
Design & Development of automated
validation framework for Intel Graphics

display driver

Prepared By :

Nirav Patel

12MCEC21

Internal Guide

Dr. Madhuri Bhavsar

Nirma University

External Guide

Mr. Praveen Vasudevan

Intel Technology India Ltd.

Department Of Computer Science And Engineering

Institute Of Technology

Nirma University

Ahmedabad

May-2014

Design & Development of automated
validation framework for INTEL

Graphics display driver

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

PREPARED BY :

Nirav Patel

12MCEC21

Internal Guide

Dr. Madhuri Bhavsar

Nirma University

External Guide

Mr. Praveen Vasudevan

Intel Technology India Ltd.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD

ii

DECLARATION

This is to certify that,

I, Nirav Patel, 12MCEC21, a student of semester IV M.Tech CSE, Nirma Univer-

sity, Ahmedabad , hereby declare that the project work Design & Development of

automated validation framework for INTEL Graphics display driver has been

carried out by me under the guidance of Mr. Praveen Vasudevan , Intel Technology

India Private Limited, Bangalore and Dr. Madhuri Bhavsar, Computer Science and En-

gineering, Nirma University, Ahmedabad. This Project has been submitted in the partial

fulfillment of the requirements for the award of degree Master of Technology (M.Tech.)

in Computer Science and Engineering, Nirma University, Ahmedabad during the year

2013 - 2014.

I have not submitted this work in full or part to any viable University or Institution

for the grant of any possible degree.

Nirav Patel(12MCEC21)

iii

CERTIFICATE

This is to certify that the Major Project entitled Design & Development of auto-

mated validation framework for INTEL Graphics display driver submitted by

Nirav Patel(12MCEC21), towards the partial fulfillment of the requirements for the

degree of Master of Technology in Computer Science Engineering of Nirma University of

Science and Technology, Ahmedabad is the record of work carried out by him under my

supervision and guidance. In my opinion, the submitted work has reached a level required

for being accepted for examination. The results embodied in this major project, to the

best of my knowledge, have not been submitted to any other university or institution for

award of any degree or diploma.

Mr. Praveen Vasudevan

External Guide,

Intel Technology India Ltd.

Dr. Madhuri Bhavsar

Internal Guide,

Nirma University

Mr. Sridharan Manjunadh

Project Manager,

Intel Technology India Ltd.

Prof. Vijay Ukani

PG Coordinator - CSE,

Nirma University

Dr. Ketan Kotecha

Director,

Nirma University

Dr. Sanjay Garg

HOD - CSE,

Nirma University

iv

ACKNOWLEDGEMENT

First and foremost, sincere thanks to Mr. Sridharan Manjunadh Manager, Intel

Technology India Private Limited, Bangalore. I enjoyed his vast knowledge and owe him

lots of gratitude for having a profound impact on this report.

I would like to thank my Mentor, Mr. Praveen Vasudevan, Intel Technology In-

dia Private Limited, Bangalore for his valuable guidance. Throughout the training, he

has given me much valuable advice on project work. Without him, this project work

would never have been completed.

I would also like to thank my Internel guide Dr. Madhuri Bhavsar, Institute of

Technology, Nirma University, Ahmedabad for her valuable guidance.

I would also like to thank Dr. K Kotecha, Director, Institute of Technology, Nirma

University, Ahmedabad and Dr. Sanjay Garg, HOD - CSE , Institute of Technology,

Nirma University, Ahmedabad for providing me an opportunity to get an internship at

Intel Technology India Private Limited, Bangalore.

I would like to thank my all faculty members for providing encouragement, exchang-

ing knowledge during my post-graduate program.

I also owe my colleagues in the Intel, special thanks for helping me on this path and

for making project at Intel more enjoyable.

Nirav Patel(12MCEC21)

