
AUTOMATEING THE CRYOPROB BY
RASPBERRY PI(RPi)

Major Project

Submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

YOGESH BADOLE
(12MECE29)

Electronics & Communication Engineering Branch

Electrical Engineering Department

Institute of Technology

Nirma University

Ahmedabad-382 481

May 2014

AUTOMATEING THE CRYOPROB BY
RASPBERRY PI(RPi)

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering
(Embedded Systems)

By

YOGESH BADOLE

(12MECE29)

Under the guidance of

External Project Guide: Internal Project Guide:

Mr. S.G Trivedi Dr. Yogesh N. Trivedi
Managing Director Associate Professor, EC Dept,
Maharshi Electronic And Systems, Institute of Technology,
Ahmedabad. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgment has been made in the text to all other material used.

YOGESH BADOLE

iv

Certificate

This is to certify that the Major Project entitled “Automating the Cryoprobe by

Raspberry Pi (RPi)”submitted by Yogesh Badole (12MECE29), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Electronics

and Communication Engineering of Nirma University of Science and Technology,

Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven‘t been submitted to any other university or institution for

award of any degree or diploma.

Internal Guide Dr. N.P Gajjar

Dr. Y.N Trivedi PG Co-ordinator (Embedded Systems)

Dr. P.N Tekwani Dr K Kotecha

rofessor & Head, EE Director, IT-NU

Date: Place: Ahmedabad

v

Acknowledgements

With immense pleasure, I would like to present this report on the dissertation work

related to ”Automating Cryoprob By RPi”. I am very thankful to all those who

helped me for the successful completion of the first phase of the dissertation and for

providing valuable guidance throughout the project work.

I would first of all like to offer thanks to Mr. S. G. Trivedi , Guide & Managing

Director Of Maharshi Electronic Systems and Mr. Jay Shah Guide & “Project

Engineer ”, whose keen interest and excellent knowledge base helped me to finalize

the topic of the dissertation work. His constant support and interest in the subject

equipped me with a great understanding of different aspects of the required architec-

ture for the project work. He has shown keen interest in this dissertation work right

from beginning and has been a great motivating factor in outlining the flow of my

work.

My sincere thanks and gratitude to Prof. Y.N. Trivedi, Internal Guide and As-

sociate Professor,Institute of Technology, Nirma University, Ahmedabad for his con-

tinual kind words of encouragement and motivation throughout the Dissertation work.

I am thankful to Nirma University for providing all kind of required resources. I

would like to thank The Almighty, my family, especially my mother and my brother,

for supporting and encouraging me in all possible ways. I would also like to thank

all my friends who have directly or indirectly helped in making this dissertation work

successful.

- YOGESH BADOLE

12MECE29

vi

Abstract

Cryoprobes are probes of Cryogenic probe station. Cryogenic probe stations are high

performance instruments, which are used for creating environment for testing devices

and semiconductor wafers.

Cryogenic probe station can create affordable vacuum , temperature and cryogenic

probing of wafer and devices. To reduce human efforts and prevent human error, it

is required to automate this instrument . An embedded system is necessary for au-

tomating this instrument, which can facilities flexibility to analyze the working and

performance of devices and semiconductor wafers.

To full fill that purpose, it requires an automation and control system.To achieve

this objective, we use Raspberry Pi(RPi) Board provided by Raspberry pi foundation.

RPi is based on ”SoC”(System On Chip)concept. It is a small size CPU, able to pro-

vide interactive services to the user. RPi used Broadcom BCM2835 chip. BCM2835

contains ARM1176JZFS and Graphical processor unite(GPU). RPi is very small in

size, it’s cost is low and it provides high performance. RPi also support different oper-

ating systems. Most efficient operating system for RPi is Raspbian ”wheezy”.Rasbian

is a customized version of the Debian OS for RPi.

Combination of Raspbian OS and RPi makes it possible to use python language

to create interactive applications as per benchmarking of RPi GPIO. According to

benchmarking one can achieve 44 KHz of frequency which is enough for automation

and Python language provides Application Peripheral Interface(API) to control GPIO

and create Graphical User Interface(GUI).

These interactive applications provides the user an easy control on Croprobes.

Cryoprobes require a high resolution motion control to keep on tracing all the motion

vii

of every probe and keep that data for future analysis. And also one can access it

from remote distance. In this hardware control system we also require temperature

measurement system for every probe to create graph between time and temperature.

This application also provide service to store data which occurs during practical,

for future analysis. In automation, through stepper motor with 1.8 degree of step

angle, 98% accuracy is achieved.

To achieve remote access shell script is used. Performing text processing and file

operation remote access task is achieve.

viii

Abbreviation Notation and Nomenclature

ASIC . Application Specific Integrated Chip

CV . Capacitance and voltage

CSI . Camera Serial Interface

DMA .Direct Memory Access

DSP . Digital Signal Processor

FPGA .Field Programmable Gate Array

GPIO . General Purpose Input Output

HDMI . High Definition Multimedia Interface

IV . Current And Voltage

LAN . Local Area Network

LED . Light Emitting Diode

OS .Operating System

PSoC . Programmable System On Chip

PWM . Pulse Width Modulator

RPi .Raspberry Pi

RTOS . Real Time Operation System

SoC . System On Chip

SPI . Serial Peripheral Interface

TTM . Time To Market

USB . Universal Serial Bus

Contents

Certificate iv

Acknowledgements v

Abstract vi

Abbreviation Notation and Nomenclature viii

List of Tables xii

List of Figures xiv

1 Introduction 1
1.1 Cryogenic Probe Station . 1
1.2 Features and Capabilities . 1
1.3 Probe Stander Specification . 3
1.4 Miro-Manipulation of Cryogenic Probe Systems 5

1.4.1 Micromanipulated Translation Stages 5
1.4.2 Probe Option . 5

1.5 Application Of Cryogenic Probe Station 6
1.6 Motivation . 6
1.7 Objective . 7
1.8 Scope of Work . 8

2 Literature Survey 9
2.1 Embedded System . 9
2.2 Consideration in designing embedded system 9
2.3 Architecture Of embedded System . 12

2.3.1 Embedded System Element 12
2.3.2 Processing Element . 14
2.3.3 Memory . 16
2.3.4 Bus . 16
2.3.5 Embedded Software . 16

2.4 Automation . 16

ix

CONTENTS x

2.5 Design and Development Process . 20
2.5.1 Product Life Cycle And Requirement 21
2.5.2 Requirements Document . 23
2.5.3 Debugging Theory . 28

3 Raspberry Pi Board(RPi) 33
3.1 Introduction . 33
3.2 Component Technologies . 33

3.2.1 CPU . 33
3.2.2 GPU . 34
3.2.3 RAM . 34
3.2.4 Hard Disk . 34
3.2.5 SD Card . 34
3.2.6 Motherboard . 35
3.2.7 Network Interface Card . 35
3.2.8 USB Port . 35
3.2.9 Micro USB . 35
3.2.10 Composite Video . 35
3.2.11 Audio Out . 36
3.2.12 GPIO . 36

3.3 Description of RPi Board . 36
3.4 Specification of RPi Board . 38
3.5 BCM2835 SoC . 41
3.6 Generl Purpose Input / Output(GPIO) 43

3.6.1 Registers Organization Of GPIO 44
3.6.2 Pin Configuration Of RPi GPIO Headers 46

4 Rapbian OS and Software 48
4.1 Raspbian File System Hierarchy . 48

4.1.1 /bin . 49
4.1.2 /boot . 50
4.1.3 /dev . 50
4.1.4 /etc . 50
4.1.5 /home . 50
4.1.6 /lib . 50
4.1.7 /lost+found . 51
4.1.8 /media . 51
4.1.9 /mnt . 51
4.1.10 /opt . 51
4.1.11 /proc . 51
4.1.12 /root . 52
4.1.13 /sbin . 52
4.1.14 /usr . 52

CONTENTS xi

4.1.15 /var . 52
4.1.16 /srv . 52
4.1.17 /tmp . 52

4.2 Protocols Support . 53
4.2.1 TCP . 53
4.2.2 UDP . 53
4.2.3 FTP . 53
4.2.4 TFTP . 53
4.2.5 HTTP . 53
4.2.6 HTTPS . 54
4.2.7 SSL . 54
4.2.8 SSH (Secure Shell) . 54
4.2.9 Telnet . 54
4.2.10 DHCP . 54
4.2.11 DNS . 54

4.3 Program and Application Support . 55
4.4 Benchmarking Raspberry Pi GPIO Speed 56

4.4.1 Shell script . 56
4.4.2 Python . 57
4.4.3 Native C . 58
4.4.4 BCM2835 C library . 59
4.4.5 C with WiringPi . 60

5 Implementation and Result 62
5.1 Design Phase . 62
5.2 Flow Chart . 63
5.3 GUI Application Flow . 67

6 Conclusion and Future Work 69
6.1 Conclusion . 69
6.2 Future Work . 70

A Python code for Stepper motor control through GUI 71

B Writing an SD Card Image 75
B.1 Writing an SD card from from Windows 75
B.2 Writing an SD card from from Linux 76

C Pin configuration and Number 78

D Procedure To Perform Action 79

List of Tables

1.1 Probe Station Specification . 3

2.1 Wave Drive . 18
2.2 Full Drive . 18
2.3 Half Drive . 19

3.1 Board Specification . 38

4.1 GPIO Benchmark . 56

C.1 Pin Numbering . 78

xii

List of Figures

1.1 Cryogenic Probe Station . 2

2.1 Architecture Of Embedded System 12
2.2 Unipolar Stepper Motor . 17
2.3 Bipolar Stepper Motor . 19
2.4 Product Life Cycle . 21
2.5 A data flow graph showing how the position signal passes through the

system . 24
2.6 A call graph for a simple position measurement system 26

3.1 Raspberry Pi Board . 37
3.2 Block Diagram Of BCM2835 . 41
3.3 GPIO Block Diagram . 43
3.4 RPi GPIO . 47

5.1 3D presentation Diagram . 62
5.2 Main Program Flow . 63
5.3 Side Wise Motion . 64
5.4 Subroutine of Flow Chart . 65
5.5 Subroutine of Flow Chart . 66
5.6 Class Diagram For GUI . 67
5.7 User Case Diagram For GUI Application 68

D.1 Desktop Of Raspbian OS . 79
D.2 Applications on OS . 80
D.3 Python3.2 IDE . 80
D.4 Python Script . 81
D.5 LXteminal . 81
D.6 Compile Python File . 82
D.7 Display GUI . 82
D.8 Select Motor . 83
D.9 Run Motor . 83
D.10 Motor Stop . 84
D.11 Click Quit Button . 84

xiii

LIST OF FIGURES xiv

D.12 Desktop Of Raspbian OS . 85

Chapter 1

Introduction

1.1 Cryogenic Probe Station

The Cryogenic probe stations are high performance research instruments designed to

provide affordable vacuum and cryogenic probing of wafers and devices.In this thesis

we using ST-500 series probe station.[6] The proven ST-500 cryostat is the platform

for these probe stations, and includes low vibration technology (originally designed for

high spatial resolution optical microscopy) to provide outstanding sample positional

stability. Researchers around the world are using these systems to conduct research

in a wide variety of fields, including MEMS, nanoscale electronics, superconductivity,

ferroelectrics, material sciences, and optics.

