
Methodology for Design Verification

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Amreen D Charaniya
(12mece02)

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

ii

Methodology for Design Verification

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology
in

Electronics & Communication Engineering

(Embedded Systems)

By

Amreen D Charaniya

(12mece02)

Under the guidance of

External Project Guide: Internal Project Guide:

Vishal Jain Dr. N.P.Gajjar
Sr. Engg Specialist(IBP Dept), Sr. Associate Professor (EC Dept.),
Mr. Abhishek Jain Institute of Technology,
Technical Manager(IBP Dept), Nirma University,
STMicroelectronics, Ahmedabad.
Greater Noida.

Electronics & Communication Engineering Branch
Electrical Engineering Department

Institute of Technology
Nirma University

Ahmedabad-382 481
May 2014

iii

Declaration

This is to certify that

1. The thesis comprises my original work towards the degree of Master of Tech-
nology in Embedded Systems at Nirma University and has not been submitted
elsewhere for a degree.

2. Due acknowledgment has been made in the text to all other material used.

- Amreen D Charaniya

iv

Certificate

This is to certify that the Major Project entitled “Methodology for Design Ver-
ification” submitted by Amreen D Charaniya (12mece02), towards the partial
fulfillment of the requirements for the degree of Master of Technology in Embedded
Systems, Nirma University, Ahmedabad is the record of work carried out by him un-
der our supervision and guidance. In our opinion, the submitted work has reached a
level required for being accepted for examination.The results embodied in this major
project, to the best of our knowledge,haven’t been submitted to any other university
or institution for award of any degree or diploma.

Date: Place: Ahmedabad

Dr N.P.Gajjar Dr. N.P. Gajjar

Internal Guide Program Coordinator

Dr. D.K.Kothari
Section Head, EC

Dr. P.N.Tekwani Dr. K. Kotecha

Head of EE Dept. Director, IT

v

Acknowledgements

I would like to express my sincere gratitude to Dr.Ketan Kotecha (Director,
Nirma University, Ahmedabad) for his continuous guidance, support and enthusiasm. I
would take this opportunity to thank Dr.(Prof.)P.N.Tekwani (Head of Department,
Electrical Engineering), Dr.N.P.Gajjar (Professor and Program Coordinator,M.Tech-
EC(Embedded System)) and all the faculties at Nirma University (Embedded
System), for their vision and relentless effort, support, and encouragement to under-
take this thesis work and for their guidelines during the review process.

I am deeply indebted to my thesis supervisors Dr. N.P.Gajjar, Sr. Associate
Professor, E.C.Dept., Nirma University and Mr. Abhishek Jain, Technical Man-
ager at STMicroelectronics Pvt. Ltd. for their constant guidance and motivation. I
also wish to thank Mr. Vishal Jain, Sr. Engineering Specialist, STMicroelectronics
Pvt. Ltd., Mr. Soyeb Khanusiya, Design Engg. and all other team members at
STMicroelectronics for their constant help and support. Without their experience and
insights, it would have been very difficult to do quality work.

I wish to thank my friends of my class for their delightful company which kept me
in good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support and
sacrifices of my family members because of whom I am able to complete the degree
program successfully.

- Amreen D Charaniya
12mece02

vi

Abstract

The Imaging group in ST mainly deals with two types of devices - sensors and proces-
sors. The main function of sensors is to convert the viewed scene into a data stream.
The companion processor function will manage the sensor so that it can produce the
best possible pictures and to process the data stream into a form which is easily han-
dled by upstream mobile baseband or MMP (Multi-Media Processor) chipsets.

Image signal processing algorithms are developed and evaluated using Reference mod-
els before RTL implementation. After finalizing the algorithm, Reference models are
used as a golden model for the IP development. The register configuration of an IP is
done by the ST internal bus. Driver(component of UVC) is used to drive the signal to
the IP, and the same signal is provided to the reference model. The monitor (compo-
nent of UVC) senses the signal traffic going to and from the IP. The output from the
IP is now obtained by the other UVC. Scoreboard compares the output of the RTL
(that was captured by the UVC) with the output of python reference model. Output
of RTL and Pyhon Model can be status or/and Image. For IP/soC level verification,
System Verilog UVM based Verification Environment will be used. Universal Verifi-
cation Environment is the first standard, open, interoperable, and proven verification
re-use methodology for System Verilog.

For easier verification of register’s of DUT and to automate register related activities,
The UVM REG register and memory package was released with UVM 1.1 release. The
register model can be written by the user but as almost all devices have thousand’s of
registers with few memories, witting of register model becomes tedious time consuming
task and hence IPXACT tool is used for the generation of register model and almost
all of the SV-UVM verification environment files. The IPXACT tool takes specifica-
tion file as an input to the script and reads the register and memory information from
specification file and hence generates the register model according to specification.
Since IPXACT tool generates files quickly it has emerged to be an efficient way of
generating verification environment files.

Contents

Declaration iii

Certificate iv

Acknowledgements v

Abstract vi

List of Figures xii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Organization . 3

2 SV-UVM based Verification Environment 5
2.1 Introduction . 5
2.2 Basic blocks of SV-UVM based IP Level Verification Environment . . . 6
2.3 UVM Verification Environment . 7
2.4 Running a sequence . 12

2.4.1 Execution Flow . 13
2.5 Connections to DUT Interfaces . 14
2.6 Advantages of Adopting UVM . 14

3 Register Model 16
3.1 Introduction . 16
3.2 Register Model . 17

3.2.1 RGM Model . 17
3.2.1.1 The Register Database (RGM DB) 17
3.2.1.2 The Register Sequencer and Sequences 17

vii

CONTENTS viii

3.2.1.3 The Bus Interface UVC 18
3.2.1.4 The Interface UVC Monitor 18
3.2.1.5 Updating the Model 19
3.2.1.6 The Module UVC . 19
3.2.1.7 Defining Memory Bank 20

3.2.2 REG Model . 20
3.2.2.1 Register Sequence Adaption Layer 24
3.2.2.2 Register Prediction . 25
3.2.2.3 Field Access Policies 25
3.2.2.4 Register Access Methods for uvm reg model 26

3.3 Coverage Model . 33
3.3.1 Predefined Coverage Identifiers 35
3.3.2 Controlling Coverage Model Construction and Sampling 36

3.4 Integrating UVM Registers in the testbench environment 36
3.5 Built-in Sequence . 37

3.5.1 REG-MODEL . 37
3.5.2 RGM-MODEL . 40

4 IPXACT Flow 43
4.1 Introduction . 43
4.2 IPXACT Flow . 45

4.2.1 spec2verilog . 45
4.2.2 spec2uvm . 47
4.2.3 spirit2uvm . 48

5 Work at ST 51
5.1 Why to Migrate from UVM RGM to UVM REG 51
5.2 Writting the Basic Register Model Architecture 52
5.3 Introduction to IPXACT . 58
5.4 Generating Test-bench . 61
5.5 Introduction to FEKIT . 62

5.5.1 How to run FEKIT GUI . 63

6 Running UVM Simulation 68
6.1 Running Simulation . 68
6.2 UVM testbench Build And Connection Process 72

6.2.1 Factory Overrides . 72
6.3 Managing the End of Test . 73

6.3.1 Objection Control . 73
6.4 Verification Cockpit Flow . 74
6.5 Make-file . 77

CONTENTS ix

7 Conclusion and Future Scope 78
7.1 Conclusion . 78
7.2 Future work . 79

List of Figures

2.1 IP Level UVM Verification Environment 6
2.2 Basic blocks of SV-UVM based IP Level Verification Environment . . . 7
2.3 Different Components of Universal Verification Component (UVC) . . . 9
2.4 Sequencer . 10
2.5 Agent . 11
2.6 Virtual Sequence . 11
2.7 Working of virtual Sequencer . 12
2.8 Sequence creation Code . 13
2.9 Execution Flow . 13
2.10 Virtual Interface . 15

3.1 RGM Model . 18
3.2 Memory Definition . 20
3.3 REG Model . 21
3.4 Register Model Hierarchy . 22
3.5 UVM reg field Configuration . 23
3.6 UVM Reg Example . 23
3.7 UVM Reg Block Example . 24
3.8 Register Model Structure . 24
3.9 Predictor . 25
3.10 Register Field Policies . 26
3.11 Register Access API . 27
3.12 Set Value to Register in Register Model 27
3.13 Get Value of Register from Register Model 27
3.14 Working of SET and GET Function . 28
3.15 Working of Randomize Function . 28
3.16 Working of Write Function . 29
3.17 Code for Write Function . 29
3.18 Working of Read Function . 31
3.19 Code for Read Function . 31
3.20 Update Value of Register . 32
3.21 Read of Mirror Value . 33

x

LIST OF FIGURES xi

3.22 Coverage Collector . 34
3.23 Example for Coverage . 35
3.24 Coverage Identifier . 35
3.25 Code to Include Coverage . 36
3.26 Message to Include Coverage . 36
3.27 Hardware Reset Test . 37
3.28 Reg bit bash test . 38
3.29 Reg Aliasing Sequence . 39
3.30 Reg Write Follow Read Sequence . 39
3.31 Read all Sequence . 40
3.32 Any write Sequence . 41
3.33 Walking one-zero Sequence . 41
3.34 Aliasing Sequence . 42

4.1 Example of XML file . 44
4.2 IP-XACT Vendor Extensions in XML file 45
4.3 IP-XACT flow . 46
4.4 spec2verilog flow . 47
4.5 spec2uvm flow . 48
4.6 sprit2uvm flow . 49

5.1 Register Field Definition . 53
5.2 Register Definition . 53
5.3 Sampling Covergroup . 54
5.4 Constructing Covergroup . 54
5.5 Register file Definition . 55
5.6 Memory Definition . 56
5.7 Register Block . 56
5.8 Register Block Coverage . 57
5.9 Top-Env Register Model Connection 57
5.10 New sprit2uvm flow . 58
5.11 XML to reg def (RGM MODEL) . 60
5.12 XML to reg def (REG MODEL) . 61
5.13 Generating Test-bench File . 62
5.14 KIT-Option Window . 63
5.15 Setup Window . 64
5.16 Technology option for Img-Fekit . 65
5.17 Checking of Technology option for Img-Fekit 65
5.18 Window for Specific Path option . 66
5.19 Window for Reading Design . 66
5.20 IP FLOW Window . 67

6.1 Running Simulation . 69
6.2 Run Code . 71

LIST OF FIGURES xii

6.3 Base Test Class . 72
6.4 NCSIM simulator . 76
6.5 Coverage in IMC . 77
6.6 Regression . 77

Chapter 1

Introduction

With the projects schedules being so tight, it is important to have a strong verifica-
tion methodology which contributes to First Silicon Success for all complex design in
the semiconductor industries. And so is the need of methodology which enforce full
functional coverage and verification of all the corner cases through pseudo random test
scenarios.

In 2000, Verisity Design (now Cadence Design Systems, Inc.) introduced a Verification
Advisor (vAdvisor), which was targeted for the e-users. In 2002, Verisity announced
the first verification library the e-Reuse Methodology(eRM). In 2003, Synopsys an-
nounced the Reuse Verification Methodology library (RVM) for the Vera verification
language. Over time, RVM was converted to the System Verilog (SV) Verification
Methodology Manual (VMM). The Advanced Verification Methodology (AVM) from
Mentor was introduced in 2006. Cadence’ acquired Verisity in 2005, and began de-
veloping a SV version of eRM. The Universal Reuse Methodology (URM) was intro-
duced in early 2007. In January 2008, Cadence and Mentor joined forces to release
OVM. The Universal Verification Methodology (UVM) was announced by Accellera
on December 23rd, 2009 and introduced to the user on May 17,2010. The Universal
Verification Methodology (UVM) has emerged to be a standardized methodology for
verifying complex design in the semiconductor industry. UVM has full industry wide
support and standardized under the Accellera Systems Initiative. The UVM offers a
single cross-industry solution to all the challenges of design verification. It delivers
simulator, verification IP and high-level language interoperability within and across
companies. A well-defined build flow allows creation of hierarchical reusable environ-
ments and hence Universal Verification Methodology (UVM) is said to be the first
standard, open, interoperable, and proven verification re-use methodology. UVM is
explicitly simulation-oriented, but UVM can also be used alongside assertion-based
verification, hardware acceleration or emulation.

