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Abstract

The continuous increase in population has exponentially increased the biological datasets

to be processed. Hence computations to process these datasets have also increased

tremendously. An expedited solution for analysis of this data is required to enable quick

decision making for various researches and medical treatments. This raise demand for

HPC based solutions of bioinformatics operations for quick processing. Major focus of

optimization is on the operations of DNA assembly and alignment. Many companies

like Xcelris Genomics working in the field of bioinformatics and life sciences have identi-

fied the need for optimized solution for DNA assembly and alignment as time and space

complexity of existing approaches delay research and analysis based on these datasets.

This dissertation work focus on optimization of well known DNA sequence assembly tool

Velvet using hybrid computing of HPC technologies.
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Chapter 1

Introduction

1.1 General

Computational methods for processing biological data has seen a tremendous develop-

ment in the last few decades. A quick analysis of the biological data is required to

provide solutions for researches and treatments in less time. For this we need time ef-

ficient bioinformatics operations. Bioinformatics is the use of computational methods

aiming at processing and analysing biological data to provide solutions for decoding the

information embedded in it. Major focus of bioinformatics is on the enhancement of

operations of DNA assembly and alignment. Persistent research is going on to develop

advance techniques which can provide time efficient solutions for these operations. The

optimization approaches adopted for this purpose include:

• Algorithmic approach: Developing algorithms based on data ordering, data struc-

tures and techniques that can provide expedited solutions.

• HPC approach: Using parallel techniques like multicore and manycore for concur-

rently processing data.

Much work has been done to parallelize the existing algorithms. Many assembly and

alignment techniques are now being implemented on parallel systems. Thus this research

is motivated by need in the bioinformatics community for sequence assemblers and align-

ers and increasing use of HPC for research.
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1.2 Objective

The objective of this research is to optimize the bioinformatics operation of DNA assembly

which is merging of short fragments of DNA to reconstruct the original complete sequence

by parallelization on GPU. This project aims at optimizing the velvet assembler code by

implementation on GPU.

1.3 Motivation

This work is motivated by a number of factors, most important of which is providing a

real time, accelerated solution of DNA assembly. Another motivating factor is the in-

creasing trend of multi-core computing in bioinformatics. It is expected to have solutions

that can fully exploit the potential of the emerging paradigm of parallel computing in

bioinformatics and revolutionize this research area.

1.4 Scope

This research will provide solutions for identifying, decoding and analyzing genes for

species discovery and also will help in developing healthcare solutions by disease diagnosis

(like TB, cancer etc by finding mutations/deviations in dna sequence from an infected

dna).

1.5 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 Background of the Project, describes various operations and applications

of Bioinformatics. Also gives some background information for High Performance

Computing and Graphic Processing Unit.

Chapter 3 Literature Survey, compares various techniques of DNA Assembly and sig-

nificance of HPC in assembly.

Chapter 4 System architecture of Velvet Assembler, gives the workflow for velvet as-

sembler.

Chapter 5 Research Gaps and Optimization Scope in Velvet, finds hotspots based on

profiling done on velvet and discovers research gaps and optimization scope.

2



Chapter 6 Proposed Work, proposes solutions for research gaps optimization scopes

identified .

Chapter 7 Experiment Setup and Results Analysis, gives the implementation results,

speedups of parallel execution.

Finally, Chapter 8 Conclusion and Future Scope, gives concluding remarks and scope

for future work.
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Chapter 2

Background for Project

2.1 Bioinformatics

Bioinformatics is an interdisciplinary field of study which aims at retrieving, improving

and analyzing the biological data like DNA. Its major focus is on the development of

software solutions for producing useful biological information. Bioinformatics uses ar-

eas of computer science, mathematics and engineering to process and analyze biological

data. Bioinformatics is highly popular in decoding DNA sequences. Various bioinfor-

matics operations that are commonly performed on DNA are sequencing, assembly, and

alignment. Bioinformatics finds various applications in developing cures for diseases,

identifying species etc.

Figure 2.1: DNA structure

DNA is the basic structural block of life forms which is responsible for introducing

diversity in organisms. DNA strand consist of four bases adenine, guanine, cytosine, and

thymine which gives specific characteristic to each individual. Determining the order

of these bases is performed through DNA sequencing. Several sequencing technologies
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exist but they are limited and can process only short sequences. Sequencing the DNA

involves randomly fragmenting long strands of DNA into small pieces and sequencing

these fragments. Because of random breaking, most of them overlap and give information

needed to combine them back together. The process of recreating the original DNA

sequence from fragment reads is DNA assembly. Assembly is a computation intensive

process and can take days depending on the size of DNA being processed.

