
Text-To-Speech (TTS) Conversion
for Gujarati Language

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Electronics & Communication Engineering

(Embedded Systems)

By

Jayesh B. Tanna

(12MECE23)

Electronics & Communication Engineering Branch

Department Of Electrical Engineering

Institute Of Technology

Nirma University, Ahmedabad-382481

May-2014

Text-To-Speech (TTS) Conversion

for Gujarati Language

Major Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

Electronics and Communication Engineering

Submitted by

JAYESH B. TANNA

(12MECE23)

Under the Guidance of

Prof. Vijay Savani & Prof. Amit Degada

Electronics & Communication Engineering Branch

Department Of Electrical Engineering

Institute Of Technology

Nirma University, Ahmedabad-382481

May-2014

iii

Certificate

This is to certify that the Major Project entitled “Text-To-Speech Conversion for Gu-

jarati Language”submitted by Jayesh B. Tanna (12MECE23), towards the partial

fulfillment of the requirements for the degree of Master of Technology in Electronics

and Communication Engineering Branch of Institute of Technology, Nirma Univer-

sity, Ahmedabad is the record of work carried out by him under my supervision and

guidance. In my opinion, the submitted work has reached a level required for being

accepted for examination. The results embodied in this major project, to the best of

my knowledge, haven’t been submitted to any other university or institution for award

of any degree or diploma.

Guide Co-Guide

Prof. Vijay Savani Prof. Amit Degada

Dr. N.P Gajjar Dr. P.N Tekwani

PG Co-ordinator (Embedded Systems) Head, EE

Dr K Kotecha

Director, IT-NU

Date: Place: Ahmedabad

iv

Acknowledgements

With immense pleasure, I would like to present this report on the dissertation work re-

lated to “Text-To-Speech (TTS) conversion for Gujarati language”. I am very thankful

to my parents, all family members and all those who helped me for the successful com-

pletion of the dissertation and for providing valuable guidance throughout the project

work.

I would first of all like to offer thanks to Prof. Vijay Savani, Guide & Prof.

Amit Degada, Co-Guide Institute of Technology, Nirma University, Ahmedabad,

whose keen interest and excellent knowledge helped me to finalize the topic of the

dissertation work. Moreover, I would like to thank Dr. Tanish Zaveri for his con-

stant support and interest in the subject equipped me with a great understanding of

different aspects of the required architecture and resources for the project work. They

have shown keen interest in this dissertation work right from beginning and has been

a great motivating factor in outlining the flow of my work.

My sincere thanks and gratitude to Prof. N.P Gajjar, P.G Co-ordinator (Em-

bedded Systems), Electronics and Communication Engineering Branch, Institute of

Technology, Nirma University, Ahmedabad for his continual kind words of encourage-

ment and motivation throughout the Dissertation work.

I am thankful to Nirma University for providing all kind of required resources. I would

like to thank The Almighty, Family members, Guides, Mr. Prasann Shukla, especially

my colleagues Darshan Limbachiya, Bhaumik Pandya, Vipul Prajapati, Snehal Surti,

Devanshi Desai, Rujul Joshi, Miral Desai, Ankur Patel, Yogesh Badole and many more

for supporting and encouraging me in all possible ways. I would also like to thank

all the remaining persons, who have directly or indirectly helped me in making this

dissertation work successful.

- Jayesh B. Tanna

12MECE23

v

Abstract

Text-To-Speech (TTS) conversion is a great topic of research nowadays. This project

will be very useful for the illiterate and especially for the blind people. By using this

system any person can read any article and understand it.

The overall process of Text-to-Speech (TTS) conversion can be divided into mainly

three blocks: Text Normalization, Text-to-Phoneme and Phoneme-to-Sound. Text

normalization block removes the symbols and replace it with blank space and analyze

all the digits and texts from the input texts. Linguistic analysis block provides in-

tonation and prosody to the graphemes. And finally, waveform generation block will

generate the original output sound.

Text-To-Speech (TTS) conversion can be classified in four ways mainly: Concate-

nate synthesis, Formant synthesis, Hidden Markov Model (HMM) and Articulatory

synthesis. As the name suggest, concatenative synthesis concatenates the different

words from the database of pre-recorded words and then maps each of the matched

input words with its equivalent phoneme. Due to large memory requirement of this

system, this synthesis technology mainly not used in embedded systems, where mem-

ory and power is the main factors of the whole system. Formant synthesis works very

well without any kind of pre-recorded word’s database. But, the drawback of this

synthesis technology is that the naturalness in the output sound (robotic or not like

human). HMM based synthesis is a synthesis method based on hidden markov mod-

els, also called Statistical Parametric Synthsis. In this system, the frequency spectrum

(Vocal tract), fundamental frequency (vocal source) and duration (prosody) of speech

are modeled simultaneously by HMMS. Speech waveforms are generated from HMMs

themselves based on the maximum likelihood criterion Articulatory synthesis is an

ideal synthesis technique. In which, the whole articulatory system (mouth) of human

being is modeled and the sound will generate by the program. Programming point

of view, this technique is very complex as compared to above methods and output is

not that much accurate. Due to its complexity, this technique is rarely used for TTS

system. Thus, by considering all the feasible parameters like simplicity, complexity,

power, memory etc., concatenative synthesis is superior than other ones.

vi

Abbreviation Notation and Nomenclature

ARM .Advance Risc Machine

BSP .Board Support Package

CCS . Code Composer Studio

DMA . Digital Memory Access

DSP . Digital Signal Processor

EMIFA . External Memory Interface

EVM . Evaluation Module

GCC .GNU Compiler Collection

GEL . General Extention Language

GPIO . General Purpose Input Output

GPMC . General Purpose Memory Controller

I2C/I2S . Inter Integrated Circuit/Sound

IPA . International Phonetic Alphabet

LDO . Low Drop Out

McASP . Multi Channel Audio Serial Port

McBSP . Multi Channel Buffered Serial Port

mDDR . Mobile Double Data Rate

OMAP . Open Multimedia Application Platform

OTG . On The Go

PHY . Physical Layer

SATA . Serial Advanced Technology Attachment

SDRAM . Synchronous Dynamic RAM

SD Card . Secure Digial Card

SOC . System On Chip

SOM . System On Module

TFT . Thin Film Transistor

TSC . Touch Screen Controller

uPP . Universal Parallel Port

USB . Universal Serial Bus

VLIW . Very Long Instruction Word

VPIF . Video Port Interface

Contents

Certificate iii

Acknowledgements iv

Abstract v

Abbreviation Notation and Nomenclature vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 2
1.2 Background . 3
1.3 Block Diagram . 4
1.4 Report Organization . 5

2 Literature Survey 6
2.1 TTS Synthesizer Technologies . 7
2.2 Implementation of TTS using Dictionary based approach 10
2.3 Speech Signal Representation for Concatenative Synthesis 11

