
Video Analytics and
WebRTC

Major Project

Submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

RONAK DOSHI
(12MECE38)

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2014

Video Analytics and
WebRTC

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering
(Embedded Systems)

By

RONAK DOSHI

(12MECE38)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Sreekanth Rao Dr. Yogesh N. Trivedi
Sr.Tech Lead,APS Associate Professor, EC Dept,
Aricent Groups, Institute of Technology,
Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- RONAK DOSHI

iv

Certificate

This is to certify that the Major Project entitled ”Video Analytics and WebRTC”

submitted by Ronak Doshi (12MECE38), towards the partial fulfillment of the

requirements for the degree of Master of Technology in Embedded System, Electronics

and Communication Engineering (Embedded Systems) of Nirma University of Science

and Technology, Ahmedabad is the record of work carried out by him under my

supervision and guidance. In our opinion, the submitted work has reached a level

required for being accepted for examination. The results embodied in this major

project, to the best of my knowledge, haven’t been submitted to any other university

or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr. Y.N. Trivedi Dr. N.P. Gajjar

Guide Program Coordinator

Dr. P.N.Tekwani Dr. K. Kotecha
Head of EE Dept. Director, IT

v

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani, Head

of Electrical Engineering Department, and Dr. N.P.Gajjar, PG Coordinator of

M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Dr.

Yogesh N. Trivedi, Professor ,Nirma University, for his exemplary guidance, moni-

toring and constant encouragement throughout the course of this thesis. The blessing,

help and guidance given by him time to time shall carry me a long way in the journey

of life on which I am about to embark.

I also take this opportunity to express a deep sense of gratitude to Company Mentor

Mr. Sreekanth Rao,Sr.Tech Lead, Aricent Group. for his cordial support, constant

supervision as well as for providing valuable information regarding the project and

guidance, which helped me in completing this task through various stages.

I am obliged to staff members of Multimedia Department, Motorola Solutions. for

the valuable information provided by them in their respective fields. I am grateful

for their cooperation during the period of my assignment.

Lastly, I thank almighty, my parents, brother, sisters and friends for their constant

encouragement without which this assignment would not be possible.

- Ronak Doshi

12MECE38

vi

Abstract

Video Analytics which is also known as Video Content Analysis(VCA) is the

capability of Automatically analyzing Video and to detect events not based on a single

image. It will analyze video streams run time to detect events related to particular

type of condition.It will be helpful for applications such as Intrusion Detection,Crowd

Management,Baggage Detection.

WebRTC stands for Web Real-Time Communication. Aim of the Project is to

“Stream Real time Streaming from Surveillance cameras to Browser”which will sup-

port camera list, multiple streaming and PTZ(pann/till/zoom). WebRTC contains

main three components WebRTC Client,WebRTC gateway,Media Server.

Client(Browser) supports multiple real-time streaming of surveillance cameras with

support of PTZ. Media Server is a combination of RTSP Server and Streaming

Server. To stream RTP packets from Media Server to Client it requires Signaling

mechanism to complete. WebRTC Client has its own specification such as it re-

quires WebSocket ,Ice-Stun,DTLS-SRTP Signaling, and can Play only Secured RTP

packets and support VP8 codec only. Media Server does not support websocket pro-

tocol, it supports rtsp signaling and supports H264 codec and stream RTP packets

only. To request Streaming from Media Server and to support PLAY,PAUSE and

STOP actions from client RTSP signaling mechanism is required to follow. We-

bRTC gateway is added as a mediator between WebRTC Client and Media Server.

In WebRTC Gateway supports WebSocket Signaling,RTSP Signaling,Ice Mechanism

for NAT Traversal. it supports DTLS to export keying material to encrypt RTP and

RTCP packets. After following Signaling mechanism, Gateway will receive RTP and

RTCP packets from Media Server,encrypt it as SRTP and SRTCP packets and route

it to WebRTC Client.

vii

Abbreviation Notation and Nomenclature

WebRTC . Web Real time Communication

SDP .Session Description Protocol

RTP .Real-time Transport Protocol

RTCP . Real-time Control Protocol

SRTP .Secured RTP

SRTCP . Secured RTCP

DTLS . Datagram Transport Layer Security

RTSP . Real-time Streaming Protocol

ICE . interactive connectivity establishment

STUN .Session Traversal Utilities for NAT

VCA . Video Content Analysis

NVR . Network Video Recorder

PTZ . Pan/Tilt/Zoom

XML . Extensible Markup Language

RIC .Real-Time Intelligence Console

RTVI . Real Time Video Intelligence

HTTP . Hypertext Transfer Protocol

VGA .Video Graphics Array

QVGA . Quarter Video Graphics Array

FPS . Frames Per Second

LBPH . Local Binary Pattern Histogram

PCA . Principle Component Analysis

API . Application Programming Interface

FOV . Field Of View

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

Abbreviation Notation and Nomenclature vii

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Background . 2
1.2 Objective of Study . 3
1.3 Scope of Work . 4

1.3.1 Video Analytic . 4
1.3.2 WEBRTC . 5

1.4 Thesis Organization . 5

2 Literature Survey 7
2.1 Video Analytics . 7

2.1.1 Network Video Recorder . 7
2.2 WebRTC . 10

2.2.1 Protocol Stack . 10
2.2.2 Data Packet . 11

3 Architecture and Trigger Applications 15
3.1 Video Analytic Architecture . 16

3.1.1 Server Based Implementation 17
3.1.2 Edge Based Implementation 17

3.2 Trigger Applications . 18

viii

CONTENTS ix

4 Video Analytics 21
4.1 Video Analytics Configuration . 21

4.1.1 Network Video Recorder(NVR)Configuration 21
4.1.2 Video Analytic Application configuration 22
4.1.3 Trigger Detection . 23
4.1.4 Video Analytic Algorithm . 24
4.1.5 Event Posting . 25

4.2 Facial Recognition . 26
4.2.1 Face Detection using Haar Cascades 26
4.2.2 Basics . 26
4.2.3 Haar-cascade Detection in OpenCV 29
4.2.4 Image Preprocessing . 30
4.2.5 DataBase . 31

4.3 Start Recognition . 32
4.3.1 Server Listenning . 32
4.3.2 Face Recognition . 33

5 Hardware and Software Tools 34
5.1 Surveillance Cameras . 34
5.2 Network Video Recorder . 34
5.3 Media Server . 35
5.4 WebRTC Gateway . 35
5.5 WebRTC Client . 35

6 WebRTC 36
6.1 WebRTC Gateway . 36

6.1.1 RTSP Signaling . 36
6.1.2 WebSocket Signaling . 40
6.1.3 Ice-Stun Signaling . 41
6.1.4 DTLS-SRTP Signaling . 44

6.2 WebRTC Working . 48
6.2.1 Block Diagram . 48
6.2.2 Client-Gateway Handshake . 50
6.2.3 Gateway-Media Server . 52
6.2.4 Relay SRTP and SRTCP Packets 53

7 Experiments and Results 55
7.1 Results . 55

8 Conclusion and Future Scope 59
8.1 Conclusion and Future Scope . 59

8.1.1 WebRTC . 59
8.1.2 Video Analytic . 60

CONTENTS x

A Appendix A 62
A.1 FaceRecognizer . 62
A.2 Setting the Thresholds . 63
A.3 Getting the name of a FaceRecognizer 64
A.4 FaceRecognizer::train . 64
A.5 FaceRecognizer::update . 64
A.6 FaceRecognizer::predict . 65
A.7 FaceRecognizer::save . 66
A.8 FaceRecognizer::load . 66

B Appendix B 67
B.1 NICE VISION API . 67

B.1.1 VID CONNECT . 67
B.1.2 SYS AlarmConnect . 68
B.1.3 VID StreamFetch . 69
B.1.4 VID DisConnect . 69

List of Tables

I Input Parameter . 67
II Output Parameter . 68
III Input Parameter . 68
IV Output Parameter . 69
V Input Parameter . 69
VI Output Parameter . 70
VII Input Parameter . 70
VIII Output Parameter . 70

xi

List of Figures

2.1 Offer SDP . 8
2.2 Protocol Stack . 9
2.3 RTSP Signaling Result . 10
2.4 RTP Packet . 11
2.5 SRTP Format . 13

3.1 Server Based . 17
3.2 Edge Based . 18

4.1 Trigger Lists . 22
4.2 Area Of Interest . 22
4.3 Application Configuration . 23
4.4 Crowd Control . 24
4.5 Video Analytic Algorithm . 25
4.6 Block Diagram . 26
4.7 Haar Features . 27
4.8 Features on Image . 27
4.9 Preprocessing Stages . 31
4.10 Image DataBase . 31
4.11 Authorize . 32
4.12 Server Algorithm . 33

6.1 Candidate Relationships [5] . 42
6.2 Connectivity Check [3] . 43
6.3 Regular Nomination . 44
6.4 Aggressive Nomination . 44
6.5 Preprocessing Stages . 46
6.6 DTLS Key Extraction . 48
6.7 webrtcblock . 49
6.8 RTSP Signaling . 53

7.1 stun Request . 56
7.2 stun Response . 56
7.3 DTLS-Handshake . 57

xii

LIST OF FIGURES xiii

7.4 RTP packet . 58

Chapter 1

Introduction

Video Analytics is enabling a rapidly growing number of embedded video products

such as smart cameras and intelligent digital video recorders (DVRs) with automated

capabilities that just a few years ago would have required human monitoring. Broadly,

video analytics is the extraction of meaningful and relevant information from digital

video. As opposed to video compression, which attempts to exploit the redundancy in

digital video for the purpose of reducing size, analytics is concerned with understand-

ing the content of video. Video Analytics builds upon research in computervision,

pattern analysis and machine intelligence, and spans several industry segments in-

cluding surveillance, retail and transportation. It is also called video content analysis

(VCA) or intelligent video.

A facial recognition system is a computer application for identifying and verifying

a person from digital image. or a video frame from a video source. One of the ways to

do this is by comparing selected facial features from the image and a facial database.

WebRTC (Web Real-Time Communication) WebRTC is a set of standards from

WC3 that will enable real-time communication (RTC) on the web between browsers.

Chrome, Firefox, and Opera browsers natively support it. Using WebRTC, you can

make peer-to-peer calls, video chats, share screens, and exchange files.

From Public safety point of view in WebRTC streaming from surveillance cameras will

come,which will enable all devices which has browser to view streamings of surveil-

1

CHAPTER 1. INTRODUCTION 2

lance cameras,and it is plugin free. No need to install any software. Any machine

which has browser and which is webrtc enabled can login to specific page and can see

atreaming from multiple cameras.

WebRTC is an open source project of google, which provides support for video

chat,voice chat,data exchange between browsers(between Peers).