1

CHAPTER 1. INTRODUCTION 2

The UVM REG register and memory package was introduced in release of Accellera’s
UVM 1.0 release for easier verification of register’s of DUT and automate register
related activities. The UVM REG register and memory package derives the register
level API from VMM and the use model, register sequenced, register operation items,
layering concepts, and more from the UVM RGM register and memory package con-
tributed to UVM World by Cadence. The use of UVM REG register and memory
package has been proven more satisfactory than use of UVM RGM register and mem-
ory package, and hence migration from UVM RGM register and memory package to
UVM REG register and memory package, becomes necessary for more efficient verifi-
cation of register and memory of DUT.

Accellera IP-XACT standard is used for capturing register’s specifications of IP/SoC.
The code generators can be used(that uses IP-XACT standard) for generation of the
SV-UVM code for the verification environment at IP level as well as for SoC level
verification. As almost all devices have thousand’s registers with few memories, which
also needs to be verified and to have built Register and memory model for such device
is very tedious and time consuming task, building these large amount of register’s for
a given model may lead to some of the human error, and hence result to inefficient
way. So to generate these register model from the specification given in .docx/.mif
format is converted to .xml format (with help of spec2spirit script internal to ST).
These specification in .xml format is then used as an input to spirit2uvm script which
is internal to ST (that uses IP-XACT Standard given by Accellera)to generate the
final SV-UVM files to built register model and also those standard sequence such as
register read-write sequence, register read sequence and register write sequence are
generated by the script to ease the work of verification engineer with the sureness of
having the 100% correctness of register model with the specification. As the specifi-
cation are in standard format it leads to less ambiguities on writing specification of
design, and hence provides higher levels of automation. Work on improving this script
(spirit2uvm script) is done so as to have not only register model ans standard sequence
but also those other SV-UVM files (such as test-case file, top-environment file, virtual
sequence, virtual sequencer file and invalid address map files) used in verification for
the Design.

1.1 Motivation

An open standard that would deliver verification productivity within design teams
and across multi-company is required. Universal verification Methodology is the one
open standard interoperable and proven verification re-use methodology. It provide
the power to find bugs and benefits of having constrained random testcases. UVM
plays an important role in reducing time to market.

CHAPTER 1. INTRODUCTION 3

The main aim of adopting universal verification methodology (UVM) over other method-
ology is its reusability through test bench reuse and verification IP allowing plug and
play. It provides advanced verification capability and it contains a well maintained
Register Package and many predefined test cases for register and memory verification.
Also it is a proven methodology with industry wide support and Vendor independent
i.e. it does not lock users into a single vendor solution.

UVM REG register and memory model provides various features to ease verification of
register’s of DUT and automate register related activities. Compared to UVM RGM it
provides enhanced features of having automatic comparsion on use read and write API,
it provides support for little endian and big-endian feature where as in UVM RGM,
externally support had to be given. UVM REG supports all ipXact 1.5 access policies
as well. Also as UVM REG is gien by Accellera it is suppose to be updated with
upgrading of UVM itself.

A register model can be written by hand, However, with more than a few registers this
can become a tedious task and has always a potential of having errors in model. So
the best practice for using the register & memory package (UVM RGM or UVM REG
Package) is to use it with IP-XACT. There are a number of other reasons which mo-
tivates to use a generator such as :

1. The register model can be generated efficiently without errors.

2. The register model can be re-generated whenever there is a change in the reg-
ister definition,

3. Multiple format register definitions for different design blocks can be merged to-
gether into an overall register description.

4. IPXACT flow is so designed to fit the requirement of the designer expecting to
reduce the time-to-market.

5. IPXACT flow is independent of the design language and design tool.

1.2 Thesis Organization

The rest of the thesis is organized as follows.

Chapter-1, (Introduction) provides the introduction of the Universal Verification
Methodology (UVM) and its main features. Then, the motivation of choos-
ing Universal Verification Methodology (UVM) over other methodology is given.
Also with the purpose of using IP-XACT script and Migration from using UVM RGM

CHAPTER 1. INTRODUCTION 4

register and memory package to UVM REG package.

Chapter-2, (SV-UVM based Verification Environment) provides an overview of main
blocks of System Verilog UVM based IP Level Verification Environment. The
flow of IP level Verification Environment is described in detail with the execution
flow. The information on connection to the DUT interface with that of the ver-
ification environment is also provided. And at the end Advantages of Adopting
UVM is provided.

Chapter-3 (Register Model) describes main concepts of UVM REG/UVM RGM
register and memory model and then, usage of UVM REG/UVM RGM register
model for programming of registers of designs is described. then the common
API used are described in detail. The concept of coverage collection is also
described and at the end the basic built-in sequences of UVM REG/UVM RGM
is explained in detail.

The chapter-4, (IPXACT Flow) gives an overview of the SPIRIT script and IP-
XACT flow. Then, IP-XACT flow used in imaging group is described. The
three scripts (spec2verilog, spirit2uvm, spec2uvm) that are used to automatically
generate UVM Verification Environment file are described with detail description
of work done on the spirit2uvm script.

Chapter- 5,(Work at ST) provides the overall work done. First Migration from
use of UVM RGM register and memory package to UVM REG register and
memory package is described. Then the modification done to the spirit2uvm
script (IPXACT script) is explained with its usage and use of python script for
testbench generation is described. Also the modification to the FEKIT (internal
Tool) GUI is shown.

Chapter- 6, (Running UVM Simulation) describes the integration of Enterprise
Manager (using Verification Cockpit) for running regressions and coverage anal-
ysis. And the verification cockpit flow is described in detail.

Finally, in chapter 7, (Conclusion) concluding remarks and scope for future work is
presented.

Chapter 2

SV-UVM based Verification

Environment

This chapter provides the introduction of the Universal Verification Methodology
(UVM) and its main features. Then, main components of Verification Environment
are described. The flow of IP level Verification Environment is described in detail with
the execution flow. The information on connection to the DUT interface with that of
the verification environment is also provided. And at the end its main advantages are
described.

2.1 Introduction

The Universal Verification Methodology (UVM) has emerged to be a standardized
methodology for verifying complex design in the semiconductor industry. UVM has
full industry wide support and standardized under the Accellera Systems Initiative.It
delivers simulator, verification IP and high-level language interoperability within and
across companies and so Universal Verification Methodology (UVM) is said to be the
first standard, open, interoperable, and proven verification re-use methodology.UVM
is explicitly simulation-oriented, but UVM can also be used alongside assertion-based
verification, hardware acceleration or emulation.

The Imaging group in ST mainly deals with two types of devices - sensors and proces-
sors. The main function of sensors is to convert the viewed scene into a data stream.
The companion processor function will manage the sensor so that it can produce the
best possible pictures and to process the data stream into a form which is easily han-
dled by upstream mobile base-band or MMP (Multi-Media Processor) chipsets.
Image signal processing algorithms are developed and evaluated using Reference mod-

5

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 6

Figure 2.1: IP Level UVM Verification Environment

els before RTL implementation. After finalizing the algorithm, Reference models are
used as a golden model for the IP development. the register configuration of an IP is
done by the ST internal bus. Driver(component of UVC) is used to drive the signal to
the IP,and the same signal is provided to the reference model. The monitor (compo-
nent of UVC) senses the signal traffic going to and from the IP. The output from the
IP is now obtained by the other UVC. Scoreboard compares the output of the RTL
(that was captured by the UVC) with the output of python reference model. Output
of RTL and Pyhon Model can be status or/and Image.

2.2 Basic blocks of SV-UVM based IP Level Veri-

fication Environment

In an image signal processing IP, there are A input video data interfaces, C output
video data interfaces, B memory interfaces, D output Interrupts and E register inter-
faces, where A, B, C, D and E values can be from 0 to any arbitrary number.

For verifying these interfaces, dedicated UVCs are used [1]. In case of register in-
terface(s), STBus UVC and RGM/REG register model are used. Similarly for video
data interface(s), video data interfaces UVCs (IDP/ISB/VDB) are used. There can be
multiple instances of these UVCs in a verification environment. Each agent is config-
ured separately and any combination of agent configurations can coexist in the same
environment. Therefore in above case, E instances of register interface UVC agents,
M (M = max (A, C)) instances of video data interface UVC agents and D instances of
interrupt checker are used to interface with a DUT. Figure below illustrates the basic
blocks of System Verilog UVM based IP Level Verification Environment.

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 7

Figure 2.2: Basic blocks of SV-UVM based IP Level Verification Environment

2.3 UVM Verification Environment

An UVM verification Environment is composed of reusable verification component
called universal verification components. A verification component is an encapsulated,
ready-to-use, configurable verification environment for an interface protocol, a design
submodule, or a full system [3]. The verification component is applied to the device
under test (DUT) to verify the implementation of the protocol or design architecture.

The UVM testbench architecture is modular to facilitate the reuse of groups of veri-
fication components either in different projects (horizontal reuse) or at a higher level
of integration in the same project (vertical reuse) [1]. The main component of the
environment are :

• Transaction : A bundle of data items, which may be distributed over time
and space in the system, and which form a communication abstraction such as
a handshake, bus cycle, or data packet

• Sequence : An ordered collection of transactions or of other sequences. Se-
quences are assembled from transactions and are used to build realistic sets of
stimuli. A sequence could generate a specific pre-determined set of transactions,
a set of randomized transactions, or anything in between. Transactions and se-
quences together represent the domain of dynamic data within the verification
environment.

In terms of class inheritance, the uvm sequence inherits from the uvm sequence item
which inherits from the uvm object. Both base classes are known as objects

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 8

rather than components.Sequences are the primary means of generating stimu-
lus in the UVM. The fact that sequences and sequence items are objects means
that they can be easily randomized to generate interesting stimulus. Their ob-
ject orientated nature also means that they can be manipulated in the same way
as any other object.

In the UVM sequence architecture, sequences are responsible for the stimulus
generation flow and send sequence items to a driver via a sequencer compo-
nent. The driver is responsible for converting the information contained within
sequence items into pin level activity. The sequencer is an intermediate compo-
nent which implements communication channels and arbitration mechanisms to
facilitate interactions between sequences and drivers. The flow of data objects
is bidirectional, request items will typically be routed from the sequence to the
driver and response items will be returned to the sequence from the driver. The
sequencer end of the communication interface is connected to the driver end
together during the connect phase.

• Sequence Items : As sequence items are the foundation on which sequences
are built, some care needs to be taken with their design. Sequence item content
is determined by the information that the driver needs in order to execute a
pin level transaction; ease of generation of new data object content, usually
by supporting constrained random generation; and other factors such analysis
hooks. By convention sequence items should also contain a number of standard
method implementations to support the use of the object in common transaction
operations, these include copy, compare and convert2string.

• A Driver :A driver is an active entity that drives the DUT. The driver is
responsible for converting the data inside a series of sequence items into pin
level transactions. The driver pulls transactions from its sequencer and controls
the signal-level interface to the DUT. The transaction-level interface between the
sequencer and the driver is a fixed feature of UVM, and is unusual in the sense
that both the port and the export required for TL- communication are implicit.

• A Sequencer : A sequencer is a stimulus generator that controls the sequence
items provided to/from the driver for execution. Sequencer runs sequences and
sends them downstream to drivers or to other sequencers. The role of the se-
quencer is to route sequence items from a sequence where they are generated
to/from a driver. At its simplest a sequencer looks like any other compo-
nent, except that it has an implicit transaction-level export for connection to
a driver. The transfer of request and response sequence items between sequences
and their target driver is facilitated by a bidirectional TLM communication
mechanism implemented in the sequencer. The uvm driver class contains an
uvm seq item pull port which should be connected to an uvm seq item pull export

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 9

Figure 2.3: Different Components of Universal Verification Component (UVC)

in the sequencer associated with the driver. The port and export classes are pa-
rameterised with the types of the sequence items that are going to be used for
request and response transactions. Once the port-export connection is made,
the driver code can use the API implemented in the export to get request se-
quence items from sequences and return responses to them. By default, a se-
quencer behaves similarly to a simple stimulus generator and returns a random
data item upon request from the driver. This default behavior leads us to add
constraints to the data item class in order to control the distribution of random-
ized values.