3 Hardware implementation 12
3.1 Introduction to OMAP-L138 . 12
3.2 Block Diagram . 12

3.2.1 DSP Subsystem . 13
3.2.2 ARM Subsystem . 13
3.2.3 DMA Subsystem . 13

3.3 ARM Subsystem . 14
3.3.1 Introduction . 14
3.3.2 Operating States/Modes . 15
3.3.3 Co-Processor 15 (CP15) . 16
3.3.4 Addresses in an ARM926EJ-S System 16
3.3.5 Memory Management Unit (MMU) 17
3.3.6 Caches and Write Buffer . 17

3.4 DSP System . 19
3.4.1 TMS320C674x Megamodule . 19
3.4.2 Internal Memory Controllers . 20
3.4.3 Internal Peripherals . 21

vii

CONTENTS viii

3.4.4 Advanced Event Triggering (AET) 21
3.5 Steps for connecting the OMAP-L138 eXperimenter kit to CCSv5 . . . 22

4 Behavioral Simulation 27
4.1 Objective . 27
4.2 Simulation results for typed input . 27
4.3 Simulation results for scanned input . 28

4.3.1 Simulation results for Histogram method 28
4.3.2 Simulation results for Edge detection algorithm method 29

4.4 Festival - Open source tool for TTS synthesis 29
4.4.1 Installing Festival(Windows) . 29
4.4.2 Starting Festival . 30

5 Proposed Method of TTS for Gujarati language 32
5.1 Recognizing scanned Input by Histogram 33

5.1.1 Challenges for recognizing a character for Histogram method . 34
5.2 Recognizing scanned Input by Edge detection algorithm 34

6 Conclusion and Future Scope 36

Reference 38

List of Publications 39

A MATLAB code for TTS with typed Input text 40
A.1 Dictionry based TTS . 40

A.1.1 Main code . 40
A.1.2 Script file for recording each word 42

B MATLAB code for TTS with scanned Input text 44
B.1 Histogram method . 44
B.2 Edge detection algorithm . 45

List of Tables

2.1 Comparison of Different Synthesis Technologies 9

3.1 Different Address Types in ARM System 16

ix

List of Figures

1.1 Block Diagram of TTS . 4

2.1 Classification of Synthesizer Technologies 7

3.1 OMAP-L138 Applications Processor Functional Block Diagram 13
3.2 TMS320C674x Megamodule Block Diagram 20
3.3 Create New Target Configuration File 22
3.4 Location and Extention of Target Configuration File 23
3.5 Basic Configuration Parameters for Target Configuration File 24
3.6 Advance Configuration parameters for Target Configuration File 25
3.7 Launching of Selected Target Configuration File 26

4.1 Simulation inputs for TTS using word based concatenative synthesis . . 28
4.2 Histogram of Gujarati characters and 28
4.3 Character recognition by Edge detection algorithm 29
4.4 Terminal of Festival . 30
4.5 Getting waveform out of Festival . 31

5.1 Flow chart for recognizing scanned Input by Histogram 33
5.2 Flow chart for recognizing scanned Input by Edge detection algorithms 35

x

Chapter 1

Introduction

The fundamental thing which has to be performed by text-to speech system is that it

has to generate a clear linguistic sound. This process of generating artificial sound is

known as speech synthesis and the system, which can be used for this purpose is known

as speech synthesizer. This can be implemented by using software also and hardware

too as per our requirement and resources available. We are going to implement on

software (MATLAB) first and afterwards we will implement a standalone device for

this system.

A Text-to-Speech system converts the normal language text into phonetic speech.

Phone is the smallest unit of sound in any language and phonetics is the branch

of acoustics concerned with speech process including its production and perception.

There are basically two parts in TTS system: Front end and Back end. Front end con-

verts the input text, which contains symbols, numbers and abbreviations into equiva-

lent pronunciation of that words. This process is known as text normalization. Back

end performs basically two operations: Text-to-Phoneme conversion and Phoneme-to-

Sound conversion. The process of mapping each words to their equivalent phones is

known as Text-to-Phoneme conversion. The process of mapping each phoneme to its

equivalent sound is known as phoneme-to-sound conversion[1].

There are two main characteristics for measuring the performance of any TTS sys-

tems: Naturalness, Intelligibility and Comprehensibility. Naturalness shows that how

closely the TTS system generated sound seems like human speech while Intelligibility

is, how easily the TTS understand the input text and generate the sound. Compre-

1

CHAPTER 1. INTRODUCTION 2

hensibility has to do with the clarity of the generated speech. Thus, the ideal speech

synthesizer should have all the characteristics naturalness, intelligibility and Compre-

hensibility. So, our main goal is to maximize & get all the characteristics of TTS at

the level of acceptance. [2]

1.1 Motivation

The grapheme-to-phoneme (G2P) conversion module is one of the most important

modules in the TTS systems. Smallest unit in the scripts and text is known as

Grapheme and the basic unit of speech is known as Phoneme. We get the pronuncia-

tion for a given word through this G2P module. The pronunciation of any words can

be achieved by Dictionary (manually) based and Rule-based or statistical methods.

For any language, manually developing a pronunciation dictionary is tiresome and it

is almost next to impossible to create dictionary due to presence of huge number or

unique words. But this method is the most convenient method for developing ba-

sic TTS system. For almost all Indian languages, there is one-to-one correspondence

between letters (graphs) and sounds (phones). Hence, creating a rule-based pronunci-

ation generator for Indian languages is easier.Unfortunately, even it poses a challenge

to build a minimal set of rules for handling out-of-vocabulary words. Moreover, a rule

always yields numerous exceptions due to the complexity of a language and vastness

of a vocabulary[5].But,such exceptions are rare in nature, so rule-based method is the

optimal solution for handling out-of-vocabulary.

Text-to-Speech conversion system enables user to enter text in Gujarati language and

as an output it generates the equivalent sound. This type of system will be greatly

useful for an illiterate and vision impaired people to hear and understand the content.

TTS systems are still suffering with the problem of producing emotional speech like

human being. Scientist are trying to give emotions and feelings to it. This shows that,

research work can be done to enhance the efficiency of TTS system.

There are TTS systems, which are under development for many languages other than

Gujarati language. So, we are proposing the TTS system, which will work on Gu-

jarati language. The input of our desired system is typed or scanned Gujarati text

CHAPTER 1. INTRODUCTION 3

and equivalent Gujarati speech with smooth flow will be generated as an output. We

are trying to add a new feature through which, we can hear our own voice by super-

imposing our own voice frequency on the pre-recorded synthesized speech, so that we

can listen any text in our own voice. This paper starts with the introduction to the

fundamental concepts of TTS synthesis. So, it will be useful for the readers who are

less familiar in this area of research.

1.2 Background

TTS systems are mainly useful for blind people who cannot read anything. So, this

TTS system will be their great companion to gain some knowledge from any book or

magazine or even from a news paper. Below are some applications and their signifi-

cance of TTS system described :

• Text-to-Speech conversion is mainly useful for the blind people or physically

handicapped people to communicate with others.