To stream from surveillance camera same concept of webrtc is taken but instead of

peer to peer communication it is Server-Client Communication.

In WebRTC main three components were introduced

• WEBRTC Client

• WEBRTC Gateway

• Media Server

RTSP Signaling is used for controlling streaming media servers,with requests sent

from WebRTC Gateway.

ICE-STUN protocol for NAT traversal,so that browser from around globe can play

any streaming from Media Server.

SRTP and SRTCP protocol to protect RTP packet routing from Media Server to

Client. and routing of SRTCP packet from Client to Media Server as Receive Report.

Client will send SRTCP Packets only which will be decrypted by Gateway and simple

RTCP packet is routed to the Media Server.

1.1 Background

People use Skype type of application for Audio/Video communication, for that they

need to install skype application in their machine,

WebRTC provides a mechanism by which people can communicate audio,video be-

tween Browser only.This is an open source project developed by Google.

CHAPTER 1. INTRODUCTION 3

Streaming from surveillance cameras to stream in browser with secured communica-

tion is the goal of Project.

To view streams from surveillance cameras special client software is required. We

need to install them and plugin is required to play those videos.

Browser based communication was introduced so that in any machine which has

browser and which supports webrtc can play streaming from surveillance cameras

through media servers.

Multiple Streaming and Multiple Client Support is given. There are many different

brands and technology platforms for Video Analytics, but they all work on the

same basic principles, using pattern recognition and other Algorithms technology to

provide two critical capabilities:

• Recognize unusual activities as they happen and notify the security system in

real-time.

• Convert video files into a data asset that can be searched, managed and analyzed

to improve security and business performance.

Todays Video Analytics software is easy to use and offers growing functionality. For

example, it can be programmed to look for specifically defined anomalies. It can even

be programmed to give special attention to specific elements in a video framesuch as

a computer, door, or filing cabinet. Furthermore, Video Analytics can be integrated

with other security and information systems to create new possibilities for using and

managing video data.

1.2 Objective of Study

In the past decade, video surveillance cameras have become ubiquitous. Most com-

panies of any size wouldnt think of running a facility without cameras in place. For

large operations, video surveillance is a significant investment involving technology,

guard stations, video storage and maintenance.

CHAPTER 1. INTRODUCTION 4

All of this attention to video is justified, because security cameras help protect people

as well as property, both physical and intellectual.

After capturing whole video after analysis on recorded video is also tedious task.

One solution for this is a rapidly growing technology called Video Analytics.

Video Analytics as the emerging technology where computer vision is used to filter

and manage real time CCTV video for security and intelligent traffic monitoring.

Simply put, Video Analytics is an automated approach to managing and analyzing

video, without the cost or man-hours previously required.

WeBRTC introduces mechanism of browser based communication to media server.

Real-time streaming on browser and client it self communicating with media server

through one Gateway which act as a mediator between Client and Media Server which

supports routing of data from media server to client and from client to Media Server.

1.3 Scope of Work

1.3.1 Video Analytic

Presented System below does following jobs, In Video Analytics First we will con-

figure analytic application for which we want to get events.

After Configuration of Camera in Network Video Recorder is done,whenever some

object will come in area of interest an event will be generated. When object moves

away from area of interest(AOI) it will also generate stop event.

In Video Analytic Project one general frame work will be created which will integrate

these events and provide information in more useful manner which includes in form

of Video and Snapshots. In Real-Time only it will give triggers and integration of

this events on Client console window.

This client window will be with client monitoring lots of cameras. So with this method

all analysis and suspicious activity will be analyzed run time and will be sent to client

in form of Alarm Events. So client do not have to monitor all the cameras all the

CHAPTER 1. INTRODUCTION 5

time. Whenever Suspicious activity will happen in area of interest it will pop-up as

events.

1.3.2 WEBRTC

WebRTC Client will send request and will send offer SDP(Session Description Proto-

col) to WebRTC Gateway which will have information of Media Capability and sup-

porting Codec Information.Gateway will Request Media Server as RTSP requests.In

response it will get SDP information of Media Server. Gateway will add ICE and

media information of Server and replies as Answere SDP to Client.Client-Server Ice

negotiation will happen.RTP packets Server will sent to Gateway and Gateway will

do SRTP of each packet and will route it to Client.Client will unprotect SRTP packets

and decode it and play it.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Literature Survey, describes components that was studied for project

and Protocols reffered. Chapter 3, Video Analytic Triggers, describes what is

video analytic,factors need to consider for video analytic application and different

types of triggers in application.Video Analytic Architecture, describes Server Based

and Edge Based Approach for Video Analytic. Chapter 4, Video Analytic Work

flow, describes whole working from some prerequisite configuration to getting tri-

iger and posting it to Client. Chapter 5, Software and Hardware Tools, describes

components used for WebRTC, such as NVR,Media Gateway, WebRTC Client. In

chapter ??, WebRTC Gateway,Explanation of all signaling mechanism used such

as RTSP,WebSocket,ICE,DTLS and explains media part. Chapter ??, WebRTC

Workflow, describes basic block-diagram and explains each part,brief explationation

on SRTP and SRTCP is given Chapter 7, Experiments and Results, describes anal-

ysis that is done for Receiving RTP and RTCP packets and DTLS-SRTP encryption

CHAPTER 1. INTRODUCTION 6

and applying crypto policy. Finally, in chapter 8 concluding remarks and scope for

future work is presented.

Chapter 2

Literature Survey

2.1 Video Analytics

2.1.1 Network Video Recorder

A network video recorder (NVR) is a software program that records video in a digital

format to a disk drive, USB flash drive, SD memory card or other mass storage device.

NiceVisions open platform SDK helps you use NiceVision solutions with third-party

applications, or conversely, integrates your system into a NiceVision environment.

With rich functionality and powerful building modules, SDK simplifies the integration

of all dedicated products, creating an intelligent and comprehensive security environ-

ment that is tailored to your needs. NiceVision SDK Components: The NiceVision

SDK includes the following Application Programmers Interface (API) layers:

• Player API: The NiceVision Media Player packaged as Windows ActiveX Con-

trol.

• Core API: Controls NiceVision DVRs and NVRs with a low level API.

• Database API: Retrieves site information from the NiceVision database in XML

format.

7

CHAPTER 2. LITERATURE SURVEY 8

Figure 2.1: Offer SDP

NiceVision SDK Advantages: Simply “drag and drop ”the NiceVision Player into

your application

Encapsulates powerful functionality for easy integration Standard methodology across

all NiceVision components

Use the same code for all NiceVision DVRs, NVRs, and decoders Rich functionality

in a single package

All API modules are packaged into one kit Enhanced software compatibility Back-

ward compatibility SDK supports at least two NiceVision NVR and DVR versions

back

Forward compatibility upgrade to new SDK versions without code modifications to

third-party systems

Communication Between Standard WebRTC Clients.

When communication between two clients happens they need to convey media de-

tails,transport addresses and session description.

SDP(Session Description Protocol) between Client is described.

CHAPTER 2. LITERATURE SURVEY 9

Figure 2.2: Protocol Stack

One Client will share its SDP to all other candidate who are in group. offer SDP is

as shown in 2.1 This offer SDP will have mainly three Information.

1) Supporting Media Codec Information

2) Ice Candidate Information

3) Ice Username and Fingerprint

This offer will indicate capability of that client.

Other Clients who wants to do video and audio communication with that client will

accept the request and reply answer SDP which indicates what media it supports and

which codec group it supports.

To generate standard SDP media information needed to be collected from Media

server.

To communicate with Media Server RTSP(Real Time Streaming Protocol) is used.

RTSP Singaling : RTSP is an application level protocol for control over the deliv-

CHAPTER 2. LITERATURE SURVEY 10

Figure 2.3: RTSP Signaling Result

ery of data with real-time properties.

RTSP-Streamer Server as a test server which will be installed in one machine.

RTSP request in standard format is sent and for each request response was received.

2.2 WebRTC

2.2.1 Protocol Stack

Normally WebRTC is using Protocol as usual except for Transport layer they will

send across DTLS to provide some efficient security and performance of data.

CHAPTER 2. LITERATURE SURVEY 11

Figure 2.4: RTP Packet

2.2.2 Data Packet

RTP

RTP (Real-Time Transport Protocol) which provides end-to-end data with real-

time characteristics,such as audio and video.

Information includes Payload type identification,sequence numbering,timestamping

and delivery monitoring.

version (V): 2 bits

This field identifies the version of RTP. The version defined by this specification is

two (2).

padding (P): 1 bit

If the padding bit is set, the packet contains one or more additional padding octets

at the end which are not part of the payload.

CSRC count (CC): 4 bits

The CSRC count contains the number of CSRC identifiers that follow the fixed header.

marker (M): 1 bit

It indicates frame boundries.Each frame have multiple number of packets.To know

when a frame ends marker bit is used.With help of marker bit we can count number

of packets for a particular frame.

payload type (PT): 7 bits

CHAPTER 2. LITERATURE SURVEY 12

Identifies format of RTP payload type.

specifies a default static mapping of payload type codes to payload formats.

sequence number: 16 bits

This act as a count,which increments by one for each RTP packet sent and used at

receiver side to detect packet loss and to restore packet sequence.

The initial value of the sequence number is random (unpredictable) to make known-

plaintext attacks on encryption more difficult.

timestamp: 32 bits

The timestamp reflects the sampling instant of the first octet in the RTP data

packet.helpful for jitter and synchronization. To calculate frame rate time stamp

is useful.

SSRC: 32 bits

SSRC identifies synchronization of source,within the same RTP session will have the

same SSRC value.

RTCP

RTP Control Protocol

based on periodic retransmission of control packets to all participants.

RTCP functions 1) Provide feedback to the quality of data distribution. for example

From the source of RTP data it will send every 2 seconds that it has transmitted 100

packets to receiver.Receiver suppose receives only 80 packets than it will send receiver

report to the sender for 20%

2) CNAME It carries a persistent identifier called canonical name or CName,SSRC

may change if conflicts occur then to keep track of each it is used.

CHAPTER 2. LITERATURE SURVEY 13

Figure 2.5: SRTP Format

RTCP packet format

SR: Sender Report

For transmission and reception statistics from active senders

RR: Receiver Report

For Reception statics,indicates Received packet information from participants who

are not active senders.

SDES Source description identifier included in CNAME.

BYE indicates and of transmission.

SRTP and SRTCP

It is a profile for RTP which provides confidentiality,message authentication and Re-

play protection for RTP traffic.

Provides a framework for encryption and message authentication of RTP and RTCP

streams.

Concept of Master and Salt Key is used. “Master Key ”provides keying material for

confidentiality and integrity protection for SRTP and SRTCP. “Salt Key ”used to

protect against pre-computation and time-memory tradeoff attacks.