• A Monitor :A monitor is a passive entity that samples DUT signals but does
not drive them. Monitors collect coverage information and perform checking.
Even though reusable drivers and sequencers drive bus traffic, they are not used
for coverage and checking. Monitors are used instead.The monitor observes pin
level activity and converts its observations into sequence items which are sent to
components such as scoreboards which use them to analyse what is happening
in the testbench.

• The Agent : Sequencers, drivers, monitors, and collectors can be reused in-
dependently, but this requires the environment integrator to learn the names,
roles, configuration, and hookup of each of these entities. To reduce the amount
of work and knowledge required by the test writer, UVM recommends that en-
vironment developers create a more abstract container called an agent. Agents
encapsulate a driver, sequencer, and monitor. Verification components can con-

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 10

Figure 2.4: Sequencer

tain more than one agent. Some agents initiate transactions to the DUT, while
other agents react to transaction requests. A UVM agent can be thought of as a
verification component kit for a specific logical interface. The agent is developed
as package that includes a SystemVerilog interface for connecting to the signal
pins of a DUT, and a SystemVerilog package that includes the classes that make
up the overall agent component. The agent class itself is a top level container
class for a driver, a sequencer and a monitor, plus any other verification compo-
nents such as functional coverage monitors or scoreboards. The agent also has
an analysis port which is connected to the analysis port on the monitor, mak-
ing it possible for a user to connect external analysis components to the agent
without having to know how the agent has been implemented. The agent is the
lowest level hierarchical block in a testbench and its exact structure is dependent
on its configuration which can be varied from one test to another via the agent
configuration object. Agents should be configurable so that they can be either
active or passive. Active agents drive transactions according to tests whereas
Passive agents only monitor DUT activity.

• Scoreboards : A scoreboard is an analysis component that checks whether the
DUT is behaving correctly or not. UVM scoreboards use analysis transactions
from the monitors implemented inside agents. Scoreboard compares the output
of the RTL with the output of Python Model. Output of RTL and Python Model
can be status or/and Image.

• Virtual Sequence : A virtual sequence is a sequence which controls stimulus
generation using several sequencers. Since sequences, sequencers and drivers are
focused on point interfaces, almost all testbenches require a virtual sequence to
co-ordinate the stimulus across different interfaces and the interactions between

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 11

Figure 2.5: Agent

Figure 2.6: Virtual Sequence

them. A virtual sequence is often the top level of the sequence hierarchy. A
virtual sequence might also be referred to as a ’master sequence’ or a ’co-ordinator
sequence’.A virtual sequencer is used in the stimulus generation process to allow
a single sequence to control activity via several agents. Virtual sequences runs on
virtual sequencer to drive UVC sequencer instances. A virtual sequence differs
from a normal sequence in that its primary purpose is not to send sequence
items. Instead, it generates and executes sequences on different target agents.
To do this it contains handles for the target sequencers and these are used when
the sequences are started.

• Functional Coverage Monitors : A functional coverage monitor analysis com-
ponent contains one or more covergroups which are used to gather functional
coverage information related to what has happened in a testbench during a test

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 12

Figure 2.7: Working of virtual Sequencer

case. A functional coverage monitor is usually specific to a DUT.

2.4 Running a sequence

Some sequences are used as part of a reusable component and others are created to
have a test for specific corner case for DUT. There are three steps to run the sequence
first is to create the sequence, then configuring it and then starting the sequence to
the sequencer.

The sequence is derived from the uvm sequence base class and the request and
response item type parameters are specified. In the example code, only the request
type is specified(interface type). This will result in the response type also being of
type interface type. The ’uvm sequence utils macro is used to associate the sequence
with the relevant sequencer type and to provide the various automation utilities. This
macro also adds a p sequencer variable that is a pointer to the specific sequencer
invoking that sequence. Static sequencer properties such as hierarchical path, end-of-
test control and more are accessible through the p sequencer variable. Now implement
the sequence’s body () task with the specific scenario that is needed by the sequence
to execute. In these body task, data items and other sequences are executed using
”‘uvm do” and ”‘uvm do with”.

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 13

Figure 2.8: Sequence creation Code

Figure 2.9: Execution Flow

2.4.1 Execution Flow

The purpose of the driver sequencer API is for the driver to receive a series of se-
quence items from sequences containing the data required to initiate transactions, and
for the driver to communicate back to the sequence that it has finished with the se-
quence item and that it is ready for the next item. This use model allows the driver
to get a sequence item from a sequence, process it and then pass a hand-shake back
to the sequence using item done(). No arguments should be passed in the item done()
call. This is the preferred driver-sequencer API use model, since it provides a clean
separation between the driver and the sequence.

The corresponding sequence implementation would be a start item() followed by a
finish item(). Since both the driver and the sequence are pointing to the same se-
quence item, any data returning from the driver can be referenced within the sequence

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 14

via the sequence item handle. In other words, when the handle to a sequence item is
passed as an argument to the finish item() method the drivers get next item() method
call completes with a pointer to the same sequence item. When the driver makes any
changes to the sequence item it is really updating the object inside the sequence. The
drivers call to item done() unblocks the finish item() call in the sequence and then the
sequence can access the fields in the sequence item, including those which the driver
may have updated as part of the response side of the pin level transaction.

2.5 Connections to DUT Interfaces

The Device Under Test (DUT) is typically a Verilog module or a VHDL entity/architecture
while the testbench is composed of SystemVerilog class objects.

The DUT and testbench belong to two different SystemVerilog instance worlds. The
DUT belongs to the static instance world while the testbench belongs to the dynamic
instance world. Because of this the DUT’s ports can not be connected directly to the
testbench class objects so a different SystemVerilog means of communication, which
is virtual interfaces, is used. The DUT’s ports are connected to an instance of an
interface. The Testbench communicates with the DUT through the interface instance.
Using a virtual interface as a reference or handle to the interface instance, the testbench
can access the tasks, functions, ports, and internal variables of the SystemVerilog in-
terface. As the interface instance is connected to the DUT pins, the testbench can
monitor and control the DUT pins indirectly through the interface elements.

When using virtual interfaces the location of the interface instance is supplied to
the testbench so its virtual interface properties may be set to point to the interface
instance. The recommended approach for passing this information to the testbench is
to use either the configuration database usingthe config db API or to use a package.

2.6 Advantages of Adopting UVM

The main advantage of adopting universal verification methodology (UVM) over other
methodology is its reusability through test bench reuse and verification IP allowing
plug and play. Methodology provides full functional coverage and verification of all
the corner cases through pseudo random test scenarios and hence help in finding bug
more efficiently and in reduced time. The UVM has UVM REG register and memory
model library as an open source library, making it to support verification of hardware
registers and memory blocks. UVM REG register and memory package, being an part
of the UVM library, makes UVM more efficient methodology for verification. Also it
is a proven methodology with industry wide support and Vendor independent i.e. it

CHAPTER 2. SV-UVM BASED VERIFICATION ENVIRONMENT 15

Figure 2.10: Virtual Interface

does not lock users into a single vendor solution.

Chapter 3

Register Model

This chapter provides the overview of the main concepts of UVM REG/UVM RGM
register and memory model and and then, usage of UVM REG/UVM RGM register
model for programming of registers of designs is described. then the common API used
are described in detail. The concept of coverage collection is also described and at the
end the basic built-in sequences of UVM REG/UVM RGM is explained in detail.

3.1 Introduction

Almost all devices have registers and memories that need to be controlled, checked,
and covered as part of the verification task. Verifying the behavior of registers and
memory blocks is always an essential part of the verification process. In verifying a
device under test (DUT), one often needs to Capture registers attributes and depen-
dencies, Randomize the device configuration and the initial register values, Execute
bus transactions to write the initial configuration to the DUT, Read and write regis-
ters and memories as part of the normal run-time operation and Debug and analyze
register activities. And hence comes the use of Register Model.

The UVM register model provides a way of tracking the register content of a DUT
and a convenience layer for accessing register and memory locations within the DUT.
Standard Register and Memory model is used for efficient register and memory verifi-
cation. Register model allows the features of Address mapping, Modeling registers and
memory blocks, Front door and back-door access to Device under Verification (DUV),
Implicit and explicit prediction of registers and memory blocks values and Coverage
model API. The UVM register model is designed to ease efficient verification of pro-
grammable hardware. Main purpose of the register model is to make it easier to write
reusable register/memory sequences that access hardware registers and memory areas.

16

CHAPTER 3. REGISTER MODEL 17

3.2 Register Model

In the testbench, the register model object needs to be constructed and a handle needs
to be passed around the testbench environment using either the configuration and/or
the resource mechanism. In order to drive an agent from the register model an associ-
ation needs to be made between it and the target sequencer so that when a sequence
calls one of the register model methods a bus level sequence item is sent to the target
bus driver. The register model is kept updated with the current hardware register
state via the bus agent monitor, and a predictor component is used to convert bus
agent analysis transactions into updates of the register model.

The UVM register package contains built-in test sequences library which is used to
perform most of the basic register and memory tests, such as testing of register reset
values and testing of the register and memory data paths. The model supports both
front door and back door access to the DUT registers. Front door access uses the
control bus agent in the test bench and register accesses use the normal control bus
transfer protocol. Back door access bypass the normal bus interface logic and uses
simulator data base access routines to directly force or observe the register hardware
bits in zero simulation time.

3.2.1 RGM Model

The uvm rgm package provides a methodology to enable productive and reusable
register-related verification logic. The basic Architecture for RGM MODEL is shown
below.

3.2.1.1 The Register Database (RGM DB)

RGM database (RGM DB) component contains the entire register and memory model.
All the information is placed within the RGM DB component after capturing the
device memory and register model. Unlike the address map and register files, which
are UVM objects that can be allocated dynamically, the RGM DB is an UVM quasi-
static component which can be placed in testbench (uvm env).

3.2.1.2 The Register Sequencer and Sequences

The uvm rgm package uses the familiar UVM sequence mechanism to randomize and
drive register and memory sequences. In a sequence, you can randomly select a register
object from the RGM DB, randomize it, set the access direction (read or write), and
perform the operation. Register/memory operation sequences look much like any other
UVM sequence. Using the sequence mechanism allows you to create reusable sequences
to support different configuration modes, use an existing sequence as a sub-sequence,

CHAPTER 3. REGISTER MODEL 18

Figure 3.1: RGM Model

traverse through all the register in the addresses range, and much more. An API is
provided to perform read and write operations.

3.2.1.3 The Bus Interface UVC

The RGM sequencer is layered on top of an existing bus master sequencer. The bus
master emulates the CPU as it programs, controls, and supervises other devices on the
bus. Every read and write operation is translated to protocol-specific bus transactions.
This isolation between register operation and protocol-specific bus transactions allows
reuse of the same register operation sequences, even if the specification changes to use
a different bus. The bus interface is extended to support register sequence operations
using the factory.

3.2.1.4 The Interface UVC Monitor

As mentioned before, the monitoring path is independent from the injection facilities.
Again, we use the protocol-specific bus monitor to detect a bus transaction. At that
point, the transaction information is sent to the module UVC. The interface UVC
monitor as a reusable component is unaware of whether the transaction information
collected is general bus traffic or a specific register access. This knowledge should be
partitioned into the Module UVC.

CHAPTER 3. REGISTER MODEL 19

3.2.1.5 Updating the Model

Every operation (READ/WRITE) on the DUTs registers through the bus is sensed
by the monitor, which then does corresponding update or compare (and update) of
the shadow model. That way, there is constant alignment between the DUTs status
and the registers model which lies inside the RGM DB. This task should be done by
the integrator, in charge of connecting the register model with the UVC. Keeping the
model up to date with the DUT is achieved by following these steps:

• Create the module UVC (or extend the existing module UVC), which is in charge
of updating the register model after each transaction that is captured by the
interface UVC monitor.