Fig1.1 shows the cryoprobe in the cryogenic probe station. Probe station has four

probe, those are able to motion in the X-axis, Y-Axis and Z-Axis.[6]

1.2 Features and Capabilities

The ST-500 probing station has the following features and capabilities:

• Very smooth X-Y-Z- travel stages for all monoscope system assemblies

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Cryogenic Probe Station
[6]

• Low vibration level and the positional drift

• Accommodates up to 2” (51 mm) diameter wafers (optional: up to 8” [203 mm])

• Temperature range from 3.5 K to 475 K (optional: 8 K to 675 K)

• Works either with liquid nitrogen or liquid helium

• Helium consumption less than 1 liter/hour

• Up to seven cooled, easily interchangeable, micro-manipulated probe arms

• Very low triaxial probe arms leakage current of just a few fA

• Multi-tip probes

• Optional optical access through the sample mount for transmission measure-

ments

CHAPTER 1. INTRODUCTION 3

• Additional electrical feedthroughs with cables and wires to sample area

• System customization options

1.3 Probe Stander Specification

Table 1.1: Probe Station Specification [6]

Vibration level: 25 nm

Positional drift: 150 nm in 30 minutes

emperature range: 3.5 K to 475 K (8 K to 675 K optional)

Cryogenic consump-

tion:

Helium: less than 1 liter/hr; Nitrogen: less

than 0.1 liter/hr

Temperature stability: 50 mK

Cooling time (for

standard 2” diameter

sample mount):

30 min to 10 K, 60 min to 5 K

Warming up time: 45 min with quick warming up option (4

hours without)

Sample mounts: 2”(51

mm) diameter stan-

dard up to 8”(203

mm) optional

Ground Chuck Electrically Isolated Chuck

with Bias Voltage Coaxial Cable Special

Chuck for Light Transmission Experiments

Leadless Chip Carrier (LCC) Holder

CHAPTER 1. INTRODUCTION 4

Interchangeable Probe

Arms:

DC/LF probes: DC to 20 MHz with follow-

ing tips available: - Tungsten tips with 0.1

to 200 micron tip radius (optional gold plat-

ing) - Special Tungsten bendable shank and

tip (cat whisker) tips - Beryllium Copper soft

tip with low contact resistance Coaxial or tri-

axial (a few fAmps leakage currernt) wiring

Microwave probes: 0-40 GHz 0-50 GHz 0-

67 GHz Fiber probes: Single Mode UV-

VIS or VIS-IR Multimode Non-contact, non-

destructive Kelvin probes Multi-tip probes

Monoscopes with

LCD 19” monitor

or USB camera and

smooth travel stages

7.1 zoom, 5 microns resolution(216X magni-

fication) 12.5:1 zoom, 3.4 microns resolution

(508X magnification) 16.1 zoom 2.2 microns

(626X magnification)

Probe travel: ST-500-1

X-axis: 1” (25 mm)

Y-axis: 1” (25 mm) (15 mm with MW Probes)

Z-axis: 10 mm (18 mm optional)

X-, Y-, Z-axes probe

translation (incremen-

tal units of gradua-

tion):

10 microns

CHAPTER 1. INTRODUCTION 5

1.4 Miro-Manipulation of Cryogenic Probe Sys-

tems

1.4.1 Micromanipulated Translation Stages

In this cryogenic probe translation instrument provide eight stage of X,Y,Z- Axis

precise control over the motion of the probe.In every stage include gradual increment

of 10-12.5 microns, with typical useful resolution of 5 to 6.25 micron.Stage used for

microwave probes include theta rotation adjustment for polarization of the probe.

1.4.2 Probe Option

Cryoprobe Instrument can be used for wide variety of different applications so that

variety of probe option available for the researcher. This option can categorize as

test for low frequency, high frequency, microwave frequency experiment and test with

fiber optics probe.Typical configuration include:

Low Frequency(DC) Probe

Tip diameter and radios on probe, material used in experiment can be specified by

the user according to the requirement of the experiment.

• CX: Coaxially shielded low frequency probe

• TX: Triaxially shielded low frequency probe

• KEL: Kelvin probe it is used for low resistance measurement in order to elimi-

nate cable resistance from the probe

High Frequency Probe

• MW: Microwave probe for high frequency measurement.MW probe are available

in 40, 50 and 60 GHz range for performing experiment on different wafer of

devices.

CHAPTER 1. INTRODUCTION 6

1.5 Application Of Cryogenic Probe Station

• Typical applications include sampling IV and CV curves over a wide range of

temperatures measuring

• Microwave and electro-optical responses characterizing

• Magneto-transport properties in variable magnetic fields

• Hall-effect measurements to understand carrier mobility

• Variety of material studies

1.6 Motivation

To automate an mechanical device and make an efficient embedded system. Cryogenic

probe station is very delicate instrument.Many researcher and scientist use these type

of instruments to find out the IV and CV characteristics of a particular wafer and

provide the probing system The Cryoprobe in that instrument is controlled manually

which is very sharp work and take more time ,energy and attention of a researcher.

Due to the limitation in the human attributes for long time work. We have to create

an embedded system which give more flexibility, easiness and comfort in work. So

that researcher pay more attention on their actual work, observation and analyses.

To achieve all that goals we have to achieve some small goals and objective.

Those objectives are:

First, a low cost, high performance and high degree of motion control system through

the RPi board and stepper motor. An GUI application which provide more interac-

tion with the user.

Second, Development of Temperature tracer which can show temperature of each

bar and GUI shows the graph between time and temperature.

CHAPTER 1. INTRODUCTION 7

Thirdly, make that system Real time and limit the processes execute in it. Pre-

pare a library for GPIO access and manage more number of devices control by board.

Prepare an wireless system by board which can control the device at distance.

.

1.7 Objective

Apart from the above mentioned goals and vision, this report addresses the specific

objective . Hence, the objective of the dissertation work can be summarized as:

Study Cryogenic Probe station and find out the specification related to motion of

probes in X and Y direction.What is the resolution of translation? How to achieve

high much resolution? Study the feature and the specification given for cryoprobe.

Study and selection of the hardware on the basis of specific criteria and provide

more facility and services. Criteria based on cost, performance, size and availability.

RPi meet all this criteria regarding the project.Find out limitation and services of

the board. Ports available on board. Find out video, audio and different hardware

connections on board.

The next objective is, study, selection and porting of Open source OS on it. OS

which give the efficient performance with the RPi. OS which is customize according

to the RPi. Raspbian ”wheezy” OS meet all the criteria. Explore the application,

services and facilities OS support.Find out the limitation of OS. Explore different

application like editor support, language support etc.

The next objective is, study about the GPIO access through board. Which type

of Buses supported by RPi. Can we use GPIO as a bus interface terminal? How to

CHAPTER 1. INTRODUCTION 8

access GPIO for control external hardware like: DC motors, Stepper Motors? Find

out extra circuitry required for external hardware(motor) control? Can we control

GPIO through GUI application? Which language support GPIO control through in-

teractive GUI application ? How to manage more number of hardware if GPIO pins

are less? How to make library for GPIO access in python or C language?

The next objective is, to test the performance of the motion system and temper-

ature tracer. Find out can we use wireless connection between the hardware and the

RPi Board?

Finally, the objective is to build the high resolution, low cost, easily available, easily

expendable customize and interactive motion control system and temperature tracer.

1.8 Scope of Work

In the experimental setup and to full-filling these objectives of the work, selection of

the hardware and software depend on some parameter. Hardware selection on the

basis of some parameter like cost, size, performance and availability of the hardware.

RPi board for the the hardware support which meet all the criteria. This board

is also support the Linux OS ”Raspbian” which is a open source. Combination of

Both the hardware and OS provide you huge flexibility. RPi is small size CPU which

can control the four stepper motors and also trace the temperature.To Automate the

Cryoprobe, lowest step angle stepper motor is required which give the high resolution

motor control and a temperature sensor.An interactive GUI motion and temperature

control system is the part of the thesis. RPi and Raspbian OS also become part of

the thesis. Thesis include detailed information about GPIO access of the board and

study of the library for GPIO access and control it with the GUI.

Chapter 2

Literature Survey

2.1 Embedded System

An embedded system is a combination of computer hardware and software, and per-

haps additional mechanical or other parts, designed to perform a specific function.

It is important to point out that a general-purpose computer is itself made up of

numerous embedded systems. For example, my computer consists of a keyboard,

mouse, video card, modem, hard drive, floppy drive, and sound card-each of which is

an embedded system.Each of these devices contains a processor and software and is

designed to perform a specific function.

2.2 Consideration in designing embedded system

Embedded systems are within every industry, from aerospace to consumer applica-

tions. With the new advances in embedded systems design, more complex applications

may be implemented. During the development of an embedded system certain pro-

cess models are followed. These models usually include the development of a working

prototype of the final system. Embedded systems are single-functioned systems which

are tightly constrained by power and cost, and are reactive and real-time. Embed-

ded problems can be solved using different approaches. Approaches that are used in

9

CHAPTER 2. LITERATURE SURVEY 10

practice are as follows.

• The designer can use a combined hardware/software approach that contains

some custom hardware and an embedded processor core integrated within the

custom hardware.

• The designer can create custom software that runs on an off-the-shelf embedded

processor.

• The designer uses another type of processor besides a general purpose embedded

processor, such as a digital signal processor, and a custom software.

In order to design a near optimal system, the following need to be considered besides

the functionality and safety of the system.

• Cost

• Performance

• Power

• Maintainability

• Size

• Time-to-market

Many embedded systems have substantially different design constraints than desktop

computing applications. A single characterization cannot apply to the diverse spec-

trum of embedded system, and the considerations are weighed differently, based on

the type of application and consumers.

The cost of the embedded system is a very important factor during the embedded

system design process. The affordability of the product by many consumers and the

profit that can be generated by the device is important while designing.

CHAPTER 2. LITERATURE SURVEY 11

Performance is a factor that is always considered in systems. An embedded sys-

tem should perform its functions and complete them quickly and accurately. High

performance is especially emphasized in many embedded systems.

Low power is an important requirement for embedded systems. The embedded

systems usually run on batteries and should last a long time before those batteries

need to be changed. An ultra-low power design needs to be developed for long-term

battery operation.

In many cases embedded systems must be repairable in a few minutes to a few

hours, which imply that spare components and maintenance personnel must be lo-

cated close to the system. A fast repair time may also imply that extensive diagnosis

and data collection capabilities must be built into the system, which may affect the

goal of keeping production costs low. A system self-test can be created in the design

to lower the maintenance and diagnosis costs that might be incurred later.

Typically, embedded computers are physically located within some larger device

or casing. Therefore, their shape and size may be dictated by the space available

and the connections to the mechanical components. Time-to-market (TTM) is the

length of time from the product idea conception until it is available for sale. TTM is

important in industries where products are outdated quickly, such as the technology

industry. The market window, shown in Figure 1, is crucial to deploying a product in

the embedded systems technology industry. The typical TTM is eight months. The

company needs to deploy when the peak revenue can be attained.

CHAPTER 2. LITERATURE SURVEY 12

2.3 Architecture Of embedded System

Design of embedded systems has evolved from the transistor level to gate level and

register transfer level. Having a higher level of abstraction is beneficial when imple-

menting complex hardware systems. Programming at an even higher level known as

the system level, the designer can be concerned with the functionality of the system

being designed. At this higher level of abstraction, the designer can specify the func-

tionality of the system using a procedural language, such as the C language.

Figure 2.1: Architecture Of Embedded System

2.3.1 Embedded System Element

• I/O(Peripheral) Interface

• Processing Element (Microcontroller or Microprocessor

/ FPGA / DSP / ASIP, etc)

• Memory (Program and Data)

CHAPTER 2. LITERATURE SURVEY 13

• Bus

• Software

I/O(Peripheral) Interface

Peripherals consist of inputs and outputs to the embedded system. The design of the

system relies heavily on the understanding of the communication interfaces in and

out of the device. There are different types of devices that can be used as inputs and

outputs. Sensors, LCD displays, speakers, keyboards, and infrared devices are used

to communication with the outside world.

