
Image Tracker

Prepared By

Khyati Thakkar

12MCEI30

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Image Tracker

Major Project

Submitted in partial fulfillment of the requirements

For the degree of

Master of Technology in Computer Science and Engineering

(Information and Network Security)

Prepared By

Khyati Thakkar

12MCEI30

Guided By

Ms. Rupal Kapdi (Internal Guide)

&

Mr. Nilay Mistry (External Guide)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Certificate

This is to certify that the major project report entitled “Image Tracker” submitted

by Khyati Thakkar (12MCEI30), towards the partial fulfillment of the requirements for

the degree of Master of Technology in Computer Science and Engineering (In-

formation and Network Security) of Nirma University, Ahmedabad is the record of

work carried out by her under my supervision and guidance. In my opinion, the submit-

ted work has reached a level required for being accepted for examination. The results

embodied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Ms. Rupal Kapdi Mr. Nilay Mistry

Internal Guide & Asst. Professor, External Guide & Asst. Professor,

Dept. of Computer Science & Engg., Dept. of Digital Forensics,

Institute of Technology, Institute of Forensics Science,

Nirma University, Gujarat Forensics Sciences University,

Ahmedabad Gandhinagar

Prof. Sharada Valiveti Dr. Sanjay Garg

Assoc. Professor & M.Tech. INS Coordinator, Professor & Head,

Dept. of Computer Science & Engg., Dept. of Computer Science & Engg.,

Institute of Technology, Institute of Technology,

Nirma University, Ahmedabad Nirma University,Ahmedabad

Dr. K. Kotecha,

Director, Institute of Technology, Nirma University, Ahmedabad

iii

Undertaking for Originality of the Work
———————————————————————————————————————

I, Khyati Thakkar (12MCEI30), give undertaking that the major project entitled

“Image Tracker” submitted by me, towards the partial fulfillment of the requirements

for the degree of Master of Technology in Computer Science and Engineering

(Information and Network Security) of Nirma University, Ahmedabad, is the origi-

nal work carried out by me and I give assurance that no attempt of plagiarism has been

made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

Khyati Thakkar (12MCEI30)

Date:

Place:

Endorsed by

Ms. Rupal Kapdi Mr. Nilay Mistry

Internal Guide External Guide

iv

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Ms. Rupal

Kapdi, Internal Guide & Assistant Professor, Dept. of Computer Science & Engg., In-

stitute of Technology, Nirma University, Ahmedabad and Mr. Nilay Mistry, External

Guide & Assistant Professor, Dept. of Digital Forensics, Institute of Forensics Science,

Gujarat Forensics Sciences University, Gandhinagar and Mr. Abdul Zummerwala,

Project Scientist, BISAG, Gandhinagar for their valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support they have

imparted has been a great motivation to me in reaching a higher goal. Their guidance

has triggered and nourished my intellectual maturity that I will benefit from, for a long

time to come.

My deepest thank you is extended to Prof. Sharada Valiveti, Coordinator M.Tech.

- INS, Dept. of Computer Science & Engg., Institute of Technology, Nirma University,

Ahmedabad for an exceptional support and continual encouragement throughout the Ma-

jor Project.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Dept.

of Computer Science & Engg., Institute of Technology, Nirma University, Ahmedabad,

Dr. K. Kotecha, Hon’ble Director, Institute of Technology, Nirma University, Ahmed-

abad and Dr. M S Dahiya, Hon’ble Director, Institute of Forensics Science, Gujarat

Forensics Sciences University, Gandhinagar for their kind support and providing basic

infrastructure and healthy research environment.

I would also thank Ms. Twinkle Patel (12MCEI38), Mr. Madhur Tewani

(12MCEI29), my other colleague friends, the institution and all faculty members of

Dept. of Computer Science & Engg., Institute of Technology, Nirma University, Ahmed-

abad for their special attention and suggestions towards the project work.

- Khyati Thakkar

12MCEI30

v

Abstract

The Internet is a global network connecting millions of computers. So anyone from

any corner of this world can upload or download anything to and from the Internet.

Moreover, social networking is being widely used by people to share each and every

update of their life. So in this era of communication, lots of cyber crimes are taking

place and they are increasing day-by-day and one of them is, social media crime. Image

Tracker will help reducing such kind of crimes as it is the functionality which embeds the

source computer’s unique identifier i.e. MAC address into the image by modifying exif

data. So, if any such crime takes place by editing and uploading someone’s image then

the computer, on which the image has been lastly modified and has been uploded, can

be traced down by fetching unique identifier of that computer from the image.

