
Unmanned Weighbridge

Major Project Report

Submitted in partial fulfillment of the requirement
for the degree of

Master of Technology
in

Electronics and Communication Engineering
(Embedded Systems)

By
Vyas Ankitkumar R

12MECE28

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382481
May 2014

Unmanned Weighbridge

Major Project Report

Submitted in partial fulfillment of the requirement
for the degree of

Master of Technology
in

Electronics and Communication Engineering
(Embedded Systems)

By
Vyas Ankitkumar R

12MECE28
Under the guidance of

External Project Guide: Internal Project Guide:
Mr. H.A.Shabhai Prof. Dhaval Shah
General Manager, Cement Grinding Unit, Assistant Professor, (EC Dept.),
JK Lakshmi Cement, Institute of Technology,
Kalol, Dist: Gandhinagar. Nirma University, Ahmedabad.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382481
May 2014

iii

Declaration

This is to certify that

a. The thesis comprises my original work towards the degree of Master of Tech-
nology in Embedded Systems, at Nirma University and has not been submitted
elsewhere for a degree.

b. Due acknowledgment has been made in the text to all other material used.

Vyas Ankitkumar R

iv

Certificate

This is to certify that the Major Project entitled ”Unmanned Weighbridge” sub-
mitted by Vyas Ankitkumar R (12MECE28), towards the partial fulfillment of
the requirements for the degree of Master of Technology in Embedded Systems of
Nirma University, Ahmedabad is the record of work carried out by him under our
supervision and guidance. In our opinion, the submitted work has reached a level
required for being accepted for examination. The results embodied in this major
project, to the best of my knowledge, haven’t been submitted to any other university
or institution for award of any degree or diploma.
Date: Place: Ahmedabad

Prof. Dhaval Shah Dr. N.P. Gajjar

Guide Program Coordinator

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept Director, IT

v

Acknowledgments

With immense pleasure, I would like to present this report on the dissertation work
related to ”Unmanned Weighbridge”. I would like to express my gratitude and sin-
cere thanks to Dr. P.N.Tekwani, Head of Electrical Engineering Department, Dr.
D. K. Kothari, Section Head of Electronics and Communication Engineering pro-
gram and Dr. Nagendra Gajjar, PG Coordinate of M.Tech, Embedded System
for allowing me to undertake this thesis work and for his guidelines during the review
process.

I am deeply indebted to my thesis supervisors Prof. Dhaval Shah, Assistant pro-
fessor, Institute of technology, Nirma University, and Mr. H.A.Shabhai, General
Manager, Kalol grinding unit, JK Lakshmi Cement, for their constant guidance and
motivation. I also wish to thank Mr. Naveen Sharma (VP, Kalol grinding unit,
JKLCL), Mr. Deepak Sharma (HOD IT, JKLCL), and Mr. Arvind Rajdan
(sr. engg. JKLCL). Without their experience and insights, it would have been very
difficult to do quality work.

I wish to thank my friends of my class for their delightful company which kept me in
good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and
sacrifices of my family members because of whom I am able to complete the degree
program successfully.

- VYAS ANKITKUMAR R
12MECE28

vi

Abstract

Unmanned Weighbridge is a conception of a system for measuring weight of dis-
patched or purchased material in industries, without human intervention. An empty
truck is being weighted on this weighbridge, and the measurements are called tare
weight. When it is loaded and again being weighted, it gives a gross weight. The
difference of gross weight and tare weight is net weight, which is the amount of the ma-
terial loaded onto the truck. The process of weighment includes human intervention
for entry into data base. As if the human intervention will be removed, the speed up
of weighment process can be made up, no longer be bounded with human intervention.

The measurement must be done in real time, and accurate billing information must
be generated from the weight difference. And same phenomenon must be used in
unloading also. To implement this system, authorization of truck, first and second
weight with alignment of Centre of Gravity (CG), transaction with data base, and
intermediate data conversion are the expects to be covered. Raspberry Pi as a target
board is used to make this data communication and conversion possible. Light weight
Linux kernel wheezy, is used to accomplish this functionality, with python libraries
to implement SPI, I2C and UART communication with peripheral devices.

vii

Abbreviation Notation and Nomenclature

ADC .Analog-to-Digital Converter
ARM . Advanced Risk Machine
CG .Center of Gravity
ERP . Enterprise Resource Planning
GPIO . General Purpose Input Output
I2C . Inter-Integrated Circuit Communication
MCU . Micro-Controller Unit
SAP . System Application and Product
SPI . Serial Peripheral Interface
OS .Operating System
RPi .Raspberry Pi
UART . Universal Asynchronous Receive Transmit
USB . Universal Synchronous Bus

Contents

Declaration iii

Certificate iv

Acknowledgments v

Abstract vi

Abbreviation Notation and Nomenclature vii

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Project Definition and Overview . 2

1.2.1 Authentication . 2
1.2.2 Alignment . 2
1.2.3 Weighment . 3
1.2.4 Billing information generation 4

1.3 Objectives . 4
1.4 Key Features . 5
1.5 Significance . 5
1.6 Contributions and Progress . 5
1.7 Thesis Organization . 6

2 Components of Project and Literature Survey 8
2.1 Block diagram . 8
2.2 Load Cell (Block 1) . 9

2.2.1 How to select a load cell ? . 10
2.3 Strain Gage Amplifier(Block 2) . 10
2.4 ADC MCP3208 (Block 3) . 11

2.4.1 ADC operation . 14

viii

CONTENTS ix

2.4.2 Analog Input . 15
2.4.3 Reference Input . 15
2.4.4 Pin Descriptions . 15

2.5 Raspberry Pi (System on Chip) (Block 4) 16
2.5.1 Getting started with Raspberry Pi 18
2.5.2 Preparing SD card for the Raspberry Pi 19
2.5.3 Flashing from Linux . 20

2.6 Summary . 21

3 Diagnosis of System Components 22
3.1 Raspberry Pi Configuration . 22

3.1.1 Keyboard Diagnostic . 23
3.1.2 Network Configuration and diagnostic 24
3.1.3 Power Diagnostic . 28
3.1.4 Installation of wiring PI . 29
3.1.5 Loading SPI device driver . 31
3.1.6 GPIO Overview . 31
3.1.7 Config.txt . 32

3.2 ADC interface and Programming . 33
3.2.1 Header file for CG calculation 33

3.3 System Integrity . 34
3.4 Summary . 35

4 Interconnection of peripherals 36
4.1 Serial Peripheral Interface (SPI) protocol 36

4.1.1 SPI with multiple slaves . 37
4.1.2 SPI signaling . 37
4.1.3 Modes of communication in SPI 39
4.1.4 Enabling Spidev (SPI device driver) on the Raspberry Pi . . . 40
4.1.5 Communication with MCP3208 41
4.1.6 Advantages of SPI . 42
4.1.7 Disadvantage of SPI . 43

4.2 Inter- integrated circuit Protocol (I2C) 43
4.2.1 Revision in I2C . 44
4.2.2 Design of I2C and signaling 44
4.2.3 Reference design . 45
4.2.4 Message protocol . 47
4.2.5 Configure Raspberry Pi for I2C protocol 48

4.3 Universal Asynchronous Receive Transmit Protocol (UART) 49
4.3.1 Implementation of UART on Raspberry Pil 50
4.3.2 Troubleshooting UART Problems 52

4.4 Errors in Communication . 52
4.4.1 Solutions for Errors . 52

CONTENTS x

4.5 Summary . 53

5 Analysis and Results 54
5.1 Analysis of CG . 54
5.2 System Parameters . 55

5.2.1 Number of IC . 55
5.2.2 Space . 55
5.2.3 Portability . 55
5.2.4 Range and resolution . 55

5.3 Summary . 56

6 Conclusion and future work 57
6.1 conclusion . 57
6.2 Future work . 57

A Double-Ended Shear Beam Load Cell 58
A.1 Application . 59
A.2 Discription . 59

thebibliography 60

Index 61

List of Tables

I Connection between MCP3208 and Raspberry Pi 33

I Analysis of CG . 54

xi

List of Figures

2.1 Block diagram of unmanned weighbridge 9
2.2 Flow chart of unmanned weighbridge 10
2.3 Load Cell 65058 . 11
2.4 Example of truck in each truck class. 12
2.5 Differential Amplifier with Op-amp 13
2.6 ADC MCP3208 . 14
2.7 Functional block diagram of ADC3208 14
2.8 Raspberry Pi SOC . 16
2.9 Raspberry Pi with onboard peripherals 17
2.10 Flashing SD card with dd tools . 20

3.1 Polyfuse in Raspberry Pi board for USB protection 24
3.2 consol for keyboard configuration 1/5 25
3.3 consol for keyboard configuration 2/5 26
3.4 consol for keyboard configuration 3/5 27
3.5 consol for keyboard configuration 4/5 28
3.6 consol for keyboard configuration 5/5 29
3.7 Nano Editor for interface of network 30
3.8 setting for resolution checking with DNS server 31
3.9 Output of ifconfig . 32
3.10 Two voltage test points, labeled TP1 and TP2 33
3.11 GPIO layout for Raspberry Pi . 34

4.1 Master Slave interconnection in SPI protocol 37
4.2 Master Slave interconnection in SPI protocol with multiple slaves . . 38
4.3 signaling in SPI protocol . 39
4.4 modes in SPI protocol . 40
4.5 Display of Spidev . 41
4.6 Communication with MCP3208 . 42
4.7 Design of I2C protocol . 45
4.8 Data communication in I2C protocol 46
4.9 I2C Message protocol . 47
4.10 I2C configuration . 49

xii

LIST OF FIGURES xiii

4.11 I2C addresses . 50
4.12 UART Protocol . 50

Chapter 1

Introduction

The demand of automation in each field is on a mark to reduce the mistakes,
made by humans. In order to establish an error prone environment for any system,
a high degree of precision in automation is required. One can not expect such higher
precision from human and hence sometime an unmanned system is being employed.
The same phenomenon is used to generate a data base entry with no errors, for loaded
and unloaded truck, is called Unmanned Weighbridge

Unmanned Weighbridge is a system developed on SOC as a replacement of a conven-
tional weighment system which is a system with a personnel computer operated by a
human. Authorization of truck, alignment of truck on weighbridge, weight difference,
billing and many other issues must be addressed to make a complete and meaningful
weighment. And for all of them, high degree of integration is indeed needed. But
the ultimate goal is to achieve simplicity at an end user side, with higher degree of
complexity at designer side, to make the system more user friendly.

