop simulation is, there is a runtime performance degradation whereas a little

or no impact on memory consumption.

Xprop runs take more time than normal run. Here is a comparison for a design between

normal scenario and X-propagation.

 Without

Dump

With

Dump

Normal Run 3.55 Hr. 8.18Hr.

Xprop+LPS

Run

7.5 Hr. 23.78 Hr.

(Xprop/Normal) 2.11 2.91

Table 6.1 Time analysis with & without Xprop

Here Normal Run is with normal Verilog semantics while Xprop+LPS Run have X-

propagation and LPS (Low Power Simulation) flavors. Here LPS is an enhancement that

boosts Xprop as power aware simulation semantics.

26 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 7. Conclusion

There are alternative ways to found X related bugs in the design.

 GLS is helpful but become more expensive and time consuming as design complexity

increases.

 There are some different approaches to write RTL codes but due to readability of the

codes and different design style for different designer it is difficult to apply. Also there

are various IP reuse in the design and it‟s hard to change codes.

 X randomization has its own problem like more simulation cycles need and also gives

only superficial coverage.

X-propagation also has time related limitation. But as a long time goal it helps to find bugs

present in the design with more efficiency.

Actual design bugs were found with X-propagation which would have remained uncovered

with regular RTL simulations. In normal scenario these issues are caught in late phase like

GLS. This reduces overall time and become cheaper than GLS

Another advantage of enabling this at RTL level is the ability to reuse the existing

verification environment as opposed to building a separate environment or model. The

enhanced x-propagation semantics can be extended to work with other simulation modes

resulting in a better platform for verifying RTL design. One such mode is enhancing x-

propagation semantics with power aware simulation.

27 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 8. References

1. X-Propagation Woes: Masking Bugs at RTL and Unnecessary Debug at the Netlist,

IEEE paper by Lisa Piper, Vishnu Vimjam, Real Intent, Inc. , Sunnyvale, CA USA

2. X-Propagation : An Alternative to Gate Level Simulation , SNUG paper by Adrian

Evans, Julius Yam, Craig Forward

3. Mike Turpin, “the dangers of living with an X (bugs hidden in your Verilog)”, SNUG

Boston, Sep. 2003

4. Xprop_user_guide_Oct_2012 , user guide by Synopsys, Inc. :

https://solvnet.synopsys.com/retrieve/040022.html

5. X-Optimism Elimination during RTL Verification - Austin, 2012, SNUG paper by

Robert Booth (Freescale); Bruce S. Greene, Arturo Salz (Synopsys, Inc.)

https://solvnet.synopsys.com/retrieve/040022.html
https://solvnet.synopsys.com/retrieve/040022.html
http://www.synopsys.com/news/pubs/snug/2012/austin/fa3_paper_booth.pdf

28 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Part-2
A new debug methodology

29 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 1. Introduction

When we are at initial phase of our design, we need to debug the design multiple times. We

need some debug capabilities from your simulation tool. To turn on these debug capabilities

simulation tool need to be run in debug mode. This mode is typically used when we need to

debug the design using debug tools.

UCLI (Unified Command-Line Interface) commands used to force signals, to write into a

register/net. Simulation tool has different compile time options for debug mode. These

compile time options enable read/write access and callbacks to design nets, memory

callbacks and assertion debug.They help to run interactive simulation when the design is

compiled with this option. Also helps to set value and time breakpoints. These compile time

debugoptions give visibility-control and can track the simulator line by lined and setting

breakpoints within the source code.

But with all these features, this debug capability also comes with some limitation. They

impact on runtime. These debug options disable tool optimizations and also have huge

impacton the performance. That‟s why the need of a new debug methodology whichwould

give better run time performance with the same debug capabilities was very crucial.

During this project I have worked on this new methodology that gives better run time

performance with the same debug capabilities over existing debug options.

30 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 2. Current flow

For debug perspective we pass some files during test execution and these files have forces for

different signals. From now onwards we called these files as Include files.

In current flow we enable debug (force) capabilities on entire design during compilation time

and then pass the Include files during test execution.