2.2 Bioinformatics Operations

The three operations of Bioinformatics are interrelated. All these operations are impor-

tant steps in computational biology and are a core component in decoding biological

information.

2.2.1 DNA Sequencing

DNA sequencing is the process of finding the exact order of nucleotides/bases within

DNA. The development of sequencing methods has accelerated research of medicine and

biology. In 1975 Frederick Sanger developed the basic sequencing method that is still

widely used today [2]. Currently, several different sequencing techniques exist: first gen-

eration techniques based on Sanger method, and next generation sequencing techniques

(NGS). Next generation techniques provides high throughput at low cost.

Fundamental steps of Sequencing involve making many copies of the base DNA se-

quence of a single strand of DNA. Steps of Sequencing are as follows:[2]

• DNA is extracted from sample and divided into single strands.

• Then broken down into small fragments known as reads. (Shotgun Sequencing)

• The DNA fragments are mixed with four nucleotides to construct matching strands.

• ddntps: nucleotides lacking a 3’ hydroxyl which are fluorescent are added.

• Many matching strands are thus constructed and construction stops when a ddntp

is added to sequence.

• The mixture is then separated using electrophoresis which produces sequence of

colored bands.
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• The sequence of these bands determines sequence of the strand which can be con-

verted to sequence of nucleotides in the original DNA using the matching rule

(adenine pairs with thymine and cytosine with guanine).

• DNA sequencing results may be viewed on a computer screen as a set of colored

peaks.

• The sequenced reads are then send to assembler which merges those reads using

their overlapping information to get the sequence of complete DNA.

Applications of DNA Sequencing

• Forensics: To identify criminals, paternity of a child, endagered and protected

species.

• Medicine: To detect genes associated with heredity or acquired diseases.

• Agriculture: To prepare hybrid varieties of crops and improve dairy production.

2.2.2 DNA Assembly

Sequencing technologies do not produce complete DNA, instead generate small sub-

sequences of the whole DNA known as reads which can occur multiple times. The average

number of times a nucleotide occurs across reads is called the coverage. Combining the

fragments back into a single sequence of nucleotides by using information common be-

tween them is called DNA assembly, while the program that perform this process are

called DNA assembler.

DNA assembly can be divided into two groups:

• De novo - Assembly of sequence reads into longer adjacent sequences, contigs, fol-

lowed by the ordering contigs when reference DNA is not present.

• Mapping/reference - When available, reference DNA can be used to align the reads

of a newly obtained DNA, which helps in determining accuracy of assembly.

This review work will be focusing mainly on de-novo assembly as Comparative ap-

proaches can be applied to the DNA for which reference sequence is available. After

the de novo assembly, connected reads (contigs) are generated which are extended to

get super-contigs or scaffolds using mate pair information and are placed in order to get

6



Figure 2.2: Assembling the reads

the assembled genome [3]. Sequencing of a DNA can be done by two ways: single end

sequencing where only one strand is sequenced and the other is paired end sequencing

where both strands are sequenced from their 5 prime ends [4]. Mate pair sequencing

provides more information for recreation as it gives the distance between two reads.

Applications of DNA Assembly

• Aims to advance medicine and global health.

• Contribute directly to a scientific research to discover new species.

• Find similarities between two species.

2.2.3 DNA Alignment

It is the arrangement of DNA or protein sequences, to identify similar regions. It is used

to infer relationship between the sequences. Even in de novo assembly, we may need

sequence to be aligned back to the assembly to check the assembly accuracy. Methods of

Sequence Alignment: There are mainly two methods of Sequence Alignment:

Alignment is commonly divided into two groups:[5]

• Global Alignment: Sequences which are of same length and similar are suitable

for global alignment. Here, the alignment is carried out from beginning till end of

the sequence to find out the best possible alignment.

7



• Local Alignment: Sequences having a possibility of similarity or even dissimi-

lar sequences can be compared with local alignment. It finds regions with high

similarity.

Techniques of Alignment

• Dot Matrix: Match in base is represented as dot. Very much similar sequences

are represented as prominent diagonal. Good for detecting repeats but makes no

distinction between mismatch and gaps.[6]

• Dynamic programming: Generates optimal/best alignment by giving scores to

match/mismatch and gaps. Similar to longest common subsequence problem which

finds area of similarities. Time and memory consuming but give accurate results.[6]

• Word or k-tuple method:In this case, the algorithm compares small sections,

with some minimum word length, which are used to begin the alignment instead of

comparing single letters. Eg. BLAST and FASTA.[7][6]

Applications of DNA Alignment

• Finds functional similarities between two species.

• Resolve paternity issues.

• Crime Scene Investigation.