CHAPTER 2. LITERATURE SURVEY 14

Encrypted Portion will have encryption of the RTP payload of the equivalent

RTP packet.

MKI :Master Key Identifier identifies the master key from which session keys

were derived that authenticate or encrypt the particular packet.

Authentication Tag is used to carry message authentication data.

Chapter 3

Architecture and Trigger

Applications

Video Analytics applications include Intrusion Detection, Vehicle Detection, Unat-

tended Baggage Detection, Overcrowding Detection, People Count, Line Control and

Counter Flow Detection.

Smart video solutions and advanced applications generate insight from multime-

dia interactions enabling immediate detection and improved management of critical

issues. Video Analytics (VA) is a set of video analysis applications that analyze video

streams arriving in real-time and track objects moving through camera scenes. We

can specify the automatic and manual tasks that are performed when a VA trigger is

activated, as well as specify the trigger priority. We can filter the alarms displayed

in the Control application according to priority. We can set up output signals to be

activated by associated triggers. We can then use the output signal to activate alarms

or other devices. The system triggers alarms when the objects meet conditions set

by the user. There are Counter Flow, Unattended Baggage, Vehicle, Overcrowding,

Line and Intrusion triggers.

The capabilities of VA include ignoring the following outdoor events in the gen-

eration of alerts:

15

CHAPTER 3. ARCHITECTURE AND TRIGGER APPLICATIONS 16

Rain and heavy rain Wind Snow Momentary abrupt lighting change Sunrise and

sunset (continuous lighting change) Heavy, fast-moving clouds

We can specify the following perspective settings for each of the Video Analytics

triggers:

Not effective ratio: The percentage of the overall area of all objects in the scene,

relative to the ROI (non-ignored) area of the scene, for which the object tracking

algorithm is not effective (most of the scene differs from the reference image).

Shadow Filter: The shadow filter eliminates objects that are created due to

local illumination changes caused by cloud shadows.

Camera Stabilizer: The camera stabilizer handles small camera movements

(allowing the algorithm to cope with offsets of up to 10 pixels of the current image

relative to the background model).

Stationary Filter: The stationary motion filter prevents periodic motion from

being interpreted as an object. This motion includes waves, tree leaves, flags, and so

on.

Snow Filter: The snow filter considers snow-related parameters.

3.1 Video Analytic Architecture

Video surveillance systems typically include the following main components:

• Video cameras

• Network infrastructure

• Network Video Recorder

• Storage

• Video Analytics

Video Analytics can be implemented in three different configurations, which correlate

to the evolution of the Video Analytics and surveillance technologies:

CHAPTER 3. ARCHITECTURE AND TRIGGER APPLICATIONS 17

Figure 3.1: Server Based

3.1.1 Server Based Implementation

1.Server Based Implementation In this approach, the Video Analytics is imple-

mented through a dedicated server that pulls the video, analyzes it, and issues the

alerts or analysis results. This approach is independent of the video cameras, and

therefore, is applicable to most types of surveillance systems. The main disadvantages

to this approach are: The Video Analytics server requires the video to be transmitted

to such server, and therefore causes an increase in network traffic load; The video

quality being analyzed by the Video Analytics server is usually degraded due to com-

pression and transmission effects, and therefore, the Video Analytics performance

may be compromised; The Video Analytics server is limited by its processing power,

and can typically handle no more than 16 cameras, with only limited Video Ana-

lytics functions, which makes it unattractive to large scale surveillance installations

which deploy dozens or hundreds of cameras requiring a variety of Video Analytics

functionalities.[15]

3.1.2 Edge Based Implementation

2.Edge Based Implementation In this approach, the Video Analytics is imple-

mented through an IP video camera or video encoder, which must have sufficient

processing power to run the Video Analytics functionality. On the surface, this ap-

CHAPTER 3. ARCHITECTURE AND TRIGGER APPLICATIONS 18

Figure 3.2: Edge Based

proach seems ideal, however it does not perform satisfactorily in many cases as it

imposes limitations on the overall surveillance system design and performance. Most

edge devices still lack sufficient processing power for high-end Video Analytics re-

quirements, and therefore such implementation compromises on either the range of

functions or performance quality of the Video Analytics, or both. In addition, most

surveillance installations include different types of cameras, and not all cameras are

suitable for edge based implementation nor do all cameras support it to the same

quality.[15] At any given time task is in one of the five states as shown in the Figure.

3.2 Trigger Applications

Video Analytic Triggers:[14]

Unattended Baggage Detection Trigger The Unattended Baggage Detection

application is designed to identify suspicious, unattended baggage in a given region

of interest. It automatically triggers a visual and audio alarm of the suspicious object

in question, pinpointing its exact location onscreen. Unattended Baggage Detection

application triggers an alert when a bag is left unattended in the Activity zone (after

a specified time). Objects moving in the Ignore zone are not tracked.

Vehicle Detection Trigger The Vehicle Detection application is designed to

CHAPTER 3. ARCHITECTURE AND TRIGGER APPLICATIONS 19

identify suspicious vehicles illegal parked in perimeter security zones, stopped in an

unauthorized zone or parked alongside a major traffic artery for a given period of

time. It automatically triggers a visual alarm of the suspicious vehicle in question,

pinpointing the exact location of a potential problem onscreen. The Vehicle Detection

zone is defined by the user as an Activity zone. Objects moving in the Ignore zone are

not tracked. To teach the system the perspective of the camera in the channel and the

normal sizes of the tracked vehicles, the user draws lines on the image. Depending on

the learning time the user sets, the system learns the normal state of the locale viewed

through the channel and starts tracking moving vehicles. If the Recorder detects an

unauthorized parking vehicle in the Activity zone, the system triggers an alert.

Counter Flow Video Analytics The Counter Flow application is designed

to instantly identify a person or object moving in the wrong direction in a crowded

security-critical location, and immediately alert security officers to the possible threat.

It automatically triggers a visual alarm of the suspicious person or object in question,

pinpointing the exact location on screen and immediately alerting security officers

to the possible security threat. Officers can then resolve the incident as quickly

as possible and proactively prevent a further escalation of the situation. To teach

the system the normal flow of movement, the user creates an area of interest and

forbidden flow directions and angles to detect movement and trigger alarms. If the

Recorder detects a movement against a normal direction in the Activity zone, the

system triggers an alert.

Line Control Trigger The Line Control application is designed to help regu-

lating queues. Usually, when people stand in line, there is a specified queuing area.

When the queue of people grows so that the queuing area is full, and the queue starts

”overflowing” to nearby areas, interfering with the normal peoples flow of the site,

the Line Control application generates an alert, allowing the sites authorities to man-

age the ”overflowing” queue efficiently and within moments of the events occurrence.

Line Control tracks the presence of people in a user-defined Interest area between

the Queuing and Alerting zones and triggers a line control alert when the number of

CHAPTER 3. ARCHITECTURE AND TRIGGER APPLICATIONS 20

people matches the criteria the user sets. Objects moving in the Ignore zone are not

tracked. To teach the system the perspective of the camera in the channel, the user

draws lines on the image. Depending on the learning time the user sets, the system

learns the normal state of the locale viewed through the channel and starts tracking

people in the video scene. If the Recorder detects a line crowding in the Alerting

area, the system triggers an alert.

Intrusion Detection Trigger The Intrusion Detection application is designed

for perimeter protection purposes. It can track objects at outdoor scenes, identify

intruders or suspicious objects crossing into secured/restricted areas, within moments

of the events occurrence. Intrusion Detection tracks a person or an object entering

a user-defined Interest zone or passing from From to To zones. When this occurs,

the Recorder triggers an intrusion alert. People or objects moving in the Ignore zone

are not tracked. To teach the system the perspective of the camera in the channel

and the normal sizes of people, the user draws lines on the image. Depending on the

learning time the user sets, the system learns the normal state of the locale viewed

through the channel. Then, if a person or object enters the user defined Interest area

in front of the camera, the Recorder notes the change and triggers an alert.

Overcrowding Trigger The Overcrowding application is designed to prevent

overcrowding in a defined Interest zone. Overcrowding tracks the presence of people

in a user-defined Interest zone and alerts when the occupancy percentage in the zone

matches the criteria set by the user. If the Recorder detects overcrowding in the

Interest zone, the system triggers an alert.

Chapter 4

Video Analytics

4.1 Video Analytics Configuration

4.1.1 Network Video Recorder(NVR)Configuration

In NVR Select Trigger Application From Available Triggers

In Network Video Recorder (NVR) select an I.P. camera that has already been

added.

For that camera select video analytic application that we want to execute.

In Setup Click on Video Analytic to configure camera.[12] Enable Video Analysis

option and click on Setup. In Field of View we can set

1) Field of View : a. Ignore Area: Area for which we do not want to apply analytic

algorithm. b. Learning Time: This is the time the channel learns the scene in front

of the camera and uses it as basis for deciding if a person is a normal part of the

scene or to trigger an alert.

2) Area of Interest : a. Based on Analytic Application Areas like From, To,

Interest. Interest area is Activity zone.

3) Alert Properties : a. To Decide Maximum and Minimum object size which it

should detect when object enters in activity zone.

21

CHAPTER 4. VIDEO ANALYTICS 22

Figure 4.1: Trigger Lists

Figure 4.2: Area Of Interest

4.1.2 Video Analytic Application configuration

Video Analytic Application configuration Input File Location : File Location

Of Predefined XML.

Output File Location : File Location where Trigger Details and Video Link will be

attached.

NVR IP: Set Particular Network Video Recorder IP from which Trigger Data will

CHAPTER 4. VIDEO ANALYTICS 23

Figure 4.3: Application Configuration

come.

Event Server Server: Set Event server IP to which Http Posting will send xml file.

Camera id: Id of camera of which Recorded Video Link will be generated.

4.1.3 Trigger Detection

• Try To Connect To the NICE NVR (Network Video Recorder)

• If able to connect then proceed else terminate with error message.

• Registers the application so that it can receive alarm messages.

• If able to register then proceed else terminate with alarm message.

• start fetching alarm messages while connection exists

• close the stream connection

• disconnect from the recorder

CHAPTER 4. VIDEO ANALYTICS 24

Figure 4.4: Crowd Control

4.1.4 Video Analytic Algorithm

Video Analytic Application configuration First from available list of supported

trigger application select one for which basic configuration from Network Video Recorder

will be done.

Then Configure Area of Interest for which analytic algorithm required to be applied.

Analytic API will continuously monitor the AOI and will keep on checking any Object

is there or not. If object will come then Start Event(Giving Object presence) and

will save time,date,type of trigger information and will save in xml file.

When Object will move away from Area Of Interest(AOI) it will generate stop trig-

ger.In that trigger also stop time,date,trigger id,channel id data we will save in xml

file.