v

Contents

List of Figures viii

Abstract 1

1 Introduction to Computer Graphics and Graphics Driver 2

1.1 Graphics Overview . 2

1.2 Graphics Terminologies . 2

1.3 Display Controller . 4

1.4 Display Interfaces . 4

1.5 Display Modes . 5

1.6 Graphics driver role . 6

1.7 Graphics Driver Architecture . 6

2 Post Silicon Validation and Automation 8

2.1 System Validation . 9

2.2 Analog Validation . 9

2.3 Compatibility Validation . 10

2.4 Software Validation . 11

2.5 Product Qualification . 11

2.6 Role of Automation Validation . 12

2.7 Automation Process . 12

3 Literature Survey 15

4 Scope of the Project 17

vi

5 Technology 18

5.1 Frameworks . 18

5.2 Tools . 18

6 Design of Display Automation Framework 20

7 Features Implemented 22

7.1 Display switch . 22

7.2 Mode Change . 23

7.3 Deep Color . 24

7.4 LPSP . 26

7.5 Scaling . 27

7.6 Corruption check . 29

7.7 Achievement . 31

8 Conclusion 34

vii

List of Figures

1.1 Graphics Overview . 3

1.2 Graphics Driver Architecture . 6

2.1 Silicon Validation . 11

2.2 Automation Process . 13

6.1 Automation Model . 21

6.2 Framework interaction with Driver . 21

7.1 OS Screen resolution page options to switch between display configurations 22

7.2 CUI page options to switch between display configurations 23

7.3 OS Screen resolution page options to change Modes 24

7.4 CUI page options to change Modes . 25

7.5 Comparasion 8 bit color/24 bits per pixel Vs 10 bit color/30 bits per pixel 26

7.6 Read the EDID of the HDMI panel to know DeepColor Support 27

7.7 Read the EDID of the DP panel to know DeepColor Support 28

7.8 INTEL Architecture to understand LPSP 29

7.9 Scaling options in CUI . 30

7.10 Automation framework achievement for LPSP 32

7.11 Automation framework achievement for Scaling 33

viii

Abstract

Graphics is unavoidable part of computer.With increase of different architectures and

features of graphics,Graphics Drivers are also becoming complex . To meet this pace,

driver validation also needs to be updated. Software validation is an important means to

ensure software quality and to improve software reliability. With the volume and com-

plexity of software applications continue to increase, people’s requirements on software

quality are also rising; the function of software validation in the process of software de-

velopment has become more and more important, while software validation effort also

appears to be increasingly difficult.

The proposal is to define a systematic approach to achieve optimization and efficiency

improvement by considering overall validation process.Test content optimization and Test

content Automation for Intel Graphics Display Driver so as to achieve better Quality end

products.

The focus is on the Automation of Intel Graphics Display Driver validation. Currently

these types of tests are executed manually so they need more manual efforts, time and

accuracy is also not guaranteed.The proposal is to automate the validation process or test

related to Intel Graphics Display driver. By using different h/w, S/w tools and algorithms,

the validation process can be automated which can reduce the manual efforts, reduce

the cycle time and increase accuracy.This automation includes objective assessment of

different graphics driver features.

1

Chapter 1

Introduction to Computer Graphics

and Graphics Driver

The term computer graphics includes almost everything on computers that is not text or

sound. Today almost every computer can do some graphics, and people have even come

to expect to control their computer through icons and pictures rather than just by typing.

1.1 Graphics Overview

Computer Graphics covers the following areas:

• 2D : Mainly concerned about 2-dimentional representation of 2D images.

• 3D : 2D representation of 3D models which are rendered dynamically.

• Media : Encoding, Decoding, Content Protection, Transcoding.

• Display : All these 3 scenarios result in pixel updates in frame buffer. Display

engine takes care of streaming from Frame buffer to end display port(s) .

Most of these tasks involve SW/HW interaction therefor OS needs a VBIOS & graph-

ics driver to assist in most of these activities.

1.2 Graphics Terminologies

• Pixel : Atomic unit of display in memory or on a display. It has two main

properties: Position and Color.

2

Figure 1.1: Graphics Overview
[7]

• Resolution : Width and height dimensions of the display in pixels. Eg: 1024x768,

1280x720 etc.

• Refresh Rate : Rate at which display needs to be refreshed (e.g. 60Hz, 75Hz

etc.).

• Color depth : Number of bits in the one pixel.

• Frame Buffer : An allocation of memory that stores every pixel that is to be

processed and/or displayed.

• Aspect Ratio : Relationship between width of the physical display and its height.

Eg: 4:3 (1024x768), 16:9 (1600x900)

• Pixel/Dot Clock : How quickly a single dot/pixel can be produced on the screen.

Pixel Clock = Htotal * Vtotal * RR

• Frame Per Second : Rate at which GPU produces unique consecutive images/frames

in 1 second.

• Display Engine/Controller : Output component of a GPU

– Presents text and graphical data to display monitors

3

– Display driver sends frame Buffer data to the monitor through a cable

– Controls, adjusts, modifies adapter output for monitor

– May also control, adjust or modify the receiving monitor itself

1.3 Display Controller

• Planes : A display plane can be thought of as a rectangular image delivered in

time to the pipe . A display plane has characteristics such as source (location in

memory), size (X x Y), position ((0,0) for primary or (X,0) for secondary extended

display), format (RGB, Colordepth) & associated destination pipe (which pipe the

plane is assigned to).

