
Networked Outdoor Media Player

Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

In

Electronics & Communication Engineering

(Embedded Systems)

By

Niral S. Soni
(12MECE21)

Electronics & Communication Engineering
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

Networked Outdoor Media Player
Major Project Report

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology

In

Electronics & Communication Engineering Branch

(Embedded System)

By

Niral S. Soni
(12MECE21)

Under the Guidance of

Project Guide

Prof.Dhaval Shah
Asst. Prof. E & C
Institute of Technology,
Nirma University,Ahmedabad

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

i

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Tech-

nology in Embedded Systems at Nirma University and has not been submitted

elsewhere for a degree.

2. Due acknowledgement has been made in the text to all other material used.

Niral S. Soni

ii

Certificate

This is to certify that the Major Project entitled “Networked Outdoor Media

Player” submitted by Niralkumar Sharadkumar Soni (12MECE21), towards

the partial fulfillment of the requirements for the degree of Master of Technology in

Embedded Systems, Nirma University, Ahmedabad is the record of work carried out

by him under our supervision and guidance. In our opinion, the submitted work has

reached a level required for being accepted for examination.The results embodied

in this major project, to the best of our knowledge,haven’t been submitted to any

other university or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Prof.Dhaval G. Shah Dr. N.P. Gajjar

Internal Project Guide Program Coordinator

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

iii

Acknowledgement

I would like to express my gratitude and sincere thanks to Dr. P.N.Tekwani,

Head of Electrical Engineering Department, and Dr. N.P.Gajjar, PG Coordinator

of M.Tech Embedded Systems program for allowing me to undertake this thesis work

and for his guidelines during the review process.

I would first of all like to offer thanks to Prof.Dhaval Shah , Guide and As-

sistant Professor M.Tech. Electronics and Communication, Institute of Technology,

Nirma University, Ahmedabad whose keen interest and excellent knowledge base

helped me to finalize the topic of the dissertation work. His constant support and

interest in the subject equipped me with a great understanding of different aspects

of the required architecture for the project work. He has shown keen interest in this

dissertation work right from beginning and has been a great motivating factor in

outlining the flow of my work.

I am thankful to Nirma University for providing all kind of required resources. I

would like to thank The Almighty, my family for supporting and encouraging me

in all possible ways. I would also like to thank all my friends who have directly or

indirectly helped in making this dissertation work successful.

-Niral S. Soni

(12MECE21)

iv

Abstract

Digital Signs are used in wayfinding,exhibitions, public installations, marketing

and outdoor advertising. Digital signage displays use content management systems

and digital media distribution systems which can either be run from personal com-

puters and servers or regional/national media hosting providers.

In this thesis, the approach of the media player content management through

the networking has been represented. Because of its media and graphics processing

capacity (720p @ 30 fps) Beagleboard-XM has been selected for the media player

module while Desktop PC has been set up as a content server.The steps of installing

linux on the board and software configuration for the networking feature has been

briefly described.Theoretical aspects and implementation of the libraries and make-

file utility which are used in the project are explained.To prevent unauthorized

access to the content and to the media player itself AES method of encryption has

been described and timing analysis has been carried out to select the best mode of

operation from the available modes of operations. The concept of parallel processing

, process creation , Socket and socket programming has been described that are used

in the implementation of the client-server model.

The client-server model for the content management system has been repre-

sented, In which the server process flow and the client process flow are described. A

method for content management by comparing and contrasting the content of the

server and client at periodic intervals has been described. A method for transferring

bulk of the files at a instance from the server to client as per the process flow has

been described.Lastly,an attempt has been made to write and test a start up script

that automates this whole process on the system boot up.

v

Acronyms

HDMI High-Definition Multimedia Interface

DVI Digital Visual Interface

OS Operating System

AES Advanced Encryption Standard

DES Data Encryption Standard

POP Package On Package

OMAP Open Multimedia Application Platform

SIMD Single Instruction Multiple Data

OTG ON-The-Go

fPIC Position Independent Code

MPEG Moving Picture Expert Group

HLOS High Level Operating System

Contents

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Scope of Work . 3

1.3 Outline of Thesis . 3

2 Beagleboard-XM Specifications and Configuration 5

2.1 BeagleboardXM overview . 5

2.1.1 Processor . 5

2.1.2 Memory . 9

2.1.3 Power management . 10

2.1.4 HS USB 2.0 OTG Port . 10

2.1.5 HS USB 2.0 Host Ports . 10

2.1.6 DVI-D Connector . 11

2.1.7 Onboard USB HUB . 11

2.1.8 LCD Header . 11

vi

vii

2.1.9 MicroSD Connector . 11

2.1.10 User Button . 11

2.1.11 Indicators . 12

2.1.12 Power Connector . 12

2.1.13 JTAG Connector . 13

2.1.14 RS232 DB9 Connector . 13

2.1.15 Camera Connector . 13

2.1.16 MMC3 Expansion Header . 14

2.2 Porting Linux Operating System on Beagleboard-XM 14

2.2.1 Install Pre-Configured Image [11] 14

2.2.2 NetInstall Method . 15

2.3 System Configuration for Static MAC and IP address 16

3 Basics of Libraries,Makefile and Shell 17

3.1 Importance of Library . 17

3.2 Library Naming Conventions . 18

3.3 Linux Library Types . 18

3.3.1 Shared Library (.a) . 18

3.3.2 Dynamically Linked “Shared Object”Libraries: (.so): 19

3.4 Makefile . 22

3.5 Shell Scripting . 25

3.5.1 Shell Types . 26

3.5.2 Writing a Script . 26

3.5.3 System run level and init.d scripts 27

4 Media File Encryption 33

4.1 Types of Encryption . 33

4.2 Advanced Encryption Standard (AES) 34

4.2.1 Advantages of AES over DES 34

4.2.2 Description of Algorithm . 34

4.2.3 AES Modes of Operation and Initialization vector 36

4.2.4 Implementation of Algorithm 37

viii

4.2.5 Timing Analysis . 38

5 Process and Socket Programming 39

5.1 Process ID . 39

5.2 Creating Process . 40

5.2.1 Calling fork . 40

5.2.2 Calling execv . 40

5.3 Socket Interprocess Communication 41

5.3.1 System calls . 43

6 Implementation of Client-Server model 46

6.1 Server Process . 46

6.2 Client Process . 47

7 Conclusion and Future Scope 52

7.1 Conclusion . 52

7.2 Future Scope . 53

Bibliography 54

List of Figures

2.1 Beagleboard-XM . 7

2.2 HighLevel Block Diagram of Beagleboard-XM 8

6.1 Server Process Flowchart . 48

6.2 Process of sending files . 49

6.3 Client Process . 50

6.4 Client Process . 51

ix

Chapter 1

Introduction

This thesis work is related to project of “Networked Outdoor Media Player”

which implements various features of standard Digital Media Player and extended

special feature of networking of media player for the content management and ad-

ministration from remote side content server. The project work includes selection

of development board used for the media player module that includes microproces-

sor supporting high definition media content processing(decoding) and peripherals

for the networking and storage component for on content storage and OS instal-

lation. The project work also describes designing and implementation of robust

process flow for automatic content management of the media player module from

the content server. ,encryption process for the content (Media files)to avoid unau-

thorized access of media files and media player. To accommodate all these features

Beagleboard-xM is selected to work as a media player module and linux(Ubuntu)

has been installed as the operating system of the module.

1.1 Background

Digital signs are a form of electronic display that shows television programming,

menus, information, advertising and other messages. Digital signs (frequently uti-

lizing technologies such as LCD, LED, plasma displays, or projected images to dis-

play content) can be found in both public and private environments, including retail

1

CHAPTER 1. INTRODUCTION 2

stores, hotels, restaurants, and corporate buildings, among st other locations.

Digital sign displays are most commonly controlled by personal computers or

servers, through the use of either proprietary software or free software; this ap-

proach often allows the operator to avoid large capital outlays for the controller

equipment.

Advertising using a digital sign is a form of out-of-home advertising in which

video content, advertisements, and/or messages may be displayed on digital signs

with a common goal of delivering targeted messages, to specific locations and/or

consumers, at specific times. This is often called “digital out of home ”or abbrevi-

ated as DOOH.

