
AVK RVCT TO LLVM
TOOL CHAIN TRANSITION

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

JAYKUMAR P. PATEL
(12MECE36)

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2014

AVK RVCT TO LLVM
TOOL CHAIN TRANSITION

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering
(Embedded Systems)

By

JAYKUMAR P. PATEL

(12MECE36)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. Praveen kumar Ramamoorthy Dr. Nagendra P. Gajjar
Staff Design Engineer,ATEG Professor, EC Department,
ARM Embedded Technologies Pvt. Ltd., Institute of Technology,
Bangalore. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

- JAYKUMAR P. PATEL

iv

Certificate

This is to certify that the Major Project entitled ”AVK RVCT To LLVM Tool

Chain Transition” submitted by Jaykumar P. Patel (12MECE36), towards

the partial fulfillment of the requirements for the degree of Master of Technology

in Embedded System, Electronics and Communication Engineering (Embedded Sys-

tems) of Nirma University of Science and Technology, Ahmedabad is the record of

work carried out by him under my supervision and guidance. In our opinion, the

submitted work has reached a level required for being accepted for examination. The

results embodied in this major project, to the best of my knowledge, haven’t been

submitted to any other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr. N.P. Gajjar Dr. N.P. Gajjar

Guide Program Coordinator

Dr. D.K.Kothari
Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha
Head of EE Dept. Director, IT

v

Certificate

This is to certify that the Project entitled ””AVK RVCT To LLVM Tool Chain

Transition”” submitted by Jaykumar P. Patel (12MECE36), towards the sub-

mission of the Project for requirements for the degree of Master of Technology in

Embedded Systems, Nirma University, Ahmedabad is the record of work carried out

by him under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination.

Mr. Praveen kumar Ramamoorthy

Staff Design Engineer,

Processor Division (Architecture Validation),

ARM Embedded Technologies Pvt. Ltd.,

Bangalore

vi

Acknowledgements

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani, Head

of Electrical Engineering Department, and Dr. N.P.Gajjar, PG Coordinator of

M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I take this opportunity to express my profound gratitude and deep regards to Dr.

Nagendra P. Gajjar, guide and Coordinator of M.Tech Embedded Systems pro-

gram for his exemplary guidance, monitoring and constant encouragement throughout

the course of this thesis. The blessing, help and guidance given by him time to time

shall carry me a long way in the journey of life on which I am about to embark.

I would take this opportunity to express a deep sense of gratitude to Company Mentor

Mr. Praveen Kumar Ramamoorthy, Staff Design Engineer, ARM Embedded

Technology Pvt Ltd. for his cordial support, constant supervision as well as for pro-

viding valuable information regarding the project and guidance, which helped me in

completing this task through various stages.

I am obliged to staff members of Architecture Validation Department, ARM Em-

bedded Technology Pvt. Ltd. for the valuable information provided by them in their

respective fields. I am grateful for their cooperation during the period of my assign-

ment.

Lastly, I thank almighty, my parents, brother, sisters and friends for their constant

encouragement without which this assignment would not be possible.

- Jaykumar P. Patel

12MECE36

vii

Abstract

RVCT(Real View Compiler Tool) is a based on arm proprietary compiler technology

using armcc for C/C++ compilation. v8AVK(ARMv8 Architecture Validation Kit)

is a set of suites containing test-cases which is used to qualify the compliance of

any core implementation as defined in the architecture specification. V8AVS(ARMv8

Architecture Validation Suite) product had been compliant and was using RVCT

based tool chain for architecture validation. LLVM(Low Level Virtual Machine) is

new compiler technology which ARM is adopting for its better configurable features

and ease of optimization extensions and wide spread adaptability for being open

source based. Under the Architecture validation group at ARM, this project aims

at the task to convert the code base of ARMv8 AVK that is only RVCT tool chain

compliant into one that supports both LLVM and RVCT compliant. The converted

code is to be qualified on the simulator to ensure that the LLVM tool chain had

generated the appropriate code and to provide feedback on the tool chain and get

associated bugs in tool chain fixed if the code conversion behavior is inconsistent.

This project list down the various aspects of this porting work to ensure how this

transition path was made smoother to ensure thousands of tests were made compliant

across RVCT and LLVM. There are different parts of the tool chain like the linker,

compiler and assembler. This project primarily focuses on the compiler code base

such that the LLVM support is enabled for AVK.

viii

Abbreviation Notation and Nomenclature

AVK . Architecture Validation Kit

RVCT . Real View Compiler Tool

LLVM . Low level Virtual Machine

ARM ARM . ARM Architecture Reference Manual

ARMCC . ARM RVCT Compiler

ARMCLANG . ARM LLVM Compiler

V8VAL .ARMv8 Validation Abstraction Layer

ARMASM .ARM Assembler

ARMLINK . ARM Linker

ARMAR . ARM Librarian

FROMELF . ARM Image Convert Utility

AAPCS .ARM Application Procedure Call Standard

IR . Intermediate Representation

RISC . Reduce instruction Set Computer

BSD . Berkeley Software Distribution

GPL . General Public License

GCC . GNU Compiler Collection

DSB . Data Synchronous Barrier

DMB .Data Memory Barrier

ISB . Instruction Synchronous Barrier

CLZ . Count Leading Zero

SEV . Send EVent

SVC . SuperVisor Call

IRQ . Interrupt ReQuest

FIQ . Fast Interrupt reQuest

GIC . Generic Interrupt Controller

Contents

Declaration iii

Certificate iv

Certificate v

Acknowledgements vi

Abstract vii

Abbreviation Notation and Nomenclature viii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 2
1.3 Thesis Organization . 2

2 Brief Review Of Previous Work 4
2.1 ARMv8 AVK Overview . 4
2.2 RVCT Tool Chain . 5
2.3 LLVM Overview . 7
2.4 LLVM Tool Chain . 10
2.5 RVCT vs LLVM . 11
2.6 Summary . 12

3 Implementation Methodology 14
3.1 Block Level Design Of The Proposed Approach 14
3.2 Proposed Approach . 14
3.3 Analysis Phase . 16

3.3.1 Identification of ARMCC Dependent Features 16
3.3.2 ARMCC Dependent Features List 16

ix

CONTENTS x

3.3.3 Brief Description Of ARMCC Dependent Features[1][7] 16
3.4 Migration Phase . 24

3.4.1 Structural Changes in Code Base 24
3.4.2 LLVM Equivalents List . 29
3.4.3 LLVM Equivalents Of ARMCC Command Line Options . . . 29

3.5 Debug Phase . 30
3.6 Product Phase . 31
3.7 Summary . 31

4 Tests Results, Analysis and Profiling 32
4.1 Issues Faced . 34
4.2 Debug Progress . 35
4.3 Profiling for Performance Improvement 36

