
Association of Terms and Phrases in medical
field by relative correlation and self evolving

data structure

Prepared By :

Pawan Parekh

12MCEC35

Internal Guide

Prof. K.P.Agrawal

Institute Of Technology,

Nirma University

External Guide

Mr. Satish Vagadia

J-KRI TECHLABS

Department Of Computer Science And Engineering

Institute Of Technology,

Nirma University

Ahmedabad

MAY-2014

Association of Terms and Phrases in
medical field by relative correlation

and self evolving data structure

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

PREPARED BY :

Pawan Parekh

12MCEC35

Internal Guide

Prof. K.P. Agrawal

Institute Of Technology

Nirma University

External Guide

Mr. Satish Vagadia

J-KRI TECHLABS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD

ii

DECLARATION

This is to certify that,

I, Pawan Parekh, 12MCEC35, a student of semester III Master of Technology in

Computer Science Engineering, Institute Of Technology , Nirma University, Ahmedabad

, hereby declare that the project work Association of Terms and Phrases in medical

field by relative correlation and self evolving data structure has been carried out

by me under the guidance of Mr. Satish Vagadia , J-KRI TECHLABS, Pune and Prof.

K.P. Agrawal, Department of Computer Science and Engineering, Institute Of Technol-

ogy , Nirma University, Ahmedabad. This Project has been submitted in the partial

fulfillment of the requirements for the award of degree Master of Technology (M.Tech.)

in Computer Science and Engineering, Nirma University, Ahmedabad during the year

2013 - 2014.

I have not submitted this work in full or part to any other University or Institution

for the award of any other degree.

Pawan Parekh(12MCEC35)

iii

CERTIFICATE

This is to certify that the Major Project entitled Association of Terms and Phrases in

medical field by relative correlation and self evolving data structure submitted

by Pawan Parekh(12MCEC35), towards the partial fulfillment of the requirements

for the degree of Master of Technology in Computer Science Engineering of Nirma Uni-

versity of Science and Technology, Ahmedabad is the record of work carried out by him

under my supervision and guidance. In my opinion, the submitted work has reached a

level required for being accepted for examination. The results embodied in this major

project, to the best of my knowledge, have not been submitted to any other university

or institution for award of any degree or diploma.

Mr. Satish Vagadia

External Guide,

J-KRI TECHLABS

Prof. K.P. Agrawal

Internal Guide,

Institute Of Technology,

Nirma University

Prof. Vijay Ukani

PG Coordinator - CSE,

Institute Of Technology,

Nirma University

Dr. Sanjay Garg

HOD - CSE,

Institute Of Technology,

Nirma University

DR. Ketan Kotecha

Director,

Institute Of Technology,

Nirma University

iv

ACKNOWLEDGEMENT

First and foremost, sincere thanks to Mr. Satish Vagadia CEO, J-KRI TECHLABS,

Pune. I enjoyed his vast knowledge and owe him lots of gratitude for having a profound

impact on this report.Throughout the training, he has given me much valuable advice on

project work. Without him, this project work would never have been completed.

I would also like to thank Dr.Viral Bhatt, J-KRI TECHLABS for his valuable guidance

in Medical domain.

I would also like to thank my Internel guide Prof. K.P. Agrawal, Institute of Technol-

ogy, Nirma University, Ahmedabad for his valuable guidance.

I would also like to thank Dr.Ketan Kotecha, Director, Institute of Technology, Nirma

University, Ahmedabad for providing me an opportunity to get an internship at J-KRI

TECHLABS, Pune.

I would like to thank my all faculty members for providing encouragement, exchang-

ing knowledge during my post-graduate program.

I also owe my colleagues in the J-KRI TECHLABS, special thanks for helping me on

this path and for making project more enjoyable.

Pawan Parekh(12MCEC35)