Since digital sign content may be both frequently and easily updated, saving the

printing and/or construction costs associated with a static sign, and also because

of the interactive abilities available through the accompanying employment of such

real-world interfaces as embedded touch screens, movement detection and image

capture devices, it has won wide acceptance in the marketplace.

Digital signs rely on a variety of hardware to deliver the content. The compo-

nents of a typical digital sign installation include one or more display screens, one

or more media players, and a content management server. Sometimes two or more

of these components are present in a single device but typically there is a display

screen, a media player, and a content management server that is connected to the

media player over a network. One content management server may support multiple

media players and one media player may support multiple screens. Stand-alone digi-

tal sign devices combine all three functions in one device and no network connection

is needed.

CHAPTER 1. INTRODUCTION 3

1.2 Scope of Work

The experimental set up is prepared for this dissertation work includes Desktop PC

set up as a content server and Beagleboard-xM configured as a media player and LCD

monitor set as a display screen. A part of study includes methods of linux(Ubuntu)

installation on the board and its configuration for networking.A study work includes

learning of the system calls for the process creation and socket programming.AES

encryption process and its implementation details has been described. The client-

server model for the content management has been represented in which server

process flow and client process flow are described.

1.3 Outline of Thesis

The contents of this document have been organized in a logical sequence. A brief

description of the contents of each chapter is given below.

Chapter 2 Beagleboard-XM Specifications and Software Configurations: This

chapter briefly describes hardware specifications of the Beagleboard-XM,block di-

agram of the board.Installation steps of the OS,configuration of the OS for the

networking features etc are included in this chapter

Chapter 3 Basics of Library,Makefile and Shell Scripting: This chapter represents

short tutorial notes on the libraries creation,makefile creation and shell scripting.

Chapter 4 Media file Encryption: This chapter covers theory and implementation

details of AES encryption process used in this project work.

Chapter 4 Process and Socket Programming: This chapter describes the method

for child process creation,process identification, parallel processing etc. It also de-

scribes linux’s concept of “Socket ”, socket structure, and basic methods of filling

up socket and various system calls used in socket programming.

CHAPTER 1. INTRODUCTION 4

Chapter 5 Implementation of Client-Server model: This chapter describes process

flow of the server and client modules,implementation of the server-client model for

the file transfer and synchronization between server and client modules.

Chapter 6 Conclusion and Future Scope: This chapter briefly concludes the ap-

proach of Networked Outdoor Media player used in this project work and its future

scopes.

Chapter 2

Beagleboard-XM Specifications

and Configuration

2.1 BeagleboardXM overview

The BeagleBoardXM [7]is designed specifically to address the Open Source Com-

munity. It has been equipped with a minimum set of features to allow the user to

experience the power of the processor. By utilizing standard interfaces, the Beagle-

BoardXM is highly extensible to add many features and interfaces.

2.1.1 Processor

The BeagleBoard-xM processor is the DM3730CBP[8] 1GHz version and comes in

a .4mm pitch POP package. POP (Package on Package) is a technique where the

memory is mounted on top of the processor. For this reason, when looking at the

BeagleBoard, labled name DM3730CBP cannot be found.

Processor Overview The DM37x generation of high-performance, applications

processors are based on the enhanced device architecture and are integrated on TI’s

advanced 45-nm process technology. This architecture is designed to provide best

in class ARM and Graphics performance while delivering low power consumption.

5

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION6

Table 2.1: Beagleboard-xM Features

Feature
Processor Texas Instruments Cortex A8 1GHz processor
POP
Memory

Micron 4Gb MDDR SDRAM (512MB) 200MHz

PMIC
TPS65950

Power Regulators

Audio CODEC
Reset

USB OTG PHY
Debug
Support

14 Pin JTAG GPIO Pins

UART 3LEDs
Indicators Power, Power Error 2-User Controllable

PMU USB Power
USB Host
Ports

SMSC LAN9514 Ethernet HUB

4 FS/LS/HSUp to 500ma per Port if adequate power is supplied
Ethernet 10/100 From USB HUB
SD/MMC
Connector

MicroSD

User Inter-
face

1-User defined button Reset Button

Video DVI-D S-Video
Power
Connector

USB Power DC Power

Overvoltage
Protection

Shutdown @ Over voltage

Main Ex-
pansion
Connector

Power (5V & 1.8V) UART

McBSP McSPI
I2C GPIO
MMC2 PWM

2 LCD
Connec-
tors

Access to all of the
LCD control signals
plus I2C

3.3V, 5V, 1.8V

Auxiliary
Expansion

MMC3 GPIO,ADC,HDQ

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION7

Figure 2.1: Beagleboard-XM

This balance of performance and power allow the device to support the following

example applications:

• Portable Data Terminals

• Navigation

• Auto infotainment

• Gaming

• Medical Imaging

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION8

Figure 2.2: HighLevel Block Diagram of Beagleboard-XM

• Single board Computers

The device can support numerous HLOS and RTOS solutions including Linux and

Windows Embedded CE which are available directly from TI. Additionally, the

device is fully backward compatible with previous Cortex-A8 processors and OMAP

processors.

Main Features

• ARM microprocessor (MPU) Subsystem compatible with OMAP-3 Architec-

ture

• High Performance Image, Video, Audio Accelerator Subsystem

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION9

• POWER SGX Graphics Accelerator

• Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x+ DSP Core

NEON SIMD for multimedia processing The ARM NEON[9] general-

purpose SIMD engine efficiently processes current and future multimedia formats,

enhancing the user experience. NEON technology can accelerate multimedia and

signal processing algorithms such as video encode/decode, 2D/3D graphics, gaming,

audio and speech processing, image processing, telephony, and sound synthesis by

at least 3x the performance of ARMv5 and at least 2x the performance of ARMv6

SIMD.

NEON supports the widest range of multimedia codecs

• Many soft codec standards: MPEG-4, H.264, On2 VP6/7/8, Real, AVS

• Ideal solution for normal size “internet ”streaming” decode of various formats

• Not just for codecs - also applicable to 2D and 3D graphics and other vector

processing

• Off the shelf tools, OS support, and ecosystem support

• NEON will give 60-150% performance boost on complex video codecs

• Individual simple DSP algorithms can show larger performance boost (4x-8x)

• Processor can sleep sooner, resulting in overall dynamic power saving

2.1.2 Memory

There are two possible memory devices used on the xM. The -00 assembly uses

the Micron POP memory and the -01 uses the Numonyx POP memory. The key

function of the POP memory is to provide: 4Gb MDDR SDRAM x32 (512MB @

166MHz)

Unlike with earlier versions of the board, no other memory devices are on the Bea-

gleBoard. It is possible however, that additional nonvolatile memory storage can be

added to BeagleBoard by:

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION10

• Accessing the memory on the uSD card

• Use the USB OTG port and a powered USB hub to drive a USB Thumb drive

or hard drive.

• Install a thumb drive into one of the USB ports

• Add a USB to Hard Disk adapter to one of the USB ports

2.1.3 Power management

The TPS65950 is used on the BeagleBoard to provide power with the exception of

a 3.3V regulator which is used to provide power to the DVI-D encoder and RS232

driver and an additional 3.3V regulator to power the USB Hub.

2.1.4 HS USB 2.0 OTG Port

The USB OTG port can be used as the primary power source and communication

link for the BeagleBoard and derives power from the PC over the USB cable. The

client port is limited in most cases to 500mA by the PC. There are instances where

the PC or laptop does not supply sufficient current to power the board as it does not

provide the full 500mA. Under this mode the USB HUB will now be powered based

on the design changes made to the over volt circuitry. Care should be taken not to

overload the USB ports as the total power supplied to the ports will not enable full

power to all of the USB ports as you can have with the DC power.

2.1.5 HS USB 2.0 Host Ports

On the board are four USB Type A connectors with full LS/FS/HS support. Each

port can provide power on/off control and up to 500mA of current at 5V as long as

the input DC is at least 3A. The ports will not function unless the board is powered

by the DC jack. They cannot be powered via the OTG port.

