
Automation of IP CAD View Validation

Prepared By

Ritu Raj Agerwal

12MCEI01

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Automation of IP CAD View Validation

Major Project

Submitted in the partial fulfillment of the requirements

for the degree of

Master of Technology in Information and Network Security

Prepared By

Ritu Raj Agerwal

12MCEI01

Guided By

Prof. Jigna Patel

and

Ms. Lipika Parwani

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY

AHMEDABAD-382481

May 2014

Certificate

This is to certify that the major project titled “Automation of IP CAD View

Validation” submitted by Ritu Raj Agerwal (12MCEI01), towards the partial ful-

fillment of the requirements for the degree of Master of Technology in Information

and Network Security of Nirma University, Ahmedabad is the record of work carried

out by him under my supervision and guidance. In my opinion, the submitted work

has reached a level required for being accepted for examination. The results embod-

ied in this major project, to the best of my knowledge, haven’t been submitted to

any other university or institution for award of any degree or diploma.

Prof. Jigna Patel Prof. Sharda Valiveti

Internal Guide, Program Co-ordinator - INS ,

Assoc. Professor, Assoc. Professor,

Nirma University, Nirma University,

Ahmedabad Ahmedabad

Ms. Lipika Parwani Mr. Rishabh Bansal

External Guide, Project Manager Project Mentor

STMicroelectronics, STMicroelectronics,

Greater Noida Greater Noida

Dr. Sanjay Garg Dr. K. Kotecha

Head of CSE Department, Director,

Institute of Technology, Institute of Technology,

Nirma University Nirma University

Ahmedabad Ahmedabad

iv

Undertaking for Originality of the Work

I, Ritu Raj Agerwal (12MCEI01), give undertaking that the Major Project

titled “Automation of IP CAD View Validation” submitted by me, towards

the partial fulfillment of the requirements for the degree of Master of Technology

in Information and Network Security of Nirma University, Ahmedabad, is the

original work carried out by me and I give assurance that no attempt of plagiarism

has been made. I understand that in the event of any similarity found subsequently

with any published work or any dissertation work elsewhere; it will result in severe

disciplinary action.

Ritu Raj Agerwal (12MCEI01)

Date:

Place:

Endorsed by

Prof. Jigna Patel Ms. Lipika Parwani

Internal Guide External Guide

Acknowledgement

I am deeply indebted to my thesis supervisors Prof. Jigna Patel, Internal Guide

Nirma University and Ms. Lipika Parwani, Project Manager ST Microelectronics

for their constant guidance and motivation.

I would like to express my gratitude and sincere thanks to Dr. Sanjay Garg

Head of Computer Science and Engineering Department and Prof. Sharda Valiveti

Coordinator M.Tech Information and Network Security program for allowing me to

undertake this thesis work and for his guidelines during the review process.

I would also like to thank Dr K Kotecha Director, IT, NU for allowing me to

undertake this project work.

I also wish to thank Rishabh Bansal, Amit Kotadia, Nancy Kapila and Mohit

Bhasin for their help and support. Without their experience and insights, it would

have been very difficult to do quality work.

I wish to thank my friends of my class for their delightful company which kept

me in good humor throughout the year.

Last, but not the least, no words are enough to acknowledge constant support

and sacrifices of my family members because of whom I am able to complete the

degree program successfully.

- RITU RAJ AGERWAL

(12MCEI01)

Abstract

The project deals with Automation of Libraries Validation that means validation

of libraries is done through Automated Scripts instead of doing it manually. This

automation contains some frameworks (PLUG-INS) which check the different views

of the under test library. Plug-ins check the static views, modeling views, cross

views and mat structure of the library. This Plug-ins are built on the TCL (Tool

Command Language).

Now a days every Validation Should be Automatic and take very less time, So in

order to meet such requirement a new Unified Environment is to be made which

would be much faster than existing solution and will occupy less space. This whole

new cocept will be a mixture of Tcl, Shell and Perl Language.