• Connect the interface UVC monitor to the module UVC such that the transac-
tions collected are available to the module UVC.

• When each WRITE transaction is received by the module UVC. The module
UVC should update the register model by calling the update() method provid-
ing the address and data (and any mask if applicable for say byte enables). This
will keep the register model in sync with what was written into the DUT. When
each READ transaction is received by the module UVC, the module UVC should
compare the data to what is contained in the register model by calling the com-
pare and update() method. compare and update(), as indicated by the name,
also updates the register model to the data that was provided after the compare
has taken place.

3.2.1.6 The Module UVC

The Module UVC takes the transactions collected by the interface UVC monitor and
decides what action to execute on the register and memory model. In the case of a
write access to a register or memory location, the shadow register, or memory location
is updated in the RGM DB structure. Therefore, the content of the shadow register in
the RGM DB structure is synchronized with the DUT registers. When a read access
is detected on the bus, the monitor accesses the RGM DB structure and compares
the read result from the DUT to the value in the RGM DB shadow model. If it does
not match, a DUT error is issued. In addition, the RGM DB structure can collect
coverage on the register accesses and values (when coverage collection is enabled).

• Creating the Module UVC : The module UVC is a component which is in
charge of updating the register model after each interface UVC transaction re-
lated to the registers is detected. This task should be done by the integrator.
The module UVC keeps the shadow model aligned with the DUTs registers sta-
tus by notifying the register model after each UVC register transaction. This is
done by calling the update() method after each WRITE transaction and calling

CHAPTER 3. REGISTER MODEL 20

Figure 3.2: Memory Definition

compare and update() after each READ transaction.

3.2.1.7 Defining Memory Bank

UVM RGM supports serial and parallel memory banks. Serial specifies the first item
is located at the banks base address. Each subsequent item is located at the previous
items address, plus the range of that item (adjusted for LAU and bus width consider-
ations, rounded up to the next whole multiple). This allows the user to specify only a
single base address for the bank and have each item line up correctly. Parallel specifies
each item is located at the same base address with different bit offsets. The bit offset
of the first item in the bank always starts at 0, the offset of the next items in the bank
is equal to the widths of all the previous items. In terms of implementation, both
serial and parallel memories are implemented as flat, continuous memory. Handling
backdoor operation is the only implementation difference between a normal and bank
memory. Bank memory is an extension of uvm rgm bank memory class.

3.2.2 REG Model

The UVM register library (UVM REG) is an open source library, being part of the
UVM library, allows an easy modeling and verification of hardware registers and mem-
ory blocks. The UVM REG combines elements from multiple proprietary solutions
(e.g. Synopsys RAL, and Cadence UVM RGM) with new code from Mentor for tight
alignment with the UVM BCL and methodology. The UVM register model access
methods generate bus read and write cycles using generic register transactions. These
transactions need to be adapted to the target bus sequence item. The adapter needs
to be bidirectional in order to convert register transaction requests to bus sequence

CHAPTER 3. REGISTER MODEL 21

Figure 3.3: REG Model

items, and to be able to convert bus sequence item responses back to bus sequence
items. The adapter should be implemented by extending the uvm reg adapter base
class.

The overview of the different UVM classes used to build register database is de-
scribed below:

• Field : A group of bits providing specific functionality in a hardware regis-
ter. It represents different register field within the register. It is modeled in
the UVM register library using the uvm reg field class, and configured using the
uvm reg field::configure() method. And uvm reg field is the lowest register ab-
straction layer. The uvm reg field has several properties :

1. reset[”HARD”] (property) stores a hard reset value.

2. mirrored (property) stores the value of what we think in our design un-
der test (DUT).

3. desired value (property) stores the value of what we want to set to the DUT.

4. value (property) stores the value to be sampled in a functional coverage,
or the value to be constrained when the field is randomized.
Among these properties, only the value property is public. The other properties
are local, thus we cannot access them directly. To access these local properties
use of register access methods is done .

CHAPTER 3. REGISTER MODEL 22

Figure 3.4: Register Model Hierarchy

Reserved Fields:There is no pre-defined field access policy for reserved fields.Reserved
fields are left unmodelled i.e. they will be assumed to be RO fields filled with 0s.

• Register : A hardware register model grouping fields at different offsets within
the register. It is modeled in the UVM register library by extending the uvm reg
base class adding rand objects of uvm reg field type, and configured using the
uvm reg::configure() method.
An example of uvm reg definition is shown below:

• Register File Types : A register file type is constructed using a class extended
from the uvm reg file class. Register files can contain registers and other regis-
ter files also. There must be one class per unique register file type. The name
of the register file type is created by the register model generator. The name
of the register file type class must be unique within the scope of its declara-
tion. The register file type class must include an appropriate invocation of the
‘uvm object utils() macro.

• Memory : A memory block with well-defined address range. It is modeled in
the UVM register library by extending the uvm mem base class defining the
memory block specifications inside the constructor new(), and configured using
the uvm mem::configure() method.

• Block : Groups registers, memories and sub-blocks. It is modeled in the UVM
register library by extending the uvm reg block base class, then instantiating
and configuring registers, memories and sub-blocks inside its build() method.

• Map : Locates the address offset of registers, memories and sub-blocks within
a block. It is modeled in the UVM register library by instantiating an object of

CHAPTER 3. REGISTER MODEL 23

Figure 3.5: UVM reg field Configuration

Figure 3.6: UVM Reg Example

uvm reg map class in a block. Registers and memories are added to the address
map using uvm reg map::add reg() and uvm reg map::add mem() respectively.

The corresponding register block only has to create the enclosing register and
memory and then add it to the required address maps, as shown:

Registers are defined by extending uvm reg class. Each field of the register is defined
as uvm reg field then configured in the build configuration function. Memories are de-
fined by extending uvm mem class. The reg block contains the registers and memories
defined above and a address map. Address maps can be composed into higher-level
address maps.Registers and register files are an excellent vertical reuse (module-to-
system) opportunity, as sub-systems configuration logic is valid and reusable at the
system integration level. Designs can be packaged with their configuration sequences
allowing the system integrator smooth operations without the need to learn all the
sub-system configuration details. The register model is a hierarchal reference model
for a specific DUT and captures the DUT memories and registers structure and at-

CHAPTER 3. REGISTER MODEL 24

Figure 3.7: UVM Reg Block Example

Figure 3.8: Register Model Structure

tributes. It contains nested objects of register blocks, registers and their field class that
are derived from the uvm reg classes and specialized to the specifications at hand. The
model allows the randomization of configuration values, checking of the DUT register
values for correctness and collection of coverage.

There are two parts to the register adaption layer, the first part implements the
sequence based stimulus layering and the second part implements the analysis based
update of the register model using a predictor component.

3.2.2.1 Register Sequence Adaption Layer

The register sequence layering adaption should be done during the UVM connect
phase when the register model and the target agent components are known to have
been built. The register layering for each target bus interface agent supported by the

CHAPTER 3. REGISTER MODEL 25

Figure 3.9: Predictor

register model should only be done once for each map. In a block level environment,
this will be in the env, but in environments working at a higher level of integration this
mapping should be done in the top level environment. In order to determine whether
the particular env is at the top level the code should test whether the parent to its
register block is null or not - if it is, then the model and therefore its env is at the top
level.

3.2.2.2 Register Prediction

By default, the register model uses a process called explicit prediction to update the
register data base each time a read or write transaction that the model has generated
completes. Explicit prediction requires the use of a uvm reg predictor component.
uvm reg adapter converts between register model read and write methods and the
interface-specific transactions. uvm reg predictor updates the register model based on
observed transactions published by a monitor.

3.2.2.3 Field Access Policies

The UVM provides a comprehensive set of pre-defined field access policies [1], which
are summarized in Table shown below. The field access policy is normally setup during
”build” by the ”configure” method.

Field access policies should not be confused with the access rights declared when
a register is added to a particular address map. Registers can be added to more than
one map (corresponding to different interfaces in the DUT) with different access rights
(RW, RO or WO are the only choices); whether a register field can be read or written
depends on both the fields configured access policy and the registers rights in the map
being used to access the field.

CHAPTER 3. REGISTER MODEL 26

Figure 3.10: Register Field Policies

3.2.2.4 Register Access Methods for uvm reg model

Each field has a corresponding predicted and mirrored value, as well as reset state and
hooks for additional operations such as randomization via a value field, as shown in
Figure.

• reset() : The reset() method resets the properties of a register field, if the
m reset[kind] exists. The default kind is ”HARD”. If the m reset[kind] does not
exist, the reset() method does nothing. Note that the reset() method does not
reset a register in the DUT. It only resets the properties of a register-field object.

• set() : The set() method sets the desired value of a register field. The set()
method does not set the value to a register in the DUT. It only sets the value to
the m desired and the value properties of a register-field object.

• get() : The get() method gets the desired value of a register field. The get()
method does not get the value from a register in the DUT. It only gets the value
of the m desired property. To actually get the value from the DUT, use read() or
mirror() methods. These methods will be explained later. Similarly to the get()
method, there are two more getters to access the local properties. The get reset()
retrieves the value of the m reset[kind] property, while the get mirrored value()
method retrieves the value of the m mirrored property.

CHAPTER 3. REGISTER MODEL 27

Figure 3.11: Register Access API

Figure 3.12: Set Value to Register in Register Model

Figure 3.13: Get Value of Register from Register Model

CHAPTER 3. REGISTER MODEL 28

Figure 3.14: Working of SET and GET Function

Figure 3.15: Working of Randomize Function

• randomize() : The randomize() method is a System-Verilog method. It ran-
domizes the value property of a register-field object. After the randomization,
the post randomize() method copies the value of the value property to the
m desired property. Note that the pre randomize() method copies the value
of the m desired to the value property if the rand mode of the value property is
OFF.

• write() : The write() method actually writes a value to the DUT. The write()
method involves multiple steps.
1. A uvm reg item object corresponding to the write operation is created.

2. The uvm reg adapter converts the write operation to a corresponding bus
transaction.

3. The uvm driver executes the bus transaction to the DUT.

CHAPTER 3. REGISTER MODEL 29

Figure 3.16: Working of Write Function

Figure 3.17: Code for Write Function

4. The uvm monitor captures the bus transaction.

5. The uvm reg predictor asks the uvm reg adapter to convert the bus transac-
tion to a corresponding register operation.

6. The register operation is converted to a uvm reg item.

The uvm reg item is used to update the value, m mirrored, and m desired prop-
erties.

• read() : The read() method actually reads a register value from the DUT. Also

CHAPTER 3. REGISTER MODEL 30

if the individually accessible argument was 0 when the register field was config-
ured, the entire register containing the field is read. In this case, the m mirrored
values are updated for the other fields as well.

Similarly to the write() method, the read() method involves multiple steps.

1. A uvm reg item object corresponding to the read operation is created.

2. The uvm reg adapter converts the read operation to a corresponding bus
transaction.

3. The uvm driver executes the bus transaction to the DUT.

The uvm reg apapter converts the bus transaction with read data to a regis-
ter operation.

4. The read() method returns the read value to the caller.

5. In the mean time, the uvm monitor captures the bus transaction.

6. The uvm reg predictor asks the uvm reg adapter to convert the bus transac-
tion to a corresponding register operation.

7. The register operation is converted to a uvm reg item.

8. The uvm reg item is used to update the value, m mirrored, and m desired
properties.

• update() : The update() method actually writes a register value to the DUT.
The update() method belongs to the uvm reg class. The uvm reg field class does
not have the update() method.

The differences between the write() method and the update() method are:

1. The write() method takes a value as its argument, while the update() method
uses the value of the m desired property as the value to write.

2. The update() method writes the value only if the m mirrored and the m desired
are not equal.

CHAPTER 3. REGISTER MODEL 31

Figure 3.18: Working of Read Function

Figure 3.19: Code for Read Function

CHAPTER 3. REGISTER MODEL 32

Figure 3.20: Update Value of Register

3. The update() method internally calls the write(.value(m desired)). Because
of this, the value of the m mirrored will be updated as well, after the update.