• Pipes : Its about Time Provide output pixels, at the right time to the Ports The

blender is synchronizing and mixing the pixels data from all the display planes.

Base Plane (ex: 800x600@16bpp)

+ Overlay (ex: 160x120 YUV)

+ Cursor (ex: 64x64@32bpp)

Panel fitting Color correction

• Ports- Display Buses :

– The output of the display controller

– These are the places where the data finally appears to devices outside the

graphics device

– Ports can be internal or external (like LVDS or HDMI)

– Port has characteristics such as signals (Hsync, Vsync), Format (RGB) etc.

– Handles power management of the external devices

1.4 Display Interfaces

• Analog Display Connector :

– VGA (Video Graphics Array) analog display technology

• Digital Display Connectors :

4

– Display Port Royalty free digital display specification

– HDMI (High Definition Multimedia Interface) - High definition digital display

plus audio

– DVI (Digital Visual Interface) Digital display

• Mobile Display Connectors :

– LVDS (Low-voltage Differential Signaling) : low voltage interface for mobile,

usually internal to the PC

– Embedded Display Port : Low power Display Port for mobile or all-in-one,

internal to the PC

– MIPI (Mobile Industry Peripheral Interface) : Interface for mobile devices such

as mobile phones, tablets & netbooks

1.5 Display Modes

• One Display :

– SD : Single Display Mode

Only one display is active at a time

• Two Displays :

– DDC : Dual Display Clone

Two displays are active at a time and same content is displayed on both the

displays

– ED : Extended Mode

Two displays are active and one display work as Primary display and other as

secondary which is extended part of primary display

• Three Displays :

– TDC : Tri Displays Clone

Three displays are active at a time and same content is displayed on all the

displays

5

– TED : Tri Extended Mode

Three displays are active and one display work as Primary display and others

are extended part of primary display

1.6 Graphics driver role

The graphics driver interfaces between the operating system and the GPU hardware.

Each graphics driver is written for specific graphics hardware and effectively translates

the task at hand to be executed most efficiently on the available graphics hardware.

Graphics hardware might support a specific feature, but if there are no graphics drivers

to support it, the feature is useless.

1.7 Graphics Driver Architecture

Grpahics Driver has major 3 components

Figure 1.2: Graphics Driver Architecture
[7]

• CUI : Common User Interface

This is the only user Interface module of Driver which is OEM customizable and

provide localization support.

6

• Miniport : This component of driver is responsible for adapter initialization, in-

terrupts, MMIO mapping etc. Entry point for all IOCTL calls from OS

• SoftBios : Low level Display Component Manages Display Pipe, DPLL, Planes

and Ports . It manages capability enumeration of display side Handles Mode Set,

display devices, I2C/GMBus etc.

Driver can run in two different Modes

• User Mode : Runs in the non-privileged processor mode in which other application

code executes. User-mode drivers cannot gain access to system data except by

calling the Win32 API which, in turn, calls system services Different structures,

different entry points, and different system interfaces.

E.g. USB drivers, Vista graphics UMD etc.

• Kernel Mode : Runs as part of the operating system in a privileged environment

Kernel-mode drivers can perform certain protected operations and can access sys-

tem structures that user-mode drivers cannot access.

E.g. Miniport drivers

7

Chapter 2

Post Silicon Validation and

Automation

In the process of development of a semiconductor integrated circuit the Post-silicon

validation[5] is last mile. The pre silicon validation process is done through different

devices in virtual environment with emulation and simulation tools. But in the post

silicon validation actual tools and devices used for run the tests, original and real time

setup boards are validated with analyzer and tools.

Big semiconductor companies spent large amount of money for making new designs

and components.that is the ”sunk costs” of design. In parallel it is imperative that new

design should reach in market within customer window. The little delay in this delivery

of product costs a large amount of money.So the post silicon validation is most important

part in successful design.

Similarity and dependability issues are discovered and determined early, and the

results are utilized to further refine Intel’s configuration and assembling devices and

methodologies. As a result, the quality and dependability of Intel stages and parts have

enhanced consistently, even as execution and multifaceted nature have kept on climbing[5]

There are essentially five stages in Intel’s far reaching post silicon approval system:

• Stage 1: System Validation

8

• Stage 2: Analog Validation

• Stage 3: Compatibility Validation

• Stage 4: Software Validation

• Stage 5: Product Qualification

2.1 System Validation

System acceptance puts the genuine part through a thorough suite of tests in a genuine

nature’s domain. The test suites are connected to the Intel CPU, chipset also design

subsystem, recurrence and temperature conditions are strengthened to test execution at

the great corners of the segment’s particulars.