8



2.2.4 Bioinformatics Operations Workflow

Figure 2.3: Bioinformatics Operations Workflow

2.3 High Performance Computing

High Performance Computing refers to exploiting computational power such that it de-

livers high performance than one could get from single computer to solve large problems

in science and other research. Commonly available options of HPC are clusters, grids,

GPU, clouds. There is lot of research going on in the field of many-core computing which

utilizes the computation power of GPU. GPU computing is using GPU together with

CPU to speedup general-purpose applications.

2.3.1 GPU Architecture

GPU is a compute device which is a co-processor to the CPU, has its own RAM, and

runs multiple threads in parallel. Parallel portions of application are executed on GPU

as kernels which run in parallel on many threads. Difference between GPU and CPU

threads are: [1]

• GPU threads are extremely lightweight and require little creation overhead.

• GPU needs 1000s of threads for full efficiency where as multicore cpu needs only a

few.

Kernel is executed in a grid of thread blocks which is a group of threads that can execute

with each other by sharing data. There is a limit to the number of threads per block, since
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all threads of a block reside on the same processor core and share the limited memory

resources. The number of blocks in a grid is decided by the size of data being processed

or number of processors in the system. Thread block can be executed in any order, in

parallel or in series. This requirement allows thread blocks to be run in any order across

any number of cores, enabling to write codes that scales with the number of cores. [1]

Figure 2.4: GPU Architecture[1]

CUDA Memory Model Each CUDA thread has private local memory. Each thread

block has shared memory which is visible to all threads of the block. There are also two

additional read-only memory spaces accessible by all threads: the constant and texture

memory. All threads have access to the global memory. The global, constant, and texture

memory spaces are optimized for different memory usages.

Hardware Implementation[1]

• Each thread block of grid is divided into warps which is the number of threads that

can execute parallel and get executed by one multiprocessor.

• Each thread block is executed by one multiprocessor.

A multiprocessor can execute several blocks concurrently. Shared memory and registers

are allocated among the threads of all concurrent blocks. So, decreasing shared memory

usage and register usage increases number of blocks that can run concurrently.
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Table 2.1: GPU Memory Components
Memory Location Accessible by Lifetime
Registers On chip Thread Thread
Local Off chip Thread Thread
Shared On chip Block Block
Global Off chip threads + host Host Allocation
Constant Off chip threads + host Host Allocation
Texture Off chip threads + host Host Allocation

Shared memory is an on chip memory and is very fast. It is limited in size whereas

global memory is large but slow. GPU offers high performance by transferring compu-

tation intensive tasks of the application to the GPU, while the serial code runs on the

CPU. Pros and cons of GPU are given below:

Table 2.2: Pros and Cons of GPU
Pros Cons
Higher Computation power :
more ALU, more core Processor

Not suited to complex processing
on single or few streams of data

Highly Parallel: many transistors Not direct interface to I/O
Higher Bandwidth Small cache so less data reusabil-

ity
Lightweight threads

HPC in Bioinformatics can prove to be very useful in processing the large volume

of data generated in relatively less time. When done sequentially, DNA assembly takes

many days. Even on cpu clusters a human dna assembly will take around 4-5 days. This

time can be reduced if the processing can be transferred on GPU which has multiple fast

processing cores which can do the processing parallely and will reduce time significantly.

GPU is a better choice as it has lightweight threads which reduces time taken in thread

switching.
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Also GPU can be combined with clusters to resolve the problem of thread divergence

to make use of all resources optimally.

Table 2.3: GPU vs CPU
Clusters Grid GPU

Application Dedicated,Computate
intensive

Compute intensive,
Provides range of
services

Compute intensive
operations

Suitable Class MIMD MIMD SIMD
Processing heavyweight heavyweight Lightweight

Threads
Security Require-
ment

Low High Low

Speed (latency,
bandwidth)

Low, high High, Low Low, high

Programming MPI MPI CUDA
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Chapter 3

Literature Survey

3.1 DNA Sequencing and Assembly

Sequencing technologies have improved considerably since the first DNA was read [2].

They are used to determine the DNA sequence of a new species or an individual. Despite

success in determining the human[9] , and several other genomes, most species have not

been sequenced yet. An important stage in DNA sequencing is the assembly of shotgun

reads, i.e. putting together fragments randomly extracted from the sample to form a set

of contiguous sequences or contigs. Algorithms were developed for whole genome shot-

gun (WGS) fragment assembly and have proved their utility through numerous genome

assemblies.

Traditional Approach vs Next Generation Sequencing

The traditional method of sequencing, shotgun sequencing[9], is sequencing random frag-

ments of the sample, then assembling them together. This works well on short and

un-repetitive sequences, but is more difficult in long, repeat-rich DNA. Solution to it are:

• Hierarchical shotgun sequencing (The International Human Genome Sequenc-

ing Consortium, 2001). In this the DNA is biochemically subdivided into random

regions which are mapped on DNA. The prefix and suffix are then compared to

determine overlaps and construct contigs. These are then mapped onto the DNA.