• mirror() : The mirror() method actually reads a register from the DUT.
The differences between the read() method and the mirror() method are:

1. The read() method returns the register value to the caller, while the mirror()
method does not return the register value. The mirror() method only updates
the value of the m mirrored property.

2. The mirror() method compares the read value against the m desired if the
value of the check argument is UVM CHECK.

3.The mirror() method internally calls do read() method. This is the same
method the read() method internally calls. Because of this, the mirror() method
will update the value and the m desired properties, in addition to the m mirrored
property.

Register operations can be summarized as:

1. write, poke, set-update and randomize-update are all active operations which up-
date both the mirrored and DUT register values.

2. read, peek and mirror are all active operations which update the mirrored value
based on DUT register values.

3. reset and predict are passive operations which update the mirrored value inde-
pendent of active model stimulus

CHAPTER 3. REGISTER MODEL 33

Figure 3.21: Read of Mirror Value

3.3 Coverage Model

Coverage Driven Verification is a methodology where verification goals are defined in
terms of functional coverage points. Each area of functionality required to be tested
is described in terms of values and events. With this philosophy of verification, ev-
erything in the test centers around getting the DUT’s functionality to include these
values. Coverage collectors are essential for Coverage Driven Verification. A cov-
erage collector is an analysis component that collects coverage information through
SystemVerilog covergroups. This information should be stored in a persistent UCDB
database. The database is used to determine how much of the overall verification goals
have been achieved.

The UVM register library classes do not include any coverage models as a coverage
model for a register will depend on the fields it contains and the layout of those fields,
and a coverage model for a block will depend on the registers and memories it contains
and the addresses where they are located. The UVM register library classes provide
the necessary API for a coverage model to sample the relevant data into a coverage
model. Functional coverage is implemented using SystemVerilog covergroups. The
details of the covergroup (that is, what to make coverpoints, when to sample coverage,
and what bins to create) is planned and decided before implementation begins.

Due to the significant memory and performance impact of including a coverage model
in a large register model, the coverage model needs to handle the possibility that spe-
cific cover groups will not be instantiated or to turn off coverage measurement even if
the cover groups are instantiated. Therefore, the UVM register library classes provide
the necessary API to control the instantiation and sampling of various coverage models.

Coverage collection for the test is performed by covergroups instantiated inside the

CHAPTER 3. REGISTER MODEL 34

Figure 3.22: Coverage Collector

coverage collector. The covergroup samples the data that has been monitored by the
Monitor from interfaces tied to the DUT modules.

Covergroups are built within a register or register block. Coverage is initialised by
a build coverage() call within the constructor of the register or register block. The
sample() method is called automatically for each register and register block access.
The various methods used to control covergroup build and their effects are summa-
rized below:

For Overall Control

1. uvm reg::include coverage(uvm coverage model e) : This is the static method that
sets up a resource with the key ”include coverage”. Used to control which types of
coverage are collected by the register model.

For Build Control

2. build coverage(uvm coverage model e) : Used to set the local variable m has cover
to the value stored in the resource database against the ”include coverage” key.

3. has coverage(uvm coverage model e) : Returns true if the coverage type is en-
abled in the m has cover field.

4. add coverage(uvm coverage model e) Allows the coverage type(s) passed in the
argument to be added to the m has cover field.

For Sample Control

5. set coverage(uvm coverage model e) : Enables coverage sampling for the cover-

CHAPTER 3. REGISTER MODEL 35

Figure 3.23: Example for Coverage

Figure 3.24: Coverage Identifier

age type(s), sampling is not enabled by default.

6. get coverage(uvm coverage model e) : Returns true if the coverage type(s) are
enabled for sampling.

3.3.1 Predefined Coverage Identifiers

The UVM library has several predefined functional coverage model identifiers.
UVM NO COVERAGE specifies no coverage model, UVM CVR REG BITS specifies
Coverage models for the bits read or written in registers, UVM CVR ADDR MAP
specifies Coverage models for the addresses read or written in an address map,
UVM CVR FIELD VALS Coverage models for the values of fields and UVM CVR ALL
specifies for all coverage models.

CHAPTER 3. REGISTER MODEL 36

Figure 3.25: Code to Include Coverage

Figure 3.26: Message to Include Coverage

3.3.2 Controlling Coverage Model Construction and Sampling

By default, coverage models are not included in a register model when it is instan-
tiated. To be included, they must be enabled via the uvm reg::include coverage()
method. If include coverage() is not used and coverage is instantiated, simulation dis-
plays following message. Furthermore, the sampling for a coverage model is implicitly
disabled by default. To turn the sampling for specific coverage models on or off, use the
uvm reg block::set coverage(), uvm reg::set coverage(), and uvm mem::set coverage()
methods.

3.4 Integrating UVM Registers in the testbench

environment

UVM register models are integrated in the testbench environment by doing the fol-
lowing steps:
1. Build register database by constructing the register blocks in the test and pass their
handles to testbench components via configuration objects.

2. Build a register adaption layer; a component to translate register transactions to bus
transactions and vice versa. This can be achieved by extending the uvm reg adapter
base class and providing an implementation for reg2bus() and bus2reg() methods.

CHAPTER 3. REGISTER MODEL 37

Figure 3.27: Hardware Reset Test

3. Construct the register adapter object in the testbench environment and connect it,
as well as the agent sequencer, to the register map via the set sequencer() method.

4. Build a predictor component acting as a listener on the bus by extending the
uvm reg predictor class, implementing its write() method. The predictor is used to
convert bus transactions to register transactions then update the corresponding reg-
ister model, or if desired compare the register model value to the actual hardware
register value.

5. Construct the predictor object in the testbench environment, and connect it to
the bus agent monitor analysis port using normal UVM Transaction Level Modeling
(TLM) analysis port connections.

3.5 Built-in Sequence

3.5.1 REG-MODEL

Built-in register test cases allow user to execute pre-defined register testcases. The
uvm reg package has built-in sequence library.
The basic built-in sequences are as follow:

1. uvm reg hw reset seq: This is used to test the hard reset value of the register. Here
it first resets the DUT and then, reads all the register in the block via all the available
address map and check their value with the specified reset value. If NO REG TEST or
NO REG HW RESET TEST bit type resource is specified in REG:: namespace then
that block or register is not tested.

2. uvm reg single bit bash: This is used to verify the implementation of single register
by writing 1s or 0s to all the bits via address map, checking whether it is correctly set

CHAPTER 3. REGISTER MODEL 38

Figure 3.28: Reg bit bash test

or cleared, based on field access policy specified for field containing the target bit. If
NO REG TEST or NO REG BIT BASH TEST bit type resource is specified in REG::
namespace then that register is not tested.

3. uvm reg bit bash: This test verifies the implementation of every register in the
block by executing uvm reg single bit bash sequence on it. If NO REG TEST or
NO REG BIT BASH TEST bit type resource is specified in REG:: namespace then
that block or register is not tested.

4. uvm reg single access seq: This test is used to verify the accessibility of the reg-
ister. First it writes to register then reads the value via back-door so as to confirm
that the value was written correctly. And similarly it writes through backdoor and
the read the value of the register via address map so as to confirm the accessibility
of the register. If NO REG TEST or NO REG ACCESS TEST bit type resource is
specified in REG:: namespace then that register is not tested. Also those register with
no back-door or those with read-only field or with unknown access policies cannot be
tested.

5. uvm reg access seq: This test is used to verify the accessibility of all the regis-

CHAPTER 3. REGISTER MODEL 39

Figure 3.29: Reg Aliasing Sequence

Figure 3.30: Reg Write Follow Read Sequence

ter in a block by executing uvm reg access seq on all register. If NO REG TEST or
NO REG ACCESS TEST bit type resource is specified in REG:: namespace then that
block or register is not tested.

Additional built-in test contributed for uvm reg Package by Cadence (so as to be
similar sequence as in uvm rgm package)are as follow:

1. uvm reg built in aliasing seq : Goes through all the registers, writes a random
value to a register and reads all the other registers to make sure the write did not
affect them. It does this for all selected registers inside container.

2. uvm reg built in write all regs seq : Writes all registers inside register-block while
ignoring constraints (fully random value).

3. uvm reg built in read all regs seq : Reads all registers inside a register-block.(Usually
this sequence is used for reset checks)

4. uvm reg built in wr follow rd seq : Writes a constrained random value to the reg-
ister and reads back to make sure the value is written correctly. The sequence does
this for each register in the register block.

CHAPTER 3. REGISTER MODEL 40

Figure 3.31: Read all Sequence

3.5.2 RGM-MODEL

Built-in register test cases allow user to execute pre-defined register testcases. The
uvm reg package has built-in sequence library.
The basic built-in sequences are as follow:

List of Built-In Sequences
1. uvm rgm read all reg seq Reads all registers inside a container.(Usually this se-
quence is used for reset checks)

2. uvm rgm write all reg seq Writes to all registers inside container. The user can
chose to write directed or controlled random value (register constraints are followed).

3. uvm rgm any write all reg seq Writes all registers inside container while ignor-
ing constraints (fully random value).

4. uvm rgm wr rd all reg seq Writes a constrained random value to the register and
reads back to make sure the value is written correctly. The sequence does this for each
register in the container.

5. uvm rgm walking one zero seq Writes a pattern (0xffff fffe in case of walking zero
and 0x0000 0001 in case of walking one) to a register, and checks that the value is cor-
rectly written. It then right shifts the pattern by 1 and writes to the register followed
by a read to check the value. It does this for all selected registers inside container.(We

CHAPTER 3. REGISTER MODEL 41

Figure 3.32: Any write Sequence

Figure 3.33: Walking one-zero Sequence

are using this sequence for bit bashing).

6. uvm rgm aliasing seq Goes through all the registers, writes a random value
to a register and reads all the other registers to make sure the write did not affect
them. It does this for all selected registers inside container.

CHAPTER 3. REGISTER MODEL 42

Figure 3.34: Aliasing Sequence

Chapter 4

IPXACT Flow

This chapter provides the overview of the SPIRIT script and IP-XACT flow. Then,
IP-XACT flow used in imaging group is described. The three scripts (spec2verilog,
spirit2uvm, spec2uvm) that are used to automatically generate UVM Verification En-
vironment file are described in detail.

4.1 Introduction

SPIRIT stands for Structure for Packaging, Integrating and Re-using IP within Tool-
flows. It is Standard based on XML open format. IPXACT is developed by The
SPIRIT Consortium (http://spiritconsortium.org). An IP-XACT description of a de-
sign or component consists of a set of XML documents referring to one another. It
is a description of components and designs written in a standard data exchange for-
mat (XML), which is both machine process-able and human readable. It describes
electronic system designs and the interconnection of IP interfaces in a standard speci-
fication to provide IP suppliers, design integrators and Electronic Design Automation
(EDA) vendors, with a common representation. In this way, IP-XACT provides a
mechanism by which design reuse has been made a practical reality.

Accellera IP-XACT standard is used for capturing register’s specifications of IP/SoC.
The code generators can be used(that uses IP-XACT standard) for generation of the
SV-UVM code for the verification environment at IP level as well as for SoC level ver-
ification. IPXACT flow is so designed to fit the requirement of the designer expecting
to reduce the time-to-market. IPXACT flow is independent of the design language
and design tool and is also very efficient.

In System Verilog UVM based Verification Environment, register description file for

43

CHAPTER 4. IPXACT FLOW 44

Figure 4.1: Example of XML file

register model, address map file, sequences file, functional Coverage file, data checker
file to compare the output of RTL with output of Reference(Python) model are IP/SoC
specific which need to be modified for every IP/SoC. Therefore, IP-XACT based tools
are used for generation of these files and hence reduce the quality amount of time
writing these files.

XML-based IP-XACT view is automatically generated from the Register Specification
Document. In Data checker file, there is invocation of executable of Python model con-
taining attributes thus; automatic generation of data checker file requires the mapping
between the registers/register-fields/parameters of RTL and the attributes of Python
model.

The structure of the IP-XACT input file consist of the following:

• A header with some document detail such as vendor name, SPIRIT IP-XACT
version, project name, and so on

• An array of memory maps that specifies the memory and registers description.
Each memory map is an address space that can hold memory blocks register-files,
registers, or fields.

