
Embedded firmware device driver
development, performance analysis

and optimizations
Major Project Report

Submitted in Partial fulfillment of the requirements
For the degree of

Master of Technology (M.Tech.)
in

Electronics & Communication Engineering
Embedded Systems

by

Vaghela Maulik V.
12MECE26

Department of Electronics & Communication Engineering
Institute of Technology

Nirma University
Ahmedabad - 382481

May-2014

Embedded firmware device driver
development, performance analysis

and optimizations
Major Project Report

Submitted in Partial fulfillment of the requirements
For the degree of

Master of Technology (M.Tech.)
in

Electronics & Communication Engineering
Embedded Systems

by

Vaghela Maulik V.
12MECE26

Dr. Nagendra Gajjar
Internal Guide

Mr. Madhusudan Kallapur
External Guide

Department of Electronics & Communication Engineering
Institute Of Technology

Nirma University
Ahmedabad - 382481

May- 2014

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Technology
in Embedded systems at Nirma University and has not been submitted elsewhere
for a degree.

2. Due acknowledgement has been made in the text to all other material used.

Maulik Vaghela
12MECE26

iii

Certificate

This is to certify that the dissertation work entitled “Embedded firmware device driver de-
velopment, performance analysis and optimization” submitted by Maulik Vaghela (12MECE26),
towards fulfillment of the requirements for the degree of Master of Technology in Embed-
ded Systems of Nirma University of Science and Technology, Ahmedabad is the record
of work carried out by him under my supervision and guidance. In my opinion, the sub-
mitted work has reached a level required for being accepted for examination. The results
embodied in this major project, to the best of my knowledge, haven’t been submitted to
any other university or institution for award of any degree or diploma.

Date: Place:Ahmedabad

Dr.N.P.Gajjar
Internal Project Guide,
Institute of Technology,
Nirma University
Ahmedabad

Dr.N.P.Gajjar
Program coordinator,

Institute of Technology,
Nirma University,

Ahmedabad

Dr.D.K.Kothari
Section head EC

Institute of Technology,
Nirma University,

Ahmedabad

Dr.P.N.Tekwani
Head of EE Dept.
Institute of Technology,
Nirma University,
Ahmedabad

Dr.K.Kotecha
Director

Institute of Technology,
Nirma University,

Ahmedabad

iv

Acknowledgement

I would also thank to my Project coordinator and my internal guide, Dr. N.P.Gajjar,
program-coordinator, embedded systems, Institute of Technology, Nirma University, Ahmed-
abad for giving valuable support for project work.

I would like to express my sincere thanks to Mr. Madhusudan Kallapur and Mr. Dhaval
Sharma to give me this opportunity. I enjoyed their vast knowledge and thankful to them
for having a profound impact on this report.

I would like to thank my Colleagues Soham Gandhi, Brijesh Yadav and Nishanth, Intel
Technology India Private Limited, Bangalore for their valuable guidance. Throughout
the training, they have given me much valuable advice on project work which I am very
lucky to benefit from. Without them, this project work would never have been completed.

I would also like to thank Dr.D.K.Kothari, Section head EC dept. and Dr. P.N.Tekwani,
head of EE dept., Institute of Technology, Nirma University, Ahmedabad for providing me
an opportunity to get an internship at Intel Technology India Private Limited, Bangalore.

I would also like to thank Dr. K.Kotecha, Director, Institute of Technology, Nirma
University, Ahmedabad for providing me an opportunity to get an internship at Intel
Technology India Private Limited, Bangalore.

I would like to thank my all faculty members for providing encouragement, ex-changing
knowledge during my post-graduate program.

I also owe my colleagues and friends in the Intel, special thanks for helping me on this
path and for making project at Intel more enjoyable.

Maulik Vaghela
12MECE26

v

Abstract

Now days smart devices such as mobile, wearable devices uses sensors to sense
the environment surrounding them and makes decision based on sensors data, simplest
example is smart phone which adjusts brightness of screen automatically based on am-
bient light. Sensors are designed to continuously sense the surrounding hence they will
use CPU every time and it will cause problem for battery operated devices. Now day
mobile boasts processors which are on par with desktop processors and hence use much
more power and to process data of a sensors, this power is too much. In order to reduce
battery consumption, idea of sensor hub is born. Sensor hub is a co-processor which has
very low power consumption and operates at very less frequency (few hundred of mega
Hz) thus reducing loading on main processor. It results in much power saving because
main processor can go to sleep and low power sensor co-processor can keep running.

Sensor hub requires firmware which calculates data of sensors and sends it to
main processor when requested by main processor. Firmware development requires de-
velopment of device driver for various sensors, developing supporting API (Application
Programming Interface), developing arbitration logic for various tasks such as frequency
setting, range setting etc. and also some algorithms to process sensor data take vari-
ous decision. Since firmware requires calculation in real time, performance of firmware
should meet real time requirement. Performance should be measured accurately in order
to meet timeliness and it can be done using RDTSC ticks and if performance doesnt meet
requirement design needs to be changed to meet requirement. Memory is also limited in
this embedded system so code needs to be fit in limited memory.

• Development of micro-drivers for various sensors:
Firmware requires sensor drivers to access data of hardware sensors, so micro-

driver for sensor is a must for any firmware. If current drivers have some bug or
missing functionality that also needs to be fixed. Focus on development of micro-
drivers (which is different from Linux device drivers) such as accelerometer, gyro-
scope, magnetometer etc., adding functionalities such as range arbitration, enabling
dynamic interrupt mode etc., fix bugs in existing micro-drivers and test its func-
tionality.

• Performance analysis and optimization :
This task includes measuring performance of firmware accurately on early

hardware prototype (FPGA) and optimizes it to meet certain timing requirements.
Code also needs to be optimized to meet memory requirement of an embedded sys-
tem.

vi

Contents

i

ii

Declaration iii

Certificate iv

Acknowledgement v

Abstract vi

1 Introduction 1
1.1 Introduction and motivation for project 1
1.2 Introduction to sensors . 2

1.2.1 Types of sensors . 2
1.2.2 Classification of physical sensors 2

1.3 Various terms related to sensors . 3
1.4 Widely used physical sensors in various devices 4
1.5 Introduction to firmware . 5
1.6 summary . 5

2 Device driver development 7
2.1 Introduction to device drivers . 7
2.2 Developing simple drivers for Linux . 8

2.2.1 Advantages Microdrivers over device drivers 10
2.3 Development of micro-drivers for accelerometer LSM303DLHC 10
2.4 Example code for accelerometer LSM303DLHC 12

2.4.1 Initialization of accelerometer LSM303DLHC 13
2.4.2 Configuration of accelerometer LSM303DLHC 16
2.4.3 Reading data of accelerometer LSM303DLHC 18

2.5 Results . 20
2.6 summary . 24

3 Performance analysis 25
3.1 Performance measurement using clock function 25
3.2 Performance measurement using rdtsc instruction 28
3.3 summary . 31

vii

4 Code debugging using GDB 32
4.1 Introduction to code debugging . 32
4.2 summary . 35

5 Secure coding 36
5.1 Common vulnerabilities in code . 36
5.2 Introduction to klocwork . 42
5.3 Example of use of klocwork . 43
5.4 summary . 50

6 Conclusion and future scope 51

7 References 53

viii

List of Figures

1.1 Real time firmware architecture . 5

2.1 Operating system architecture . 7
2.2 Example code for simple hello world module 9
2.3 Control register 1 structure . 13
2.4 Control register 1 description . 13
2.5 output data rate selection . 14
2.6 Control register 2 structure . 14
2.7 Control register 2 description . 14
2.8 High pass filter mode configuration . 14
2.9 Control register 4 structure . 15
2.10 Control register 4 description . 15
2.11 LSM303DLHC initialization code . 16
2.12 LSM303DLHC configuration code part-1 17
2.13 LSM303DLHC configuration code part-2 18
2.14 LSM303DLHC status register structure 18
2.15 LSM303DLHC status register description 19
2.16 LSM303DLHC output registers . 19
2.17 code to read data of LSM303DLHC . 20
2.18 Data of accelerometer on sensor diagnostic tool 21
2.19 Data of magnetometer on sensor diagnostic tool 22
2.20 Data of gyrometer on sensor diagnostic tool 23