There are many different types of sensors. Sensors are designed for many physical

quantities, such as water, image, pressure, infrared, sound, and biometrics. [3] Smart

systems can only be developed due to the use of sensors. The other communication

interfaces include serial, USB, and Ethernet. The communication interfaces can be

categorized as wireless media, optical media, and wires. The wireless media includes

radio frequency and infrared signal based communication.

The communication interfaces are essential when the embedded system connect

to other devices to communicate data for processing. If the system is independent

from other devices the user interfaces are mainly used and the serial and USB com-

munication are encapsulated within the system.

• Input Interface:

– External sub-system for data /command reception

– Sensor (Thermistor, accelerometer ,etc)

• Output Interface:

– Actuators (Valve, motors(DC or stepper), etc)

CHAPTER 2. LITERATURE SURVEY 14

– External Sub-system for data/status transmission

• Electrical Interfaces:

– Simple Single ended CMOS/TTL

– Analog input from sensor

• Protocols

– Simple Parallel data

– Serial interfaces

∗ Commercial protocols like UART, SPI, I2C,etc

∗ Application Specific protocols

2.3.2 Processing Element

Processing element is brain of embedded systems.It provide platform on which soft-

ware executes.It has resource for Arithmetic & Logical operation, conditional opera-

tion and sequential task etc.

Types Of Processing Element

• Micro-controller & Microprocessor

A large number of processors used in embedded systems are in fact micro-

controllers. Microcontrollers can be used easily in a design. The difference

between a microprocessor and microcontroller is that a microprocessor is con-

tained within a microcontroller. A microcontroller is essentially a computer

system on a chip and it contains a processor core, memory, and programmable

input/output peripherals.

• FPGA(Field Programmable Gate Array)

The FPGA can be used as the main processor in an embedded system, a co-

processor, or a processor used for quick prototyping. The FPGA is capable of

CHAPTER 2. LITERATURE SURVEY 15

implementing very large and complex functions and it can also perform DSP,

ASIC, and Microcontroller functions. The flexibility offered by FPGAs is in-

credible because the design can be easily changed without much effort from the

designer. This flexibility isnt available when designing with ASICs and DSPs.

Microcontrollers offer some flexibility but only with regard to the software of

the system, the hardware cannot be changed.

• ASIC(Application Specific Integrated Circuits)

An ASIC can be easily used for an embedded system that has a single pur-

pose.Gate arrays are based on basic cells consisting of a collection of uncon-

nected transistors and resistors. The vendor determines the optimum mix to be

provided in a basic cell.

• DSP(Digital Signal Processor)

Digital Signal Processors or DSP are best suited for handling digital signal

processing applications. Digital signal processing is the branch of electronics

that is concerned with the representation and manipulation of signals in digital

form. When the requirement of the embedded system is to mainly perform signal

processing, such as wireless signals, DSPs should be chosen. Besides DSPs, there

are different methods of implementing the signal processing application. The

alternative choices are to use a general purpose microprocessor, dedicated ASIC

hardware, dedicated FPGA hardware. DSPs are superior to these alternatives

because the chip is designed to perform digital signal processing tasks much

faster, more efficiently, and lower cost.

• PSoc(Programmable System On chip) PSoC Integrates configurable analog and

digital peripheral functions, memory and a microcontroller on a single chip. It

contain different IP(Intellectual Properties) for different modules.

CHAPTER 2. LITERATURE SURVEY 16

2.3.3 Memory

The data and program needs to be stored in some kind of memory. The storage

needs to be completed in an efficient way. The run-time, code-size, and energy effi-

ciency needs to be considered. A good compiler and compression techniques assists

in achieving code-size efficiency. Memory hierarchies can be utilized to achieve good

run-time and energy efficiency.

2.3.4 Bus

Buses are used for communication between two devices. According to the requirement,

situation, length of communication and speed bus system and protocols are changed.

2.3.5 Embedded Software

In embedded software there are choice of select programming model or programming

structure hardware required. Choice are as follow:

• Assembly language

• Embedded Programming Language

(High level programming language)

• Embedded Operating System

2.4 Automation

In the robotics area, when ever automation come in picture regarding motion con-

trol(position control) motor required. Motors are of different type like:

• DC motor

• Servo motor

CHAPTER 2. LITERATURE SURVEY 17

• Stepper motor

According to project requirement, there is need of stepper motor to control motion.

Stepper motor are of two type:

• Unipolar

Unipolar motors use 6 wires and require a unipolar driver. In addition to the

A and B phases, there are two extra wires called the common wires: Current

always flows in one direction: from the phases, through the common wires. In

addition, only one portion of the motor is energized at a time. Unipolar stepper

motors can be used in three modes namely the Wave Drive, Full Drive and Half

Drive mode.

Figure 2.2: Unipolar Stepper Motor

– Wave Drive:

n this mode only one electromagnet is energized at a time. Generated

torque will be less when compared to full drive in which two electromag-

nets are energized at a time but power consumption is reduced. It has

same number of steps as in the full drive. This drive is preferred when

power consumption is more important than torque. It is rarely used.

CHAPTER 2. LITERATURE SURVEY 18

Table 2.1: Wave Drive

Step A B C D

Step1 1 0 0 0

Step2 0 1 0 0

Step3 0 0 1 0

Step4 0 0 0 1

– Full Drive:

In this mode two electromagnets are energized at a time, so the torque

generated will be larger when compared to Wave Drive. This drive is com-

monly used than others. Power consumption will be higher than other

modes.

Table 2.2: Full Drive

Step A B C D

Step1 1 1 0 0

Step2 0 1 1 0

Step3 0 0 1 1

Step4 1 0 0 1

– Half Drive

In this mode alternatively one and two electromagnets are energized, so it

is a combination of Wave and Full drives. This mode is commonly used

to increase the angular resolution of the motor but the torque will be less,

about 70% at its half step position. We can see that the angular resolution

doubles when using Half Drive.

CHAPTER 2. LITERATURE SURVEY 19

Table 2.3: Half Drive

Step A B C D

Step1 1 0 0

Step2 1 1 0

Step3 0 1 0 0

Step4 0 1 1 0

Step5 0 0 1 0

Step6 0 0 1 1

Step7 0 0 0 1

Step8 1 0 0 1

• Bipolar Bipolar motors use 4 wires and require a bipolar drive. Common wires

are not used. Current can flow in two directions. In addition, two phases can

be energized at one time. Above all three mode work for bipolar also.

Figure 2.3: Bipolar Stepper Motor

• Microstepping

All step motors can be microstepped (microstepping is a function of the driver).

By sending different amounts of currents to each phase, it forces the motor to

CHAPTER 2. LITERATURE SURVEY 20

make a step in between its natural full step positions. In order to half step a

motor, instead of sending 100% current to both coils, it switches off and sends

A Phase 100% and B Phase 0 current or vise versa. If motor has step angle 1.8.

It take 200 step per revolution.

2.5 Design and Development Process

In this section, we will begin by presenting a general approach to modular design.

In specific, we will discuss how to organize software blocks in an effective manner.

The ultimate success of an embedded system project depends both on its software

and hardware. Computer scientists pride themselves in their ability to develop qual-

ity software. Similarly electrical engineers are well-trained in the processes to design

both digital and analog electronics. Manufacturers, in an attempt to get designers to

use their products, provide application notes for their hardware devices. The main

objective of this is to combine effective design processes together with practical soft-

ware techniques in order to develop quality embedded systems.

These software skills include: modular design, layered architecture, abstraction,

and verification. Writing good software is an art that must be developed, and cannot

be added on at the end of a project. Just like any other discipline (e.g., music, art,

science, religion), expertise comes from a combination of study and practice. Good

software combined with average hardware will always outperform average software

on good hardware. One of the hardest steps when designing a system is ”where do I

start?” This section will address this critical aspect of design.

CHAPTER 2. LITERATURE SURVEY 21

2.5.1 Product Life Cycle And Requirement

In this section, we will introduce the product development process in general. As we

learn software/hardware development tools and techniques, we can place them into

the framework presented in this section. As illustrated in Figure 2.4, the development

of a product follows an analysis−design−implementation−testing−deployment cycle.

For complex systems with long life−spans, we transverse multiple times around the

life cycle. During the analysis phase, we discover the requirements and constraints

Figure 2.4: Product Life Cycle

for our proposed system. We can hire consultants and Interview potential customers

in order to gather this critical information. A requirement is a specific parameter

that the system must satisfy. We begin by rewriting the system requirements, which

are usually written in general form, into a list of detailed specifications. In general,

specifications are detailed parameters describing how the system should work. For

example, a requirement may state that the system should fit into a pocket, whereas

a specification would give the exact size and weight of the device. For example,

suppose we wish to build a motor controller. During the analysis phase, we would

CHAPTER 2. LITERATURE SURVEY 22

determine obvious specifications such as range, stability, accuracy, and response time.

There may be less obvious requirements to satisfy, such as weight, size, battery

life, product life, ease of operation, display readability, and reliability. Often, im-

proving the performance on one parameter can be achieved only by decreasing the

performance of another. This art of compromise defines the trade−offs an engineer

must make when designing a product. A constraint is a limitation, within which

the system must operate. The system may be constrained to such factors as cost,

safety,compatibility with other products, use of specific electronic and mechanical

parts as other devices,interfaces with other instruments and test equipment, and de-

velopment schedule.

The following measures are often considered during the analysis phase of a project:

Safety: The risk to humans or the environment

Accuracy: The difference between the expected truth and the actual parameter

Precision: The number of distinguishable measurements

Resolution: The smallest change that can be reliably detected

Response time: The time between a triggering event and the resulting action

Bandwidth: The amount of information processed per time

Maintainability: The flexibility with which the device can be modified

Testability: The ease with which proper operation of the device can be verified

Compatibility: The conformance of the device to existing standards

Mean time between failure: The reliability of the device, the life of a product

Size and weight: The physical space required by the system

CHAPTER 2. LITERATURE SURVEY 23

Power: The amount of energy it takes to operate the system

Nonrecurring engineering cost : The one-time cost to design and test

Unit cost: The cost required to manufacture one additional product

Time-to-prototype: The time required to design, build, and test an example system

Time-to-market: The time required to deliver the product to the customer

Human factors: The degree to which our customers like/appreciate the product

2.5.2 Requirements Document

The following is one possible outline of a Requirements Document. IEEE publishes

a number of templates that can be used to define a project (IEEE STD 830−1998).

A requirements document states what the system will do. It does not state how the

system will do it. The main purpose of a requirements document is to serve as an

agreement between you and your clients describing what the system will do. This

agreement can become a legally binding contract. Write the document so that it is

easy to read and understand by others. It should be unambiguous, complete, verifi-

able, and modifiable.

When we begin the design phase, we build a conceptual model of the hard-

ware/software system. It is in this model that we exploit as much abstraction as

appropriate. The project is broken into modules or subcomponents. During this

phase, we estimate the cost, schedule, and expected performance of the system. At

this point we can decide if the project has a high enough potential for profit.

A data flow graph is a block diagram of the system, showing the flow of infor-

mation. Arrows point from source to destination. The rectangles represent hardware

CHAPTER 2. LITERATURE SURVEY 24

components, and the ovals are software modules. We use data flow graphs in the

high−level design, because they describe the overall operation of the system while

hiding the details of how it works. Issues such as safety (e.g., Isaac Asimov‘s first

Law of Robotics “A robot may not harm a human being, or, through inaction, allow

a human being to come to harm ”) and testing (e.g., we need to verify our system is

operational) should be addressed during the high-level design.