From Stop and Start time and channel id, Video Link will be generated which will be

sent to Event Server and that link we can play with help of Streaming Server which

will have time stamp of each and record it.The Video links will not be over written

when new event comes, we will save it and padd other events to analyze video events

after words if required.

CHAPTER 4. VIDEO ANALYTICS 25

Figure 4.5: Video Analytic Algorithm

4.1.5 Event Posting

Get Trigger Details Of Both Start Trigger and Stop Trigger.

a. In Trigger Convert Date Time into Total Number Of Seconds From Standard

Date Time i.e Total Seconds For Start Time = (Date Time Start.Event) -

(01/01/0001 12:00:00 AM) Same thing For Stop Trigger.

b. Calculate Time Difference Time Difference = (Start Trigger).Total Seconds -

(Stop Trigger).Total Second

c. Take Channel id of Particular Camera from which streams to play.

CHAPTER 4. VIDEO ANALYTICS 26

Figure 4.6: Block Diagram

d. Create Video Link from Channel Id and Total Seconds.

e. Post Events by Posting XML file to Event Server.

f. From Event Server it will be directed to Client.

4.2 Facial Recognition

4.2.1 Face Detection using Haar Cascades

4.2.2 Basics

Object Detection using Haar feature-based cascade classifiers is an effective object

detection method proposed by Paul Viola and Michael Jones in their paper, Rapid

Object Detection using a Boosted Cascade of Simple Features in 2001. It is

a machine learning based approach where a cascade function is trained from a lot of

positive and negative images. It is then used to detect objects in other images.

Initially, the algorithm needs a lot of positive images (images of faces) and negative

images (images without faces) to train the classifier. Then we need to extract features

from it. For this, haar features shown in below image are used. They are just like

our convolutional kernel. Each feature is a single value obtained by subtracting sum

of pixels under white rectangle from sum of pixels under black rectangle.[7]

Now all possible sizes and locations of each kernel is used to calculate plenty of

features. (Just imagine how much computation it needs? Even a 24x24 window

results over 160000 features). For each feature calculation, find sum of pixels under

white and black rectangles. To solve this,the integral images concept will be used. It

CHAPTER 4. VIDEO ANALYTICS 27

Figure 4.7: Haar Features

Figure 4.8: Features on Image

simplifies calculation of sum of pixels, how large may be the number of pixels, to an

operation involving just four pixels.

But among all these features calculated, most of them are irrelevant. For example,

consider the image below. Top row shows two good features. The first feature selected

seems to focus on the property that the region of the eyes is often darker than the

region of the nose and cheeks. The second feature selected relies on the property that

the eyes are darker than the bridge of the nose. But the same windows applying on

cheeks or any other place is irrelevant. So how select the best features out of 160000+

features? It is achieved by Adaboost.[7]

For this,apply each and every feature on all the training images. For each feature,

it finds the best threshold which will classify the faces to positive and negative.

CHAPTER 4. VIDEO ANALYTICS 28

But obviously, there will be errors or misclassifications. We select the features with

minimum error rate, which means they are the features that best classifies the face and

non-face images. (The process is not as simple as this. Each image is given an equal

weight in the beginning. After each classification, weights of misclassified images are

increased. Then again same process is done. New error rates are calculated. Also new

weights. The process is continued until required accuracy or error rate is achieved or

required number of features are found).

Final classifier is a weighted sum of these weak classifiers. It is called weak because

it alone cant classify the image, but together with others forms a strong classifier.

The paper says even 200 features provide detection with 95 percent accuracy. Their

final setup had around 6000 features. (Imagine a reduction from 160000+ features to

6000 features. That is a big gain).

In an image, most of the image region is non-face region. So it is a better idea to

have a simple method to check if a window is not a face region. If it is not, discard

it in a single shot. Dont process it again. Instead focus on region where there can be

a face. This way, we can find more time to check a possible face region.

For this they introduced the concept of Cascade of Classifiers. Instead of

applying all the 6000 features on a window, group the features into different stages

of classifiers and apply one-by-one. (Normally first few stages will contain very less

number of features). If a window fails the first stage, discard it. We dont consider

remaining features on it. If it passes, apply the second stage of features and continue

the process. The window which passes all stages is a face region.

Authors detector had 6000+ features with 38 stages with 1, 10, 25, 25 and 50

features in first five stages. (Two features in the above image is actually obtained as

the best two features from Adaboost).

CHAPTER 4. VIDEO ANALYTICS 29

4.2.3 Haar-cascade Detection in OpenCV

OpenCV comes with a trainer as well as detector. If you want to train your own

classifier for any object like car, planes etc. you can use OpenCV to create one. Its

full details are given here: Cascade Classifier Training.[11]

OpenCV already contains many pre-trained classifiers for face, eyes, smile etc.

Those XML files are stored in opencv/data/haarcascades/ folder.

First load the required XML classifiers. Then load our input image (or video) in

grayscale mode

import numpy as np import cv2 facecascade = cv2.CascadeClassifier(′haarcascadefrontalfacedefault.xml′)

eyecascade = cv2.CascadeClassifier(′haarcascadeeye.xml′) img = cv2.imread(′sachin.jpg′)

gray = cv2.cvtColor(img, cv2.COLORBGR2GRAY)

Now find the faces in the image. If faces are found, it returns the positions of detected

faces as Rect(x,y,w,h). after getting these locations, create a ROI for the face and

apply eye detection on this ROI .

faces = facecascade.detectMultiScale(gray, 1.3, 5)

for (x,y,w,h) in faces:

img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) roigray = gray[y :

y + h, x : x + w]

roicolor = img[y : y + h, x : x + w]

eyes = eyecascade.detectMultiScale(roigray)

for (ex,ey,ew,eh) in eyes:

cv2.rectangle(roicolor, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) cv2.imshow(′img′, img)

cv2.waitKey(0)

cv2.destroyAllWindows()

CHAPTER 4. VIDEO ANALYTICS 30

4.2.4 Image Preprocessing

Applying face recognition directly on a normal photo image, will give probably less

than 10 percent accuracy!

It is extremely important to apply various image pre-processing techniques to

standardize the images required for a face recognition system.Most face recognition

algorithms are extremely sensitive to lighting conditions, so that if it was trained to

recognize a person when they are in a dark room, it probably wont recognize them in a

bright room, etc. This problem is referred to as ”lumination dependent”, and there

are also many other issues, such as the face should also be in a very consistent position

within the images (such as the eyes being in the same pixel coordinates), consistent

size, rotation angle, hair and makeup, emotion (smiling, angry, etc), position of lights

(to the left or above, etc). This is why it is so important to use a good image

preprocessing filters before applying face recognition. For that preprocessing like

removing the pixels around the face that aren’t used, such as with an elliptical mask

to only show the inner face region, not the hair and image background, since they

change more than the face does. For simplicity, the face recognition system given

below is Eigenfaces using greyscale images. convert color images to greyscale (also

called ’grayscale’), and then easily apply Histogram Equalization as a very simple

method of automatically standardizing the brightness and contrast of your facial

images. For better results, you could use color face recognition (ideally with color

histogram fitting in HSV or another color space instead of RGB), or apply more

processing stages such as edge enhancement, contour detection, motion detection,

etc.

Given Below is example of Preprocessing stage:[21]

• Either convert image to grayscale or use existing Grayscale Image Mat gray;

cvtColor(original, gray, CVBGR2GRAY);

• Resize the image to be a consistent size, even if the aspect ratio changes.

CHAPTER 4. VIDEO ANALYTICS 31

Figure 4.9: Preprocessing Stages

Figure 4.10: Image DataBase

Mat face_resized;

cv::resize(face, face_resized, Size(im_width,

im_height), 1.0, 1.0, INTER_CUBIC);

• Give the image a standard brightness and contrast.

cvEqualizeHist(imageProcessed, imageProcessed);

4.2.5 DataBase

Create DataBase

To create DataBase for face recognition ,create a text file that lists the image files and

which person each image represents. For example Create Text file 4image3person.txt

and content of that text file will look like below. In this text file after semicolon

represents label that we will give for each person.As shown For Amit Label is 0, for

Kalpana label is 1 and for kaushik label is 2. this will be helpful in recognition while

applying prediction.

CHAPTER 4. VIDEO ANALYTICS 32

Figure 4.11: Authorize

Read DataBase

vector < Mat > images;

vector < int > labels;

readcsv(fncsv, images, labels);

fncsv is the text file name in which location of each image and labels are given. From

this in images vector all images data will be written and labels will have data 0,1,2. . . .

Train Database by applying FaceRecognition Algorithm Create a FaceRecognizer

and train it on the given images:

Ptr < FaceRecognizer > model = createF isherFaceRecognizer();

model− > train(images, labels);

4.3 Start Recognition

In Client one button to authorize person will be there. When user press this button

http request will be sent to start face recognition process. In Http Request String =

”Start Face Recognition” will be sent

4.3.1 Server Listenning

One Server will be there which will wait for some request to come on one port. When

request comes it will capture string and compare it with predefined string. When

CHAPTER 4. VIDEO ANALYTICS 33

Figure 4.12: Server Algorithm

Matches it will do one asynchronous call to Face Recognizer to Start Face recognition.

4.3.2 Face Recognition

When Request comes to Server it will capture video for example 20seconds. From

that video clip it will capture each frame and will compare it with the database images

by applying face recognition algorithm. This will happen in two steps.

• Face Detection From Each frame first it will apply face detection algorithm,

which will detect number of faces in each frame.

• Face Recognize After detection of each face from each frame it will apply face

recognition algorithm which will compare eigenvector and eigenvalues of each

face with database and will apply prediction.

Chapter 5

Hardware and Software Tools

1) Surveillance Cameras

2) Network Video Recorder(NVR)

3) Media Server

4) WebRtc Gateway

5) WebRtc Client

5.1 Surveillance Cameras

Surveillance cameras such as Sony RX550 and AXIS cameras.Camera supports PTZ(Pann-

Till-Zoom).

5.2 Network Video Recorder

A network video recorder (NVR) is a software program that records video in a digital

format to a disk drive, USB flash drive, SD memory card or other mass storage device.

34

CHAPTER 5. HARDWARE AND SOFTWARE TOOLS 35

5.3 Media Server

Streaming Server includes two main part

• RTSP Server:

It Responds to RTSP Requests such as OPEN,PLAY,PAUSE,STOP,DESCRIBE,OPTIONS

Requests.

• RTP Server: It Streams RTP and RTCP Packets.