Key words: Image Tracker, Morphing Detection, MAC address within Image, Track Source

of Image

vi

Contents

Certificate iii

Undertaking iv

Acknowledgements v

Abstract vi

List of Figures x

1 Introduction 1

1.1 Problem Definition . 2

1.2 Chapter Organization . 2

2 Motivation 3

2.1 Domain Study . 3

3 Literature Survey 5

3.1 GIMP Architecture . 6

3.2 GIMP Plug-in Development . 7

3.3 Exif Tags . 7

4 Study of Available Techniques 9

4.1 TinEye . 9

4.2 PicScout . 10

4.3 PhotoSecrets . 10

5 Proposal 11

5.1 Challenges . 11

5.2 Proposed Solution . 11

vii

6 Implementation Details 13

6.1 Implementation Methodology . 13

7 Results 15

8 Conclusions 32

8.1 Current Status . 32

8.2 Future Work . 32

9 Paper Published 33

viii

List of Figures

3.1 GIMP Repositories . 5

3.2 GIMP Architecture . 6

3.3 Snapshot of Exif data of an Image . 8

4.1 TinEye GUI . 9

4.2 PicScout GUI . 10

4.3 PhotoSecrets GUI . 10

6.1 Implementation Methodology . 13

7.1 How to go to Python-Fu Console . 15

7.2 Python-Fu Console . 16

7.3 Code for New Plug-in in Python . 16

7.4 Saving New Plug-in . 17

7.5 Presence of New Plug-in in GIMP . 17

7.6 Code to fetch MAC address in Python . 18

7.7 Returned MAC address in the form of 48-bit number 18

7.8 Confirming MAC address . 19

7.9 Code to print MAC address in human readable format 20

7.10 Returned MAC address in human readable format 20

7.11 Path to extract Pexif source . 21

7.12 Compiling and building Pexif . 21

7.13 Installing Pexif . 22

7.14 Final Plug-in Code . 23

7.15 Copying Plug-in Code in GIMP . 24

7.16 Plug-in Existence in GIMP . 24

7.17 Original Image in .jpg Format . 25

7.18 Edited Image in .jpg Format . 25

ix

7.19 Edited Image in .jpg Format in Hex Editor . 26

7.20 Original Image in .png Format . 26

7.21 Edited Image in .png Format . 27

7.22 Edited Image in .png Format in Hex Editor . 27

7.23 Original Image in .gif Format . 28

7.24 Edited Image in .gif Format . 28

7.25 Edited Image in .gif Format in Hex Editor . 29

7.26 Original Image in .tif Format . 30

7.27 Edited Image in .tif Format . 30

7.28 Edited Image in .tif Format in Hex Editor . 31

x

Chapter 1

Introduction

The Internet is a global network connecting millions of computers. Due to the increasing amount

of data available online, the World Wide Web has become one of the most valuable resources for

information retrievals and knowledge discoveries. So, anyone from any corner of this world can

upload or download anything to and from the Internet. Moreover, social networking is being

widely used by people to share each and every update of their life. It has been playing a major

role in people’s lives. But there also exists a community which misuses such information for

financial gains or else for any personal benefits. This is a community which never shows up

anywhere in the physical world but plays a significant role on the Internet and they are hackers.

In this era of communication, lots of cyber crimes are being performed by them and they are

increasing day-by-day and one of them is, social media crime.

Significant number of cases have been filed in which some person’s images have been mod-

ified in some bad manner and then they have been uploaded on the world wide web on some

social networking websites and the original culprit haven’t been found for long time as there is

no technique available which can directly trace down the computer from which the image has

been modified and uploaded on the web. The maximum possible detail is the ip address of the

ISP (Internet Service Provider) to which the computer was connected. ISP uses DHCP (Dy-

namic Host Configuration Protocol) to allocate ip addresses to hosts but that ip address changes

everytime the host disconnects and reconnects to the ISP. The ip addresses and the time when

they were used by which computer are stored in the form of log files on ISP but ISP maintains

these log files for specific amount of time only, due to limited storage capabilities. After that,

the log files may get destroyed. So, it is very difficult to know which ip address was used by

which computer at what time and thus, the computer used by culprit cannot be traced so easily.