A data flow graph for a simple position measurement system is shown in Figure

2.5. The sensor converts position in an electrical resistance. The analog circuit con-

verts resistance into the 0 to +3V voltage range required by the ADC. The ADC

converts analog voltage into a digital sample. The ADC driver, using the ADC and

timer hardware, collects samples and calculates voltages. The software converts volt-

age to position. Voltage and position data are represented as fixed−point numbers

within the computer. The position data is passed to the OLED driver creating ASCII

strings, which will be sent to the organic light emitting diode (OLED) module. A

Figure 2.5: A data flow graph showing how the position signal passes through the
system

preliminary design includes the overall top-down hierarchical structure, the basic I/O

signals, shared data structures, and overall software scheme. At this stage there

should be a simple and direct correlation between the hardware/software systems

and the conceptual model developed in the high−level design. Next, we finish the

CHAPTER 2. LITERATURE SURVEY 25

top−down hierarchical structure and build mock-ups of the mechanical parts (con-

nectors, chassis, cables etc.) and user software interface. Sophisticated 3−D CAD

systems can create realistic images of our system. Detailed hardware designs must

include mechanical drawings. It is a good idea to have a second source, which is an

alternative supplier that can sell our parts if the first source can’t deliver on time.

Call graphs are a graphical way to define how the software/hardware modules

interconnect. Data structures, which will be presented throughout the class, include

both the organization of information and mechanisms to access the data. Again safety

and testing should be addressed during this low-level design.

A call graph for a simple position measurement system is shown in Figure 2.6.

Again, rectangles represent hardware components, and ovals show software modules.

An arrow points from the calling routine to the module it calls. The I/O ports

are organized into groups and placed at the bottom of the graph. A high-level call

graph, like the one shown in Figure 2.6, shows only the high−level hardware/software

modules. A detailed call graph would include each software function and I/O port.

Normally, hardware is passive and the software initiates hardware/software commu-

nication, it is possible for the hardware to interrupt the software and cause certain

software modules to be run. In this system, the timer hardware will cause the ADC

software to collect a sample. The timer interrupt service routine (ISR) gets the next

sample from the ADC software, converts it to position, and displays the result by call-

ing the OLED interface software. The double−headed arrow between the ISR and

the hardware means the hardware triggers the interrupt and the software accesses the

hardware.

The next phase involves developing an implementation. An advantage of a top−down

CHAPTER 2. LITERATURE SURVEY 26

Figure 2.6: A call graph for a simple position measurement system

design is that implementation of sub−components can occur simultaneously. During

the initial iterations of the life cycle, it is quite efficient to implement the hardware/software

using simulation. One major advantage of simulation is that it is usually quicker to im-

plement an initial product on a simulator versus constructing a physical device out of

actual components. Rapid prototyping is important in the early stages of product de-

velopment. This allows for more loops around the analysis−design−implementation−testing−deployment

cycle, which in turn leads to a more sophisticated product.

Recent software and hardware technological developments have made significant

impacts on the software development for embedded microcomputers. The simplest

approach is to use a cross−assembler or cross-compiler to convert source code into

the machine code for the target system. The machine code can then be loaded into

the target machine. Debugging embedded systems with this simple approach is very

difficult for two reasons. First, the embedded system lacks the usual keyboard and

display that assist us when we debug regular software. Second, the nature of embed-

CHAPTER 2. LITERATURE SURVEY 27

ded systems involves the complex and real−time interaction between the hardware

and software. These real−time interactions make it impossible to test software with

the usual single-stepping and print statements.

The next technological advancement that has greatly affected the manner in which

embedded systems are developed is simulation. Because of the high cost and long

times required to create hardware prototypes, many preliminary feasibility designs

are now performed using hardware/software simulations. A simulator is a software

application that models the behavior of the hardware/software system. If both the

external hardware and software program are simulated together, even though the

simulated time is slower than the clock on the wall, the real−time hardware/software

interactions can be studied.

During the testing phase, we evaluate the performance of our system. First, we

debug the system and validate basic functions. Next, we use careful measurements

to optimize performance such as static efficiency (memory requirements), dynamic

efficiency (execution speed), accuracy (difference between expected truth and mea-

sured), and stability (consistent operation.)

Maintenance is the process of correcting mistakes, adding new features, optimizing

for execution speed or program size, porting to new computers or operating systems,

and reconfiguring the system to solve a similar problem. No system is static. Cus-

tomers may change or add requirements or constraints. To be profitable, we probably

will wish to tailor each system to the individual needs of each customer. Maintenance

is not really a separate phase, but rather involves additional loops around the life cy-

cle.

CHAPTER 2. LITERATURE SURVEY 28

Figure 2.4 describes top−down design as a cyclic process, beginning with a prob-

lem statement and ending up with a solution. With a bottom−up design we begin

with solutions and build up to a problem statement. Many innovations begin with

an idea, “what if?”In a bottom−up design, one begins with designing, building, and

testing low−level components. The low−level designs can be developed in parallel.

Bottom−up design may be inefficient because some subsystems may be designed,

built, and tested, but never used. As the design progresses the components are fit

together to make the system more and more complex. Only after the system is

completely built and tested does one define the overall system specifications. The

bottom−up design process allows creative ideas to drive the products a company

develops. It also allows one to quickly test the feasibility of an idea. If one fully

understands a problem area and the scope of potential solutions, then a top−down

design will arrive at an effective solution most quickly. On the other hand, if one

doesn‘t really understand the problem or the scope of its solutions, a bottom-up

approach allows one to start off by learning about the problem.

2.5.3 Debugging Theory

Functional debugging involves the verification of input/output parameters. Func-

tional debugging is a static process where inputs are supplied, the system is run, and

the outputs are compared against the expected results. Four methods of functional

debugging are presented in this section, and two more functional debugging methods

are presented in the next chapter after indexed addressing mode is presented.

There are two important aspects of debugging: control and observability. The

first step of debugging is to stabilize the system. In the debugging context, we sta-

bilize the problem by creating a test routine that fixes (or stabilizes) all the inputs.

CHAPTER 2. LITERATURE SURVEY 29

In this way, we can reproduce the exact inputs over and over again. Stabilization

is an effective approach to debugging because we can control exactly what software

is being executed. Once stabilized, if we modify the program, we are sure that the

change in our outputs is a function of the modification we made in our software and

not due to a change in the input parameters. When a system has a small number of

possible inputs (e.g., less than a million), it makes sense to test them all. When the

number of possible inputs is large we need to choose a set of inputs. There are many

ways to make this choice. We can select values: Near the extremes and in the middle.

Most typical of how our clients will properly use the system. Most typical of how our

clients will improperly attempt to use the system. That differ by one.You know your

system will find difficult, Using a random number generator. To stabilize the system

we define a fixed set of inputs to test, run the system on these inputs, and record the

outputs.

Debugging is a process of finding patterns in the differences between recorded

behavior and expected results. The advantage of modular programming is that we

can perform modular debugging. We make a list of modules that might be causing

the bug. We can then create new test routines to stabilize these modules and debug

them one at a time. Unfortunately, sometimes all the modules seem to work, but

the combination of modules does not. In this case we study the interfaces between

the modules, looking for intended and unintended (e.g., unfriendly code) interactions.

Many debuggers allow you to set the program counter to a specific address then

execute one instruction at a time. The debugger provides three stepping commands

Step, StepOver and StepOut commands. Step is the usual execute one assembly in-

struction. However, when debugging C we can also execute one line of C.StepOver

will execute one assembly instruction, unless that instruction is a subroutine call, in

which case the debugger will execute the entire subroutine and stop at the instruc-

tion following the subroutine call.StepOut assumes the execution has already entered

CHAPTER 2. LITERATURE SURVEY 30

a subroutine, and will finish execution of the subroutine and stop at the instruction

following the subroutine call.

A breakpoint is a mechanism to tag places in our software, which when executed

will cause the software to stop. Normally, you can break on any line of your program.

One of the problems with breakpoints is that sometimes we have to observe many

breakpoints before the error occurs. One way to deal with this problem is the condi-

tional breakpoint. To illustrate the implementation of conditional breakpoints, add a

global variable called Count and initialize it to 32 in the initialization ritual. Add the

following conditional breakpoint to the appropriate location in your software. Using

the debugger, we set a regular breakpoint at bkpt. We run the system again (you can

change the 32 to match the situation that causes the error.)

Notice that the breakpoint occurs only on the 32nd time the break is encountered.

Any appropriate condition can be substituted. Most modern debuggers allow you to

set breakpoints that will trigger on a count. However, this method allows flexibility

of letting you choose the exact conditions that cause the break

The use of print statements is a popular and effective means for functional debug-

ging. One difficulty with print statements in embedded systems is that a standard

printer may not be available. Another problem with printing is that most embedded

systems involve time-dependent interactions with its external environment. The print

statement itself may be so slow, that the debugging process itself causes the system

to fail.In this regard, the print statement is intrusive rely on the availability of a

standard output device.

Every programmer is faced with the need to debug and verify the correctness of

his or her software. A debugging instrument is hardware or software used for the

CHAPTER 2. LITERATURE SURVEY 31

purpose of debugging. In this section, we see hardware−level probes like the logic

analyzer, oscilloscope, and Joint Test Action Group (JTAG standardized as the IEEE

1149.1); software-level tools like simulators, monitors, and profilers; and manual tools

like inspection and print statements. Nonintrusiveness is the characteristic or quality

of a debugger that allows the software/hardware system to operate normally as if the

debugger did not exist. Intrusiveness is used as a measure of the degree of perturba-

tion caused in system performance by the debugging instrument itself. For example,

a print statement added to your source code is very intrusive because it significantly

affects the real−time interaction of the hardware and software. It is important to

quantify the intrusiveness of an instrument.

In a real microcomputer system, breakpoints and single−stepping are intrusive,

because the real hardware continues to change while the software has stopped. When

a program interacts with real−time events, the performance can be significantly al-

tered when using intrusive debugging tools. On the other hand, dumps with filter,

and monitors (e.g., output strategic information on an LED or LCD) are much less

intrusive. A logic analyzer that passively monitors the activity of the software is

completely nonintrusive. Interestingly, breakpoints and single−stepping on a mixed

hardware/software simulator are often nonintrusive, because the simulated hardware

and the simulated software are affected together.

Although, a wide variety of program monitoring and debugging tools are available

today, in practice it is found that an overwhelming majority of users either still prefer

or rely mainly upon “rough and ready ”manual methods for locating and correcting

program errors. These methods include desk−checking, dumps, and print statements,

with print statements being one of the most popular manual methods. Manual meth-

ods are useful because they are readily available, and they are relatively simple to use.

But, the usefulness of manual methods is limited: they tend to be highly intrusive,

and they do not provide adequate control over repeatability, event selection, or event

CHAPTER 2. LITERATURE SURVEY 32

isolation. A real−time system, where software execution timing is critical, usually

cannot be debugged with simple print statements, because the print statement itself

will require too much time to execute.

Debugging Dumps

To solve these limitations, we can add a debugging instrument that dumps strategic

information into an array at run time. We can then observe the contents of the array

at a later time. One of the advantages of dumping is that the JTAG debugger allows

you to visualize memory even when the program is running. So this technique will be

quite useful in systems with a JTAG debugger. Assume happy and sad are strategic

8-bit variables. The first step when instrumenting a dump is to define a buffer in

RAM to save the debugging measurements.