4.3.1 Compiler Optimization . 36
4.3.2 Profiling On Code size and Simulation Time 38

4.4 Summary . 38

5 Conclusion and Future scope of work 40
5.1 Conclusion . 40
5.2 Future scope of work . 40

List of Tables

I Class-1 Features Equivalents . 24
II Assembly Instructions of Class-3 Features 28
III LLVM Equivalents list . 29
IV ARMCC Command line options[5][6] 30

xi

List of Figures

2.1 LLVM Compilation Flow[11] . 7

3.1 Block Level Design Of The Proposed Approach 15
3.2 ARMCC Dependent List . 17
3.3 ASM Conversion . 25
3.4 DMB Conversion . 27

4.1 Snapshot of First Regression resultsfor group-1 testcases 33
4.2 Snapshot of First Regression results for group-2 testcases 33
4.3 Snapshot of Final Regression results for group-1 testcases 35
4.4 Snapshot of Final Regression results for group-2 testcases 35
4.5 Pass Rate per Week during Debug phase for group-1 36
4.6 Pass Rate per Week during Debug phase for group-2 37

xii

Chapter 1

Introduction

1.1 Motivation

The Processor Division Architecture Validation Department (PDAV) at ARM aims

to validate the Architecture and to check for the adherence of the core implementa-

tion towards the ARM Architecture. By using Architecture Validation Kit (AVK),

AV team validate the features identified by the architecture specifications, clarify any

missing / ambiguous statements in ARM(Architecture Reference Manual) manual

and ensure that nothing is missed in the manual.The Architecture Validation Kit

(AVK) is a product of ARM to ensure compliance of Architectural features. AVK is a

set of test suites to check different parts of the ARM architecture. These suites qual-

ify if a specific implementation complies with behavior as specified in ARM ARM.

This Kit is used by partners who implement their own ARM complaint processors.

Every partner of ARM intending to release ARM compliant chip, needs to ensure

that their implementation complies with features specified in ARM Architecture Ref-

erence Manual. As the ARM Architecture Reference Manual is just a manual and

does not check for compliance and the AVK is released along with this. AVK is a set

of test suites to check different parts of the ARM architecture. These suites qualify if

a specific implementation complies with behavior as specified in ARM Architecture

1

CHAPTER 1. INTRODUCTION 2

Reference Manual.

There is a growing need from partners to support more than one tool chain and

their preference to support an open source tool. In order to ensure that the partners

can use multiple tool chains, ARM had investigated multiple tool chains and found

LLVM to be meritorious due to its flexibility in extension as against other open-source

toolchains.

In short, the objective of this project is to release ARMv8 AVK which compatible to

both LLVM (Low Level Virtual Machine) -ARM Compiler 6 Tool chain and RVCT

(Real View Compiler Tool) -ARM compiler 5 which was only ARMCC compatible.

This gives the partners flexibility to adapt to either or both of these tool chains on

ARMv8 AVK.

1.2 Problem definition

The objective of this project is to convert the code base of ARMv8 AVK that is only

ARMCC compliant into one that supports both LLVM and ARMCC. The converted

code is to be qualified on the simulator to ensure that the LLVM tool chain had

generated the appropriate code and to provide feedback on the tool chain and get

associated bugs in tool chain fixed if the code conversion behaviour is inconsistent.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2, Brief Review Of Previous Work, gives overview of ARMv8 AVK, RVCT

Tool chain,LLVM Tool chain and Advantages of LLVM over RVCT. applica-

tions.

CHAPTER 1. INTRODUCTION 3

Chapter 3, Implementation Methodology, highlights the approach adopted for and

the implementation methodology adopted forthe tool chain transition from

ARMCC to LLVM .It also throws some light on the ARMCC dependent features

with a brief description of each, and changes that were made in the ARMv8

codebase to make it ARMCC independent.

Chapter 4, Tests Results, Analysis and Profiling, enumerated the generic results

and issues/bugs observed in the analysis, profiling for code size and simulation

time improvement and confidentiality issues bar me from providing the whole

results and data analysis done.

Finally, in chapter 5 concluding remarks and scope for future work is presented.

Chapter 2

Brief Review Of Previous Work

This chapter discusses about the ARMv8 Architecture Validation Kit (AVK),RVCT

tool chain (ARM Compiler 5) and the open source toolchain LLVM. ARMv8 AVK

utilizes RVCT to ensure a complete environment to build and execute the valida-

tion suites. RVCT enable us to write and build applications for the ARM family

of processors. We can use RVCT to build software programs in C, C++, or ARM

assembly language. LLVM tool chain enables the same things. The LLVM Project

is a collection of modular and reusable compiler and tool chain technologies. LLVM

has grown to be an umbrella project consisting of a number of subprojects, many of

which are being used in production by a wide variety of commercial and open source

projects. The clang technology is the one its sub projects apart from llvm-gcc and

others. Clang is one the front-end compiler for the LLVM compilation process and

has many distinct advantages over the GCC. ARM has used the clang technology

of LLVM for its new compiler armclang of ARM compiler 6 also called LLVM tool

chain.

2.1 ARMv8 AVK Overview

ARMv8 Architecture Validation Kit (AVK) is a product of ARM to ensure compli-

ance of ARMv8 Architectural features. AVK is a set of test suites to check different

4

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 5

parts of the ARMv8 architecture. The ARMv8 AVK includes validation suites for the

ARMv8 architecture as defined by the ARM Architecture Reference Manual. ARMv8

AVK provides a complete environment to build and execute the validation suites. The

ARMv8 AVK enables ARMv8 architecture licensees to verify that their implementa-

tions are compliant with the architecture as defined by ARM.

The Components of Architecture Validation Kit are:

• V8VAL: ARMv8 Validation Abstraction Layer is the software layer on which

the AV tests run. V8VAL implemented as a set of standard Application pro-

gramming Interface (API) and build as a library. This library can be linked

to any test case to get the final ELF image used to run on AEM (simulator).

VAL provides an abstraction which enables the tests to be independent of tar-

get and platform implementation choices. It also provides support for several

common features such as boot entry, handler installation, context switching,

event generation, and memory management.

• ARMv8 Test Suites (ARCH64 suites and ARCH32 suites): The tests

are written to validate an ARM processor in a testbench environment. The tests

are written in such way that it transmits test status and pass or fail messages

on the terminal.The test suites comprises of AArch64 tests and AArch32 tests.

The ARCH64 tests check the compliance with ARMv8 architecture in full 64

bit mode and ARCH32 tests check the compliance with ARMv8 architecture in

full 32 bit mode.

2.2 RVCT Tool Chain

RVCT consists of a suite of tools, together with supporting documentation and ex-

amples. These tools enable us to write and build applications for the ARM family of

processors.

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 6

We can use RVCT to build software programs in C, C++, or ARM assembly language.

The components of RVCT consists are[6]:

• Armcc:The ARM and Thumb compiler. This compiles your C and C++ code.

