
Software Profiling For Holistic System’s
Power And Performance Analysis

(Modem Statistics)

Prepared By

Kamlesh Karwande

12MCEC13

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Software Profiling For Holistic System’s
Power And Performance Analysis

(Modem Statistics)

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

Prepared By

Kamlesh Karwande

12MCEC13

External Guide Internal Guide

Mr.Ashish K Singh. Prof. Ankit Thakkar.

Intel Technologies India Ltd. Nirma University.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Certificate

This is to certify that the Major Project Report entitled “Software Profiling For

Holistic System’s Power And Performance Analysis ” submitted by Kamlesh A

Karwande. (Roll No: 12MCEC13), towards the partial fulfillment of the require-

ments for the degree of Master of Technology in Computer Science and Engineering of

Nirma University, Ahmedabad is the record of work carried out by him under my super-

vision and guidance. In my opinion, the submitted work has reached a level required for

being accepted for examination. The results embodied in this major project, to the best

of my knowledge, haven’t been submitted to any other university or institution for award

of any degree or diploma.

Mr.Ashish K Singh. Prof. Ankit Thakkar.

Software Engineer, Assistant Professor,

Intel India, CSE Department,

Bangalore. Institute of Technology,

Nirma University, Ahmedabad.

Prof. Vijay Ukani. Dr. Sanjay Garg.

Associate Professor, Professor and Head,

Coordinator M-Tech CSE, CSE Department,

CSE Department, Institute of Technology,

Institute of Technology, Nirma University, Ahmedabad.

Nirma University, Ahmedabad.

Dr. K Kotecha.

Director,

Institute of Technology,

Nirma University, Ahmedabad.

iii

Undertaking for Originality of the Work
———————————————————————————————————————

I, Kamlesh Karwande, Roll. No. 12MCEC13, give undertaking that the Major

Project entitled “Software Profiling For Holistic System’s Power And Perfor-

mance Analysis ” submitted by me, towards the partial fulfillment of the requirements

for the degree of Master of Technology in Computer Science & Engineering of Nirma

University, Ahmedabad, is the original work carried out by me and I give assurance that

no attempt of plagiarism has been made. I understand that in the event of any similarity

found subsequently with any published work or any dissertation work elsewhere; it will

result in severe disciplinary action.

Signature of Student

Date:

Place:

Endorsed by

Mr. Ashish K Singh

(Signature of External Guide)

Prof. Ankit Thakkar

(Signature of Internal Guide)

iv

Acknowledgements

First and foremost, I would sincerely like to thank Mr.Diganta Roychowdhury,

Manager, Intel Technology India Private Limited, Bangalore.My mentors Mr.Ashish K

Singh and Mrs.Shruti Chandna. I enjoyed their vast knowledge and owe them lots

of gratitude for having a profound impact on this report.

I would like to thank my Mentor, Mr. Ashish K Singh, Intel Technology India

Private Limited, Bangalore for his valuable guidance. Throughout the training, he has

given me much valuable advice on project work. Without him, this project work would

never have been completed.

I would also like to thank my Internal guide Prof. Ankit Thakkar, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance.

My deepest thank you is extended to Prof. Vijay Ukani, PG CSE - Coordinator,

Department of Computer Science and Engineering, Institute of Technology, Nirma Uni-

versity, Ahmedabad for an exceptional support and continual encouragement throughout

the Major Project.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Honorable Head of

Computer Science and Engineering Department, Institute of Technology, Nirma Univer-

sity, Ahmedabad for his kind support and providing basic infrastructure and healthy

research environment.

I would also like to thank Dr. K.Kotecha, Director, Institute of Technology, Nirma

University, Ahmedabad for providing me an opportunity to get internship at Intel Tech-

nology India Private Limited, Bangalore.

I would like to thank my all faculty members for providing encouragement, exchanging

knowledge during my post-graduate program.

I also owe my colleagues in the Intel, special thanks for helping me on this path and

for making project at Intel more enjoyable.

Kamlesh Karwande

(12MCEC13)

v

Abstract

Intel Corporation designs and develops Smart-phones based on latest technology.

These smart-phones combine the functionality of a mobile communication device with

miniature computer like capabilities. It integrates various features like voice communica-

tion, image capturing, Internet browsing, audio video playback, message communication

and many more. The more the functionality added, the more complex the underlying

system, ultimately the Hardware. This in turn takes its toll on power supply, the battery.

Thus to increase the battery life the need of efficient energy management rises. This leads

us to the ultimate goal, an energy efficient platform.

For this we require assistance from tools which will help in understanding the working

of the platform from power as well as performance perspective. Developing such tool will

greatly help in understanding and optimizing Intel’s mobile platforms.

Modem is a large consumer of power, and hence optimizing the modem utilization

can increase the overall battery life of a smart-phone. As a part of this project we further

increase the capability of the tool by integrating Modem power statistics. The mechanism

is built on custom AT command interfaces.

Getting the modem statistics for various use cases would help in understanding and

optimize the modem utilization hence ensuring an overall improvement in the battery-life

without compromising on the performance.

vi

Contents

Certificate iii

Undertaking iv

Acknowledgements v

Abstract vi

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Problem Definition . 2
1.2 Motivation . 2
1.3 Scope of the Work . 3
1.4 Organization of Project Report . 4

2 Intel Mobile Platform Architecture 5
2.1 UMG Platforms . 7

2.1.1 Power measurements of UMG Platforms 8
2.1.2 Performance Measurements of UMG Platforms 9

2.2 ACPI Standards . 10
2.2.1 Principal Goals . 10
2.2.2 ACPI States . 11

2.3 Power Measument tools . 14
2.3.1 Monsoon Power Monitor . 15
2.3.2 National Instruments Data Acquisition System (NI DAQ) 19

3 Literature Survey 23
3.1 Modem Fundamentals . 23

3.1.1 XMM7160 Modem . 23
3.2 Power Control Trace Driver . 25
3.3 AT Command Interface . 27
3.4 RPC Interface . 28
3.5 RPC based RIL . 31

vii

4 PnP Analysis Tool: SocWatch 34
4.1 SoCWatch Architecture . 35

4.1.1 SocWatch Application Part . 35
4.1.2 SocWatch Driver Part . 36

4.2 SoCWatch Operation Mode’s . 36
4.2.1 Snapshot Mode . 36
4.2.2 Polling Mode . 37
4.2.3 Tracing Mode . 37

4.3 Feature Framework . 38

5 Implementation 40
5.1 AT Interface Based Implementation . 40

5.1.1 AP Power Trace Modes . 41
5.1.2 AP Trace Decode By SoCWatch 43
5.1.3 AP Modem Trace Module Integration in SoCWatch 45
5.1.4 Error Handling for AP Modem Trace Feature 45

5.2 RPC Based Implementation . 46
5.2.1 SoCWatch UTA Architecture . 46
5.2.2 RPC API . 48
5.2.3 UTA Library . 49
5.2.4 Implemented Modem Metrics . 49

6 Result 52
6.1 AT Interface Based Results . 52
6.2 RPC Interface Based Results . 54

7 Conclusion 57

viii

List of Figures

2.1 Block Diagram of Atom Processor (Source Internet) 5
2.2 Block Diagram of Intel Atom SoC (Source Internet) 6
2.3 Schematic Representation of various Components of Platform[11] 8
2.4 System setup for power measurements 8
2.5 Global System Power States and Transitions [15] 11
2.6 Monsoon Power Monitor (Source Internet) 15
2.7 Principle of the Power Monitor [14] . 16
2.8 Power Monitor User Interface . 17
2.9 Power Monitor & Mobile Device Setup 18
2.10 National Instruments DAQ . 19
2.11 Power Monitor Communication Protocol 20
2.12 Data Acquisition Cards . 21

3.1 Logical Diagram of The Modem (Image courtesy Intel IMC Team) 24
3.2 Power Control Trace Driver (Image courtesy Intel IMC Team) 26
3.3 AT Command Interface with AP . 28
3.4 RPC Channel For Communication . 29
3.5 Data Transfer from Host to Remote . 30
3.6 Data Transfer from Remote to Host . 31
3.7 AP-BP Android RPC based RIL and IP-RAW Data flow 32

4.1 High Level SoCWatch Overview(Source Internet) 35
4.2 SoCWatch Snapshot Mode (Source Internet) 36
4.3 SoCWatch Polling Mode (Source Internet) 37
4.4 SoCWatch Tracing Mode (Source Internet) 38
4.5 Feature State Transition (Source Internet) 39

5.1 AP Power Trace Mechanism . 41
5.2 AP Power Trace in Asynchronous Mode 42
5.3 Modem Snapshot Mode in SoCWatch . 43
5.4 AP Power Trace in Cyclic Mode . 44
5.5 Modem Polling Mode in SoCWatch . 44
5.6 UTA Based SoCWatch Architecture . 46
5.7 Data Transferring internally in RPC levels 50
5.8 SoCWatch view of CPM Mechanism . 50
5.9 Components of UTA & RPC Based Implementation For SoCWatch . . . 51

6.1 Modem Activity with 3G Idle Mode (No Data) 53
6.2 Modem Activity during a 3G Voice Call 53
6.3 Modem Activity during 3G data Idle Mode 54

ix

6.4 Modem Feature Collection using RPC mechanism 55

x

List of Tables

2.1 Common Tools used in Linux Environment (Source Internet) 9

5.1 SoCWatch Implemented Features . 51
5.2 Cellular Power Metric Fields . 51

6.1 Modem testing UseCase for AT based Implementation 52
6.2 Modem testing UseCase for RPC based Implementation 56

xi

Chapter 1

Introduction

Today mobile phones are not only used just as a device for calling and receiving but

transformed into a smart-phone[6], with more advanced computing capability and con-

nectivity than a regular cellular phone[6]. The smart-phones includes media players[12],

mail functionality, video cameras, high pixel digital cameras GPS6[12] navigation units,

etc. to form one multi-use device. Modern smart-phones also include high-resolution

touchscreen[11] and web browsers that display standard web pages as well as mobile-

optimized sites. High-speed data access is provided by Wi-Fi[6], mobile broadband and

Bluetooth[6]. With the increase in the use of each feature in the mobile device power

consumption increase and performance becomes important.