These clones are then sequenced separately.

• Whole genome shotgun (WGS) sequencing[9] determines the complete DNA

sequence of an organism’s DNA at a single time without using any intermediate
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maps. This approach makes the assembly much more complex, as all the reads

have to be processed together. It requires thoroughly accurate algorithm to avoid

misassembles.

Recently new sequencing methods have emerged commonly known as next generation se-

quencing. Those available are pyrosequencing (454 Sequencing) , sequencing by synthesis

(Illumina) and sequencing by ligation (SOLiD) [10]. Compared to traditional Sanger

sequencing, these ngs technologies have lower costs and high throughput but reads pro-

duced by these technologies are much shorter than traditional Sanger reads. Because of

their length, they must be produced in large quantities and at greater coverage depths.

Whereas long reads provide long overlaps, to disambiguate repeats from real overlaps,

short reads within repeats offer fewer differences to judge from. These issues have led to

design of de novo assembly tools specifically for these short reads.[11]

3.1.1 De-novo DNA Assembly

Traditional methods vs. De Bruijn graph based approaches

Many algorithms have been proposed for solving problem of DNA assembly. The first tra-

ditional approach to assembly was Greedy Method including greedy string-based methods

which was similar to finding longest common subsequence. In this reads are first checked

for overlaps and overlaps are given a score and those with highest scores are merged. This

was discontinued as it did not took into account the repeat structures within reads and

produced mis-assemblies.

This traditional approach was replaced by the overlap layout consensus graph. In

this the reads are marked as nodes in graph and there is an edge between two nodes

if they have overlapping regions. A Hamiltonian path is then found to give a complete

DNA sequence. This was used until recently but had been replaced by de-bruijn graphs

as it became computationally complex as the number of reads grew resulting in drastic

increase in number of nodes in graph.

In 1995, [12] introduced the use of a sequence graph to represent an assembly which

could detect all the k nucleotide words, known as k-mers, present in a given genome. A

node is created for every k-mer, then connect the nodes corresponding if the k-mers are

overlapping. They could then report chains of overlapping k-mers which unambiguously

produced contigs, because of an absence of branching connections. Pevzner et al. [13]
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expanded on this idea. This approach was first presented in 2001 in which reads are

broken down first into subsequences of fixed size k-mers. Next, the assembler builds

a directed deBruijn graph in which each edge corresponds to a k-mer from one of the

original sequence reads. The source and destination nodes correspond respectively to

the k − 1 prefix and k − 1 suffix of the corresponding k-mer. Then a Eulerian tour is

performed to give a continuous sequence. The de Bruijn approach was made popular by

the Euler [14] assembler and is the main core for the design of modern assemblers targeted

at short-read sequencing data, such as Velvet [15],Abyss[16] and ALLPATHS[17]. The

chart gives a comparison of the three approaches to assembly.

Table 3.1: De-novo Assembly Algorithms Comparison
Approach Description Assembler Pros Cons
Greedy[18] Iterative Reads

with largest
overlaps merged

Cap3, Ssake
Sharcgs, Vcake

Computationally
easy

Produce several
mis-assemblies
due to repeat

Overlap-
Layout-
Consensus
[18]

Graph nodes
reads, edges over-
lap. Determine
Hamiltonian path

Celera ,Arachne, Suitable for low
coverage, long
reads

Not suitable
for long DNA
sequences

De-Bruijn
Grpah [13]

Reads broken into
k-mers Debruijn
graph, Vertices
as k-mers, edge
between vertices
if from same read
and have overlap-
ping subsequence
of length (k-1) in
between. Then
finds eulerian
tour.

Velvet , Allpaths,
Abyss

Suitable for
high coverage,
short reads,
Fast, Sensitive to
sequencing errors

Not read coher-
ent, memory in-
tensive

Measures of assembly accuracy [19] Some of the most important parameters to

measure assembly are:

• N50: Contig length such that 50 percent DNA lies in block of this size or larger,

gives the measure of DNA covered by large contigs. Larger contigs mean efficient

assembly.

• DNA coverage: Percent of bases in reference covered by assembled contigs

• Maximum Contig size: Largest contig created
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Challenges in Assembly

All these results in error in the sequencing mechanism:

a. Repeats: multiple near-identical copies throughout the genome

b. Incomplete Coverage: Some of the bases might not be covered while sequencing which

result in problems in assembly due to incomplete information.

c. Insertion/Deletion of bases: Some bases might get deleted while there might be inser-

tion of new bases due to contamination

3.1.2 Significance of HPC in DNA Assembly

Hpc provides low cost, time effective solutions for sequence assembly by distributing

work to be done parallel. One of the efficient implementation in assembly using GPU

is kmer generation in parallel. The reads generated are divided across threads which

create a distributed spectrum of kmers. These k-mers are then are stored in hash tables.