1.1 Motivation

The system, being used till these days for weighment, is a combination of the
devices working on RS232 UART protocol with COM PORT given at the I/O panel
of a personnel computer and a PC as well. All transactions are under the control of
an operator. Here an operator is the one, who takes care of authorization, alignment
of truck, as well as an entry in database as the data available on COM PORT. A
cabin is provided to accommodate this personnel computer for total transaction with
data base. If a desire to work with higher speed is there, at that time the speed is
bounded by the skill level of the operator. To achieve higher degree of speed with
best precisions, implementation of something where the speed of operation does not
depend on the human by any means must be done, and that is the motivation to
automate a weighbridge.
Another matters of consideration are, the access to the Enterprise Resource Planning

1

CHAPTER 1. INTRODUCTION 2

(ERP) and System Application and Product (SAP) and the space utilization in an
industry. ERP and SAP are highly confidential programs and have to be operated
with proper authorization. A security is employed to the use of this database by
accessing them with particular System On Chip (SOC) to reduce the timing require-
ment of authentication and granting access permission from server. As well with that
by achieving good speed, reduction in the queue of the truck over the weighbridge
obtained, and that may result in good area utilization within the plant. These are
the main areas as causes of a motivation to develop such unmanned system.

1.2 Project Definition and Overview

Project definition is , To implement an automatic weighing system for trucks,
so the human intervention can be reduced, and a need of a dedicated
operator can be eliminated. Automation of weighbridge consists of main four
actions.

a. Authentication

b. Alignment

c. Weighment

d. Billing information generation

1.2.1 Authentication

Authentication of a truck is done by providing a Radio Frequency (RF) ID card. A
document for this truck is generated in SAP against its RFID number and onwards all
the entries regarding to the weighment will be entered into it. Whenever a truck comes
on the weighbridge, a pre-generated document is being selected from the database
entry according to the number generated from the RF ID card reader. If document
is not found, it means the truck is unauthorized and no weighment will be allowed
for it.

1.2.2 Alignment

In law, the weighbridge operator is responsible for ensuring that, the weights
obtained from the weighbridge are correct. In practice, he has to check that the
vehicle is correctly positioned on the platform. The wagon driver will have no way of
knowing whether or not the truck is properly alligned, without stopping and getting
down from his cab and hence, it is a requirement that the allignment informatin
is generated automatically, for the driver in order to an ease of placing truck on

CHAPTER 1. INTRODUCTION 3

platform. If truck is not aligned on the weighbridge properly, wrong weight may be
entered into the database. To avoid this scenario, we prefer a CG based concept. For
every movement of truck on the weighbridge, readings of the weight from all the load
cells are taken and from those weights, current CG of the truck is found out by the
SOC.

CG(x) =
Σ(wi ∗ xi)

Σwi
(1.1)

CG(y) =
Σ(wi ∗ yi)

Σwi
(1.2)

Where
C.G. (x) = x coordinate of Center of Gravity of truck with respect to a common
reference point.
C.G. (y) = y coordinate of Center of Gravity of truck with respect to a common
reference point.
Xi = x coordinate of ith load cell with respect to the common reference point.
Yi = y coordinate of ith load cell with respect to the common reference point.
wi = weight as an output of ith load cell.

For every movement of the truck on weighbridge, weight from all load cells are
taken as input parameter to this function and calculation of the CG of that truck is
calculated on SOC. A tolerance range is pre defined in program, as if whenever CG
of truck lies in that range, the truck is allowed for weighment.

As if CG of truck does not lie in the range of tolerance, lighting and audio infor-
mation are provided to driver, to move the truck accordingly on to weighbridge so it
can lie in the tolerance limit with the CG of weighbridge. After proper alignment of
truck, system is ready to capture the weight of the truck and make an entry in data
base for the same.

1.2.3 Weighment

Here weighment is the process of measuring weight of truck. As truck comes
on weighbridge load cells start to show the weight applied on them by the truck.
These signals are converted into digital signals, and given to the SOC for various
calculations. As if all the parameters are proper then the weight of the truck is being
measured as per the equation below.

W = Σwi (1.3)

Where
W = weight of the truck
Wi = weight measured on ith load cell

CHAPTER 1. INTRODUCTION 4

Once an authorization and an alignment is done, weights on the load cells are
given as input parameter of this function and the output is stored as total weight of
the truck. This computation is also done in SOC. Then, this weight is being uploaded
into the data base of the document of that particular truck, which has been chosen
at the time of authorization.

1.2.4 Billing information generation

Billing information is generated from the amount of material being loaded or
unloaded from the truck and hence a second weighment is indeed necessary. From
the difference of weight as gross weight, entry is added to the document and billing
information is generated. An absolute function is used, so we can use the same process
for loading as well as unloading of the truck. In both cases weight difference will be
observed positive due to absolute function. After billing and payment information
generation all data as a package, transmitted to SAP server and then, RF ID card is
made free incase to assign to another truck.

1.3 Objectives

The general objective of this research work is to design and construct a Raspberry pi
SOC based electronic weigh bridge. The specific objectives are:

a. Mount the encapsulated 8 double ended shear beam load cells.

b. Design and build a signal conditioning and amplification circuitry for the load
cell output.

c. Develop a program for interfacing the 12-bit ADC to the Raspberry Pi for
implementing the analog-to-digital conversion.

d. Develop a program for Seven Segment Display, and Lighting Control.

e. Develop a header file, for the system using Python for calculation of C.G.

f. Calibrate the system.

g. Interfacing with SAP

h. Take measurements and C.G. records using the balance.

CHAPTER 1. INTRODUCTION 5

1.4 Key Features

a. Data accuracy with pre-programmed vehicle data using RFID card readers.

b. Improved facility control and security with traffic barriers, traffic lights, surveil-
lance cameras etc.

c. Information such us operational analysis, billing and inventory control.

d. Weigh Terminal with RFID card reader for accurate and quick data input.

e. Exit & entry barriers - for security and arranging vehicle traffic.

1.5 Significance

The Raspberry Pi based unmanned weighbridge, in this research work, is for
measuring and displaying mass of loaded or unloaded truck on screen. This research
work utilizes the technique of interfacing a 12-bit ADC with SPI (Serial Peripheral
Interface) protocol. The system is able to sense, measure and display mass ranging
from 0 to 32.76 metric ton (32760 Kg). Actual capacity for the mass weighment on
this platform is of 36.28 metric ton, but we range the limits to get a sensitivity of
1Kg/lsb from ADC.

1.6 Contributions and Progress

To interface all peripherals with an SOC to obtain speedy I/O operations, commu-
nication protocols between them have to be developed. A Raspberry Pi SOC board
is used to develop the project with I/O peripherals. ADC converter is used to convert
a 0-20 mV analog signals into digital bit streams, and then it is given as an input
to the Raspberry Pi (RPi) module. Here the communication protocol between RPi
and ADC is Serial Peripheral Interface (SPI) protocol, developed with SPIDEV0.0
device driver available in Raspbian Wheeze, (A debian distribution of Linux), and
Wiring Pi library is installed to get GPIO operations. Calculation of CG and weight
of truck is being performed with RPi, using files as resources from the data base and
input from the ADC. A header file for C.G. calculation is created, and by varying
dimensional parameter in it, one can implement the C.G. calculation for any length of
the weighbridge. According to the calculation either alignment or weighment signals
will be generated or according operation has been performed.

For authentication, RF ID card reader is connected with RPi using RS232 protocol
and a document from the database being extracted to make other entries in it. A
composite video input from cameras is interfaced with RPi and a photo of truck
is taken after its weighment, and added to the document within database. After

CHAPTER 1. INTRODUCTION 6

feeling up the document with details, entry is given to the SAP and database will be
updated and a transaction is pronounced to be completed. To capture a composite
image signal and convert as well as compress it to the format like .JPEG or .BMP we
have to develop software base conversion algorithm too. It will also run on RPi with
Linux.

A higher level of dependency between these functions can be observed, as RPi
module has to deal with ADC, camera and RF ID reader as input peripherals; Sound
file, light controller, and digitizer as output peripherals and SAP documents as in-
put/output interface. It generates the billing information according to the weight
difference from two different weighment of the same truck. To increase accuracy, a 12
bit ADC is used with SPI, to reduce pin-count as communication bus. Here 8 load
cells are used so in order to perform analog to digital conversion if a facility of channel
selectivity is available, then this operation can be done by a single IC and no separate
IC (ADC) is required for each load cell. Hence a choice ends up with MCP3208 an 8
channel 12 bit ADC. As current weighment system is having an accuracy of 20 KG
with an IC of 12 bit ADC converter.

At the end after completion of all I/O, document generated will be sent to the
server in a particular package format. But in case if server is down, the weighment
system must not be halt, and hence storage of document is there within SD card with
which an Operating System (OS) is running on RPi SOC. To avoid conflicts within
user accessible area and OS, and memory management policies should be used.

1.7 Thesis Organization

The rest of the thesis is organized as follows.

Basic flow of the project with an observation of its feasibility is discussed in
Chapter 2. In this chapter the whole project is being represented with its subpart
and the component for these subparts are discussed with their features in this chapter.
This chapter gives a glance of getting started with Raspberry Pi System on chip. It
is a review of the literature for the thesis work.

Chapter 3 is the description of hardware and software related issues, and very
basic configuration of Raspberry Pi SOC to develop algorithms and programs in it.
Network diagnostic, Keyboard configuration and diagnostic, Power diagnostic and
other basic issues are discussed in this chapter.

In Chapter 4, detailed description of protocols used for inter module communi-
cation and related work is discussed; standard library installation for the purpose of
driving protocols, comparison of different protocols, and make them work simultane-
ously causes a complexity of system to achieve end goal easily, are the issues to be
discussed in this chapter. While Chapter 5 is consists of the results and comparison
of the developed system with a standard one.

CHAPTER 1. INTRODUCTION 7

Conclusion and future scope of work for this project is given in Chapter 6,
followed by references as a literature survey. Thus the thesis includes all the possible
expect with which this project will be approached toward fulfillment, and also it is
informative enough.

Chapter 2

Components of Project and

Literature Survey

In this chapter a detailed discussion of the project components and project flow is
accounted. As a part of implementation, and in development phase, just a concept is a
scrap until a horizon of its feasibility is observed. To make a feasible implementation,
beyond just documentation, a project flow is indeed necessary. This chapter consists
of such components details and the flow of the project with such components that
approaches to a feasible implementation of idea. A proper insight can be developed
by going through the flow chart and block diagram of this project.