The embedded systems and various computing devices such as smart-phones, tablets,

portable handheld web devices, ebook readers are often used for prolonged periods with-

out being connected to a power outlet. This usage pattern poses a new set of challenges

related to power and performance. These systems comprise of various modules such

as: Camera, Accelerometer, GPS, Orientation sensors, temperature sensors, Radio and

Modem chips, CPUs, GPUs and bright LCDs. Also there are very large variations in

the specifications of such devices with varied hardware configuration including processor,

Wi-Fi chips and other modules, although the use cases are similar. The challenge is

to balance the performance and power equation so that the device can be used for an

acceptable duration within acceptable performance bounds. Performance without power

considerations is meaningless, especially in the smart-phone world so energy efficiency is

important.

1

1.1 Problem Definition

Derive methodology for capturing holistic platform[1][5][11] metrics for analyzing use

cases for power & performance optimization[9][10][4]. Currently there is no methodology

to capture modem power data via software. The only possible way is to connect huge

Power data collecting devices such as NI-DAQ’s[13] or Monsoon Power Monitors[14]. But

again the limitation is, such devices cannot be connected to Form Factors[11], the final

customer model. More over the data collected using such power data capturing devices

is not precisely allied to the use case running on the device. Human operator has to take

care of simultaneous launching of the use case and the recording device.

To address the basis of the issue, a proposal was made to develop a mechanism to

capture Modem[6][1]5 related metrics focusing of power and performance use-cases[10].

• The approach has to be robust enough so that the technique can be accommodated

into existing PnP analysis tools[9] without much integration overhead.

• The technique must have minimum footprint on the Modem functionality in terms

of performance.

• Robust implementation to accommodate changes on both Modem as well as Appli-

cation processor in future.

1.2 Motivation

Smart-phones, tablets, portable hand-held devices are used for prolonged periods

without being connected to a power supply. This usage pattern poses challenges related

to power and performance. The challenge is to balance the performance and power so that

the device can be used for an acceptable duration within acceptable performance.Here

end goal is to achieve highest performance with lowest power consumption, so it’s of

utmost for smart-phones to be Energy Efficiency. A very high performance without

power consideration is meaningless in case of portable devices. It is the energy which

needs to be efficient.

Keeping the above points in mind the key goal of getting the Tool to capture Modem

Statistics is to get statistical information about the modem that would help us understand

the modem power consumption in finer granularity for a given system workload like

2

browsing/streaming etc. To achieve the goal our primary focus is to get information

about two things

• How are resources (for example, core and other IP blocks) getting utilized within

modem.

• How are network conditions affecting modem power.

We want the abstraction to be in fairly high level so that the parameters can be un-

derstood by a generalist debugging system level problems without the prerequisite of

thorough understanding of the protocol stack.

The statistic collection should happen in the following two modes from the user per-

spective,

1. Cumulative information from the modem for the duration of the entire workload,

for example - % of time processor is in deep sleep, sleep or active during browsing

over 3G[6]. The Tool sends a message at the beginning of the workload and asks

modem side to start the statistics collection. At the end of the workload, the Tool

sends another message, receiving which the modem stops the collection, collates the

results and sends it out to the Tool for further post-processing.

2. Time-Interval information about the modem states, for example for roughly every

100 milli-sec time buckets, % of time the processor is in deep sleep compared to

idle. Essentially, we are interested in drawing a time-plot of the modem feature

variations. Here the Tool would initiate a session with the modem and modem

would periodically push back the statistics for us.

1.3 Scope of the Work

• Intel SoC Overview.

• Understand Power and Performance features, Measurements and analysis at a plat-

form level on Low Power UMG Platforms.

• Study, understand and use the Tool.

• Study and understand Modem Firmware.

• Study and understand AT Command Structure.

3

• Study the Remote Procedure Call (RPC) mechanism.

• Integrate Modem statistics capturing capability to the Tool.

The main task is to develop a mechanism to capture modem statistics and integrate them

into the tool.

1.4 Organization of Project Report

Following this introduction, chapter 2 presents an overview of the Intel UMG Platform,

followed by introduction to Power and Performance Measurements of UMG Platforms its

application and requirements.

Chapter 3 presents a literature survey for understanding Modem and its interface with

the platform. The two approaches AT command interface and RPC mechanism are also

understood.

Chapter 4 explains the Tool’s architecture in detail, where the actual implementation

should be accommodated for modem data collection.

Actual Modem statistics collection implementation for both AT command based and

RPC based and their respective integration is explained in Chapter 5.

The thesis ends with discussing the conclusions derived from the work comparing both

the approaches and their pros and cons.

4

Chapter 2

Intel Mobile Platform Architecture

Intel Corporation[1][11] is unbeaten for silicon manufacturing in the world. For years

it has been at the pinnacle for manufacturing state of the art CPU’s for Desktop and

Server segment. Its latest addition is Atom processor[1][11].

Figure 2.1: Block Diagram of Atom Processor (Source Internet)

5

Intel Atom is the brand name for a line of ultra-low-voltage Intel x86 and Intel x64

CPUs from Intel. Intel Atom is family of ultra-low power microprocessors specifically

designed for Mobile Internet Devices and ultra mobile PCs. It has implemented many

techniques to reduce power consumption.

Figure 2.2: Block Diagram of Intel Atom SoC (Source Internet)

Atom processor family has been expanded to new SoC[1] (System on Chip) platform

targeting smart phones and tablets. This platform consists of all the IC’s required by the

system. following are the major components of a platform.

Hardware

• CPU

• GPU

• North complex

• South Complex

• Buses

6

• Memory

• Motherboard

Software

• Operating System

• Firmware

• Applications such as media player, web browser.

Around early 2012, Intel started expanding the Atom processor family; its existing

low power consuming flagship processor series with a new system on chip (SoC) platform

designed specifically for low power consuming devices like tablets and smart-phones. The

tablets will be powered by Microsoft Windows 8 OS as well as Android OS[12].Atom

competes with companies like Texas instruments[13], Qualcomm, Nvidia, Samsung who

are currently developing SOCs for smart-phone and tablet market. But all the above

companies, use CPU’s based on ARM architecture which are designed from the beginning

to consume very low power. The x86 (32 bit) based Atom processor line developed by

Intel for low power usage in net-books, has been adapted to even lower power usage.As of

2014, Intel Atom-based tablets and phones have been released by several manufacturers.

2.1 UMG Platforms

Ultra Mobility Platforms[1] are designed for a specific segment of ultra-mobile devices

namely Ultra mobile PCs (UMPC), Mobile Internet Devices (MID), Smart-phone’s. All

of these devices are hand held devices in nature, so power requirements of these devices

must be very low and should have acceptable performance while running the workloads.

Power saving techniques is extensively used in all these devices.

Total power consumed by the platform and its performance varies significantly with

the workload as different hardware components and software stacks are utilized differ-

ently for various workload. Optimizing the complete hardware and software stacks for

the workloads is very important for better performance and power utilization. Hence

Power and Performance measurements of UMG platforms become an important activity

in analyzing and optimizing the platforms.

7

Figure 2.3: Schematic Representation of various Components of Platform[11]

2.1.1 Power measurements of UMG Platforms

A UMG platform consists of many components like CPU, Chipset, Memory, Dis-

play,Modem,Audio etc. These components behave differently and consume different

amount of power for various workloads and understanding the impact on various platform

component because of workloads it’s necessary and power measurement is an important

tool for that.

Usually DAQs (data acquisition systems) are being used for power measurements. The

basic concept is very simple and as follows

Figure 2.4: System setup for power measurements

• The differential voltage across the sense register is sampled at regular interval and

is divided with the value of the sense register to get the current through the rail.

8

• Computed current is multiplied with absolute rail voltage to get the instantaneous

power of the component and average is taken over all the samples for a specific

period.