• CPUs : Both deliberate and irregular tests are utilized to blanket profound infor-

mation space and escalated coasting point requests. Framework approval tests for

the Intel Pentium 4 processor over a great sample of the extension and power of

the methodology:

• Chipsets : All chipset characteristics are tried utilizing custom-fabricated frame-

work acceptance sheets and test cards running custom programming to stretch

every interface of the chipset. Execution parameters are pushed as far as possi-

ble on all cards and transports simultaneously, to accept execution limits and to

confirm transport similarity.

• Graphics : Particular apparatuses and test suites are utilized for acceptance testing

of the representation subsystem in all Intel chipsets with coordinated illustrations.

Extraordinary test pictures are made to guarantee a thorough pattern for robotized

testing. In the event that a test reports even a single wrong bit, the main driver is

controlled by an acceptance design, so that the issue could be completely determined

to guarantee exceptional visual quality with no deformities.

2.2 Analog Validation

As PC execution requests keep on climbing, the electrical honesty of processor and

chipsets is crucial to guarantee dependable operation at high frequencies. Intel’s sim-

ple acceptance testing discovers disappointments that can happen in only trillionths of

9

a second. Segments are pushed to disappointment at the extremes of temperature, volt-

age and Recurrence. Issues are determined, and discoveries are imparted to plan and

processing designs so as to enhance Intel’s outline and generation systems.

• Circuit Marginality Validation (CMV) : Throughout CMV, the test suites

that were utilized throughout presilicon recreation of Intel processors are connected

once more, yet this time with a concentrate on unwavering quality and execution

under great working conditions. Both business and custom tests are used to test

voltage, recurrence and temperature extremes, and to guarantee solid operation

inside the item’s particulars.

• Analog Integrity Engineering (AIE) : AIE tests the trustworthiness of the

chipset, to verify the whole stage is electrically hearty. Execution is accepted under

a wide mixed bag of most detrimental possibility situations. The electrical power

of the chipset and processor is accepted under true situations.

2.3 Compatibility Validation

A key playing point of Intel structural planning is its wide similarity with outsider hard-

ware parts, programming provisions and working frameworks. Intel segments what’s more

stages experience exhaustive similarity, anxiety and concurrency testing with in excess

of 20 working frameworks, various motherboards and include cards, more than 150 pe-

ripherals, and more than 400 requisitions. OS testing incorporates different variants of

Microsoft Windows, Netware, SCO, Unixware and Linux. Provision testing incorporates

huge numbers of the world’s most well known business and sight and sound projects, also

as various recreations, industry benchmarks and industry fittings tests.

Gigantic record exchanges and telecasts test execution and information coherency utiliz-

ing a extensive variety of conventions, including Ethernet, Fast Ethernet, Gigabit Eth-

ernet, and Fiber Channel. Notwithstanding these well-known fittings and programming

items and conventions, the segment is tried with extraordinarily planned cards that push

test parameters past accepted breaking points, to guarantee predominant execution under

most detrimental possibility- conditions. For instance, mixed media activity is expanded

to the data transfer capacity point of confinement of the PCI transport, to check that

sound and feature signs don’t split under top workloads.

10

2.4 Software Validation

Intel creates all center programming segments for its PC and server stages. This incorpo-

rates the BIOS and the drivers that are utilized for representation, stockpiling and LAN

network. All around this procedure, programming acceptance is hard coordinated with

equipment approval to guarantee that fittings and programming segments work easily

together. This is vital to approve that the aggregate stage will convey top execution and

unwavering quality in the greatest conceivable extent of situations

2.5 Product Qualification

This is a last stage in Validation cycle, in this stage all the subsystems like representation,

PCI gadgets are united on stage and the conduct of silicon is tried. The similarity and

interoperability of all segments on a stage is approved furthermore any client issues will

be determined. Throughout this last stage, segment abilities are likewise contrasted and

current end-client desires. In the event that an item effectively passes this testing, it is

primed to enter the commercial center.[6]

Figure 2.1: Silicon Validation
[5]

11

2.6 Role of Automation Validation

Programming approval is an essential stage in programming life cycle. Quality approval

specifically decides the stable operation of programming items. It is well realized that the

time it now, prolonged and exhausting much for programming manual acceptance with

high work power and effectively presented counterfeit error.therefore it is basic to the

mechanization test now. Computerized acceptance engineering in programming approval

is to be further enhanced, as work heap of programming acceptance is exceptionally

large(accounting for something like 40-50 rate of general advancement cycle), of which

the vast majority of the work applies to computerization, so the test change will bring

extremely huge results to cost, quality and cycle of the entire programming activities

improvement work. As a rule, it is through the improvement of the mechanization ap-

paratuses and the execution of the approval scripts for computerization acceptance to

attain the reason for programming quality assessment.