2.1 Block diagram

First block is load cells, from where analog outputs come out,this signals are
required to be conditioned and amplified that will taken care by block 2. It is further
given to the ADC circuit, which converts these analog inputs to the digital outputs,
and further given to SOC, as an input, that is combined as shown in block 3. Further
an SOC block is available to look after all setting all the parameters by making
according calculations on digital input provided by ADC from block 3. Finally an
access to the central data base and server is provided to manipulate data with SAP
system as shown in block 5.

8

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 9

Figure 2.1: Block diagram of unmanned weighbridge

2.2 Load Cell (Block 1)

Features of the load cell 65058 are as below.

• Rated capacities of 10,000 to 100,000 pounds

• Center-link loaded

• Integral conduit adapter

• Trade certified for NTEP Class IIIL: 10000 divisions; Class III: 5000 divisions
and OIML R60 3000 divisions in 20,000 to 100,000 pounds range

• Sensorgage sealed to IP67 standards

• Factory Mutual System Approved for Classes I, II, III; Divisions 1 and 2; Groups
A through G. Also, non-incendive ratings (No barriers!).

The 65058 is a mid to high capacity, nickel-plated alloy steel, double ended Shear
beam load cell. This product is designed for use in certified truck and rail scales
and is available in capacities ranging from 10k to 100k lbs. This load cell is rated
intrinsically safe by the Factory Mutual System (FM); making it suitable for use
in potentially explosive environment. This load cell is certified for legal for trade
applications by both American NTEP and International OIML standards.

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 10

Figure 2.2: Flow chart of unmanned weighbridge

2.2.1 How to select a load cell ?

From the loading capacity and self weight, the wagons or trucks can be classified as
shown in the figure 2.4. All the weights are measured in pounds. Trucks used for
cement industries lies in class 7 and class 8 and they have weights around 33001 lbs
(15000 Kg) to 80000 lbs(36000 Kg) as gross weight.

2.3 Strain Gage Amplifier(Block 2)

An op-amp with no feedback is already a differential amplifier, used as a strain gage
amplifier for amplifying the voltage difference between the two inputs. However, its

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 11

Figure 2.3: Load Cell 65058

gain cannot be controlled, and it is generally too high to be of any practical use. So
far, the application of negative feedback to op-amps has resulting in the practical
loss of one of the inputs, the resulting amplifier only good for amplifying a single
voltage signal input. With a little ingenuity, however, construction of an op-amp
circuit maintaining both voltage inputs is required, yet with a controlled gain set
by external resistors. If all the resistor values are equal, this amplifier will have a
differential voltage gain of 1. The analysis of this circuit is essentially the same as
that of an inverting amplifier, except that the non inverting input (+) of the op-amp
is at a voltage equal to a fraction of V2, rather than being connected directly to
ground. As would stand to reason, V2 functions as the non inverting input and V1
functions as the inverting input of the final amplifier circuit

If a differential gain of anything other than 1 is required, the resistances in both
upper and lower voltage dividers must be adjusted accordingly , necessitating multiple
resistor changes and balancing between the two dividers for symmetrical operation.
This is not always practical, for obvious reasons.

2.4 ADC MCP3208 (Block 3)

Features of this IC are below

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 12

Figure 2.4: Example of truck in each truck class.
Source: Oak Ridge National Laboratory, Center for Transportation Analysis, Oak

Ridge, TN. Weight category definitions from 49CFR565.6 (2000)

• 12-bit resolution

• ± 1 LSB max DNL

• ± 1 LSB max INL (MCP3204/3208-B)

• ± LSB max INL (MCP3204/3208-C)

• 4 (MCP3204) or 8 (MCP3208) input channels

• Analog inputs programmable as single-ended or pseudo-differential pairs

• On-chip sample and hold

• SPI serial interface (modes 0,0 and 1,1)

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 13

Figure 2.5: Differential Amplifier with Op-amp

• Single supply operation: 2.7V - 5.5V

• 100 ksps max. sampling rate at VDD = 5V

• 50 ksps max. sampling rate at VDD = 2.7V

• Low power CMOS technology:

– 500 nA typical standby current, 2 µ A max.

– 400 µ A max. active current at 5V.

• Industrial temp range: -40C to +85C

• Available in PDIP, SOIC and TSSOP packages

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 14

Figure 2.6: ADC MCP3208

2.4.1 ADC operation

Figure 2.7: Functional block diagram of ADC3208

The MCP3208 A/D converters employ a conventional SAR architecture. With
this architecture, a sample is acquired on an internal sample/hold capacitor for 1.5
clock cycles starting on the fourth rising edge of the serial clock after the start bit
has been received. Following this sample time, the device uses the collected charge
on the internal sample/hold capacitor to produce a serial 12-bit digital output code.
Conversion rates of 100 ksps are possible on the MCP3208. Communication with the
device is accomplished using a 4-wire SPIcompatible interface.

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 15

2.4.2 Analog Input

The MCP3208 devices offer the choice of using the analog input channels configured
as single-ended inputs or pseudo-differential pairs. MCP3208 can be configured to
provide four pseudo-differential input pairs or eight single-ended inputs. Configura-
tion is done as part of the serial command before each conversion begins. When used
in the pseudo-differential mode, each channel pair (i.e., CH0 and CH1, CH2 and CH3
etc.) is programmed to be the IN+ and IN- inputs as part of the command string
transmitted to the device. The IN+ input can range from IN- to (VREF + IN-).
The IN- input is limited to 100 mV from the VSS rail. The IN- input can be used to
cancel small signal common- mode noise which is present on both the IN+ and IN-
inputs. When operating in the pseudo-differential mode, if the voltage level of IN+
is equal to or less than IN-, the resultant code will be 000h. If the voltage at IN+ is
equal to or greater than [VREF + (IN-)] - 1 LSB, then the output code will be FFFh.
If the voltage level at INis more than 1 LSB below VSS, the voltage level at the IN+
input will have to go below VSS to see the 000h output code. Conversely, if IN- is
more than 1 LSB above VSS, then the FFFh code will not be seen unless the IN+
input level goes above VREF level. For the A/D converter to meet specification, the
charge holding capacitor (CSAMPLE) must be given enough time to acquire a 12-bit
accurate voltage level during the 1.5 clock cycle sampling period.

2.4.3 Reference Input

For each device in the family, the reference input (VREF) determines the analog input
voltage range. As the reference input is reduced, the LSB size is reduced accordingly.
The theoretical digital output code produced by the A/D converter is a function of
the analog input signal and the reference input.

DigitalOutputCode =
4096XVI

VR

VI = Analog input voltage
VR= Reference voltage

2.4.4 Pin Descriptions

DGND: Digital ground connection to internal digital circuitry.

AGND: Analog ground connection to internal analog circuitry.

CH0 - CH7:Analog inputs for channels 0 - 7 for the multiplexed inputs. Each pair

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 16

of channels can be programmed to be used as two independent channels in single-
ended mode or as a single pseudo-differential input, where one channel is IN+ and
one channel is IN.

Serial Clock (CLK): The SPI clock pin is used to initiate a conversion and clock
out each bit of the conversion as it takes place.

Serial Data Input (DIN):The SPI port serial data input pin is used to load channel
configuration data into the device.

Serial Data Output (DOUT): The SPI serial data output pin is used to shift
out the results of the A/D conversion. Data will always change on the falling edge of
each clock as the conversion takes place.

Chip Select/Shutdown (CS/SHDN): The CS/SHDN pin is used to initiate com-
munication with the device when pulled low and will end a conversion and put the
device in low power standby when pulled high. The CS/SHDN pin must be pulled
high between conversions.

2.5 Raspberry Pi (System on Chip) (Block 4)

Figure 2.8: Raspberry Pi SOC

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 17

The Raspberry Pi board contains a processor and graphics chip, program mem-
ory (RAM) and various interfaces and connectors for external devices. Some of these
devices are essential, others are optional. Raspberry Pi (RPi) operates in the same
way as a standard PC, requiring a keyboard for command entry, a display unit and a
power supply. It also requires mass-storage, but a hard disk drive of the type found in
a typical PC is not really in keeping with the miniature size of Raspberry Pi. Instead
we will use an SD Flash memory card normally used in digital cameras, configured
in such a way to look like a hard drive to RPis processor. RPi will boot (load the
Operating System into RAM) from this card in the same way as a PC boots up into
Windows from its hard disk.

Figure 2.9: Raspberry Pi with onboard peripherals

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 18

2.5.1 Getting started with Raspberry Pi

The following are essential to get started

• SD card containing Linux Operating system

• USB keyboard

• TV or monitor (with HDMI, DVI, Composite or SCART input)

• Power supply

• Video cable to suit the TV or monitor used

Connecting everything together as following for getting started

a. Plug the preloaded SD Card into the RPi.

b. Plug the USB keyboard and mouse into the RPi, perhaps via a USB hub.
Connect the Hub to power, if necessary.

c. Plug a video cable into the screen (TV or monitor) and into the RPi.

d. Plug your extras into the RPi (USB WiFi, Ethernet cable, external hard drive
etc.). This is where you may really need a USB hub.

e. Ensure that your USB hub (if any) and screen are working.

f. Plug the power supply into the mains socket.

g. With your screen on, plug the power supply into the RPi microUSB socket.

h. The RPi should boot up and display messages on the screen.

Operating System SD card: As the RPi has no internal mass storage or built-
in operating system it requires an SD card preloaded with a version of the Linux
Operating System. Own preloaded card can be created using any suitable SD card
(4GBytes or above) you have to hand.

Keyboard and Mouse: Most standard USB keyboards and mice will work with
the RPi. Wireless keyboard/mice should also function, and only require a single USB
port for an RF dongle. In order to use a Bluetooth keyboard or mouse, a Bluetooth
USB dongle is required, which again uses a single port. Model A has a single USB
port and the Model B has two (typically a keyboard and mouse will use a USB port
each).

Display: There are two main connection options for the RPi display, HDMI (High
Definition) and Composite (Standard Definition). HD TVs and many LCD monitors

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 19

can be connected using a full-size ’male’ HDMI cable, and with an inexpensive adap-
tor if DVI is used. HDMI versions 1.3 and 1.4 are supported and a version 1.4 cable
is recommended. The RPi outputs audio and video via HMDI, but does not support
HDMI input. Older TVs can be connected using Composite video (a yellow-to-yellow
RCA cable) or via SCART (using a Composite video to SCART adaptor). Both PAL
and NTSC format TVs are supported. When using a composite video connection,
audio is available from the 3.5mm jack socket, and can be sent to TV, headphones or
an amplifier. To send audio to TV, a cable which adapts from 3.5mm to double (red
and white) RCA connectors is required.