5.4 WebRTC Gateway

WebRTC Gateway is intermediate between Media Server and Webrtc Client. Gate-

way Does Handshake Signaling with Client and Server and then route RTP and RTCP

Packets From Media Server To Client. Signaling includes WebSocket,Ice,Stun,SDP,DTLS-

SRTP Signaling. Data includes RTP and RTCP Packet Routing. RTP packets From

Streaming Server to WebRTC Client. RTCP Packets From Streaming Server to We-

bRTC Client and From WebRTC Client to Streaming Server.

5.5 WebRTC Client

WebRTC Client is Browser.Support for only Firefox and Nightly Browser is Given

as of now. WebRTC CLient From UserInterface prespective includes Camera List,

Video Play Section,PTZ Section(Pan/Till/Zoom). WebRTC Client Supports 16up

cameras playing together. WebRTC Client has it’s own Requirements.

• Supports WebSocket Signaling

• Supports VP8 Codec

• Can Play only SRTP Packets

• DTLS-SRTP Handshaking is required

Chapter 6

WebRTC

6.1 WebRTC Gateway

• RTSP Signaling

• WebSocket Signaling

• ICE-STUN Signaling

• DTLS-SRTP Signaling

6.1.1 RTSP Signaling

RTSP(Real time Streaming Protocol) establishes and controls streams of media such

as audio and video. RTSP acts as a ”network remote control” for multimedia servers.

Each presentation and media stream may be identified by an RTSP URL.

RTSP URL :

rtsp url = rtsp://host:port/absolutepath

host = ¡A legal Internet host domain name of IP address”

port = *DIGIT

Example : rtsp://media.example.com:554/twister/audiotrack

36

CHAPTER 6. WEBRTC 37

The Real Time Streaming Protocol (RTSP) is a network control protocol designed

for use in entertainment and communications systems to control streaming media

servers. The protocol is used for establishing and controlling media sessions between

end points. Clients of media servers issue VCR-style commands, such as play and

pause, to facilitate real-time control of playback of media files from the server.

The transmission of streaming data itself is not a task of the RTSP protocol.

Most RTSP servers use the Real-time Transport Protocol (RTP) in conjunction with

Real-time Control Protocol (RTCP) for media stream delivery, however some vendors

implement proprietary transport protocols.

While similar in some ways to HTTP, RTSP defines control sequences useful

in controlling multimedia playback. While HTTP is stateless, RTSP has state; an

identifier is used when needed to track concurrent sessions. Like HTTP, RTSP uses

TCP to maintain an end-to-end connection and, while most RTSP control messages

are sent by the client to the server, some commands travel in the other direction (i.e.

from server to client).

• OPTIONS :

An OPTIONS request returns the request types the server will accept.

C->S: OPTIONS rtsp://10.232.5.56/PSIA/Streaming/Channels/1DAC4CC7-

B16F-4483-96BA-A7C03EDCD0BB

CSeq: 1

Session: 01E76810-13775131-36

Accept-Charset : UTF-8,q=0.100 ClientID: Motorola RTVI

Require: implicit-play

Proxy-Require: gzipped-messages

S->C: RTSP/1.0 200 OK CSeq: 1 Public: DESCRIBE, SETUP, TEARDOWN,

PLAY, PAUSE

• DESCRIBE : A DESCRIBE request includes an RTSP URL (rtsp://...), and

the type of reply data that can be handled. The default port for the RTSP

CHAPTER 6. WEBRTC 38

protocol is 554 for both UDP and TCP transports. This reply includes the pre-

sentation description, typically in Session Description Protocol (SDP) format.

Among other things, the presentation description lists the media streams con-

trolled with the aggregate URL. In the typical case, there is one media stream

each for audio and video

C->S: DESCRIBE rtsp://example.com/media.mp4 RTSP/1.0 CSeq: 2

S->C: RTSP/1.0 200 OK

CSeq: 3

Content-Base: rtsp://10.232.5.56/PSIA/Streaming/Channels/1DAC4CC7-B16F-

4483-96BA-A7C03EDCD0BB/

Content-type: application/sdp

Server: MOTO Streaming Server Version 0.1

Session Description Protocol

Session Description Protocol Version (v): 0

Owner/Creator, Session Id (o): 12167 2372476 55 IN IP4 10.232.5.56

Session Name (s): RTSP Session

Connection Information (c): IN IP4 10.232.5.56

Time Description, active time (t): 0 0

Session Attribute (a): range:clock=20140310T061937.020Z-

Media Description, name and address (m): video 0 RTP/AVP 120

Media Attribute (a): rtpmap:120 VP8/90000

Media Attribute (a): control:trackID=4

Media Attribute (a): cliprect:0,0,480,640

Media Attribute (a): framesize:120 640-480

Media Attribute (a): framerate:16

• SETUP: A SETUP request specifies how a single media stream must be trans-

ported. This must be done before a PLAY request is sent. The request con-

CHAPTER 6. WEBRTC 39

tains the media stream URL and a transport specifier. This specifier typically

includes a local port for receiving RTP data (audio or video), and another for

RTCP data (meta information). The server reply usually confirms the chosen

parameters, and fills in the missing parts, such as the server’s chosen ports.

Each media stream must be configured using SETUP before an aggregate play

request may be sent.

C->S: SETUP rtsp://example.com/media.mp4/streamid=0 RTSP/1.0 CSeq: 3

S->C: RTSP/1.0 200 OK CSeq: 3 Transport: RTP/AVP;unicast;client port=8000-

8001;server port=9000-9001 Session: 12345678

• PLAY: A PLAY request will cause one or all media streams to be played. Play

requests can be stacked by sending multiple PLAY requests. The URL may be

the aggregate URL (to play all media streams), or a single media stream URL

(to play only that stream). A range can be specified. If no range is specified,

the stream is played from the beginning and plays to the end, or, if the stream

is paused, it is resumed at the point it was paused.

C->S: PLAY rtsp://example.com/media.mp4 RTSP/1.0

CSeq: 4

Range: npt=5-20

Session: 12345678

S->C: RTSP/1.0 200 OK CSeq: 4

Session: 12345678

RTP-Info: url=rtsp://example.com/media.mp4/streamid=0;seq=9810092;rtptime=3450012

• PAUSE: A PAUSE request temporarily halts one or all media streams, so it

can later be resumed with a PLAY request. The request contains an aggregate

or media stream URL. A range parameter on a PAUSE request specifies when

CHAPTER 6. WEBRTC 40

to pause. When the range parameter is omitted, the pause occurs immediately

and indefinitely.

C->S: PAUSE rtsp://example.com/media.mp4 RTSP/1.0 CSeq: 5

Session: 12345678

S->C: RTSP/1.0 200 OK CSeq: 5

Session: 12345678

• TEARDOWN: A TEARDOWN request is used to terminate the session. It

stops all media streams and frees all session related data on the server.

C->S: TEARDOWN rtsp://example.com/media.mp4 RTSP/1.0

CSeq: 8

Session: 12345678

S->C: RTSP/1.0 200 OK

CSeq: 8

6.1.2 WebSocket Signaling

WebSocket is a protocol providing full-duplex communications channels over a single

TCP connection. WebSocket is designed to be implemented in web browsers and

web servers, but it can be used by any client or server application. The WebSocket

Protocol is an independent TCP-based protocol. Its only relationship to HTTP is

that its handshake is interpreted by HTTP servers as an Upgrade request.[1]

A simpler solution would be to use a single TCP connection for traffic in both

directions. This is what the WebSocket Protocol provides.

CHAPTER 6. WEBRTC 41

6.1.3 Ice-Stun Signaling

In order to establish a peer-to-peer connection, by definition, the peers must be able

to route packets to each other. A trivial statement on the surface, but hard to achieve

in practice due to the numerous layers of firewalls and NAT devices between most

peers.

Consider the trivial case, where both peers are located on the same internal network,

and there are no firewalls or NATs between them. To establish the connection, each

peer can simply query its operating system for its IP address (or multiple, if there are

multiple network interfaces), append the provided IP and port tuples to the generated

SDP strings, and forward it to the other peer. Once the SDP exchange is complete,

both peers can initiate a direct peer-to-peer connection.

[3] The basic idea behind ICE is as follows: each agent has a variety of candidate

TRANSPORT ADDRESSES (combination of IP address and port for a particular

transport protocol) it could use to communicate with the other agent. These might

include:

• A transport address on a directly attached network interface.

• A translated transport address on the public side of a NAT (”server reflexive”).

• A transport address allocated from a TURN server (”relayed address”).

Potentially any of the candidate should be able to communicate with other candi-

date,but practically many combinations will not work if both are behind the Network

address translators(NAT). The purpose of ICE is to discover which pairs of addresses

will work.

Gathering Candidate Addresses

A CANDIDATE is a transport address – a combination of IP and Port. two agents

want to communicate. If both are on the same private network they can communicate

with what is known as HOST candidates. Agents uses STUN or TURN to obtain

CHAPTER 6. WEBRTC 42

Figure 6.1: Candidate Relationships [5]

additional candidates. translated addresses on the public side of a NAT and addresses

on TURN servers.

Connectivity Check

Once agent has gathered all its candidates, it orders them in highest to lowest priority

and sends them to other agent. candidates are carried in attributes in SDP offer.

when other agent receives the offer it does the same process and responds with its

own list.At the end each agent has a complete list of both its candidates and peer’s

candidates.

To see which pair will work each agent performs a series of checks. Basic principle

of connectivity check is 1) Sort candidate pairs in priority order 2) Send checks on

each candidate pair in priority order. 3) Acknowledge checks received from the other

agent.

STUN Binding request is used for the connectivity check,the STUN Binding re-

CHAPTER 6. WEBRTC 43

Figure 6.2: Connectivity Check [3]

sponse will contain the agent’s translated transport address on the public side of any

NATs between the agent and its peer.

Sorting Candidates

To produce faster results, candidates are sorted in a specified order,this list is called

CHECKLIST. this follows two general principles:

• Each agent gives its candidates a numeric priority,which is sent along with a

candidate to peer.

• Local and remote priorities are combined to have same ordering for the candi-

date pairs.

ICE checks in each direction will not succeed until both sides have sent a check

through their respective NATs.[3]

Concluding ICE

Ice checks are performed in a specific sequence,High Priority candidate pairs are

checked first, followed by low priority candidates.[3] ICE assigns one of the agent a

role of controlling agent and the other controlled agent.the controlling agent gets to

nominate which candidate pairs will get used for media amongst the ones that are

valid. It can do this in two ways

1) REGULAR NOMINATION In this the controlling agents cheecks one valid

candidate pair for each media stream, then it pecks amongst those that are valid and

send a second STUN request on its nominated candidate pair, but this time a flag set

CHAPTER 6. WEBRTC 44

Figure 6.3: Regular Nomination

Figure 6.4: Aggressive Nomination

to tell peer that this pair has been nominated.