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION11

2.1.6 DVI-D Connector

The BeagleBoard can drive a LCD panel equipped with a DVI-D digital input. This

is the standard LCD panel interface of the processor and will support 24b color

output. DDC2B (Display Data Channel) or EDID (Enhanced Display ID) support

over I2C is provided in order to allow for the identification of the LCD monitor type

and the required settings. The BeagleBoard is equipped with a DVI-D interface that

uses an HDMI connector that was selected for its small size. It does not support the

full HDMI interface and is used to provide the DVI-D interface portion only. The

user must use a HDMI to DVI-D cable or adapter to connect to a LCD monitor.

This cable or adapter is not provided with the BeagleBoard. A standard HDMI

cable can be used when connecting to a monitor with an HDMI connector.

2.1.7 Onboard USB HUB

A new feature of the xM board is the inclusion of an onboard USB 4 port hub with

an integrated 10/100 Ethernet as shown in the block diagram.

2.1.8 LCD Header

A pair of 1.27mm pitch 2x10 headers are provided to gain access to the LCD signals.

This allows for the creation of LCD boards that will allow adapters to be made to

provide the level translation to support different LCD panels.

2.1.9 MicroSD Connector

A single microSD connector is provided as a means for the main non-volatile memory

storage on the board. This replaces the 6 in 2 SD/MMC connector found on the

BeagleBoard.

2.1.10 User Button

A button is provided on the BeagleBoard to be used as an application button that

can be used by SW as needed. As there is no NAND boot option on the board,

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION12

this button is no longer needed to force an SD card boot. It is can be used by the

UBoot SW to switch between user scripts to allow different boot configurations to

be selected as long as that feature is included in the UBoot used. If you press this

button on power up, the board will not boot properly

2.1.11 Indicators

There are four green LEDs on the BeagleBoard that can be controlled by the user.

• One on the TPS65950 that is programmed via the I2C interface

• Two on the processor controlled via GPIO pins

• One Power LED that indicates that power is applied and can be turned off

via SW

• One to indicate that power is applied to the onboard USB HUB and can be

controlled via the SW.

There is also one red LED on the BeagleBoard that provides an indication that the

power connected to the board exceeds the voltage range of the board. If this LED

ever turns on, please remove the power connector and look for the correct power

supply in order to prevent damage to the board.

2.1.12 Power Connector

Power can be supplied via the USB OTG connector for some application that does

not require the USB Host ports. A wall supply 5V can be plugged into the DC

power jack from full access to all functions of the board. When the wall supply

is plugged in, it will remove the power path from the USB connector and will be

the power source for the whole board. The power supply is not provided with the

BeagleBoard.

When using the USB OTG port in the host mode, the DC supply must be connected

as the USB port will be used to provide limited power to the hub at a maximum

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION13

of 100mA, so the hub must be powered. The 100mA is not impacted by having a

higher amperage supply plugged into the DC power jack. The 100mA is a function

of the OTG port itself. Make sure the DC supply is regulated and a clean supply.

If the power is over the voltage specification, a RED LED will turn on. This will

prevent the power from actually making it to the circuitry on the board and will

stay on as long as the power exceeds the voltage specification.

2.1.13 JTAG Connector

A 14 pin JTAG header is provided on the BeagleBoard to facilitate the SW develop-

ment and debugging of the board by using various JTAG emulators. The interface

is at 1.8V on all signals. Only 1.8V Levels are supported.

2.1.14 RS232 DB9 Connector

Support for RS232 via UART3 is provided by DB9 connector on the BeagleBoard

for access to an onboard RS232 transceiver. A USB to Serial cable can be plugged

directly into the Beagle. Unlike on the original version of the Beagle, a straight

through non null modem cable is required. The cable you used on the BeagleBoard

will NOT work on the xM version. A standard male to female straight DB9 cable

may be used or you can use a USB to serial adapter that will plug directly into the

board without the need for any other cables.

2.1.15 Camera Connector

A single connector has been added to the BeagleBoardxM board for the purpose of

supporting a camera module. The camera module does not come with the board but

can be obtained from Leopard Imaging. The supported resolutions include VGA,

2MP, 3MP, and 5MP camera modules. For proper operation of the cameras, the

correct SW drivers are required. This connector is populated on the board and is

ready for the camera module to be installed.

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION14

2.1.16 MMC3 Expansion Header

New to the BeagleBoard-xM is a 20 pin connector provided to allow access to ad-

ditional signals including GPIO and the MMC3 port. This connector is populated

on the board.

2.2 Porting Linux Operating System on Beagleboard-

XM

Linux operating systems that Beagleboard-XM supports are :

• Angstrom

• Ubuntu

• Android

• Archlinux

In this project Ubuntu has been chosen for its ease of network configuration,desktop

like GUI and inbuilt GCC compiler.Different methods used for porting OS on the

board that includes manual installation,installing pre-configured image and net-

install method.In this project later two methods have been used and tested for

porting OS on the board.

2.2.1 Install Pre-Configured Image [11]

Get Prebuilt Image:

wget https://rcn-ee.net/deb/rootfs/raring/ubuntu-13.04-console-armhf-2013-11-15.tar.xz

Verify Image

md5sum ubuntu-13.04-console-armhf-2013-11-15.tar.xz 6692e4ae33d62ea94fd1b418d257a514

ubuntu-13.04-console-armhf-2013-11-15.tar.xz

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION15

Unpack Image

tar xf ubuntu-13.04-console-armhf-2013-11-15.tar.xz

cd ubuntu-13.04-console-armhf-2013-11-15

To find location of SD card:

sudo ./setup sdcard.sh –probe-mmc

Install Script for Beagleboard-XM

sudo ./setup sdcard.sh –mmc /dev/sdX –uboot beagle xm

Additional Options:

–rootfs ¡ext4 default¿

–swap file ¡swap file size in MB’s¿

For Basic Framebuffer driven desktop environment:

Ethernet: sudo ifconfig -a and sudo dhclient usb1 or sudo dhclient eth0

2.2.2 NetInstall Method

Download netinstall script

git clone git://github.com/RobertCNelson/netinstall.git

cd netinstall

Board Selection

*BeagleBoard xMx - omap3-beagle-xm

Options for Ubuntu Distributions

–distro oneiric (11.10)

–distro precise-armhf (12.04)

–distro quantal-armhf (12.10)

CHAPTER 2. BEAGLEBOARD-XM SPECIFICATIONS AND CONFIGURATION16

Install Script for ¡board¿ selection

sudo ./mk mmc.sh –mmc /dev/sdX –dtb ¡board¿ –distro < distro >

So for beagleboard-xM and Ubuntu 12.10 (quantal-armhf)

sudo ./mk mmc.sh –mmc /dev/sdX –uboot beagle xm –distro quantal-armhf

other options

–firmware : installs firmware

–serial-mode : debian-installer uses Serial Port

2.3 System Configuration for Static MAC and

IP address

[4] Unlike its previous version Beagleboard-XM does not have a flash memory for

static MAC address.Each time system assigns random MAC address on system boot

up. Since it is required to have static MAC address that attaches to only given static

IP address system is configured. In this configuration system file interfaces at the

location /etc/network is rewritten as follows.

/etc/network/interfaces:

auto eth0

iface eth0 inet static

address < IP address >

netmask < >

gateway < >

dns-nameservers < >

hwaddress ether < MAC address >

Chapter 3

Basics of Libraries,Makefile and

Shell

In this chapter fundamental theoretical aspects and the implementation method of

the libraries,makefile utility and shell scripting has been described that are used in

the project’s development.

3.1 Importance of Library

This methodology, also known as “shared components”or “archive libraries”together

multiple compiled object code files into a single file known as a library. Typically C

functions/C++ classes and methods which can be shared by more than one appli-

cation are broken out of the application’s source code, compiled and bundled into a

library. The C standard libraries and C++ STL are examples of shared components

which can be linked with your code. The benefit is that each and every object file

need not be stated when linking because the developer can reference the individual

library. This simplifies the multiple use and sharing of software components be-

tween applications. It also allows application vendors a way to simply release an

API to interface with an application. Components which are large can be created

for dynamic use, thus the library remain separate from the executable reducing it’s

size and thus disk space used. The library components are then called by various

17

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 18

applications for use when needed.