• Stephen hawking is the famous personality, who is paralyzed for decades by Lau

Gehrigs disease.

• For making computer or any electronics device conversational TTS is very useful.

• Currently, braille language is available for the blind people to read something,

but to convey the information in braille language is very difficult and is equivalent

to 4 pages as compared to normal 1 A4 size page in English language. So, very

few books are available in braille language. If they want to read the normal

printed book than TTS system can be useful.

• If someone doesn’t have time to read the e-mails, so they listen them directly or

by recording them in .mp3 or other file formats[3].

• Continuous and repetitive announcement for the passengers at the airport, rail-

way stations etc.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Block Diagram of TTS

1.3 Block Diagram

The overview of the TTS system is shown in the fig.1.1. After having glance on this

block diagram, anyone can understand the working and function of TTS system. In

our TTS system, scanned or typed text is applied as an input and at the output we get

sound/pronunciation/speech equivalent to the related words. The heart of the system

linguistic analysis. This part is purely responsible for the pitch and intonation of the

output speech. To build a very good linguistic analysis module is the biggest challenge

for the researchers till now, though research is going on from last many years. Because

of this limitation of linguistic module accuracy, we cannot generate pure natural sound

as human being from the TTS system. Researchers are trying to give emotions and

feelings in the generated speech by TTS systems.

The main function of text analysis block is to perform text normalization, which

deals with symbols, numbers and abbreviations. For example, if in Gujarati language

CHAPTER 1. INTRODUCTION 5

is written,

1.4 Report Organization

Chapter 1, Introduction, gives the brief idea about what is text to speech conversion,

flow of how text is converted into speech and the main characteristics of measur-

ing the performance of any TTS systems. In addition, block diagram shows the

different modules of the TTS system and function of each and every module.

Chapter 2, Literature Survey, describes about the different types of synthesizer

technologies and comparison in terms of pros and cons shows in the form of

table.

Chapter 3, Open Multimedia Application Platform (OMAP)- L138, is a latest ap-

plication processor by Texas Instruments, which contains both ARM and DSP

processor in a single core. Thus, we can use ARM processor for general process-

ing and system control and DSP for efficiently handle communication and audio

processing tasks.

Chapter 4, Behavioral simulation, describes the different methods of TTS with its

simulation results.

Chapter 5, Proposed method, describes the methods, we proposed. It includes typed

& scanned input for TTS system and two sub methods for scanned input method.

Finally, in chapter 6 concluding remarks regarding this project has mentioned.

Chapter 2

Literature Survey

Speech synthesis is the automatic generation of an artificial speech signal by a com-

puter. A Text-To-Speech (TTS) system accepts an input from the user and produces

the synthesized speech. The first stage of the synthesis, traditionally referred to as

grapheme-to-phoneme conversion, consists of translating a written utterance into the

corresponding stream of phonemes (including, for some languages, the encoding of

lengthened phonemes, of lexically stressed syllables, of syllable boundaries, etc.). The

second stage consists of computing a series of prosodic markers to be attached to this

phonemic string. The last stage deals with the actual production of the speech wave-

forms. Speech synthesis can be viewed as a chain: the output quality depends on the

quality of individual components. It thus makes sense to conduct a specific evaluation

for each part of this chain.

Simple TTS systems accomplish this by concatenating phonemes or diphones in their

database. Alternatively, a synthesizer can incorporate a speech production model

specifically a model of the vocal tract to create synthetic voice output. A model of the

human vocal tract considers speech to be the output of a linear all-pole filter excited

by a periodic impulse train, an impulse source, white noise or their combination.

Now, I will introduce you with different types of Text-To-Speech synthesizer technolo-

gies, which are generally being used nowadays.

6

CHAPTER 2. LITERATURE SURVEY 7

Figure 2.1: Classification of Synthesizer Technologies

2.1 TTS Synthesizer Technologies

Fig.2.1 shows the classification of TTS synthesizer technology. Mainly there are five

types of TTS synthesizer technologies:

• Concatenative Synthesis is widely accepted and used to develop any language

dependent TTS system. It uses the pre-recorded sounds of each and every words

and maps them with the equivalent input text words. These type requires very

large memory space for storing all the pre-recorded sounds of each and every

words, may be in terms of giga bytes (GBs). This technique gives the most

natural sound in the output of TTS system because the recorded clips are already

in voice of any person.[4]

Concatenative synthesis technique is again classifie in three techniques as follows:

� Unit Selection Synthesis(USS) uses large database of pre-recorded speech.

The smallest recorded segment in the database is known as ‘Unit’and which

can be a phoneme, diphone, syllables, word or even a sentence. After apply-

ing text as an input, system search out for the best candidate unit (which is

done by giving each units a unique index) and concatenates at the output

to generate full natural speech.

CHAPTER 2. LITERATURE SURVEY 8

� Diphone Synthesis has the database of all the diphones in a language which

is much more less than that of USS. The number of diphones depends upon

the language itself. This method is suffers from glitches of concatenative

synthesis. But it requires less memory space than the USS.

� Domain Specific Synthesis concatenates the pre-recorded words or sentences

from the database to create complete utterances of the input text. This

technique is used where limited number of words or sentences are used.

E.g. At Airport, railway station or Bus Rapid Transport Service (BRTS),

where repeatedly instructions has to be announced with limited words and

sentences. The level of naturalness in this technique is very high because

of limited number of pre-recorded speech.[4]

• Formant (A main band of frequency) Synthesis produce the robotic speech and

does not use human speech samples at runtime. Thus it requires very less memory

and power, so this technique can be used in embedded systems, where memory

and power are big constraints. The drawback of this system is the complexity

and lower level of naturalness. This technique is reliable and enough intelligent

to work at higher speeds too. This type of synthesizer can be created by smaller

programs than concatenative systems because the absence of the pre-recorded

database of speech. [4]

• Articulatory Synthesis is the technique, in which human articulatory system is

being modeled (jaw, tongue, teethes etc.) and simulate how the airflow passes

through them and produce the sound as per our requirement. This system is not

used due to its very high complexity level and low performance and efficiency

level. Memory requirement is almost nothing for this type of technique[6].

• Hidden Markov Model (HMM) based Synthesis is also referred to as a Statistical

Parametric Synthesis. In this technique, frequency spectrum (vocal tract), fun-

damental frequency (vocal source) and duration (prosody) of speech are modeled

simultaneously by HMMs. Speech waveforms are generated from these models

based on maximum probability criterion. This technique consumes large CPU

resource but very little memory. In addition, this technique gives better prosody

without glitches and still produces the most natural sound.[7]

CHAPTER 2. LITERATURE SURVEY 9

• In Sine wave based synthesis, formants (main bands of energy) of the synthesized

speech is replaced by the pure tone whistles (sine waves with specific frequency)

to produce the synthesized speech. This technique is generally used as an internal

module of another device because as a standalone unit, it cannot produce human

understandable sound.