There is no analogue VGA output available. This is the connection required by
many computer monitors, apart from the latest ones. If there is a monitor with only
a D-shaped plug containing 15 pins, then it is unsuitable.

Power Supply: The unit is powered via the microUSB connector (only the power
pins are connected, so it will not transfer data over this connection). A standard
modern phone charger with a microUSB connector will do, providing it can supply
at least 700mA at +5Vdc.

2.5.2 Preparing SD card for the Raspberry Pi

To prepare a blank SD card for use with the Raspberry Pi, is needed to flash an
operating system onto the card. While this is slightly more complicated than simply
dragging and dropping files onto the card, it shouldn’t take more than a few minutes
to complete.

Firstly, it is needed to decide which Linux distribution would be preferred to use
with Raspberry Pi. Each has its advantages and disadvantages. The most up-to-
date list of Linux releases compatible with the Pi is available from the Raspberry Pi
website at

http://www.raspberrypi.org/downloads.

The Foundation provides BitTorrent links for each distribution. These are small
files that can be used with BitTorrent software to download the files from other
users. Using these links is an efficient and fast way to distribute large files, and keeps
the Foundation’s download servers from becoming overloaded. To use a BitTorrent
link, it is recommended to have a compatible client installed. If no BitTorrent client is
installed on a PC, download one and install it before trying to download the Raspberry
Pi Linux distribution. One client for Windows, OS X and Linux is Torrent, can be
downloaded from link below.

http://www.utorrent.com/downloads

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 20

Which distribution is chosen to download is up to you. Instructions are given for
the Debian Raspberry Pi distribution, a good choice for beginners. Linux distributions
for the Raspberry Pi are provided as a single image file, compressed to make it faster to
download. Once Zip archive is being downloaded the (a compressed file, which takes
less time to download than the uncompressed files would) for chosen distribution, it
is needed to decompress it somewhere in system. In most operating systems, simply
double-click the file to open it, and then choose Extract or Unzip to retrieve the
contents. After decompression the archive, you’ll end up with two separate files. The
file ending in sha1 is a hash, which can be used to verify that the download hasn’t
been corrupted in transit. The file ending in img contains an exact copy of an SD
card set up by the distributions creators in a way that the Raspberry Pi understands.
This is the file that needs to be flashed to the SD card.

2.5.3 Flashing from Linux

Figure 2.10: Flashing SD card with dd tools

With a PC , running a variant of Linux already, one can use the dd command
to write the contents of the image file out to the SD card. This is a text-interface
program operated from the command prompt, known as a terminal in Linux parlance.
Follow these steps to flash the SD card:

• Open a terminal from your distributions applications menu.

CHAPTER 2. COMPONENTS OF PROJECT AND LITERATURE SURVEY 21

• Plug a blank SD card into a card reader connected to the PC.

• Type sudo fdisk -l to see a list of disks. Find the SD card by its size, and
note the device address (/dev/sdX, where X is a letter identifying the storage
device. Some systems with integrated SD card readers may use the alternative
format/dev/mmcblkXif this is the case, remember to change the target in the
following instructions accordingly).

• Use cd to change to the directory with the .img file you extracted from the Zip
archive.

• Type sudo dd if=imagefilename.img of=/dev/sdX bs=2M to write the file im-
agefilename.img to the SD card connected to the device address from step 3.
Replace imagefilename.img with the actual name of the file extracted from the
Zip archive. During flashing, nothing will be shown on the screen until the
process is fully complete (see Figure 2.10).

2.6 Summary

Feasibility can be observed in this project as it is being divided into multiple sub
part and then by commencing step by step, as show in flow chart. Block diagram
representation shows different subparts of the project to be executed, and with all
those basic blocks, the component related to them are discussed here. Raspberry Pi
as a new SOC is being studied here with a bird eye view to getting started with it.
Flashing an SD card with dd tool is very primary thing to dump an operating system
on an SOC, and how to do this, is shown here within this chapter. This basics, helps
to do further programming and application development with Raspberry Pi system.
An overview of ADC and load cell is taken in account to understand the I/O device
functionality and an overview of intermediate data conversion. A detailed study is
shown in following chapters.

Chapter 3

Diagnosis of System Components

Basic configuration issues, related to hardware and software, that have to be
addressed while working with Raspberry Pi, are discussed in this chapter. Many
packages are pre-installed in Raspbian Wheezy to support different hardware inter-
faces, but some extra libraries or packages have to be installed. In order to get a
proper access to the Raspberry Pi board, creation of configuration file is essential,
as per application; otherwise Raspberry Pi will work with default configuration. In
addition with that, power and performance related issues may cause a breakdown
in working Raspberry Pi system, and hence to be addressed very carefully. Issues
documented here are keyboard diagnostic, network diagnostic, power diagnostic and
basic configurations for Raspberry Pi SOC. An ADC interface approach and C.G.
calculation is shown here with detailed description. The way of calibrating a load cell
with the standard balances, is also an approach to discuss here.

3.1 Raspberry Pi Configuration

Topic listed below are discussed in detail to configure Raspberry Pi SOC.

• Keyboard Diagnostic

• Network Diagnostic

• Power Diagnostic

• Config.txt

22

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 23

3.1.1 Keyboard Diagnostic

A common problem observed with Raspberry Pi board is, a keyboard repeats cer-
tain characters a number of times. For example, instead of startx if sttttttttt-
tartxxxxxxxxxx appears on the terminal, the execution of this command is failed,
in terminal after pressing enter key. This may a cause due to either of two reasons.

a. Keyboard drawing too much power,

b. Keyboard configuration gets a conflict with chipset.

Keyboard drawing too much power

Going through the documentation given with the keyboard, or the label on its
underside are the ways to get information about power requirement of keyboard.
It has a current rating in milliamp (mA), that it tries to draw from USB port of
Raspberry Pi system, when connected. Raspberry Pi has a component called polyfuse,
having current capacity of 150 mA, causes the USB to shutoff when it draws a current
beyond 150 mA.

If a higher power requirement is observed in USB keyboard, beyond the polyfuse
current limit, a powered USB hub should be used to protect the board rather than
direct connection with USB port of Raspberry Pi. Keyboard with inbuilt LED utilizes
more power than a standard keyboard. The place of polyfuse on the Raspberry Pi
board is shown in figure 3.1.

Keyboard configuration gets a conflict with chipset

Configuration of keyboard is done to minimal the chances of conflicts with Raspberry
Pi chipset. Raspberry Pi gives various options to choose among available keyboard
configurations in order to make a compatibility with keyboard being interfaced. Some
packages are there and are given as a command line to the terminal to change the
configuration.

sudo dpkg-reconfigure keyboard-configuration

This package causes to open a consol shown in figure 3.2. It has a verity of available
keyboards, like wise Dell, Accer, Logitech, Intex, TVS and many more. Here Logitech
Media Elite is chosen to interface with Raspberry Pi. Then it will ask for the layout;
it may be any of available standard layouts as Dvorak, US, QWERTY, Macintosh,
Left Handed Dvorak and many more. A keyboard must be chosen by maximum
compatibility with the keyboard being interfaced.

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 24

Figure 3.1: Polyfuse in Raspberry Pi board for USB protection

Its analyzed that, by going through this all consoles, a configuration file for key-
board is being modified and being loaded at boot time. If this configuration is not
done properly, repetitive character syndrome, or wrong ASCII input will be consid-
ered. Errors like error:/207, error:/313 are being observed due to mismatch of key-
board, while compiling a program with gcc compiler. It shows, ASCII not matched
or undefined UTF character, not supported by ANSI C format.

3.1.2 Network Configuration and diagnostic

Without configuring a static IP in Raspberry Pi board, we can use the module with
Direct Host Configuration Protocol (DHCP) to connect it with a network through
Ethernet. But if we want to use it in a limited access network, than we have to
assign a static IP address as well as gateway and other networking information for
the Raspberry Pi to be connected. A configuration file is generated and being loaded
at the time of booting, assign an IP address to the Raspberry Pi module. An inbuilt
text editor is used to edit this file.

Assignment of Static IP Address

To assign a static IP address to a Raspberry Pi module, it is necessary to make
changes into network interface files as shown below with the command,

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 25

Figure 3.2: consol for keyboard configuration 1/5

sudo nano /etc/network/interfaces

By applying this command line in terminal, an editor screen as below is shown.
Additions of address, netmask and gateway have to be done, with the lines starting
with a tab as shown in the figure 3.7. By making this change, whenever the module
is being rebooted, it will automatically load IP address written in this file, and same
with gateway and netmask too.

Nano is an inbuilt text editor and it only permit a write operation to the sudoers,
otherwise it only open the document in read only access, and hence to make any
changes within the document, sudo must be written before nano command line.

DNS server configuration

DNS server converts an alphanumeric web address into IP address from where the
data can be originated to propagate into the network. Without setting proper DNS
server an error called temporary name resolution failure is generated causes, the sudo
apt-get update command not to work. To avoid this problem we have to execute the
command line in terminal given below.

sudo nano /etc/network/interfaces

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 26

Figure 3.3: consol for keyboard configuration 2/5

It will open a file, and two lines have to be edited within it to get a proper access
to the net. If instead of IP address of a DNS server, a name of DNS server is given,
then the system tries to find the resolution for this server name from this file only,
and hence it ties up into an infinite loop, causes the system to be hanged up. Figure
3.8 shows how the resolv.conf file is look like.

Network diagnostic

The most powerful tool for network diagnostic is ifconfig. It is the most powerful
tool for controlling and configuring the Pis network port. To see the output, ifconfig
should be written into the terminal. Output is as given in figure 3.9.

The output of ifconfig is split into the following sections:

Link encap - The type of encapsulation used by the network, which on the Model
B will either read Ethernet for the physical network port or Local Loop back for the
virtual loop back adapter.

Hwaddr - The Media Access Control (MAC) address of the network interface,
written in hexadecimal. This is unique for every device on the network, and each Pi
has its own MAC address, which is set at the factory. Here it is b0:27:eb:c1:ce:4b.

inet addr - The Internet protocol (IP) address of the network interface. This is
how one find the Pi on the network, using it to run a network-accessible service, such

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 27

Figure 3.4: consol for keyboard configuration 3/5

as a web server or file server. Here it is 101.0.0.126.