There is also an another way, instead of enable debug (force) capabilities on entire design we

enable debug capabilities on selected modules by definingtheir accessibilityin separate files.

The files are passed during compilation time and only those signals which are covered by the

modules whose accessibility defined in the files are being able to force.

Drawback of this flow is its impact on runtime performance. Its performance is reduced

when debug capabilities are enabled compare to normal run.

On most of the cases debug capabilities are enabled on all the modules in the design,

including those which actually do not require them. So this will impact badly on performance

impact. Ideally users do not need to run the test with full debug option which enables

write/force capabilities across all modules unnecessary. Debug capabilities are required only

when user want to debug the test failures.

31 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 3. A new debug (force) methodology

The performance can be improved if you are able to control the access rights to enable debug

capabilities. If simulation tool can identify minimal access capabilities required on modules

and signals and enable only that set of capabilities on modules and signals then we can see

significant runtime improvements.

In this new methodology, simulation tool detects required access capabilities during

elaboration by reading Include files and enable the optimal capabilities internally up-front.

The main idea of this methodology is to enable force capabilities on as small as part of the

design as possible, thereby improving run time performance. And another motivation behind

this there is no requirement to change current build and run tools.

Fig 3.1 Flow diagram for debug methodologies

RTL

Compilation

with debug

option (normal)

Compilation

with new

methodology

Debug capability
using debug

option

“Include files” to
identify minimal
access capability

Simulation

executable

Simulation

executable

Test execution

with same

debug option

as compilation

time

Test execution

with no debug

option at

runtime

“Include files“
with forces

“Include files“
with forces

Runtime performance

Degradation

Runtime performance

improvement

32 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 4. Experiments

There are various nightly runs going through. Huge amount of time and resources are

occupied by them. It‟s very important to improve run time performance and memory saving

as much as possible.

By default all tests compilation use one of the debug options and with the same debug option

tests execution is being done. For this Intel had created a flow to pass these options to

simulation and debug tools. There are two methodologies.

1. Enable Force capabilities on entire design and then during run time Include files

which have all forces are passed. (give more debug capability)

2. Enable For capabilities on selected modules on compilation time and then during run

time Include files which have all forces are passed. Manual efforts need to identify

appropriate modules.

Now with this new force methodology we pass the Include file (files) at the time of

compilation also with a new use case scenario and without passing any debug option. Here

these Include files must cover all the forces which are required during test execution.

With the current existing flow we can‟t use this methodology because there is requirement of

one of the debug options at compilation time and run time. So there was need to change

current flow as per this new force methodology. There some problems were faced.

1. There are some Include files need to be passed as according to context name only.

2. Current flow didn‟t have all the forces in Include files only. There were also some

other ways to include forces at test execution time.

3. There was requirement to pass all the Include files covering all the forces at

compilation time also and only those Include files should be passed during test

execution time.

We had created a new flow to accommodate this methodology with its all requirements.

We first used the force methodology on a small DUT and we had seen significant difference

in run time while ran with the new debug methodology.

As per requirement for the force methodology we had created a new Include files that covers

all the forces which are required during test execution. We had compiled design without any

debug option and passed the Include files and as a result we got noticeable runtime

improvements.

We then moved further to big section that covered 14 DUTs.

33 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

34 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 5. Problem facedfor thedebug methodology

Include files

There were modifications needed to generate the Include files in terms of syntax compared to

normal case.

Aim was to enable read/write capability on as small as a part of the design as possible. To do

that simulation tool finds smallest part of the designwith help of Include files we passed.

Tool assumes that these are the only forces on which force capability should be on during run

time. So it gives error if any extra signal being forced during test execution as tool unable to

force the signal. There is also different kind of interpreter who extracts all these

signals,instances or modules from the design to enable force capabilities on that and hence

little extra care need to write the Include files in term of syntax.

We had created a script to convert all these forces into compatible format which can be

understand by interpreter during compilation time.

35 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 6. Bugs found

We found bugs in the tool while doing experiments on the new debug methodology. Here

blow design code covers some of the bugs.