Table 2.1: Comparison of Different Synthesis Technolo-

gies

[4, 6, 7]

Synthesis

Technologies

Pros Cons

Concatenative

Synthesis

Most natural sound, Almost

100% efficiency if sound of

word is stored in the database

Large speech database, Te-

dious method, Time consum-

ing method

Unit Selection

Synthesis (USS)

Highest accuracy and most

natural sound

Large database of different

units like phoneme, diphone,

syllable etc.

Diphone Synthe-

sis

Minimal speech database con-

taining all the diphones occur-

ing in a language

Lesser accuracy and natural-

ness than USS, Suffers from

glitches

Domain Specific

Synthesis

Fast responsive and natural,

less memory requirement due

to predecided words

Application is only that partic-

ular domain

Formant Synthe-

sis

Least Memory and power re-

quirement, Used in embedded

system, Efficiency is 70-75%,

Program size is smaller

Robotic sound in output, very

low naturalness

Articulatory

Synthesis

Memory requirement is almost

nothing

Computation intensive (High

complexity)

Continued on next page

CHAPTER 2. LITERATURE SURVEY 10

Table 2.1 – Continued from previous page

Synthesis

Technologies

Pros Cons

Hidden Markov

Model (HMM)

based Synthesis

Very little memory, sound with

better prosody, produce natu-

ral sound, Efficiency more than

90%

Consumes largae CPU re-

source, Complex in structure

Sine-wave based

Synthesis

Replace formants with pure

tone whistles

Rarely used

2.2 Implementation of TTS using Dictionary based

approach

The main goal for using the manual pronunciation dictionary in TTS systems is to

achieve 100% accuracy for grapheme-to-phoneme conversion for the most common

words for any language. It has been observed that the manual pronunciation dic-

tionary may also have inflected words in it. It has been observed that the manual

pronunciation dictionary may also have inflected words in it. This redundancy can be

removed by the sub-word method[10].

The main goal of the sub word method in the manual approach is to reduce the

dictionary size without affecting the dictionary coverage. In this approach, store only

the main parts, known as sub-words in the dictionary. All possible inflections due to

suffix for the word in a separate suffix dictionary. The steps for implementing the

sub-word method for manual G2P conversion approach discussed in below points:

• All possible suffixes (selected sub words) have been collected from the unique

words.

• A manual dictionary has been built by inserting only the unique main parts of all

the stored words. Another suffix dictionary has been built with all the suffixes

present in the words.

• The size for both the dictionaries has been determined and compared with the

CHAPTER 2. LITERATURE SURVEY 11

dictionary having stored unique words.

2.3 Speech Signal Representation for Concatena-

tive Synthesis

A good speech signal representation for concatenative synthesis approximates the fol-

lowing set of requirements:

• The speech signal can be stored in a highly compressed (i.e., coded) form so that

a large voice database can be used even under tight memory limitations. Coder

and decoder are of low computational complexity.

• Coding algorithms have to allow for “random access”. Since most speech coders

contain some sort of autoregressive memory, all state variables of the coder have

to be made available at concatenation points since the decoder will have to

switch between units of speech that are very unlikely to have been recorded

consecutively in time.

• An ideal speech representation must allow for natural-sounding modifications of

pitch, duration, and amplitude. Unfortunately, experience shows that, for most

signal processing algorithms, modifying pitch more than a few percent may de-

stroy perceived naturalness; that is, a pitch-modified speech signal is likely to be

perceptually much different from a speech signal that has been recorded with-

out modifications from the speaker producing the desired pitch value directly.

(This is the reason why “singing TTS”does not sound like an opera star.) For

some advanced applications, it even might be desirable to allow for fine-tuning

of the voice, for example, to add more aspiration, mellowness, or let the voice

“scream”when needed. Instead of recording different voice inventories for differ-

ent speaking “styles ”, advanced “voice conversion”might be used to approximate

an “angry ”voice using a “happy”(or “neutral”) voice as a starting point. Today,

algorithms for voice conversion (usually concerned with converting the speech of

one speaker to sound like speech from another speaker) still do not produce con-

sistently good enough results for sounding like the “real thing”, but might be

sufficient for applications such as computer games where even the original voice

does not sound “human”.

Chapter 3

Hardware implementation

Text-To-Speech (TTS) conversion for Gujarati language project can be implemented

on OMAP-L138 (Open Multimedia Application Platform). The main reason behind

using this board is it is cost effective and low power consumption device.

3.1 Introduction to OMAP-L138

The OMAP-L138 Applications Processor contains two primary CPU cores: an ARM

RISC CPU for general-purpose processing and systems control; and a powerful DSP

to efficiently handle communication and audio processing tasks. The OMAP-L138

Applications Processor consists of the following primary components:

• ARM subsystem and associated memories

• DSP subsystem and associated memories

• A set of I/O peripherals

• A powerful DMA subsystem and SDRAM EMIF interface

3.2 Block Diagram

A block diagram for the OMAP-L138 Applications Processor is shown in fig.3.1.

12

CHAPTER 3. HARDWARE IMPLEMENTATION 13

Figure 3.1: OMAP-L138 Applications Processor Functional Block Diagram
[8]

3.2.1 DSP Subsystem

The DSP subsystem (DSPSS) includes TIs standard TMS320C674x megamodule and

several blocks of internal memory (L1P, L1D, and L2). The DSP Subsystem chapter

describes the DSPSS components.

3.2.2 ARM Subsystem

The ARM926EJ-S 32-bit RISC CPU in the ARM subsystem (ARMSS) acts as the

overall system controller. The ARM CPU performs general system control tasks,

such as system initialization, configuration, power management, user interface, and

user command implementation. The ARM Subsystem chapter describes the ARMSS

components and system control functions that the ARM core performs.

3.2.3 DMA Subsystem

The DMA subsystem includes two instances of the enhanced DMA controller (EDMA3).

CHAPTER 3. HARDWARE IMPLEMENTATION 14

3.3 ARM Subsystem

3.3.1 Introduction

Following section will describes about ARM subsystems and its associated memories.

The ARM subsystem consists of the following components:

• ARM926EJ-S 32-bit RISC CPU

• 16-KB Instruction cache

• 16-KB Data cache

• Memory Management Unit (MMU)

• Co-Processor 15 (CP15) to control MMU, cache, etc.

• Jazelle Java Accelerator

• ARM Internal Memory

� 8 KB RAM

� 64 KB built-in ROM

• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)

• Features:

� The main write buffer has a 16-word data buffer and a 4-address buffer

� Support for 32-bit ARM/16-bit THUMB instruction sets

� Fixed little-endian memory format

� Enhanced DSP instructions

The ARM926EJ-S processor is a member of the ARM9 family of general-purpose mi-

croprocessors. The ARM926EJ-S processor targets multi-tasking applications where

full memory management, high performance, low die size, and low power are all im-

portant.

The ARM926EJ-S processor supports the 32-bit ARM and the 16-bit THUMB instruc-

tion sets, enabling you to trade off between high performance and high code density.