2) AGGRESSIVE NOMINATION controlling agent puts the flag in every STUN

request it sends.once the first check succeeds, ICE processing is complete for that me-

dia stream and the controlling agent doesn’t have to send a second STUN request.

The selected pair will be the highest-priority valid pair whose check succeeded. Ag-

gressive nomination is faster than regular nomination,but gives less flexibility.

6.1.4 DTLS-SRTP Signaling

DTLS(Datagram Transport Layer Security) extension to establish keys for Secure

RTP(SRTP) and Secure RTCP(SRTCP).

Secure RTP Profile(SRTP) provides confidentiality,message authentication and

replay protection to RTP data and RTCP traffic.SRTP does not provide key man-

agement functionality,but instead depends on external key management to exchange

secret master keys,and to negotiate the algorithms and parameters for use with those

keys.

Datagram Transport Layer Security (DTLS) is a channel security protocol that

CHAPTER 6. WEBRTC 45

offers integrated key management,parameter negotiation, and secure data transfer.[1]

Key Points for DTLS-SRTP

• Application Data is Protected using SRTP

• DTLS Handshake is used to establish keying material,algorithms ,and parameter

for SRTP,

• DTLS extension is used to negotiate SRTP algorithm

DTLS-SRTP operation : DTLS-SRTP is defined for point to point media

sessions,which includes exactly two participants. Each DTLS-SRTP session contains

one DTLS Session and either two SRTP context if media flows in both direction or

one context if media flows in single direction.

For each RTP or RTCP flow the peers do a DTLS handshake on the same source

and destination port pair to establish a DTLS association. Between the two points

which side is DTLS client and which side is DTLS Server must be decided by some

mechanism.Keying material from that handshake is fed into the SRTP stack. once

that part is done RTP packets are secured SRTP using that keying material.

The SRTP keys used to protect packets originated by the client are distinct from

the SRTP keys used to protect packets originated by the server.[4]

DTLS Extensions for SRTP Key Establishment

”The use srtp Extension”

In order to negotiate the use of SRTP data protection, clients includes an extension

of type ”use srtp” in the DTLS extended client hello. Server that receives extended

”use srtp” extension can agree to use SRTP by including an extension of type ”use

srtp”, with the chosen protection profile in the extended server Hello.[1]

SRTP Protection Profiles:

DTLS-SRTP Protection profiles defines the parameters and options that are in effect

for the SRTP processing.

SRTPProtectionProfile SRTP AES128 CM HMAC SHA1 80 = 0x00, 0x01;

CHAPTER 6. WEBRTC 46

Figure 6.5: Preprocessing Stages

SRTPProtectionProfile SRTP AES128 CM HMAC SHA1 32 = 0x00, 0x02;

SRTPProtectionProfile SRTP NULL HMAC SHA1 80 = 0x00, 0x05;

SRTPProtectionProfile SRTP NULL HMAC SHA1 32 = 0x00, 0x06;

SRTP AES128 CM HMAC SHA1 80

cipher: AES 128 CM

cipher key length: 128

cipher salt length: 112

maximum lifetime: 23̂1

auth function: HMAC-SHA1

auth key length: 160

auth tag length: 80

SRTP AES128 CM HMAC SHA1 32

cipher: AES 128 CM

cipher key length: 128

cipher salt length: 112

maximum lifetime: 23̂1

auth function: HMAC-SHA1

CHAPTER 6. WEBRTC 47

auth key length: 160

auth tag length: 32

RTCP auth tag length: 80

SRTP NULL HMAC SHA1 80

cipher: NULL

cipher key length: 0

cipher salt length: 0

maximum lifetime: 23̂1

auth function: HMAC-SHA1

auth key length: 160

auth tag length: 80

SRTP NULL HMAC SHA1 32

cipher: NULL

cipher key length: 0

cipher salt length: 0

maximum lifetime: 23̂1

auth function: HMAC-SHA1

auth key length: 160

auth tag length: 32

RTCP auth tag length: 80

Exporting Keying Material:

When SRTP mode is in effect, different keys are used for ordinary DTLS record pro-

tection and SRTP packet protection. These keys are generated using a TLS exporter

[RFC5705] to generate

2 * (SRTPSecurityParams.master key len + SRTPSecurityParams.master salt

len) bytes of data

which are assigned as shown below.

client write SRTP master key[SRTPSecurityParams.master key len];

CHAPTER 6. WEBRTC 48

Figure 6.6: DTLS Key Extraction

server write SRTP master key[SRTPSecurityParams.master key len];

client write SRTP master salt[SRTPSecurityParams.master salt len];

server write SRTP master salt[SRTPSecurityParams.master salt len];

6.2 WebRTC Working

6.2.1 Block Diagram

• Surveillance camera : Streaming from Multiple Surveillance cameras will

come to Network Video Recorder.Cameras will be IP cameras.

• Network Video Recorder : In Network Video Recorder add different cam-

CHAPTER 6. WEBRTC 49

Figure 6.7: webrtcblock

eras.Do codec configuration and set resolution.

Streams from IP cameras will come to NVR and from that to Media Server,frames

will be of h264 format.

• Media Server: Media Server is divided in two parts. RTSP Server : Give

Response to RTSP Requests coming from different clients.

RTP Server : Stream RTP Packets in H264 format.

Support is added for vp8 format because webrtc Client Supports VP8 codec

only.

• WebRTC Gateway: Gateway is divided in two parts.

1) Signaling

2) Media

Signaling : In this support is added for RTSP,Ice-Stun,DTLS-SRTP signaling.

RTSP Signaling for requesting particular channel(camera) to play,pause,teardown.

ICE-STUN signaling for Network Address Translator(NAT) traversal,Client

may or may not be in the same network as Server. DTLS-SRTP is used to

encrypt RTP and RTCP Packets,this is required because WebRTC Client sup-

ports only SRTP and SRTCP packets only.To Secure Packets DTLS negotiation

will happen to export keying material and to import key into SRTP stack.

Media : For each packet coming from RTP Server it will apply SRTP protect

CHAPTER 6. WEBRTC 50

algorithm to Protect it and Unprotect it.

6.2.2 Client-Gateway Handshake

WebRTC Client will have Channel List(Camera List) to Play or Stop particular cam-

era. When clicked play it will send a Websocket Message in Json Format to Gateway.

Request Message consist of UserId, RtspUrl,Username and Password.

• UserId : As an Identifier from which client request came.

• RtspUrl : Url of the camera which client wants to play

• Username and Password : To Protect from anonymous user.

Gateway receives this message and decodes it and send a response if correct data

received. Response message consist of Participation request and UserId of Gateway.

• Participation request : boolean data type- true if request is correct.

• UserId : Id of gateway for further communication.

Client on Receiving Participation as True will gather its Media Information,Transport

Information and Session Description and send this as Session Description Proto-

col(SDP).

SDP for Example is shown below.

o=Mozilla-SIPUA-28.0 18985 0 IN IP4 0.0.0.0

s=SIP Call

t=0 0

a=ice-ufrag:5c30f425

a=ice-pwd:20e9d214ba7ae8665757903b33cff0b9

a=fingerprint:sha-256 E2:75:C8:9E:78:79:28:5B:49:F6:69:91:45:0E:A0:52:B9:45:81:36:FE:AA:68:27:CB:65

m=audio 50978 RTP/SAVPF 109 0 8 101

CHAPTER 6. WEBRTC 51

c=IN IP4 192.168.2.109

a=rtpmap:109 opus/48000/2

a=ptime:20

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=sendrecv

a=setup:actpass

a=candidate:0 1 UDP 2128609535 192.168.2.109 50978 typ host

a=candidate:0 2 UDP 2128609534 192.168.2.109 50979 typ host

a=rtcp-mux

m=video 50980 RTP/SAVPF 120

c=IN IP4 192.168.2.109

a=rtpmap:120 VP8/90000

a=sendrecv

a=rtcp-fb:120 nack

a=rtcp-fb:120 nack pli

a=candidate:0 1 UDP 2128609535 192.168.2.109 50980 typ host

a=candidate:0 2 UDP 2128609534 192.168.2.109 50981 typ host

Sdp contains ICE information,Fingerprint, media information,Transport Information.[2]

• ICE Info : Ice Username , Ice Password and Candidate information for each

media type

• Media Info : Audio and Video , Port on which media will be received, and

supporting codec information. audio or video attribute such as sendrecv , send

or recvonly.

• Transport Info : Protocol such as UDP or TCP , IP and Port and type of

CHAPTER 6. WEBRTC 52

candidate such as host,reflexcive.

Client may reside in same private network as Server or may be behind NAT. For

Connectivity-Check STUN negotiation happens which will decide which transport

address will be used for media streaming.

WebRTC Client support only VP8 Codec and Secured RTP(SRTP) packets.

For that DTLS-SRTP negotiation is required to export Keying material to protect

RTP packets received from Media Server. In DTLS-SRTP signaling client server will

exchange certificate and Keys to protect media. For each type of media separate

handshake is required and media from client will use different key from the one that

server will use.With Keys, Protection Profiles are decided which each side will include

in SRTP Stack.

Gateway will receive RTP packets from RTP Server of Media Server and will

convert it into Secured RTP(SRTP) packets and route it to Client which will unprotect

it and will play it. How RTP Packets will come from Media Server to Gateway is

explained in the next section.

6.2.3 Gateway-Media Server

RTSP Signaling Happens between Gateway and RTSP Server of Media Server.

This Signaling consists of series of Requests and Responses which are shown as below.

As shown in figure OPTIONS as a request is sent to RTSP Server with rtsp://url

This request is sent to know functionality that particular RTSP Server supports. In

Response we will get ”200 OK” as an Indication that OPTION Request is success-

fully processed. with 200OK it will give functionality it supports. for example :

DESCRIBE,GET PARAMETER,OPTIONS,PAUSE,PLAY,SETUP,TEARDOWN.

• DESCRIBE : To Know Media Information and codec information

• PLAY,PAUSE,STOP : To start streaming of data , to temporary pause packets

to come or to stop streaming to come.

CHAPTER 6. WEBRTC 53

Figure 6.8: RTSP Signaling

• SETUP : Before Play Request it is required,and to inform server Port infor-

mation on which it can receive rtp and rtcp packets and Transport Protocol

information.

• TEARDOWN : To Break connection.Indication of Release Connection.

6.2.4 Relay SRTP and SRTCP Packets

After Setup and Play RTSP requests RTP and RTCP packets it will receive from

Media Server. In DTLS handshake both agents will exchange Certificate and will use

Public Key used in SDP exchange to unlock Certificate and to exctract private key

which will be used for Securing RTP and RTCP Packets.

With help of standard SRTP library RTP and RTCP packet protection and un-

protection is done. SSL algorithm is used for that.