• Drawbacks of traditional software validation

– The project process is difficult to control

– Difficult to control project risk

– Project development costs exceed budget

• In practice, we have to move for automated validation to decrease vali-

dation engineers manual efforts

– Automation validation saves 80% of efforts of validation engineers which ulti-

mately

∗ Improve test efficiency

∗ Reduce cost of test

∗ Enable to cover more aspects of validation

2.7 Automation Process

• Test tool selection

Test Tool determination generally relies on upon the innovation the Application

12

Figure 2.2: Automation Process
[1]

Under Test is based on. It’s a great thought to direct Proof of Concept of Tool on

Automation

• Define the scope of Automation

scope of mechanization is the region of your Application Under Test which will be

mechanized. Emulating focuses help focus scope:

– Features that are essential for the business

– Scenarios which have extensive measure of information

– Common functionalities crosswise over requisitions

– Technical possibility

– Extent to which business parts are reused

– Complexity of experiments

– Ability to utilize the same experiments for cross Platform testing

• Planning, Design and Development

during this stage you make Automation procedure & plan, which holds succeeding

subtle elements

13

– Automation apparatuses selected

– Framework configuration and its characteristics

– In-Scope and Out-of-extension things of computerization

– Automation proving ground readiness

– Schedule and Timeline of scripting and execution

– Complexity of experiments

– Deliverables of mechanization testing

• Test Execution

automation Scripts are executed throughout this stage. The scripts need informa-

tion test information before they are situated to run. Once executed they give

itemized test reports. Execution could be performed utilizing the mechanization

apparatus straightforwardly or through the Test Management instrument which

will conjure the robotization device.

• Maintenance

as new functionalities are added to the System Under Test with progressive cy-

cles, Automation Scripts need to be included, surveyed and kept up for each one

discharge cycle. Support gets important to enhance viability of Automation Scripts.

14

Chapter 3

Literature Survey

Exploring the Use of a Test Automation Framework [1], provides the proof that As tech-

nology continues to grow and become more complex, software testers will be faced with

tougher challenges to fully test the software product within the time given to them. To

keep up with this trend, testers must consistently look for ways to improve their testing

practices. A test automation framework is a tool that can help a tester efficiently develop

end-to-end automated test solutions. So before any organization decides to commit to

develop a test automation framework, it would be wise to first explore its use within your

testing environment to ensure that it is suitable to your software testing needs.

Examination of Software Automation Test Protocol [2], shows that In practice, we

need to consolidate characteristics of customary manual testing and computerized test-

ing, play their qualities, so mechanized testing procedures and apparatuses function as a

weapon in the hands of analyzers, discharge them from tedious work, centering time and

vitality on intricate work obliging savvy judgment and other new test cases.

In expansion, we must keep away from compare computerized testing and analyzers

together, not approaching excessively for mechanized testing. We might set a fitting

computerized testing discernment, have an acceptable comprehension that manual test-

ing is an influential supplement to mechanized testing and not supplant the status of the

analyzer. Any single innovation or operation propels can’t freely guarantee a substantial

scale of upgrades to software development effectiveness, soundness and practicality in a

short time. Mechanized testing is additionally an amassing of experience, slow method-

15

ology, programming analyzers can’t be required to robotize all the tests in a short time.

Effective mechanized testing obliges creating suitable robotized test project, and sen-

sible computerized testing is the first venture in the achievement execution of the com-

puterized testing system. Just by completely considering the danger of execution of

computerized testing, assets and targets, it is conceivable to create mechanized testing

procedures for your own, and eventually enhance test efficiency and decrease expense

of test. Each one undertakings with testing division or occupied with testing business,

ought to learn abroad and household progressed testing background, allude to mainstream

industry-standard, discover their own particular group’s trying routines and models to

make more terrific social value.

Methods for Agile Software Testing Automation: An Industrial Experience [3], presents

the experience in performing methods for test computerization in coordinated program-

ming advancement Scrum. We could watch the impact of deft values on group association

and test robotization. These encounters demonstrated that it is possible to extend co-

operation in coordinated effort to settle issues, scan for coordinated testing apparatuses

and keeping the administration and association of a product testing and scrum process.