IP-XACT is not complete for register automation needs. Some of the missing
capabilities include constraints, coverage directives, backdoor paths, and so on. That
said, the standard supports extensions to enable the missing functionality.

CHAPTER 4. IPXACT FLOW 45

Figure 4.2: IP-XACT Vendor Extensions in XML file

4.2 IPXACT Flow

To generate the System-Verilog files for the verification environment, spirit2uvm script
is used. spirit2uvm script takes XML file as its input. XML file is just used as a
structure to store and transport information. The major advantage with XML file
is that we can have our own tags, as XML has no pre-defined tags. The XML file
description complexity depends on the complexity of the IP. The IP-XACT description
contains register descriptions, address block and memory map description. Therefore
XML file complexity fully depends on the complexity of the IP to be verified. And so
the generation of these XML file should be automated in order to reduce the time-to-
market and hence practically error free file. The XML file is so generated from the
script spec2verilog which reads the .docx file or .mif file (whichever available) of the IP.
The .docx/.mif file of the IP is provided by the designer to the IP verification team.
The .docx file includes the description of the IP and the description of the register
access policies and address and memory mapping information which is then read by
spec2verilog. IP-XACT flow provides the automation in setting up the verification
environment and thus reducing the Time-to-Market. The spirit script are described
below in detail.

4.2.1 spec2verilog

spec2verilog script generates the Xml files and then Register bank files of the particu-
lar IP . This will be generated from the Specification file (mif/docx) of that particular
IP taken as input to the script. The script Generates xml file and this generated xml
file is used by spec2verilog script to generate register description file for register model,
sequences file, functional Coverage file, data checker file which are IP dependent.

To run spec2verilog script following command is used:

spec2verilog.sh −file < file − name > .mif/docx[−out < XMLF ileName >
.xml][−log < logName > .log][−inter][−version]

CHAPTER 4. IPXACT FLOW 46

Figure 4.3: IP-XACT flow

spec2verilog converts a spec (.docx/.mif) file describing registers into :

1. Four verilog register banks (8-bits big-endian, 8/16/32-bits little endian T1 data
bus)

2. Four verilog register banks (8-bits big-endian, 8/16/32-bits little endian T1 data
bus)

3. Two Verilog header file containing respectively registers offsets and registers values

4. Two Corresponding C header file

Desciption of Options supported for spec2verilog are:

1. file <file-name><.mif or .docx>

Give the input specificstion file in .mif or .docx format.

2. out <XML-FileName>.xml

Define the name of the XML file which will contain the Spirit description of the
register bank.
(Default : filename.xml)

CHAPTER 4. IPXACT FLOW 47

Figure 4.4: spec2verilog flow

3. log <log-fileName>.log

Define the name of the log file generated by the .MIF parser
(Default: display on screen)

4. inter

Full script becomes interactive (user prompt) and step-by-step process.
(Default: not interactive)

5. version

Displays the version of each internal tool (ds2spirit, spirit2verilog, ...)

4.2.2 spec2uvm

spec2uvm script is using the spec (mif/docx) file and generating System Verilog files.
spec2uvm.csh script internally calls spec2verilog.sh script to generate the xml file and
then calls spirit2uvm script to generate the System Verilog files in the vrad verif direc-
tory using generated xml file. spec2uvm.csh script should be run from verif directory
and it will also create the tests, VC, test bench etc. sub-directories in the verif direc-
tory. Generated System Verilog files in < output dir > will be copied into the proper
sub-directories in the verif directory.

CHAPTER 4. IPXACT FLOW 48

Figure 4.5: spec2uvm flow

4.2.3 spirit2uvm

The xml file which is been generated from spec2verilog will be used as input file here.
The xml file and the map file will be used as input files for running spirit2uvm script
and the output files which will be generated will be Register Definition Files, Func-
tional Coverage files, Sequence Files, Nathair files, Address Map Files. Following are
the generated file names with there naming conventions:

IPXACT flow is so designed to fit the requirement of the designer expecting to
reduce the time-to-market time. The spirit2uvm script generates the register descrip-
tion files along with sequences file, functional Coverage file, and data checker file.

1. IP * uvm reg def file
2. IP * seq lib file
3. IP * derived seq lib file
4. IP * addr map file

To run this spirit2uvm script following Command Line Options are used:

< tool−path > /bin/spirit2uvm.sh -input spirit file <input-spirit-file-path> [-output dir
output-directory][-output files <Output-file-selection>] [-invalid address option][-relax checks
option][-unique mmaps option][-uvm option][-h help][-v version]

Following options are supported in spirit2uvm.

1. -input spirit file <Input-spirit-file-path>

IPXACT file with absolute or relative path will be used as an input parameter to

CHAPTER 4. IPXACT FLOW 49

Figure 4.6: sprit2uvm flow

generate verification files. It is a mandatory parameter.

2. -output dir <Output-directory-Path>

Specify path of the directory where output files will be stored. In case of absence
of this parameter, vrad verif directory will be created in the current working directory
and all output files are stored in this directory. If the specified directory does not exist
then it will be created.

3. -output files <Output-file-selection>

Output file selection option provides control over generation of output files in the
specified destination directory. User can generate only required files as needed. Input
to this option is given as names of files, colon separated inside quotes.

4. -invalid address Invalid address generation

Invalid address option generates a file which contains a set of registers which ad-
dress lies outside the valid address boundary, specified by memory map of register
bank (valid for rgm files).

5. -relax checks Option to relax checks

Relax checks option with 1 value allow tool to relax certain register level checks while
building internal data structure and subsequent output file generation.

CHAPTER 4. IPXACT FLOW 50

6. -unique mmaps Unique memory maps generation

This option is useful when input IPXACT file has more than one memory maps.
User may avoid naming conflict by selecting 1 as an argument. In case of 0, tool will
not change name of the conflicted memory maps during systemVerilog file generation.
By default, argument 1 is used. It is an optional argument.

7. -uvm Option to generate systemVerilog files

This option controls format of output verification files. Option 1 is used to gener-
ate systemVerilog files and 0 is used to generate e files. By default, option 0 is used
by the tool. It is an optional argument.

8. -h help

User can access the information of scripts option usage through this option.

9. -v version

User can know current tool version through this option.

Chapter 5

Work at ST

In this chapter the work done is explained in detail. first Migration from use of
UVM RGM register and memory package to UVM REG register and memory package
is described. Then the modification done to the spirit2uvm script (IPXACT script) is
explained with its usage. Also the modification to the FEKIT (internal Tool) GUI is
shown.

5.1 Why to Migrate from UVM RGM to UVM REG

In the Above chapter 3 of Register model the Architecture of the Register model is
described in detail. UVM REG register and memory model provides various features
to ease verification of register’s of DUT and hence automate register related activities.
Compared to UVM RGM register and memory model, it provides enhanced features
of having automatic comparsion on use read and write API, Also provides support
for little endian and big-endian feature where as in UVM RGM, externally support
had to be given. UVM REG supports all ipXact 1.5 access policies as well. Also as
UVM REG is given by Accellera it is suppose to be updated with upgrading of UVM
itself. This Above advantage of UVM REG over UVM RGM makes one want to mi-
grate from use of UVM RGM register and memory model to UVM REG register and
memory model.

The UVM REG register and memory package was introduced in release of Accellera’s
UVM 1.0 release for easier verification of register’s of DUT and automate register
related activities. The UVM REG register and memory package derives the register
level API from VMM and the use model, register sequenced, register operation items,
layering concepts, and more from the UVM RGM register and memory package con-
tributed to UVM World by Cadence. The use of UVM REG register and memory
package has been proven more satisfactory than use of UVM RGM register and mem-

51

CHAPTER 5. WORK AT ST 52

ory package, and hence migration from UVM RGM register and memory package to
UVM REG register and memory package, becomes necessary for more efficient verifi-
cation of register and memory of DUT.

5.2 Writting the Basic Register Model Architec-

ture

The Register definition class is derived from the base-library register class and the
instance of this register definition class is used in register-file class which is extended
from base-library register-file class. and then the instance of this register-file class is
used in register-block class which is extended from base-library register-block class.
and then finally a register map class(extended from base-library register-map class) is
defined which has instance of the register-block class.

Both the Register Model has register definition that includes the declarations of the
register field with its access policies of field, position of field in the register and the
size of field. The difference lies in the way they are defined. Also in RGM model
the unused bits of the register are defined but in REG model there is no need of
defining the unused bits of the register. There is no pre-defined field access policy for
reserved fields. Reserved fields should be left unmodelled (where it will be assumed
to be RO fields filled with 0s. The RGM model has register definition class extended
from the uvm rgm sized register class and the fields are defined in a packed struct,
and the REG model has register definition class extended from the uvm reg class and
the fields are not defined in a packed struct. The figure 5.1 shows the how to de-
fine the basic register field for both RGM and REG model. The register definition in
RGM model shown has example type register definition with example field type and
unused 1 register field whereas its equivalent structure for REG model is shown where
only example reg field is defined.

The register-level coverage model is always defined and instantiated in the reg-
ister type class. Coverage is taken for read and write operations for field values on
each instance of that register type. The uvm reg::sample() is used trigger the sam-
pling of a coverage point as mentioned in covergroup of the register type instance.
The sampling of the coverage model in the register definition file is done only if
uvm reg::get coverage() method returns 1. All the coverage models that are included

CHAPTER 5. WORK AT ST 53

Figure 5.1: Register Field Definition

Figure 5.2: Register Definition

CHAPTER 5. WORK AT ST 54

Figure 5.3: Sampling Covergroup

Figure 5.4: Constructing Covergroup

in the environment are build using the uvm reg::build coverage() method when su-
per.new() is called or the uvm reg::add coverage() method. So the construction of
coverage model is done if the uvm reg::has coverage() method returns 1.

The instance of register definition class is instantiated in register file. The in-
stance of register definition class can be instantiated directly to the register block
but it is recommended to use the reg-file hierarchy in the register model. Register
types are instantiated in the build() method of the register file types. The construc-
tor uvm reg::new() method is called with appropriate argument values for the reg-
ister type. In REG Model Register files can have other register files as well. The
build() method calls the configure() method for all register and register file specifying
get block() for the parent block and ”this” for the parent register file. The map()
method calls uvm reg map::add reg() for all register class properties, adding the value

CHAPTER 5. WORK AT ST 55

Figure 5.5: Register file Definition

of the address offset argument to the offset of the register in the register file. The
register file definition class for both RGM model and REG model is shown in figure
5.5

The register block is created in the case of REG model which can have instance of
register or/and the register file instance or/and memory instance or/and another reg-
ister block inside a register block. While in case of the RGM model there is rgm map
that contains instance of the register file and/or memory block. A block-level coverage
model is defined and instantiated in the block type class.The uvm reg block::sample()
methods is used to trigger the sampling of a coverpoint, based on the data provided as
an argument. The sampling of the coverage model is done only if sampling for the corre-
sponding coverage model has been turned on so that the uvm reg block::get coverage()
method returns 1. The memory model for both models are shown in figure 5.7 and
the register block for both model is shown in figure

Test sequences defined needs a verification environment to get executed. here in
this environment the register model needs to be instantiated so as to be used by the
tests to access registers and memories in the DUT. The register model is explicitly
built by calling its build() method, then it calling the uvm reg block::lock model()
method. The register model is integrated with the bus agents that perform and mon-
itor the actual read and write operations. Implicit prediction and Explicit prediction
any one can be used for updating the model with that of the DUT. Implicit prediction
only requires the integration of the register model with bus sequencers. After com-
pletion of the read, write, peek, or poke operations it would automatically update the
register model. This will lead to update register model for all observed bus opera-

CHAPTER 5. WORK AT ST 56

Figure 5.6: Memory Definition

Figure 5.7: Register Block

CHAPTER 5. WORK AT ST 57

Figure 5.8: Register Block Coverage

Figure 5.9: Top-Env Register Model Connection

tion originate from register model and not others. The explicit prediction updates the
register model for all observed operation. Here implicit prediction is turned off and
the uvm reg predictor component is used. The predictor receives the bus operations
observed by a connected bus monitor, and thus appropriately update the correspond-
ing register in model. The adapter implemented is used by the predictor to know
which register transaction had occured. The adapter is implemented by extending
the uvm reg adapter class and ii has reg2bus() and bus2reg() methods to convert the
register transaction to the bus operation and to convert bus operation to register trans-
action respectively. The adapter is instantiated in the connect() method of the top
environment. In the connect phase function, the sequencer and the register adapter
of the agent are associated with the reg map by calling set sequencer function . The
set sequencer() is called before starting any sequences based on uvm reg sequence.