2.1.2 Performance Measurements of UMG Platforms

It is important to be able to assess the performance estimates of a platform. Platform

designers use performance estimates to evaluate the effectiveness of a new features. Usu-

ally a standard set of application programs are grouped together known as benchmarks.

Benchmarks are run on the platforms which give a score which is used for comparisons

between different platforms across the industry. Some bench marks are just to compare

the performance of CPUs. Other benchmarks related to graphics are 3D Mark, 3D Mo-

bile mark, EEMBC, Dhrystone etc.

There are other tools also to measure the performance for various workloads. The

operating system also monitors the performance of the system for various controlling

applications.

Tool Most Important Tool Function
top Process Activity
vmstat System Activity, Hardware and System Information
uptime, w Average System Load
ps, pstree Display the Processes
free Memory usage
iostat Average CPU load,Disk Activity
sar Collect and Report System Activity
mpstat Multiprocessor usage
numasat NUMA Related Statistics
pmap Process memory usage
netstat Network Statistics
iptraf Real-Time Network Statistics
tcpdump, etheral Detailed Network Traffic Analysis
nmon Collect and Report System Activity
strace System Calls
proc file system Various Kernel Statistics
KDE system guard Real-Time System Reporting and Graphing
Gnome System Monitor Real-Time System Reporting and Graphing

Table 2.1: Common Tools used in Linux Environment (Source Internet)

9

2.2 ACPI Standards

The Advanced Configuration and Power Interface (ACPI)[15] specification was par-

ticularly developed to create industry common interfaces empowering strong operating

system (OS)-directed motherboard device configuration and power management of both

entire systems and individual devices. ACPI is the key component in Operating System-

guided setup and Power Management (OSPM)[15] [1].

ACPI advanced the current pre-ACPI collection of power management by BIOS

code, Advanced Power Management (APM) application programming interfaces (APIs,

PNPBIOS APIs, Multiprocessor Specification (MPS) tables and so on into a well-defined

power management and configuration interface specification. ACPI gives the intends to

an organized move from existing (legacy) equipment to ACPI fittings, and it takes into

consideration both ACPI and legacy systems to exist in a machine and to be utilized as

required.

The interfaces and OSPM ideas characterized are suitable to all classes of machines

including (but not limited to) desktop, mobile, workstation, and server machines. From

a power management viewpoint, OSPM/ACPI pushes the idea that the systems should

conserve energy by transitioning unused devices into lower power states including placing

the entire system in a low-power state (sleeping state[15]) when possible.

2.2.1 Principal Goals

ACPI is the key component in executing OSPM. ACPI-characterized interfaces are

proposed for wide adoption to encourage hardware and software vendors to build ACPI-

compatible (and, thus, OSPM-compatible) implementations. The principal goals of ACPI

and OSPM are to:

1. Enable all computer systems to implement motherboard configuration and power

management functions, using appropriate cost/function trade offs.

2. Enhance power management functionality and robustness.

3. Facilitate and accelerate industry-wide implementation of power management.

4. Create a robust interface for configuring motherboard devices.

10

2.2.2 ACPI States

Platforms compliant with the ACPI specification give OSPM immediate and exclusive

control over the power management and motherboard device configuration functions of

a computer. Throughout OS initialization, OSPM assumes control over these functions

from legacy implementations , for example, the APM BIOS, legacy requisitions. OSPM

is answerable for handling of motherboard device configuration events and in addition for

controlling the power, thermal status and performance of the system based around client

inclination, application requests and OS forced Quality of Service (QOS)[15][11] usability

objectives.

ACPI provides low-level interfaces that allow OSPM to perform these functions. The

various states by the ACPI specification are:

Global System State

ACPI defines mechanisms for putting the computer as a whole in and out of system

sleeping states. It also provides a general mechanism for any device to wake the computer.

Figure 2.5: Global System Power States and Transitions [15]

The Global System States[15] are:

• G3 Mechanical Off :- A computer state that is entered and left by a mechanical

11

means (external switch).

• G2 / S5 Soft Off :- In Computers state G2 S5 the computer consumes extremely

low power. No system or user level code is running. The hardware does not maintain

or preserves the system content.

• G1 Sleeping :- A computer state where the computer consumes a small amount

of power, large elements of system context are saved by the hardware and the rest

by system software.

• G0 Working :- A computer state where the system dispatches user mode (appli-

cation) threads and they execute. The system responds to external events in real

time.

Device Power State

Device power states[15] are states of individual devices; as such, they are generally

not visible to the user. For example, some devices may be in the off state even though the

system as a whole is in the Working state. To unify nomenclature and provide consistent

behavior across devices, standard definitions are used for the power states of devices.

• D3 off :- Power has been fully removed from the device. The device context is

lost when this state is entered, so the OS software will reinitialize the device when

powering it back on.

• D3 hot :- Devices in the D3 hot State are required to be software enumerable.

D3hot is expected to save more power and optionally preserve device context. The

D3 hot state differs from the D3 off state in two distinct parameters; the main

power rail is present and software can access a device in D3hot.

• D2 :- D2 is expected to save more power and preserve less device context than D1

or D0.Buses in D2 may cause the device to lose some context. Many device classes

may not define D2.

• D1 :- D1 is expected to save less power and preserve more device context than D2.

Many device classes may not define D1.

12

• D0 fully ON :- This state is assumed to be the highest level of power consumption.

The device is completely active and responsive, and is expected to remember all

relevant contexts continuously.

Sleeping State

When the computer is idle or the user has pressed the power button, the OS will put

the computer into one of the sleeping (Sx) states[15]. No user-visible computation occurs

in a sleeping state. A system in one of these states is not performing any computational

tasks and appears to be off. The sleeping sub-states differ in what events can arouse the

system to a Working state, and how long this takes.

• S1 Sleeping State :- The S1 sleeping state is a low wake latency sleeping state.

In this state, no system context is lost (CPU or chip set) and hardware maintains

all system contexts.

• S2 Sleeping State :- This state is similar to the S1 sleeping state except that the

CPU and system cache context is lost the OS is responsible for maintaining the

caches and CPU context.

• S3 Sleeping State :- In S3 sleeping state complete system contexts are lost except

the system memory. Chip set, cacheand CPU context are lost in this state. Its the

hardware’s responsibility to maintains memory contents restore back some L2 and

CPU context.

• S4 Sleeping State :- The longest wake latency and lowest power consuming sleep-

ing state supported by ACPI is the S4 sleeping state. Here it is assumed that all

the devices are powered off by the hardware platfom manager. But the harware

thake care of the device tate by maintaning device context.

Processor Power State

Processor power states (Cx states)[15] are processor power consumption and thermal

management states within the global working state, G0. The Cx states possess specific

entry and exit semantics and are briefly defined below.

• C0 Processor Power State :- While the processor is in this state, it executes

instructions. The Processor is in execution mode.

13

• C1 Processor Power State :- This processor power state has the lowest la-

tency.Aside from putting the processor in a non-executing power state, this state

has no other software-visible effects. The Processor is in ready state.

• C2 Processor Power State :- The C2 state offers more better power savings

on the C1 Processor power state. The ACPI system firmware is responsible for

maintaining acceptable hardware latency for the state. Based on the latency OS

determines the transition of the processor between C1 and C2 states.

• C3 Processor Power State :- The C3 state offers much more and better power

savings over other higher power states. The ACPI system firmware is responsible for

maintaining acceptable hardware latency for the state. While in the C3 state, the

processor’s caches maintain state but ignore any snoops. The operating software is

responsible for ensuring that the caches maintain coherency.

Device and Processor Performance State

Device and Processor performance states (Px states)[15] are power consumption and

capability states within the active/executing states, C0 for processors and D0 for devices.

The Px states are briefly defined below.

• P0 Performance State :-While a device or processor is in this state, it uses its

maximum performance capability and may consume maximum power.

• P1 Performance State :- In this performance power state, the performance ca-

pability of a device or processor is limited below its maximum and consumes less

than maximum power.

• Pn Performance State :- In this performance state, the performance capability

of a device or processor is at its minimum level and consumes minimal power while

remaining in an active state. State n is a maximum number and is processor or

device dependent. Processors and devices may define support for an arbitrary

number of performance states not to exceed 16.

2.3 Power Measument tools

To measure the power consumed by the different IP units[1][11] or components of the

platform, external dedicated hardware is required. These power measurement devices are

14

standalone hardware devices.

2.3.1 Monsoon Power Monitor

Power Monitor[14] is a Power capturing device from Monsoon Solutions Inc. It is a

hardware which comes with software residing on a windows machine, which is used to

control output voltage and trigger power capture. The Mobile Device Power Monitor

hardware and the Power Tool software provide a robust power measurement solution for

Android and Window based devices.

The Mobile Device Power Monitor hardware and the Power Tool software can analyze

the power on any device that uses a single lithium (Li) battery. Software Developers and

Electrical engineers can utilize the Mobile Device Power Monitor hardware and the Power

Tool software to optimize the design and analyze the performance of the devices, thus

helping in optimization from power prespective.