One problem with dumps is that they can generate a tremendous amount of

information. If you suspect a certain situation is causing the error, you can add a

filter to the instrument. A filter is a software/hardware condition that must be true

in order to place data into the array. In this situation, if we suspect the error occurs

when another variable gets large, we could add a filter that saves in the array only

when the variable is above a certain value.

Chapter 3

Raspberry Pi Board(RPi)

3.1 Introduction

Raspberry pi is a small size board.Size of the board is approximately size of the

credit card. Educational and official name of the Raspberry Pi is RPi. RPi board

is developed by UK the Raspberry Pi foundation in Cambridge university[8, 9].Basic

objective of RPi board is for education purpose. But now this board is used in many

area like robotics, automation and at experimental purpose.RPi board is very low

cost which is affordable for the students and other user of it.It’s availability is good.It

is like a general CPU and RPi also support Linux operating system which make it

more usable.Due to it’s low cost and support open source OS and also availability of it

attack use and student towards it.It is developed by a group of Cambridge university

professors and students.

3.2 Component Technologies

3.2.1 CPU

The Central Processing Unit is the ”brains” of the computer, processing all commands

and instructions that make your computer perform tasks and run programs.

33

CHAPTER 3. RASPBERRY PI BOARD(RPI) 34

3.2.2 GPU

The Graphics Processing Unit processes and converts all the data needed to output

video to your monitor. This can be over various media types such as HDMI, VGA,

Display Port etc.

3.2.3 RAM

Random Access Memory is used by the system to store data that is currently being

accessed or cached for quick retrieval. RAM is known as volatile memory because

any data stored here will be lost when the power is turned off.

3.2.4 Hard Disk

The Hard Disk is a type of long term storage, non-volatile memory, because data

stored here is not lost when the power is switched off. Hard Disks usually consist of

glass disks coated in a magnetic substance that stores the data as bits. These can be

read from and written to using a small magnet on an arm that hovers very closely to

the disk surface. Hard Disks are traditionally used for storing the Operating System

and for your documents, pictures and videos.

3.2.5 SD Card

Raspberry Pi does not come with a Hard Disk for storing the OS instead it uses

another form of non-volatile memory known as a Secure Digital Card. This card is a

form of flash memory that can be written to and read from and will retain data when

the power supply is stopped. SD Cards come in a large array of physical formats and

storage capacities allowing them to be used in a range of devices including Mobile

Phones, Digital Cameras and removable storage in a PC and now the Raspberry Pi.

CHAPTER 3. RASPBERRY PI BOARD(RPI) 35

3.2.6 Motherboard

The Motherboard acts as the backbone of the computer allowing all of the separate

components such as CPU, RAM, Hard Disk etc, to communicate with each other.

3.2.7 Network Interface Card

The Network Interface Card, or NIC, is used to connect your Raspberry Pi to a

LAN. The Raspberry Pi uses a standard RJ45 port that accepts an Ethernet cable,

technically called shielded/ unshielded twisted pair. The other end is connected to

a switch/hub or your home router. Once the network settings have been configured

you will be able to access other resources on your LAN or the Internet.

3.2.8 USB Port

The USB port is used to connect many types of peripherals such as a keyboard and

mouse to interface with the Pi or a USB PenDrive/Hard Disk to add more storage

capacity.

3.2.9 Micro USB

The Micro USB port is used to power the Raspberry Pi, you can typically use a

mobile phone charger to do this.

3.2.10 Composite Video

This video out port is used when HDMI is unavailable on the monitor or television

the user wishes to display output on. Almost all televisions have an input for this

medium, called composite in and is usually found with two other identical ports.

These are red/white for left/right audio and yellow for video. The disadvantage to

using this video out is the poorer resolution when compared with HDMI.

CHAPTER 3. RASPBERRY PI BOARD(RPI) 36

3.2.11 Audio Out

The audio out used on the Raspberry Pi is a standard 3.5mm analogue jack com-

monly found on MP3 players and mobile phones. The HDMI port is also capable of

outputting audio to a compatible device.

3.2.12 GPIO

The General Purpose Input/Output is a fully user programmable interface used to

connect almost anything that has a compatible receiving connection.

3.3 Description of RPi Board

The RPi Board contain many facilities on a small board.It contain processor and

graphics chip, program memory(RAM), and various interfaces and connector for ex-

ternal devices.Some of these devices are essential and some are optional. RPi operate

in the same way as any stander PC.

It also requires mass-storage, but a hard disk drive of the type found in a typical

PC is not really in keeping with the miniature size of RPi. Instead we will use an

SD Flash memory card normally used in digital cameras, configured in such a way to

look like a hard drive to RPis processor. RPi will boot (load the Operating System

into RAM) from this card in the same way as a PC boots up into Windows from its

hard disk.

RPi board description is as follow:

RPi board has following chips, ports and GPIO (terminal available on board)

• BROADCOM BCM2835: It is an SoC which contain ARM1176JZF-S and

peripherals which safely be controlled by ARM processor.

Peripherals are as follow[8, 9] :

CHAPTER 3. RASPBERRY PI BOARD(RPI) 37

Figure 3.1: Raspberry Pi Board

– Timers

– Interrupt controller

– GPIO

– USB

– PCM/I2S

– DMA controller

– I2C master

– I2C / SPI slave

– SPI0, SPI1, SPI2

– PWM

– UART0, UART1

CHAPTER 3. RASPBERRY PI BOARD(RPI) 38

• LAN controller: Control and stabilize the Ethernet connection

• CSI connector camera: For connect the camera through RPi

• Status LED: For show the LAN connection status

Port Available on RPi:

• HDMI Port: Provide connection to the monitor screen and enable display

• RCA video output: If HDMI monitor not available you can use this

• Audio jack

• USB 2.0 port: For connect Mouse, key board, Pendrive and USB hub

• Ethernet Port : For LAN and WiFi connection

• Micro USB Port: For provide power supply

• GPIO Header: To access GPIO pins for control external hardware

• JTAG header: For provide connection to the JTAG connection device

• DSI connector Display: For another display purpose

• SD Card connector: For connect SD card which is external memory contain OS

like Hard Disk in CPU

3.4 Specification of RPi Board

There are some specification regarding RPi board which help to know for proper

utilization of board. It shows the facility, flexibility and limitation of board.Current

and voltage specification for the GPIO pins.[10]

Table 3.1: Board Specification

CHAPTER 3. RASPBERRY PI BOARD(RPI) 39

Parameter Model B

Price Of Board US$ 35

SoC Broadcom BCM2835 (CPU, GPU,

DSP, SDRAM, and single USB port)

CPU 700 MHz ARM1176JZF-S core

(ARM11 family, ARMv6 instruction

set)

GPU Broadcom VideoCore IV @ 250

MHz,OpenGL ES 2.0 (24 GFLOPS),

1080p30 h.264/MPEG-4 AVC high-

profile decoder and encoder, MPEG-2

and VC-1

SDRAM 512 MB (shared with GPU)

USB 2.0 ports 2

Video input A CSI input connector allows for the

connection of a RPF designed camera

module

Video outputs Composite RCA (PAL and NTSC),

HDMI, raw LCD Panels via DSI

Audio outputs 3.5 mm jack, HDMI

Onboard storage SD / MMC / SDIO card slot (3.3V card

power support only)

Onboard network 10/100 Ethernet (8P8C) USB adapter

on the third port of the USB hub for

WiFi

CHAPTER 3. RASPBERRY PI BOARD(RPI) 40

Low-level peripherals 8 × GPIO, UART, IC bus, SPI bus

with two chip selects, IS audio, +3.3

V, +5 V, ground and Maximum Cur-

rent Draw from 3.3V is 50mA

Power Rating 700mA(3.5 W)

Power Source 5 volt via MicroUSB or GPIO header

Size 85.60 × 53.98 mm (3.370 × 2.125 in)

Weight 45 g

Operating systems Raspbian OS, Debian GNU/Linux, Fe-

dora, RISC OS and many

CHAPTER 3. RASPBERRY PI BOARD(RPI) 41

3.5 BCM2835 SoC

Figure 3.2: Block Diagram Of BCM2835

The Raspberry Pi does not have a separate CPU (Central Processing Unit), RAM

(Random Access Memory) or GPU (Graphics Processing Unit). Instead they are all

squeezed into one component called a System on Chip or SoC unit. This is essentially

the entire computer on one chip.

CHAPTER 3. RASPBERRY PI BOARD(RPI) 42

The Raspberry Pi uses an ARM1176JZF−S 700MHz CPU which is also installed

in a wide variety of mobile phones, hand held games consoles and eReaders. This

CPU is single core, however it does have a co-processor to perform floating point

calculations. Many calculations required by a program involve whole numbers (inte-

gers). These are easier for the CPU to handle. Integer calculations produce accurate

results. Floating point or real numbers have a fractional part e.g. 1.5. They are more

demanding for the CPU to process.

The Model B Raspberry Pi has 512MB SDRAM (Synchronous Dynamic RAM). This

is working memory that is used to store programs that are currently being run in the

CPU.

The ARM CPU has 32KB of Level 1 cache memory for instructions and 32KB for

data. It also has 128KB of Level 2 cache memory. Cache memory is important in

improving the performance of the system because it stores recently used program

lines copied from RAM ready to be used again if needed. Most processors have levels

of cache. Level 1 is the smallest size but is closest to the CPU core. Level 2 is larger

but is situated slightly further away from the CPU core. The CPU is based on 32

bit architecture and has 32 bit registers. It also uses a 32 bit words. A word is a

complete piece of information that the CPU can execute. The Arithmetic Logic Unit

is the part of the CPU where instructions are executed.

CHAPTER 3. RASPBERRY PI BOARD(RPI) 43

3.6 Generl Purpose Input / Output(GPIO)

There are 54 genaral-purpose I/O(GPIO) lines in RPi.These 54 lines split into two

banks.All GPIO pins have at least two alternative function within BCM. The alternate

function are usually peripheral I/O and a single peripheral may appear in each bank

to allow flexibility on the choice of I/O voltage.

Figure 3.3: GPIO Block Diagram
[18]

CHAPTER 3. RASPBERRY PI BOARD(RPI) 44

3.6.1 Registers Organization Of GPIO

GPIO Function Select Registers The function select registers are used to define

the operation of the general-purpose I/O pins. Each of the 54 GPIO pins has at

least two alternative functions.All unused alternative function lines are tied to

ground and will output a “0 ”if selected. All pins reset to normal GPIO input

operation.

GPIO Pin Output Set Registers The output set registers are used to set a GPIO

pin. The field defines the respective GPIO pin to set, writing a “0 ”to the field

has no effect. If the GPIO pin is being used as in input (by default) then the

value in the field is ignored.

GPIO Pin Output Clear Registers The output clear registers are used to clear

a GPIO pin.

GPIO Pin Level Registers The pin level registers return the actual value of the

pin.It could be GPIO Level Register 0 and GPIO Level Register 1.

GPIO Event Detect Status Registers The event detect status registers are used

to record level and edge events on the GPIO pins. The relevant bit in the event

detect status registers is set whenever:

1. an edge is detected that matches the type of edge programmed in the

rising/falling edge detect enable registers.

2. a level is detected that matches the type of level programmed in the

high/low level detect enable registers. The bit is cleared by writing a

“1 ”to the relevant bit.

The interrupt controller can be programmed to interrupt the processor when any

of the status bits are set. The GPIO peripheral has three dedicated interrupt

lines. Each GPIO bank can generate an independent interrupt. The third line

generates a single interrupt whenever any bit is set.