v

Contents

Abstract 1

1 INTRODUCTION : Options for Storing Connected Data 2

2 Literature Survey 3

3 Graph Database Concepts 5

3.1 Nodes and Relationships . 5

3.2 Query a Graph with a Traversal . 6

3.3 Indexes Look-up Nodes or Relationships 7

4 Neo4j 8

4.1 Cypher graph query language . 8

4.2 Apache Lucene indexing . 9

4.3 Interfaces and operation modes . 9

5 Traversal Algorithm 10

5.1 Breadth-first search . 10

5.2 Spreading Activation . 11

5.3 Dijkstra’s algorithm . 11

5.4 Experimental Results on Algorithms . 12

6 Status of Implementation 13

6.1 Main Page . 13

6.2 Navigation Panel . 13

6.3 Search Panel . 14

6.4 Content Panel . 14

vi

7 Implementation Methodology 15

7.1 Algorithm . 15

8 Intermediate Results 16

9 Conclusion and Extension of Present Work 22

vii

List of Tables

8.1 Relational Table with ”Symptoms” Relationship 19

8.2 STATS OF PERFORMANCE OF NEO4J OVER RELATIONAL DATABASE 20

viii

List of Figures

3.1 Nodes and Relationship . 6

3.2 Navigation Through Graph . 6

3.3 Lookups by Indexes . 7

5.1 Comparison between Traversal ALgorithms 12

6.1 Intermediate Results . 13

6.2 Visualization . 14

8.1 Graph Structure for Typhoid Disease . 16

8.2 Graph Structure for OSTEO ARTHIRITIES 17

8.3 Graph Structure of Sample Medical Data for Fever 18

8.4 Graph Structure of Sample Medical Data 21

ix

Abstract

Since the emergence of the Internet medical knowledge is spreading around the globe

increasingly fast. Though publicly available, it is a difficult task to determine individual

relevance for most nonprofessionals. Additionally, relationships between medical terms

are hard to discover even for professionals. The proposal is to build a ”Clinical decision

support system”, which will help people to find remedies and treatments based on sever-

ity of emergencies in the form of natural language.

My goal in this project is to create self-evolving data structure based on Evolutionary

algorithm. This data structure which will store medical data in a way that interlinks data

so that terms and phrases will be evolutionary aligned by relative correlation by putting

its medical relevancy in center .So that we can create our own raw storage meaningful

schema on which users redefined query in the form of machine reasonable and retrieve

possible remedies and possible other meaning of users query.

The focus is on creating various graph based structures representing the relatedness

between medical symptoms and diseases and studying various graph algorithms and ap-

plying them on structures to obtain desired suggestion a user is demanding through search

engine. So It will be very much easy to evolve graph based structure as the volume and

complexity in connectedness between medical data increases.

1

Chapter 1

INTRODUCTION : Options for

Storing Connected Data

The increasing interrelationship and exponential increase of volume of connected medical

data leads to use other than relational database. For many years, developers have tried to

settle connected, semi-structured datasets inside relational databases. But as they were

created to model forms and tabular structures , they skirmish when modelinf the excep-

tional relationships for medical world data. The more rise in connectedness converts in

the relational database into increased joins, which decrease performance and make it dif-

ficult for to evolve or modify an existing database in response to changing business needs.

Most of the non-relational databases are whether key-value, document, or column-

orientedstore sets of disconnected documents/values/columns. One strategy is add re-

lationships to such stores is to embed an identifier inside the field belonging to another

effective which we call foreign keys. But this requires joining identifiers at the application

level, which quickly becomes expensive.

The rejuvenation of the graph database will overcome such limitations for connected

data. Graph databases provide a needed structure for storing connected medical data

and incorporating a dynamic schema.

2

Chapter 2

Literature Survey

Medical Nouns , Verbs and adverbs are grouped by Lexical databases of English such

as Wordnet and Thesaurus which means into congitive synonyms of semantic conceptual

and relations which are lexical. But structure of it will not contain not longer then med-

ical words such as medical search query being passed. A frame will not be lexicalized

concept which will not be medical situations. For example, verbs like mobile and cell

must be related in the our lexicon to the calling frame. They also does not compute

semantic distances among pairs of such medical concepts.[1][2]

Wikipedia was used in earlier time to compute semantic relatedness between concepts

from high-dimensional space of concepts in vector model. Also There is one approach

which computes same by health graph in which weights of edge were being considered

into cooccurence score , which is Text Mining field. During Data -Modeling Procedure

of such graph , The situation arrive when same word such as insulin can be considered

as words such as gene and drug also , So new approach in which a few levels deep in

transitive closure in such a relationship graph can find relationships with a great number

of other entities.[3][4]

The heterogeneity conficts which can arrive while aligning medical terms can be di-

vided according to the following abstractions. Schema Conficts: Schema conficts are due

to different alternatives provided by one data model to develop schemas for the same

reality. Semantic Conficts: Semantic conficts refer to disagreement about the meaning,

interpretation use of the same or related data. .[5]

3

While exploring all available data structures I came to know that the concepts of

graph database is the one which can help me to create requisite data structure . Neo4j

is popular graph databases which is built on graph data structures which stores data in

a graph, the most generic of data structures, capable of elegantly representing any kind

of data in a highly accessible way.