In this project work encryption process are carried by creating static library form

the available open source code which is described in the next chapter.

3.2 Library Naming Conventions

Libraries are typically names with the prefix ”lib”. This is true for all the C stan-

dard libraries. When linking, the command line reference to the library will not

contain the library prefix or suffix.[1]

Thus the following link command:

gcc src-file.c -lm -lpthread

The libraries referenced in this example for inclusion during linking are the math li-

brary and the thread library. They are found in /usr/lib/libm.a and /usr/lib/libpthread.a.

3.3 Linux Library Types

There are two Linux C/C++ library types which can be created:

3.3.1 Shared Library (.a)

Library of object code which is linked with, and becomes part of the application.

Steps to generate Library:

1. Compile: gcc Wall c math.c

2. Create Library libmath.a : ar -cvq libmath.c math.o

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 19

3. List files in library : ar t libmath.a

4. Linking with library:

gcc o exec name main.c libmath.a

gcc -o exec name main.c -L/path/to/library-directory lmath

3.3.2 Dynamically Linked “Shared Object”Libraries: (.so):

Steps to create shares object file:

1. create object code

2. Create Library

3. Optional: create default version using a symbolic link.

Library creation example:

gcc Wall fPIC c math.c

gcc -shared -Wl,-soname,libmath.so.1 o libmath.so.1.0 math.o

mv libmath.so.1.0 /opt/lib

ln -sf /opt/lib/libmath.so.1.0 /opt/lib/libmath.so.1

ln -sf /opt/lib/libmath.so.1.0 /opt/lib/libmath.so

This creates the library libmath.so.1.0 and symbolic links to it. It is also valid

to cascade the linkage:

ln -sf /opt/lib/libcmath.so.1.0 /opt/lib/libmath.so.1

ln -sf /opt/lib/libmath.so.1 /opt/lib/libmath.so

Compiler Options:

• -Wall: include warnings. See man page for warnings specified.

• -fPIC: Compiler directive to output position independent code, a characteristic

required by shared libraries. Also see ”-fpic”.

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 20

• -shared: Produce a shared object which can then be linked with other objects

to form an executable.

• -Wl,options: Pass options to linker. In this example the options to be passed

on to the linker are: ”-soname libmath.so.1”. The name passed with the ”-o”

option is passed to gcc.

• Option -o: Output of operation. In this case the name of the shared object to

be output will be ”libmath.so.1.0”

Library Links:

• The link to /opt/lib/libmath.so allows the naming convention for the compile

flag -lctest to work.

• The link to /opt/lib/libmath.so.1 allows the run time binding to work. See

dependency below.

Compile main program and link with shared object library:

Compiling for runtime linking with a dynamically linked libctest.so.1.0:

gcc -Wall -I/path/to/include-files -L/path/to/libraries main.c -lmath -o main or

gcc -Wall -L/opt/lib main.c -lmaath -o main

Where the name of the library is libmath.so. The libraries will NOT be included in

the executable but will be dynamically linked during runtime execution.

List Dependencies: The shared library dependencies of the executable can be

listed with the command: ldd name-of-executable

Example: ldd main

Linux-gate.so.1 = > (0xb77c4000)

Libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb7605000)

/lib/ld-linux.so.2 (0Xb77c5000)

Setting Library Path :

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 21

In order for an executable to find the required libraries to link with during run time,

one must configure the system so that the libraries can be found. Methods available:

1. Add library directories to be included during dynamic linking to the file

/etc/ld.so.conf

Sample: /etc/ld.so.conf

/usr/X11R6/lib

/usr/lib

...

...

/usr/lib/sane

/usr/lib/mysql

/opt/lib

Add the library path to this file and then execute the command (as root) ld-

config to configure the linker run-time bindings. You can use the ”-f file-name”

flag to reference another configuration file if you are developing for different

environments.

OR

2. Add specified directory to library cache: (as root)

ldconfig -n /opt/lib

Where /opt/lib is the directory containing your library libctest.so (When de-

veloping and just adding current directory: ldconfig -n . Link with -L.) This

will NOT permanently configure the system to include this directory. The

information will be lost upon system reboot.

OR

3. Specify the environment variable LD LIBRARY PATH to point to the di-

rectory paths containing the shared object library. This will specify to the

run time loader that the library paths will be used during execution to resolve

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 22

dependencies.

Example (bash shell): export LD LIBRARY PATH=/opt/lib:$LD LIBRARY

PATH

This instructs the run time loader to look in the path described by the envi-

ronment variable LD LIBRARY PATH, to resolve shared libraries. This will

include the path /opt/lib.

3.4 Makefile

Large projects can contain thousands of lines of code, distributed in multiple source

files, written by many developers and arranged in several subdirectories. A project

may contain several component divisions. These components may have complex

inter-dependencies for example, in order to compile component X, you have to first

compile Y; in order to compile Y, you have to first compile Z; and so on. For a

large project, when a few changes are made to the source, manually recompiling the

entire project each time is tedious, error-prone and time-consuming.[1]

Make is a solution to these problems. It can be used to specify dependencies between

components, so that it will compile components in the order required to satisfy de-

pendencies. An important feature is that when a project is recompiled after a few

changes, it will recompile only the files which are changed, and any components that

are dependent on it. This saves a lot of time. Make is, therefore, an essential tool

for a large software project.

Each project needs a Makefile a script that describes the project structure, namely,

the source code files, the dependencies between them, compiler arguments, and how

to produce the target output (normally, one or more executables). Whenever the

make command is executed, the Makefile in the current working directory is inter-

preted, and the instructions executed to produce the target outputs. The Makefile

contains a collection of rules, macros, variable assignments, etc. (Makefile or make-

file are both acceptable.)

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 23

Writing Makefile:

target: dependency1 dependency2 ...

[TAB] action1

[TAB] action2

.....

Makefile

all: main.o module.o

gcc main.o module.o -o target bin

main.o: main.c module.h

gcc -I . -c main.c

module.o: module.c module.h

gcc -I . -c module.c

Clean:

rm -rf *.o

rm target bin

1. all is a special target that depends on main.o and module.o, and has the

command (from the manual steps earlier) to make GCC link the two object

files into the final executable binary.

2. main.o is a filename target that depends on main.c and module.h, and has the

command to compile main.c to produce main.o.

3. module.o is a filename target that depends on module.c and module.h; it calls

GCC to compile the module.c file to produce module.o.

4. clean is a special target that has no dependencies, but specifies the commands

to clean the compilation outputs from the project directories.

Makefile Processing[12]: When the make command is executed, it looks for a file

named makefile or Makefile in the current directory. It parses the found Makefile,

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 24

and constructs a dependency tree. Based on the desired make target specified (or

implied) on the command-line, make checks if the dependency files of that target

exist. And (for filename targets explained below) if they exist, whether they are

newer than the target itself, by comparing file timestamps.

Before executing the action (commands) corresponding to the desired target, its

dependencies must be met; when they are not met, the targets corresponding to

the unmet dependencies are executed before the given make target, to supply the

missing dependencies.

When a target is a filename, make compares the timestamps of the target file and

its dependency files. If the dependency filename is another target in the Makefile,

make then checks the timestamps of that targets dependencies. It thus winds up

recursively checking all the way down the dependency tree, to the source code files,

to see if any of the files in the dependency tree are newer than their target filenames.

(Of course, if the dependency files dont exist, then make knows it must start execut-

ing the make targets from the lowest point in the dependency tree, to create them.)

If make finds that files in the dependency tree are newer than their target, then

all the targets in the affected branch of the tree are executed, starting from the low-

est, to update the dependency files. When make finally returns from its recursive

checking of the tree, it completes the final comparison for the desired make target.

If the dependency files are newer than the target (which is usually the case), it runs

the command(s) for the desired make target. This process is how make saves time,

by executing only commands that need to be executed, based on which of the source

files (listed as dependencies) have been updated, and have a newer timestamp than

their target.