1

1.1 Problem Definition

Image Tracker helps reducing such kind of crimes as it is the functionality which embeds the

source computer’s (on which the image has been lastly modified) unique identifier i.e. MAC

address into the image by modifying the image’s exif data. So, if any such crime takes place by

editing and uploading someone’s image then the computer, from which it has been uploaded,

can be traced down by fetching unique identifier of that computer from the image.

1.2 Chapter Organization

This section gives brief information of all the chapters. Chapter 1 gives the introduction about

the topic and the report. Chapter 2 gives the details about why this project was necessary to be

carried out. Chapter 3 contains the literature survey of GIMP basics, the existing methodologies

of GIMP plug-in development and exif tags. Chapter 4 contains various available techniques

of backtracking to the source of the image. Chapter 5 gives details about challenges found in

existing techniques and the proposal of this project. Chapter 6 explains the methodology of

implementation for the plug-in that is to be developed. Chapter 7 shows the results of the

plug-in implemented for embedding MAC address into the image. Chapter 8 concludes with

current status and the future work. Chapter gives details of research papers published.

2

Chapter 2

Motivation

There are many image tracking services online like TinEye, PicScout, PhotoSecrets, ePHO-

TOzine etc. But they only provide the URL, by backtracking, from where the image has been

used and not the exact source from where it has been uploaded. Some of them are purely com-

mercial websites which shares and tracks images for financial gains. The objective of this work

is to address the issues and propose solutions as compared to the present works for similar kinds

of problems. This is due to the motivation behind the work to make the proposed technique

innovative, simple and less computational.

2.1 Domain Study

This project is about working on images and there are lots of websites as well as lots of tools

which work on images. To narrow down, first thing is to select a proper tool for image editing

and that tool should be open source so as to make changes to it. The popular tools for image

modification are:

1. Adobe Photoshop

2. Picasa

3. Paint

4. Paint.net

5. Microsoft Office Picture Manager

3

6. GIMP

But none of them, except GIMP, are open source. Picasa and Paint were open source in

earlier times but they are not anymore due to some security reasons. So, the most desired tool

which is open source as well as popular is GIMP.

4

Chapter 3

Literature Survey

GIMP (GNU Image Manipulation Program) is an image retouching and editing tool and is

released as free and open-source software.[17] There are versions available for most operating

systems including Linux and Microsoft Windows. GIMP has tools used for image retouching

and editing, free-form drawing, resizing, cropping, converting between different image formats

etc. Animated images such as GIF and MPEG files can be created using an animation plug-in.

To build a new plug-in for GIMP, we need to first study its source code and the methods

for developing plug-in. The GIMP source code lives in the gimp repository on the GNOME git

server. The GNOME git server hosts a couple of GIMP related repositories:

Figure 3.1: GIMP Repositories

[1]

From all of these, GIMP source resides in the GIMP folder. In that, the code of our concern

resides at following paths:

5

• gimp-2.8.6 \app \plug-in

• gimp-2.8.6 \libgimp

• gimp-2.8.6 \plug-ins

3.1 GIMP Architecture

Figure 3.2: GIMP Architecture

[2]

Here are the steps of how it works:

1. The GIMP script interface is centered on the Procedural database (PDB). [2]

2. At startup, The GIMP looks into a predefined set of places for scripts and plug-ins, and

asks each new script to identify itself. [2]

3. The plug-in declares itself to the PDB at that time, and passes informations like the

position it wishes to get in the menu hierarchy, input parameters, and output parameters.

[2]

4. When a script or a plug-in wants to use our plug-in, it gets through the PDB, which

manages communicating parameters in one direction and the other in a transparent way.

[2]

5. Internal functions that wish to get exposed to plug-ins have to be packaged first in the

core, that will register them in the PDB, and secondly in the libgimp that will allow the

function to be called as a normal one. [2]

6

3.2 GIMP Plug-in Development

There are two methods to develop a GIMP plug-in:

1. Develop a C plug-in using a library called libgimp and an associated utility named gimp-

tool.

2. Develop a Python plug-in using the Python-Fu interactive console which is in-built in

GIMP.

3.3 Exif Tags

EXIF stands for Exchangeable Image File Format, and is a standard for storing interchange

information in image files, especially those using JPEG compression.[15] Most digital cameras

now use the EXIF format.