The computerization testing is an asset to robotize dull undertakings, record pro-

gramming, diminishes expense of venture utilizing open source test devices, and errand

assignment in little parts. Then again, the software engineers’ state of mind in these

situations are extremely paramount to examination new methodologies and apparatuses.

A few lessons educated could be concentrated and they could help other programming

designers when performing dexterous test robotization method in a nature.

16

Chapter 4

Scope of the Project

• Reduce Cycle time of test cases.

• Reduce Manual efforts in executing test cases.

• Increase the accuracy of test results.

• Increase productivity.

17

Chapter 5

Technology

5.1 Frameworks

• Microsoft UI Automation

Microsoft UI Automation is the new availability skeleton for Microsoft Windows,

accessible on all working frameworks that help Windows Presentation Foundation

(WPF). UI Automation gives automatic access to most client interface (UI) com-

ponents on the desktop, empowering assistive innovation items, for example, screen

book lovers to give data about the UI to end clients and to control the UI by means

other than standard info. UI Automation additionally permits robotized test scripts

to communicate with the UI.

• .NET Framework

.net Framework is a product system created by Microsoft that runs essential on

Microsoft Windows. It incorporates a vast library and gives dialect interoperability

over a few programming dialects. programs composed for .NET Framework execute

in a product environment , known as the Common Language Runtime (CLR), a

provision virtual machine that gives administrations, for example, security, memory

administration, and special case taking care of. The class library and the CLR

together constitute .NET Framework.

5.2 Tools

• UI Spy

UISpy is a Microsoft tool for viewing the UiAutomation element tree, and perform-

18

ing actions on elements. This tree is almost the same as the Twin ElementTree.

UISpy can be a useful tool for determining the structure of your target application

and determining the Criteria you should use to identify elements

• Ranorex

ranorex is a GUI test robotization structure for testing of desktop, electronic and

portable requisitions.

Ranorex is given by Ranorex Gmbh, a product improvement organization for cre-

ative programming test robotization results. Ranorex does not have a scripting

dialect of its own, rather utilizing standard programming dialects, for example, C#

and Vb.net as a base.

Main characteristics

– GUI Object Recognition - Ranorexpath for recognizable proof/separating of

numerous types of GUI components.

ranorex Spy gives the mapping data of GUI components to their Ranorexpath

statement.

– Object-based Capture/Replay usefulness (called Ranorex Recorder), which

gives viable recordings by means of an activities table editor,transforms recorded

movements into C# and Vb.net code and creates nitty gritty report records

for speedy blunder discovery.

– Test Automation Library for .Net

– Test Development Environment (called Ranorex Studio) makes code fulfill-

ment, debugging and test undertaking administration conceivable.

– Flexible Test Automation Interface: Test Automation inside particular test

situations is conceivable. Test suites with Ranorex brings about .EXE doc-

uments for straightforward incorporation into existing situations, for exam-

ple, test administration instruments, nonstop reconciliation courses of action

or group execution scenarios.they could be effortlessly run by propelling the

.EXE record from the charge line.

19

Chapter 6

Design of Display Automation

Framework

• Objective

The objective of this framework is to verify quality of Intel graphics driver display

component. Use of this framework determines different quality metrics on different

configurations and systems and on the basis of these quality metrics the quality

of graphics driver display component verifies. The configurations and systems are

selected as it cover all types of end user experiences.

• Automation Model

– Possible Input :

Automation tests can have manual inputs or it can also be leveraged as plug

and play functionality

– Expected Output :

Logs , Reports or execution time can be possible output of automation tests.

• Interaction with graphics driver

Framework interacts with graphics driver using

– Driver’s API’s

– OS API’s

– Using Test Players , same as user interacts with driver

20

Figure 6.1: Automation Model
[6]

Figure 6.2: Framework interaction with Driver
[7]

21

Chapter 7

Features Implemented

Following are some of the features implemented in Automation Framework

7.1 Display switch

• Description

Display configuration like Single display , Double display clone, Extended dis-

play and so on can be changed using graphics driver and also using OS Page .

Users frequently change these configurations which is known as Display switch fea-

ture(Switching between the displays)

Figure 7.1: OS Screen resolution page options to switch between display configurations
[7]

22

Figure 7.2: CUI page options to switch between display configurations
[7]

• Expected Output

The expectation is that driver should handle any display configuration change re-

quest from OS and CUI should immediately reflect the new configuration if config-

uration change is successful.