Now, when a target is not a filename (like all and clean in our Makefile, which

we called special targets), make obviously cannot compare timestamps to check

whether the targets dependencies are newer. Therefore, such a target is always ex-

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 25

ecuted, if specified (or implied) on the command line.

For the execution of each target, make prints the actions while executing them.

Note that each of the actions (shell commands written on a line) are executed in

a separate sub-shell. If an action changes the shell environment, such a change is

restricted to the sub-shell for that action line only. For example, if one action line

contains a command like cd newdir, the current directory will be changed only for

that line/action; for the next line/action, the current directory will be unchanged.

In above example, targets dependencies are module.o and main.o. Since these files

do not exist on our first run of make for this project, make notes that it must execute

the targets main.o and module.o. These targets, in turn, produce the main.o and

module.o files by executing the corresponding actions/commands. Finally, make

executes the command for the target all.

For any changes we can remove bin file by explicitly stating clean after make:

$ make clean

rm -rf *.o

rm target bin

3.5 Shell Scripting

A Shell is a program that acts as an interface between user and UNIX system. A

Shell is an environment in which commands, programs and Shell scripts can be run.

There are different flavors of shells, just as there are different flavors of operating sys-

tems. Each flavor of shell has its own set of recognized commands and functions.[2]

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 26

3.5.1 Shell Types

In UNIX there are two major types of shells:

1. The Bourne shell. If you are using a Bourne-type shell, the default prompt is

the $ character.

2. The C shell. If you are using a C-type shell, the default prompt is the %

character.

There are again various subcategories for Bourne Shell which are listed as follows:

• Bourne shell (sh)

• Korn shell (ksh)

• Bourne Again shell (bash)

• POSIX shell (sh)

The Bourne shell was the first shell to appear on UNIX systems, thus it is referred

to as ”the shell”.

The Bourne shell is usually installed as /bin/sh on most versions of UNIX. For this

reason, it is the shell of choice for writing scripts to use on several different versions

of UNIX.

Unlike common language shell just interprets the input rather than compile it so

utilities written in shells are faster to run than programs written in particular lan-

guage compiling , debugging tools. Moreover shell can interprets inputs from many

language including C,C++, Perl, Tcl/Tk and Python.

3.5.2 Writing a Script

The basic concept of a shell script is a list of commands, which are listed in the

order of execution. A good shell script will have comments, preceded by a pound

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 27

sign,# , describing the steps. A shell scrip is written in text editor which is can be

given extension of .sh However it is not compulsory. Every shell script starts with

comment that is

!/bin/sh

This tells the system that program following # ! will be used to execute following

script. Scripts are ended with exit code that ensures that script returns with sen-

sible exit code. Writing an exit code is important when script is being called in by

another script in which exit code return is used for testing success of the script.

Making Script Executable

Scripts in Unix can only be executed with admin permission. Before executing

script it is required to make it executable. Following command can be used for this.

$chmod +x first.sh $first.sh

Bash Environment Variables: When a shell script starts, some variables

are initialized from values in the environment. These are normally capitalized to

distinguish them from user-defined variables in the script which are conventionally

lowercase. Some principal environment variables are:

Parameter Variable If script is invoked with parameters, some additional vari-

ables are created. Even if no parameters are passed, the preceding environment

variable $# still exists but has a value of 0. The parameter variables are listed in

the following table.

3.5.3 System run level and init.d scripts

The /etc/init.d directory contains the scripts executed by init at boot time and

when the init state (or ”runlevel”) is changed.

There is symbolic link method for handling these scripts. These scripts are refer-

enced by symbolic links in the /etc/rcn.d directories[6]. When changing runlevels,

init looks in the directory /etc/rcn.d for the scripts it should execute, where n is the

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 28

Table 3.1: Shell Environment Variables

Environment
Variable

Description

$HOME The home directory of the current user.
$PATH A colon-separated list of directories to search for commands.
$PS1 A command prompt, frequently $, but in bash user can use

some more complex values.
$PS2 A secondary prompt, used when prompting for additional in-

put;usually >.
$IFS An input field separator; a list of characters that are used to

separate words when the shell is reading input, usually space,
tab, and newline characters.

$0 The name of the shell script.
$# The number of parameters passed.
$$ The process ID of the shell script, often used inside a

script for generating unique temporary filenames; for example
/tmp/tmpfile $$.

Table 3.2: Parameter Varible

Parameter Variable Description
$1,$2,.... The parameters given to the script
$* A list of all the parameters, in a single variable, separated

by the first character in the environment variable IFS.
$@ A subtle variation on $*; it doesnt use the IFS environment

variable, so parameters may be run together if IFS is empty.

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 29

runlevel that is being changed to, or S for the boot-up scripts.

The names of the links all have the form Smmscript or Kmmscript where mm is a

two-digit number and script is the name of the script (this should be the same as

the name of the actual script in /etc/init.d).

When init changes runlevel first the targets of the links whose names start with a

K are executed, each with the single argument stop, followed by the scripts prefixed

with an S, each with the single argument start. (The links are those in the /etc/rcn.d

directory corresponding to the new runlevel.) The K links are responsible for killing

services and the S link for starting services upon entering the runlevel.

When init changes runlevel first the targets of the links whose names start with a

K are executed, each with the single argument stop, followed by the scripts prefixed

with an S, each with the single argument start. (The links are those in the /etc/rcn.d

directory corresponding to the new runlevel.) The K links are responsible for killing

services and the S link for starting services upon entering the runlevel.

For example, if we are changing from runlevel 2 to runlevel 3, init will first execute

all of the K prefixed scripts it finds in /etc/rc3.d, and then all of the S prefixed

scripts in that directory. The links starting with K will cause the referred-to file to

be executed with an argument of stop, and the S links with an argument of start.

The two-digit number mm is used to determine the order in which to run the scripts:

low-numbered links have their scripts run first. For example, the K20 scripts will

be executed before the K30 scripts. This is used when a certain service must be

started before another.

Building a Start-up Script

Packages that include daemons for system services should place scripts in /etc/init.d

to start or stop services at boot time or during a change of runlevel. These scripts

should be named /etc/init.d/package, and they should accept one argument, saying

what to do:

stop :

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 30

stop the service,

restart :

stop and restart the service if it’s already running, otherwise start the service

reload:

cause the configuration of the service to be reloaded without actually stopping and

restarting the service,

force-reload:

cause the configuration to be reloaded if the service supports this, otherwise restart

the service.

The start, stop, restart, and force-reload options should be supported by all scripts

in /etc/init.d, the reload option is optional.

The init.d scripts must ensure that they will behave sensibly (i.e., returning success

and not starting multiple copies of a service) if invoked with start when the service is

already running, or with stop when it isn’t, and that they don’t kill unfortunately-

named user processes. The best way to achieve this is usually to use start-stop-

daemon with the –oknodo option.

If a service reloads its configuration automatically (as in the case of cron, for

example), the reload option of the init.d script should behave as if the configuration

has been reloaded successfully.

The /etc/init.d scripts must be treated as configuration files, either (if they are

present in the package, that is, in the .deb file) by marking them as conffiles, or, (if

they do not exist in the .deb) by managing them correctly in the maintainer scripts.

This is important since we want to give the local system administrator the chance to

adapt the scripts to the local system, e.g., to disable a service without de-installing

the package, or to specify some special command line options when starting a service,

while making sure their changes aren’t lost during the next package upgrade.

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 31

These scripts should not fail obscurely when the configuration files remain but

the package has been removed, as configuration files remain on the system after the

package has been removed. Only when dpkg is executed with the –purge option will

configuration files be removed. In particular, as the /etc/init.d/package script itself

is usually a conffile, it will remain on the system if the package is removed but not

purged. Therefore, you should include a test statement at the top of the script, like

this:

test -f program-executed-later-in-script —— exit 0

Script variable should be placed in a file in /etc/default, which typically will have

the same base name as the init.d script. This extra file should be sourced by the

script when the script runs. It must contain only variable settings and comments in

SUSv3 sh format. It may either be a conffile or a configuration file maintained by

the package maintainer scripts. See for more details.