6.1 Signals under structure in design.

One issues found that if we force any signal which defined under stuct then these

methodology didn‟t capable to enable force on that signal. Here it shown in below example.

Fig 6.1 ripple counter

Fig 6.2 ripple counter test bench

36 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Here as shown in above code we have a signal reg1 under structure ads1 of struct type ads

and below Include file used to enable force capability on signals.

But tools can‟t enable force on the signal reg1 and gave FORCE ERROR as run time. It

should be given warning during compilation time itself.

This issue turned out as a bug in tool.

6.2 Issue when any signal doesn’t exist.

If we have some signals and modules those are actually not exist in our design then

simulation tool reacts differently.

In the same design as stated above if we have Include file that any signal not exist in our

design then it enabled force capability on its module itself. So here instead of signal ads2

simulator enabled force capability on module “ripple_counter_tb” itself. In some cases the

module consist of so many signals those are not necessary to be force enable. So it might be

possible to run time degradation due to enabled force capability on huge amount of

unnecessary signals. Also we should get warning at compile time if any signal doesn‟t exist.

This issue turned out as an enhancement scenario.

6.3 Issue when any module doesn’t exist.

If we have any module itself not exist in our design, in that case simulation tool gave fatal

error.

In the same design stated above, here module modelue1 doesn‟t exist in our design and that

is passed through our include file. In that case simulation tool gave fatal error with no

information regarding which module created problem.

If Include file has such modules those are not exist in our design then it should be some

meaningful compilation time error or warning comes up. This issue turned out as a bug in

tool for this methodology.

37 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 7. Results

In our design there were 14 clusters and we got runtime performance improvements as well

as memory saving in all clusters

As an average in run time performance ~ 45% improvements.
And runtime memory ~ 17% reductions we achieved.

Normal run (with debug option) v/s New debug methodology

Cluster Normal/new debug methodology

Runtime performance Memory performance

Dut1 1.63 1.17

Dut2 1.30 1.09

Dut3 1.76 1.28

Dut4 1.40 1.12

Dut5 1.42 1.11

Dut6 1.39 1.06

Dut7 1.63 1.05

Dut8 1.45 1.20

Dut9 1.31 1.21

Dut10 1.44 1.21

Dut11 1.55 1.30

Dut12 1.09 1.08

Dut13 1.59 1.27

Dut14 1.31 1.26

Avarage 1.45 1.17

Table 7.1 Run time comparison normal/new debug methodology

38 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 8. Conclusion

There were some compatibility issues, fixes for some bugs and tool enhancement needed for

this new methodology and hence it required specific and above tool version to get the best

performance. There was no potential risk identified so far with this methodology.

One limitation is that if we want to add any new force or any new Include file then you must

recompile your design.

Overall we are seeing very significant runtime performance as well as runtime memory

improvement and this methodology can be seen as next generation simulation technology.

The work has been recognized and achieved Instant Recognition award for excellent work on

this new debug methodology and help to get new technology ready for production. With the

technology we got 1.4X runtime improvements.

39 | P a g e
Next Generation RTL Simulation Technology for Graphics Design by Abhishek Savalia

Chapter 9. Other Contribution

 Tested out automated QA flow that download newly updated tool, run tests on graphics

design and give extracted outputs.Found out some issues in the scripts.

 Done performance analysis of debugging tools on graphics designs. Compared the

performance of new enhanced tool with present tool.

 Enhanced a Perl script that gives performance analysis and comparison between two

runs.

Input of the script is path of output directory of both runs.Output is comparison of

both runs in terms of simulation cycles, user time, and tests status.

 Worked closely with tool vendor to fix the enhancement suggest by them on Intel design.

 Worked on various issues (tickets) related to RTL simulation tool.

 Created a Perl script that searches all modules name presents in all libraries and list out

which module is present in which library.Output of the script is total module name, total

library name and libraries related to each module

 Performed quality analysis of new version simulation and debugging tools on graphics

designs.

 Worked on an internal tool to assist IP provider to make IP as per IP standards.

 Work was recognized and awarded with Instant Recognition Award.