CHAPTER 3. HARDWARE IMPLEMENTATION 15

This includes features for efficient execution of Java byte codes and providing Java

performance similar to Just in Time (JIT) Java interpreter without associated code

overhead.

The ARM926EJ-S processor supports the ARM debug architecture and includes logic

to assist in both hardware and software debugging. The ARM926EJ-S processor has a

Harvard architecture and provides a complete high performance subsystem, including

the following:

• An ARM926EJ-S integer core

• A Memory Management Unit (MMU)

• Separate instruction and data Advanced Microcontroller Bus Architecture (AMBA)

Advanced High Performance Bus (AHB) bus interfaces

The ARM926EJ-S processor implements ARM architecture version 5TEJ.

The ARM926EJ-S core includes NEON signal processing extensions to enhance 16-bit

fixed-point performance using a single-cycle 32 16 multiply-accumulate (MAC) unit.

The ARM core also has 8 KB RAM (typically used for vector table) and 64 KB ROM

(for boot images) associated with it. The RAM/ROM locations are not accessible by

the DSP or any other master peripherals. Furthermore, the ARM has DMA and CFG

bus master ports via the AHB interface.

3.3.2 Operating States/Modes

The ARM can operate in two states: ARM (32-bit) mode and THUMB (16-bit) mode.

You can switch the ARM926EJ-S processor between ARM mode and THUMB mode

using the BX instruction.

The ARM can operate in the following modes:

• User mode (USR): Non-privileged mode, usually for the execution of most ap-

plication programs.

• Fast interrupt mode (FIQ): Fast interrupt processing

• Interrupt mode (IRQ): Normal interrupt processing

• Supervisor mode (SVC): Protected mode of execution for operating systems

CHAPTER 3. HARDWARE IMPLEMENTATION 16

• Abort mode (ABT): Mode of execution after a data abort or a pre-fetch abort

• System mode (SYS): Privileged mode of execution for operating systems

• Undefined mode (UND): Executing an undefined instruction causes the ARM to

enter undefined mode.

You can only enter privileged modes (system or supervisor) from other privileged

modes.

To enter supervisor mode from user mode, generate a software interrupt (SWI). An

IRQ interrupt causes the processor to enter the IRQ mode. An FIQ interrupt causes

the processor to enter the FIQ mode.

Different stacks must be set up for different modes. The stack pointer (SP) automat-

ically changes to the SP of the mode that was entered.

3.3.3 Co-Processor 15 (CP15)

The system control coprocessor (CP15) is used to configure and control instruction

and data caches, Tightly-Coupled Memories (TCMs), Memory Management Units

(MMUs), and many system functions. The CP15 registers are only accessible with

MRC and MCR instructions by the ARM in a privileged mode like supervisor mode

or system mode.

3.3.4 Addresses in an ARM926EJ-S System

Three different types of addresses exist in an ARM926EJ-S system. They are listed in

table 3.1

Table 3.1: Different Address Types in ARM System [8]

Domain ARM9EJ-S Caches and MMU TCM and AMBA

Bus

Address

type

Virtual Address

(VA)

Modified Virtual Ad-

dress (MVA)

Physical Address (PA)

CHAPTER 3. HARDWARE IMPLEMENTATION 17

3.3.5 Memory Management Unit (MMU)

The ARM926EJ-S MMU provides virtual memory features required by operating sys-

tems such as SymbianOS, WindowsCE, and Linux. A single set of two level page

tables stored in main memory controls the address translation, permission checks, and

memory region attributes for both data and instruction accesses. The MMU uses a

single unified Translation Lookaside Buffer (TLB) to cache the information held in the

page tables.

The MMU features are as follows:

• Standard ARM architecture v4 and v5 MMU mapping sizes, domains, and access

protection scheme.

• Mapping sizes are 1 MB (sections), 64 KB (large pages), 4 KB (small pages) and

1 KB (tiny pages)

• Access permissions for large pages and small pages can be specified separately

for each quarter of the page (subpage permissions)

• Hardware page table walks

• Invalidate entire TLB, using CP15 register 8

• Invalidate TLB entry, selected by MVA, using CP15 register 8

• Lockdown of TLB entries, using CP15 register 10

3.3.6 Caches and Write Buffer

The ARM926EJ-S processor includes:

• An Instruction cache (Icache)

• A Data cache (Dcache)

• A write buffer

The size of the data cache is 16 KB, instruction cache is 16 KB, and write buffer is 17

bytes. The caches have the following features:

• Virtual index, virtual tag, addressed using the Modified Virtual Address (MVA)

CHAPTER 3. HARDWARE IMPLEMENTATION 18

• Four-way set associative, with a cache line length of eight words per line (32

bytes per line), and two dirty bits in the Dcache

• Dcache supports write-through and write-back (or copy back) cache operation,

selected by memory region using the C and B bits in the MMU translation tables

• Perform critical-word first cache refilling

• Cache lockdown registers enable control over which cache ways are used for

allocation on a line fill, providing a mechanism for both lockdown and controlling

cache pollution.

• Dcache stores the Physical Address TAG (PA TAG) corresponding to each

Dcache entry in the TAGRAM for use during the cache line write-backs, in addi-

tion to the Virtual Address TAG stored in the TAG RAM. This means that the

MMU is not involved in Dcache write-back operations, removing the possibility

of TLB misses related to the write-back address.

• Cache maintenance operations to provide efficient invalidation of the following:

� The entire Dcache or Icache

� Regions of the Dcache or Icache

� The entire Dcache

� Regions of virtual memory

• They also provide operations for efficient cleaning and invalidation of the follow-

ing:

� The entire Dcache

� Regions of the Dcache

� Regions of virtual memory

The write buffer is used for all writes to a non-cachable bufferable region, write-through

region, and write misses to a write-back region. A separate buffer is incorporated in

the Dcache for holding write-back for cache line evictions or cleaning of dirty cache

lines.

The main write buffer has a 16-word data buffer and a four-address buffer.

CHAPTER 3. HARDWARE IMPLEMENTATION 19

The Dcache write-back has eight data word entries and a single address entry.

The MCR drain write buffer enables both write buffers to be drained under software

control.

The MCR wait for interrupt causes both write buffers to be drained and the ARM926EJ-

S processor to be put into a low power state until an interrupt occurs.