From this de-bruijn graph is constructed, unambiguous k-mers are merged followed by

an Euler tour to give consensus sequence. Error correction is generally implemented as

an integrated step.

Figure 3.1: Denovo Assembly using HPC

Some assemblers using HPC solutions for DNA assembly are Velvet (openmp), Abyss

(mpi) , SoapDenovo (openmp), Pasha. Among these velvet is the most liked assembler

as it gives more accurate assemblies for both long and short reads. The following table

gives a comparison for the parallel assemblers with de-bruijn graph approach. GPU
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Table 3.2: Parallel Assemblers
Assembler Parallel Approach K-mer Hashing
PASHA [20] multicore+MPI Google Sparse Hash library
ABYSS [16] MPI Google Sparse Hash library
RAY [21] MPI Splay tree
PASQUAL [22] multicore Bloom Filter
VELVET [15] multicore Splay tree

computational methods has been applied in other procedures like in error correction and

speeded up of these processes many times. Great optimization is expected in assembly

using HPC tools

3.2 Kmer Hashing

To achieve high performance on GPUs, besides increasing parallelization we need data

structures which enable fast insertions and retrievals. These should not be such that

access to them deteriorates GPUs performance. Many data structures have been tested

on GPU like trees, queues, linked list, hash tables, etc. Finding most efficient and paral-

lelizable data structure suited to different algorithm and dataset is an important research

challenge. For the process of DNA assembly, preliminary step involves counting k-mers

to find unique and repeated k-mers. Counting of k-mers require a large data structure

whose size will be proportional to the number of k-mers occurring in DNA read file

which can result in memory overflows. Thus we need data structures that can fit into

predefined disk space. For finding path from one k-mer to other for contig creation, a

mapping of repeated k-mer to its first occurrence is required. Majority of assemblers

use hash tables for counting k-mers as they provide quick random access to sparse data.

Velvet uses Splaytable [15] as hash table for computing overlapping regions between two

sequences. Within each node of Splaytable is a splaytree structure for handling collisions.

This method is not suitable for implementation on GPUs as it has multiple entries at

same node and thus access to one entry will require to go through all nodes leading to

sequential flow. Therefore a hash implementation suitable for GPU is required.

A hash function should be such that it generates minimum collision. However if collision

occurs, there should be provision for handling these colliding values and storing them

in the hash table. Methods like open addressing and chaining are available for collision

resolution however these are suited only for serial applications. In parallel environments
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these leads to one thread waiting for another thread which results in serialization. Also

the data access should be coalesced such that threads in a warp access nearby data so

that there are minimum cache misses, but hash tables exhibit little locality of reference.

3.2.1 Work done for parallelization of Hashing

[23] have suggested a collision free hash mechanism known as perfect hashing which

creates almost n2 slots where n is the number of data elements to be hashed. Cuckoo

Hashing by [24] makes use of multiple hash tables for insertion. If hash table location at

one index found by hash function one is not empty it is hashed to another hash table. If

all hash location at index are full than the element to be inserted evicts previous key from

one of the sub table and inserts itself. The evicted element then becomes the current key

and attempts to insert it are then done. The parallel version inserts data simultaneously

iterating through sub tables simultaneously. Coherent parallel hashing by [25] exploits

coherence in the data for faster performance. It exhibits much greater locality of memory

accesses and consistent execution paths within groups of threads. GPU-based Locality

Sensitive Hashing for K-Nearest Neighbor [26] uses the Bi-level LSH algorithm, which

computes k-nearest neighbors. Bloom filters offers low memory consumption technique

for hashing [27]. In this two hash functions are calculated and the positions given by

them are set to 1. To query an element the bits at two hash positions are checked and

an element is present if all bits are 1 else it is not present. However this method can

result in false positive results. Most popular hashing algorithm is suggested by Alacantra

et. al. in Real-Time Parallel Hashing [28] on the GPU which makes use of both perfect

hashing and cuckoo hashing which resolves the problem of both collision and fast build

up time. The following chart gives a summarized comparison of various parallel hashing

mechanisms.