The program update-rc.d is provided for package maintainers to arrange for the

proper creation and removal of /etc/rcn.d symbolic links, or their functional equiv-

alent if another method is being used.

By default update-rc.d will start services in each of the multi-user state runlevels

(2, 3, 4, and 5) and stop them in the halt runlevel (0), the single-user runlevel (1)

and the reboot runlevel (6). The system administrator will have the opportunity

to customize runlevels by simply adding, moving, or removing the symbolic links in

/etc/rcn.d if symbolic links are being used, or by modifying /etc/runlevel.conf if the

file-rc method is being used.

To get the default behavior of package, put in users postinst script

update-rc.d package defaults

To remove package from start up

CHAPTER 3. BASICS OF LIBRARIES,MAKEFILE AND SHELL 32

update-rc.d -f package remove

Running a Script

The program invoke-rc.d is provided to make it easier for package maintainers to

properly invoke an init script, obeying run level and other locally-defined constraints

that might limit a package’s right to start, stop and otherwise manage services. This

program may be used by maintainers in their packages’ scripts. By default, invoke-

rc.d will pass any action requests (start, stop, reload, restart...) to the /etc/init.d

script, filtering out requests to start or restart a service out of its intended run levels.

Chapter 4

Media File Encryption

As long as the operating system is running on a system without file encryption,

access to the files will have to go through OS-controlled user authentication and

access control lists. If an attacker gains physical access to the computer, however,

this barrier can be easily circumvented. One way would be to remove the disk and

put it in another computer with an OS installed that can read the file system, or

simply reboot the computer from a boot CD or USB device containing an OS that

is suitable to access the local file system. In this project it unauthorized access to

media player at the site and media files are prevented by transmitting them in the

encryption form and store them in the encrypted form at the display site, where

files are decrypted by the program before they are taken out for the display.

4.1 Types of Encryption

1. Symmetric Key Encryption

Symmetric-key algorithms are a class of algorithms for cryptography that use

the same cryptographic keys for both encryption of plaintext and decryption

of ciphertext.Examples of popular symmetric algorithms include Twofish, Ser-

pent, AES (Rijndael), Blowfish, CAST5, RC4, 3DES, and IDEA.

2. Public Key Encryption

Public-key cryptography, also known as asymmetric cryptography, refers to

33

CHAPTER 4. MEDIA FILE ENCRYPTION 34

a cryptographic algorithm which requires two separate keys, one of which is

secret (or private) and one of which is public. Although different, the two parts

of this key pair are mathematically linked. The public key is used to encrypt

plaintext or to verify a digital signature; whereas the private key is used to

decrypt ciphertext or to create a digital signaturePublic-key algorithms are

fundamental security ingredients in cryptosystems, applications and protocols.

They underpin such Internet standards as Transport Layer Security (TLS),

PGP, and RSA

4.2 Advanced Encryption Standard (AES)

4.2.1 Advantages of AES over DES

In this project AES (Advanced Encryption Standard) has been used to encrypt me-

dia files which is a symmetric encryption algorithm. AES supersedes DES (Data

Encryption Standard) which is also a symmetric-key algorithm.

DES uses 56 bit length key for encryption which is vulnerable to exhaustive search.

DES can only process maximum 64-bits block at a time hence it is slower in both

hardware and software implementation.

AES is based on a design principle known as a substitution-permutation network,

and is fast in both software and hardware. Unlike DES, AES does not use a Feistel

network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and

a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is

specified with block and key sizes that may be any multiple of 32 bits, both with a

minimum of 128 and a maximum of 256 bits.

4.2.2 Description of Algorithm

The key size used for an AES cipher specifies the number of repetitions of trans-

formation rounds that convert the input, called the plaintext, into the final output,

CHAPTER 4. MEDIA FILE ENCRYPTION 35

called the ciphertext. The number of cycles of repetition are as follows:

• 10 cycles of repetition for 128-bit keys

• 12 cycles of repetition for 192-bit keys

• 14 cycles of repetition for 256-bit keys

Each round consists of several processing steps, each containing four similar but

different stages, including one that depends on the encryption key itself. A set of

reverse rounds are applied to transform ciphertext back into the original plaintext

using the same encryption key.Details of the processing steps are described below.

1. KeyExpansion-round keys are derived from the cipher key using Rijndael’s key

schedule. AES requires a separate 128-bit round key block for each round plus

one more.

2. InitialRound-

(a) AddRoundkey-each byte of the state is combined with a block of the round

key using bitwise xor.

3. Rounds

(a) SubBytes -a non-linear substitution step where each byte is replaced with

another according to a lookup table.

(b) ShiftRows-a transposition step where the last three rows of the state are

shifted cyclically a certain number of steps.

(c) MixColumns-a mixing operation which operates on the columns of the

state, combining the four bytes in each column.

(d) AddRoundkey

4. Final Round(No MixColumns)

(a) SubBytes

CHAPTER 4. MEDIA FILE ENCRYPTION 36

(b) ShiftRows

(c) Addroundkey

4.2.3 AES Modes of Operation and Initialization vector

Mode of Operation is an algorithm that uses block cipher to encrypt the plaintext.

A block cipher by itself is only suitable for the secure cryptographic transformation

(encryption or decryption) of one fixed-length group of bits called a block.A mode

of operation describes how to repeatedly apply a cipher’s single-block operation to

securely transform amounts of data larger than a block size.Common Modes that

are used to cipher whole plaintext are as follows.

1. Electronic Code Book (ECB):The simplest of the encryption modes is the

electronic codebook (ECB) mode. The message is divided into blocks, and

each block is encrypted separately.

2. In CBC mode, each block of plaintext is XORed with the previous ciphertext

block before being encrypted.

3. Cipher Feedback: The cipher feedback (CFB) mode, a close relative of CBC,

makes a block cipher into a self-synchronizing stream cipher. Operation is very

similar; in particular, CFB decryption is almost identical to CBC encryption

performed in reverse.

4. Output Feedback: The output feedback (OFB) mode makes a block cipher

into a synchronous stream cipher. It generates keystream blocks, which are

then XORed with the plaintext blocks to get the ciphertext.

Initialization Vector

Most modes require a unique binary sequence, often called an initialization vec-

tor (IV), for each encryption operation. The IV has to be non-repeating and for

some modes random as well. The initialization vector is used to ensure distinct

ciphertexts are produced even when the same plaintext is encrypted multiple times

independently with the same key.

CHAPTER 4. MEDIA FILE ENCRYPTION 37

4.2.4 Implementation of Algorithm

Implementation of AES encryption has been done by static library which is cre-

ated from open source code files written by Brian Gladman.This static library

aes.acontains following source code files.[10]

aesencrypt.c-The main c source code file for encryption and decryption

aeskey.c-The main c source code file for the key schedule

aestab.c-The main file for AES block tables.

aesmodes.c-This c file defines all AES modes used in this algorithm.

AES Calling Interfaces

The basic AES code keeps its state in a context, there being different contexts for

encryption and decryption. These are:

aes encrypt ctx

aes decrypt ctx

AES code is initialized with the call

aes init(void)

AES encryptio key is set by one of the following calls:

aes encrypt key128(const unsigned char *key, aes encrypt ctx cx[1])

aes encrypt key192(const unsigned char *key, aes encrypt ctx cx[1])

aes encrypt key256(const unsigned char *key, aes encrypt ctx cx[1])

Similarly, the AES decryption key is set by one of:

aes decrypt key128(const unsigned char *key, aes decrypt ctx cx[1])

aes decrypt key192(const unsigned char *key, aes decrypt ctx cx[1])

aes decrypt key256(const unsigned char *key, aes decrypt ctx cx[1])

CHAPTER 4. MEDIA FILE ENCRYPTION 38

Table 4.1: AES timing analysis for Beagleboard-XM

Delay(Sec/ Mb)for the key size in bits
Mode of Operation 128 Bits 192 bits 256 bits

OFB 0.1617 0.1600 0.1767 0.1750 0.1868 0.1900
CFB 0.1583 0.1633 0.1800 0.1733 0.1916 0.1950
CBC 0.0583 0.0600 0.0583 0.0600 0.0533 0.0600

The above subroutines return a value of EXIT SUCCESS or EXIT FAILURE

depending on whether the operation succeeded or failed.