Bcast - The broadcast address for the network to which the Pi is connected. Any
traffic sent to this address will be received by every device on the network. Here it is
11.255.255.255.

Mask - The network mask, which controls the maximum size of the network to
which the Pi is connected. Here it is 255.0.0.0.

MTU - The maximum transmission unit size, which is how big a single packet of
data, can be before the system needs to split it into multiple packets. Here it is 1500
bytes.

RX - This section provides feedback on the received network traffic, including the
number of errors and dropped packets recorded. If you start to see errors appearing
in this section, there’s something wrong with the network.

TX - This provides the same information as the RX section, but for transmitted
packets. Again, any errors recorded here indicate a problem with the network.

collisions - If two systems on the network try to talk at the same time, you get a
collision which requires them to retransmit their packets. Small numbers of collisions
aren’t a problem, but a large number here indicates a network issue.

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 28

Figure 3.5: consol for keyboard configuration 4/5

txqueuelen - The length of the transmission queue, which will usually be set to
1000 and rarely needs changing.

RX bytes, TX bytes - A summary of the amount of traffic the network interface
has passed.

3.1.3 Power Diagnostic

Many problems with the Raspberry Pi can be traced to an inadequate power supply.
The Model A requires a 5 V supply capable of providing a 500 mA current, while
the Model Bs extra components bump up the current requirement to 700 mA. Not
all USB power adapters are designed to offer this much power, even if their labeling
claims otherwise. The Pi provides a relatively easy way to check if this is the case
in the form of two voltage test points. To use the voltage test points, a voltmeter or
multimeter with direct current (DC) voltage measuring capabilities is required. If a
meter has multiple inputs for different voltages, then its better to use an appropriate
setting.

Two test points are small, copper clad holes known as vias, which are connected
to the Pis 5 V and ground circuits. Put the positive (red) meter probe on TP1,
located to the left of the board just above a small black component called a regulator

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 29

Figure 3.6: consol for keyboard configuration 5/5

labelled RG2. Connect the black (negative) meter probe to TP2, located between the
copper GPIO pins and the yellow-and-silver RCA phono connector at the top-left of
the board (see Figure 3.10).

The reading on the voltmeter should be somewhere between 4.8 V and 5 V. If its
lower than 4.8 V, this indicates that the Pi is not being provided with enough power.
Try swapping the USB adapter for a different model, and check that the label says
it can supply 700 mA or more. A model rated at 1A is recommended, but beware
of cheap models, they sometimes have Inaccurate labelling, and fail to supply the
promised current. Genuine branded mobile phone chargers rarely have this problem,
but cheap unbranded devices often sold as compatible adapters should be avoided.

3.1.4 Installation of wiring PI

Wiring Pi is a library to access GPIO available on Raspberry Pi SoC. It is a part of
git-core and hence installation of GIT-CORE is done prior to set up wiring pi. The
command that has to be run in terminal with active Internet connection is as shown
below.

sudo apt-get install git-core

Then access the URL shown below with proper IP Address settings that is shown
in next topic. Its having latest version of wiring Pi for GPIO operation of Raspberry

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 30

Figure 3.7: Nano Editor for interface of network

Pi.

https://git.drogon.net/?p=wiringPi;a=summary

It will download a tar.gz file with a name like wiringPi-98bcb20.tar.gz. Note that
the numbers and letters after wiringPi (98bcb20 in this case) will probably be different
theyre a unique identifier for each release. Following commands should be used to
install wiring Pi for RPi, to get easy GPIO operations with simple command lines.

tar xfz wiringPi-98bcb20.tar.gz
cd wiringPi-98bcb20

./build

These command lines causes to install wiring Pi library in Raspbian Wheezy and
now GPIO are enabled with simple command lines. Test of the proper installation of
Wiring Pi can be done with following commands.

gpio -v gpio readall

If Wiring Pi is being installed properly, it will give us a version detail, installed
on board, and hence a conformation of a successful installation of WiringPi on RPi
can be obtained.

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 31

Figure 3.8: setting for resolution checking with DNS server

3.1.5 Loading SPI device driver

On many Raspberry Pi distributions, including debian based Raspbian wheezy; the
SPI device drivers are not loaded by default on boot. The file named ’/etc/modprobe.d/raspi-
blacklist.conf’ indicates, which kernel modules are not being loaded. Since SPI, isn’t
needed by most users, it need to be explicitly removed from that list by placing a mark
(comment) in front of the ’blacklist’ command. Edit and save ’/etc/modprobe.d/raspi-
blacklist.conf’ as shown below.

nano /etc/modprobe.d/raspi-blacklist.conf
blacklist spi and i2c by default (many users don’t need them)

blacklist spi-bcm2708
blacklist i2c-bcm2708

Then, to gain access to SPI and 1-Wire devices, their respective device drivers must
be loaded, either by manually using the ’modprobe’ command or on boot.

3.1.6 GPIO Overview

It is basic GPIO layout of RPi, having 5 pins for SPI interface (pins 19, 21, 23 for
signals, and 24 and 25 for device selection), 8 pins for GPIO, 2 pins for UART, 2
pins for I2C, 2 pins for 3.3V supply, 2 pins for 5 V supply and 5 ground pins, so total
number of pins are 5+8+2+2+2+2+5 = 26 pins, as shown in figure 3.11.

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 32

Figure 3.9: Output of ifconfig

3.1.7 Config.txt

The config.txt file can control almost all aspects of the Pis hardware, with the
exception of the way the central processing unit (CPU) and graphics processing unit
(GPU) sections of the BCM2835 apportion the memory. The config.txt file is only
read when the system first starts up. Any changes made while the Pi is running wont
take effect until the system is restarted, or switched off and back on again. In the
event that the changes are unwanted, simply deleting the file from the /boot directory
should be enough to restore the defaults once more. If the Pi wont boot with new
settings, just remove the SD card and delete config.txt from the boot partition on
another PC, and then reinsert it into the Pi and try again. Without making any
edition in a new Raspberry Pi board, a blank configuration file is observed. One has
to configure it as per application requirement. Parameters can be handled with the
help of config.txt are listed below.

• Enabling and disabling test mode

• Enabling and disabling L2 cache (128kb)

• Overvoltage setting

• Over clocking setting

• Boot option

• Display configuration

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 33

Figure 3.10: Two voltage test points, labeled TP1 and TP2

Over clocking, or overvoltage setting may be a cause of break down in current working
of the Raspberry Pi system.

3.2 ADC interface and Programming

ADC MCP3208 works with SPI protocol for data communication.It has 8 input chan-
nel and inbuilt sample and hold circuit. The Vcc and ground are connected to the Vcc
and ground of the raspberry Pi to reduce supply rail noise.

Table I: Connection between MCP3208 and Raspberry Pi

Pin no. of MCP3208 Pin no. of GPIO of RPi
13 23
12 21
11 19
10 24

3.2.1 Header file for CG calculation

Amazing thing about CG is that, it needs the total weight of the truck on the platform
to calculate exact place of CG even after that it is free of the weight of that truck.

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 34

Figure 3.11: GPIO layout for Raspberry Pi

Distance of each load cells from a reference point is taken in consideration. As well
with it load measured on each individual load cell is also considered.

CG =
Σwi ∗ xi

Σwi

where,
wi = weight measured on the i’th load cell.
xi = distance of load cell i, from the reference point.

Python is used to setup communication. Readings from different channels are
taken as input to the CG calculation function and output will be the x-coordinate of
the CG from reference point.

3.3 System Integrity

Reference voltages for MCP3208 are set to 5V causes lsb = 5
4096

v = 1.2mv. Max-
imum load capacity of the load cell is 4535 kg = 10000 lbs. Hence it shows 30mV
output at 4535 kg weight and 10 V excitation. So it shows 30mv

4535Kg
= 0.0066mv

Kg
. Thus

gain of the amplifier stage should be greater than 1.2mv
0.0066mv

= 180 for amplifier unit.
This calculation is good enough for the system with one load cell. But weight of truck

CHAPTER 3. DIAGNOSIS OF SYSTEM COMPONENTS 35

is being distributed on the total platform, causes all the load cells to share an amount
of weight and not the whole. Consider a balance of 1 Kg. If it is placed on the plat-
form, the total weight is shared by eight load cell, with no load cell having exact of
1 Kg. of weight causes no lsb increment for ADC and weight will not be calculated.
To come out of such trouble, gain of amplifier must be higher, so for even a little
amount of weight on platform, a significance change in lsb of ADC can be observed.
That creates an ease to measure the weight of a truck, with proper programming.

3.4 Summary

By properly configured keyboard, one can write a c program for GPIO using
wiringPi library and can compile it without errors. To make network accessibility
easy, a provision of a static IP address is done to the RPi module and it will be
loaded within module at the time of booting, from /etc/network/interfaces file. To
enable SPI device driver, according changes should be done into /modprobe.d/raspi-
blacklist.conf’ file. This is how the configuration of RPi for very basic operations
and required functionalities can be done.System integrity shows the factors to select
the gain of differential amplifier and calibration parameter. A header file for CG
calculation in python is made and used by import command in the main file. De-
tails of interconnections, timing of communication and protocols are discussed in the
following chapters.

Chapter 4

Interconnection of peripherals

Input to the Raspberry Pi and output from it, are expects to be handled, and for
that, different protocols are used. GPIO of Raspberry Pi having 26 pins among them,
5 pins are dedicated to Serial Peripheral Interface (SPI) protocol, 2 pins are dedicated
to Universal Asynchronous Receive Transmit, (UART) , and 2 pins are dedicated to
I2C protocol. Handling of the data transmission and reception on this pins need
some drivers or packages to be installed in Raspberry Pi. As the device changes,
the type of interface getting changed, likewise RF ID card reader is being interfaced
with UART protocol, while ADC MCP3208 is being interfaced with SPI protocol,
and camera switcher and lighting controller are being interfaced with I2C protocol.
Hence a higher complexity arises at the hardware side, while drivers configuration
should be at booting time, from software. This chapter consists these protocols in
detail, with respect to Raspberry Pi module.