An RTP session is defined by a pair of destination transport addresses, that is, a

network address plus a pair of UDP ports for RTP and RTCP.

RTCP,the RTP control protocol, is used to coordinate between the participants in an

CHAPTER 6. WEBRTC 54

RTP session, e.g. to provide feedback from receivers to senders.

An SRTP session is similarly defined; it is just an RTP session for which the SRTP

profile is being used. An SRTP session consists of the traffic sent to the SRTP or

SRTCP destination transport addresses.

Each participant in a session is identified by a synchronization source (SSRC) iden-

tifier. Some participants may not send any SRTP traffic; they are called receivers,

even though they send out SRTCP traffic, such as receiver reports.

RTP allows multiple sources to send RTP and RTCP traffic during the same session.

The synchronization source identifier (SSRC) is used to distinguish these sources. In

libSRTP, we call the SRTP and SRTCP traffic from a particular source a stream.

Each stream has its own SSRC, sequence number, rollover counter, and other data.

A particular choice of options, cryptographic mechanisms, and keys is called a policy.

Each stream within a session can have a distinct policy applied to it. A session policy

is a collection of stream policies.A single policy can be used for all of the streams in a

given session, though the case in which a single key is shared across multiple streams

requires care. When key sharing is used, the SSRC values that identify the streams

must be distinct. This requirement can be enforced by using the convention that each

SRTP and SRTCP key is used for encryption by only a single sender.

In other words, the key is shared only across streams that originate from a particular

device. libSRTP supports this enforcement by detecting the case in which a key is

used for both inbound and outbound data.

LibSRTP Implementation

To Protect RTP and RTCP Packets srtp protect() function and to Unprotect srtp

unprotect function is used. A session is created using the function srtp create(), the

policy to be implemented and ssrc value for particular stream, key to protect stream

are passed as part of policy as structure. srtp policy structure contains two crypto

policy structure,one for RTP and other for RTCP. crypto policy rtp default() is

used if want to set default policy,same thing applies for rtcp.

Chapter 7

Experiments and Results

In this chapter result analysis is discussed. For WebRTC Project Data Received on

Client including DTLS handshake and algorithm used for Protection is shown. For

which condition Client was able to unprotect SRTP and SRTCP is discussed. Through

this experimental results able to debug actual flow of project and error received which

is needed to debug.

7.1 Results

Two analysis is done one for Signaling and other for Media section.

• Signaling analysis Ice Candidate information received on client side.

trickling candidate candidate:0 1 UDP 2128609535 10.8.115.201 65503 typ host

trickling candidate candidate:0 2 UDP 2128609534 10.8.115.201 65504 typ host

trickling candidate candidate:0 1 UDP 2128609535 10.8.115.201 65505 typ host

trickling candidate candidate:0 2 UDP 2128609534 10.8.115.201 65506 typ host

trickling candidate candidate:0 1 UDP 2128609535 10.8.115.201 65507 typ host

trickling candidate candidate:0 2 UDP 2128609534 10.8.115.201 65508 typ host

55

CHAPTER 7. EXPERIMENTS AND RESULTS 56

Figure 7.1: stun Request

Figure 7.2: stun Response

• STUN Signaling As shown in figure above is stun signaling required to get

Public Ip is shown.

Stun Request is sent to “Stun Server ”which will reply with XOR mapped

address which is public IP in response.

• RTCP Packet Error Couldn’t write RTCP packet; SRTCP not set up

Unless RTCP packet as sender report it will not receive it will not to able to

send SRTCP packet as Receiver report.

able to debug that SRTCP packet it is not able to decrypt,so Protect key or

algorithm is not set properly.

• RTP packet error Error in unprotecting an SRTP packet of len 1086

To unprotect SRTP packet DTLS handshake will give key to decrypt it and

protect algorithm is decided to apply on.

If it is unable to Unprotect it mismatch in algorithm between Client and Gate-

way or Key is worong.

• RTP packet success Successfully unprotected an SRTP packet of len 655

CHAPTER 7. EXPERIMENTS AND RESULTS 57

Figure 7.3: DTLS-Handshake

It has successfully unprotected SRTP packet and able to decode RTP packet,meaning

DTLS key exchange is successful and algorithm used to protect and unprotect

is correct.

• Protection Method Setting SRTP cipher suite SRTP AES128 CM

HMAC SHA1 32 In client logs we can see what protection crypto policy is

used for RTP when we set crypto policy.

• codec info VIDEO CODING: Codec: VP8, Payload type 100, Height 288,

Width 352, Bitrate 100,Framerate 30

DTLS-Handshake As shown in fig 7.3 is wireshark result which come across

network.

In DTLS handshke will happen between client-server. Gateway will act as a client

and WebRTC client will act as a server.

gateway initiates process by calling client method and sends “Client Hello ”.

WebRTC Client will reply with “Server Hello”,and exchange of Certificate and Key

exchange will happen with “Server Hello Done ”

RTP Packets As shown in figure 7.4 is wireshark result for RTP packets which flows

from Media Server to Gateway.

It has many useful information which is useful for debugging.

Payload type will specify RTP format used for that Session.

CHAPTER 7. EXPERIMENTS AND RESULTS 58

Figure 7.4: RTP packet

SSRC specifies from which source Packets are coming.

All packets coming from same source for a particular session must have same SSRC

value.

Sequence will indicate sequence number,helpful for debugging packet loss and which

packets are lost.

Mark indicates end of a frame.

Chapter 8

Conclusion and Future Scope

8.1 Conclusion and Future Scope

8.1.1 WebRTC

In WebRTC from client perspective

1) Camera List(channel list) will come which will have channel id and username and

password to authenticate from data base,password is sha1 protected.

2) Multiple Client Support is added,single gateway will support multiple requests

coming from different WebRTC Clients.

3) PTZ controll is added, existing pann/till/zoom support is given for each camera.

4) Multiple Streaming Support, in single client it can play multiple videos.

In Webrtc Gateway Ice support was added to support NAT(Network Address

Translator) traversal with help of stun Server.

For Secured Communication and to protect replaying of RTP packets Secured RTP

feature was added. To encrypt RTP and RTCP Packets,Private Key is required which

was extracted with help of Datagramlayer security(DTLS) with concept of Master Key

and Salt Key exported when DTLS handshake happens between client and Server.

In Media Server support for VP8 codec was added because webrtc client supports

59

CHAPTER 8. CONCLUSION AND FUTURE SCOPE 60

vp8 codec only which is specifically for web related media streams.

8.1.2 Video Analytic

The current state of the art and direction of research in computer vision aimed at

automating the analysis of images is presented. This includes low level identification

of objects within the field of view of cameras, following those objects over time and

between cameras, and the interpretation of those objects appearance and movements

with respect to models of behaviour .

By Using Video Analytics Triggers there are good possible ways for Posting the data

through XML files and HTTP posting to all the clients and the proposed system

can record different types of triggers like Intrusion Detection,Baggage Detection and

Crowd Control.

For Future Upgradation,the system can get the triggers like Vehicle Detection,People

Count,Tracking of an individuals.The smart camera devices for applications like facial

expression recognition must be embedded. However, more intelligent inference to

identify people and objects and fully parse scenes is likely to require scalable data-

centric systems that can be more efficiently scaled in a data center.

Functionalities can be extended in future by applying Face Recognition on those

videos captured, and using Video Analytics the system can predict by analyzing the

captured image this software will conclude whether the user is Authorized User or

Intruder. Using Combination of Video Analytics and Face Recognition Project, some

of the features can also be developed and deployed, and are listed as follows:

• In order to prevent the frauds of ATM, it is recommended to prepare the

database of all ATM customers with the banks & deployment of high reso-

lution camera and face recognition software at all ATMs. So, whenever user

will enter in ATM his photograph will be taken to permit the access after it is

being matched with stored photo from the database.

• Passport and visa verification can also be done using the proposed technology.

CHAPTER 8. CONCLUSION AND FUTURE SCOPE 61

• Driving license verification can also be exercised using Video Analytics and face

recognition technology.

Appendix A

Appendix A

This section describes the basic methods used for Face Recognition.

A.1 FaceRecognizer

class FaceRecognizer : public Algorithm

All face recognition models in OpenCV are derived from the abstract base class-

FaceRecognizer, which provides a unified access to all face recongition algorithms in

OpenCV. class FaceRecognizer : public Algorithm public:

• ! virtual destructor virtual FaceRecognizer()

• Trains a FaceRecognizer. virtual void train(InputArray src, InputArray labels)

= 0;

• Updates a FaceRecognizer. virtual void update(InputArrayOfArrays src, In-

putArray labels);

• Gets a prediction from a FaceRecognizer. virtual int predict(InputArray src)

const = 0;

62

APPENDIX A. APPENDIX A 63

Predicts the label and confidence for a given sample. virtual void predict(InputArray

src, int & label, double & confidence) const = 0;

• Serializes this object to a given filename. virtual void save(const string & file-

name) const;

• Deserializes this object from a given filename. virtual void load(const string &

filename);

• Serializes this object to a given cv::FileStorage. virtual void save(FileStorage

& fs) const = 0;

Deserializes this object from a given cv::FileStorage. virtual void load(const

FileStorage & fs) = 0;

A.2 Setting the Thresholds

You can apply a threshold on the prediction, to tell, whether a face belongs to the

training dataset or if it is unknown. Setting a threshold for the Eigen faces method,

when creating the model

Let’s say we want to keep 10 Eigenfaces and have a threshold value of 10.0

int numcomponents = 10; double threshold = 10.0; Then if you want to have a

cv::FaceRecognizer with a confidence threshold, create the concrete implementation

with the appropiate parameters:

Ptr < FaceRecognizer > model == createEigenFaceRecognizer(num components, threshold);

The following line reads the threshold from the Eigenfaces model:

double current threshold = model− > getDouble(”threshold”);

And this line sets the threshold to 0.0:

model− > set(”threshold”, 0.0);

APPENDIX A. APPENDIX A 64

A.3 Getting the name of a FaceRecognizer

Create a FaceRecognizer:

Ptr < FaceRecognizer > model = createEigenFaceRecognizer(); And here’s how

to get its name: std :: stringname = model− > name();

A.4 FaceRecognizer::train

Trains a FaceRecognizer with given data and associated labels. void FaceRecog-

nizer::train(InputArrayOfArrays src, InputArray labels) = 0

Parameters:

src The training images, that means the faces you want to learn. The data has to

be given as a vector < Mat >.

labels The labels corresponding to the images have to be given either as a vector <

int > The images are read with imread() and pushed into a std :: vector < Mat >

The labels of each image are stored within a std :: vector < int > the label as the

subject (the person) this image belongs to, so same subjects (persons) should have

the same label. Create a new Fisherfaces model and retain all available Fisherfaces,

this is the most common usage of this specific FaceRecognizer:

Ptr < FaceRecognizer > model = createF isherFaceRecognizer(); This is the

common interface to train all of the available cv::FaceRecognizer implementations:

model− > train(images, labels);

A.5 FaceRecognizer::update

Updates a FaceRecognizer with given data and associated labels

• src The training images, that means the faces you want to learn. The data

has to be given as a vector < Mat >.