Figure 2.6: Monsoon Power Monitor (Source Internet)

Principle of the Power Monitor

To measure the current exactly, a double range, self-calibrating, integrating system

is utilized. Each one channel has two current ranges with a 16-bit simple analog to

digital converter (ADC), unified with a high-resolution range, and the other with a low-

resolution range. Via Programming each of these channels are calibrated continuously

15

and chooses the correct range throughout measurement. The double range plan works

in light of the fact that mobile platforms are normally in standby mode and drawing

only a few of milliamps of current, or they are running over 100 milliamps. The Mobile

Device Power Monitor must be exceptionally precise when the current is low, yet may be

less exact as the current increments. Each sample is integrated over its 200-microsecond

sample period so that even a concise high-current pulse is captured.

Figure 2.7: Principle of the Power Monitor [14]

Contingent upon system capacitance and other factors, the quickest transient pulse

are about the duration of 20 microseconds. The integrator sums up these quick pulses so

that a precise evaluation of the normal current is kept up. The unit is self-calibrating.

One cycle out of each 1000 cycles is utilized to run either a reference-current adjustment

or a zero-current alignment. Via Programming these estimations can be used to null

out the offset and gain errors during the system measurement. Since this is carried out

automatically, it makes up for slow temperature progressions throughout the estimation

run. The only part excluded in the measurement process is the sense resistor. These

resistors are aligned at the industrial facility and the adjustment qualities may be bal-

anced and spared by users utilizing the Parameters dialog box. The Power Monitor has

a overflow buffer that can hold six packets of 128 bytes each. Throughout the transfer, if

the development workstation can’t read the information quick enough then this buffers

will start to fill up, and samples may be lost. The accepted information is connected so

the line seems consistent. To record for the lost examples, the convention holds a 16-bit

16

counter that tracks the number of lost samples. Since the dropped samples are short of

what one percent of a run, the error is minimal. Typically this loss of data is short of

what 0.1 percent. In any case, in some cases on long runs or on stacked frameworks the

dropped sample check can surpass 65,000.

A number of dropped connections is kept up in the UI. Both of these counts are reset

to zero when a run is restarted. These tallies are helpful to figure out how stable the

connection is. On the off chance that the dropped packets are more than one percent

of all samples, or if there are more than one or two dropped connections for every hour,

then it is likely that the workstation has different user programs running that are creating

unwanted delays . Shutting these programs or setting up the Power Tool programming

on a clean machine ought to explain these issues and decrease the dropped samples and

packets.

Power Monitor User Interface

Figure 2.8: Power Monitor User Interface

The User Interface is very simple to understand. We can set the output voltage to

any customized value. Graphically it can display Average, Minimum, and Maximum as

17

well as instantaneous Power, Current and Voltage against time. The parameters of the

graph can be varied. Also settings can be made on sampling rate, start capture delay,

end time, end samples and so on.

Captured file can be saved in a compressed .PT4 format or .CSV format which can

be replayed when needed to understand the platform behavior. In short, the GUI is a

very informative and self-sufficient but has one drawback. It requires human input all

the time, hence is not very suitable for automation.

The Power Monitor software provides a less informative Command line interface,

though not very descriptive it achieves an important purpose, Automation.

Power Monitor Connection Block Diagram

The Power Monitor Connects to the Windows Machine through an USB Interface.

The drivers are provided by Monsoon Solutions. The Red and the Black terminals are

connected to the Intel Mobile Platform using simple crocodile clip connectors. The Power

Monitor hence, not only acts as a power supply/battery to the mobile platform but also

capable of monitoring input battery power consumed. Hence it provides a complete

solution to monitor platform power controlled through software.

Figure 2.9: Power Monitor & Mobile Device Setup

Intel Mobile platform interfaces with the Windows machine through serial cable. A

protocol is defined through which we differentiate power monitor commands. Using this

we control the power to the platform.

18

The operation will be as follows:

Host (Windows Machine) connects to Power Monitor through USB. Power Monitor

connects to the target platform by means of connecting wires. The mobile platform

connects to Host through a serial cable, thus closing the loop.

1. Whenever Mobile platform requests for a reboot, it will send a request to the Host

through the serial cable. Host in turn will acknowledge it by issuing a turn off

command to the Power Monitor. After a delay of 1 second, it will issue a turn on

command to the Power Monitor thus rebooting the Platform.

2. Whenever a Workload starts, Mobile platform will issue command to the Host for

power capture. It will in turn instruct Power Monitor to capture power.

3. Heart beats are simple messages sent to the host to signify that the mobile platform

is working fine. In case of any hangs, they will stop. After a delay of 10 seconds, an

automatic reboot is issued so that the platform gets up and working. This feature

allows no human to be present for monitoring failures.

2.3.2 National Instruments Data Acquisition System (NI DAQ)

National Instruments DAQ[13] is a device with capability to provide a high-output

power supply and a structural design optimized in the best possible ways for maximum

usability in a wide range of electronic applications. Though it can be used for a wide

range of applications which include Voltage, Current, Resistance, Temperature, Sound

Pressure, Strain etc. our primary focus is power capturing. In the NI DAQ we use for

Figure 2.10: National Instruments DAQ

19

capturing power is PXI 1045. The PXI-1045 combines a high-performance 18-slot PXI

backplane. The chassis modular design ensures easy insertion of the PXI slots provide

easy replacement and maintanence, which drectly resulting in a very low mean time to

repair (MTTR).

Figure 2.11: Power Monitor Communication Protocol

PXI 6289 Data Acquisition Cards

National Instruments M Series high-accuracy multifunction data acquisition (DAQ)

devices are optimized for 18-bit analog input accuracy. This resolution is equivalent to 5

12 digits for DC measurements. To ensure accuracy, the NI-PGIA 2 amplifier technology

is optimized for low noise and fast settling to 18 bits and the onboard low pass filter

rejects high-frequency noise and prevents aliasing. M Series devices are ideal for appli-

cations including test, control, and design. All high-accuracy devices have a minimum

20

of 16 analog inputs, 24 digital I/O lines, seven programmable input ranges, analog and

digital triggering, and two counter/timers.

Figure 2.12: Data Acquisition Cards

The main feature important in selecting 6289 is its 18 bit resolution and 500 KSam-

ples/sec sampling capability. In a Mobile Platform where even spurious wakes can con-

tribute to a milli watt of power, it is very essential that we sample the channels at a very

high rate and accurately. The channels we monitor in Mobile platforms can go very low

in range of micro watts. In such case, 16 bit resolution is not sufficient. Hence, only a 18

bit resolution can give us more accuracy.

National Instruments LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench)

is a platform and development environment for a visual programming language from

National Instruments. The purpose of such programming is automating the usage of

processing and measuring equipment in any laboratory setup. LabVIEW is commonly

used for data acquisition, instrument control, and industrial automation on a variety of

platforms including Microsoft Windows, various versions of UNIX, Linux, and Mac OS

X.

LabVIEW ties the creation of user interfaces (called front panels) into the develop-

ment cycle. LabVIEW programs/subroutines are called virtual instruments (VIs). Each

21

VI has three components: a block diagram, a front panel and a connector panel. The

last is used to represent the VI in the block diagrams of other, calling VIs. Controls and

indicators on the front panel allow an operator to input data into or extract data from a

running virtual instrument. However, the front panel can also serve as a programmatic

interface. Thus a virtual instrument can either be run as a program, with the front panel

serving as a user interface, or, when dropped as a node onto the block diagram, the front

panel defines the inputs and outputs for the given node through the connector pane. This

implies each VI can be easily tested before being embedded as a subroutine into a larger

program.

The graphical approach also allows non-programmers to build programs by dragging

and dropping virtual representations of lab equipment with which they are already fa-

miliar. The LabVIEW programming environment, with the included examples and the

documentation, makes it simple to create small applications. This is a benefit on one

side, but there is also a certain danger of underestimating the expertise needed for high-

quality G programming. For complex algorithms or large-scale code, it is important that

the programmer possess an extensive knowledge of the special LabVIEW syntax and the

topology of its memory management. The most advanced LabVIEW development sys-

tems offer the possibility of building stand-alone applications.

LabVIEW is software designed to cater to all areas. Our area, limited to power cap-

ture does not need all the features. In fact, we end up using only 2% of all the features

available! Hence paying the license fees for this seems very impractical. Also NI provides

free DAQmx drivers and APIs in C, which can be used to create our own software capa-

ble of performing like LabVIEW. Hence the need for the project. By doing this, we will

achieve,

1. Cost effective software capable to performing as LabVIEW.

2. Tweak the software as per needs to be integrated with other Languages.

3. Distribute it freely within Intel Corporation having to face no licensing issues.

22

Chapter 3

Literature Survey

3.1 Modem Fundamentals

Modem[?] is one of the most important part of mobile phones. It plays a very crucial

role in voice communication, short message communication and all the network related

activities on a mobile phone. More over smart phones allow high end functionality such

as web browsing, email communication media download and many more. All these func-

tionalities at the basic require usage of Modem.