3.1 Use of clock library in example code . 26
3.2 1ms time required to sort 6 strings . 27
3.3 2ms time required to sort 10 strings . 27
3.4 Use of rdtsc instruction in example code 29
3.5 ticks required to sort 6 strings . 30
3.6 ticks required to sort 10 strings . 31

4.1 help command in GDB . 34
4.2 Breakpoint at specific line . 34
4.3 Breakpoint at specific function . 34
4.4 stepping through code . 34
4.5 checking value of variable . 35

5.1 Example code showing validation of an array index 37
5.2 Improper validation of an array index . 38
5.3 Null termination in strings . 39
5.4 Improper memory release . 41

ix

5.5 Example code(part1) . 44
5.6 Example code(part2) . 45
5.7 Creating new project in klocwork . 46
5.8 Selecting location ad project type . 46
5.9 Opening kwshell . 47
5.10 Generating detailed report . 47
5.11 Detailed report . 48
5.12 Modified code to remove KW error . 49

1 Opening a device in Linux . 1
2 set I2C slave address to accel’s I2C address 2
3 set I2C slave address to accel’s I2C address 2

0

Chapter 1

Introduction

1.1 Introduction and motivation for project

Now days, sensors play an important role in every mobile devices and it will become
more important for wearable devices in future. Sensor is device which converts physical
quantities into electrical signal which can be understood by an electronic device today.
Sometime signal needs to be converted from analog to digital. Sensors which are used in
mobile devices are accelerometer, gyroscope, ambient light sensor, proximity sensor etc.
Based on data of these sensor device takes certain decisions for example, based on data
from gyroscope mobile can be used to rotate screen, based on data from ambient light
sensor device can reduce or increase brightness of screen which results in power saving
and is also comfortable for end user.

In order to process data of various sensors, one needs to develop an algorithm
which will run and make decisions based on data from sensor. These algorithms may
require computing power but mobile processor now days boasts a processing power which
is much more than required. Most sensors are continuously powered on for a device, thus
these algorithms will not allow processor to go to sleep mode. In this scenario battery life
of a device will be reduced which is not desirable for battery powered embedded device.
Imagine a wearable device such as smart watch whose battery lasts for a half a day.

To solve the problem idea of sensor hub is born. A sensor hub is a device which
contains a micro-controller unit or sometimes DSP (Digital Signal Processing) unit which
helps to integrate data from different sensors and process them. Sensor hub can also help
to off-load these processing from main processor thus improving system performance.
While idle main processor can also go into sleep state thus reducing battery consumption
while sensor hub keeps running in background mode. Sensor hub acts as a co-processor
and it consumes very less power because it doesn’t require much computing power and
it has less operating frequency (In order of few MHz (mega Hz)).

Sensor hub is currently emerging technology. There are very few sensor hubs in
market. For example, Atmels sensor hub microcontroller is used in many mobile devices
uses tiny AVR micro-controller and another is NXPs LPC18A microcontroller. Both can
be used as a co-processor and can be used to develop sensor hub by user. Intel’s sensor
hub is based on x86 architecture and it features system which has Hardware, Firmware
and also interface to operating system thus making system development easier.

1

1.2 Introduction to sensors

Sensors which are used in current devices (whether mobile device, wearable or any
other device) are MEMs (MicroElectroMechanical systems) also known as micromachines.
These sensors are based on nano-technology and contain components ranging from 1 to
100m. In first generation of MEMS sensor element was mostly based on silicon structure
and sometimes chip was combined with external analog amplification. Second genera-
tion of MEMS sensors had sensor element, analog amplifier and ADC (analog to digital
converter) on a single chip. Third generation of MEMS sensor also had temperature com-
pensation on a same chip. In fourth generation of MEMS devices also have additional
memory cells which can store calibration data and also have temperature compensation
data on a same chip. Some sensor also provides FIFO (first in first out) memory in order
to store few data samples of sensors.

1.2.1 Types of sensors

Mostly sensor is classified into two categories. Its not actual classification but to
differentiate between actual sensor and sensor which takes action, there are two different
categories.

• Physical sensors
Physical sensor mean actual sensor part or sensor chip which converts physi-

cal quantity into electrical signals. Example of these sensors are Accelerometer (ST
LSM303DLHC, ST LSM303D etc.), Gyroscope (ST L3GD30H, MPU 6050 etc.) etc.
Data which comes from these chips is in digital form and it is called as raw data as
its simply output based on physical quantity.

• Virtual sensors
Virtual sensors consume data of actual sensor and apply some algorithm on

top of it to produce some meaningful output. For example, actual output of magne-
tometer sensor is in form of (x, y, z) axis which tells magnetic fields in 3 directions.
It doesnt provide any meaningful data to user. System developer can develop an al-
gorithm which calculates north direction from this output and output of algorithm
makes sense to user.

1.2.2 Classification of physical sensors

Physical sensors can be also divided into three categories.

• Motion sensors
Motion sensors are used to determine motion and their data can be used to

2

perform different functionalities for example accelerometer data can be used to de-
termine rotation of screen for mobile phones. It can be also used while playing
gesture based games.

• Location sensors
Location sensors are used to provide user exact location and can also be used

to give direction for navigation. Best example of location sensor is GPS used in
mobile phones. Now a days GLONASS (Global Navigation Satellite System) is
replacing GPS because of worldwide compatibility and comparable precision.

• Context sensors
Context sensors are used when user is directly involved. For example Prox-

imity sensor is used when user is holding mobile near to ear and its data can be
used to turn-off the screen. Other example is Human presence sensor which can be
used to determine whether Human is present or not.

1.3 Various terms related to sensors

This section includes various terminology used in context with sensors, which can
be helpful to understand datasheets of various sensors. It can also be useful to design a
driver for various sensors.

• Range
Sensors are designed to work over specific range. The design ranges are fixed

and care must be taken because if range exceeds then it may result in permanent
damage of a sensor parts or sometimes it may give unpredictable output. Thus it
is mandatory to operate sensor in defined range.

• Sensitivity
Sensitivity means change in output of a sensor per unit change in input quan-

tity being measured by sensor. Sensitivity of a sensor may be constant or it can
be programmable between certain values. For example, in case of accelerometer
lsm303dlhc one can select sensitivity between 4 available values.

• Calibration
Calibration is required for sensors. If accurate output is to be measured by

a sensor than it is necessary to check output of sensor with accurately known input
value. If output is changed than one needs to supply calibration offsets to driver
which will help to produce accurate output.

• Resolution
Resolution means smallest change that can be detected by sensor. Developer

3

needs to choose sensor part based on resolution required by an application.

1.4 Widely used physical sensors in various devices

This section describes various sensors which are widely used in various devices such
as accelerometer, gyroscope, magnetometer and ambient light sensors.

• Accelerometer

Accelerometer measures acceleration means velocity in particular direction.
Unit of measurement is g, which is earths g-force acceleration. Thus Accelerometer
at rest will measure acceleration g (=9.8 m/s2) and at free fall it will measure 0.
Accelerometers used in mobile are multi-axes accelerometer which can measure ac-
celeration in multiple axes and thus we can find acceleration in particular direction
and also can detect shock, vibration, free fall etc

Example of accelerometer is ST LSM303DLHC. This accelerometer IC is from
ST microelectronics and It is multi axes accelerometer. It can measure acceleration
in 3 directions and it provides 16 bit output. It also features embedded FIFO which
can store acceleration data and thus reducing loading on host processor.

• Gyroscope

Gyroscope is used to measure rotation / angular velocity. Unit of measure-
ment is DPS (degree per second). Gyroscopes are widely used in inertial navigation
system such as in Hubble Telescope. It is also used in mobile for gesture recognition
and to play games based on gesture. Gyroscope also can be multi-axes. Gyroscope
can have different range such as 250dps, 500dps or 2000dps. We can configure it to
different ranges to measure proper rotation.