CHAPTER 3. RASPBERRY PI BOARD(RPI) 45

GPIO Rising Edge Detect Enable Registers The rising edge detect enable reg-

isters define the pins for which a rising edge transition sets a bit in the event

detect status registers (GPEDSn). When the relevant bits are set in both the

GPRENn and GPFENn registers, any transition (1 to 0 and 0 to 1) will set

a bit in the GPEDSn registers. The GPRENn registers use synchronous edge

detection. This means the input signal is sampled using the system clock and

then it is looking for a 011 pattern on the sampled signal. This has the effect

of suppressing glitches.

GPIO Falling Edge Detect Enable Registers (GPRENn) The falling edge de-

tect enable registers define the pins for which a falling edge transition sets a bit

in the event detect status registers (GPEDSn). When the relevant bits are set

in both the GPRENn and GPFENn registers, any transition (1 to 0 and 0 to 1)

will set a bit in the GPEDSn registers. The GPFENn registers use synchronous

edge detection. This means the input signal is sampled using the system clock

and then it is looking for a 100 pattern on the sampled signal. This has the

effect of suppressing glitches.

GPIO High Detect Enable Registers The high level detect enable registers de-

fine the pins for which a high level sets a bit in the event detect status register

(GPEDSn). If the pin is still high when an attempt is made to clear the status

bit in GPEDSn then the status bit will remain set.

GPIO Low Detect Enable Registers (GPLENn) The low level detect enable

registers define the pins for which a low level sets a bit in the event detect

status register (GPEDSn). If the pin is still low when an attempt is made to

clear the status bit in GPEDSn then the status bit will remain set.

GPIO Asynchronous rising Edge Detect Enable Registers (GPARENn) The

asynchronous rising edge detect enable registers define the pins for which a

asynchronous rising edge transition sets a bit in the event detect status regis-

CHAPTER 3. RASPBERRY PI BOARD(RPI) 46

ters (GPEDSn). Asynchronous means the incoming signal is not sampled by

the system clock. As such rising edges of very short duration can be detected.

GPIO Asynchronous Falling Edge Detect Enable Registers (GPAFENn) The

asynchronous falling edge detect enable registers define the pins for which a

asynchronous falling edge transition sets a bit in the event detect status regis-

ters (GPEDSn). Asynchronous means the incoming signal is not sampled by

the system clock. As such falling edges of very short duration can be detected.

GPIO Pull-up/down Register (GPPUD) The GPIO Pull-up/down Register con-

trols the actuation of the internal pull-up/down control line to ALL the GPIO

pins. This register must be used in conjunction with the 2 GPPUDCLKn regis-

ters. Note that it is not possible to read back the current Pull-up/down settings

and so it is the users responsibility to remember which pull-up/downs are active.

The reason for this is that GPIO pull-ups are maintained even in power-down

mode when the core is off, when all register contents is lost. The Alternate

function table also has the pull state which is applied after a power down.

GPIO Pull-up/down Clock Registers (GPPUDCLKn) The GPIO Pull-up/down

Clock Registers control the actuation of internal pull-downs on the respective

GPIO pins. These registers must be used in conjunction with the GPPUD

register to effect GPIO Pull-up/down changes.

3.6.2 Pin Configuration Of RPi GPIO Headers

There are 26 pin on header P1 and 8 pin on header P5(only model B of RPi Board)

for low level peripheral on RPi board. Pin configuration is as in figure:

Name and number of the GPIO pin as per BCM2835 are shown in the figure. But

as per wiring pi library, number of the GPIO pins is different.So for proper GPIO

name and number see AppendixC.

CHAPTER 3. RASPBERRY PI BOARD(RPI) 47

Figure 3.4: RPi GPIO
[18]

Chapter 4

Rapbian OS and Software

RPi support different operating system. In this thesis Raspbian ”wheezy” operating

system is used. It is a customize version for raspberry pi. It’s performance and com-

patibility is well compare to other operating system[13].

Compare to other Linux OS, raspbian also has the same feature. It support

the Hierarchy file system, directory and sub-directory system.

4.1 Raspbian File System Hierarchy

Root is main directory. The Root Directory of linux file system contains the following

sub-directory:

• /bin

• /sys

• /boot

• /dev

• /etc

48

CHAPTER 4. RAPBIAN OS AND SOFTWARE 49

• /home

• /lib

• /lost+found

• /media

• /mnt

• /opt

• /proc

• /root

• /sbin

• /usr

• /srv

• /tmp

• /var

• /selinux

• /run

Now let us see the purpose of each folder given above:

4.1.1 /bin

It contains several useful commands that are of use to both the system administrator

as well as non-privileged users. Usually contains the shells like bash, csh, etc.... and

commonly used commands like cp, mv, rm, cat, ls.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 50

4.1.2 /boot

It contains everything required for the boot process except for configuration files not

needed at boot time and the map installer. It stores data that is used before the

kernel begins executing user-mode programs.It may include the system kernel (under

symbolically linked)

4.1.3 /dev

This sub-directory the location of device files. A device and a file both can be read

from and written to this directory. So config a device is same with edit a file.

EX: sending data to /dev/ttyS0 that means you are sending data to a communication

device, such as a modem. ’block devices’ are devices that store or hold data. ’character

devices’ can be thought of as devices that transmit or transfer data.

4.1.4 /etc

It Contains all system related configuration files. Local file used to control the oper-

ation of a program. Those files must be static and cannot be an executable binary.

In this directory there is a sub-directory network. In network sub-directory there is

a interface file, which is use for set the IP address setting for LAN and WAN.

4.1.5 /home

The user home directories. Accessible only to its owner and the system administrator.

It contains the user?s personal configuration files. It is quite large to be used as User’s

Documents Space.

4.1.6 /lib

It contains kernel modules and those shared library images (the C programming code

library) needed to boot the system and run the commands in the root filesystem, ie.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 51

by binaries in /bin and /sbin. Windows equivalent to a shared library would be a

DLL (dynamically linked library) file.

4.1.7 /lost+found

It contains the files which were recovered after an unexpected event, such as a proper

shutdown. It is try to move each file back to its original location.

4.1.8 /media

It contains sub-directories which are used as mount points for removable media such

as pen-drive, disks, CD-ROM and zip disks.

4.1.9 /mnt

This is a generic mount point under mounted (mount is to make a filesystem available

to the system) the filesystems or devices. When a filesystem no longer needs to be

mounted, it can be unmounted with umount.

4.1.10 /opt

This directory is reserved for all the software and add-on packages that are not part

of the default installation.

4.1.11 /proc

It is virtual filesystem, provide runtime system information (e.g. system memory,

devices mounted, hardware configuration, etc). The most of them have a file size of

0. To view, use ?cat?. Use ?vi? to edit.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 52

4.1.12 /root

The home directory of the System Administrator, ’root’. Why not in ’/home’? Be-

cause ’/home’ is often located on a different partition or even on another system and

would thus be inaccessible to ’root’ when - for some reason - only ’/’ is mounted.

4.1.13 /sbin

/sbin should contain only binaries essential for booting, restoring, recovering, and/or

repairing the system in addition to the binaries in /bin.

4.1.14 /usr

The largest share of data on a system. The most important directories in the system

as it contains all the user binaries, their documentation, libraries, header files, etc....

X and its supporting libraries, and User programs like telnet, ftp, etc.... as well, can

be found here.

4.1.15 /var

It contains variable data, files and directories the system must be able to write to

during operation, like system logging files, mail and printer spool directories, and

transient and temporary files

4.1.16 /srv

Srv is a serve folder. It holds site specific data to be served by the system for protocols

such as, ftp, rsync, www, cvs etc.

4.1.17 /tmp

Tmp is a temporary storage folder. Anything that is to be temporarily stored goes

here.It is recommended that you don’t delete these manually

CHAPTER 4. RAPBIAN OS AND SOFTWARE 53

4.2 Protocols Support

There are several protocol used by RPi operating system. Some network protocol,

bus protocol audio and video protocol. Some protocol is as follow:

4.2.1 TCP

TCP or Transmission Control Protocol is an OSI Layer 4 protocol that ensures con-

nection reliability through the use of Acknowledgment (ACK) packets.

4.2.2 UDP

UDP or User Datagram Protocol is similar to TCP but is considered connection-less

and does not ensure that packets are received correctly at the destination but does

have advantages such as higher throughput due to lower overhead and is generally

used when guaranteed delivery is not essential such as DNS look ups.

4.2.3 FTP

FTP or File Transfer Protocol, is a lightweight protocol using TCP ports 20 and 21

enabling the transferring of files across a network.

4.2.4 TFTP

TFTP or Trivial File Transfer Protocol uses UDP port 69, this is a very lightweight

protocol that lacks many of the features of FTP such as user authentication and

listing of directories but does allow greater transfer speeds due to the lower overhead.

4.2.5 HTTP

Hyper Text Transfer Protocol is the protocol used by web browsers such as Firefox,

Internet Explorer, Chrome, etc to request web pages from a web server on the Internet.

HTTP uses the well known TCP port 80.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 54

4.2.6 HTTPS

HTTPS is the same as the HTTP protocol but operates over SSL to provide end to

end encryption, you will commonly see this when logging into a secure site such as

Internet Banking, Web based Email etc. HTTPS operates over TCP port 443.

4.2.7 SSL

Secure Socket Layer is an OSI layer 6 protocol that provides strong encryption for

protocols used by applications such as HTTP and FTP.

4.2.8 SSH (Secure Shell)

Secure Shell is a method of accessing the Command Line Interface of your Raspberry

Pi, or any UNIX based OS, over an encrypted connection using TCP port 22

4.2.9 Telnet

Telnet is one of the original protocols developed to allow a user to access a host

command line remotely over a LAN or a WAN such as the internet. Telnet is not

used extensively anymore due to a lack of security features such as encryption and

users now prefer to use SSH. Telnet uses TCP port 23.

4.2.10 DHCP

Dynamic Host Configuration Protocol is a popular protocol used to automatically

configure the network settings on a host. Most home routers will provide this service

as standard. DHCP uses UDP ports 67 and 68.

4.2.11 DNS

The Domain Name System is used to resolve the URL you type into your browser to

an IP address. DNS uses either TCP or UDP port 53.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 55

Apart form above protocol supported for networking. It is also support bus proto-

cols for SPI, I2C, USB, 802.3 for LAN, 802.11g for USB wireless, WiFi and protocol

for CSI etc.

4.3 Program and Application Support

It support different application or program.

Some of them are as follows:

• nano editor:

This application for edit any file normal or administrative.

• LXTerminal:

It is same as DOS prompt on windows or Terminal window on Linux. Here

command line activity can perform. With that command line many utilities

can be used. It also provide facility to install new application software through

command line and many other services.

• Midori:

It is a internet browser like Google chrome. For excess internet and use services

of internet.

• IDLE and IDLE 3:

It is the IDE(Integrated development environment) for python language.

• WiFi config:

It is for config WiFi adopter.

• vi editor: It is a editor. It help to write code in c language and for edit files.

Apart from that it consist many application for video, audio, image and so on.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 56

4.4 Benchmarking Raspberry Pi GPIO Speed

The basic test setup was to toggle one of the GPIO pins, namely the GPIO and see

what frequency square wave could be achieved. This basic test setup give idea for any

signaling. One can say is basically the upper limit for any signaling with the GPIO

pins.