Steps of the File Encryption

1. Declare and initialize the encryption Key

2. Open input and output file in read and write mode respectively

3. Pick a random initialization vector and write it in the output file,a file that

would save cipher text

4. Set the encryption key for the schedule

5. Read the bytes from the input file into the buffer

6. Apply encryption to the buffer data by set encrypted key and initialization

vector

7. Write this encrypted data into the buffer to the output file

8. Repeat the steps 5 to 7 until all of the bytes of the input file are read out

9. Close the input and output files

4.2.5 Timing Analysis

Timing analysis (Delay)has been carried out for different modes of operation and

key sizes to find minimum delay with sufficient strength of encryption. The results

are shown in the table 4.1.

Chapter 5

Process and Socket Programming

In Linux system each terminal window is probably running a shell; each running

shell is another process. When command is executed from the shell, the corre-

sponding program is executed in a new process; the shell process resumes when that

process completes.[1]

In Linux most of the process manipulation functions are declared in ¡unistd.h¿.

5.1 Process ID

Each newly created process in the Linux system is assigned 16 bit unique number

which is called process ID or pid. Each process has its parent process which is

identified by parent process ID or ppid in corresponds to that process. In Linux

system are arranged in tree like structure in which init process is at root of the all

processes. Process ID of the current process can be obtained by getpid() and parent

process ID can be obtained by getppid() function.

39

CHAPTER 5. PROCESS AND SOCKET PROGRAMMING 40

5.2 Creating Process

There are two methods of creating process. One method is by using system() func-

tion in the program which is inefficient and have security risks. Another method is

by using fork() and exec() functions which is discussed here.

5.2.1 Calling fork

When a program calls fork, a duplicate process, called the child process, is created.

The parent process continues executing the program from the point that fork was

called. The child process, too, executes the same program from the same place.

The fork function returns two different values of process ids to the parent process

and child process. The return value in the parent process is the process ID of the

child. The return value in the child process is zero. Because no process ever has a

process ID of zero, this makes it easy for the program whether it is now running as

the parent or the child process. Duplicate a programs process using fork

5.2.2 Calling execv

When a program calls an exec function, that process immediately ceases executing

that program and begins executing a new program from the beginning, assuming

that the exec call doesnt encounter an error.

Within the exec family, there are functions that vary slightly in their capabilities

and how they are called.

• Functions that contain the letter p in their names (execvp and execlp) accept a

program name and search for a program by that name in the current execution

path; functions that dont contain the p must be given the full path of the

program to be executed.

CHAPTER 5. PROCESS AND SOCKET PROGRAMMING 41

• Functions that contain the letter v in their names (execv, execvp, and execve)

accept the argument list for the new program as a NULL-terminated array

of pointers to strings. Functions that contain the letter l (execl, execlp, and

execle) accept the argument list using the C languages varargs mechanism.

• Functions that contain the letter e in their names (execve and execle) accept an

additional argument, an array of environment variables.The argument should

be a NULL-terminated array of pointers to character strings. Each character

string should be of the form VARIABLE=value.

Because exec replaces the calling program with another one, it never returns unless

an error occurs.

5.3 Socket Interprocess Communication

Socket is one of the types of interprocess communication. Socket communication al-

lows communication between unrelated process running on two different computers,

it can also be used for process running on the same computer by specifying do-

main namespace as Local. The parameters of the socket are communication style,

name space and protocol, that are need to be specified at the time of socket creation.

Communication style is how socket treats transmitted data and number of commu-

nicating partners. Data are sent in chunks called packets. There are two approaches

in sending packets.

1. Connections oriented- It guarantees delivery of all the packets in order they

were sent. If the packets are lost or reordered by problems in the network,

the receiver automatically requests their re-transmission from the sender. A

connection-style socket is like a telephone call:The addresses of the sender and

receiver are fixed at the beginning of the communication when the connection

is established.

2. Datagram styles do not guarantee delivery or arrival order. Packets may be lost

or reordered in transit due to network errors or other conditions. Each packet

CHAPTER 5. PROCESS AND SOCKET PROGRAMMING 42

must be labeled with its destination and is not guaranteed to be delivered.The

system guarantees only best effort, so packets may disappear or arrive in a

different order than shipping.

A datagram-style socket behaves more like postal mail.The sender specifies

the receivers address for each individual message.

A Socket name space specifies how socket address are written. In the local name

space socket addresses are local file names while on the internet domain socket ad-

dresses are made of IP address and port number.

A protocol specifies how data is transmitted. Some protocols are TCP/IP, the pri-

mary networking protocols used by the Internet; the AppleTalk network protocol;

and the UNIX local communication protocol.

For Socket creation all parameters are defined in struct .Structure is used for service

name lock-ups and host name lock-ups.

This structure for handling internet addresses is:

include < netinet /in.h >

struct sockaddr in {
short sin family; // e.g. AF INET

unsigned short sin port; // e.g. htons(3490)

struct in addr sin addr; // see struct in addr, below

char sin zero[8]; // zero this if you want to

};

struct in addr {
unsigned long s addr; // load with inet aton()

}; For internet domain sin family has to be set to AF INET while sin zero should

be set to zero with function memset().

CHAPTER 5. PROCESS AND SOCKET PROGRAMMING 43

5.3.1 System calls

[5] getaddrinfo()

It is used for DNS and service name lock ups and fills out the structure for subse-

quent use.

Prototype

include < sys/types.h >

include < sys/socket.h >

include < netdb.h >

int getaddrinfo(const char *node, // e.g. ”www.example.com” or IP

const char *service, // e.g. ”http” or port number

const struct addrinfo *hints,

struct addrinfo **res);

getaddinfo() gives pointer res to a linked-list, node parameter is the host name or

ip address to connect Next is the parameter service, which can be a port number,

like ”80”, or the name of a particular service

socket()

Prototype:

include < sys/types.h >

include < sys/socket.h >

int socket(int domain, int type, int protocol);

It returns socket() descriptor which can subsequently used by other system calls.

bind()

Prototype:

include < sys/types.h >

include < sys/socket.h >

int bind(int sockfd, struct sockaddr *my addr, socklen t addrlen);

bind() system call is used by server program to let remote client connect to the

CHAPTER 5. PROCESS AND SOCKET PROGRAMMING 44

server. Bind system call binds struct sockaddr in that has loaded up and socket

descriptor. If server has only one IP address then s addr field in struct sockaddr

in can be filled INADDR ANY.

connect()

Prototype:

include < sys/types.h >

include < sys/socket.h >

int connect(int sockfd, const struct sockaddr *serv addr, socklen t addrlen);

This system call is used to connect client to the remote server. It requires socket

descriptor and server address.

listen()

Prototype:

include < sys/socket.h >

int listen(int s, int backlog);

Once socket descriptor is created server can call listen() to listen incoming requests

from client side. Backlog parameter shows number of pending connection requests

before server start rejecting them.

accept()

Prototype:

include < sys/types.h >

include < sys/socket.h >

int accept(int s, struct sockaddr *addr, socklen t *addrlen);

s : The listen()ing socket descriptor.

addr: This is filled in with the address of the site that’s connecting to you.

addrlen: This is filled in with the sizeof() the structure returned in the addr param-

eter.

send() and recv()

CHAPTER 5. PROCESS AND SOCKET PROGRAMMING 45

These two function are used for communication over stream sockets or connected

datagram socket.

int send(int sockfd, const void *msg, int len, int flags);

Here *msg is the pointer to the data to be sent, len is the length of data to be

sent and flag is generally set 0. send() returns number of byte sent out.

recv()

int recv(int sockfd, void *buf, int len, unsigned int flags);

sockfd is the socket descriptor to read from, buf is the buffer to read the infor-

mation into, len is the maximum length of the buffer, and flags can again be set to

0. recv() returns the number of bytes actually read into the buffer, or -1 on error.

gethostname()

To convert human-readable hostnames, either numbers in standard dot notation

(such as 10.0.0.1) or DNS names (such as www.codesourcery.com) into 32-bit IP

numbers, gethostbyname() can be used.