Example of gyroscope is ST L3GD20. This gyroscope IC is from ST mi-
croelectronics. It is 3-axis gyroscope and it gives data for yaw, pitch and roll. It
gives 16-bit output for each axis. It has full scale range up to 2000dps.

• Magnetometer

Magnetometer is device which can be used to measure magnetic field in par-
ticular direction and unit of measurement is gauss. Magnetometer data can be
combined with accelerometer data to measure accurate north heading.

Example of magnetometer is ST-LSM303D. This IC for Magnetometer is
also from ST microelectronics. It combines Accelerometer and compass. For mag-
netometer it provides range up to 12 gauss. For accelerometer and magnetometer
it provides 16 bit output and accelerometer data can be used for tilt compensation
to give user accurate north heading even if device is inclined.

4

• Ambient Light Sensor (ALS)

ALS is used to measure light luminance in surrounding environment and unit
of measurement is LUX. It is used in mobile for auto-brightness adjustment.

1.5 Introduction to firmware

“Firmware is a program which is written to read only memory (ROM) of a com-
puting device and it is used to run user program on the device.”

Most of the electronic devices have firmware, for example laptop/desktop PC also
have firmware which is known as boot loader or BIOS (Basic Input/ Output Systems)
whose task is to initialize hardware of a computer and load operating system. In real
time embedded systems contains code which runs always and it is programmed into ROM
of a device which is also a firmware. For real time embedded system firmware must be
able to handle timeliness of each function and so firmware development requires more
effort because it must be tested for every possible event and since embedded system are
mostly connected to hardware such as motor drives, actuators etc. failure of system may
cause large penalties and may cause harm to people. For real time embedded firmware
architecture is as follow:

Figure 1.1: Real time firmware architecture

As can be seen from above figure, in real time embedded system the time
deadliness should be pushed into hardware and interrupt service routines should be as
small as possible otherwise most of the system time will go in processing an interrupt
and sometimes system may miss out an important interrupt. Its important to under-
stand requirement from user perspective and system must always meet this requirement.
For example, some elevator may have option for simple game play but game should be
running at low priority and safety of passenger is highest priority.

1.6 summary

In this chapter motivation for this project and sensor hub is described. Intro-
duction to sensors is given where mainly two types of sensor physical and virtual are

5

described. Physical sensors are again divided in 3 types like location based, motion based
and context based sensors. Some widely used terms related to sensors such as range, sen-
sitivity, resolution etc is described and mostly used physical sensors like accelerometer,
magnetometer, gyroscope and ambient light sensors are also described with an exam-
ple.At last basic introduction of firmware is also give. In the next chapter device drivers
which is most important part of a firmware is explained in detail.

6

Chapter 2

Device driver development

Device driver is most basic need of any firmware because any firmware needs to
communicate the hardware device either to control it or get any information such as
output data from device. This chapter first introduces the device driver concept which
is widely used in Linux operating system as a kernel module and then new concept of
micro-drivers is explained with an example of accelerometer sensor ST LSM303DLHC.

2.1 Introduction to device drivers

“Device driver is a program which is used to control the device attached to pro-
cessor. ”

Driver simplifies programming because it acts as a translator between Hard-
ware device and programs / operating system which uses the device. Generally drivers
are specific to hardware and operating system.

Figure 2.1: Operating system architecture

As shown in fig.2.1., when user application or operating system wants to use
hardware it invokes routine in driver which sends command to hardware. Once hard-
ware/device sends required data to driver, driver can call back routine to operating
system or driver can send interrupt to calling process.

7

For any device drivers it is important to make distinction between kernel space
and user space. Kernel space manages machine hardware in simple and efficient manner
allowing simple programming interface. When drivers are written in kernel space then
it provides interface between user and hardware as can be seen in figure 1. User space
contains user application for example, GUI (Graphical User Interface) based application.
These applications also need to interface with hardware but they cant directly interface
with hardware, they have to call kernel supported functions.

2.2 Developing simple drivers for Linux

Kernel provides special functions or subroutines for user space to interact with
kernel. From user point of view device can be seen as a file in UNIX systems. In ker-
nel space also Linux provides several API to perform low level interaction directly with
hardware and also transfer data from kernel to user space.

Linux kernel provides special APIs (Application Peripheral Interface) to load driver
module to kernel, install module to kernel and once use of module is finished you can also
remove this module from kernel. Basic commands are as follow

• # insmod hello.ko
The insmod command allows the installation of the module in the kernel.

• # lsmod
Using this command it is possible to check that the module has been installed

correctly by looking at all installed modules.

• # rmmod hello

Finally, the module can be removed from the kernel using this command. By issuing
the lsmod command again, you can verify that the module is no longer in the kernel.

When device driver is loaded into kernel then some necessary tasks are per-
formed first like resetting the device, reserving RAM, reserving interrupt, reserving in-
put/output ports etc. These tasks are performed by two functions module init and mod-
ule exit function which are in kernel space. These functions are same as insmod and
rmmod of user space and both internally used kernel space functions.

As an example simple code of hello world is shown below. This code prints hello
world when module is loaded into system and Bye world when we remove module from
system.

8

Figure 2.2: Example code for simple hello world module

Printk function is same as printf function in user mode but printk is used to
print message in kernel mode. We can also give priority of message by putting ¡1¿ in
printk , lower number means high priority. To give Hello world message high priority
message should be written as follow:

Printk(“< 1 > Hello world ”); //< 1 > indicates high priority.

In Linux developers can develop driver as kernel module or loadable modules. Main
advantage of loadable module is that It can be loaded while required and once its job is
finished it can be removed from kernel thus saving memory for kernel.

There are also disadvantage of drivers. Device driver executes in kernel to achieve
high performance and to use kernel services but it will decrease system reliability. It
also makes programming of device drivers difficult because programmers cant use devel-
opment tools for user programs. Any fault in kernel driver can cause entire operating
system to fail. One solution for stated problem is to use user mode device drivers but it
will reduce system performance and also we need to rewrite existing drivers because of
new interfaces. Another solution to this problem is to use micro-drivers.

Micro-drivers solve the problem of reliability by moving drivers out of kernel and
it will just keep critical code in kernel space thus maintaining almost same performance.

One can keep critical operation code such as I/O operation in kernel space thus
allowing them to run at full speed while some management task such as initializing and
configuring device can run in user space which will run at reduced speed. Thus it provides
intermediate solution between user mode driver and kernel driver.

According to experiments done at University of Wisconsin-Madison[6] , 65% of
driver code can be moved out of kernel without affecting common case performance.

9

2.2.1 Advantages Microdrivers over device drivers

• User level programming and debugging

The user drivers can be compiled with standard user mode tools and it can
also be debugged with standard user mode tools. Thus it allows source level de-
bugger tools to debug driver code also.

• Good common case performance

Micro-drivers can provide performance which is comparable to drivers which
are fully executing in kernel mode. Thus it provides better performance than driver
which are fully executing in user space.

• Bug Isolation

Micro-drivers can isolate bugs better than traditional drivers since faulty user
mode driver cannot crash an operating system. Even experiment[2] Shows that ker-
nel survives null pointer dereference in user mode driver.

• Compatibility

Micro-drivers are compatible with existing drivers thus we can reuse same
driver code to convert into micro-driver. There is also tool available called Driver
slicer which will divide driver code into kernel and user space. Thus it reduces
programming effort to great extent.

2.3 Development of micro-drivers for accelerometer

LSM303DLHC

In this section, micro-driver development of accelerometer LSM303DLHC is ex-
plained. LSM303DLHC is combination of accelerometer and magnetometer in a single
IC (integrated circuit). LSM303DLHC chip is from ST microelectronics. Some of the
features of LSM303DLHC are as follows [1]:

• 3 magnetic field channels and 3 acceleration channels

• From 1.3 to 8.1 gauss magnetic field full scale

• 2g/4g/8g/16g selectable full-scale

• 16 bit data output

• I2C serial interface

• Analog supply voltage 2.16 V to 3.6 V

• Power-down mode/ low-power mode

10

• 2 independent programmable interrupt generators for free-fall and motion detection

• Embedded temperature sensor

• Embedded FIFO

• 6D/4D orientation detection

Applications for LSM303DLHC are as follow[1]:

• Compensated compass

• Map rotation

• Position detection

• Motion-activated functions

• Free-fall detection

• Click/double click recognition

• Pedometer

• Intelligent power-saving for handheld devices

• Display orientation

• Gaming and virtual reality input devices

• Impact recognition and logging

• Vibration monitoring and compensation

To develop micro-drivers for sensor, one need to understand register structure
for given IC and which values need to be written to register for given configurations.
Every sensor driver must contain following sub-routines:

• Initialization
Initialization means writing a default register values in some of the registers

when sensor is initialized. When we turn on the sensors, its registers will contain
some default values mostlyallzeros but if you want to modify some values you
should modify it in initialization routine.