It supports inline and embedded assembler syntax

• Armasm: The ARM and Thumb assembler. This assembles ARM and Thumb

assembly language sources.

• Armlink: The linker. This combines the contents of one or more object files

with selected parts of one or more object libraries to produce an executable

program.

• Armar: The librarian. This enables sets of ELF format object files to be

collected together and maintained in archives or libraries. You can pass such a

library or archive to the linker in place of several ELF files. You can also use

the archive for distribution to a third party for further application development.

• Fromelf : The image conversion utility. This can also generate textual infor-

mation about the input image, such as disassembly and its code and data size.

• C++ libraries:The ARM C++ libraries provide Helper functions when com-

piling C++.

• C libraries: An implementation of the library features as defined in the C and

C++ standards, Extensions specific to the compiler.

ARM Compiler is the term used for the compilation tools produced by ARM.

After release of ARM Compiler 4.1, the term was renamed to Real View Compiler

Tool(RVCT). The ARM Compiler 5 is the latest version as of this project date. The

future release will be ARM COMPILER 6 which be based on LLVM and will be

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 7

backward compatible also. So ARM Compiler 6 is the next generation C/C++ com-

pilation toolchain from ARM, based on Clang and the LLVM Compiler framework.

Version 6.00 of the toolchain provides architectural support for v8 of the ARM Ar-

chitecture and alpha support for v7-A. It can be used in conjunction with ARM DS-5

Development Studio to build and debug ARMv8 executable code.

2.3 LLVM Overview

The LLVM Project is a collection of modular and reusable compiler and tool chain

technologies. LLVM began as a research project at the University of Illinois, with

the goal of providing a modern, SSA-based compilation strategy capable of support-

ing both static and dynamic compilation of arbitrary programming languages. Since

then, LLVM has grown to be an umbrella project consisting of a number of subpro-

jects, many of which are being used in production by a wide variety of commercial

and open source projects as well as being widely used in academic research. Code in

the LLVM project is licensed under the ”UIUC” BSD-Style license.[2]

LLVM Compilation process:

Figure 2.1: LLVM Compilation Flow[11]

The Low Level Virtual Machine (LLVM) is a compiler infrastructure which focuses

on compile-time, link-time, and runtime optimization of programs written in multiple

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 8

languages.[12] Unlike most other compilers, LLVM compiles source code not directly

into binary code, but into intermediate code with its own virtual instruction set.

This low level intermediate code looks like a simple 3-address RISC instructions, but

provides language independent type system.This intermediate code is in the Static

Single Assignment (SSA) form to facilitate optimization. Based on this intermediate

code, the LLVM system includes language independent and machine-independent op-

timization.

LLVM IR instructions are in three address form, which means that they take some

number of inputs and produce a result in a different register. (This is in contrast to a

two-address instruction set, like X86, which destructively updates an input register,

or one-address machines that take one explicit operand and operate on an accumula-

tor or the top of the stack on a stack machine.)

In an LLVM-based compiler, a front end is responsible for parsing, validating and

diagnosing errors in the input code, then translating the parsed code into LLVM IR

. This IR is optionally fed through a series of analysis and optimization passes which

improve the code, then is sent into a code generator to produce native machine code.

LLVM has grown to be an umbrella project consisting of a number of subprojects,

many of which are being used in production by a wide variety of commercial and

open source projects. The clang technology is the one its sub projects. The Clang is

an ”LLVM native” C/C++/Objective-C compiler, which aims to deliver amazingly

fast compiles (e.g. about 3x faster than GCC when compiling Objective-C code in a

debug configuration), extremely useful error and warning messages and to provide a

platform for building great source level tools.[9] The Clang Static Analyzer is a tool

that automatically finds bugs in your code, and is a great example of the sort of tool

that can be built using the Clang front-end as a library to parse C/C++ code. In

short, clang(BSD license) is one the front-end compiler for the LLVM compilation

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 9

process apart from llvm-gcc (GPL license) and others. There are many advantages

of clang over the GCC.

Pro’s of clang vs GCC[8]:

• Design of clang intended to be easily understandable by anyone who is familiar

with the languages involved and who has a basic understanding of how a com-

piler works. GCC has a very old codebase which is difficult for new developers.

• Clang is designed as an API, it allows to be reused in the IDEs (etc) and

integrate into other tools. GCC is built as a monolithic static compiler, which

makes it extremely difficult to use as an API and integrate into other tools.

• By using GCC, we can’t link multiple targets into one binary, while Clang does

not have this problem.

• Clang is much faster and uses far less memory than GCC.

• Clang aims to provide extremely clear and concise diagnostics (error and warn-

ing messages), and includes support for expressive diagnostics. GCC’s warnings

are sometimes acceptable, but are often confusing and it does not support ex-

pressive diagnostics. Clang also preserves typedefs in diagnostics consistently,

showing macro expansions and many other features.

• Clang uses a BSD license, which allows it to be embedded in software and the

proprietary commercialization of software containing clang source code. GCC

is licensed under the GPL license which allows it to be embedded in software

but prevent the proprietary commercialization of open source code.

• Clang inherits a number of features from its use of LLVM as a backend, in-

cluding support for a bytecode representation for intermediate code, pluggable

optimizers, link-time optimization support, Just-In-Time compilation, ability

to link in multiple code generators, etc.

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 10

Con’s of clang vs GCC[8]:

• GCC supports languages that clang do not aim to, such as, FORTRAN, Java,

Ada, etc.

• GCC supports more targets than clang.

ARM utilized the clang technology of LLVM for its new release compiler of ARM

Compiler 6 tool chain called ARMCLANG.

2.4 LLVM Tool Chain

ARM Compiler 6 enables you to build applications for the ARM family of processors

from C, C++, or assembly language source.

The components of LLVM tool chain are[5]:

• Armclang: The compiler is based on LLVM and Clang technology. LLVM

is a set of open-source components that allow the implementation of optimiz-

ing compiler frameworks. Clang is a compiler front end for LLVM, providing

support for the C and C++ programming languages.

• Armasm: The assembler. This assembles A32, A64, and T32 assembly lan-

guage sources.

• Armlink: The linker. This combines the contents of one or more object files

with selected parts of one or more object libraries to produce an executable

program.

• Armar: The librarian. This enables sets of ELF object files to be collected

together and maintained in archives or libraries. You can pass such a library or

archive to the linker in place of several ELF files. You can also use the archive

for distribution to a third party for further application development.

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 11

• Fromelf : The image conversion utility. This can also generate textual infor-

mation about the input image, such as disassembly and its code and data size.

• ARM C++ libraries: The ARM C++ libraries provide helper functions when

compiling C++.

• ARM C libraries: The ARM C libraries provide:An implementation of the

library features as defined in the C and C++ standards and Common nonstan-

dard extensions to many C libraries.