3.4 DSP System

The DSP subsystem shown in fig.3.2 includes TIs standard TMS320C674x megamodule

and several blocks of internal memory (L1P, L1D, and L2). This chapter provides an

overview of the DSP subsystem and the following considerations associated with it:

• Memory mapping

• Interrupts

• Power management

3.4.1 TMS320C674x Megamodule

The C674x megamodule shown in fig.3.2 consists of the following components:

• TMS320C674x CPU

• Internal memory controllers:

� Level 1 program memory controller (PMC)

� Level 1 data memory controller (DMC)

� Level 2 unified memory controller (UMC)

� Extended memory controller (EMC)

� Internal direct memory access (IDMA) controller

• Internal peripherals:

� Interrupt controller (INTC)

� Power-down controller (PDC)

� Bandwidth manager (BWM)

• Advanced event triggering (AET)

CHAPTER 3. HARDWARE IMPLEMENTATION 20

Figure 3.2: TMS320C674x Megamodule Block Diagram
[8]

3.4.2 Internal Memory Controllers

The C674x megamodule implements a two-level internal cache-based memory archi-

tecture with external memory support. Level 1 memory (L1) is split into separate

program memory (L1P memory) and data memory (L1D memory). L1 memory is

accessible to the CPU without stalls. Level 2 memory (L2) can also be split into L2

RAM (normal addressable on-chip memory) and L2 cache for caching external mem-

ory locations. The internal direct memory access controller (IDMA) manages DMA

among the L1P, L1D, and L2 memories.

CHAPTER 3. HARDWARE IMPLEMENTATION 21

3.4.3 Internal Peripherals

The C674x megamodule includes the following internal peripherals:

• DSP interrupt controller (INTC)

• DSP power-down controller (PDC)

• Bandwidth manager (BWM)

• Internal DMA (IDMA) controller

3.4.4 Advanced Event Triggering (AET)

The C674x megamodule supports advanced event triggering (AET). This capability

can be used to debug complex problems as well as understand performance character-

istics of user applications. AET provides the following capabilities:

• Hardware Program Breakpoints: specify addresses or address ranges that can

generate events such as halting the processor or triggering the trace capture.

• Data Watchpoints: specify data variable addresses, address ranges, or data values

that can generate events such as halting the processor or triggering the trace

capture.

• Counters: count the occurrence of an event or cycles for performance monitoring.

• State Sequencing: allows combinations of hardware program breakpoints and

data watch points to precisely generate events for complex sequences.

CHAPTER 3. HARDWARE IMPLEMENTATION 22

3.5 Steps for connecting the OMAP-L138 eXperi-

menter kit to CCSv5

First, Install CCSv5 and activate the licence key. If you are using it for personal use

than, ask for free licence from TI’s website. After that, for using OMAP-L138 kit with

the CCS for the first time, you must perform the chain of steps. These steps are as

following:

1. Goto ‘View -> Target Configurations’for createing new target configuration file

for our OMAP-L138 board.

Figure 3.3: Create New Target Configuration File

CHAPTER 3. HARDWARE IMPLEMENTATION 23

2. A diologue box will open, give appropriate name with extention ‘ccxml’and press

‘finish’button.

Figure 3.4: Location and Extention of Target Configuration File

CHAPTER 3. HARDWARE IMPLEMENTATION 24

3. Now, from the ‘Target Configuration’box, select the Target configuration file

with ccxml extension which, we have just created. Select “Texas Instruments

XDS100v1 USB Emulator”from the ‘connection’option and “TMS320C6748”from

’Board or Device’option from the ‘Basic’tab.

/2/2

Figure 3.5: Basic Configuration Parameters for Target Configuration File

CHAPTER 3. HARDWARE IMPLEMENTATION 25

4. Now, from the ‘Advanced’tab, select C674X 0 and browse ‘C6748.gel’file from

your system.

Figure 3.6: Advance Configuration parameters for Target Configuration File

CHAPTER 3. HARDWARE IMPLEMENTATION 26

5. At last, right click on the created ccxml file and select ‘Launch selected configura-

tion’and it will perform the initialization process for connecting the OMAP-L138

kit with CCSv5.

Figure 3.7: Launching of Selected Target Configuration File

Chapter 4

Behavioral Simulation

Behavioral simulation is a simulation process that is performed by interpreting the

equations that define the design. The equations do not need to be converted to the

logic that represents them.

4.1 Objective

Feasibility of any project can be proposed after having some simulation results. For

the same purpose, the simulation results of TTS system at some abstract level is been

done and shown here in the form of behavioral simulation. The main objective of

Text-To-Speech(TTS) system is to convert the typed or scanned text to its equivalent

pronunciation. Thus, there are two methods of input for this system : Typed Input

and Scanned Input. Here, in this chapter, results for both the input has been shown.

4.2 Simulation results for typed input

Simple TTS system can be implemented by using Dictionary based concept. All gen-

eral words which are used in the Gujarati language can be recorded and stored in

the form of dictionary. For this project, input is to be taken in Gujarati language in

English from keyboard. After that, the program will first ask the number of words in

your string. Then, it will map each and every words with the recorded/stored words.

If the entered word is not matched with the recorded words, then an error message

will be played as an output. If the entered word is match with the recorded words,

then it will directly play that word as an output. At last, program will concatenate all

27

CHAPTER 4. BEHAVIORAL SIMULATION 28

the words and play a smooth sentence as an output. Fig.4.1(a) shows the output in

which program asks user to give no. of words and a string as an input. Thus, program

will give the equivalent phonemes or voiced words as an output. It will also give us

the graph of every words respectively in time domain as shown in fig.4.1(b).

Figure 4.1: Simulation inputs for TTS using word based concatenative synthesis

4.3 Simulation results for scanned input

For this system, first of all the Gujarati characters in scanned image should be recognize

by the processor. After that, one to one mapping of each letter with its equivalent

pronunciation and concatenation has been performed as to generate desired output

speech.Thus, for working with scanned input, TTS have two methods. Histogram

method and Edge detection algorithm method

4.3.1 Simulation results for Histogram method

Figure 4.2: Histogram of Gujarati characters and

CHAPTER 4. BEHAVIORAL SIMULATION 29

This method is explained in detail in section 5.1. After referring the flow chart for

this method, it can be easily understand by everyone, what this method wants to say.

But, as mentioned in the subsection 5.1.1, the biggest challenge in this method is to

compare the histogram of stored image and histogram of recognized character. The

histogram produce by the code given in the section B.1 is shown in the fig.4.2.

4.3.2 Simulation results for Edge detection algorithm method

This method is explained in detail in section 5.2. After referring the flow chart for

this method, it can be easily understand by everyone, what this method wants to say.

By using this method, one can easily recognize the text from the scanned documents

but, again the problem is to compare two images. The code for detecting text from

the scanned document is shown in section B.2 and the simulation result produce by

that code is shown in fig.4.5.

Figure 4.3: Character recognition by Edge detection algorithm

4.4 Festival - Open source tool for TTS synthesis

4.4.1 Installing Festival(Windows)

To install Festival you need to type the following commands:

CHAPTER 4. BEHAVIORAL SIMULATION 30

1. Download the following file

http://homepages.inf.ed.ac.uk/jyamagis/misc/demo-material-win.zip

2. Unzip the file

3. Copy “festival”directory in the unzipped directory to the top directory of C:\

4. Please click festival.exe

4.4.2 Starting Festival

(1) Click ‘festival.exe’file in unzipped directory.

(2) Making Festival speak, you need to type the following commands:

Festival> (SayText ”Jayesh Tanna is a Smart boy.”)