4.1 Serial Peripheral Interface (SPI) protocol

The Serial Peripheral Interface bus or SPI bus is a serial data link used for syn-
chronous data communication, for digital data and it is named by Motorola. It
operates in full duplex mode. In SPI protocol, devices communicate in master/slave
mode, where the data frame is initiated by the master device. Multiple slave de-
vices are allowed without addresses provided to them, as individual slave select lines
provided to each slave device. Sometimes, SPI is called a four-wire serial bus, con-
trasting with three, two, and one wire serial buses. SPI is often referred to as SSI
(Synchronous Serial Interface) also.

36

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 37

Figure 4.1: Master Slave interconnection in SPI protocol

4.1.1 SPI with multiple slaves

Common MOSI, MISO, and SCLK line is shared among all the slaves, while an
individual SS (slave select) line is taken out from master for each slave. If n slaves are
attached to a master then total 3+n lines are drawn out of the master as shown in
figure 4.3. Some time clock skew may be observed as the distance or device increases,
and hence with limited number of slaves it works better, but no any rigid boundary
for upper limit of slave number.

4.1.2 SPI signaling

SPI interface uses four connections for one to one device (master to a single slave)
connection, these four connection unable a two way communication between master
and slave.

• MOSI master out slave in

• MISO master in slave out

• SCK serial clock

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 38

Figure 4.2: Master Slave interconnection in SPI protocol with multiple slaves

• SSn slave select

Communication by SPI protocol can take place with assertion of SSn, or say a
chip select signal. (refer to figure 4.2). It generally transits from high to low. When
chip-select (CS) or SSn set to low, the SPI device, connected to it is being selected,
for

communication, till the time that it remains in high impedance state. SPI has a
clock signal named SCLK, sent from the bus master to all slaves; all the SPI signals
are synchronous to this clock signal; while it samples the MISO line As well with it,
it has a data line from the master to the slaves, named MOSI (Master Out-Slave In)
and another data line from the slaves to the master, named MISO (Master In-Slave
Out). SPI is a single-master communication protocol. This means that one central
device initiates all the communications with the slaves. When the SPI master wishes
to send data to a slave and/or request information from it, it selects slave by pulling
the corresponding SS line low and it activates the clock signal at a clock frequency
usable by the master and the slave. The master generates information onto MOSI
line.

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 39

Figure 4.3: signaling in SPI protocol

4.1.3 Modes of communication in SPI

Four communication modes are available (MODE 0, 1, 2, 3) that basically define
the SCLK edge on which the MOSI line toggles, the SCLK edge on which the master
samples the MISO line and the SCLK signal steady level (that is the clock level, high
or low, when the clock is not active). Each mode is formally defined with a pair of
parameters called clock polarity (CPOL) and clock phase (CPHA).

A master/slave pair must use the same set of parameters SCLK frequency, CPOL,
and CPHA for a communication to be possible. If multiple slaves are used, that are
fixed in different configurations, the master will have to reconfigure itself each time
it needs to communicate with a different slave. This is basically all what is defined
for the SPI protocol. SPI does not define any maximum data rate, not any particular
addressing scheme; it does not have an acknowledgment mechanism to confirm receipt
of data and does not offer any flow control. Actually, the SPI master has no knowledge
of whether a slave exists, unless something additional is done outside the SPI protocol.
SPI does not care about the physical interface characteristics like the I/O voltages
and standard used between the devices. Initially, most SPI implementation used a
non-continuous clock and byte-by-byte scheme. But many variants of the protocol
now exist, that use a continuous clock signal and an arbitrary transfer length.

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 40

Figure 4.4: modes in SPI protocol

4.1.4 Enabling Spidev (SPI device driver) on the Raspberry

Pi

Following steps are followed to enable SPI driver, (Spidev) on the Raspberry Pi

• Turn on the Raspberry Pi and connect it to the network

• Log in to the Raspberry Pi remotely over SSH.

• Open the raspi-black-list.conf file using the following command : sudo nano
/etc/modprobe.d/raspi-blacklist.conf

• Comment out the blacklist spi-bcm2708 entry by putting a hash sign in front
of it. So it looks like blacklist spi-bcm2708.

• Type sudo reboot. This should cause the Raspberry Pi to reboot. Which will
terminate the SSH session.

Start a new SSH session and type ls /dev/spidev* If you see the output displayed
in Figure 4.5, then the SPI driver (spidev) has been successfully enabled on the
Raspberry Pi.

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 41

Figure 4.5: Display of Spidev

4.1.5 Communication with MCP3208

Communication with the MCP3208 device is accomplished using a standard SPI-
compatible serial interface. Initiating communication with either device is done by
bringing the CS line low. If the device was powered up with the CS pin low, it must
be brought high and back low to initiate communication.This will be taken care by
Spidev0.0 driver.

The first clock received with CS low and DIN high will constitute a start bit. The
SGL/DIFF bit follows the start bit and will determine if the conversion will be done
using single-ended or differential input mode. The next three bits (D0, D1 and D2)
are used to select the input channel configuration. The device will begin to sample
the analog input on the fourth rising edge of the clock after the start bit has been
received. The sample period will end on the falling edge of the fifth clock following
the start bit.

Once the D0 bit is input, one more clock is required to complete the sample and
hold period (DIN is a don’t care for this clock). On the falling edge of the next clock,
the device will output a low null bit. The next 12 clocks will output the result of the
conversion with MSB first. Data is always output from the device on the falling edge
of the clock. If all 12 data bits have been transmitted and the device continues to
receive clocks while the CS is held low, the device will output the conversion result
LSB first. If more clocks are provided to the device while CS is still low (after the
LSB first data has been transmitted), the device will clock out zeros indefinitely. If

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 42

Figure 4.6: Communication with MCP3208

necessary, it is possible to bring CS low and clock in leading zeros on the DIN line
before the start bit. This is often done when dealing with micro-controller-based SPI
ports that must send 8 bits at a time.

4.1.6 Advantages of SPI

• Full duplex communication

• Higher throughput than IC or SMBus

• Complete protocol flexibility for the bits transferred

– Not limited to 8-bit words

– Arbitrary choice of message size, content, and purpose

• Extremely simple hardware interfacing

– Typically lower power requirements than IC or SMBus due to less circuitry
(including pull up resistors)

– No arbitration or associated failure modes

– Slaves use the master’s clock, and don’t need precision oscillators

– Slaves don’t need a unique address unlike IC or GPIB or SCSI

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 43

– Transceivers are not needed

• Uses only four pins on IC packages, and wires in board layouts or connectors,
much fewer than parallel interfaces

• At most one unique bus signal per device (chip select); all others are shared

• Signals are unidirectional allowing for easy Galvanic isolation

• Not limited to any maximum clock speed, enabling potentially high throughput

4.1.7 Disadvantage of SPI

• Requires more pins on IC packages than IC, even in the three-wire variant

• No in-band addressing; out-of-band chip select signals are required on shared
buses

• No hardware flow control by the slave (but the master can delay the next clock
edge to slow the transfer rate)

• No hardware slave acknowledgment (the master could be transmitting to nowhere
and not know it)

• Supports only one master device

• No error-checking protocol is defined

• Generally prone to noise spikes causing faulty communication

• Without a formal standard, validating conformance is not possible

• Only handles short distances compared to RS-232, RS-485, or CAN-bus

• Many existing variations, making it difficult to find development tools like host
adapters that support those variations

• SPI does not support hot plugging (dynamically adding nodes).

4.2 Inter- integrated circuit Protocol (I2C)

IC (Inter-Integrated Circuit, referred to as I-squared-C, I-two-C, or IIC) is a multi-
master serial single-ended computer bus invented by Philips used for attaching low-
speed peripherals to a motherboard, embedded system, cell phone, or other electronic
device. Not to be confused with the term Two Wire Interface which only describes
a compatible hardware interface? Since the mid-1990s, several competitors (e.g.,

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 44

Siemens AG (later Infineon Technologies AG, now Intel mobile communications),
NEC, Texas Instruments, STMicroelectronics (formerly SGS-Thomson), Motorola
(later Freescale), Intersil, etc.) brought IC products on the market, which are fully
compatible with the NXP (formerly Philips’ semiconductor division) IC-system. Since
October 10, 2006, no licensing fees are required to implement the IC protocol. How-
ever, fees are still required to obtain IC slave addresses allocated by NXP. SMBus,
defined by Intel in 1995, is a subset of IC that defines the protocols more strictly.
One purpose of SMBus is to promote robustness and interoperability. Accordingly,
modern IC systems incorporate policies and rules from SMBus, sometimes supporting
both IC and SMBus with minimal reconfiguration required.

4.2.1 Revision in I2C

• In 1982, the original 100-kHz IC system was created as a simple internal bus
system for building control electronics with various Philips chips.

• In 1992, Version 1.0 (the first standardized version) added 400-kHz Fast-mode
(Fm) and a 10-bit addressing mode to increase capacity to 1008 nodes.

• 1998, Version 2.0 added 3.4-MHz High-speed mode (Hs) with power-saving re-
quirements for electric voltage and current.

• In 2000, Version 2.1 introduced a minor cleanup of version 2.0.

• In 2007, Version 3.0 added 1-MHz Fast-mode plus (Fm+), and a device ID
mechanism.

• In 2012, Version 4.0 added 5-MHz Ultra Fast-mode (UFm) for new USDA and
USCL lines using push-pull logic without pull-up resistors, and added assigned
manufacturer ID table. This is the most recent standard.

4.2.2 Design of I2C and signaling

A sample schematic with one master (a micro-controller), three slave nodes (an
ADC, a DAC, and a micro-controller), and pull-up resistors Rp. IC uses only two
bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock (SCL), pulled
up with resistors. Typical voltages used are +5 V or +3.3 V although systems with
other voltages are permitted.

The IC reference design has a 7-bit or a 10-bit (depending on the device used)
address space. Common IC bus speeds are the 100 kbit/s standard mode and the 10
kbit/s low-speed mode, but arbitrarily low clock frequencies are also allowed. Recent
revisions of IC can host more nodes and run at faster speeds (400 kbit/s Fast mode, 1
Mbit/s Fast mode plus or Fm+, and 3.4 Mbit/s High Speed mode). These speeds are

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 45

Figure 4.7: Design of I2C protocol

more widely used on embedded systems than on PCs. There are also other features,
such as 16-bit addressing. The bit rates are quoted for the transactions between
master and slave without clock stretching or other hardware overhead. Protocol
overheads include a slave address and perhaps a register address within the slave
device as well as per-byte ACK/NACK bits. Thus the actual transfer rate of user
data is lower than those peak bit rates alone would imply. For example, if each
interaction with a slave inefficiently allows only 1 byte of data to be transferred, the
data rate will be less than half the peak bit rate. The maximum number of nodes is
limited by the address space, and also by the total bus capacitance of 400 pF, which
restricts practical communication distances to a few meters.