2.5 RVCT vs LLVM

The compiler in ARM Compiler 6 toolchain is armclang, based on Clang, a C/C++

front end for the LLVM code-generation framework. LLVM is designed as a set of

reusable libraries with well defined interfaces. In comparison, armcc, the compiler in

ARM Compiler 5 is composed of modules with less well defined interfaces and sepa-

ration, which makes the parts less reusable across a larger code generation problem

space. armclang strictly adheres to the three phase LLVM design with a front end

parser and syntax checker, a mid end optimizer and code generators that produce

native machine code in the backend. The three phases have clear separation in terms

of their intended function and this aspect of LLVM makes it reusable and flexible.

LLVM IR, or Intermediate representation, is the glue that connects the three

phases. LLVM IR is the only interface to the optimizer and is designed as a first-class

language with well defined semantics. LLVM IR was designed from ground up, with

supporting common compiler optimizations in mind. The optimizer itself is designed

as a set of passes that apply transformations to the input IR to produce IR that

feeds into the code generator, which then can produce efficient machine code. The

library based design of the optimizer allows the toolchain designers to select passes

and optimizations that are most relevant for the given application domain and pro-

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 12

duce efficient code with minimum effort.

LLVM framework also makes it easier to add new targets, e.g. by using target

description (.td) files to concisely describe a large part of the target architecture in a

domain-specific language. Partners also have the option of adding their own backends

for custom DSPs or GPUs as plugins into the toolchain. The code generator itself is

based on several built-in passes for common problems like instruction selection, regis-

ter allocation, scheduling etc, so adding new code generators from scratch is relatively

easy. The expressiveness of target description syntax is being continuously improved,

so that it becomes easier to add targets in the future. The modular design and robust

LLVM IR format yields itself well to specialized code generation challenges such as

security related extensions sometimes found on embedded micro-controllers .

ARM Compiler 6 comes with optimized libraries and armlink, an industrial strength

linker that has been developed over the years as part of the ARM Compiler toolchain

and this nicely complements the benefits accrued from LLVM as detailed above. For

example, we expect to introduce link time optimization in a future version of the

product that would bring together the benefits of LLVM technology for optimization

(leveraging the support for bitcode format in LLVM) and the time tested robustness of

armlink. When introduced, this would enable optimization across library boundaries

which was not possible using older versions of ARM Compiler. By applying ARMs

best-in-class embedded libraries, ARM Compiler 6 generates highly optimized library

functions tuned specifically for the ARM architecture, improving both performance

and power consumption.

2.6 Summary

The chapter discussed about the ARMv8 Architecture Validation Kit (AVK) .The

ARMv8 AVK enables ARMv8 architecture licensees to verify that their implemen-

CHAPTER 2. BRIEF REVIEW OF PREVIOUS WORK 13

tations are compliant with the architecture as defined by ARM. As of now, ARMv8

AVK utilized RVCT to ensure a complete environment to build and execute the vali-

dation suites.RVCT enable us to write and build applications for the ARM family of

processors. We can use RVCT to build software programs in C, C++, or ARM as-

sembly language. ARM Compiler is the term used for the compilation tools produced

by ARM. This term replaced to RVCT from release 4.1 onwards.The ARM Compiler

5 is the latest version till date. The future release will be ARM COMPILER 6 which

be based on LLVM and will be backward compatible also. Clang is one the front-end

compiler for the LLVM compilation process and has many distinct advantages over

the GCC. ARM utilized the clang technology of LLVM for its new release compiler

of ARM Compiler 6 tool chain called ARMCLANG.

Chapter 3

Implementation Methodology

The chapter discusses the approach adopted for and the implementation methodology

adopted for the tool chain transition from ARMCC to LLVM. It also throws some

light on the ARMCC dependent features with a brief description of each, and changes

that were made in the ARMv8 codebase to make it ARMCC independent and how

we replaced the ARMCC dependent features in the code-base with the ARMCC

independent ones which would well supported by both of the compilers.

3.1 Block Level Design Of The Proposed Approach

The following block diagram depicts the approach that we have proposed and adopted

for the tool chain transition to LLVM for ARMv8 AVK.

3.2 Proposed Approach

• Analysis Phase: Identification of armcc dependent features. This phase de-

scribes how we identified the armcc dependent features in the v8VAL. At the

end of this phase, we knew that what were the armcc dependent features and

where they were getting used.(Step-1)

14

CHAPTER 3. IMPLEMENTATION METHODOLOGY 15

Figure 3.1: Block Level Design Of The Proposed Approach

• Migration Phase: Structural changes in v8VAL and ARCH64. This phase

describes the conversion of each armcc dependent feature into independent ones

and the structural changes made to v8VAL code base.(Step-2 and 3)

• Debugging Phase: Check for the qualification of the converted code, fix any

inconsistencies observed. After making v8VAL LLVM compatible, the task was

to qualify the converted code base on to the simulator. For the qualification, we

would compile the modified v8VAL codebase and the tests cases by LLVM with

equivalent options and would be running onto the AEM. And we would ensure

that the LLVM tool chain had generated the appropriate code and provide

feedback on the tool chain and get associated bugs in tool chain fixed if the

code conversion behaviour is inconsistent.(Step-4 and 5)

• Product Phase:Once everything is observed stable, the next task is to prepare

v8VAL and ARCH64 as product such that it could be released to partner with

CHAPTER 3. IMPLEMENTATION METHODOLOGY 16

LLVM toolchain to validate their ARM compliance implementation.

3.3 Analysis Phase

3.3.1 Identification of ARMCC Dependent Features

There are certain features in the v8VAL codebase that are compatible only with

ARMCC compiler. They begin with double underscore. To identify these features, a

tool called compatibility checker is used. The ARM Compiler Source Compatibility

Checker examines C or C++ source code and highlights language extensions that

were supported by previous versions of ARM Compilers but are no longer supported

by ARM Compiler 6. Compatibility checker when run on the c code it throws warning

when incompatibilities are identified.

For example: Warning: armcc extension ’ asm’

For implementing this, Make-files for v8VAL libraries were edited so that while run-

ning a v8 test, it would also run the compatibility checker for all the files. The result

was stored in a log file. A Perl script was written that could extract those warnings

for armcc extensions along with the file names which contained those features from

that log file. This gave us all the armcc dependent features, all the concerned file

names along with their path and the lines in which that feature has been used in the

code.

3.3.2 ARMCC Dependent Features List

The following ARMCC dependent features were listed and we categorized them into

following four classes:

3.3.3 Brief Description Of ARMCC Dependent Features[1][7]

a. weak

CHAPTER 3. IMPLEMENTATION METHODOLOGY 17

Figure 3.2: ARMCC Dependent List

The weak keyword instructs the compiler to export symbols weakly. The

weak keyword can be applied to function and variable declarations, and func-

tion definitions. For declarations, this storage class specifies an extern object

declaration that, even if not present, does not cause the linker to fault an un-

resolved reference. For example: weak void f(void); ... f(); // call f weakly

If the reference to a missing weak function is made from code that compiles to

a branch or branch link instruction, then either: The reference is resolved as

branching to the next instruction. This effectively makes the branch a NOP.