Hash table construction for counting k-mers is a tedious process and buildup time is

proportional to number of unique k-mers. These reads can easily reach millions in number

resulting in memory overflows on GPUs. Thus we need a hash table implementation which

gives fast insertion while working in predefined memory space. There is no coherence

between the k-mers i.e they are not dependent on their locations within read. Therefore

Coherent hashing and Fast GPU based LSH are not suitable for hashing reads. Perfect

hashing allocates n2 space which will result in memory leaks as GPU has very limited
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memory. We cannot use Bloom filters because it only stores bits for presence but for

storing k-mers we need information like readid, position. Most suitable approach here is

to use Real time parallel hashing modified to suit our data as it is suitable for dynamic

data. The table gives summary of Parallel Hashing Techniques
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Paper Technique Advantage Bottlenecks

Real-Time
Parallel
Hashing
on the
GPU [28]

• Involves both perfect hashing and
cuckoo hashing.

• Partition data in buckets of 512 ele-
ments and within each bucket parallel
cuckoo hash places items into subta-
bles.

Cuckoo hashing
performed en-
tirely on on-chip
memory thus
very fast. Max-
imum probes
required is 3,
one for each sub
table.

Rebuilding of ta-
bles in case of in-
sertion failure is
time consuming.

Perfect
Spatial
Hashing
[23]

• Create a hash table of approximately
size n2 so that all items can be accom-
modated.

Each element
can be accessed
in O(1) time

Size of data
should be pre-
viously known.
Too much space
consuming.

Coherent
Parallel
Hashing
[25]

• To insert key iterate until empty lo-
cation is found. Number of steps for
successful insertion is age of key. In-
serts,difficult to insert keys by replac-
ing keys with greater age by key with
less age.

• Preserves coherence by making sure
neighboring values test neighboring lo-
cations.

Low failure rate
at high load and
provides fast
queries

In absence
of coherence
among data this
does not give
good perfor-
mance.Extra
memory re-
quired for
storing key ages.

Fast GPU-
based LSH
for KNN
Compu-
tation
[26]

• First partition data into groups so that
similar are clustered together.

• Then compute the Bi-Level LSH code
for each item and construct hash table
using parallel cuckoo hashing.

Uses radix sort-
ing, which can
benefit the high-
speed shared
memory and can
be implemented
efficiently on
GPUs.

With increase
in number of
queries, the
speedup de-
grades.

Parallel
Bloom
filters [27]

• First processes elements by allotting
them to bucket which is less filled.
Then computes 2 hash functions and
store the elements based on the bucket
it is in. Then transferred to GPU mem-
ory.

• Key and hash values are calculated and
those locations are set. After computa-
tion is done data is moved back from
GPU to host. The bits positios are
XORed to get presence or absence of
keys.

GPU and CPU
is independent
of the key size.
As only two un-
signed integers
are involved in
computations
for all key sizes.

It Supports in-
sertion or query
but not both
simultaneously.
Also the pre-
processing step
is very time
consuming.

20



Chapter 4

System Architecture of Velvet

Assembler

DNA assembly is a highly computation intensive task which can take up to 4-5 days

when done on serial assemblers. To decrease the time of the assembly procedure, mul-

tithreading is implemented in a few assemblers. Much work has been done to develop

parallel sequence assemblers and parallelize existing serial assemblers. Many existing tool

like Velvet supports multithreading through openmp. However there is still a scope of

optimization using GPU which is many core and can parallelize the task over thousands

of threads. This project work focuses on gaining speedups in velvet using GPU.

4.1 Working of Velvet

Velvet Assembler works in two parts:[15]

• Velveth: Maps k-mers onto hash tables

• Velvetg: create debruijn graph from k-mers and applies error correction

The flowchart gives the Velvet workflow

4.1.1 Velveth Working

Velveth reads k-mers from the DNA reads and hash them to create Roadmaps which in

later stage helps in finding path from one read to other. It produces two files Sequences

and Roadmaps which functions as input to Velvetg. A typical roadmap construction by

velvet consists of following steps:
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Figure 4.1: Velvet Workflow

Procedure:

1. Velveth scans the reads and store them into Sequences files. This is to store the

reads in a format recognizable by velvet assembler. This can include putting paired

data from different libraries into a single file.

Figure 4.2: Reads to Sequence Conversion

2. String reads can consume too much space therefore they are compressed into a

structure TightString. The four nucleotides are represented using two bits each with

different combination (A=00, C=01, G=10, T=11). Advantage : Less memory -

40 length read requires 10 bytes instead of 40 bytes and makes Computation faster

- Makes hashing efficient.

3. TightString are then divided into overlapping subsequences called k-mers. The kmer
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Figure 4.3: TightString creation

size should be optimal, i.e. if k is too small it will produce many misassembles as

it is increasing connectivity and a large k will decrease connectivity thus create

difficulty in finding path through reads.