Modem Model variant that comes with Merrifield[?] platform is XMM7160[?] which

is continued with Baytrail[?] also. XMM 7160 is smallest multi-mode / multi-band

2G/3G/LTE slim modem.

Modem is independent of the platform its integrated on. It has its own processor

called Baseband processor, memory,decode unit, DSP power management unit. It is

connected to the platform via UART channel. Modem Firmware controls the modem

activity and modems communication with the application processor.

3.1.1 XMM7160 Modem

The XMM 7160 HSPA+/LTE Modem Platform includes several platform variants

targeted for a wide product range like M2M modules, MIDs, eBook readers, data card

modems, as well as a broad range of medium to high-end smart phones.

The X-GOLD 716 GSM/UMTS/GPRS/EDGE/HSPA+/LTE Baseband Controller is

the basis for the platform family. It is an integrated, low-power, 40 nm baseband device

that includes all required digital, analog and power management functions.The platform

23

supports up to nine LTE bands (plus sub-bands), five UMTS/HSPA+ bands and four

frequency bands for EDGE standards, respectively. These ingredients enable the new

solution to offer industrys leading edge PCB (printed circuit board) footprint. Intel

Mobile Communications complements the XMM 7160 HSPA+/LTE Modem Platform

with its own worldwide proven triple-mode 3GPP Protocol Stack in its Release 9 version,

which enables to provide complete in-house system solutions.

Smart phones are the main application where the XMM 7160 platform is connected

to an application processor. A system block diagram depicting the XMM 7160 platform

in a smart phone application is shown below.

Figure 3.1: Logical Diagram of The Modem (Image courtesy Intel IMC Team)

X-GOLD 716 Baseband Controller and PMU

The X-GOLD 716 is a Baseband Controller with integrated modem power manage-

ment unit. This system on chip is designed with the latest low power CMOS process

technologies which provide significant performance to meet the ever increasing demands

of the cellular subscriber market for feature rich terminals at lowest power consumption

and a very competitive cost position.

24

The processing of the upper 2G/3G/LTE cellular protocol stack layer are handled by

an ARM 1176 enhanced with level-1 and level-2 caches. For operations related to the

data plane of the LTE and 3G protocol stack, a set of dedicated HW accelerators have

been added. The physical layer of the cellular protocol stack is handled by dedicated

hardware accelerator subsystem for GSM, UMTS and LTE. Advanced voice processing

is provided by the inclusion of a rich audio DSP subsystem.

SMARTi 4G RF Engine

The RF Engine utilized on the XMM 7160 platform is based on the SMARTi 4G RF

Transceiver. SMARTi 4G is a highly integrated LTE/UMTS/GSM/EDGE-transceiver

with all necessary features to enable multi-mode, multi band mobile cellular devices.

SMARTi 4G directly supports LTE/3G/2.5G/2G bands concurrently without additional

discrete RF path switches.

The SMARTi 4G RF Engine on the XMM 7160 platform is an example of a RF

solution for a quad-band GSM / hexa-band UMTS and up to nona-band LTE (plus sub-

bands) mobile communication device product including RX diversity. Chosen to explain a

typical application of the SMARTi 4G chip reference design it includes a Multi-mode PA,

a Quad-band GSM / Penta-band UMTS/LTE Duplexer Filter Module, two single LTE

Duplexer Filters and an Antenna Switch Module. In addition, it features an Antenna

Switch Module and a GSM/UMTS/LTE Filter Module for the diversity receiver paths.

Beside the above mentioned core devices, the SMARTi 4G RF Engine also supports the

usage of an Antenna Tuner device. The Antenna Tuner can be connected via a plug-on

board to the RF Engine antenna connector.

3.2 Power Control Trace Driver

The Power Control Trace driver is part of the Power Control driver subcomponent.

AP Power Trace functionality which provides insite into Modem power states is a part of

Power Control Trace driver. Primary motivation of the Power Control Trace driver is to

trace function call sequences, significant Power Control events, internal states and data

of the Power Control driver and its sub-components, e.g. CGU, PMU, SPCU and CPU.

Power Control Module is a very central component in the overall system architecture.

This module used by every other driver in the system to fulfill their individual voltage

25

Figure 3.2: Power Control Trace Driver (Image courtesy Intel IMC Team)

and clock requirements. Power Control Module ensures that the most optimal clocks and

voltage levels are maintained depending on the system activities and load, so that overall

26

power consumption can be minimized. This is achieved by monitoring idle states of the

CPU, buses and some central peripherals, helping it to take decisions on entering deep

sleep and how long the system can remain at low power.

From AP viewpoint it is of main interest to precisely know the time periods of various

states. Therefore, this special AP trace mechanism omits a large part of the complex

and detailed information as Power Control Trace could provide, but gives this data of

rather statistical character. Thus, keeping the above goal in perspective, a combination

of functionality both on BB and AP side are proposed to achieve these objectives.

3.3 AT Command Interface

AT Commands[?] [?] are the Attention Commands used for communication between

Baseband (BB) processor, the one on the Modem and the Application Processor. All the

commands passed by AP to BB are via AT commands. The command set consists of a

series of short text strings which combine together to produce complete commands for

operations such as dialing, hanging up, and changing the parameters of the connection.

AT commands work on a request response mechanism. Where the application proces-

sor issues an AT command to the modem over a predefined serial channel.The modem’s

baseband processor on receipt sends back a response to the AP. the response can be the

data requested by the AT command of an acknowledgment. Some of the at commands

are

• AT+CGMM :- The get the Modem Model

• AT :- Check if modem is live or not

• AT+CGMI :- Get Manufacturer information

Capturing the power data of the modem is made possible by implementing a cus-

tom AT command, which will give us requested data, from the modem firmware. Since,

communicating with the modem is slightly different from communication with rest of the

modules as it is external to SOC; the implementation of this module is slightly different

from conventional techniques used.

Capturing the power details from the modem was made possible by the introduction of

custom AT commands. The Application Processor (AP) sends a Start AT command and

27

Figure 3.3: AT Command Interface with AP

by this determines start of AP tracing inside the Base band (BB). Once this command is

received by the BB, the appropriate counter variables are populated and accumulate its

values depending on the times the BB resides in which of those power states and as long

as AP tracing is performed, respectively. If the AP wants to retrieve the collected trace

data, it sends the stop AT command to the BB. If this AT command is received on the

BB side, it immediately stops tracing, reads out the accumulated power state and trace

time values, populates the AT response with it and provides this info to the AP.

3.4 RPC Interface

An Inter-process communication technique; Remote procedure call (RPC) allows a

executable in one address space to trigger execution of computer program in another

address space (in here Modem). This is achieved by abstracting the coding details from

the programmer. This implies that the programmer essentially write the code in the

similar way he uses for local subroutine execution. Thus from the programmers point of

view, wheather the subroutine is remote or local to the program in execution does not

matter.

In the RPC scenario the remote server is always known, while the client initiates

the RPC communication by sending the request message consisting of the procedure to

execute and the parameters accepted by the procedure.

Here the Application Processor is the host client while the Modem is the Remote

28

Server. The channel used is gsmtty21 (DLC21) for the RPC communication. The

Figure 3.4: RPC Channel For Communication

host sends a request to the remote including the function it wants to be executed and its

actual parameters. The remote sends a response, including the result after execution is

completed.

The RPC API is divided into 4 layers:

1. Remote API :- Remote APIs are APIs which are executed in separate address

space (commonly on another processor).

2. RPC library :- RPC library contains RPC packers and unpackers. Packer is a

stub for actual APICallback(Remote API)which does marshalling(serialization) and

sending the marshaled data to RPC message queue .Unpacker is a function which

demarshall (de-serialize) the data received from ClientServer over IPC and invokes

the appropriate API callback.

29

3. RPC Queue :- RPC maintains a single queue to receive data from packers and IPC.

This message queue is processed by RPC task. Messages in queue are differentiated

into write message and read message. This is differentiated by the readwrite param

in the message queue .Write messages are posted by packers and read messages are

posted by IPC driver.

4. RPC DRV :- RPC driver is responsible for processing the messages in RPC queue

.It maintains a RPC task for processing the messages in RPC queue. Marshalled

data in Write message is sent to IPC for transmission to the processor. Data from

read queue is forward to Unpacker which will then invoke appropriate APIcallback

after demarshalling the data.

5. IPC driver :- This is responsible for actual data transfer between processors. This

can be realized using DPRAM, SPI, SHARED MEMORY etc.

Figure 3.5: Data Transfer from Host to Remote

When application invoked the Remote API on host side the Remote API on Host

side (Stub) serializes all the data (function params adds function id and the size of data

actually serialized) and sends it to RPC driver through rpc queue. RPC task will then

fwd the data in queue to IPC driver. IPC driver will then send the serialized data to IPC

running on Remote side.