The branch is replaced by a NOP instruction.

b. align

The align keyword instructs the compiler to align a variable on an n-byte

boundary. align is a storage class modifier. It does not affect the type of the

function. align(n) is useful when the normal alignment of the variable being

declared is less than n.Eight-byte alignment can give a significant performance

advantage with VFP instructions.

c. packed

CHAPTER 3. IMPLEMENTATION METHODOLOGY 18

The packed qualifier sets the alignment of any valid type to 1. This means that

there is no padding inserted to align the packed object and objects of packed

type are read or written using unaligned accesses. The packed qualifier applies

to all members of a structure or union when it is declared using packed. There

is no padding between members, or at the end of the structure. All substructures

of a packed structure must be declared using packed. Integral sub fields of an

unpacked structure can be packed individually.

The packed qualifier is useful to map a structure to an external data structure,

or for accessing unaligned data, but it is generally not useful to save data size

because of the relatively high cost of unaligned access. Only packing fields in a

structure that requires packing can reduce the number of unaligned accesses.

d. svc

The svc keyword declares a SuperVisor Call (SVC) function taking up to

four integer-like arguments and returning up to four results in a value in regs

structure.The svc causes an exception. This means that the processor mode

changes to Supervisor, the CPSR is saved to the Supervisor mode SPSR, and

execution branches to the SVC vector. Supervisor calls are normally used to

request privileged operations or access to system resources from an operating

system.

e. asm

This keyword passes information from the compiler to the ARM assembler ar-

masm. The precise action of this keyword depends on its usage.

• Embedded Assembler:The asm keyword can declare or define an em-

bedded assembly function. Functions declared with asm or asm can have

arguments, and return a type. They are called from C and C++ in the

same way as normal C and C++ functions.

For example:

CHAPTER 3. IMPLEMENTATION METHODOLOGY 19

asmreturn-type function-name(parameter-list)

{

// ARM/Thumb assembler code

instruction;comment is optional

...

instruction

}

• Inline Assembler:The asm keyword can incorporate inline assembly

into a function.

For example:

int qadd(inti, int j)

{

int res;

asm

{

ADD res, i, j

}

return res;

}

• Assembler Labels:The asm keyword can specify an assembler label for

a C symbol. Assembler labels specify the assembler name to use for a C

symbol. For example, you might have assembler code and C code that

uses the same symbol name, such as counter. Therefore, you can export a

different name to be used by the assembler

For example:

int count asm (”count v1”); // export count v1, not count

CHAPTER 3. IMPLEMENTATION METHODOLOGY 20

• Named Register Variables: The asm keyword can declare a named

register variable. The compiler enables you to access registers of an ARM

architecture-based processor or coprocessor using named register variables

For example:

register int foo asm(”r0”);

f. dmb

It generates a DMB (data memory barrier) instruction or equivalent CP15 in-

struction. The DMB instruction ensures that all explicit data memory transfers

before the DMB are completed before any subsequent explicit data memory

transactions after the DMB starts. This ensures correct ordering between two

memory accesses. DMB ensures the observed ordering of memory accesses.

Memory accesses of the specified type issued before the DMB are guaranteed

to be observed (in the specified scope) before memory accesses issued after the

DMB. For example, DMB should be used between storing data, and updating

a flag variable that makes that data available to another core.

g. dsb

The DSB instruction ensures all explicit data transfers before the DSB are

complete before any instruction after the DSB is executed.It generates a DSB

(data synchronization barrier) instruction or equivalent CP15 instruction. DSB

ensures the completion of memory accesses. A DSB behaves as the equivalent

DMB and has additional properties. After a DSB instruction completes, all

memory accesses of the specified type issued before the DSB are guaranteed to

have completed.

h. isb

It generates an ISB (instruction synchronization barrier) instruction or equiv-

alent CP15 instruction. This instruction flushes the processor pipeline fetch

CHAPTER 3. IMPLEMENTATION METHODOLOGY 21

buffers, so that following instructions are fetched from cache or memory. An

ISB is needed after some system maintenance operations. An ISB is also needed

before transferring control to code that has been loaded or modified in memory,

for example by an overlay mechanism or just-in-time code generator. The ISB

instruction flushes the pipeline in Cortex-M processors and ensures effects of

all context altering operations prior to the ISB are recognized by subsequent

operations. It should be used after the CONTROL register is updated.

i. sev

It generates a SEV (send event) instruction. This causes an event to be signaled

to all processors in a multiprocessor system. It is a NOP on a uniprocessor

system. If SEV is implemented, WFE must also be implemented.

j. wfe

It generates a WFE (wait for event) hint instruction, or nothing. The WFE

instruction allows (but does not require) the processor to enter a low-power

state If the Event Register is not set, WFE suspends execution until one of the

following events occurs:

• an IRQ interrupt, unless masked by the CPSR I-bit

• an FIQ interrupt, unless masked by the CPSR F-bit

• an Imprecise Data abort, unless masked by the CPSR A-bit

• a Debug Entry request, if Debug is enabled

• an Event signaled by another processor using the SEV instruction

k. rev

This intrinsic inserts a REV instruction or an equivalent code sequence into the

instruction stream generated by the compiler. It enables you to convert a 32-bit

big-endian data value into a little-endian data value, or a 32-bit little-endian

data value into a big-endian data value from within your C or C++ code.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 22

l. clz

This intrinsic inserts a CLZ instruction or an equivalent code sequence into

the instruction streamgenerated by the compiler. It enables you to count the

number of leading zeros of a data valuein your C or C++ code.

For example:

unsigned char clz(unsigned intval)

The clz intrinsic returns the number of leading zeros in val.

m. ldrex- Load Register Exclusive

This intrinsic inserts an instruction of the form LDREX[size] into the instruc-

tion stream generatedby the compiler. It enables you to load data from memory

in your C or C++ code using an LDREX instruction. size in LDREX[size] is

B for byte stores or H for halfword stores. If no size is specified,word stores

are performed. Load-exclusive performs a load from memory and causes the

physical address of the access to be tagged as exclusive-access for the request-

ing processor. This causes any other physical address that has been tagged by

the requesting processor to no longer be tagged as exclusive-access.

For Example:

unsigned int ldrex(volatile void *ptr)

Where:

• ptr points to the address of the data to be loaded from memory. To specify

the type of the data to be loaded, cast the parameter to an appropriate

pointer type.