Figure 4.4: Terminal of Festival

5. Getting waveforms out of festival tool: Once you have a fully synthesised utter-

ance object in festival, it is possible to extract the waveform to a (.wav) file as

follows:

festival>(utt.save.wave (SayText ”Jayesh Tanna is a Smart boy.”) ”name.wav”

’riff)

http://homepages.inf.ed.ac.uk/jyamagis/misc/demo-material-win.zip

CHAPTER 4. BEHAVIORAL SIMULATION 31

Figure 4.5: Getting waveform out of Festival

Chapter 5

Proposed Method of TTS for

Gujarati language

There are always some fundamental rules for any language’s grammar for pronounc-

ing a word. Thus, for working on any specific language, first one must know almost

everything about that specific language as to avoid mispronunciation. However, there

may be some words or characters having different pronunciation at different places,

where they are being used.

All the characters of Gujarati language can be classified in the following four groups:

• Groups of characters having Vertical line at the end:-

• Group of Characters with no vertical line:-

• Group of heads:-

• Group of tails:-

As shown in the fig.1.1, the main function of text analysis or text normalization block

is to convert all the pixel values to ‘0 ’and ‘1 ’. Pixel having gray value above threshold

is converted to ‘1 ’and below threshold is converted to ‘0 ’. For perfect result of TTS

system, first, we need to seperated out lines from the scanned document, than words

from lines and at last characters from the words. Again, may be these characters have

heads and tails, so again we need to separate out them[3].

32

CHAPTER 5. PROPOSED METHOD OF TTS FOR GUJARATI LANGUAGE 33

5.1 Recognizing scanned Input by Histogram

Figure 5.1: Flow chart for recognizing scanned Input by Histogram

The first method is recognizing an input image by comparing its histogram with

stored histograms of each and every characters. Histogram is the distribution of in-

tensity of the pixels of image. Thus, for separating lines in a document, horizontal

histogram of document is useful. The blank space between the two lines indicates

the separation of the lines. To separate down the words from the lines, we need to

take vertical histogram. The whole process of how to recognize scanned Input image

CHAPTER 5. PROPOSED METHOD OF TTS FOR GUJARATI LANGUAGE 34

by histogram is shown the fig.5.1 and histogram of Gujarati character and

shown in fig.4.2(a) and 4.2(b) respectively.

5.1.1 Challenges for recognizing a character for Histogram

method

• Challenging task in this histogram method is the comparison of the two his-

tograms (histogram of pre-stored characters and histogram of scanned charac-

ters).

• Even comparison of two different histogram is almost impossible due to histogram

is just a distribution of intensity of any image.

After seperating the characters from lines, first it is to be decided that from which

group it belongs to. After identifying the proper group, we have to identify the exact

character by using different methods. When TTS system come to know the exact

character, it will be assigned a unique number[3], which is already been stored in the

database, and by using that number our TTS system will do mapping to its equivalent

phoneme.

5.2 Recognizing scanned Input by Edge detection

algorithm

Another method for recognizing scanned input image is by using edge detection algo-

rithms. Edge detection methods aims at identifying points in digital image at which

image brightness changes sharply. The points at which image brightness changes

sharply are typically organized into a set of curved line segments termed edges[9]. Ap-

plying an edge detection algorithm to an image may significantly reduce the amount of

data to be processed and may therefore filter out information that may be regarded as

less relevant, while preserving the important structural properties of an image. There

are many edge detection algorithms like canny, sobel, prewitt, roberts etc. are already

available. The process of recognizing scanned Input by edge detection algorithm ex-

plained in the form of flow chart in the fig.5.2 For detecting the edges from any image,

first convert them into grayscale and then filter them for removing the noise. Now,

CHAPTER 5. PROPOSED METHOD OF TTS FOR GUJARATI LANGUAGE 35

apply edge detection algorithm to the filtered image and get the edged image as out-

put. Next is to mask that image with proper masking matrix and segment all the

characters individually as shown in the fig.4.5.

Figure 5.2: Flow chart for recognizing scanned Input by Edge detection algorithms

Chapter 6

Conclusion and Future Scope

Among all the different synthesis technologies, concatenative synthesis is superior than

other synthesis technologies and used widely. Concatenative synthesis can be used

universally for any language of any part of the word. General characteristics of different

synthesis technologies are:

1. Concatenative synthesis requires amount of memory according to the words

recorded and stored in the dictionary. Memory requirement will be high if this

system supports all the words of any language. As memory is the drawback

of this system, concatenative synthesis technology is not generally used in the

embedded system and it provides highest naturalness in the output speech.

2. Formant synthesis, requires high programming for generating each words sound

automatically, thus requires very less memory as compared to others, does not

provide naturalness in the output, it will generate robotic sound.

3. Articulatory synthesis, is the most complex system amongs all, requires smart

programming to model the whole articulatory system of human being.

Text-To-Speech (TTS) system can be used to make any device conversational. By using

this system, any scanned document can be read out loud. Furthermore, imposing of

one particular frequency on the recorded sound for generating the output speech in

the imposed frequency. This system can be made font and font size independent.

36

References

[1] John F. Pitrelli, “The IBM Text-to-Speech synthesis system for Ameri-

can English”, in IEEE transactions on audio, speech and language pro-

cessing, Vol.14, No.4, July 2006.

[2] Applied speech and audio processing with MATLAB examples by , “Ian

McLoughlin”, Cambridge publications.

[3] Prajakta S. Rathod, “Script to speech conversion for Hindi language by

using Artificial Neural Network”, in NUiCONE-2011.

[4] Aimilios Chalamandaris, Sotiris Karabetsos, “A Unit Selection Text-

to-Speech Synthesis System Optimized for Use with Screen Readers”,

in IEEE Transactions on Consumer Electronics, Vol. 56, No. 3, August

2010.

[5] A.B. Mosaddeque, N. UzZaman and M. Khan, “Rule based Automated

Pronunciation Generator”, Proceedings of 9th International Conference

on Computer and Information Technology, Dhaka, Bangladesh, 2006.

[6] Marian Macchi, “Issues in Text-to-Speech Synthesis”.

[7] Chien-Liang Liu, Wen-Hoar Hsaio, Chia-Hoang Lee, and Hsiao-Cheng

Chi, “An HMM-Based Algorithm for Content Ranking and Coherence-

Feature Extraction”, in IEEE transactions on systems, man and cyber-

netics: systems, Vol. 43, No.2, March 2013.

[8] OMAP-L138 DSP+ARM Processor Technical Reference Manual (Texas

Instruments) Literature Number : SPRUH77A December 2011

[9] http://en.wikipedia.org/wiki/Edge_detection

37

http://en.wikipedia.org/wiki/Edge_detection

REFERENCES 38

[10] Krishnendu Ghosh, K.Sreenivasa Rao “Subword Based Approach for

Grapheme-To-Phoneme Conversion in Bengali Text-To-Speech Synthesis

System” 978-1-4673-0816-8/12 $31.00 c©2012 IEEE.