For example, in case of accelerometer during initialization we can specify
whether we want to enable FIFO mode or not, to operate accelerometer in high
resolution mode or low resolution mode, default operating range, default operating
frequency, enable or disable interrupt etc.

11

• Configuration
Configuration means we can change various configuration of accelerometer

during run time for example; we can change frequency of accelerometer after ini-
tialization also. This is required because some application requires accelerometer
to be running at higher frequency, and then we should allow user or application to
change frequency of accelerometer. Another example is range.

• Read data
Once sensor is initialized and configured properly, data needs to be read

continuously and at the same rate required by applications.

Sometimes some arbitration routine is also required. For example, when one or
more application tries to configure frequency of sensor then sensor should be operated at
highest required frequency and same in case of range also.

2.4 Example code for accelerometer LSM303DLHC

LSM303DLHC supports both I2C (Inter Integrated Connect) and SPI (Serial Pe-
ripheral Interface) interface, but in this example we’ll use I2C as most of systems supports
I2C interface and if some systems dont support it we can bit-bang I2C interface easily.
I2C drivers for Linux operating system and bit-banging for I2C (using 8051 microcon-
troller) is explained in appendix A.

Some of I2C terminologies is explained as follow:

• Transmitter: Device which sends data to bus.

• Receiver: device which receives data from bus.

• Master: The device which initiates a transfer, generates clock signals and terminates
a transfer.

• Slave: The device addressed by the master.

There are two signals associated with I2C, clock signal SCL and data signal
SDL. The latter is bi-directional line used for sending and receiving data to/from the
interface.

I2C slave address for accelerometer is 0x19. Every slave on I2C has its own I2C
address. LSM303DLHC provides feature called Auto address increment, which allows
driver to read multiple bytes in a single I2C transaction. In order to enable this feature
one need to logically OR register address with 0x80. It means make MSB of register
address 1. This way by reading multiple bytes in a single transaction, performance of
driver can be improved because I2C transactions are time consuming.

12

2.4.1 Initialization of accelerometer LSM303DLHC

In order to initialize accelerometer we need to write default values to its control
registers. We need to perform following operations.

• Determine which registers are to be written for initialization.

• Determine default values for each registers.

• Write each registers over I2C.

Following are registers which needs to be written to initialize for accelerometer
LSM303DLHC. These registers definitions are taken from datasheet which can be found
at link given in a reference.

• CTRL REG 1A (address = 0x20)

Figure 2.3: Control register 1 structure

Figure 2.4: Control register 1 description

13

Figure 2.5: output data rate selection

For initialization, low power should be enabled to save the power and sensor
should be in normal mode once configuration is applied. Thus for control register
1A value to be written is 0x0F.

Ctrl reg 1A = 0x0F; //Enable low power mode and all axis.

• CTRL REG 2A (address = 0x21)

Figure 2.6: Control register 2 structure

Figure 2.7: Control register 2 description

Figure 2.8: High pass filter mode configuration

14

For control register 2, High pass filter should be in normal mode only (value:
00) and Filtered data selection should be 1 , other setting should be as default
values. Thus control register 2 should have value 0x80.

Ctrl reg 2 = 0x80.

• CTRL REG 4A (address = 0x23)
Control register 4 can be used to enable block data update, setting full scale

range, enabling high resolution mode and SPI interface mode selection.

Figure 2.9: Control register 4 structure

Figure 2.10: Control register 4 description

For control register 4, following settings should be preferable:

– Output registers not updated until MSB and LSB reading.

– Full scale can be selected based on application. Currently keeping default
value.

– Enable high resolution mode.

Thus control register 4’s value will be 0x88.

Other control registers are described in data sheet given in appendix B. Other
initialization configuration can also be done for enabling FIFO mode, enabling interrupt
mode and different configurations related to interrupt.FIFO mode can be enabled, if data
is needed to be stored in FIFO memory of accelerometer. This can be useful if samples
need to be read later but FIFO can store only 32 samples, after this it will overwrite old
samples. In order to use FIFO for accelerometer, first FIFO must be enabled by writing
FIFO EN FIFOenable bit in control register 5 and then selecting operating mode for
FIFO in FIFO control register.

Code for initialization of accelerometer is given in next page. This code depends

15

upon kernel and also which firmware is being used. Code just indicates initialization
process, driver developers also need to attach code to kernel and for Linux, and probe
must be created for code while writing code in kernel mode. In this example code, Linux’s
smbus I2C APIs are being used and how to initialize I2C for a device is shown. For more
details regarding I2C APIs in Linux, please refer appendix A.

Figure 2.11: LSM303DLHC initialization code

2.4.2 Configuration of accelerometer LSM303DLHC

In configuration we can configure frequency and range (full scale range) for sensors.
For accelerometer we need to write control register 1 and control register 4. It depends
upon request from user or application.

16

Figure 2.12: LSM303DLHC configuration code part-1

17

Figure 2.13: LSM303DLHC configuration code part-2

2.4.3 Reading data of accelerometer LSM303DLHC

Once sensor is configured properly, sensor’s data can be read from data output
registers and status register. First status register needs to be read and if new data is
available then and then data can be read from data output registers.

Sensor’s status register and data output register’s structure and description is given
below.

Figure 2.14: LSM303DLHC status register structure

18

Figure 2.15: LSM303DLHC status register description

Figure 2.16: LSM303DLHC output registers

19

Figure 2.17: code to read data of LSM303DLHC

These three routines are necessary for driver but additional routines can be
added for frequency and range arbitration and interrupt can be enabled. The full code
for reference is given in appendix B.

2.5 Results

Once sensor driver is created, certain steps are required to expose it to host con-
taining different operating system. Here example of windows 8 is taken, and results are
shown. First every sensor needs to have persistent unique identifier (PUID). Each sensor
should create its own identifier and should have access to it. You can also filter the data of
sensor using sensor diagnostic tool. Sensor diagnostic tool is a tool from Microsoft which
helps developers to test their drivers, firmware as well as hardware. Sensor diagnostic
tool provide option called change sensitivity which updates data only when data goes
above sensitivity. For example, change sensitivity has been set to 1 then data will be
only uploaded to host when difference between last uploaded sample and current sample
is 1 G in case of accelerometer. One thing to be noted is developer needs to add support
for change sensitivity in his/her code.

After developing driver for accelerometer lsm303dlhc, driver is added to ISH
firmware which also has host interface to windows 8. Drivers can be exposed on sen-
sor diagnostic tool. Results are shown as below for all three drivers e.g.,accelerometer,
gyro meter and magnetometer.

20

Figure 2.18: Data of accelerometer on sensor diagnostic tool

21

Figure 2.19: Data of magnetometer on sensor diagnostic tool

22

Figure 2.20: Data of gyrometer on sensor diagnostic tool

23

As shown in figure 2.18 ,accelerometer data can be observed on sensor diagnos-
tic tool. Actual data of accelerometer is data of X, Y and Z axis which is shown as
SENSOR DATA TYPE ACCELERATION X G,
SENSOR DATA TYPE ACCELERATION Y G &
SENSOR DATA TYPE ACCELERATION Z G.

As shown in figure 2.19 ,magnetometer data can be observed on sensor diagnostic
tool. Actual data of magnetometer chip is data of X, Y and Z axis which is shown as
SENSOR DATA MAGNETIC FIELD STRENGTH X MILLIGAUSS,
SENSOR DATA MAGNETIC FIELD STRENGTH Y MILLIGAUSS &
SENSOR DATA MAGNETIC FIELD STRENGTH Z MILLIGAUSS.
Field which shows magnetic north heading is actually algorithm which calculates north
direction from data of X, Y and Z axes.