30

Figure 3.6: Data Transfer from Remote to Host

When Host IPC driver gets interrupt .It will read data sent by Remote IPC driver

and invokes the RPC callback for data notification. RPC driver will then reads the data

using IPC read and send the data to RPC task for processing using rpc queue. When

RPC task receives this data it will invoke the Rpcunpacker to deserialize the data .After

deserialzing the data Rpcunpacker will call appropriate APIcallback on Host side.

3.5 RPC based RIL

The purpose of Android RPC based RIL is to replace the AT based RIL by enabling

remote execution of IMC (C function based) APIs from the Android side. For each of the

RIL request in the android Vendor RIL Library, Aggregator library functions are called.

These aggregator functions will have functionality to remotely execute the corresponding

UTA Calls using RPC mechanism and handling the responseIndication coming from the

Modem and it will be communicated to the above Android Telephony framework through

RIL layer.

Android’s Radio Interface Layer (RIL) provides an abstraction layer between Android

31

Figure 3.7: AP-BP Android RPC based RIL and IP-RAW Data flow

telephony services (Android telephony) and radio hardware (Modem). The RIL is radio

agnostic layer supporting various Radio access technologies such as GSM-GPRS/UMTS.

Android RIL consists of two primary components:

• RIL Daemon :- The RIL daemon initializes the Vendor RIL, processes all com-

munication from Android telephony services, dispatches calls to the Vendor RIL as

solicited commands and indicate solicited command response, unsolicited indication

from vendor RIL to the android telephony framework.

• Vendor RIL :- Vendor RIL from IFX is RPC based. It contains a set of Aggregator

library functions that invokes the necessary UTA function calls to perform different

Radio operations. These UTA calls are executed remotely on the MEX side using

RPC Mechanism. Aggregator function will give the response back to the vendor

RIL to communicate suitably to the Android telephony framework via RILD.

Vendor RIL primarily does the following operations:

32

• Handling the RIL request originating from the Android telephony layer (via RILD)

and call the appropriate aggregator library function handlers.

• Return back response information coming from aggregator library function handlers

to the Android telephony layer in a suitable format via RILD.

• Processing and indicating unsolicited notification from the modem suitably to the

above Android telephony layer via RILD.

RPC module on the Android side will pack each of the UTA calls and the corresponding

parameters of the aggregator function as a packet and send it to the peer RPC layer

running on the MEX via IPC. RPC layer on the MEX will unpack the packet and execute

the corresponding UTA function. The response from UTA is packed into a packet and sent

back from MEX RPC to the RPC layer on Android, where the corresponding aggregator

function is invoked.

In case of AP-BP setup, Android RPC layer will interface with an IFX proprietary

Linux kernel driver. This driver has the following functionalities:

• Exposes a character driver interface to the RPC module running on the Android.

• Provides network driver functionality by interfacing with Linux TCPIP stack and

handle IP datagram.

• Provides a Multiplexing/De-multiplexing capability for IP data and RPC PGEN

packets and sendsreceives packets tofrom SPI driver. In the remaining document

this MultiplexingDe-multiplexing sub-module has been referred to as IPC MUX.

Similarly on the MEX side, there is a corresponding IPC MUX module which has the

following functionalities:

• Interfaces with the USIF driver (Configured as SPI Slave) via the UtaSerial device

API.

• Provides a MultiplexingDe-multiplexing capability for IP data and RPC PGEN

packets. Data from USIF driver is de-multiplexed and send to RPC module (PGEN

packets) or to SIO via UtaTerminal device API (IP data).

33

Chapter 4

PnP Analysis Tool: SocWatch

To get platform behavior related to power consumption for an SOC, instruments like

Power Monitor and NI DAQ (Data acquisition systems) are used. They generate raw

data in terms of power numbers which needs to be processed and correlated to get actual

system behavior. This process is tedious and time consuming. Instead specific data re-

lated to system behavior can be directly captured on the system itself. SoCWatch is one

such tool which resides on the host system to measure specific system behaviors related to

power consumption. Moreover the tool automates the post processing thus giving precise

required data.

SoCWatch is a command line tool for monitoring system behaviors related to power

consumption on Intel architecture-based platforms. It analysis different aspects of the In-

tel Atom platform by monitoring CPU Power States, hardware accelerators like graphics,

video, camera etc., other peripheral devices like audio, modem. It can capture band-

widths between the platform components like CPU-Memory, ISP-Memory IO-Memory

etc. This tool provides extensive visibility into platform power states along with individ-

ual devices power states. These metrics provide insight into system behavior from energy

efficiency perspective.

SoCWatch tool runs on the host platform where actual data collection is to be done.

It can be configured to collect multiple features at the same time where collection du-

ration can also be specified. The overhead of the tool is minimal, but depends on the

collection type and features involved. The average overhead on the CPU can be between

2% to 5%.

SoCWatch tool at the simplest level can be described as; SoCWatch collects platform

34

related information from the hardware and processes it. The data to be collected depends

on the feature requested.

4.1 SoCWatch Architecture

SoCWatch tool works on top of operating system, where at high level it can be divided

into 2 parts. The application part where the user interface lies at Ring 3 (user space),

and the driver part which communicates with the hardware at Ring 0 (kernel space).

Figure 4.1: High Level SoCWatch Overview(Source Internet)

The SoCWatch Application directs the driver to collect data, which collects data from

the hardware. And returns it to the application part, where the post processing is done.

4.1.1 SocWatch Application Part

The application side is the user interface which works at Ring 3. It takes command

line input from the user and parses it to set appropriate parameters and preparing the tool

for the collection. SoCWatch Configuration file is a database consisting of the hardware

35

address of various MSRs, memory locations required for the metric collection is read.

After the initialization of the tool, application part controls the collection of data done

by the SoCWatch driver. At the end after the collection, processing of the data is also

done by application part.

4.1.2 SocWatch Driver Part

The SoCWatch Driver resides in the Linux kernel. It gets the metadata from the

application part about the data to collect such as address, data size and no of records

to capture. It collects the specified data from the underlying hardware using Linux

tracepoint mechanism. After the complete collection the data is passes to the application

part.

4.2 SoCWatch Operation Mode’s

Features are the actual metrics that can be collected using SoCWatch. SoCWatch

has defined 3 modes for collection data. Features can be captured in one of the following

modes.

4.2.1 Snapshot Mode

In Snapshot the metric is captured at the starting and ending of the run. In this

mode the counters are tracked by the hardware thus there is no overhead induced during

the actual collection.

Figure 4.2: SoCWatch Snapshot Mode (Source Internet)

36

4.2.2 Polling Mode

In polling mode the metric is captured after regular interval of time for the complete

run duration. The polling interval can be specified. Some features cannot support snap-

shot mode such as Pstate, GPU Cstate/Pstate (hardware limitation).

NOTE: Polling mode increases CPU overhead. Polling overhead may vary based on the

features and the polling interval.

Figure 4.3: SoCWatch Polling Mode (Source Internet)

4.2.3 Tracing Mode

Tracing mode is an event based mechanism, where the data is captured whenever

there is a transition from one state to another for the feature. Here for demonstration

purpose; during run only 3 data traces are collected.

37

Figure 4.4: SoCWatch Tracing Mode (Source Internet)

4.3 Feature Framework

Each feature has to follow the framework defined by the state machine. As you can

see in the figure the framework can be broadly divided into 3 parts.

Before the actual collection, the feature opted has to be initialized. The initialization

includes the extracting of the hardware MSRs address from SoCWatch configuration file

that are passed to driver to collect data from. And other required platform information.

This is taken care in the Initialize().

The StartPreamble() registers and allocates memory to the MSRs, memory locations

to be read during the run. Here it is check whether the feature opted or not. And if

opted appropriate collection setting are done, and features to capture are set.

During the Data capture phase there is no feature specific task, the driver captures

the data and stores it in Ring 0 for the duration of the run. Later the captured data is

transferred to Ring 3.

StopPostamble() does the post processing on the data captured. The processing is

actually extracting information from the captured data. The data is parsed and required

information is extracted for post processing.

LogReport() is actual report generator. The report can be a consolidated summary

of the run or a trace file consisting of data captured at regular interval.

Deinitialize() DE allocates all the application memory initialized for the feature.

38

Figure 4.5: Feature State Transition (Source Internet)

This is the complete execution cycle for a feature in SoCWatch. Some of the features

have additional functions limited to themselves, used in supporting the actual framework.

39

Chapter 5

Implementation

Integrating modem power capturing capability to SoCWatch would be beneficial in

the following ways:

1. Enable better platform power projections for future architectures.

2. Produce first level of power debug for CP & AP. By easily generating all the statis-

tics, the engineers working on AP and CP interface would be able to quickly com-

municate with each other and root-cause the issues.

3. Platform PnP optimization: A cohesive approach to platform PnP analysis, where

CP and AP statistics are analyzed at the same time would help in more efficient

optimization for scenarios like browsing and audio/video streaming over 3G4G net-

work.