• Result

– Feature is successfully implemented in Framework. Automation framework is

capable to validate this feature for any INTEL platform with any flavour of

Windows OS.

– Validated 4 versions of driver with HDMI , DP , VGA connectors , No bug

found till date

7.2 Mode Change

• Description

Combination of Resolution, Refresh rate, Bpp is know as Mode(x,y,rr,bpp). Mode

can be changed using driver CUI page or OS page. Verification of modes listed by

CUI and OS are in synchronization is needed.

23

• Expected Output

Modes (x,y,rr,bpp) listed in CUI should match with the modes listed in OS Page

and CUI page should show the same resolution,RR,bpp that was applied using OS

Page

Figure 7.3: OS Screen resolution page options to change Modes
[7]

• Result

– Feature is successfully implemented in Framework. Automation framework is

capable to validate this feature for any INTEL platform with any flavour of

Windows OS.

– Bug reported for driver version 15.32 - for some Resolution, CUI SDK API is

failing to set Mode listed by OS (RR is missing)

– Bug Type - Heisenbug

7.3 Deep Color

• Description

– Deep color is a term used to describe a gamut comprising a billion or more

colors

24

Figure 7.4: CUI page options to change Modes
[7]

– Types of Color format:

∗ 8 bits per color(24bit color format)

∗ 10 bits per color(30bit color format)

∗ 12 bits per color(36bit color format)

∗ 16 bits per color(48bit color format)

– Color depths greater than 24 bits are defined as Deep Color.

– Deep color is supported for RGB 4:4:4 and YUV 4:4:4 pixel data

– Panel must support Deep color to use this feature.

– 8 bit color/24 bits per pixel:

-256 levels of gradation

-256 x 256 x 256 = 16,777,216 possible colors:17 Million colors.

– 10 bit color/30 bits per pixel:

-1024 levels of gradation

-1024 x 1024 x 1024 = 1,073,741,824 possible colors: 1 billion colors

– Extended display identification data (EDID) is a data structure pro-

vided by a digital display to describe its capabilities to a video source (e.g.

graphics card or set-top box).

25

Figure 7.5: Comparasion 8 bit color/24 bits per pixel Vs 10 bit color/30 bits per pixel
[7]

• Expected Output

DeepColor supported panel must enable this feature after running Deepcolor enable

Applicaion on that panel or in clone mode and not supported panel must be in the

same state

• Result

– Feature is successfully implemented in Framework. Automation framework is

capable to validate this feature for any INTEL platform with any flavour of

Windows OS with all Display Mode Combination

– 10 OEMs’ Deepcolor supported panels are validated , No bug found till date

7.4 LPSP

• Description

– LPSP : Low power state performance

– LPSP is Power feature of Graphics driver

– LPSP is

Enable : EDP display is active

Disable : Other than EDP display is active

26

Figure 7.6: Read the EDID of the HDMI panel to know DeepColor Support
[7]

Display driver enable LPSP to improve power performance of system by disabling

Power well in case system is running with EDP display (System must be running

with Native mode of Haswall platform) .

• Expected Output

The expectation is that driver should enable LPSP feature (turn off power well

component) when system is running in SD - EDP configuration with native mode

for Haswall platform and any mode for Broadwell platform

• Result

– Feature is successfully implemented in Framework. Automation framework is

capable to validate this feature for any INTEL platform with any flavour of

Windows OS.

– Vlidated LPSP feature for 50 Panels from different OEMs . No bug found till

date

7.5 Scaling

• Description

Display Driver provides different scaling options like

– Center Image

27

Figure 7.7: Read the EDID of the DP panel to know DeepColor Support
[7]

– Scale Full Screen

– Maintain Aspect Ratio

– Maintain Display Scaling

– Custom Aspect Ratio : CAR

Driver programs registers for Scaling change ,

For CAR scaling

– Resolution X and Y may not be the same as applied(Max 12% deviation is

expected)

– Driver computes new values for resolution and program registers

• Expected Output

The expectation is that driver should program Source and Target Registers correctly

. In case of CAR Scaling , resolution deviation must be less than or equal to 12

• Result

– Feature is successfully implemented in Framework. Automation framework is

capable to validate this feature for any INTEL platform with any flavour of

Windows OS.

28

Figure 7.8: INTEL Architecture to understand LPSP
[7]

– Bug reported for CAR scaling option : Resolution deviation is not in the

permitted limit for driver version 15.36 (Broadwell platform only)

– Bug Type - Bohrbug

7.6 Corruption check

• Description

While performing any operation Display Driver may create frame buffer data which

are corrupted. Corruption check mechanisum is high priority demand for driver

validation.