APPENDIX A. APPENDIX A 65

• labels The labels corresponding to the images have to be given either as a

vector < int >

Create a new LBPH model (it can be updated) and use the default parameters, this

is the most common usage of this specific FaceRecognizer:

Ptr < FaceRecognizer > model = createLBPHFaceRecognizer(); This is the

common interface to train all of the available cv::FaceRecognizer implementations:

model− > train(images, labels); Some containers to hold new image: vector <

Mat > newImages; vector < int > newLabels; You should add some images to the

containers:

Now updating the model is as easy as calling: model− > update(newImages, newLabels);

This will preserve the old model data and extend the existing model with the new

features extracted from newImages!

A.6 FaceRecognizer::predict

C++: int FaceRecognizer::predict(InputArray src) const = 0 C++: void FaceRec-

ognizer::predict(InputArray src, int& label, double& confidence)const = 0 Predicts a

label and associated confidence (e.g. distance) for a given input image.

Parameters:

• src Sample image to get a prediction from.

• label The predicted label for the given image.

• confidence Associated confidence (e.g. distance) for the predicted label.

The suffix const means that prediction does not affect the internal model state, so

the method can be safely called from within different threads. The following example

shows how to get a prediction from a trained model: using namespace cv; Do your

initialization here (create the cv::FaceRecognizer model) Read in a sample

image: Mat img = imread(”person1.jpg”, CV LOAD IMAGE GRAYSCALE); And

get a prediction from the cv::FaceRecognizer: int predicted = model-¿predict(img);

APPENDIX A. APPENDIX A 66

A.7 FaceRecognizer::save

C++: void FaceRecognizer::save(const string & filename) const Saves this model

to a given filename, either as XML or YAML. Parameters: filename The file-

name to store this FaceRecognizer to (either XML/YAML). C++: void FaceRec-

ognizer::save(FileStorage & fs) const Saves this model to a given FileStorage.

A.8 FaceRecognizer::load

Loads a FaceRecognizer and its model state. C++: void FaceRecognizer::load(const

string & filename) C++: void FaceRecognizer::load(const FileStorage & fs) = 0 Loads

a persisted model and state from a given XML or YAML file . Every FaceRecog-

nizer has to overwrite FaceRecognizer::load(FileStorage & fs) to enable loading the

model state.FaceRecognizer::load(FileStorage & fs) in turn gets called byFaceRecog-

nizer::load(const string & filename), to ease saving a model.

Appendix B

Appendix B

In this section Standard APIs used for project is explained.

B.1 NICE VISION API

B.1.1 VID CONNECT

The VID CONNECT API function to receive alarms from Recorder.

VID Connect (& Handle, 10, //seconds IpAddress, & RetAddress);

Input Parameters

Table I: Input Parameter

Type Name Description
LONGINT TimeoutInSeconds The timeout, in seconds,

used to send the commands
to the server.

CHAR* Address The TCP/IP address of the
server

67

APPENDIX B. APPENDIX B 68

Output Parameters

Table II: Output Parameter

Type Name Description
LONGINT RetStatus A value of Vid Ok is re-

turned on success.
CHAR* Handle A communication handle,

created and closed by the
client.

B.1.2 SYS AlarmConnect

The SYS AlarmConnect API function is used to register the application and VID StreamFetch

to receive alarm message.

SYS AlarmConnect (Handle, MessageId, NULL, NULL, & RetStatus, &

MaxDataSize, NULL, NULL);

Table III: Input Parameter

Type Name Description
COMM HANDLE Handle The communication

handle.
DWORD MessageId The message ID from which

we want to start receiving
messages.
0: Start receiving new mes-
sages (usually sent on first
connect)
n: Start receiving from mes-
sage ID = n. When re-
connecting, use the last re-
ceived message ID

void *Reserved2. . . 1 Reserved for future use.

APPENDIX B. APPENDIX B 69

Table IV: Output Parameter

Type Name Description
SYS STATUS* *ret stat Pointer indicating the sta-

tus of the command. A
value of Sys Ok is returned
on success..

LONGINT MaxDataSize Maximum data size needed
for one message body.

void *Out Reserved2. . . 1 Reserved for future use.

B.1.3 VID StreamFetch

API is used to receive the alarm messages.

void VIDAPI VID StreamFetch (COMM HANDLE Handle,

void ResBuf,

LONGINT ResultLen,

LONGINT LongTimeOut,

VID STATUS RetStatus,

LONGINT ReceivedSize);

Table V: Input Parameter

Type Name Description
COMM HANDLE* Handle A communication handle,

created and closed by the
client.

LONGINT ResultLen The length of the result
buffer containing the re-
quested information.

LONGINT LongTimeOut A Boolean value. If
True, timeout is set to
NC LONG TIMEOUT.

B.1.4 VID DisConnect

Unallocates a handle for a specific server address. void VIDAPI VID DisConnect(

/* Inputs: */ COMM HANDLE Handle, /* Outputs: */ LONGINT RetStatus);

APPENDIX B. APPENDIX B 70

Table VI: Output Parameter

Type Name Description
void ResBuf The buffer of the result.

VID STATUS RetStatus A value of Vid Ok is
returned on each re-
trieved. When all record
has been read a value of
NC CONNECTION CLOSE
is returned. To stop fetch-
ing alarms before reading
all the records or in
case of failure, execute
VID StreamClose.

LONGINT ReceivedSize The size of the received
buffer.
NC LONG TIMEOUT.

Table VII: Input Parameter

Type Name Description
COMM HANDLE* Handle A communication han-

dle, created and closed
by the client. Closes
the handle obtained by
VID Connect.

LONGINT ResultLen The length of the result
buffer containing the re-
quested information.

Table VIII: Output Parameter

Type Name Description
LONGINT RetStatus A value of Vid Ok is

returned on success.
VID Connect.

References

[1] DTLS extension To Establish Keys for SRTP http://tools.ietf.org/html/rfc5764

[2] Session Description Protocol(SDP) http://tools.ietf.org/html/rfc4566.html

[3] Interactive Connectivity Establishment https://tools.ietf.org/html/rfc5245

[4] WebRTC book http://chimera.labs.oreilly.com/books/1230000000545/ch18.html

[5] STUN for NAT http://tools.ietf.org/html/rfc5389

[6] WebRTC http://www.webrtc.org/

[7] Paul Viola and Michael J. Jones. Rapid Object Detection using a Boosted Cascade

of Simple Features. IEEE CVPR, 2001.

[8] Rainer Lienhart and Jochen Maydt. An Extended Set of Haar-like Features for

Rapid Object Detection. IEEE ICIP 2002, Vol. 1, pp. 900-903, Sep. 2002.

[9] Online source URL: http://msdn.microsoft.com/en-

us/library/debx8sh9(v=vs.110).aspx

[10] Real Time Intelligence Console(RIC) URL: http://www.motorolasolutions.com/US-

EN/Business+Product+and+Services/Software+and+Applications/Public+Sector

+Applications/Public+Safety+Applications/Real-time Intelligence Console

[11] R. T. Collins, R. Gross, and J. Shi. Silhouette-based human identification from

body shape and gait. In Proc. of Fifth IEEE Conf. on Automatic Face and Gesture

Recognition, pages 366371, 2002.

71

REFERENCES 72

[12] Real Time Video Intelligence(RTVI) URL: http://www.motorolasolutions.com/US-

EN/Business+Product+and+Services/Software+and+Applications/Public+Sector

+Applications/Government+Video+Applications/Real-

Time+Video+Intelligence

[13] Online source :Fiddler Tool URL: http://msdn.microsoft.com/enus/library/windows/

desktop/ff966510(v=vs.85).aspx

[14] Online source : NICE NVR applications URL:

http://www.nice.com/video/analytics

[15] Online source : Trigger Architecture URL:http://www.agentvi.com/20-

technology-58-Video Analytics Architectures

[16] Online source URL:http://docs.opencv.org/modules/contrib

/doc/facerec/facerec tutorial.html/introduction

[17] Book: Adaptive image contrast enhancement using generalizations of histogram

equalization

[18] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian detec-

tion system. In Proc. of IEEE Int. Conf. on Intelligent Vehicles, pages 241246,

Germany, October 1998.

[19] Online source URL: http://docs.opencv.org/doc/tutorials/objdetect

/cascade classifier/cascade classifier.html

[20] Online source URL: http://docs.opencv.org/modules/objdetect/doc

/cascade classification.html

[21] Online source URL:http://www.shervinemami.info/faceRecognition.html

	Declaration
	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	List of Tables
	List of Figures
	Introduction
	Background
	Objective of Study
	Scope of Work
	Video Analytic
	WEBRTC

	Thesis Organization

	Literature Survey
	Video Analytics
	Network Video Recorder

	WebRTC
	Protocol Stack
	Data Packet

	Architecture and Trigger Applications
	Video Analytic Architecture
	Server Based Implementation
	Edge Based Implementation

	Trigger Applications

	Video Analytics
	Video Analytics Configuration
	Network Video Recorder(NVR)Configuration
	Video Analytic Application configuration
	Trigger Detection
	Video Analytic Algorithm
	Event Posting

	Facial Recognition
	Face Detection using Haar Cascades
	Basics
	Haar-cascade Detection in OpenCV
	Image Preprocessing
	DataBase

	Start Recognition
	Server Listenning
	Face Recognition

	Hardware and Software Tools
	Surveillance Cameras
	Network Video Recorder
	Media Server
	WebRTC Gateway
	WebRTC Client

	WebRTC
	WebRTC Gateway
	RTSP Signaling
	WebSocket Signaling
	Ice-Stun Signaling
	DTLS-SRTP Signaling

	WebRTC Working
	Block Diagram
	Client-Gateway Handshake
	Gateway-Media Server
	Relay SRTP and SRTCP Packets

	Experiments and Results
	Results

	Conclusion and Future Scope
	Conclusion and Future Scope
	WebRTC
	Video Analytic

	Appendix A
	FaceRecognizer
	Setting the Thresholds
	Getting the name of a FaceRecognizer
	FaceRecognizer::train
	FaceRecognizer::update
	FaceRecognizer::predict
	FaceRecognizer::save
	FaceRecognizer::load

	Appendix B
	NICE VISION API
	VID_CONNECT
	SYS_AlarmConnect
	VID_StreamFetch
	VID_DisConnect