• The ldrex intrinsic returns the data loaded from the memory address

pointed to by ptr

n. strex - Store-Exclusive Instruction

CHAPTER 3. IMPLEMENTATION METHODOLOGY 23

Store-exclusive performs a conditional store to memory. The store only takes

place if the physical address is tagged as exclusive-access for the requesting

processor. This intrinsic inserts an instruction of the form STREX[size] into

the instruction stream generated by the compiler. It enables you to use an

STREX instruction in your C or C++ code to store data to memory.

int strex(unsigned int val, volatile void *ptr)

Where:

• val is the value to be written to memory.

• ptr points to the address of the data to be written to in memory. To specify

the size of the data to be written, cast the parameter to an appropriate

integral type.

The strex intrinsic returns:

• 0 if the STREX instruction succeeds.

• 1 if the STREX instruction is locked out.

o. BIGENDIAN

The predefined macros of the ARM compiler for c and c++ where the value

field is empty, the symbol is only defined. It considers to be true, If compiling

for a big-endian target.

p. TARGET ARCH AARCH32

The predefined macros of the ARM compiler for c and c++ where the value

field is empty, the symbol is only defined. It considers to be true, When the

target is in AArch32 state.

q. TARGET ARCH AARCH64

The predefined macros of the ARM compiler for c and c++ where the value

field is empty, the symbol is only defined. It considers to be true, When the

target is in AArch64 state.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 24

ARMCC Dependent Feature LLVM Compatible
weak attribute ((weak))

packed attribute ((packed))
align attribute ((aligned))

Table I: Class-1 Features Equivalents

3.4 Migration Phase

3.4.1 Structural Changes in Code Base

The third step of the proposed approach adopted for the tool chain transition to LLVM

for ARMv8 AVK is the Conversion of ARMCC dependent features to ARMCC inde-

pendent and base on derived features the structural changes in the v8VAL codebase

would be made to make it LLVM compatible.

The conversion made as per the class:

• Class-1 Features:

The equivalents for the class-1 were provided by the ACLE manual[3].This doc-

ument specifies the ARM C Language Extensions to enable C/C++ program-

mers to exploit the ARM architecture with minimal restrictions on source code

portability. The LLVM equivalents are listed in the table I.

• Class-2 Features

For asm feature which was most frequently used, different approaches were

adopted for its conversion according to its usage pattern.The asm keyword

has been extensively used in the v8VAL libraries. So the above modification

was done using some perl-scripts.

When asm used as Embedded assembler:

Lets say xyz function declared with the asm in the val utils.c as follows: asm

void xyz (unit32 t)

{

CHAPTER 3. IMPLEMENTATION METHODOLOGY 25

MOV R1,R0

MOV LR, R1

}

Then this function was removed from the C code and the declaration written

into in the header file Val utils func.h as void xyz (unit32 t); And the definition

of the function was written into the assembly file Val utils asmfunc.s. The whole

process depicted in the following figure:

Figure 3.3: ASM Conversion

When used as Inline assembler:

asm {

MRS cpsr val,cpsr;

}

This was removed from the C code and declared as some function(say void

read cpsr(void))in the header file. And the definition was written into the

CHAPTER 3. IMPLEMENTATION METHODOLOGY 26

assembly code.

When used as Named register variables:

register unsigned int hdfar reg asm(”cp15:4:c6:c0:0”);

used in

unsigned val read hdfar reg(void)

{

register unsigned inthdfar reg asm(”cp15:4:c6:c0:0”);

return hdfar reg;

}

This was modified as

unsigned val read hdfar reg(void)

{

unsigned int hdfar reg;

hdfar reg = read hdfar reg();

return hdfar reg;

}

The following function was declared in the header file:

unsigned int read hdfar reg(void);

Equivalent assembly code written for this:

EXPORT read hdfar reg

read hdfar reg

MRC p15,4,r0,c6,c0,0

BX LR

• Class-3 Features

These features were removed from the C code and their equivalent assembly in-

CHAPTER 3. IMPLEMENTATION METHODOLOGY 27

structions were written into assembly files. They can be invoked by a function

call from other C/assembly files. And those functions (symbols in assembly)

were made visible to other files by mentioning export before their names in

the assembly code .Also those functions were declared in a separate header file

which was then included in the C file. The whole process is depicted in the fig-

ure DMB Conversion3.4 and the assembly instruction of each feature are listed

in the tableII.

Figure 3.4: DMB Conversion

The dmb functionality can be implemented by invoking val dmb function

which executes DMB instruction.

• Class-4 Features

The class four was the predefined macros of the ARM compiler for c and c++

where the value field is empty, the symbol is only defined.

Under the ARMV8CC VERSION (always defined for ARM Compiler),We have

CHAPTER 3. IMPLEMENTATION METHODOLOGY 28

ARMCC Dependent Feature Assembly Instruction
dmb DMB
dsb DSB
isb ISB
rev REV
wfe WFE
sev SEV
svc SVC
clz CLZ

ldrex LDREX/LDXR
strex STERX/STXR

Table II: Assembly Instructions of Class-3 Features

defined other macros for theses predefined macros of ARM compiler in the one

of the file of v8VAL as follows:

#ifdef ARMV8CC VERSION

#ifdef TARGET ARCH AARCH64

#define COMPILER AARCH64

#endif

#ifdef TARGET ARCH AARCH32

#define COMPILER AARCH32

#endif

#ifdef BIG ENDIAN

#define COMPILER BIGENDIAN

#endif

#endif

Replaced BIG ENDIAN by COMPILER BIGENDIAN , TARGET ARCH-

AARCH32 by COMPILER AARCH32 and TARGET ARCH AARCH64 by

COMPILER AARCH64 in the files where it contained.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 29

ARMCC Dependent Feature LLVM Compatible
weak attribute ((weak))

packed attribute ((packed))
align attribute ((aligned))
dmb DMB
dsb DSB
isb ISB
rev REV
wfe WFE
sev SEV
svc SVC
clz CLZ

ldrex LDREX/LDXR
strex STERX/STXR

TARGET ARCH AARCH64 COMPILER AARCH64
TARGET ARCH AARCH32 COMPILER AARCH32

BIG ENDIAN COMPILER BIGENDIAN

Table III: LLVM Equivalents list

3.4.2 LLVM Equivalents List

All the occurrences of ARMCC dependent features were replaced with the LLVM

equivalents in the v8VAL by corresponding name as shown in the table namesIII.

This would automated by the use of perl scripts. By removing all armcc dependent

features from the v8VAL code base and replacing it with the LLVM equivalents(Table-

III) that would make the v8VAL codebase LLVM compatible. This was the third step

of proposed Approach.

3.4.3 LLVM Equivalents Of ARMCC Command Line Op-

tions

Perl scripts were developed to collect the ARMCC command line options used to

compile the v8VAL files. The llvm equivalents of each command line options are

described in the tableIV. This LLVM options were passed to the armclang compiler

for the compilation of the v8val codebase.