The Japan Electronic Industries Development Association (JEIDA) produced the initial

definition of Exif.[14] The metadata tags defined in the Exif standard cover a broad spectrum:

1. Date and time information. Digital cameras will record the current date and time

and save this in the metadata.[14]

2. Camera settings. This includes static information such as the camera model and make,

and information that varies with each image such as orientation, aperture, shutter speed,

focal length, metering mode, and ISO speed information.[14]

3. A thumbnail, for previewing the picture on the camera’s LCD screen, in file managers,

or in photo manipulation software.[14]

4. Descriptions.

5. Copyright information.

For editing exif data of an image using Python in GIMP, Pexif library is compulsory. Pexif

is a Python library for parsing and more importantly editing EXIF data in JPEG files. The

library contains some examples as well as some usable standalone PexifScripts.[12] Pexif can

be downloaded from http : //code.google.com/p/pexif/downloads/list. The latest version is

pexif-0.13.

7

There is one more external library exiftool, which can be used as an external library as cur-

rently GIMP has no support for manipulating EXIF data so we will use exiftool as our external

library. Exiftool can be downloaded from http : //www.sno.phy.queensu.ca/ phil/exiftool/.

Figure 3.3: Snapshot of Exif data of an Image

[14]

Figure 3.3 is the snapshot captured while checking the exif data of some random image

using exiftool.

8

Chapter 4

Study of Available Techniques

4.1 TinEye

Figure 4.1: TinEye GUI

TinEye is the online service which helps searching an image but it has several limitations:

1. Limited Index Size: Currently, the Tineye database is at about 700 million images.

While that is an impressive number, one has to remember that Photobucket alone has over

5 billion images according to their numbers. The site does not seem to detect duplications

on Photobucket, Flickr or other popular image sharing sites, focusing instead on blogs.

Thus, many images that are known to have many copies return no results.[3]

2. No Case Tracking: Currently, with Tineye, there is no way to track cases of plagiarism

or copying so that they are not acted upon a second time.[3]

3. No Alerts System: Where writers have Google Alerts and even CopyAlerts, there is

currently no system in Tineye that will alert artists to new copies of their work being

posted.[3]

9

4.2 PicScout

Figure 4.2: PicScout GUI

PicScout also has some limitations, which are as follows:

1. Uses ImageExchange and ImageTracker applications so it is a dependent application.

2. Only monitors business usages.

3. Only covers North America, UK and Germany and not India.

4.3 PhotoSecrets

Figure 4.3: PhotoSecrets GUI

PhotoSecrets is also an online image exchange service but it consists of two important

features:

• Copyright your photos

• Sell copyrighted photos

Thus, it’s purely a commercial website.

10

Chapter 5

Proposal

5.1 Challenges

There are several challenges found in the existing techniques, such as:

1. The problem with online image tracking service is, if you are looking for an image which

is rarely available on the Internet or else not at all available then it is almost impossible

to track it back.

2. There are very few image editing tools which are open source.

3. There are no tools available which gives any information about the origin of the image.

5.2 Proposed Solution

For developing a functionality which helps identifying the source of image, the unique identifiers

of the computer need to be fetched successfully. Moreover, the process of narrowing down on

a single tool which is open source as well as popular is also important. And after selection

of tool, electing a proper method to develop the technique also matters a lot. The technique

is developed for almost all image formats for e.g. .tiff, .jpg, .png etc. The objective of the

proposed technique is to develop a cost-effective alternative for commercially available services

and tools.

Following is the step wise proposal for the project:

11

1. Narrowing down on a single tool taking into consideration both the open source and most

widely used features.

2. Selecting a proper method to develop plug-in for selected tool.

3. Checking whether the method can fetch unique identifier of computer.

4. If yes, then developing final code.

12

Chapter 6

Implementation Details

6.1 Implementation Methodology

GIMP is the most widely used open source tool for image editing and it has in-built interactive

Python-Fu console so developing a Pyhton plug-in for GIMP would be more convenient and

proper.

Figure 6.1: Implementation Methodology

So, after getting the Python plug-in successfully registered in GIMP, we have to verify

whether it can fetch the MAC address of the computer.

13

If so, we would start developing code for embedding fetched MAC address into image by

manipulating exif data of the image.

14

Chapter 7

Results

1. The first step is getting our plug-in registered in GIMP. Following are the steps shown

for it:

Figure 7.1: How to go to Python-Fu Console

Go to Filters− > Python−Fu− > Console to get Python interactive console in GIMP.

The command shown in Figure 7.2 is to test whether Python console responds properly.