5.1 AT Interface Based Implementation

Capturing the power data of the modem is made possible by implementing a custom

AT command, which will give us requested data, from the modem firmware. AP Power

Trace hides power control driver details and provides information: the BBs sleep, idle and

its active times. AP trace mechanism omits a large part of the complex and detailed in-

formation as Power Control Trace could provide, but gives this data of statistical nature.

But the data provided needs to be decoded at the AP side before it can be understood

completely. SoCWatch does the decoding part.

40

Figure 5.1: AP Power Trace Mechanism

5.1.1 AP Power Trace Modes

AP Power Trace operates in 2 modes

1. Asynchronous mode

2. Cyclic mode

Asynchronous Mode

Asynchronous mode corresponds to Snapshot mode in SoCWatch. In the mode of

operation AP sends a start command to BB. BB on receiving this command starts cap-

turing the time BB resides in corresponding power state. This goes on till AP does not

issue stop command to BB. Which in response stops tracing and sends the captured data

to AP.

If BB reports any error during start or stop commands SoCWatch reports the type of

error and stops capturing the feature.

NOTE: this does not affect the other features being captured at the same time.

AP command to start AP Power Trace in Asynchronous mode

atpow:start ap trace (cycle time, trace select)

cycle time = 0 (specifies mode of operation as Asynchronous to BB)

41

trace select = 0xFFFFFFFF (capture all possible data Deep Sleep time, Idle time, Active

Time)

NOTE: there can be multiple variations for trace select specifying AP Trace to capture

only Deep Sleep Time and Active Time or Idle Time and Active Time. But SoCWatch

always specify to capture all the 3 times.

AP command to stop AP Power Trace in Asynchronous mode

atpow:stop ap trace ()

No parameter is specified to stop AP trace.

Figure 5.2: AP Power Trace in Asynchronous Mode

Cyclic Mode

Cyclic mode corresponds to Polling mode in SoCWatch. Cyclic mode AP Power Trace

is similar to Asynchronous mode. But her we specify cycle time parameter in the start

command other than 0. This cycle time corresponds to the time interval after which BB

should send the trace data until stop command is specified by AP. The cycle time by

default is 100 ms. But it can be set by n option given via command line to SoCWatch.

The minimum time interval supported by BB is 1 ms, while maximum time interval

is 2.5 seconds. The command sequence followed in cyclic mode is same as that in asyn-

chronous mode, but the only difference is that we need to specify cycle time other than

0.

AP command to start AP Power Trace in Cyclic mode.

42

Figure 5.3: Modem Snapshot Mode in SoCWatch

atpow:start ap trace (cycle time, trace select)

cycle time = greater than 0 (specifies mode of operation as Cyclic to BB)

trace select = 0xFFFFFFFF (capture all possible data Deep Sleep time, Idle time, Active

Time)

NOTE: there can be multiple variations for trace select similar to Asynchronous mode.

AP command to stop AP Power Trace in Cyclic mode

atpow:stop ap trace ()

No parameter is specified to stop AP trace.

5.1.2 AP Trace Decode By SoCWatch

Whenever start AP trace command is issued by AP, BB initializes the counters, and

starts populating them based on BB Cstates. When stop AP Trace command is issued

BP stops incrementing counters and returns the counter contents.

The Response given by BB on successful trace will be of following format

POW:OK,SLEEP TIME:{count},SLEEP OVERRUN:{count},

IDLE TIME:{count},IDLE OVERRUN:{count},ACTIVE TIME:{count},

ACTIVE OVERRUN:{count}

43

Figure 5.4: AP Power Trace in Cyclic Mode

Figure 5.5: Modem Polling Mode in SoCWatch

We segregate the Sleep, Idle and Active time with corresponding overruns. 1 overrun

is equivalent to 0x100000000 counts i.e. 23̂2.

SLEEP TIME is multiple of TDMA frame, which is 4.615 ms.

SLEEP TIME = counter value * 4.615

IDLE TIME and ACTIVE TIME are raw System time counts based on 26 MHz clock

IDLE TIME = counter value (26 * 106̂)

44

ACTIVE TIME = counter value (26 * 106̂)

After normalizing all the counter reading we can get the total AP Trace time

AP Trace Time= SLEEP TIME + IDLE TIME + ACTIVE TIME

Can we can calculate percentage residency

SLEEP PERC = SLEEP TIME AP TRACE TIME *100

Similarly for IDLE TIME and ACTIVE TIME.

This happens in snapshot mode. While in polling mode same technique is followed

but the difference between two consecutive polled records is considered.

5.1.3 AP Modem Trace Module Integration in SoCWatch

The flow of function call to capture modem c-state data in SoCWatch is as follows.

1. Initially we open modem as a device via a predefined port gsmtty10.

2. If modem is connected we check if the modem model version is compatible or not.

The modem model should be XMM7160.

3. If modem is compatible we will first stop any previous AP Trace command. (This is

to stop any already running AP Trace that was not stopped probably by SoCWatch

only).

4. Now the actual AP Trace either in snapshot mode or trace mode is started.

5. After the run duration AP Stop Trace command is issued.

6. And later on post processing on the received data is done.

NOTE: Steps 1,2,3 are performed during modem feature initialization, while rest are

executed during the actual data collection.

5.1.4 Error Handling for AP Modem Trace Feature

Whenever an error is encountered will communicating to and from modem the feature

capture is stopped and corresponding error is displayed to the user.

45

5.2 RPC Based Implementation

To understand the Modem behavior it’s necessary to monitor various modem specific

metrics. These insights give a better understanding of the functioning of modem and

help in optimizing it’s working.UTA is one such methodology used for monitoring Mo-

dem metrics.

UTA technique gives a unified and efficient mechanism to access various Modem met-

rics. UTA implements is a command line tool which resides on the Application processor

and communicates with the modem to monitor a metric. It registers the metric along

with a call back function with the modem. Modem sends the data which is handled by

the registered callback function.

5.2.1 SoCWatch UTA Architecture

From SoCWatch perspective UTA Handler and the communication between AP &

BP is Black Box. UTA Library provides the interface to access the necessary uta calls for

the uta functionality to work. Similarly the RPC used for the communication between

the Application and Communication processor is managed by the UTA Library (API).

UTA API has two main components as shown in the diagram; The UTA metric

that actually does the metric capturing and the RPC for communication between the

processors.

Figure 5.6: UTA Based SoCWatch Architecture

46

UTA API

The UTA Metric engine is the actual one on the modem side which collects the data

on the modem and sends its back to the AP. The metric data is collected from various

components of the Modem Stack. Reporting of metric is done either periodically or on

event occurrence depending on the metric type. The API’s provided by UTA are for

Registering and De-Registering the Metric. When a Metric is registered, corresponding

call to the modem is made which starts collecting the metric and send it back to the

callback function. The syntax is

UTA REMOTE CALL(UtaRegisterHandler)(g nInstance, &g UMetricId,

HandlerFunction)

The arguments passed to the register function are

1. Instance = 0 (default)

2. UMetricId = consists of the MetricGroupID and MetricID

3. HandlerFunction = callback Function

Similarly the De-register function makes modem stop collecting the Metric. The Syntax is

UTA REMOTE CALL(UtaDeRegisterHandler)(g nInstance, &g UMetricId,

HandlerFunction)

The callback function that extracts the data from the modem response varies feature

wise. Some features require normalization as per the 3GPP standards. The Syntax is

void utaMetricsHandlerFunction(int nInstance, UtaMetricsId * metric id,

UtaMetricsData* metricData)

The arguments are

1. Instance = 0 (default)

2. UMetricID = consists of the MetricGroupID and MetricID

47

3. MetricData = structure containing data collected

5.2.2 RPC API

An Inter-process communication technique; Remote procedure call (RPC) allows a

executable in one address space to trigger execution of computer program in another ad-

dress space (in here Modem). This is achieved by abstracting the coding details from the

programmer. This implies that the programmer essentially write the code in the similar

way he uses for local subroutine execution. Thus from the programmers point of view,

wheather the subroutine is remote or local to the program in execution does not matter.

In the RPC scenario the remote server is always known, while the client initiates

the RPC communication by sending the request message consisting of the procedure to

execute and the parameters accepted by the procedure. Here the Application Processor

is the host client while the Modem is the Remote Server. The channel used is gsmtty21

(DLC21) for the RPC communication.

The host sends a request to the remote including the function it wants to be executed

and its actual parameters. The remote sends a response, including the result after exe-

cution is completed.

RPC stubs generated will be used for data transfer between processors. The tool uses

the header files of drivers to create RPC stubs.

Example:

Consider this API is implemented.

U32 dummy driver api1 (DUMMY DRIVER ENUM T paramA,

Dummy Driver STRUCT1 paramB);

The proxy implementation file stays in the driver module which makes the RPC calls.