4

Chapter 3

Graph Database Concepts

A graph database stores data in a graph, the most generic of data structures, capable of

elegantly representing any kind of data in a highly accessible

A graph database is a databases whose specific purpose is the storage of graph-oriented

data structures. Thus it is all about storing data as vertices and edges. By definition,

a graph database is any storage solution where connected elements are linked together

without using an index. The neighbours of an entity are accessible by dereferencing a

physical pointer. There are several types of graphs that can be stored: from a single-type

undirected graph to an hypergraph, including of course property graphs.

3.1 Nodes and Relationships

It starts from a single Node , has named valued referred to as Properties , which can

grow to millions which is very unlikely in Medical field , At some point it makes sense

to distribute data into multiple nodes , symptoms such as Fever and Body Temperature

which are organized with expllicit relationships such as ”CAUSES” in below example

which can also have property as Degree Celsius.

• A Graph -[: RECORDS DATA IN]→ Nodes−[: WHICH HAV E]→ Properties.

5

Figure 3.1: Nodes and Relationship
[6]

3.2 Query a Graph with a Traversal

Traversing a Graph means visiting symptoms of Medical field according to some rules.

It start from as starting symptoms to Related symptoms according to an algorithms ,

finding diseases from available symptoms and relationship given between them , In most

cases only a Subgraph is visited to obtain answers to given questions. .

• A Traversal - navigates→ aGraph.it−identifies→ Paths−whichorder → Nodes

Figure 3.2: Navigation Through Graph
[6]

6

3.3 Indexes Look-up Nodes or Relationships

Indexes are something which are tied to common proprties of Major medical symptoms

or properies of relationship between them . The traversal of medical symptoms to find

desired disease can be limited to a subgraph by tarversing in the context of Indexes.

An Index - maps from → Properties− toeither → NodesorRelationships.

Figure 3.3: Lookups by Indexes
[6]

7

Chapter 4

Neo4j

Neo4j is an open-source chart database backed by Neo Technology. Neo4j is a chart

database permitting putting away information as hubs associated by circular segments.

Since information is effortlessly spoken to as charts, gives diagram database more char-

acteristic deliberation for such information than social database. A construction less

diagram database additionally permits to effectively include new sorts of information

and relations.

4.1 Cypher graph query language

Neo4j gives a question dialect called Cipher, which is a definitive broadly useful diagram

inquiry dialect. Figure has been affected by SQL and SPARQL, and it permits expres-

sive and proficient questioning of diagram databases without needing to compose point

by point diagram traversals. The fundamental contrast between Cipher and SPARQL

is that SPARQL is intended for the area of Semantic Web, though Cipher is a general

reason diagram question dialect. The improvement of Cipher began from a need to have

less demanding grammar than existing broadly useful diagram question dialects.

START x=node:indexName (idxPropName =′ propV alue′)

MATCH x− [: relationName]→ y

WHERE (x.property1 =′ value1′OR x.property1 =′ value2′)AND y.property2 =′

value3′

RETURNx, y

8

Above illustration displays a sample Cipher inquiry. The question chooses a beginning

stage by doing record lookup from file indexname, bringing hubs that have property

idxpropname with worth propvalue. At that point the question experiences the brought

hubs attempting to match the relationship and whatever is left of the criteria. At last,

the question gives back all the hubs x and y that match the example and fulfill the criteria

4.2 Apache Lucene indexing

Neo4j does not give own indexing result, and rather as a default utilizes Apache Lucene3

hunt and indexing library. In Neo4j, Lucene gives intends to indexing hubs and connec-

tions. Because of Lucene files, discovering Neo4j hubs by hub properties is to a great

degree quick. In test setup, the questions were executed in around 10 milliseconds on

normal. Be that as it may, if the records were not used, the inquiries ran more than one

extent slower. Subsequently, to addition greatest question execution, Lucene files ought

to be completely used.

4.3 Interfaces and operation modes

Neo4j helps three working modes: implanted, server what’s more inserted server. In

installed mode, the database can just be gotten to by the requisition into which it is

inserted. In server mode the database might be gotten to anyplace through the REST

API. In implanted server mode the requisition has immediate access to the database,

and remote gatherings have admittance through REST API. In the examination setup,

installed server mode was picked in light of the fact that it gives quick database access

to the provision, and probability to get to the database through a web interface.