4.2.3 Reference design

The before mentioned reference design is a bus with a clock (SCL) and data (SDA)
lines with 7-bit addressing. The bus has two roles for nodes: master and slave:

• Master node node that generates the clock and initiates communication with
slaves

• Slave node node that receives the clock and responds when addressed by the
master

The bus is a multi-master bus which means any number of master nodes can be
present. Additionally, master and slave roles may be changed between messages (after

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 46

Figure 4.8: Data communication in I2C protocol

a STOP is sent). There are four potential modes of operation for a given bus device,
although most devices only use a single role and its two modes:

a. master transmit master node is sending data to a slave

b. master receive master node is receiving data from a slave

c. slave transmit slave node is sending data to the master

d. slave receive slave node is receiving data from the master

The master is initially in master transmit mode by sending a start bit followed by the
7-bit address of the slave it wishes to communicate with, which is finally followed by
a single bit representing whether it wishes to write(0) to or read(1) from the slave.
If the slave exists on the bus then it will respond with an ACK bit (active low for
acknowledged) for that address. The master then continues in either transmit or
receive mode (according to the read/write bit it sent), and the slave continues in its
complementary mode (receive or transmit, respectively). The address and the data
bytes are sent most significant bit first. The start bit is indicated by a high-to-low
transition of SDA with SCL high; the stop bit is indicated by a low-to-high transition
of SDA with SCL high. All other transitions of SDA take place with SCL low. If
the master wishes to write to the slave then it repeatedly sends a byte with the slave
sending an ACK bit. (In this situation, the master is in master transmit mode and
the slave is in slave receive mode.) If the master wishes to read from the slave then it

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 47

repeatedly receives a byte from the slave, the master sending an ACK bit after every
byte but the last one. (In this situation, the master is in master receive mode and
the slave is in slave transmit mode.) The master then either ends transmission with
a stop bit, or it may send another START bit if it wishes to retain control of the bus
for another transfer (a ”combined message”).

4.2.4 Message protocol

Figure 4.9: I2C Message protocol

IC defines basic types of messages, each of which begins with a START and ends
with a STOP:

• Single message where a master writes data to a slave;

• Single message where a master reads data from a slave;

• Combined messages, where a master issues at least two reads and/or writes to
one or more slaves. In a combined message, each read or write begins with a
START and the slave address. After the first START in a combined message
these are also called repeated START bits. Repeated START bits are not
preceded by STOP bits, which is how slaves know the next transfer is part of
the same message. Any given slave will only respond to particular messages,
as defined by its product documentation. Pure IC systems support arbitrary

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 48

message structures. SMBus is restricted to nine of those structures, such as
read word N and write word N, involving a single slave. PMBus extends SMBus
with a Group protocol, allowing multiple such SMBus transactions to be sent in
one combined message. The terminating STOP indicates when those grouped
actions should take effect. For example, one PMBus operation might reconfigure
three power supplies (using three different I2C slave addresses), and their new
configurations would take effect at the same time: when they receive that STOP.
With only a few exceptions, neither IC nor SMBus define message semantics,
such as the meaning of data bytes in messages. Message semantics are otherwise
product-specific. Those exceptions include messages addressed to the IC general
call address (0x00) or to the SMBus Alert Response Address; and messages
involved in the SMBus Address Resolution Protocol (ARP) for dynamic address
allocation and management. In practice, most slaves adopt request/response
control models, where one or more bytes following a write command are treated
as a command or address. Those bytes determine how subsequent written bytes
are treated and/or how the slave responds on subsequent reads. Most SMBus
operations involve single byte commands.

4.2.5 Configure Raspberry Pi for I2C protocol

Raspberry Pi is ready to go with I2C as far as enabling the hardware goes. However,
while using Raspbian, open LXTerminal and enter the following command

sudo nano /etc/modules

and add these two lines to the end of the file:

• i2c-bcm2708

• i2c-dev

After editing the file, reboot for the changes to take effect is necessary. If there
are problems with I2C on Raspbian, then it is well worth updating to the latest ver-
sion.The I2C bus allows multiple devices to be connected to Raspberry Pi, each with
a unique address, which can often be set by changing jumper settings on the module.
It is very useful to be able to see which devices are connected to the Raspberry Pi
as a way of making sure everything is working. To do this, it is worth running the
following commands in the Terminal to install the i2c-tools utility.

sudo apt-get install python-smbus
sudo apt-get install i2c-tools

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 49

Figure 4.10: I2C configuration

Depending on Linux distribution, system has a file called /etc/modprobe.d/raspi-
blacklist.conf. If systems do not have this file then there is nothing to do, however, if
systems do have this file, it is needed to edit it and comment out the lines below:

blacklist spi-bcm2708
blacklist i2c-bcm2708

by putting a hash before it, as same as done in SPI enabling. Once this is all done,
following command is used to see all the connected devices (for 512MB Raspberry Pi
Model B)

sudo i2cdetect -y 1

This shows that two I2C addresses are in use 0x40 and 0x70.

4.3 Universal Asynchronous Receive Transmit Pro-

tocol (UART)

The UART block provides serial communication capability with external devices
through an RS-232 cable or through use of external circuitry that converts infrared

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 50

Figure 4.11: I2C addresses

signals to electrical signals (for reception) or transforms electrical signals to signals
that drive an LED (for transmission) to provide low speed IrDA compatibility. The
UART module supports NRZ encoding format.

4.3.1 Implementation of UART on Raspberry Pil

Figure 4.12: UART Protocol

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 51

In order to use the dedicated UART pins on the raspberry pi, first they have
to be removed from their default application which is debugging. To do this edit
”/boot/cmdline.txt” and ”/etc/inittab”. Backup this files if you want to return to
the default configuration

cp /boot/cmdline.txt /boot/cmdline.bak
cp /etc/inittab /etc/inittab.bak

Remove console=ttyAMA0, 115200” and ”kgdboc=ttyAMA0, 115200” configura-
tion parameters from the ”/boot/cmdline.txt” configuration file using nano editor.

sudo nano /boot/cmdline.txt

Comment the last line on the ”/etc/inittab” file. Put a hash before ”T0:23:respawn:/sbin/getty
-L ttyAMA0 115200 vt100.

sudo nano /etc/inittab

Now the RXD (GPIO15) and TXD (GPIO14) pins are available for general UART
use. This is an example application to use the UART pins using Python and the
pyserial library. To install Pyserial download the latest version from

http://sourceforge.net/projects/pyserial/files/pyserial/

Install by running the setup.py

python setup.py install

Open a Python terminal (remember to always be running under SuperUser by
using sudo or su Python. To test it without the need of another device simply connect
raspberry’s TXD and RXD pins to each other and run the following commands on
the python terminal:

textbfimport serial textbfser = serial.Serial (”/dev/ttyAMA0”) textbfser.write(”UART
the Font”) textbfread = ser.read () textbfprint read textbfser.close()

Install ”minicom” for terminal emulation:

apt-get install minicom

minicom can be used by the next line command

minicom -b 9600 -o -D /dev/ttyAMA0

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 52

4.3.2 Troubleshooting UART Problems

The above code works (we’ve used it for TX and RX) nicely. But if it does not work
for any reason even if all the steps are taken properly to release the UART from being
used for the console try the following.

A. Permissions: This command will set read and write access permissions for
all users on the UART it shouldn’t be needed but can be used just to be sure there
is not a permissions problem:

sudo chmod a+rw /dev/ttyAMA0

B. Baud Rate Error: Try using a slower BAUD rate (or a single 0xFF byte
which only has the start bit low) and see if it works. It may have a problem using
115k2 baud rate where our micro-controller communicating with the RPi could hit
113636baud or 119047baud. 113636baud had the lowest error margin. However when
transmitting to the Raspberry Pi nothing was ever received. Changing the micro-
controller to use 119047baud caused RX to work.

4.4 Errors in Communication

Accuracy is one of the most critical factors to consider when specifying an ADC for
test and measurement applications. Unfortunately, it’s often confused with resolution,
and although related, they are distinctly different. The ADC accuracy is the percent-
age error in the converted value while resolution is the smallest value into which the
full range ADC reading is divided. Every ADC measurement contains a variety of
unavoidable, independent errors that influence its accuracy. When,σ represents each
independent error, the total error can be shown as,

σtotal =
√

Σσ2 (4.1)

This equation includes a variety of errors such as sensor anomalies, noise amplifier
gain and offset, ADC quantization (resolution) error, and other factors. Accuracy of a
data acquisition (DA) device e.g. an ADC is defined as the sum of three components
stated in terms of the reading, range, and the least significant bit (LSB). It is a
measure of the extend to which the device is error-free. Generally, accuracy is not
constant over an entire measurement range; it varies with the reading magnitude. On
the other hand, resolution is defined as the smallest incremental change the ADC can
recognize. For example, a 12-bit ADC has a resolution of 1 part in 4096.

4.4.1 Solutions for Errors

• Rail voltages must be stable. A capacitor across VCC and ground should be
connected.

CHAPTER 4. INTERCONNECTION OF PERIPHERALS 53

• VREF must be stable.

• According to operation frequency, R-C filter should be applied at I/O of ADC.

• Software based triple module system should be implement to get error free
output, bt it comprises the time.

4.5 Summary

By implementing these protocols for Raspberry Pi system, an easy interface for data
communication can be established with the inbuilt libraries as well with their func-
tions. A circuit level complexity increases as all the protocols have to be developed
for the same board and have to work simultaneously, without affecting one another’s
performance. By reducing the hardware complexity with I2C and to built an easy
communication way with SPI, inbuilt functions works tremendously good.Methods
described in this chapter to stabilize the ADC output are required to be implemented
to get proper output, else false weight will be considered. In next chapter, all results
of implemented systems in comparison with a standard system is shown.

Chapter 5

Analysis and Results

As far as the implementation of this flow concern, results obtained are discussed
here. A Savior standard weighbridge is considered as a reference product and the
results will be observed in comparison with that. Analysis is in term of CG deviation
from standard and weight difference in real and measured weight.