Figure 4.4: k-mers for of k=4

4. The next step is creation of hash-table and checking for the presence of a k-mer in

this hash-table. A k-mer value which is referenced for the first time is inserted to the

hash table. If already present, it stores a reference of that entry in the Roadmaps

file. The hash table and Roadmaps are used by velvetg to assemble the complete

DNA.

Figure 4.5: Roadmaps creation

4.1.2 Velvetg Working

1. De-Bruijn Graph Construction: Make a vertex for each unique K-mer and a directed

edge between two vertices if they overlap by k-1 nucleotides
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Figure 4.6: De-Bruijn Graph Construction

2. Graph Condensation

• Node created if there is distinct interruption points.

• Each node attached to twin node

• Reverse series of reverse complement k-mers

• Overlap between reads from opposite strand

3. Simplify chains of blocks

• Merge if unambiguous path between two nodes

• Remove errors

• Reads are traced through the graph

Figure 4.7: Graph Simplification

24



Chapter 5

Research Gaps and Optimization

Scope in Velvet

5.1 Hotspot Identification

Using various profiling tools on velveth we have identified which modules are time con-

suming, compute intensive and amenable to parallelization. The following chart gives the

time taken by different routines of velveth.

Figure 5.1: Velveth Profile
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Table 5.1: Velveth Profiling
Module Input/Output Intensive Computation Intensive

findOrInsertOccurenceInSplayTree no yes
newTightStringArrayFromStringArray no yes

velvetifySequence yes no
printAnnotations yes no

getNucleotide yes no
pushNucleotide yes no
compareKmers no yes

5.2 Research gaps and Optimization scope

Research Gap 1: We can see from the profile that function findOrInsertOccurenceIn-

SplayTree (k-mer hashing) is taking most of the time followed by newTightStringAr-

rayFromStringArray(for tightstring construction). Creating tightstring is one of the first

steps in velveth and only a single call to it is taking 10% of execution time. No paral-

lelization is provided for newTightStringArrayFromStringArray module.

Research Gap 2: There is redundant processing in conversion of reads file to Se-

quence file if the reads are single ended reads. For mate pairs having read across multiple

files, the Sequence file generated is the collection of ordered pairs. But for single ended

reads, the Sequence file is just the rewriting of read file.

Optimization Scope: Function findOrInsertOccurenceInSplayTree for hashing k-

mers to create Roadmaps is the most time consuming process in velveth. It is availaible

with openmp parallelization but can be further optimized using GPU having many-cores.

26



Chapter 6

Proposed Work

6.1 Stage 1: Parallelization Using GPU

6.1.1 Heuristics for Hybrid Computing

Parallelizing a sequential code requires analysis of multiple techniques to find which tech-

nique is the most optimal choice for parallelization. If the transfer time on GPU alone is

greater than the time with multi-threading on CPU then even with low execution time

on GPU, GPU is not a suitable choice of HPC tool. Also if the work is Input-Output

Intensive, it is not suitable for GPU.

6.1.2 Optimized Parallelization of TightString Construction

Based on the research gaps and optimization scopes identified in the previous chapter

we see that TightString construction is highly computational task performing similar in-

struction execution on data thus making it a good candidate for GPU optimization.

Observation All reads are of similar length, so we allocate memory equal to maxi-

mum read length.

Approaches based on Assumption This research focuses on experimenting with

different approaches for data distribution and reordering to get maximum efficiency for

TightString construction.[29]
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Approach 1: Simple Distribution [29] In this approach a single thread processes

a complete read. In sequential we can consider that task division is on single thread. By

increasing the number of threads we can increase the task being done at a time which

will give us low time of execution.

Task Distribution : Whole read per thread

Parallelization achieved = #reads / #threads

Figure 6.1: Simple distribution

Approach 2: Increased Concurrency [29] In this approach we are increasing the

data distribution by processing only four elements of a read by a single thread. This will

increase concurrency considerably and will show higher speedups.

Parallelization achieved = 4 times

Figure 6.2: Increasing concurrency
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Approach 3: Data Reordering [29] In this approach we make use of data re-

ordering to enable coalesced memory access so that the maximum data which is to be

processed is loaded into cache at the same time so there is less cache miss. Single thread

is processing single read.