9

Chapter 5

Traversal Algorithm

5.1 Breadth-first search

In graph theory, breadth-first search (BFS) is a used for (a) node visiting and inspecting

node of a graph; (b) visiting the nodes which are neighbor of currently visited node.

begining from at a root node and inspecting all the nodes which are neighbours of it.

This process continues untill all not all nodes are visited.

Sample Cypher Query

START n=node(1)

MATCH p = n-[*1..]→ m

RETURNp, length(p), last(p)ORDERBY length(p)asc[5]

10

5.2 Spreading Activation

Spreading activation is a method for associative networks searching , neural networks

searching , or semantic networks searching. The searching is started from first label a

set of source (concepts in a semantic) with weights and then it propogates those weights

to nodes which are being link to the first node. often these activation are real values

that decay as weight propagates through the semantic network. When the activation are

different this process is referred to as passing the marker. Weights may originate from

one by one paths, identified by different markers, and end when two alternate paths reach

the same node..

5.3 Dijkstra’s algorithm

This algorithm works as finding th e source vertex node which has lowest cost or we can

say shortest path between that node and every other node , This algorithm can also be

used for finding traversal time of smallest cose from source node to destination , here we

have to stop algorithm once the destination node with shortest time has been found.

Sample Cypher Query

START a=node (...) , b = node (...)

MATCHp = a− [r ∗ 2..5]→ b

WHEREnot(a→ b)

WITHp, relationships (p) asrcoll

RETURNp, reduce (totalT ime = 0, xinrcoll : totalT ime + x.time) astotalT ime

ORDERBY totalT ime[5]

11

5.4 Experimental Results on Algorithms

Figure 5.1: Comparison between Traversal ALgorithms
[6]

12

Chapter 6

Status of Implementation

6.1 Main Page

Figure 6.1: Intermediate Results

6.2 Navigation Panel

• The Diseases may be navigated through the use of the Navigation tree found on

the page.

• The diseases can be walked from here in a hierachical fashion, moving from relation

to relation.

13

6.3 Search Panel

• Our basic search functionality is as simple as typing in a term to search the disease

on and hitting the ’Go’ button or pressing the ’Enter’ key.

• The basic search field searches over every field in our database.

6.4 Content Panel

Figure 6.2: Visualization
[6]

14

Chapter 7

Implementation Methodology

I am using Graph database of Neo4j Technology for managing and querying medical

data in graph structure. All medical symptoms are stored in Nodes (records) that has

named valued referred to as properties which can grow to millions. The user input will be

taken in form of natural language through search engine created in Python programming

language. The multilevel relations between symptoms and diseases will be defined by es-

tablishing properties on relationship between medical symptoms treated as nodes in here.

The output given to user will be suggestion of diseases and possible symptoms which will

be retrieved by querying through cypher query which is a graph query language. Cypher

query gives output by matching patterns in a graph.

7.1 Algorithm

• Create Nodes and Assign Medical Symptoms as Properties to Nodes.

• Identify relationship between them and add Property to relationships

• Make All nodes Unvisited.

• Identify paths from Cypher Query

• Traverse through graph to obtain Disease

15

Chapter 8

Intermediate Results

I have created various graph structures in neo4j to represent relationships between medical

symptoms. I am displaying here snapshot of sample graph structures.

Figure 8.1: Graph Structure for Typhoid Disease
[6][9]

16

Figure 8.2: Graph Structure for OSTEO ARTHIRITIES
[6][9]

17

Figure 8.3: Graph Structure of Sample Medical Data for Fever
[6][9]

18

Table 8.1: Relational Table with ”Symptoms” Relationship
Symptom Disease
Headache Flu
Headache Fever
Headache Malaria
Fever Flu
Flu Swine Flu
Shivering Fever
Flu Malaria
Fever Swine Flu
Vomiting Swine Flu
Stiffness Fever

If medical symptoms are stored in relational database and if the connection between

them are in table format then it waste all the time finding the data which meets criteria

for search, The problem is if the data collection is as larger , it will take more time to find

matches in the set of data , as here database has not to inspect every data in the collection.