As can be seen in figure 2.20, gyroscope data can be shown as velocity per degree
per second in all 3 directions shown by fields
SENSOR DATA TYPE ANGULAR VELOCITY X DEGREES PER SECOND,
SENSOR DATA TYPE ANGULAR VELOCITY Y DEGREES PER SECOND &
SENSOR DATA TYPE ANGULAR VELOCITY Z DEGREES PER SECOND.

2.6 summary

In this chapter device drivers which is most important part of sensor hub firmware is
explained. In first section Linux device drivers which are also known as kernel mode
device drivers is with an example. If there is a mistake in kernel mode device driver then
it can cause whole firmware to crash and it’s also very difficult to debug. To overcome
this disadvantage device drivers can be written in user space and it suffers from poor
performance issue because kernel call will take much time. So new concept of micro-
drivers of evolved and micro-drivers combine advantages of both kernel mode drivers and
user mode drivers.In micro-drivers critical tasks such as input-output are kept in kernel
and user mode can just call these function. Micro drivers also has certain advantages.
After that example of micro-driver for accelerometer LSM303DLHC is explained in detail.
In next chapter performance analysis is explained in detail.

24

Chapter 3

Performance analysis

Performance of code can be described as a time required to execute specific section
of code. For example, Driver code contains different code for events like one section for
initializing device, configuration of device and another for reading data from device. Thus
we may want to measure time required just for initialization of device. One may want
to measure time for configuration or to read and process data. Thus one cam measure
performance in context of different event.

There are two ways to measure timings in c.
1.Use in-built t́ime.h́library.
2.Measuring number of cycles taken by processor.

When we use time.h library we can directly use clock() function which is in-built
function in library to get the time. Thus measuring time difference across any section we
can measure time taken by any function or any section of the code. Main disadvantage
of this method is that it provides time resolution in milliseconds and it’s not accurate in
many systems.

To overcome this disadvantage we can use assembly instruction rdtsc which gives
number of ticks of processor. Note that value returned by rdtsc instruction is 64 bit long
and thus we should use 64 bit variable to store value and once we get number of proces-
sor cycle we can easily convert it to any time resolution we want. Thus using assembly
instruction we can measure time resolution in microseconds and Nano-seconds. How to
use both methods in code is explained in following sections.

3.1 Performance measurement using clock function

Clock function is in-built function in time.h header file and it must be included in
code. This function will return result which is of type clock t type so variables which
stores time must be of type clock t.

25

In order to measure performance we need to insert some code which is shown
by black boxes in following figure.Note that whole code is given for reference in appendix.

Figure 3.1: Use of clock library in example code

When we measure time required to sort the given strings using above code, It

26

will give output in milliseconds as shown in following figures 3.2. and 3.3.

Figure 3.2: 1ms time required to sort 6 strings

Figure 3.3: 2ms time required to sort 10 strings

27

3.2 Performance measurement using rdtsc instruc-

tion

Rdtsc is an assembly instruction which gives accurate count of cycle on processor.
Starting from Pentium processors Intel processors allow programmers to access rdtsc reg-
ister. Rdtsc register keeps an accurate count of every clock cycle on processor and its
value is set to zero when processor resets. Rdtsc is 64 - bit register which is incremented
on every clock cycle. To access this register, programmers need to use rdtsc instruction.
Once number of cycles is available, it can be converted into time unit using following
equation 4.1.

seconds = (number of cycle) / (frequency of processor)

(3.1)

In visual studio rdtsc instruction is accessed through intrin.h header file which
will define assembly instruction as an intrinsic function. Intrinsic function will be treated
as inline function and thus it will reduce overhead of function call resulting in better
performance. If we don’t use rdtsc as an intrinsic function it will also include overhead
of function call.

This example code is same code which we used to illustrate clock function. So
that we can compare results from both. Black boxes in code show instructions which are
used to measure time using rdtsc instruction. One thing to take care is define variable
which are 64 bit long, for that purpose one can use “long long int ” type or “ int64 ”
type which is available in visual studio and it will also improve readability of code.

28

Figure 3.4: Use of rdtsc instruction in example code

29

Figure 3.5: ticks required to sort 6 strings

As shown in figure 3.5. to sort 6 strings processor takes 2085704 cycles and
processor is running at 26̇ Ghz frequency.

Timings can be calculated from equation 4.1.

time = numberofcycles/Frequency

time = 2085704/(2.6 ∗ 109)

time = 0.802194ms.

Thus accurate time is 0.802194 millisecond instead of 1 ms shown by clock
function. We can measure same for another case where number of strings to be sorted is
10. It is shown on next page.

30

Figure 3.6: ticks required to sort 10 strings

As shown in fig.3.6 to sort 10 strings processor takes 4307844 cycles and pro-
cessor is running at 26̇ Ghz frequency.

Timings can be calculated from equation 4.1.

time = numberofcycles/Frequency

time = 4307844/(2.6 ∗ 109)

time = 1.65686307ms.

Thus accurate time is 1.65686307 millisecond instead of 2 ms shown by clock func-
tion.

3.3 summary

Main disadvantage of this method is that to accurately measure timing we should
not allow any other process to run in between and It can also create problem on new
processors which has scalable frequency because processor may have maximum frequency
of 33̇ GHz and currently might be running at 16̇ GHz due to less number of processes
and there is no way to determine processor frequency while code is running. For embed-
ded systems which have processor with fixed frequency and don’t have many processes
running this method gives accurate resolutions.

31

Chapter 4

Code debugging using GDB

4.1 Introduction to code debugging

Programmers are prone to mistake and while writing code some mistakes can hap-
pen. These mistakes can introduce bug or unexpected behavior in code and while testing
the code if any issue come it becomes necessary to debug that code. There are three ways
to debug program:

• By putting prints at certain places where programmer feels error might occur. This
method works sometime when code is small and programmer is well aware of type
of error but for big projects this method would consume large amount of time.

• By looking at code and thinking what code is doing and making educated guess
of what problem may be. This method is also time-consuming and programmer
should be well aware of code.

• Use of debugger tool such as GDB which allows various functionalities to debug
existing code while its running. This is easiest and less time consuming option and
debugging of large program is simplified at great extent.

GDB is a GNU project debugger and it is very useful to see what is going on in
another program while it executes. GDB can be useful for conditions such as page fault
where during development of large project its difficult to find how page fault occurred.
GDB also provides support for scripting thus one can automate process of debugging for
certain behaviors of code, for example, during page fault someone can run script to dump
some variable information to know what is going wrong. Most of the programmers prefer
to debug their program by putting print at certain places and it is only suitable when
code is small or programmer knows portion of code from where issue is coming but for
larger application this method wont work or itll consume much time. Using debugger
like GDB makes it very easy to find a problem and it can be done very quickly. GDB can
also be useful in multithreading environment and when you have multiple applications.

GDB can be helpful to debug your code or an application in following ways:

32

• You can start your program after starting GDB, thus you may also specify that
might change programs behavior. For example, you can specify some parameters
that may change behavior of your code.

• One can put breakpoints at certain places in your code thus making code execution
to stop on certain condition and then you can also check values of various variables
in your code, making debugging code easier.

• You can examine your code for what happened when your program stops abruptly
for example when page fault occurs while running code its difficult to debug code
at that time using GDB you can examine code and know how page fault occurred.

• You can also change things (variables value) in your code once code stops at break-
point thus you can experiment with different values to check code behaviors and
sometimes it can also help to solve certain bugs in code.

GDB uses debugging symbols in order to debug your code and GDB can only
understand debugging symbols generated by g++ or gcc. Thus while compiling your
code you need to give flag to gcc to generate symbol file and you may want to debug
your code later. In standard gcc program you just need to give -g flag in order to enable
GDB. You should also need to have GDB installed on your system.