Prototype:

include < unistd.h >

int gethostname(char *hostname, size t size);

The arguments are simple: hostname is a pointer to an array of chars that will

contain the hostname upon the function’s return, and size is the length in bytes of

the hostname array.

Chapter 6

Implementation of Client-Server

model

The process of updating the content of the media player module is the sequence of

timing events that are described in this chapter through the client-server model.The

important part of this process is the transferring of the bulk of the media files to the

client at one instance for the updates as there is no user interaction is used at the

media player module by which acknowledgment for the reception of the each files

can be sent to the server.

6.1 Server Process

The task of the content server is to maintain content at the client side updated as

and when user modifies content at the corresponding server directory.The task of

synchronization between the server and client is maintained on the basis of ’timeout’

phenomenon,in which client queries server after the each timeout session continu-

ously.

Server process is described by the process flow chart in the figure 6.1. As shown in

the flow chart on boot up server connects with the client and checks for its authen-

tication. Server process then checks if it is newly joined client or first time session

46

CHAPTER 6. IMPLEMENTATION OF CLIENT-SERVER MODEL 47

then server transfers all content of the directory to the client in response.When

server connects to client it waits for the timeout and receives client’s media files

list.Server matches this list with it content list if there is any difference the case

when server content is updated in between the new ’difference’ list is created , files

in the list are extracted out,encrypted and sent to the server.Again server enters in

the timeout session and thus process of updating continues.

Extracting files fro from directory and sending them over the sockets requires to

form a list of files. The process of picking out file name from the list one by one and

sending it over the socket is described in the figure 6.2 .

6.2 Client Process

Media player module runs client process that queries server process for updates at

the fixed intervals.Client process also forks the child process that displays media

files in the directory in a loop of the sequence.

As per the client process flow is described in the figure. client process prepares list

of files in the directory and sends it to server. In return server send updated list

and newly added files to the client. Client process compares server file list with its

current directory list and deletes files that are not in the server list to update the

content.

The important part of the client process is to recognize the received bytes as

belonging to which particular file and store them in it. In this mechanism bytes

to be stored are counted and compared with the file size of the file in which it is

to be stored. Since there is no attribute such as the EOF for the media files the

only mechanism to instruct the client to distribute the bytes in the corresponding

files is by sending it the predetermined list of the file size for the comparison. This

mechanism of receiving files based on their size is described in the figure 6.4.

CHAPTER 6. IMPLEMENTATION OF CLIENT-SERVER MODEL 48

Figure 6.1: Server Process Flowchart

CHAPTER 6. IMPLEMENTATION OF CLIENT-SERVER MODEL 49

Figure 6.2: Process of sending files

CHAPTER 6. IMPLEMENTATION OF CLIENT-SERVER MODEL 50

Figure 6.3: Client Process

CHAPTER 6. IMPLEMENTATION OF CLIENT-SERVER MODEL 51

Figure 6.4: Client Process

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

In this dissertation, an approach has been proposed for the content management

and display of the digital outdoor media player module. Beagleboard-xM features

has been explored and Beagleboard-xM has been tested with different OS that it

supports and Ubuntu a popular linux OS has been chosen as the media player OS. OS

has been configure for the static MAC and IP address and tested as Beagleboard xM

doesnt have a flash memory to store the permanent MAC address. An open source

media player software for the display is installed also the plugins for the MPEG-4

decoder has been installed (As Ubuntu doesnt configured with it)and media files of

720p @ 30fsp are tested. . Fundamentals of the libraries and Makefile utility has been

studied, tested and applied to create the static library (aes.a) and to compile the

program files. AES encryption has been studied and implemented for the different

modes of operation and key sizes. From the results of the timing analysis mode of

operation has been selected and applied for the encryption of the media files. Linux

socket structure and system calls has been studied and example program developed

and tested for the implementation of client-server model. The process flow for the

server client model has been designed and implemented. The complex process of

transferring bulk of media files for the periodic content update and synchronization

has been designed, implemented and tested. A client program of displaying media

52

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 53

files from the directory has been developed and tested. The method of parallel

processing using fork system call has been designed and tested which is applied

in the concurrent operation of displaying media files and server interaction at the

background. A start up script has been written that automates the process on the

system boot up.

7.2 Future Scope

New technologies for digital sign are currently being developed, such as three-

dimensional (3D) screens, with or without 3D glasses , ‘holographic’, displays,water

screens and fog screens.Digital sign can interact with mobile phones. Using SMS

messaging and Bluetooth, some networks are increasing the interactivity of the au-

dience. SMS systems can be used to post messages on the displays, while Bluetooth

allows users to interact directly with what they see on screen. In addition to mobile

interactivity, networks are also using technology that integrates social and location-

based media interactivity. This technology enables end users to send Twitter and

Flickr messages as well as text messages to the displays.

Bibliography

[1] Advanced Linux Programming by Mark Mitchell, Jeffrey Oldham,

and Alex Samuel, New Riders Publishing, 2001.

[2] Beginning Linux Programming 3rd Edition by Neil Mathews, Richard

Stones,2006.

[3] The C programming Language By Brian W. Kernighan and Dennis

M. Ritchie. Published by Prentice-Hall in 1988

[4] Embedded HOWto,“Patch for fixing random MAC address on

Beagleboard-xM”, http://blog.galemin.com/2010/11/patch-for-

fixing-random-mac-address-on-beagleboard-xm/

[5] Beej’s Guide to Network Programming,Verson 3.0.15,2012 By Beej

Jorgensen

[6] Ian Jackson and Christian Schwarz,”System Run levels and init.d

scripts, Debian Policy Manual Chapter-9 Operating System,

http://www.debian.org/doc/debian-policy/# contents

[7] Beagleboard.org,“Reference Manual Beagleboard-

xM”http://beagleboard.org/static/BBxMSRM latest.pdf

[8] Texas Instruments,DM3730, http://www.ti.com/product/dm3730

[9] ARM Holdings plc, Cortex-A8 Processor,

http://www.arm.com/products/processors/cortex-a/cortex-a8.php

54

BIBLIOGRAPHY 55

[10] Brian Gladman,“AES and Combined Encryption/Authentication

Modes”, http://www.gladman.me.uk/

[11] elinux.org, http://elinux.org/BeagleBoardUbuntu

[12] Sarath Lakshman “GNU Make in Detail for Beginners”,

http://www.linuxforu.com/2012/06/gnu-make-in-detail-for-

beginners/

	Declaration
	Certificate
	Acknowledgement
	Abstract
	List of Figures
	Introduction
	Background
	Scope of Work
	Outline of Thesis

	 Beagleboard-XM Specifications and Configuration
	BeagleboardXM overview
	Processor
	Memory
	Power management
	HS USB 2.0 OTG Port
	HS USB 2.0 Host Ports
	DVI-D Connector
	Onboard USB HUB
	LCD Header
	MicroSD Connector
	User Button
	Indicators
	Power Connector
	JTAG Connector
	RS232 DB9 Connector
	Camera Connector
	MMC3 Expansion Header

	Porting Linux Operating System on Beagleboard-XM
	Install Pre-Configured Image elin
	 NetInstall Method

	 System Configuration for Static MAC and IP address

	Basics of Libraries,Makefile and Shell
	Importance of Library
	Library Naming Conventions
	Linux Library Types
	Shared Library (.a)
	Dynamically Linked ``Shared Object''Libraries: (.so):

	Makefile
	Shell Scripting
	Shell Types
	Writing a Script
	System run level and init.d scripts

	Media File Encryption
	Types of Encryption
	Advanced Encryption Standard (AES)
	Advantages of AES over DES
	Description of Algorithm
	AES Modes of Operation and Initialization vector
	Implementation of Algorithm
	Timing Analysis

	Process and Socket Programming
	Process ID
	Creating Process
	Calling fork
	Calling execv

	Socket Interprocess Communication
	System calls

	Implementation of Client-Server model
	Server Process
	Client Process

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Bibliography