This is a sample code to get the new plug-in registered in GIMP shown in Figure 7.3.

Figure 7.4 shows which path to be selected to save new plug-in.

Figure 7.5 shows that the new plug-in has been successfully registered in GIMP and it is

showing at the time of loading GIMP.

15

Figure 7.2: Python-Fu Console

Figure 7.3: Code for New Plug-in in Python

2. After getting the new plug-in successfully registered in GIMP, the next step is to check

whether the MAC address can be fetched from Python console in GIMP.

Figure 7.6 shows the code used to fetch MAC address in Python.

Figure 7.7 shows the MAC address fetched from the code above it.

16

Figure 7.4: Saving New Plug-in

Figure 7.5: Presence of New Plug-in in GIMP

Looking at the getnode documentation, it says that it will return a random long if it

fails to detect the mac: ”If all attempts to obtain the hardware address fail, we choose a

random 48-bit number with its eighth bit set to 1 as recommended in RFC 4122.”[16]

One other noticeable thing is that uuid.getnode() can fake the MAC address by returning

17

Figure 7.6: Code to fetch MAC address in Python

Figure 7.7: Returned MAC address in the form of 48-bit number

18

a random 48-bit number which may not be what is expected. Also, there’s no explicit

indication that the MAC address has been faked, but it can be detected by calling getn-

ode() twice and seeing if the result varies. If the same value is returned by both calls,

you have the MAC address, otherwise you are getting a faked address.

Figure 7.8: Confirming MAC address

Looking at figure 7.8, it is confirmed that the MAC address has been returned and it’s

not fake as same value is returned by both calls.

uuid.getnode represents current MAC address as an integer, this one-liner code in figure

7.9 formats this number in a standard MAC address form.

Thus, the MAC address of computer is fetched successfully.

3. The next step after fetching the MAC address is to develop code which embeds this MAC

into image.

The one way to do this is to use exif tags and to make use of exif and to edit or modify

them in GIMP, the use of pexif library is must. Following are the steps to install pexif

19

Figure 7.9: Code to print MAC address in human readable format

Figure 7.10: Returned MAC address in human readable format

20

library.

Figure 7.11: Path to extract Pexif source

Figure 7.11 shows the path where the pexif source should be extracted so that it can be

installed successfully.

Figure 7.12: Compiling and building Pexif

21

After successfully compiling and building, all the scripts are built in build\scripts-2.7.

Figure 7.13: Installing Pexif

Returning to command prompt shows that pexif is successfully installed. After successful

installation, the scripts are copied into C:\Python27\Scripts, which is shown in figure

7.13.

Figure 7.14 shows the final plug-in code that embeds the MAC address into the image in

its Artist field which is one of the unused Exif field.

We have to copy and paste that code into “C:\Program Files\GIMP 2\lib\gimp\2.0\plug-

ins” path so that we can see the plug-in existence in GIMP.

Moreover, the highlighted line shows that this plug-in uses an external script i.e. exiftool.exe

which is located at “C:\Windows” path, which helps GIMP in modifying Exif data as

GIMP does not have support for manipulating Exif data.

Figure 7.16 shows the existence of plug-in in GIMP File menu. The plug-in also has

shortcut Ctrl+S assigned to it.

4. The final step is to show resulted images that have MAC addresses embedded into them.

Here, it is shown for different image file formats like .jpg, .png, .gif and .tif. The plug-in

works for all of these image file formats.

Following are the command prompt snapshots that show the comparison between the

original image and the image after using the plug-in.

22

Figure 7.14: Final Plug-in Code

23

Figure 7.15: Copying Plug-in Code in GIMP

Figure 7.16: Plug-in Existence in GIMP

24

Figure 7.17: Original Image in .jpg Format

Figure 7.18: Edited Image in .jpg Format

25

Figure 7.19: Edited Image in .jpg Format in Hex Editor

Figure 7.20: Original Image in .png Format

26

Figure 7.21: Edited Image in .png Format

Figure 7.22: Edited Image in .png Format in Hex Editor

27

Figure 7.23: Original Image in .gif Format

Figure 7.24: Edited Image in .gif Format

28

Figure 7.25: Edited Image in .gif Format in Hex Editor

29

Figure 7.26: Original Image in .tif Format

Figure 7.27: Edited Image in .tif Format

30

Figure 7.28: Edited Image in .tif Format in Hex Editor

31

Chapter 8

Conclusions

8.1 Current Status

The plug-in has been developed which embeds the computer’s MAC address into the image(

which is edited on that computer using GIMP) by editing the image’s Exif data and result can

be seen by fetching the Exif data of that image with command exiftool.exe filename.file-

format or by opening the image in any hex editor.