Figure 6.3: Decreasing Cache miss ratio by data reordering

6.1.3 Parallelization of k-mer hashing for Roadmap creation

From the literature surveyed we found that Real time parallel hashing approach modified

to suit our data is most suitable. To hash our data we can construct two hash table,

table1, the primary table and table2 the secondary. The first table will be of size 225 and

second table of size 219. Our hash fuction will be such that most of the keys are mapped

on first table without collision. And only in some cases when collision occur the key

should be inserted into second hash table which acts as overflow table to accommodate

colliding keys. If we find the same kmer in any of the two tables we make a roadmap

entry. If it is not present and we have an empty slot available for it we insert it into

the table. If both slots are occupied the algorithm evicts the key from slot of first table,
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inserts itself and now try to hash the evicted value. Our algorithm should be such that

there is no possibility of a key not finding a slot after maximum two iterations. The

flowchart gives the flow for roadmap creation using parallel hashing:

Figure 6.4: Workflow for hashing k-mers

6.2 Stage 2: Architecture Independent Policy Devel-

opment

To have maximum occupancy of resources, heuristics need to be applied for finding the

most optimal block sizes(number of blocks in an SM) based on the size and locality of

our data. If we have less number of threads then we will not be able to achieve high

concurrency thus wasting our resources. If the block size is high, then in case if our data

is significantly smaller than our block size, many threads will be wasted. For minimizing

wastage block size should be minimum. So our policy for minimum wastage is setting
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the thread size to

thread size = Maximum threads per SM / Maximum blocks possible per SM

For our data of size 142858*9 in tightstring creation we found out that 192 is the optimal

block size which gives maximum occupancy by utilizing maximum possible blocks of SM

thus giving efficient performance.

6.3 Stage 3: Redundancy Removal in Sequence file

Construction

The Sequence file construction for single end reads is a redundant step as it simply copies

data from reads file to Sequences file. To remove this redundancy we propose the following

work:

1. if(reads.type==single end)

2. Use read file as Sequence file

3. else

4. Convert reads to Sequence
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Chapter 7

Experiment Setup and Results

Analysis

7.1 Experiment Setup

Table 7.1: CPU Configuration
Cores 4
Clock Speed 3.2GHz

Table 7.2: Graphic card Configuration
Card Nvidia GeForce GTX 480
Compute Capability 2.0
SM 15
Maximum blocks per SM 8
Maximum threads per SM 1536
Maximum threads per Block 1024
Global Memory 1536 MB
Warp Size 32

Operating System

Ubuntu 10.04 or above

Software

Velvet(1.2.10)

Test Data

Test reads provided with Velvet assembler
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7.2 Velvet Analysis

7.2.1 Simulation 1 : Finding optimal k-mer size and efficiency

of accuracy

Table 7.3: K-mer size vs. N50
K-MER SIZE CONTIG COUNT N50 MAX

11 8996 22 132
13 386 807 3343
15 22 16644 20835
17 2 99979 99979
19 1 99977 99977
21 1 99975 99975
23 1 99973 99973
25 2 79560 79650
27 6 20409 37295
29 54 2859 6079
31 436 274 1061

Figure 7.1: K-mer vs. N50 size

Analysis

• As can be seen from the graph the N50 size increases as the kmer size increases as

it results in correct long contigs.

• The most optimal value can be found near half the read size. Thus we should not

take kmers less than half the read size.

• At too high k-mer size the coverage is low thus producing mis-assemblies.

33



7.2.2 Simulation 2: Velvet assembly in Multithreaded Mode

Table 7.4: Velvet Assembly in multithreaded mode
Threads Time for FillTightstring Time in sec (velveth)
Sequential 28.144 .697
2 30.37 .655
4 32.68 .574
8 33.21 .612

Analysis:

The system being used is quad core system and gives maximum performance at threads=4.

Therefore it would be best to set the number of threads to be equal to the number of

CPU cores.

7.2.3 Experimental Results for Parallelization of TightString

Creation

Table 7.5: Execution time of Parallel vs Sequential

From the results we can see that by proper data distribution and reordering we can

achieve significant reductions in execution time and the maximum reduction is obsereved

for the block size of 192 as determined by the heuristics.
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Table 7.6: Speedups of Parallel Approaches

Figure 7.2: Speedup of parallel approaches (Without memory transfer cost)

Figure 7.3: Speedup of parallel approaches (With memory transfer cost)
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Chapter 8

Conclusion and Future Scope

8.1 Conclusion

Based on results observed by parallelization with GPU on tightstring we can see there

is significant speedup in performance with accuracy maintained. We also determined an

archtecture independent policy for finding the most optimal block size such that threads

wastage was minimum. Parallelizing a sequential code requires analysis of multiple tech-

niques to find which technique is the most optimal choice for parallelization. For example

if the transfer time on GPU alone is greater than the time with multi-threading on CPU

then even with low execution time with GPU, GPU is not a suitable choice of HPC tool.

Therefore parallelizing a sequential code should be done while keeping in mind various

heuristics.

8.2 Future Scope

For the future work we can work on parallelizing the Roadmap creation which is the most

time consuming process of velveth. Also we can use heuristic based methods to reduce

redundancy in Sequences construction using Cluster as it is an input output intensive

task.
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