For Example In order to see if symptom ”Shivering” causes ”Malaria”, the database

has to find all the diseases because of ”Shivering”, and see if ”Malaria” is in that list. If

not, find diseases by it, and then see if ”Malaria” is in that list. The full table has to be

scanned each time , if you double rows number in table , content of data to iterate will

double the time which is to find what you are looking for.(In indexing also it will find

index tree values in which traverval time of the tree will be involved , and as new record

adds the tree for indexes will grow larger , as we have to start from root of the tree it wil

also take more time to traverse the tree)

we have to look entirely new table/index each time we look at new batch of diseases.

so search time will increase if there are more symptoms.

Iteratively, a graph database looks only at symptoms that are directly connected to

other symptoms. If it is given a limit on how many ”symptoms” it is allowed to make, it

can ignore everything more than that number of symptoms away.

So the reason why having 1,0000 vs. 1,000,0000 records causes such difference between

19

Table 8.2: STATS OF PERFORMANCE OF NEO4J OVER RELATIONAL DATABASE

O.S. CPU MEMORY NODES / Rows LOOPS QUERY TIME
Relational Databases Linux Core I3 2 GB 20 100 2000 ms
Neo4j Graph Database Linux Core I3 2 GB 20 100 15 ms
Relational Databases Linux Core I3 2 GB 50 200 5000ms
Neo4j Graph Database Linux Core I3 2 GB 50 200 20ms

a relational and a graph database is that if the number of records in relational database

increases then performance is being decreased , while graph database performance de-

pends on amount of connections between the records.

There are various cypher queries I have tried upon above graph structure to obtain

results such as to obtain particular disease by firing symptoms in query or by mentioning

the ratio of symptoms. I am writing down here some sample queries to demonstrate the

use of Cypher Queries.

• This query retrieves intersection of causes by fever and flu

START flu=node (∗) , fever = node (∗)

MATCH (flu)− [: causes]→ (symptoms)← [: causes]− (fever)

WHEREflu.Name = ”Flu”ANDfever.Name = ”Fever”

RETURNDISTINCTsymptoms.Name[7]

• This query retrieves nodes based on relationship properties

START bodyTemp=node (∗) , disease = node (∗)

MATCH (bodyTemp)− [r : CAUSES]→ disease

WHEREr.low < 103ANDr.high > 103

RETURNdisease[7]

20

Figure 8.4: Graph Structure of Sample Medical Data
[6][9]

21

Chapter 9

Conclusion and Extension of Present

Work

This report explains the benefits of Graph database over Relation databases in the ap-

plications where Data are very much in connected form with each other. This report also

demonstrates the concepts behind graph database and key benefits of using Neo4j Graph

database.It also explains various experimental results of graph algorithms on medical

symptoms.

Future Work

• Considering sentence as a search parameter instead of just medical disease word to

retrieve disease as result

• Taking Location , age and gender as search parameters

• Using visualisation tools such as Neoclipse application to interact with Neo4j .

22

Bibliography

[1] Wordnet : http://wordnet.princeton.edu/

[2] Thesaurus : http://thesaurus.com/

[3] G. Salton, A. Wong, and C. S. Yang. ”A vector space model for automatic indexing”

, 1975 Communications of the ACM , Volume 18 Issue 11

[4] Martin Wiesner, Stefan Rotter, Daniel Pfeifer . ”Leveraging Semantic Networks for

Personalized Content in Health Recommender Systems” ,2011 IEEE 24th Interna-

tional Symposium on Computer-Based Medical Systems

[5] Kei-Hoi Cheung, Andrew K. Smith, Kevin Y.L. Yip, Christopher J.O. Baker, and

Mark B. Gerstein . ”Semantic web approach to database integration in the life sci-

ences” Book , 2007

[6] Neo4j Graph Database : ”http://www.neo4j.org”

[7] Neo4j Cypher queyy language Manual

[8] Graph Database vs Relational Database ”http://blog.octo.com/en/graph-databases-

an-overview/”

[9] Webmd Search ”http://search.webmd.com/”

23

	Abstract
	INTRODUCTION : Options for Storing Connected Data
	Literature Survey
	Graph Database Concepts
	Nodes and Relationships
	Query a Graph with a Traversal
	Indexes Look-up Nodes or Relationships

	Neo4j
	Cypher graph query language
	Apache Lucene indexing
	Interfaces and operation modes

	Traversal Algorithm
	Breadth-first search
	Spreading Activation
	Dijkstra's algorithm
	Experimental Results on Algorithms

	Status of Implementation
	Main Page
	Navigation Panel
	Search Panel
	Content Panel

	Implementation Methodology
	Algorithm

	Intermediate Results
	Conclusion and Extension of Present Work