Table 4.1: GPIO Benchmark

Language Library Version Square wave

Shell /proc/mem access not applicable 3.4 kHz

Python RPi.GPIO 0.3.0 44 kHz

Python wiringPi github 20 kHz

C Native library not applicable 14-22 MHz

C BCM 2835 1.3 4.7 5.1 MHz

C wiringPi not available 6.9 7.1 MHz

Perl BCM 2835 1.0 35 kH

Different test code with different languages is as follow:

4.4.1 Shell script

The easiest way to manipulate the RPi GPIO pins is via terminal. Here‘s a basic

shell script to toggle the GPIO 4 without any delay between on and off:

! /bin/sh echo “4 ”> /sys/class/gpio/export

echo “out ”> /sys/class/gpio/gpio4/direction

while true

do

echo 1 > /sys/class/gpio/gpio4/value

CHAPTER 4. RAPBIAN OS AND SOFTWARE 57

echo 0 > /sys/class/gpio/gpio4/value

done

The performance of this implementation is not as good as expected : A 3400 Hz

square wave can be generated using this method. For turnings things on and off this

is enough, but no signalling and hardly even LED PWM is feasible.

4.4.2 Python

One of the simplest ways to access the GPIO with a “real programming language”is

with the RPi.GPIO Python library. Test script for benchmarking is simple as well:

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

GPIO.setup(4, GPIO.OUT)

while True:

GPIO.output(4, True)

GPIO.output(4, False

While the 0.2.0 version performance was terrible, the newer 0.3.0 version has

significantly improved performance: 44 kHz square wave could be generated. The

diagram below is updated for version 0.3.0.

Another alternative for Python are the wiringPi Python bindings. With the fol-

lowing simple test program, a square wave of 19.5 kHz was generated about half the

speed of the updated RPi.GPIO library:

import wiringpi

io = wiringpi.GPIO(wiringpi.GPIO.WPI MODE PINS)

CHAPTER 4. RAPBIAN OS AND SOFTWARE 58

io.pinMode(7,io.OUTPUT)

while True:

io.digitalWrite(7,io.HIGH)

io.digitalWrite(7,io.LOW)

4.4.3 Native C

The Raspberry Pi Wiki gives a nice C code example for true hardware − level access

to the GPIO. The interfacing is slightly more difficult, but code isn‘t too bad. I took

the example program and simplified the main method after setup io() to this:

\\Set GPIO pin 4 to output

INP GPIO(4); \\must use INP GPIO before we can use OUT GPIO

OUT GPIO(4);

while(1)

GPIO SET = 1< < 4 ;

GPIO CLR = 1< < 4 ;

The measurements for these high frequency signals are now completely redone.

Program compiling with the −O3 flag gives even more impressive results: 21.9 MHz

square wave. We can conclude that using C, signaling at several MHz speeds should

be achievable.

CHAPTER 4. RAPBIAN OS AND SOFTWARE 59

4.4.4 BCM2835 C library

Mike McCauley has made a nice C library called bcm2835 that can also be used to

interface with the GPIO pins using C. Its installation was also quite easy: download,

run the standard configure \make \make install commands and you‘re good to go.

Compiling the code is done with the −l bcm2835 compiler flag to include the library.

Benchmark code looked like this (note that in Broadcom numbering, GPIO 4 is P1

07):

include <bcm2835.h>

define PIN RPI GPIO P1 07 \\GPIO 4

int main(int argc, char argv[])

if(!bcm2835 init())

return 1;

\\Set the pin to be an output

bcm2835 gpio fsel(PIN, BCM2835 GPIO FSEL OUTP);

while(1) \\Blink

bcm2835 gpio write(PIN, HIGH);

\\delay(500);

bcm2835 gpio write(PIN, LOW);

\\delay(500);

return 0;

The performance is not far beyond the earlier C example: A solid 4.7 MHz which

CHAPTER 4. RAPBIAN OS AND SOFTWARE 60

could be bumped to 5.1 MHz with the use of −O3 optimization flag. Definitely

enough for most applications.

4.4.5 C with WiringPi

Gordon Henderson has written an Arduino-like wiringPi library using C. Here‘s the

simple test program:

include <wiringPi.h>

include <stdio.h>

include <stdlib.h>

include <stdint.h>

int main()

if (wiringPiSetup () == −1) exit (1) ;

pinMode(7, OUTPUT);

while(1)

digitalWrite(7, 0);

digitalWrite(7, 1);

return 0 ;

With the normal GPIO access method, the library already clocks an impressive

6.9 MHz square wave. The picture below has also been updated for more accurate

waveform: There‘s also a GPIO access method which involves calling wiringPiSetupG-

pio() instead of wiringPiSetup(), and using the normal GPIO numbering instead of

wiringPi native renumbering system, so 7 becomes 4 in the above code. The perfor-

mance is increased slightly to 7.1 MHz. Also, a /proc/sys based access method was

CHAPTER 4. RAPBIAN OS AND SOFTWARE 61

provided, but it was a lot slower, running at 200 kHz on average. The wiringPi also

comes with a command gpio that can be used to access the GPIO, but the perfor-

mance is very poor. The program below achieved a 80 Hz square wave:

gpio −g mode 4 out

while true

do

gpio −g write 4 1

gpio −g write 4 0

done

Based on these simple benchmarks, One can conclude that shell and Python access

to GPIO is enough for any automation tasks. For actual signaling applications, C

seems like the only choice.

Chapter 5

Implementation and Result

5.1 Design Phase

There are some parameter which come in design phase like requirement, specification

and constrains.

In the design four stepper motor required those are able to control cryogenic probe

station. There are two motor required for to and fro motion and two motor for

side−wise motion.

To understand flow, 3−D model is created shown in figure 5.1 below

Figure 5.1: 3D presentation Diagram

62

CHAPTER 5. IMPLEMENTATION AND RESULT 63

This 3D presentation according to the flow chart given below. For specification

refer D.12 C Cost and Size are two most important parameter. Application for

automation should be error free. GPIO pins available To implement an interactive

GUI application through Raspbian Operating system is used. Python language is

used for creating interactive application.

In this implement process python language is used. In python both the libraries

of GUI and GPIO available. To implement GUI tkinter module used. RPi.GPIO

module used for controlling GPIO of the board.

5.2 Flow Chart

Figure 5.2: Main Program Flow

CHAPTER 5. IMPLEMENTATION AND RESULT 64

Figure 5.3: Side Wise Motion

CHAPTER 5. IMPLEMENTATION AND RESULT 65

Figure 5.4: Subroutine of Flow Chart

CHAPTER 5. IMPLEMENTATION AND RESULT 66

Figure 5.5: Subroutine of Flow Chart

CHAPTER 5. IMPLEMENTATION AND RESULT 67

5.3 GUI Application Flow

User case diagram and class diagram for the GUI application. Those diagrams are

self explanatory. This application help user to interact with the in a proper way.

Figure 5.6: Class Diagram For GUI

CHAPTER 5. IMPLEMENTATION AND RESULT 68

Figure 5.7: User Case Diagram For GUI Application

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this project entitled as ”Automate the Cryoprob By Raspberry Pi”, we automate

the cryoprobes with the help of RPi and achieve 98% accuracy. Also enable appli-

cation through remote place with the help of internet web site. Remote Access is

achieve and it is secure and reliable. Problem due to sudden power off was overcome

by use file operation with save the position and motion related information into the

SD card. One more solution for that problem was always start from initial position

but it is not profitable for user. Hardware selection as RPi is good choice to make an

interactive application, because RPi is a mini computer. It supports Linux OS and

many other applications.For creating GUI and accessing GPIOs libraries are available

there in Raspbian OS, which provides easiness for the developer to develop an interac-

tive embedded system. But there are very less GPIOs available on board for low level

peripheral access, which is a drawback of RPi. For us to overcome this drawback we

require another external hardware which can control four stepper motors and a sen-

sor. This external hardware is controlled by many ways like Bus protocol available on

RPi or use simple GPIO,it is also alternate way to achieve external hardware control.

In the GPIO header pins there is a particular pin for SPI bus through which we can

69

CHAPTER 6. CONCLUSION AND FUTURE WORK 70

control other hardware.Here the stepper motors alone can not provide the required

resolution(in the order of micro meter)for the cryoprob.so we use a gear system to

increase the resolution. Here the combination of RPi and the peripheral hardware

provides a strong embedded system to automate the cryoprob .

6.2 Future Work

Future objective is, to create an external hardware with the help of micro-controller.

Connect it with RPi and control by SPI bus. External hardware will control the

stepper motor and other sensor. Create GUI in RPi which provide interaction with

user and this GUI control SPI which control external hardware and external hardware

control stepper motor.

Appendix A

Python code for Stepper motor

control through GUI

import time

import RPi.GPIO as GPIO

import tkinter

from tkinter import

root = Tk()

window = tkinter.Tk()

window.title(”Stepper Motor”)

lable = Label(window, text=”Click here to run motor”)

lable.grid(row=0)

lb = Listbox(window)

lb.insert(”end”, ”A list entry”)

for item in [”M1”,”M2”,”M3”,”m4”]:

lb.insert(”end”,item)

GPIO.setmode(GPIO.BCM)

StepPins = [24,25,8,7]

for pin in StepPins:

71

APPENDIX A. PYTHON CODE FOR STEPPERMOTOR CONTROL THROUGHGUI72

print (”Setup pins”)

GPIO.setup(pin,GPIO.OUT)

GPIO.output(pin, False)

StepCounter = 0

WaitTime = 0.5

StepCount1 = 4

Seq1 = [(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)]

StepCount2 = 8

Seq2 = [(1,0,0,0),(1,1,0,0),(0,1,0,0),(0,1,1,0),

(0,0,1,0),(0,0,1,1),(0,0,0,1),(1,0,0,1)]

Seq = Seq2

StepCount = StepCount2

class Motor Run:

StepCounter = 0

WaitTime = 0.5

def init (self):

print(”It just initiate the class %i” %Motor Run.StepCounter)

def Motor Move(self):

for pin in range(0, 4):

xpin = StepPins[pin]

if Seq[Motor Run.StepCounter][pin]!=0:

print (” Step %i Enable %i ” %(Motor Run.StepCounter,xpin))

GPIO.output(xpin, True)

else:

GPIO.output(xpin, False)

Motor Run.StepCounter +=1

if (Motor Run.StepCounter==StepCount):

Motor Run.StepCounter = 0

time.sleep(Motor Run.WaitTime)

APPENDIX A. PYTHON CODE FOR STEPPERMOTOR CONTROL THROUGHGUI73

def MotorRun():

MotorRun = Motor Run()

MotorRun.Motor Move() def selectBar(event):

global value

widget = event.widget

selection = widget.curselection()

value = widget.get(selection[0])

print(”Selection:”, selection, ”: %s” %value) if (value == ”M1”):

print(”Motor Bar 1 is selected”)

def MotorRun():

MotorRun = Motor Run()

MotorRun.Motor Move()

MotorRun()

elif (value == ”M2”):

print(”Motor Bar 2 is selected”)

def MotorRun():

print(”Code is not prepared for Bar 2”)

MotorRun()

elif (value == ”M3”):

print(”Motor Bar 3 is selected”)

def MotorRun():

print(”Code is not prepared for Bar 3”)

MotorRun()

else:

print(”Motor Bar 4 is selected”)

def MotorRun():

print(”Code is not prepared for Bar 4”)

MotorRun()

lb.bind(”<Double-Button-1>”, selectBar)

APPENDIX A. PYTHON CODE FOR STEPPERMOTOR CONTROL THROUGHGUI74

lb.grid(row=1, column=0)

def Motor Stop():

for pin in range(0,4):

xpin = StepPins[pin]

GPIO.output(xpin, GPIO.LOW)

print(”Motor has stopped”)

M=Message(root,text=”Motor is Stop”)

M.pack()

MotorSwitch = Button(window, text=”Motor Switch”,command=MotorRun)

MotorSwitch.grid(row=0,column=1)

MotorStop = Button(window, text= “Motor Stop ”,command=Motor Stop) Mo-

torStop.grid(row=1,column=1)

Quit = Button(window,text=”Quit”,command=window.quit)

Quit.grid(row=2,column=1)

window.mainloop()

Appendix B

Writing an SD Card Image

B.1 Writing an SD card from from Windows

1. Download the Win32DiskImager program.

2. Download the 2013-09-25-wheezy-raspbian.zip image file of Raspbian OS from

o http://www.raspberrypi.org/downloads.