For example, if you have file named main.c then you can compile as follow:

g++ main.cpp -g -o main

Once you have compiled file successfully then you need to start GDB using com-
mand gdb in shell of your respective operating system. Once gdb starts it will prompt
as follow:

(gdb)

After this prompt you can load file to gdb using file command for example, file
main.c. If you want any help regarding any command then you can write help [command]
and gdb will give description about that command.

(gdb) file main.c

33

Figure 4.1: help command in GDB

Once gdb start you can just type run command and itll start execution of code
and program will execute normally. If you want to debug some bug in the code and
want execution of code at certain point (which is known as breakpoint) then you can put
breakpoint in the code using following commands:

• Putting breakpoint at specific line
Programmer can put breakpoint in gdb using break command and if you know the
line number in file where you want to put a breakpoint then it can be done as follow:

Figure 4.2: Breakpoint at specific line

Thus above command will put breakpoint at line number 60 in file main.c

• Breakpoint at function
GDB also support breakpoint at specific function, so if programmer wants to stop
execution of code when it enters in specific function it can be done as follow.

Figure 4.3: Breakpoint at specific function

Thus GDB will put break point at function foo.

Once breakpoint is set, programmer can continue to execute program using con-
tinue command and if programmer want to execute step by step step command is useful.
You can also give number of steps to be executed along with it. For example,

Figure 4.4: stepping through code

34

As shown in example above program will stop after executing 10 steps, here
step means single ASM (assembly language) instruction not 10 C- statements. For single
stepping next command can be helpful rather than using step 1.

GDB also provide feature that one can check value of variables at breakpoint. Value
of a variable can be print in hex also which is shown below. More commands of GDB
can be found in reference 1. Thus one can check value of variable as follow:

Figure 4.5: checking value of variable

GDB is most useful in scenario when page fault occurs because its never pre-
dictable and page fault is difficult to trace through prints. GDB can also give information
after page fault occurs. Once page fault is encountered, just start GDB and run program
without any breakpoints, once page fault occurs GDB will give exception information
along with address of exception and how program reached at that point. It can be
checked with backtrace command which will give output as follow:

(gdb) backtrace
#0 Node< int >::next (this=0x0) at main.c:28
#1 0x2a16c in LinkedList< int >::remove (this=0x40160,
item to remove=@0xffbef014) at main.c:77

#2 0x1ad10 in main (argc=1, argv=0xffbef0a4) at main.c:111
(gdb)

Thus as can be seen from above this is a null pointer and at line number 28 we
tried to dereference null pointer thats why page-fault occurs and line after that indicates
that indicates that from which function it was called so programmer can analyze the
values at function calling this line.

4.2 summary

GDB is very useful open source debugging tool which provides various functional-
ities to make debugging of large and complex code easier. GDB can reduce debugging
time to great extent and can provide accurate insight of code. However there is some
limitation of GDB, which comes due to compiler optimization. When code is compiled,
compiler will try to optimize the code in a way that arguments which are never used will
be taken away, sometimes if a looping variable uses same value then itll be kept in CPU
register instead of stack. In these cases GDB will show variable as an optimized output
and thus wont be able to show value of variable. In this situation its better to turn off
compiler optimization to debug the code.

35

Chapter 5

Secure coding

Code written by a programmer can be vulnerable to hackers and it is possible that
due to this vulnerabilities code will be expose to vulnerable entities. Goal of secure coding
is to reduce amount of vulnerabilities in code to the level that can be mitigated to opera-
tional environment. This can be only accomplished by discovering and improving security
flaws into code while developing code or testing your code. Most of the time programmers
make common mistakes in the code such as not checking NULL pointer while allocating
memory, not checking array boundaries while accessing array, not freeing memory once
its use is completed etc. For this purpose some companies have developed a tool for static
analysis of source code which can detect these common mistakes but these tools are not
much reliable, they work in most of cases but in some cases programmer needs to think
about security while development code and have to put appropriate checks to handle
exceptions. In this chapter well take a look at what are common mistakes programmers
make and how that can make code vulnerable. In second part use of one of the static
analysis tool Klocwork is explained.

5.1 Common vulnerabilities in code

Following are common mistakes made by software developers while developing a
code. These are explained in this chapter with detail.

1. Validation of array index.

2. Improper null termination of strings.

3. Temporary files.

4. Releasing memory improperly.

5. Using uninitialized variables.

6. Pointer dereferences.

7. Exposure of system data to control sphere.

36

1. Validation of array index.

In most of the C or C++ code there is no automatic boundary check per-
formed while accessing an array. This problem occurs most commonly while using
loop index in order to access an array. If the end condition of for loop has some
flaws then index may go out of boundary of arrays and can cause out of bound
array access. Index out of bound error can also occur if no index checking is done
and when request comes for array index which is out of bound. Even sometimes
validation is performed it can also be wrong sometimes for example if we only check
index for upper bound then index can be violated on lower bound. Improper vali-
dation of array index leads out of bound access which can cause:

• Diminished availability
In most of the cases application will crash while accessing outside of

protected memory area.

• Loss of data integrity
It is possible to write data out of an array boundary. This can be harm-

ful to data which is maintained by an application. For example, an application
maintains two array for student ID and mark of a student. Both array are con-
tiguous i.e. both are placed together, if student IDs are written out of bound
then it may change data of their marks.

• Sensitivity information leakage
It is possible to write data using array index which is out of boundary.

It can expose sensitive data to unauthorized entity.

• Alteration in programming logic
Somewhere memory can be accessed and controlled an attacker may be

able to execute arbitrary code. This may cause change in programming logic.

Figure 5.1: Example code showing validation of an array index

Here indices 22 and 35 are out of bound but it wont give any error while
accessing it because memory has been pre-allocated by an application on stack and
we are still in memory boundary which is much larger than array size. However
when one tries to write index 10000, it may give segmentation fault since application
tries to write out of allocated memory. Thus this out of range behavior is undefined.

37

Out of bound scenario occurs because sometimes no validation is performed.
For example, when programmer wants to access lookup table based on users input
and he has not put index checks then it may cause it to read out of bound or some-
times application may crash. Another common mistake is improper validation and
most common mistake is that programmer checks for array size less than or equal
as shown below.

Figure 5.2: Improper validation of an array index

There are 2 mistakes in above code. Caller of function may send negative
index, so programmer needs to check for lower bound as well and another mistake
is to check for array bound and array bound is less than maximum length. For
example, when length is 10, array indices are 0 to 9 so array index 10 will be out
of bound. Thus it should be < instead <= .

Thus programmer needs to take care of following things:

• Understand range of loop variable.

• Check both upper and lower boundary of array.

• Be careful around array boundaries.

2. Improper null termination of strings

Problem with null termination will occur when string or an array of strings
is not terminated properly. Improper null termination may occur due to forgetting
null termination, one may place null termination at wrong place by mistake or null
termination may be overwritten by mistake. Problem with null termination is that
these kinds of mistakes are difficult to spot manually and they can also cause loss of
data integrity, diminished availability, and leakage of sensitive information. These
mistakes can be easily identified by static analysis tool.

In C language string related functions depends heavily on null termination for
various operation for example, in order to find length of string function will start
from first character and will count characters till it encounters null character. One

38

basic rule is to have a null termination before or at null termination of a string.
Sometimes when copying data from source from destination, if we try to write data
with size of function and if null termination is not proper then it could lead to
vulnerabilities.

Figure 5.3: Null termination in strings

As shown an array above, if null termination is omitted and then strlen func-
tion is called to calculate length of a string then it will return wring string length
because function will count until it encounters null character in memory. If function
does not encounter null termination and if tries to read out of memory bound of
an application then it can cause segmentation fault to occur. Sometime if code has
loop which only breaks when it encounters null terminating character then improper
termination can cause program to go into infinite loop.

One another example, lets say programmer develops application which reads
from file and copies file into buffer. Buffer is allocated for lets say 2KB memory. If
someone can alter content of an input file and remove null termination then strcpy
function will continue to write until it finds arbitrary null character, thus attacker
can control data after buffer and program is vulnerable to buffer overflow attack.