[11] Er. Sheilly Padda, Ms. Rupinderdeep kaur, Er. Nidhi, “Architecture and

Implementation of Punjabi Text to Speech System Using Transcriptions

Concept”, in International Journal of Engineering Research and Devel-

opment, ISSN: 2278-067X, Volume 1, Issue 5 (June 2012), PP.08-11.

List of Publications

[1] Jayesh B. Tanna, Vijay Savani, Amit Degada “Gujarati Text-To-

Speech (TTS) conversion system using Histogram and Edge detection

method”, in International Conference IAET-2014 at Jaipur, Volume.3,

No.1, January-June, 2014, pp- 204-207. Print-ISSN: 2277-4904, Online-

ISSN: 2277-4912.

[2] Jayesh B. Tanna, Vijay Savani, Amit Degada, “Text-To-Speech Con-

version for Gujarati language”, in Journal of Electronics Design Tech-

nology (JoEDT), STM Journals, Volume 4, Issue 3, December-2013.

ISSN: 2229-6980.

39

Appendix A

MATLAB code for TTS with typed

Input text

A.1 Dictionry based TTS

A.1.1 Main code

% Author : Jayesh Tanna

clc;

clear all;

n=input(’Enter the number of words in your string:-’);

if(rem(n,2)==0)

m=n; % Make the number of words even

else

m=n+1;

end

str=input(’Enter input string:-’,’s’);

[tok1,rem1]=strtok(str);

% Find token in string; Separate out each words from the sentence

for k=1:n

for i = 1:128900000 % Provides delay

A=1;

40

APPENDIX A. MATLAB CODE FOR TTS WITH TYPED INPUT TEXT 41

A = A+1;

end

Fs=11025; % Set sample frequency

out=strcmpi(’hello’,tok1); % Compares each words regardless of their case

if(out==1)

y=wavread(’hello.wav’); % Reads wav file

p=audioplayer(y,Fs); % Creates audioplayer object for signal y with Fs freq

play(p); % Plays audio samples in audioplayer object

elseif(out==0)

out=strcmpi(’nirma’,tok1);

if(out==1)

y=wavread(’nirma.wav’);

p=audioplayer(y,Fs);

play(p);

end

if(out==0)

out=strcmpi(’university’,tok1);

if(out==1)

y=wavread(’university.wav’);

p=audioplayer(y,Fs);

play(p);

end

if(out==0)

out=strcmpi(’9’,str);

if(out==1)

APPENDIX A. MATLAB CODE FOR TTS WITH TYPED INPUT TEXT 42

y=wavread(’9.wav’);

p=audioplayer(y,Fs);

play(p);

else

y=wavread(’error.wav’);

p=audioplayer(y,Fs);

play(p);

end

end

end

end

if(m>2)

subplot((m/2),(m/2),k);

plot(y);

title(k);

else

subplot((m),(m),k);

plot(y);

title(k);

end

[tok1,rem1]=strtok(rem1);

end

A.1.2 Script file for recording each word

% Author : Jayesh Tanna

clc;

APPENDIX A. MATLAB CODE FOR TTS WITH TYPED INPUT TEXT 43

clear all;

Fs=11025;

y=wavrecord(5*Fs,Fs,’int16’); % Record sound using Windows audio input device

wavplay(y,Fs); % Play sound using Windows audio output device

yain=y(20000:1:42000);

wavplay(yain,Fs);

wavwrite(yain,Fs,’hi.wav’); % Play sound using Windows audio output device

Appendix B

MATLAB code for TTS with

scanned Input text

B.1 Histogram method

% Author : Jayesh Tanna

x=imread(’big.bmp’);

y=rgb2gray(x);

z=mat2gray(y);

figure(1);

hist(z);

title(’histogram of big a’);

u=size(z);

disp(u);

a=imread(’small.bmp’);

b=rgb2gray(a);

c=mat2gray(b);

v=size(c);

disp(v);

figure(2);

44

APPENDIX B. MATLAB CODE FOR TTS WITH SCANNED INPUT TEXT 45

hist(c);

title(’histogram of small a’);

B.2 Edge detection algorithm

% Author : Jayesh Tanna

clc;

clear all;

%close all;

k=input(’Enter the file name’,’s’); % input image; color image

im=imread(k);

im1=rgb2gray(im);

im1=medfilt2(im1,[3 3]); % Median filtering the image to remove noise

BW = edge(im1,’canny’,0.10); % finding edges

[imx,imy]=size(BW);

msk=[0 0 0 0 0;

0 1 1 1 0;

0 1 1 1 0;

0 1 1 1 0;

0 0 0 0 0;];

B=conv2(double(BW),double(msk));

% Smoothing image to reduce the number of connected components

L = bwlabel(B,8); % Calculating connected components

mx=max(max(L))

figure,imshow(im);

figure,imshow(im1);

figure,imshow(B);

for n=1:12

[r,c] = find(L==n);

APPENDIX B. MATLAB CODE FOR TTS WITH SCANNED INPUT TEXT 46

rc = [r c];

[sx sy]=size(rc);

n1=zeros(imx,imy);

for i=1:sx

x1=rc(i,1);

y1=rc(i,2);

n1(x1,y1)=255;

end % Storing the extracted image in an array

figure,imshow(n1,[]);

end

	Certificate
	Acknowledgements
	Abstract
	Abbreviation Notation and Nomenclature
	List of Tables
	List of Figures
	Introduction
	Motivation
	Background
	Block Diagram
	Report Organization

	Literature Survey
	TTS Synthesizer Technologies
	Implementation of TTS using Dictionary based approach
	Speech Signal Representation for Concatenative Synthesis

	Hardware implementation
	Introduction to OMAP-L138
	Block Diagram
	DSP Subsystem
	ARM Subsystem
	DMA Subsystem

	ARM Subsystem
	Introduction
	Operating States/Modes
	Co-Processor 15 (CP15)
	Addresses in an ARM926EJ-S System
	Memory Management Unit (MMU)
	Caches and Write Buffer

	DSP System
	TMS320C674x Megamodule
	Internal Memory Controllers
	Internal Peripherals
	Advanced Event Triggering (AET)

	Steps for connecting the OMAP-L138 eXperimenter kit to CCSv5

	Behavioral Simulation
	Objective
	Simulation results for typed input
	Simulation results for scanned input
	Simulation results for Histogram method
	Simulation results for Edge detection algorithm method

	Festival - Open source tool for TTS synthesis
	Installing Festival(Windows)
	Starting Festival

	Proposed Method of TTS for Gujarati language
	Recognizing scanned Input by Histogram
	Challenges for recognizing a character for Histogram method

	Recognizing scanned Input by Edge detection algorithm

	Conclusion and Future Scope
	Reference
	List of Publications
	MATLAB code for TTS with typed Input text
	Dictionry based TTS
	Main code
	Script file for recording each word

	MATLAB code for TTS with scanned Input text
	Histogram method
	Edge detection algorithm