3. Download the SDFormatterv4.zip program for format the SD card.

4. Insert the SD card in your reader and note the drive letter that pops up in

Windows Explorer.

5. Open Win32DiskImager and select the Raspbian disk image.

6. Select the SD cards drive letter, then click Write. If Win32DiskImager has

problems writing to the card, try reformatting it in Windows Explorer.

7. Eject the SD card and put it in your Raspberry Pi.

Note Please make sour SD card is properly formatted. If SD card show 15.9 MB

space after format then use SDFormatterv4. SD card must show full space.

When SD card formatted then use above mount procedure.

75

APPENDIX B. WRITING AN SD CARD IMAGE 76

B.2 Writing an SD card from from Linux

1. Open your a new shell and without the card in the reader, type df -h to see

which disk volumes are mounted.

2. Now insert the SD card and run df -h again.

3. Look at the list of mounted volumes and determine which one is the SD card

by comparing it to the previous output. Find the device name, which should be

something like /dev/sdd1. Depending on the configuration of your computer,

this name may vary. Write the cards device name down.

4. To write to the card you will have to unmount it first. Unmount it by typ-

ing umount /dev/sdd1 (using the device name you got from the previous step

instead of /dev/sdd1). If the card fails to unmount, make sure it is not the

current working directory in any open shells.

5. Next youll need to figure out the raw device name of the card, which is the

device name without the partition number. For example, if your device name

was /dev/sdd1, the raw device name is /dev/sdd.

6. It is really important that you get the raw device name correct! (use ”dmesg |

tail -10” command for check the name) You can overwrite your hard drive and

lose data if you start writing to your hard drive instead of the SD card. Use df

again to double check before you continue.

7. Make sure that the downloaded image is unzipped and sitting in your home

directory. Youll be using the Unix utility dd to copy the image bit by bit to the

SD card. Below is the command:

sudo dd bs=1M if= /2013-09-25-wheezy-raspbian.img of= /dev/sdd

APPENDIX B. WRITING AN SD CARD IMAGE 77

This command tells dd to run as root and copy the input file (if) to the output

file (of).

8. It will take a few minutes to copy the whole disk image. Unfortunately dd does

not provide any visual feedback, so you will just have to wait. When its done

it will show you some statistics. It should be ok to eject the disk, but just to

make sure it is safe, run sudo sync, which will flush the filesystem write buffers.

9. Eject the card and insert it in your Raspberry Pi.

Appendix C

Pin configuration and Number

Table C.1: Pin Numbering

wiringPi

Pin

BCM

GPIO

Name Header Name BCM

GPIO

wiringPi

Pin

− − 3.3v 1|2 5v(Power) − −

8 R1:0/R2:2 SDA 3|4 5v(Power) − −

9 R1:1/R2:3 SCL 5|6 0v(gnd) − −

7 4 GPIO7 7|8 TxD 14 15

− − 0v(gnd) 9|10 RxD 15 16

0 17 GPIO0 11|12 GPIO1 18 1

2 R1:21/R2:27 GPIO2 13|14 0v(gnd) − −

3 22 GPIO3 15|16 GPIO4 23 4

− − 3.3v 17|18 GPIO5 24 5

12 10 MOSI 19|20 0v(gnd) − −

13 9 MISO 21|22 GPIO6 25 6

14 11 SCLK 23|24 CE0 8 10

− − 0v(gnd) 25|26 CE1 7 11

78

Appendix D

Procedure To Perform Action

To implement an interactive GUI application through Raspbian Operating system is

used. Python language is used for creating interactive application. Implementation

of the GUI to control GPIO in RPi is as follows:

• Step 1:

Figure D.1: Desktop Of Raspbian OS

79

APPENDIX D. PROCEDURE TO PERFORM ACTION 80

• Step 2:

Figure D.2: Applications on OS

• Step 3:

Figure D.3: Python3.2 IDE

APPENDIX D. PROCEDURE TO PERFORM ACTION 81

• Step 4:

Figure D.4: Python Script

• Step 5:

Figure D.5: LXteminal

APPENDIX D. PROCEDURE TO PERFORM ACTION 82

• Step 6:

Figure D.6: Compile Python File

• Step 7:

Figure D.7: Display GUI

APPENDIX D. PROCEDURE TO PERFORM ACTION 83

• Step 8:

Figure D.8: Select Motor

• Step 9:

Figure D.9: Run Motor

APPENDIX D. PROCEDURE TO PERFORM ACTION 84

• Step 10:

Figure D.10: Motor Stop

• Step 11:

Figure D.11: Click Quit Button

APPENDIX D. PROCEDURE TO PERFORM ACTION 85

• Step 12:

Figure D.12: Desktop Of Raspbian OS

In this implement process python language is used. In python both the libraries

of GUI and GPIO available. To implement GUI tkinter module used. RPi.GPIO

module used for controlling GPIO of the board.

References

[1] Mayumi Itakura Kamata and Tetsuo Tamai “How Does Requirements

Quality Relate to Project Success or Failure? ”, in IEEE International

Requirements Engineering Conference,Jul. 2007, pp.69-78

[2] Software Engineering Standards Committee “IEEE Recommended

Practice for Software Requirements Specications ”, in IEEE Std 830-

1998,Revision of IEEE Std 830-1993),Reaffirmed 9 December 2009 Ap-

proved 25 June 1998

[3] Matt Richardson and Shawn Wallace “Getting Started with Raspberry

Pi ”, Published by OReilly Media,,Dec. 2012,

[4] “Raspberry Pi Getting Started Guide Raspberry Pi User Manual”,RS

Components Vsn 1.0 3/2012

[5] “BCM2835-ARM-Peripherals Data Sheet”, Broadcom Corpora-

tion.,2012

[6] “Cryogenic Micromanipulated Probe Stations from Janis Research”,

http://www.janis.com/ProbeStations_Home_KeySupplier.aspx

[7] “Cryogenic Probe Stations”, http://www.lakeshore.com/products/

cryogenic-probe-stations/pages/cryogenic-probe-stations.

aspx.

86

http://www.janis.com/ProbeStations_Home_KeySupplier.aspx
http://www.lakeshore.com/products/cryogenic-probe-stations/pages/cryogenic-probe-stations.aspx
http://www.lakeshore.com/products/cryogenic-probe-stations/pages/cryogenic-probe-stations.aspx
http://www.lakeshore.com/products/cryogenic-probe-stations/pages/cryogenic-probe-stations.aspx

REFERENCES 87

[8] “The Raspberry Pi Education Manual”, http://www.raspbian.org/

RaspbianDocumentation

[9] “Debian Raspbian Wheezy operating system”, http://downloads.

raspberrypi.org/Raspberry_Pi_Education_Manual.pdf

[10] http://www.raspberrypi.org/wp-content/uploads/2012/12/

quick-start-guide-v1.1.pdf

[11] http://www.raspberrypi.org/phpBB3/viewforum.php?f=26

[12] http://http://elinux.org/RPi_VerifiedPeripherals

[13] “Raspian Wheezy system image on SD card”, http://www.

raspberrypi.org/downloads

[14] http://www.raspberrypi.org/archives/tag/hardware

[15] http://www.tech-fruits.com/archives/category/

raspberry-pi-hardware.

[16] “RPi Low-level peripherals-eLinux.org”, elinux.org/RPi_Low-level_

peripherals

[17] “BCM2835 ARM Peripherals - Raspberry Pi”, www.raspberrypi.org/

wp-content/.../BCM2835-ARM-Peripherals.pdf

[18] “RPi Low-level peripherals-eLinux.org- Raspberry PI Com-

munity”, www.raspians.com/wp-content/uploads/.../

RPi-Low-level-peripherals.pdf

http://www.raspbian.org/RaspbianDocumentation
http://www.raspbian.org/RaspbianDocumentation
http://downloads.raspberrypi.org/Raspberry_Pi_Education_Manual.pdf
http://downloads.raspberrypi.org/Raspberry_Pi_Education_Manual.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/12/quick-start-guide-v1.1.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/12/quick-start-guide-v1.1.pdf
http://www.raspberrypi.org/phpBB3/viewforum.php?f=26
http://http://elinux.org/RPi_VerifiedPeripherals
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/archives/tag/hardware
http://www.tech-fruits.com/archives/category/raspberry-pi-hardware.
http://www.tech-fruits.com/archives/category/raspberry-pi-hardware.
elinux.org/RPi_Low-level_peripherals
elinux.org/RPi_Low-level_peripherals
www.raspberrypi.org/wp-content/.../BCM2835-ARM-Peripherals.pdf
www.raspberrypi.org/wp-content/.../BCM2835-ARM-Peripherals.pdf
www.raspians.com/wp-content/uploads/.../RPi-Low-level-peripherals.pdf
www.raspians.com/wp-content/uploads/.../RPi-Low-level-peripherals.pdf

	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	List of Tables
	List of Figures
	Introduction
	Cryogenic Probe Station
	Features and Capabilities
	Probe Stander Specification
	Miro-Manipulation of Cryogenic Probe Systems
	Micromanipulated Translation Stages
	Probe Option

	Application Of Cryogenic Probe Station
	Motivation
	Objective
	Scope of Work

	Literature Survey
	Embedded System
	Consideration in designing embedded system
	Architecture Of embedded System
	Embedded System Element
	Processing Element
	Memory
	Bus
	Embedded Software

	Automation
	Design and Development Process
	Product Life Cycle And Requirement
	Requirements Document
	Debugging Theory

	Raspberry Pi Board(RPi)
	Introduction
	Component Technologies
	CPU
	GPU
	RAM
	Hard Disk
	SD Card
	Motherboard
	Network Interface Card
	USB Port
	Micro USB
	Composite Video
	Audio Out
	GPIO

	Description of RPi Board
	Specification of RPi Board
	BCM2835 SoC
	Generl Purpose Input / Output(GPIO)
	Registers Organization Of GPIO
	Pin Configuration Of RPi GPIO Headers

	Rapbian OS and Software
	Raspbian File System Hierarchy
	/bin
	/boot
	/dev
	/etc
	/home
	/lib
	/lost+found
	/media
	/mnt
	/opt
	/proc
	/root
	/sbin
	/usr
	/var
	/srv
	/tmp

	Protocols Support
	TCP
	UDP
	FTP
	TFTP
	HTTP
	HTTPS
	SSL
	SSH (Secure Shell)
	Telnet
	DHCP
	DNS

	Program and Application Support
	Benchmarking Raspberry Pi GPIO Speed
	Shell script
	Python
	Native C
	BCM2835 C library
	C with WiringPi

	Implementation and Result
	Design Phase
	Flow Chart
	GUI Application Flow

	Conclusion and Future Work
	Conclusion
	Future Work

	Python code for Stepper motor control through GUI
	Writing an SD Card Image
	Writing an SD card from from Windows
	Writing an SD card from from Linux

	Pin configuration and Number
	Procedure To Perform Action