CHAPTER 5. WORK AT ST 58

Figure 5.10: New sprit2uvm flow

5.3 Introduction to IPXACT

Although register models could be built-up manually, as described above but typically
register models are automatically generated using IPXACT flow for register model
generators, which not only prevents manual coding errors but also reduce the quality
amount of time writing these files.

The chapter-4 (IPXACT flow)describes the spirit2uvm script is used for automatic
generation of the SV-UVM environment files through xml specification file of the
IP/subsysytem/SoC. There are many other files to be written by the verification en-
gineer so as to set the verification environment. To write these files we need interface
information i.e the type of interface used and the no of input and output interfaces
needed. The spirit2uvm script is modified to take extra input argument of interface
information and hence generate the remaining files to set the verification environment.
The flow for this script is shown below. The modified spirit2uvm script generates
the register description files which has register and memory model in the hierarchy
that has reg file and hirarchy without reg file for UVM REG register Model genera-
tion where as for UVM RGM regiser definition file has hierarchy of rgm file in register
model Also the memory block specified in xml is now readable through script and
register-definition file builds the memory block as specified, sequences file where the
standard sequences like read-write sequence, read sequence and write sequences are
defined, functional Coverage file which is the extended file for register definition file

CHAPTER 5. WORK AT ST 59

where the coverage is defined in a standard format also this can be easily manipulated
by the user so as to have the specific coverage scenario , and data checker file which is
the nathair file that generates the python script for the input to the model, along with
these above mentioned files extra files that modified spirit2uvm generates are invalid
register map file that is used as an definition file for the dummy pre and post invalid
regiser above and below the valid range of registers, test-case file where the actual test
case scenarios are written here only the register built-in sequence test are provided
along with one streaming test-case is generated, top-environment file, virtual sequence
file where the sequences that are defined in sequence file are created and send to the
sequencer, virtual sequencer file is where the sequence are started and module-uvc file
used for score-boarding are all generated by the spirit2uvm script.

To run this spirit2uvm script following Command Line Options are used:

< tool−path > /bin/spirit2uvm.sh -input spirit file <input-spirit-file-path> [-output dir
output-directory][-output files <Output-file-selection>] [-invalid address option][-relax checks
option][-unique mmaps option][-uvm option][-rgm option][-no of input interface option][-
no of output interface option][-type of input interface option][-no of output interface
option][-h help][-v version]

Following options are extra options that is now supported in spirit2uvm.

1. -rgm < 0 − 1 >

This option gives the support for generating the rgm files as well as reg files. if
given 1 it generated the rgm files and if given 0 it generates the reg files.

2. -no of input interface integer

Gives the no of input interface for the DUTBy default it generates file for having
1 input interface.

3. -no of output interface integer

Gives the no of output interface for the DUT. By default it generates file for hav-
ing 1 output interface.

4. -type of output interface integer

Gives the type of output interface for the DUT . By default it generates IDP type
output interface.

5. -type of input interface integer

CHAPTER 5. WORK AT ST 60

Figure 5.11: XML to reg def (RGM MODEL)

Gives the type of input interface for the DUT. By default it generates IDP type input
interface.

6. -reg file

This option takes information on whether or not to generate the reg file hierarchy
in register model for UVM REG model this is not needed in UVM RGM model gen-
eration. Default it generates the register model with reg file hierarchy.

7. -invalid address Invalid address generation

Invalid address option generates a file which contains a set of registers which ad-
dress lies outside the valid address boundary, specified by memory map of register
bank (valid for rgm and reg files).

The below given figure shows sample example of input .xml file and output reg def
file. The .xml file gives all the basic information of the IP such as IPs name
(<spirit:name>MUX EN<spirit:name>), data bus size
(<spirit:width>32</spirit:width>), base address
(<spirit:baseAddress>0x000</spirit:baseAddress>), etc. also the register definition
with its fields such as register bit width

CHAPTER 5. WORK AT ST 61

Figure 5.12: XML to reg def (REG MODEL)

(<spirit:bitWidth>4</spirit:bitWidth>), register offset bit
(<spirit:bitOffset>0</spirit:bitOffset>), register accessibility (<spirit:access>read-
only</spirit:access>) are provided. From the above given information corresponding
ref def file is generated.

5.4 Generating Test-bench

The IP-XACT tool mentioned above is used to generate the SV-UVm environment
files using the specification(.mif/.docx/.xml). The testbench file is written for con-
necting to the DUT so needs the RTL file the write the test-bench. To ease the work
of user the testbench file is generated using the RTL file. The Python script is written
to read the rtl file also with the information of interface and address width used the
script generates test-bench file.

To run this test-bench-python script following Command Line Options are used:

python < tool−path > script.py < interface type > < address width > < rtl file path >
< Register model >

Following options are extra options that is now supported in test-bench-python script.

CHAPTER 5. WORK AT ST 62

Figure 5.13: Generating Test-bench File

1. < interface type >

This option takes interface information.

2. < address width >

This option takes the information for address width used.

3. < rtl file path >

This option takes the input RTL file.

4. < Register model >

This option takes information Register model used.

5.5 Introduction to FEKIT

FEKIT(Front-End Kit Tool) GUI is software made on JAVA. It is an encapsulation
of all the scripts required to perform basic tasks. It is developed to provide ease to
user, so that he can perform all the basic tasks required at the front end from this
software. Now user is not required to use terminal and run scripts by moving to dif-
ferent directories. Now user only require a jar file and he can populate fekit and it will
automatically change directories and will run tasks. To run FEKIT GUI user should
have jdk1.6 or more installed on his system, otherwise it shows error message.

CHAPTER 5. WORK AT ST 63

Figure 5.14: KIT-Option Window

5.5.1 How to run FEKIT GUI

FEKIT GUI provides two modes of running:

1. If user already have setup stored in his area then user only needs to go to SETUP
directory of feKit setup and run the command shown below:

java jar fekit gui.jar

If user has placed jar file in any other directory then setup then user needs to
provide path to that directory from current directory as shown below:

java jar ../path to jar file/fekit gui.jar

2. If user dont have setup he has to run jar file as shown below:

java jar fekit gui.jar

Then user will populate and FEKIT gui will automatically move to setup directory.

First window which appears when user launches fekit gui from setup directory is setup
window as shown in fig 5.14

Next window which appears to the user is to choose standard or specific path for
using FEKIT (these option is for both FeKit and FeCustomKit) this is shown in figure
6.15

CHAPTER 5. WORK AT ST 64

Figure 5.15: Setup Window

This window appears when user choose Img FeKit option. This is shown in figure 6.16

Window of figure 6.17 appears when user chooses any technology option.

Window of figure 6.18 appears when user chooses option of specific Path instead
of IMG-fekit. this would lead to show all technology file options with some default
path and it lets the user to give the specific path for those files.

Fekit Gui will reads Project Variables.tcl file and according to that it will show de-
sign unit, design paths, clocks, resets. User can manually add or remove design paths,
clocks, resets. As user will click Submit button this will update Project Variables.tcl
and constraints.tcl files and close this window.

In window of fig 6.19 user can change LSF command according to which commands
will be fired on LSF, by default LSF command will be long as set in setup.csh. As
user will click Link Design link design script will be run and a label will appear which
will show current status and kill button to kill the task and user can see log file by
clicking on View Log button. The running status will be shown in text area. User can
run only one task at a time among Link Design, Recital and Spyglass Compile.

CHAPTER 5. WORK AT ST 65

Figure 5.16: Technology option for Img-Fekit

Figure 5.17: Checking of Technology option for Img-Fekit

CHAPTER 5. WORK AT ST 66

Figure 5.18: Window for Specific Path option

Figure 5.19: Window for Reading Design

CHAPTER 5. WORK AT ST 67

Figure 5.20: IP FLOW Window

Chapter 6

Running UVM Simulation

This chapter provides the information to run the simulation and describes the integra-
tion of Enterprise Manager (using Verification Cockpit) for running regressions and
coverage analysis. And the verification cockpit flow is described in detail.

6.1 Running Simulation

To understand how UVM simulations works within the System-Verilog testbench en-
vironment, it is useful to have a big-picture view of the entire simulation flow. The
design and testbench are first compiled, then the design and testbench are elaborated.
Elaboration happen before the start of simulation at time-0.
At time-0, the procedural blocks (initial and always blocks) in the top-level module
and in the rest of the design start running.

The first phase of an UVM testbench is the build phase. During this phase the
uvm component classes that make up the testbench hierarchy are constructed into
objects. The construction process works top-down with each level of the hierarchy
being constructed before the next level is configured and constructed. This approach
to construction is referred to as deferred construction.

The UVM testbench is is activated when the run test() method is called in an ini-
tial block in the top level test module. This method is an UVM static method, and
it takes a string argument that defines the test to be run and constructs it via the
factory. Then the UVM infrastructure starts the build phase by calling the test classes
build method During the execution of the tests build phase, the testbench component
configuration objects are prepared and assignments to the testbench module interfaces
are made to the virtual interface handles in the configuration objects. The next step is
for the configuration objects to be put into the test’s configuration table. Finally the

68

CHAPTER 6. RUNNING UVM SIMULATION 69

Figure 6.1: Running Simulation

next level of hierarchy is built. At the next level of hierarchy the configuration object
prepared by the test is ”got” and further configuration may take place, before the
configuration object is used to guide the configuration and conditional construction
of the next level of hierarchy. This conditional construction affects the topology or
hierarchical structure of the testbench. The build phase works top-down and so the
process is repeated for the each successive level of the testbench hiearchy until the
bottom of the hierarchical tree is reached. After the build phase has completed, the
connect phase is used to ensure that all intra-component connections are made. The
connect phase works from the bottom to the top of the testbench hierarchy. Following
the connect phase, the rest of the UVM phases run to completion before control is
passed back to the testbench module.

The build process for an UVM testbench starts from the test class and works top-
down. The test class build method is the first to be called during the build phase and
what the test method sets up determines what gets built in an UVM testbench. The
function of the tests build method is to:

• Set up any factory overrides so that configuration objects or component objects
are created as derived types

• Create and configure the configuration objects required by the various sub-
components

• Assign any virtual interface handles put into configuration space by the testbench
module

CHAPTER 6. RUNNING UVM SIMULATION 70

• Build up a nested env configuration object which is then set into configuration
space

• Build the next level down in the testbench hierarchy, usually the top-level env.

For a given design verification environment most of the work done in the build method
will be the same for all the tests, so it is recommended that a test base class is created
which can be easily extended for each of the test cases.

In the top-level module is an initial block that calls the run test() task from uvm top.
When run test() is called at time-0, the UVM pre-run() global function phases (build(),
connect(), end of elaboration(), start of simulation()) all execute and complete. After
the pre-run() global function phases complete (still at time-0), the global run() phase
starts. The run() phase is a task-based phase that executes the entire simulation, con-
suming all of the simulation time. When the run() phase stops, the UVM post-run()
global function phases (extract(), check(), report()) all run in the last time slot before
simulation ends. Graceful termination of the run() phase often requires the use of
UVM built-in termination commands, such as global stop request().

The uvm test is a collection of one or more sequences that are started on a uvm sequencer
and hence what we typically call a test can really be thought of as a single test exe-
cuting a single sequence, or a group of sequences executed as separate tests within the
top-level test.

UVM provides run test() command so as to start all of the UVM phases. The
run test() command is passed with the a valid test name. There are two ways to pass
a valid test name to the run test() command:

a. Coded into the top module

b. Passed to the UVM test bench through the command line switch +UVM TESTNAME.