8.2 Future Work

Currently, the plug-in only embeds the MAC address of computer on which the image has been

lastly modified. The project can be extended to modify the plug-in code in such a manner that

the image can be made to contain the series of all the MAC addresses of the computers on

which it has been modified.

32

Chapter 9

Paper Published

Paper Published in: SAPIENCE’14 International Conference on Security and Authentica-

tion on 27-28th March, 2014 organized jointly by the department of Computer Applications,

Sree Narayana Gurukulam College of Engineering (SNGCE) and School of Computer Science,

Mahatma Gandhi University (MG University), Kerala.

Paper Title: A Novel Approach to Find the Artifacts of GodMode

Paper Authors: Ms. Khyati Thakkar, Ms. Twinkle Patel, Mr. Madhur Tewani, Mr.

Kishan Varshney, Mr. Nilay Mistry and Dr M S Dahiya

Paper Abstract: Windows operating system (OS) is highly used by computer users across

the globe. Windows OS is coming up with various secret tricks and tweaks to get into the

administration control. ”GodMode” is one of the hidden secret through which one can access

the whole control panel administration though the user is either guest or standard user with

limited privileges. By using GodMode, users can access any of the control panel settings from a

single folder, which is a concept actually based upon NTFS virtual folder. Forensic Investigation

of such hidden secret can give proper and supportive conclusion to the investigator, whether

control panel settings opened directly or through the GodMode, also which user created the

GodMode and controlled the system. This paper has some approaches given through which

investigator can identify whether GodMode operations are done over the system to breach the

privileges of administrator or not.

33

Bibliography

[1] http : //developer.gimp.org/git.html

[2] http : //developer.gimp.org/writing − a− plug − in/1/index.html

[3] http : //www.plagiarismtoday.com/2008/08/19/tineye − protecting − images −

preventing − orphans/

[4] http : //www.linuxplanet.com/linuxplanet/tutorials/6720/1

[5] http : //www.linuxplanet.com/linuxplanet/tutorials/6720/2

[6] http : //www.python− forum.org/viewtopic.php?f = 6&t = 177

[7] http : //code.activestate.com/recipes/550811− jpg − files− redater− by− exif − data/

[8] http : //www.endlesslycurious.com/2011/05/11/extracting−image−exif−data−with−

python/

[9] http : //www.blog.pythonlibrary.org/2010/03/28/getting − photo − metadata − exif −

using − python/

[10] http : //stackoverflow.com/questions/159137/getting −mac− address

[11] http : //code.activestate.com/recipes/578277 − get − mac − address − of − current −

interface− in− one− line− o/

[12] http : //code.google.com/p/pexif/

[13] http : //code.google.com/p/pexif/downloads/list

[14] http : //en.wikipedia.org/wiki/Exchangeableimagef ileformat

[15] http : //www.exif.org/

[16] http : //www.ietf.org/rfc/rfc4122.txt

34

[17] http : //en.wikipedia.org/wiki/GIMP

[18] http : //www.sno.phy.queensu.ca/ phil/exiftool/

[19] https : //raw.githubusercontent.com/akkana/gimp − plugins/master/save − export −

clean.py

[20] http : //docs.gimp.org/2.6/en/gimp− concepts− shortcuts.html

[21] https : //github.com/akkana/gimp− plugins

[22] http : //webcache.googleusercontent.com/search?q = cache : http :

//blog.defron.org/2013/01/gimp− script− save− as− png.html

[23] http : //shallowsky.com/software/gimp− save/

[24] http : //www.gimphelp.org/pythonsaveasjpg.shtml

[25] http : //www.gimphelp.org/DL/Pythonscripts/saveasjpg.py

35

	Certificate
	Undertaking
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Problem Definition
	Chapter Organization

	Motivation
	Domain Study

	Literature Survey
	GIMP Architecture
	GIMP Plug-in Development
	Exif Tags

	Study of Available Techniques
	TinEye
	PicScout
	PhotoSecrets

	Proposal
	Challenges
	Proposed Solution

	Implementation Details
	Implementation Methodology

	Results
	Conclusions
	Current Status
	Future Work

	Paper Published