Automation framework is provided with corruption check mechanisum which can

be used with any feature.

There are two methods for corruption check

– CRC Engine

Intel chipset has inbuilt funtionality to calculate CRC(Cyclic redundent code)

using CRC Engine . This CRC is XOR of all pixel values in framebuffer data.

Computed CRC is stored in register. Automation framework is using this

value as golden value . Golden value is used later on to compare with run time

image data to identify corruption

29

Figure 7.9: Scaling options in CUI
[7]

– DVMU - Display simulator

DVMU is simulator for real displays , developed by INTEL platform engineer-

ing team. DVMU provides CRC value for image through API. Automation

framework is using this API to get CRC of any image which is used to identify

corruption

• Expected Output

The expectation is that driver should not create corrupted frame buffer data .

• Result

– Corruption check is successfully implemented in Framework. Automation

framework is capable to check corruption along with driver features for any

INTEL platform with any flavour of Windows OS .

– 15 different Driver versions are validated till date, Bug is reported for Haswell

driver version 15.33 (Driver development team has accepted driver corruption)

– Bug Type - Bohrbug

30

7.7 Achievement

• Use of Automation Framework validate above features in few hours with precision

which takes days by manual validation

• Types of Bugs found

– Heisenbug : Software bug that seems to disappear or alter its behaviour when

one attempts to study it

– Bohrbug : Do not change their behaviour and are relatively easily detected ,

’good, solid bug’

• Automation framework has improved reliability

Reliability can be majored by MTBF ,

MTBF = MTTF + MTTR [7]

Where ,

MTBF = Mean time between failure

MTTF = Mean time to failure

MTTR = Mean time to repair

Use of automation framework has highlighted bugs which are fixed quickly and

reduced MTTF and improved reliability

• Automation framework has improved validation coverage

Adding new feature to current version of software , needs to write new test cases.

Count of new test cases = (N/R) * T [7],

Where ,

N = probability of occurrence of new operations for new release of the software,

R = probability of occurrence of used operations in the current release

T = number of all previously used test cases

for graphics driver new release ,

R = 0.9

N = 0.2

T(Manual) = 20

T(Automated framework) = 200

Count(Manual) = (0.9 / 0.2) * 20 = 90

31

Count(with automation framework) = (0.9 / 0.2) * 200 = 900

Figure 7.10: Automation framework achievement for LPSP
[7]

32

Figure 7.11: Automation framework achievement for Scaling
[7]

33

Chapter 8

Conclusion

This report includes overview of Post silicon validation, framework for automation of

Graphics display driver validation.

Automation of Graphics Display Driver Validation is very useful for Post silicon Vali-

dation. By usage of framework the validation becomes easier. By using this framework

tedious manual efforts can be reduced, the automation can be run on different number of

configurations for validation. Also using automation of graphics display driver validation

gives more accurate and fast results with different quality matrices.

34

Bibliography

[1] Alex Cervantes, ”Exploring the Use of a Test Automation Framework”

[2] XiangFeng Meng ”Analysis of Software Automation Test Protocol ” ,2011 Interna-

tional Conference on Electronic & Mechanical Engineering and Information Tech-

nology

[3] Eliane Collins , Arilo Dias-Neto, ”Strategies for Agile Software Testing Automation:

An Industrial Experience”,2012 IEEE 36th International Conference on Computer

Software and Applications Workshops

[4] Jeff Bisgrove,Tom Jones ,”Integrated Test Facility (ITQ-Automation Testing to Sup-

port Intels Manufacturing Output”

[5] Intel Developers,Intel Platform and Component Validation - Whitepaper,Intel Tech-

nology India Pvt. Ltd.

[6] Intel Developers,2012 client Product Requirement Document(PRD),Intel Technology

India Pvt. Ltd.

[7] Other Intel Sources.

35

	List of Figures
	Abstract
	Introduction to Computer Graphics and Graphics Driver
	Graphics Overview
	Graphics Terminologies
	Display Controller
	Display Interfaces
	Display Modes
	Graphics driver role
	Graphics Driver Architecture

	Post Silicon Validation and Automation
	System Validation
	Analog Validation
	Compatibility Validation
	Software Validation
	Product Qualification
	Role of Automation Validation
	Automation Process

	Literature Survey
	Scope of the Project
	Technology
	Frameworks
	Tools

	Design of Display Automation Framework
	Features Implemented
	Display switch
	Mode Change
	Deep Color
	LPSP
	Scaling
	Corruption check
	Achievement

	Conclusion