5.1 Analysis of CG

Unit of the CG of the system is Meter, and calculated from the first edge of the
weighbridge as shown here. A Savior standard weighbridge and a system developed
with Raspberry Pi is compared for observing the deviation of CG

Table I: Analysis of CG

Original Savior System Deviation in % RPi based System Deviation in %
5 5.01 2 5.05 10.0
10 10.02 2.0 10.08 8.0
15 15.04 2.0 15.06 4.0
20 20.06 3.0 20.06 3.0
25 25.08 3.2 25.04 1.6
30 30.10 3.3 30.04 1.3
35 35.11 3.1 35.02 0.5
40 40.12 3.0 40.01 0.25

All dimensions are in Meter

So the analysis shows, that as the distance from reference increases, the RPi based
system shows more accurate CG than the standard one. Total length of weigh bridge
is 45 meter.

54

CHAPTER 5. ANALYSIS AND RESULTS 55

5.2 System Parameters

System is being considered with the parameters like Space, flexibility, Range resolu-
tion and many more. This will be considered as a part of comparison with standard
system.

5.2.1 Number of IC

Savior weighbridge system uses 1 voltage regulator, and 1 ADC for each load cell.
Here MCU is not considered, as is it using Pentium-4 processor in built with PC. For
data communication. Rather than MCU there are 4 ICs used per load cell, hence
total 32 ICs are used in standard product. In Raspberry Pi based system developed
here, a common ADC is used for all load cell, hence average 3 ICs are used per load
cell, hence total ICs (except MCU) are 24 in this system.

5.2.2 Space

In terms of space, the developed system required least space for both the digital
circuitry and the analog circuitry. This is attributed to the fact that minimal number
of chips was used and to crown it all, the system will be implemented on PCB boards.
In addition, data is serially sent from the 12-bit ADC to the Raspberry Pi, only for
lines are used to interface, making the circuit design easier. Owing to the many
external chips used, in standard Savior weighbridge system, a lot of space is required
for circuit implementation.

5.2.3 Portability

From the portability perspective, the developed system has unlimited range as all
that is needed is a single external power supply. It has an in-built regulated power
supply and works well with the mains power supply. Moreover, it has been designed
to make it as compact as possible. Standard Savior weighbridge is bulky and therefore
has limited portability.

5.2.4 Range and resolution

The developed electronic weighbridge has tried to address both resolution and range.
It is the best in as far as striking a balance between range and resolution goes. This
is a modest system with a reasonable range while at the same time being sensitive
enough. This is quite rare in virtually all-electronic weighbridge systems.

CHAPTER 5. ANALYSIS AND RESULTS 56

5.3 Summary

Here a comparison of the raspberry Pi based developed system and standard Savior
weighbridge system is done. Observation says, as distance from reference increases,
the Raspberry Pi based developed system is more accurate than the standard Savior
system, shows the accuracy of header file for CG calculation and accurate working
of ADC. As well with that, the developed system is more better in term of space
utilization, flexibility, resolution and range.

Chapter 6

Conclusion and future work

6.1 conclusion

• With the help of SOC board like Raspberry Pi, integration of multiple peripher-
als is easy, more reliable system can be established for such huge scale operation,
without human intervention.

• Real time operation required transmitting image on the network, compression
techniques must be used but if time taken to compress image is higher than
the transmission time, then row image transmission should be done but it may
cause more memory utilization.

• Implementation with SOC integration causes the system more efficient.

6.2 Future work

• Automatic weighment even of a moving truck.

• Reducing the queue of trucks at weighbridge.

• Optimized use of space in plant.

• Remote access will be provided for fault recovery, with networking.

57

Appendix A

Double-Ended Shear Beam Load

Cell

This section describes the basic features of load cell module65058.

Features

• Center-link loaded

• Integral conduit adaptor

• Trade certified for NTEP Class IIIL: 10000 divisions; Class III:

5000 divisions and OIML R60 3000 divisions in 20,000 to 100,000

pounds range

• Sensorgage sealed to IP67 standards

• Factory Mutual System Approved for Classes I, II, III; Divisions

1 and 2; Groups A through G. Also, non-incendive ratings (No

barriers!).

58

APPENDIX A. DOUBLE-ENDED SHEAR BEAM LOAD CELL 59

• Optional

– 65058S stainless steel, welded seal version available

– 65058-TSA companion assemblies for vehicle scales

– 65069-TWA companion assemblies for vessel weighing

– Capacities up to 500,000 consult factory

A.1 Application

Application Truck scales

• Railroad track scales

• Precision tank, bin and silo weighing

• evel and inventory monitoring

A.2 Discription

steel, double ended Shear beam load cell. This product is designed

for use in certified truck and rail scales and is available in capacities

ranging from 10k to 100k lbs. This load cell is rated intrinsically safe

by the Factory Mutual System (FM); making it suitable for use in

potentially explosive environment. This load cell is certified for legal for

trade applications by both American NTEP and International OIML

standards.

References

[1] BROADCOM, ”BMC2835 ARM PERIPHERALS GUIDE”, 06
February 2012.

[2] RS components, ”Raspberry Pi getting started guide Vsn 1.0”,
March 2012.

[3] Eben Upton, ”Raspberry Pi user guide”, March 2012.

[4] Vishay Precision Group, Document 11602, load cell model 65058 ,
14 June 2012.

[5] Microchip, Data sheet MCP3208, DS21298C, 2012.

[6] Munyao Kivati,”Design AND fabrication of a micro-controller based
electronic weighing machine in high mass regime.”, School of Pure
And Applied Sciences of Kenyatta University.August 2009.

[7] hysics, standard-12 Gujarat State Board of higher Secondary Board,
”Chapter-6 Center of Gravity”, April 2007.

[8] Vehicle Technology Market Report” Oak Ridge National Labora-
tory, Center for Transportation Analysis, Oak Ridge, TN. Weight
category definitions from 49CFR565.6 (2000), 2013.

60

Index

Abbreviation Notation and Nomen-

clature, vii

Abstract, vi

Acknowledgments, v

ADC interface and Programming,

33

ADC MCP3208 (Block 3), 11

ADC operation, 14

Advantages of SPI, 42

Alignment, 2

Analog Input, 15

Analysis and Result, 54

Analysis of CG, 54

Application, 59

Assignment of Static IP Address ,

24

Authentication, 2

Billing information generation, 4

Block diagram, 8

Certificate, iv

Communication with MCP3208, 41

Components of Project and Liter-

ature Survey, 8

conclusion, 57

Conclusion and future work, 57

Config.txt, 32

Configure Raspberry Pi for I2C pro-

tocol, 48

Contributions and Progress , 5

Declaration, iii

Design of I2C and signaling, 44

Diagnosis of System Components,

22

Disadvantage of SPI, 43

Discription, 59

DNS server configuration, 25

Double-Ended Shear Beam Load Cell,

58

61

INDEX 62

Enabling Spidev (SPI device driver)

on the Raspberry Pi, 40

Errors in Communication, 52

Flashing from Linux, 20

Future work, 57

Getting started with Raspberry Pi,

18

GPIO overview, 31

Header file for CG calculation, 33

How to select a load cell ?, 10

Implementation of UART on Rasp-

berry Pi, 50

Installation of wiring PI, 29

Inter- integrated circuit Protocol (I2C),

43

Interconnection of peripherals, 36

Introduction, 1

Key Features, 5

Keyboard configuration gets a con-

flict with chipset , 23

Keyboard Diagnostic, 23

Keyboard drawing too much power,

23

Load Cell (Block 1), 9

Loading SPI device driver, 31

Message protocol, 47

Modes of communication in SPI,

39

Motivation, 1

Network Configuration and diag-

nostic, 24

Network diagnostic , 26

Number of IC, 55

Objectives, 4

Pin Descriptions, 15

Portability, 55

Power Diagnostic, 28

Preparing SD card for the Rasp-

berry Pi , 19

Project Definition and Overview, 2

Range and Resolution, 55

Raspberry Pi (System on Chip) (Block

4), 16

INDEX 63

Raspberry Pi Configuration, 22

Reference design, 45

Reference Input, 15

Revision in I2C, 44

Serial Peripheral Interface (SPI) pro-

tocol, 36

Significance, 5

solution for Errors, 52

Space, 55

SPI signaling, 37

SPI with multiple slaves, 37

Strain Gage Amplifier(Block 2), 10

Summary, 35, 53, 56

summary, 21

System Integrity, 34

Thesis Organization, 6

Troubleshooting UART Problems,

52

Universal Asynchronous Receive Trans-

mit Protocol (UART), 49

Weighment, 3

	Declaration
	Certificate
	Acknowledgments
	Abstract
	Abbreviation Notation and Nomenclature
	List of Tables
	List of Figures
	Introduction
	Motivation
	Project Definition and Overview
	Authentication
	Alignment
	Weighment
	Billing information generation

	Objectives
	Key Features
	Significance
	Contributions and Progress
	Thesis Organization

	Components of Project and Literature Survey
	Block diagram
	Load Cell (Block 1)
	How to select a load cell ?

	Strain Gage Amplifier(Block 2)
	ADC MCP3208 (Block 3)
	ADC operation
	Analog Input
	Reference Input
	Pin Descriptions

	Raspberry Pi (System on Chip) (Block 4)
	Getting started with Raspberry Pi
	Preparing SD card for the Raspberry Pi
	Flashing from Linux

	Summary

	Diagnosis of System Components
	Raspberry Pi Configuration
	Keyboard Diagnostic
	Network Configuration and diagnostic
	Power Diagnostic
	Installation of wiring PI
	Loading SPI device driver
	GPIO Overview
	Config.txt

	ADC interface and Programming
	Header file for CG calculation

	System Integrity
	Summary

	Interconnection of peripherals
	Serial Peripheral Interface (SPI) protocol
	SPI with multiple slaves
	SPI signaling
	Modes of communication in SPI
	Enabling Spidev (SPI device driver) on the Raspberry Pi
	Communication with MCP3208
	Advantages of SPI
	Disadvantage of SPI

	Inter- integrated circuit Protocol (I2C)
	Revision in I2C
	Design of I2C and signaling
	Reference design
	Message protocol
	Configure Raspberry Pi for I2C protocol

	Universal Asynchronous Receive Transmit Protocol (UART)
	Implementation of UART on Raspberry Pil
	Troubleshooting UART Problems

	Errors in Communication
	Solutions for Errors

	Summary

	Analysis and Results
	Analysis of CG
	System Parameters
	Number of IC
	Space
	Portability
	Range and resolution

	Summary

	Conclusion and future work
	conclusion
	Future work

	Double-Ended Shear Beam Load Cell
	Application
	Discription

	thebibliography
	Index