CHAPTER 3. IMPLEMENTATION METHODOLOGY 30

ARMCC Options LLVM Options
–fpu=none -mfpu=none

–cpu=8-A.64 -target aarch64-arm-none-eabi
–cpu=8-A.32 -target armv8-arm-none-eabi

-c -c
-o -o
-D -D
-I -I

–bigend -
–no unaligned access -munaligned-access

–split sections -ffunction-sections
–thumb -mthumb

Table IV: ARMCC Command line options[5][6]

ARM v8AVK has been supported only by armcc till now. The proposed approach

aims to make the AVK compatible to armclang which is based on an open source

LLVM compiler and also make it backward compatible with the armcc compiler. By

replacing the armcc dependent features from the codebase with the armcc independent

ones, it will be well supported by both of the compilers.

3.5 Debug Phase

In this Phase, the qualification of the converted code was checked, fixed inconsistencies

observed. After making v8VAL code base LLVM compatible, the task was to qualify

the converted code base on to the simulator. For the qualification, the modified

v8VAL codebase and the tests cases compiled by LLVM with equivalent options and

would be running onto the AEM. Meanwhile ensured that the LLVM tool chain

had generated the appropriate code and provide feedback on the tool chain and get

associated bugs in tool chain fixed if the code conversion behaviour is inconsistent.

For qualification, the regression for CORE, DEBUG, GIC, TIMER and ENDIAN and

MEM Tests Cases with the converted v8VAL code base were ran and were debugged

the failed tests cases. This is the longest phase of the proposed approach because it

required architecture knowledge, validation environment to be known and also require

CHAPTER 3. IMPLEMENTATION METHODOLOGY 31

some debugging skill to be developed. During debug phase, the found bugs related

to testcases and toolchain should be captured and reported to the concern team.

3.6 Product Phase

Once it is observed that v8VAL and ARCH64 are stable, the next task is to merge the

v8VAL with the mainline v8VAL through svn repository, help AVS team member to

resolve the tests bug found in the ARCH64 suite and necessary scripts modification

for the automation of the Validation flow. There were around 5000 testcases and

three toolchain associated bugs were found. As everything was well in timed and

placed, the AVK(v8VAL+ARCH64) is released to partner on the concern date.

3.7 Summary

The chapter discussed the approach adopted for and the implementation methodology

adopted for the tool chain transition from ARMCC to LLVM .It also throws some light

on the ARMCC dependent features with a brief description of each, and changes that

were made in the ARMv8 codebase to make it ARMCC independent.By replacing the

ARMCC dependent features in the code-base with the ARMCC independent ones, it

would well supported by both of the compilers.

Chapter 4

Tests Results, Analysis and

Profiling

After making v8VAL LLVM compatible, the task was to qualify the converted code

base on to the simulator. The simulator was the V8 Architecture Envelope Model

executed using load sharing mechanism. For the qualification, the modified v8VAL

codebase and the testcases were compiled by LLVM with equivalent options and

ran onto the AEM. The testcases belonged to CORE, DEBUG, GIC, TIMER, EN-

DIAN and MEM verification and all together called ARCH64 suite. The CORE suite

test architecturally-invariant behavior of the Integer instruction set, Floating point

instruction set, SIMD instruction etc. The DEBUG suite verifies the debug architec-

ture defined in V8 reference manual. GIC is generic interrupt controller architecture

for the ARM processor and GIC suite is written to validated the interrupt controller

architecture. Timer suite verifies the interrupt timer registers and ENDIAN suite

verifies the bit representation format - little and big endian. And the MEM suite

verifies the basic memory system features page table walk, virtualization etc. Due to

confidentiality concerns, it was restricted to put more details about the tests suites

and the result achieved.

32

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 33

Figure 4.1: Snapshot of First Regression resultsfor group-1 testcases

Figure 4.2: Snapshot of First Regression results for group-2 testcases

The whole ARCH64 Suite was divided into two group : 1. CORE, DEBUG and

MEM suites 2. GIC, TIMER and ENDIAN. The reason behind division was GIC and

TIMER contains totally C-based testcases and big-endian support for C- compiler was

not available earlier by LLVM Team. So it had been decided to focus first on Group-

1 testcases for debugging as they all are assembly based and easy to debug. And

the failures debugging for group-2 testcase were started after bigendian support was

availabled by LLVM Team for C-compiler. The figure 4.1 shows the snap-shot of the

regression run with group-1 Tests Cases. There was 68.4% pass rate for LLVM and

84 % pass rate for ARMCC on the first regression for modified code base. Regression

for ARMCC was ran because, as aim was to make c- code base compatible for both

compilers. The expected pass rate is to be 95 to 100% and our job was to analyse

reason behind failed, abandoned and compile-failed tests and solving them. The

results for group-2 is mentioned in the figure 4.2 having 87% pass rate on LLVM and

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 34

92% pass rate on ARMCC. While debugging failed and abandoned testcases, bugs

mentioned in following section were observed.

4.1 Issues Faced

There were many issues encountered during debug phase but only major three is-

sues/bugs faced and detailed below:

• The LLVM tool chain was generating the floating point instruction

for non-float variables and function.

The compiler was not supposed to generate the floating point instruction for

non-float variables. The Solution would be provided from the compiler team

by providing the option to compile such it does not generate FP instruction

automatically. This change in compiler would solved 100 test cases.

• LLVM Compiler was not generating the atomic instruction for loading

and storing of 64 bit Trick-box registers.

The trick-box registers designed to collect information from the processor for

architecture validation. These registers are nothing but memory location. And

it is mandatory to load and store these register in atomic fashion. The compiler

supposed to generate the atomic instruction for loading and storing of 64 bit

Trick-box registers. For the solution, Functions were wrote to load and store the

Trick-box registers in atomic fashion. By implementing these function, there

were 700 tests passed.

• Tests cases violating the AAPCS rule.

The ARM Compiler enables us to call C and assembly language code from

C++, and to call C++ code from C and assembly language. But to do that

AAPCS rule must be followed. The ARM Procedure Call Standard (APCS)

is a set of rules which regulate and facilitate calls between separately compiled

or assembled program fragments. AAPCS tells which registers to be used for

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 35

argument passing and return when we are calling any c-function from assembly.

Some of the tests cases were violating this rule and resulted into fails. The

testcases were modified to follow the AAPCS and they resulted into pass(3000

tests).

After resolving above issue, the pass rate for group-1 and group-2 was almost 100

% on LLVM and ARMCC both. Figure 4.3 and 4.4 shows the status of the final

regression results.