Care to be taken while manipulating strings:

• Check boundaries if the code is accessing the buffer in a loop

• Truncate input data to a maximum allowable size

• Be wary of off-by-one errors

3. Temporary files

Temporary files are files which have been allocated outside memory of a pro-
cess. Temporary files are easy mechanism which can be used to provide commu-
nication between processes or can be used to transform data within single pro-
cess. Programmer needs to realize that temporary files are entity which are outside
process but contains important data for process, so they need to protect data in
temporary storage. Problem occurs because programmer creates temporary files
in predictable location with predictable names without proper privileges and this
makes it vulnerable to attackers.

Use of temporary file in an insecure manner can result in one of following.

• Data modification
If one application writes data in temporary storage which will be read

39

by another application later, attacker may be able to change the data and can
risk data integrity and may be vulnerable for second application.

• Application crash
Once attacker modifies data from temporary storage it can cause appli-

cation to behave in undesirable way and sometime it may crash.

• Leakage of sensitive information
If one application writes sensitive information to temporary storage file

then attacker can get hold of sensitive information.

Temporary files are common entry point for an attacker and application
which maintains large data base benefits heavily from temporary files. Sometimes
source code analysis tool can help quickly to uncover problems.

Care needs to be taken by programmer while using temporary files:

• Ensure file name is randomly given.

• Set sufficient permissions on file and location

• Ensure file does not already exist

• Do not store sensitive data into temporary files.

4. Releasing memory improperly

Releasing allocated memory improperly leads to term known as memory leak.
Depending upon relative size of memory that is never released leak is said to be
large or small. Larger leaks are easier to detect because they can adversely affect
system easily and thus it can be easily identified but smaller leaks are difficult to
track and when it gets add up it becomes larger leak and system dont have any
memory to be allocated. At the end application will crash because it doesnt have
sufficient memory.

Memory leaks can occur due to memory is allocated but never freed. This is
most common cause of memory leak. For example, code frees memory at the end of
a set operation but error condition and exception can cause DE allocation part to
be skipped and it leads to memory leak. When allocated memory is passed among
functions which are written by different developers, there may be confusion about
which part of the program is responsible for freeing the memory and complex data
branching elements, such as switch and if-else statements, can cause the variables
storing the memory allocations to go out of scope, making them irrecoverable.

40

Figure 5.4: Improper memory release

In above code we have 2 buffers and each will be used according to incoming
data size. There are 2 mistakes in code. First is if data size is more than maximum
buffer size then we return without freeing memory and another is even if we free
one buffer we are not freeing another buffer. This can lead to possible memory leak.

Care needs to be taken by programmer:

• Avoid freeing the same memory across different functions.

• Ensure that exception handlers do not cause leakage.

• Error checking code should always de-allocate before returning.

• Always free all memory allocated by code.

5. Using uninitialized variables

The use of uninitialized variable is vulnerable because variables may con-
tain random value which may be invalid, may contain value of previously allocated
memory. This problem has more impact when programmer depends upon external
agent to initialize variable for you. This can happen when initialization code is
called only when invoked by an external agent.

Uninitialized variables can cause application to enter in an unexpected state
because it may lead to miscalculated output or logical error. In many cases attacker
may have been able to execute code that uses uninitialized memory segments then
random data can lead to program crash. These can also affect confidentiality if
attacker manages to read certain segments of memory which is used previously.
Sometimes compiler also gives warning for uninitialized memory and static analysis
tools are also helpful for that. One rule of thumb is to always initialize variables
with zero and pointers will null value until allocated some meaningful value. It is
better to use calloc instead of malloc to allocate memory because calloc also ini-
tialize memory contents with all zeros.

41

6. Pointer dereferences

In C null pointer doesnt point to any memory and null pointer dereference
can cause program to stop abruptly and also cause runtime errors. It may be due
to ineffective error handling, race conditions and not proper checking before using
pointers. One rule is to always check for null pointer before dereferencing pointer.
In most of the cases null pointer error affects availability of an application.

Care needs to be taken by programmers:

• Check pointers for null before using them.

• Check the return results of all functions because some function may return
null.

• Beware of race conditions.

• Use source code analysis tools to find null pointer issues.

7. Exposure of system data to control sphere

System data is exposed to untrusted entities due to one of the following rea-
sons:

• No filtration of error information sent to the user

• Non-generic and over-informative error messages

• Unhandled exception cases

It can mainly affect confidentiality of organization, sometimes it can also lead
to more serious attacks and these errors are very difficult to spot manually but
static analysis tool can be of more help.

Error information such as stack traces contain function call hierarchy infor-
mation as well as the number and type of parameters those functions requires. In
some cases, actual parameter values may also be included in stack trace informa-
tion. This reveals application implementation information to the attacker, which
can be leveraged to conduct other attacks against the system.

Care needs to be taken by a programmer:

• Ensure that all error cases are handled

• Suppress backend error messages

• Use generic error messages

5.2 Introduction to klocwork

Klocwork is company that provides tool for static code analysis which can detect
this common programming mistakes and can help organizations to develop secure and
reliable code thus by extending life cycle of complex software
There are two tools from klocwork.

42

• Klocwork Insights
Klocwork insight is static analysis tool for analysis of c, java and c++ code. It

also provides different plug-ins for code analysis. It also features on the fly analysis
of code in visual studio. It is same as spelling checking in Microsoft word.

• Klocwork Cahoots
Klocwork Cahoots is a tool for code review. It makes process of reviewing

code easy. After improving code one can put it for review online using this tool and
reviewer can review code, insert comments and author can add reviewer.

Klocwork Insight has two versions. One is for server and another is desktop
client. Thus with desktop client developer can analyze code locally and can prevent new
errors from being introduced to project.Server version can be useful to maintain code and
run analysis periodically to know that whether new bugs have been introduced or not.

5.3 Example of use of klocwork

To give simple example of how Klocwork works, we will take example of same
program that takes strings from user and will sort in ascending order. Code is given in
chapter 4 but for reference it is also given below.

43

Figure 5.5: Example code(part1)44

Figure 5.6: Example code(part2)

Steps :

45

It is assumed that Klocwork Insight desktop client is installed in your system.

• Once code is saved as a c file open command prompt and goto directory of saved
code.

• Now create a new project using Klocwork desktop client. Just click new project .

Figure 5.7: Creating new project in klocwork

• Once new project is selected following window will open. select stand-alone project
and give location of saved c file at project location.

Figure 5.8: Selecting location ad project type

46

• Once project is created from command prompt write command “kwshell ” as shown
below in PowerShell

Figure 5.9: Opening kwshell

• After entering to Klocwork shell compile your code with command “gcc filename.c ”

• After this step Klocwork desktop client will automatically show different issues in
code. If detailed report in text file is required then use following command

kwcheck run F detailed report report nameṫxt

• It will compile the code , analyze the code and will generate detailed report in same
directory.

Figure 5.10: Generating detailed report

• For our example code report generated is as below:

• Thus there are total 2 issues at line 46 and detailed report also explains how that
issue affects the code. One can choose other report style which can generate report
in Excel format.

47

Figure 5.11: Detailed report

• Thus there is error at line 44 that we are not checking for null pointer, which is
most common programming error and at line 46 we should not use ’gets’ function
because input can be more than 50 characters and ’gets’ function will not check
boundary. Thus we need to modified code to resolve two issues.

• Modified code is shown on next page .Red box shows code added/modified to re-
solve two errors and code with blue box is additional code for error checking when
malloc returns null pointer.

48

Figure 5.12: Modified code to remove KW error

• Now running Klocwork analysis again on modified code using same step gives fol-
lowing report

Summary: 0 Local
0 Total Issue(s).

Thus Both issues are resolved.