The proxy implementation file is written in similar lines:

#include {packer unpacker .h}

U32 dummy driver api1 (DUMMY DRIVER ENUM T paramA, Dummy Driver STRUCT1

paramB); {

RPC RETURN RESULT T rpc result;

U32 RetVal;

RetVal = REMOTE CALL (dummy driver api1)(&rpc result , paramA , paramB);

if(RPC RESULT SUCCESS == rpc result) {

48

return RetVal;

} }

For AP to use the RPC mechanism to connect to CP, a request call has to be made

through RPC. Requests are any call that is required by the client of RPC to reach to the

other side (CP side)

To call an RPC API, append the actual API with a macro: UTA REMOTE CALL

Example:

Actual Call needed on the AP side:

return val = UtaMsCallCsJoinCallsReq(nInstance, context id);

RPC Call to be done on the AP side:

return val = UTA REMOTE CALL (UtaMsCallCsJoinCallsReq)(nInstance, context id);

5.2.3 UTA Library

UTA library acts as an interface between the SoCWatch tool and the UTA RPC API’s.

It gives a unified and efficient mechanism to access various Modem metrics. UTA Metric

Engine on the modem side collects the data which is passed to UTA Handler on the

Application processor. The communication between the processor is done via RPC IPC

mechanism.

CPM Library is used by SoCWatch to Register and De-register the UTA Metrics and

initialize the RPC for the communication using the underlying IPC technique (Inter-

Process Communication).

The SoCWatch uses interface for UTA metric Registration and De Registration, and

similarly RPC API for initializing the communication channel. All the interfaces to these

API are wrapped in the Library.

5.2.4 Implemented Modem Metrics

SoCWatch has considered the metrics which are important from power and perfor-

mance perspective. The metrics collected are related to components and activities which

are power hungry. This will help in understanding the modem power consumption model

49

Figure 5.7: Data Transferring internally in RPC levels

Figure 5.8: SoCWatch view of CPM Mechanism

in greater depth.

The metrics that are currently implemented by the SoCWatch are

50

Figure 5.9: Components of UTA & RPC Based Implementation For SoCWatch

Name Group Description Collection
RF Info CIQ0 L1 (Radio) Layer Cell related Info Periodic
LTE RRC States CIQ0 LTE RRC State and cause of change Event
UMTS RRC States CIQ0 UMTS RRC State Event
PUSCH Tx power ELT2 Physical Uplink shared channel tx

power for frequency hopping
Periodic

Radio Mode CIQ0 Get the type of network/service Event
Service State CIQ0 Get Radio & Network Service states Event
Physical Cell ID ELT2 Get the physical cell ID of the serving

cell
Period

RSRP in LTE ELT2 The average RSRP (Reference Signal
Received Power) of the LTE serving cell

Periodic

Cellular Power
Statistics

CPM3 Get Modem Power States Resi-
dencies

Periodic

LTE RLC Data
Transfer

CIQ0 E-UTRA RLC Data Transfer Report
Upload / Download

Periodic

Table 5.1: SoCWatch Implemented Features

Metric Fields Type Explanation
Sleep Time unsigned int Time BB spent in SLEEP State
Sleep OverRun unsigned int Count Sleep Time Overflows
Idle Time unsigned int Time BB spent in IDLE State
Idle OverRun unsigned int Count Idle Time Overflows
Active Time unsigned int Time BB spent in Active State
Active OverRun unsigned int Count Active Time Overflows

Table 5.2: Cellular Power Metric Fields

51

Chapter 6

Result

The PnP Analysis tool has been tested for Modem metrics collection using Network

Simulators CMW500 and Agilent PXT against 2G/GMS 3G and LTE/4G networks.

These devices simulate real world working live mobile network environments.

At the same time the feature has been tested on live mobile networks. The results

are approximately the same.

6.1 AT Interface Based Results

Following are the use-cases for which the features are tested.

Sr. Use-Case Expected Output Actual Output Result
1 2G Idle (no mo-

dem activity)
High Sleep Time Res-
idency

High Sleep Time
Residency

Pass

2 2G call High Idle Time Resi-
dency

High Idle Time
Residency

Pass

3 3G Idle (no mo-
dem activity)

High Sleep Time Res-
idency

High Sleep Time
Residency

Pass

4 3G call High Sleep Time Res-
idency

High Sleep Time
Residency

Pass

5 Online video
streaming

High Idle Time Resi-
dency

High Idle Time
Residency

Pass

6 3G data Idle
mode

High Sleep Time Res-
idency

High Sleep Time
Residency

Pass

Table 6.1: Modem testing UseCase for AT based Implementation

52

Figure 6.1: Modem Activity with 3G Idle Mode (No Data)

Figure 6.2: Modem Activity during a 3G Voice Call

53

Figure 6.3: Modem Activity during 3G data Idle Mode

6.2 RPC Interface Based Results

54

Figure 6.4: Modem Feature Collection using RPC mechanism

55

Name Network Use Case Scenario Expected Output Actual Output Result
RF Info 3G network Activity

Call/ Idle
data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

LTE
RRC
States

4G Switch to and
from Airplane/
Standby/Active

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

UMTS
RRC
States

2G/3G/4GSwitch to and
from Airplane/
Standby/Active

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

PUSCH
Tx
power

4G network Activity
Call/ Idle

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

Radio
Mode

3G Switch to and
from Airplane/
Standby/Active

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

Service
State

3G Switch to and
from Airplane/
Standby/Active

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

Physical
Cell ID

4G network Activity
Call/ Idle

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

RSRP
in LTE

4G network Activity
Call/ Idle

data must be allied
with simulator

data must be
aligned with simu-
lator

Pass

LTE
RLC
Data
Transfer

4G network Activity
Call/ Idle

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

Modem
C-State

2G/3G/4Gnetwork Activity
Call/Idle

data must be
aligned with simu-
lator

data must be
aligned with simu-
lator

Pass

Table 6.2: Modem testing UseCase for RPC based Implementation

56

Chapter 7

Conclusion

Tools are an important part for analysis of any software, including the operating sys-

tems. We have multiple tools which can achieve us brilliance in only one field of analysis.

However, optimization and analysis involves many parameters which mean using multiple

tools to achieve our goal. Multiple tools can cause inconvenience of time and man power

to get it working. Hence the need is to integrate tools and create an automated setup for

a more accurate idea to aid analysis.

In this project, we successfully integrated a module which could accurately measure

modem power statistics.

The POC of RPC based modem metrics collection has proved that the legacy AT

interface for modem communication is far behind when in to high Performance and low

Power consumption. The work has given strong numbers for the Intel Android RIL team

to argue with the current AT based modem interface.

To conclude, having a tool with the above features gives us an edge over our com-

petitors who design and manufacture their own APs but have limited visibility in the

baseband as they procure it from third party vendors. We hope that the proposed tool

would be able to give a deeper insight into the platform architecture through simulta-

neous PnP monitoring of AP and CP via simple enhancement of AT commands. This

would enable us to create product differentiation. Also, an efficient PnP data generation

would enable productive communication and problem resolution between various teams

at Intel, thus helping in faster time-to-market.

57

Bibliography

[1] Intel 64 and IA-32 Architectures Software Developer’s Manual

[2] RPC-RIL Functional Specification (Intel Internal Document)

[3] AT Command Manual.

[4] AP Power Trace Functinality Specification (Intel Internal Document)

[5] XMM7160 Intel Intenal Documents (Intel Internal Document)

[6] 3GPP Technical Specification

[7] AT Commands For GSM & GPRS Wireless Modems

[8] Implementing Remote Procedure Calls by Andrew D. Birrell & Bruce Jay Nelson

[9] SoCWatch for Android* 1.4

[10] SoCWatch High Level Design Document (Intel Internal Document)

[11] Intel HAS SOC Documents (Internet Internal Documents)

[12] Android Developers Manual

[13] National Instrument M Series User Manual

[14] Mobile Device Power Monitor Manual By Monsoon

[15] ACPI Specification

58

	Certificate
	Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Motivation
	Scope of the Work
	Organization of Project Report

	Intel Mobile Platform Architecture
	UMG Platforms
	Power measurements of UMG Platforms
	Performance Measurements of UMG Platforms

	ACPI Standards
	Principal Goals
	ACPI States

	Power Measument tools
	Monsoon Power Monitor
	National Instruments Data Acquisition System (NI DAQ)

	Literature Survey
	Modem Fundamentals
	XMM7160 Modem

	Power Control Trace Driver
	AT Command Interface
	RPC Interface
	RPC based RIL

	PnP Analysis Tool: SocWatch
	SoCWatch Architecture
	SocWatch Application Part
	SocWatch Driver Part

	SoCWatch Operation Mode's
	Snapshot Mode
	Polling Mode
	Tracing Mode

	Feature Framework

	Implementation
	AT Interface Based Implementation
	AP Power Trace Modes
	AP Trace Decode By SoCWatch
	AP Modem Trace Module Integration in SoCWatch
	Error Handling for AP Modem Trace Feature

	RPC Based Implementation
	SoCWatch UTA Architecture
	RPC API
	UTA Library
	Implemented Modem Metrics

	Result
	AT Interface Based Results
	RPC Interface Based Results

	Conclusion