1. Coded into the top module

The test name can be written into the argument of the run test so as to have that test
run. The typical example of coding the test name into the top module file is shown
below: The inline coded method is not typically recommended. This is so because this
will lead to run the only test which is been mentioned. And hence will result in modi-
fying the top module every time the user wants to run a new test. And hence need to
compile the entire code repeatedly i.e. every time the new test is run. This scenario
leads to increase the time of verifying the IP as this would take long to compile code
and hence ultimately result in increase in entire time to verify the IP.

CHAPTER 6. RUNNING UVM SIMULATION 71

Figure 6.2: Run Code

2. Passed to the UVM test bench through the command line switch
+UVM TESTNAME.

UVM provides the+UVM TESTNAME command line switch to perform the test.
Using this command line switch the user work is now eased as compared to earlier use
of inline codding method.

With this method the user need to compile the file for once and then run the simu-
lation for any no of test cases as required. Since this method require to compile the
design for once is reduces significant of time of verification.

Due to ease of use and reduce in time of verification, this method of passing test-
name through command line switch is recommended.

Below is shown an example command line switch :
At command line:

For Questa simulator:
vsim -c -do ”run -all” top +UVM TESTNAME=test1

For NCsim simulator:
irun c uvm -top testbench top +UVM TESTNAME=test1

CHAPTER 6. RUNNING UVM SIMULATION 72

Figure 6.3: Base Test Class

6.2 UVM testbench Build And Connection Pro-

cess

The recommended method in UVM for creating testbench components or transaction
objects is to use the built-in method ::type id::create command.Using the ::type id::create
command makes a call to the factory to extract the requested component or transac-
tion type and then uses the new() constructor that is included in the class type to build
a copy of the class-type object, all of which is done at run time. Whatever class type is
stored in the factory look-up table at the requested type id location, is extracted and
created. The factory makes it possible to allow a compatible type to be stored at the
desired location and therefore a compatible substitute can be automatically requested
when the ::type id::create command is executed.

6.2.1 Factory Overrides

The UVM factory allows an UVM class to be substituted with another derived class
at the point of construction. This facility can be useful for changing or updating
component behaviour or for extending a configuration object. The factory override
must be specified before the target object is constructed, so it is convenient to do
it at the start of the build process. The factory permits a top-level test to make a
substitution for one of the component or transaction types in the factory at run-time,
before building the entire testbench environment using factory overrides.

CHAPTER 6. RUNNING UVM SIMULATION 73

6.3 Managing the End of Test

A UVM testbench, if is using the standard phasing, has a number of zero time phases
to build and connect the testbench, then a number of time consuming phases, and
finally a number of zero time cleanup phases. End of test occurs when all of the time
consuming phases have ended. Each phase ends when there are no longer any pending
objections to that phase. So end-of-test in the UVM is controlled by managing phase
objections

The UVM objection mechanism is designed to coordinate activities of test termina-
tion. For example, there is a need to run entire read and write operations before it can
be considered complete. In this example, the various UVM verification components
(UVCs) can raise objections assuring that they are able to complete before it declares
that it is done. When those other UVCs complete their work, they clear their objec-
tion flags enabling the simulation to continue.

In short Component raises an objection when it starts a transaction with the DUT.And
Component drops that objection when the transaction is completed Or Component
expecting a response from the DUT will keep an objection raised until the response is
received.

6.3.1 Objection Control

The uvm objection class has three APIs Methods for raising and dropping objections
and for setting the drain time.

• raise objection (uvm object obj = null, string description = ”” , int count =
1).
Raises the number of objections for the source object by count, which defaults
to 1. The raise of the objection is propagated up the hierarchy.

CHAPTER 6. RUNNING UVM SIMULATION 74

• drop objection (uvm object obj = null, string description = ”” , int count =
1).
Drops the number of objections for source object by count, which defaults to
1. The drop of the objection is propagated up the hierarchy. If the objection
count drops to 0 at any component, an optional drain time and that component’s
all dropped() callback is executed first. If the objection count is still 0 after this,
propagation proceeds to the next level up the hierarchy.

• set drain time (uvm object obj = null, time drain).
Sets the drain time on the given object.

6.4 Verification Cockpit Flow

It is important to concentrate on debugging design issues than spending time on de-
bugging tool integration and script maintenance. Verification Cockpit flow is Linux
compatible product and a infrastructure tool that bridges other tools such as NC-
sim,eManager(These are Cadence Tools) etc. VC cockpit flow (ST internal framework)
thus helps user to eliminate wasting time on tool integration The main backbone of
verification cockpit is 2 scripts

a. Test case file (testcase.csv) which is generated automatically.

b. Setup script (vc setup.csh) which sets the entire variable we use in the environ-
ment.

The user need to create the setup script file that lists all the variable pointing to the
certain directories and script to be used in environment. User need to create the test-
case file using generic command vc generate test this will to generate a file with all
the testcase names in it. This file is then used at the time of simulation to choose the
testcase to be run.

The verification cockpit flow is described below:

a. Build and Compile :

After setting up the entire verification environment, the design is build. To
do so vc build command is used. This command is invoked in the directory
pointed by variable $VE BUILD DIR and will execute a script pointed by vari-
able $VE BUILD SCRIPT. These variables are already been set in the setup file.

After the successful build, next step is to compile the design. To compile the IP
environment compilation command are used. This command basically runs the
script. The script is generally list of steps that the user uses for compilation.

CHAPTER 6. RUNNING UVM SIMULATION 75

After compiling, if any error occurs, then it can be viewed in the log file which
will be generated in directory pointed by variable $VE BUILD DIR.

b. Running Standalone Test case :

After compiling the Environment, simulation is carried out for the same en-
vironment. Here first built-in register test-cases are run (so as to verify the reg-
ister/memory configuration) and then the streaming tests. The command to run
the test-cases are launched in the directory pointed by variable $VE RUN DIR
and will execute a script pointed by variable $VE TEST RUNNER. This vari-
ables are already been set in the setup file. A tcl script is used for pointing the
input values. The results of simulation can be observed and the waveforms can
be checked for verifying the functionality of the IP.

Since UVM methodology is interoperable i.e. it is vendor independent, simu-
lation can be run with any simulator available. Generally NCsim simulator is
used for simulating the design but modelsim simulator and vcs simulator can be
used as well.

The script used to run simulation has various options for running the test.An
example of command line to run simulation is as follow:

vc run test -t test1 -b
This leads to run simulation at command line.

vc run test -t test1 -probe all
This leads to run simulation in GUI mode as shown below.

After running the Stand-alone test, check for coverage is carried out. There
is a option for NCSim to have direct coverage through IMC (Incisiv Metric Cen-
ter). An example for coverage of registers(through register-derived-class) for a
given test is shown below with IMC.

c. Running Regression :

The Cadence Tool, Emanager is used for running regressions. When regres-
sion is run a .vsif file is generated from the test-case file and this vsif file will
be input to the Emanager. The main aim over running regression is to have the
coverage information such as function coverage, code coverage etc. of the IP to
be verified.

d. Customize Regression :

CHAPTER 6. RUNNING UVM SIMULATION 76

Figure 6.4: NCSIM simulator

To run customized regression vc server is used -

1. This command which will invoke a terminal and provide us with a link to
open in your web browser (Internet Explorer or Google Crome etc...).

2. This will open a GUI based interface of the test-case fie where selection
of the number of test-case to be run is done also dumping of a VSIF file for
running later or checking of status of runs on GUI window can be done.

3. Standalone test-case can be run from the GUI either in the same run di-
rectory or new directory.

4. Probes can be enabled to run standalone test-case.

5. Filtering can be applied in case we have huge number of testcase and can
save the filter to apply it whenever needed.

CHAPTER 6. RUNNING UVM SIMULATION 77

Figure 6.5: Coverage in IMC

Figure 6.6: Regression

Regression can be run on a SQL server for which server setting has to be done
on the setup.csh script and then the results can be extracted by pinging the SQL
server and have a report as required.

6.5 Make-file

Make utility automates the entire verification cockpit flow. Once the suitable make
file exist, each time you change the source file, you now just need to give the command
make. This leads to reduce further time to run test. Make command will now need
argument MODE so as to determine the running of test in GUI or in Batch mode.
Along with the name of test to run.
Eg:
>> make <test case name> MODE=<GUI/BATCH>

This command will compile the source code and run the given test in GUI/BATCH
mode.

Chapter 7

Conclusion and Future Scope

7.1 Conclusion

The System-Verilog Universal Verification Methodology (SV-UVM) based reusable
verification environment is efficiently used for verifying the imaging IP/SoC. The SV-
UVM methodology helped in overcoming many drawbacks of earlier methodologies. As
compared to earlier methodologies, where verification flows were disjoint at IP, SoC
and Validation level, SV-UVM has emerged to be a methodology helping in saving
verification cost and effort. Also Migration from uvm rgm to uvm reg register Model
usage for register verification has lead to many advantages of having more in-built
test-case for verification and automatic check while having use of basic read -write
API’s.

IP-XACT based tools are used for the automatic generation of IP/SoC dependent
system Verilog files. IPXACT flow is so designed to fit the requirement of the designer
expecting to reduce the time-to-market. Now with the help of IPXACT flow 90% of
the IP/SoC dependent System Verilog files are automatically generated. IPXACT flow
is independent of the design language and design tool and hence is a very efficient tool.

Use of FEKIT tool save the time of the user as all the flow is automated. i.e without
having change directory for running different commands and also easing the pain of
remembering all the commands to run. This tool will be very useful for the users
because this will make them to run all the options automatic and no need do much
manual changes.

78

CHAPTER 7. CONCLUSION AND FUTURE SCOPE 79

7.2 Future work

In Future, more Improvement in existing verification environment in terms of flexibility,
coverage and reusability from IP level to SOC level can be done. And addition of more
feature to IPXACT script (spirit2uvm) for automatic generation of all the files (i.e for
Sub-System level and SoC level) from xml specification file.

References

[1] Abhishek Jain, Giuseppe Bonanno, Dr. Hima Guptaand Ajay Goyal (2012) ”Generic
System Verilog Universal Verification Methodology based Reusable Verification Envi-
ronment for Efficient Verification of Image Signal Processing IPs/SOCs

[2] Accellera Organization, Inc. Universal Verification Methodology (UVM) May 2012

[3] http://www.doulos.com/knowhow/sysverilog/uvm/

[4] http://testbench.in/

[5] ClueLogic, UVM Tutorial for Candy Lovers - 16. Register Access Methods, www.cluelogic.com

[6] ST Microelectronics internal documents regarding UVM Methodology

	Declaration
	Certificate
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Motivation
	Thesis Organization

	SV-UVM based Verification Environment
	Introduction
	Basic blocks of SV-UVM based IP Level Verification Environment
	UVM Verification Environment
	Running a sequence
	Execution Flow

	Connections to DUT Interfaces
	Advantages of Adopting UVM

	Register Model
	Introduction
	Register Model
	RGM Model
	The Register Database (RGM_DB)
	The Register Sequencer and Sequences
	The Bus Interface UVC
	The Interface UVC Monitor
	Updating the Model
	The Module UVC
	Defining Memory Bank

	REG Model
	Register Sequence Adaption Layer
	Register Prediction
	Field Access Policies
	Register Access Methods for uvm_reg model

	Coverage Model
	Predefined Coverage Identifiers
	Controlling Coverage Model Construction and Sampling

	Integrating UVM Registers in the testbench environment
	Built-in Sequence
	REG-MODEL
	RGM-MODEL

	IPXACT Flow
	Introduction
	IPXACT Flow
	spec2verilog
	spec2uvm
	spirit2uvm

	Work at ST
	Why to Migrate from UVM_RGM to UVM_REG
	Writting the Basic Register Model Architecture
	Introduction to IPXACT
	Generating Test-bench
	Introduction to FEKIT
	How to run FEKIT GUI

	Running UVM Simulation
	Running Simulation
	UVM testbench Build And Connection Process
	Factory Overrides

	Managing the End of Test
	Objection Control

	Verification Cockpit Flow
	Make-file

	Conclusion and Future Scope
	Conclusion
	Future work