Figure 4.3: Snapshot of Final Regression results for group-1 testcases

Figure 4.4: Snapshot of Final Regression results for group-2 testcases

4.2 Debug Progress

The following chart shows the progress -pass rate per week while debug phase. The

data was collected by solving the errors/issues faced in the tests at biweekly. It was

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 36

Figure 4.5: Pass Rate per Week during Debug phase for group-1

approximately 10 week and 5 week required to achieve almost 100 % pass rate group-1

and group-2 respectively on LLVM as shown in figure 4.5 and 4.6.

4.3 Profiling for Performance Improvement

The code generation by LLVM compiler was more than the C-compiler from RVCT.

And it was due to different code optimisation level used by LLVM compiler and RVCT

compiler. Because of that test simulation might have more number of clock cycles

and more code size especially in boot-code. As result the task was carried to perform

profiling on boot-code with respect to code size and simulation time.

4.3.1 Compiler Optimization

The precise optimizations performed by the compiler depend both on the level of

optimization chosen, and whether you are optimizing for performance or code size.

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 37

Figure 4.6: Pass Rate per Week during Debug phase for group-2

The armclang and armcc compilers supports the following optimization levels:

• -O0

Minimum optimization. The compiler performs simple optimizations that do

not impair the debug view. When debugging is enabled, this option gives the

best possible debug view. This is the default optimization level for armclang.

• -O1

Restricted optimization. When debugging is enabled, this option gives a gener-

ally satisfactory debug view with good code density.

• -O2

High optimization. This is the default optimization level for armcc. When

debugging is enabled, this option might give a less satisfactory debug view.

• -O3

Maximum optimization. This is the most aggressive form of optimization avail-

able. Specifying this option enables multi file compilation by default where

multiple files are specified on the command line.When debugging is enabled,

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 38

this option typically gives a poor debug view.

4.3.2 Profiling On Code size and Simulation Time

For the ease debug phase, -O0 optimisation was chosen for the armclang because it

enabled satisfactory debug view but at the expense more code size. As armclang

generated more code due to -O0 optimization is chosen, a Profile activity for code

size and simulation time has been carried out to improve the performance of the

testcases. Due to confidentiality concerns, it was restricted to put whole details

about the profiled data and hence only results were mentioned:

• Simulation time Reduction

Profiled the data related to Bootup code of 10k tests cases for both ARMCC and

LLVM Compiler. The profiling of data contained the number of instructions

related to memory(Load and store), memory barrier, cache maintenance and

branch instruction. By analyse the collected data, the conclusion was made

that there is need to modify bootup so that they can have less number of

memory related instruction.

• Code Size Reduction.

Analysed the Print functions effect on the test code size. Print functions are

used print part status, test status, test failure and other important message.

The print related functions were taking 20 to 30 % instruction of the tests code.

Need to modify print functions so that it can take lesser code size without

breaking their functionally.

4.4 Summary

Qualified the converted code of v8VAL by running the regression for CORE, DEBUG,

GIC, TIMER, ENDIAN and MEM Tests Cases with 100% pass rate on LLVM and

ARMCC both and reported the bugs faced to validation team and the LLVM toolchain

CHAPTER 4. TESTS RESULTS, ANALYSIS AND PROFILING 39

team and helped them to resolve the bugs. Analysed the effect of print function on

total instruction count of the tests to improve the code size and the effect memory

related instruction in the bootup code to improve the simulation time.

Chapter 5

Conclusion and Future scope of

work

5.1 Conclusion

The code base of ARMv8 AVK which only ARMCC compliant was successfully con-

verted into one that supports both LLVM and RVCT (ARMCC) for CORE, DE-

BUG, GIC, TIMER, ENDIAN and MEM suites(Approx. 18000 testcases). And

concurrently ensured that the LLVM tool chain generates the appropriate code and

provided feedback on the tool chain based on bug faced. From now, ARM partners

have flexibility to adapt to either or both of these tool chains on ARMv8 AVK.

5.2 Future scope of work

• C- code base is now compatible to LLVM Tool Chain. The future task is to

make AVK assembly code base to LLVM compatible.

• Qualify the migrated C-code base with LLVM -O3 optimisation level to improve

code size and simulation time.

40

CHAPTER 5. CONCLUSION AND FUTURE SCOPE OF WORK 41

• Modify bootup code such that it can have less number of memory related in-

struction.

• Modify print functions such that it can take lesser code size without breaking

their functionally.

References

[1] ARM, ”ARMCompilerReferenceManualandARMAssemblerReference
Manual”Website, July2013, http : //arminfo.emea.arm.com

[2] LLVM, ”TheLLVMCompilerInfrastructure”Website, July2013,
http : //llvm.org/

[3] ARM, ”ARMCLanguageExtensions(ACLE)Manual”Website, Aug2013,
http : //arminfo.emea.arm.com

[4] RandalL.schwartz, briandfoyandTomphoenix, ”LearningPerl”,
O′Reilly, 6thedition, 2011

[5] ARM, ”ARMCompiler6ReferenceManual”Website, Oct2013,
http : //arminfo.emea.arm.com

[6] ARM, ”ARMCompiler5ReferenceManual”Website, Sep2013,
http : //arminfo.emea.arm.com

[7] ARM, ”ARMv8ArchitectureReferenceManual”Website, Sep2013,
http : //arminfo.emea.arm.com

[8] LLVM, ”ClangvsGCC(GNUCompilerCollection)”Website,
Oct2013, http : //clang.llvm.org/comparison.html

[9] Clang, ”Clang − Features,Goals, InternalDesignandImplementation”
Website, Oct2013, http : //clang.llvm.org/features.html

[10] Clang, ”ExpressiveDiagnostics”Website, Oct2013,
http : //clang.llvm.org/diagnostics.html

[11] ChrisLattner, ”TheArchitectureofOpenSourceApplications”
Website, Oct2013, http : //www.aosabook.org/en/llvm.html

[12] Jae− JinKim, Seok − Y oungLee, Soo−MookMoonandSuhyunKim,
”ComparisonofLLVMandGCContheARMPlatform”,
IEEEConference, 2010

42

	Declaration
	Certificate
	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem definition
	Thesis Organization

	Brief Review Of Previous Work
	ARMv8 AVK Overview
	RVCT Tool Chain
	LLVM Overview
	LLVM Tool Chain
	RVCT vs LLVM
	Summary

	Implementation Methodology
	Block Level Design Of The Proposed Approach
	Proposed Approach
	Analysis Phase
	Identification of ARMCC Dependent Features
	ARMCC Dependent Features List
	Brief Description Of ARMCC Dependent Featuresref1ref7

	Migration Phase
	Structural Changes in Code Base
	LLVM Equivalents List
	LLVM Equivalents Of ARMCC Command Line Options

	Debug Phase
	Product Phase
	Summary

	Tests Results, Analysis and Profiling
	Issues Faced
	Debug Progress
	Profiling for Performance Improvement
	Compiler Optimization
	Profiling On Code size and Simulation Time

	Summary

	Conclusion and Future scope of work
	Conclusion
	Future scope of work