49

5.4 summary

While writing code, programmer make some mistakes unknowingly and it makes
code vulnerable to hackers.In this chapter reason for vulnerabilities are explained and
how it can harm your application is explained. After that static analysis tool Klocwork
is introduced.Klocwork is very powerful static analysis tool and it’s also widely used in
many industries. Klocwork’s limitation is that it can do static analysis of tool only.
Let’s take a simple example of two functions. First function does some calculations and
calls another function for getting pointer of data buffer. Second function might return
null pointer if it can’t find buffer. Now Klocwork will only give error if second function
explicitly returns null. Second example would be when programmer pass pointer as
input argument and someone sends that pointer as null, Klocwork doesn’t give error
there. Although Klocwork also provides several options(checkers), which you can enable
to analyze different aspect of code. Thus conclusion of this chapter is that programmers
can use Klocwork for analysis of their code to remove vulnerabilities upto some extent but
care must be taken while writing a code and programmer should also aware of different
vulnerabilities that can occur and how to resolve them which will lead to more secure
code and applications.

50

Chapter 6

Conclusion and future scope

Electronics industry is moving towards making device smarter and sensors will play
an important role in that. Devices need to continuously sense it?s surrounding environ-
ment and makes decision based on that. Devices are also becoming very small in size
and thus have less battery power and embedded systems need to have a better battery
life. For smart devices this purpose can be achieved by use of a sensor hub which is a low
power processor acting as a co-processor for a main processor. It reduces power consumed
by main processor and will continuously sense the sensor data while main processor is in
sleep mode.

For sensor hub to run independently of main processor, sensor hub needs its own
firmware which runs and collects data. Firmware contains various components like sensor
drivers, host interface (Interface with an operating system), sensor management, algo-
rithms etc. Sensor driver plays an important role here and it provides interface with
sensor hardware. Sensor drivers are same as device drivers in Linux but it?s better to use
micro-drivers which is device driver in user space rather than integrating it with kernel.
It makes programming, debugging and integration of driver pretty easy because in user
space many tools are available for debugging and it?s relatively easy compared to kernel.
Host interface provides an interface with an operating system and it is useful to receive
commands from host and send data as per requirement. Sensor management manages
sensor?s properties like frequency, range, mode etc. and it also provides necessary arbitra-
tion. Algorithms are useful to take sensor?s data and make useful decision based on data.

While developing firmware, due to some small mistakes of a programmer firmware
may not give desired functionality and in this case one need to debug certain problems.
Most powerful and open source debugging tools is GDB. With use of this tool, certain
issues have been resolved successfully and quickly. Certain functionalities of GDB like
single stepping, breakpoint and stack-trace are very much useful for embedded program-
mer.GDB can even debug multi-threaded applications.

For real time embedded systems security is also important. Some common mis-
takes in code can make system vulnerable to hackers. Some mistakes can be identified
by programmer while writing a code and some are difficult to catch. Static code analysis
tools are very helpful to trace this kind of issues. Klocwork is a tool for static analysis
and it provides accurate analysis of source code but if there is mistake in logic, Klocwork
doesn?t help much.

51

Future scope of project includes adding more functionality to firmware such as
power management algorithms which takes decision based on data of various sensors and
put whole system into sleep mode. Another future scope is to support multiple operating
systems as currently it only supports windows.

52

Chapter 7

References

1. Accelerometer LSM303DLHC datasheet from ST-Microelectronics :
http://www.st.com/web/en/resource/technical/document/datasheet/DM00027543.pdf

2. Gyroscope L3GD20 datasheet from ST-Microelectronics :
http://www.pololu.com/file/0J563/L3GD20.pdf

3. Magnetometer LSM303D datasheet from ST-Microelectronics :
http://www.st.com/web/en/resource/technical/document/datasheet/DM00057547.pdf

4. “Dynamic Configuration of Sensors Using Mobile Sensor Hub in Internet of Things
Paradigm ”by Charith Perera, Prem Jayaraman, Arkady Zaslavsky,Peter Christen,
Dimitrios Georgakopoulos, Intelligent Sensors, Sensor Networks and Information
Processing, 2013 IEEE Eighth International Conference

5. Yu, Meng-Chieh, Tong Yu, C. J. Lin, and E. Y. Chang.“Low power and low cost
sensor hub for transportation-mode detection.” Studio Engineering, HTC, Tech.
Rep (2013).

6. Ganapathy, Vinod, Matthew J. Renzelmann, Arini Balakrishnan, Michael M. Swift,
and Somesh Jha. “The design and implementation of microdrivers.” ACM SIGOPS
Operating Systems Review 42, no. 2 (2008): 168-178.

7. “Linux Device Drivers” book by Jonathan Corbet and Alessandro Rubini published
by OReily.

8. Microsofts guide for developing sensor drivers:
http://msdn.microsoft.com/en-us/library/windows/hardware/ff545810(v=vs.85).aspx

9. RDTSC developer reference from Intel :
http://software.intel.com/en-us/node/392533?language=ruwapkw=rdtsc

53

10. GDB documentation by GNU organization.
http://www.gnu.org/software/gdb/documentation/

11. GNU GDB commands cheat sheet
http://www.yolinux.com/TUTORIALS/GDB-Commands.html

12. “Secure coding boot camp from Klocwork”

54

Appendix

In this appendix some background is given about I2C drivers in Linus kernel. How
to find I2C adapter in Linux operating system is explained first and then how to use
various methods to write or read over I2C line is explained. Some open source libraries
are already available for I2C device in Linux, SMBus is one of the famous library which
provides standard APIs(functions) to interact with device over I2C bus.

Generally I2C functions reside in kernel space but its possible to access I2C adapter
from user-space also through /dev interface. You need to load module i2c-dev for this.
Each registered i2c adapter gets a number from 0. You can examine /sys/class/i2c-dev/
to see what number corresponds to which adapter. Alternatively, you can run ”i2cdetect
-l” to obtain a formatted list of all i2c adapters present on your system at a given time.
i2cdetect is command which is present in I2C tools provided in Linux.

Linux treats every device as a file only and I2C device files are character device
files. Linux devices contain major and minor numbers. For I2C device major number is
89 and minor number depends upon adapter number which is assigned from 0. Linux
provides provision for 256 I2C devices connected to it, thus minor number varies from 0
to 255.

In order to use standard Linux APIs in your code, you need to include header
file which contains definition for these APIs. One needs to include linux/i2c-dev.h file
for APIs. Here precaution is needed because there are two i2c-dev.h file, one for kernel
mode program which provides direct call to the APIs and another is for code in user
space thus providing interaction between user and kernel space. Once you have included
file in user space then next step is to determine the adapter for I2C adapter as discussed
above. Once you get adapter number, next step is to open a device file:

Figure 1: Opening a device in Linux

1

Once device is opened by user you need to specify with which address you want
to communicate with device, it means you need to specify slave address of a device. For
example, if accelerometer LSM303DLHC chip is connected with I2C and you want to
communicate with it then give slave address as 0x19. Ioctl function is used to set I2C
slave address.

Figure 2: set I2C slave address to accel’s I2C address

Once slave address is set one can use SMBus APIs or plain I2C APIs to com-
municate with device. SMBus is more preferred if device supports them because there is
slight difference between SMBus and I2C. Both are illustrated below:

Figure 3: set I2C slave address to accel’s I2C address

As shown in example above both are almost similar except that write or read
API supports how many bytes to be read or written where SMBus reads fixed bytes of
data. Following SMBus functions can be used to do read-write over I2C bus:

• s32 i2c smbus write quick(int file, u8 value);

• s32 i2c smbus read byte(int file);

• s32 i2c smbus write byte(int file, u8 value);

2

• s32 i2c smbus read byte data(int file, u8 command);

• s32 i2c smbus write byte data(int file, u8 command, u8 value);

• s32 i2c smbus read word data(int file, u8 command);

• s32 i2c smbus write word data(int file, u8 command, u16 value);

• s32 i2c smbus process call(int file, u8 command, u16 value);

• s32 i2c smbus read block data(int file, u8 command, u8 *values);

• s32 i2c smbus write block data(int file, u8 command, u8 length,u8 *values);

One advantage of using SMBus over simple read and write is that SMBus can
do combined read and write in a single call and stores data into buffer with read or write
flag so by checking the flags programmer can know whether data was read or written and
if any error occurs during I2C transactions then above all functions returns -1 value which
indicates I2C error occurred. Codes for accelerometer driver LSM303DLHC is given on
next page.

3

4

5

6

7

8

9

10

Example code for I2C bit-banging

11

12

Example code to measure performance of system

13

14