Contents

Certificate iii

Undertaking iv

Acknowledgement v

Abstract vi

Contents vi

List of Figures ix

1 Introduction 1
1.1 Introduction of Library IP . 1

1.1.1 CORE Library: . 2
1.1.2 IO Library: . 2
1.1.3 Memory: . 3
1.1.4 Analog and Mixed Signal Library: 3

1.2 Introduction of Certification . 3
1.3 My Contribution In The Thesis 4
1.4 Organization of The Thesis . 4

2 Literature Survey (Background Theory) 5
2.1 Back End Views . 6

2.1.1 Symbol View . 6
2.1.2 SLIB . 7
2.1.3 Schematic View . 7
2.1.4 Layout View . 9
2.1.5 Synopsys Technology File (.libs) 9

2.2 Summary . 9

3 Tools and Technology 10
3.1 Scripting Introduction . 10

3.1.1 Comparison chart with Non-Scripting Language 10

vii

CONTENTS viii

3.2 Technology Used . 11
3.2.1 C Shell . 12
3.2.2 Tool Command Language (Tcl) 12
3.2.3 Perl . 13

3.3 Summary . 14

4 IPSCREEN and PLUG-INS 15
4.1 IPSCREEN . 15
4.2 PLUG-INS . 17

4.2.1 Syntaxcheck . 18
4.2.2 Modelization . 19
4.2.3 Mat10bbview . 20
4.2.4 Tagchecker . 21
4.2.5 Crosscheck . 22
4.2.6 Mat10comp . 23

4.3 Summary . 24

5 Implemantation and Intermediate Results 25
5.1 Automatic Setup Creation . 25

5.1.1 Results of Automated Setup Creation 28
5.2 Pre Tool Checking Module . 28
5.3 Access rights checking of whole library package 29

5.3.1 Results . 29
5.4 Mat10Comp plugin new Archicture 30

5.4.1 Intermediate Results . 30
5.5 Manufecturing Design Check . 31
5.6 Summary . 32

6 New Approach Unified Environment 33
6.1 Some Points related to this New Environment 33
6.2 My Contribution in this unified environment 34

6.2.1 Implementation of Dashboard Creation 35
6.3 Summary . 36

7 Conclusion and Future Work 37
7.1 Conclusion . 37
7.2 Future Work . 37

List of Figures

2.1 Library View Block Diagram . 6
2.2 Classification of Library Views . 7
2.3 Symbol View . 8
2.4 Schematic View . 8

3.1 Comparison Chart with other languages 11

4.1 GUI of IPSCREEN . 16
4.2 GUI of Syntaxcheck PLUG-IN . 18
4.3 GUI of Modelization PLUG-IN . 19
4.4 GUI of MAT10bbview PLUG-IN . 20
4.5 GUI of Tagchecker PLUG-IN . 21
4.6 GUI of Crosscheck PLUG-IN . 22
4.7 GUI of MAT10comp PLUG-IN . 23

5.1 Manual Setup Creation Process . 26
5.2 Manual versus Automatic setup creation 28
5.3 Situational Analysis . 31
5.4 Layout View of a Cell . 32

6.1 Executive Summary old and new approach 34
6.2 GUI of Crosscheck PLUG-IN . 35

ix

Chapter 1

Introduction

SOC design trend is to integrate more and more functionalities usually named

IP’s (Intellectual Property), either developed concurrently in the design team or

already available in market. One of the critical jobs for IP providers is related

to IP models or representation needed in the design flow targeted for the SOC

development. The main considerations for IP developers are:

1. Coherency between IP models

2. Accuracy between IP models and real IP

3. Compatibility of IP models with SOC design flow

This chapter consists of brief introduction to library IPs, types of libraries and

definition of certification.

1.1 Introduction of Library IP

[1] A LIBRARY is defined as a set of all design data available for an IP. De-

sign data consists of functionality, transistor level design of the IP, Actual Mask

Level Design which will be fabricated and Timing information. We can also say

that library is a collection of cells, comprising of various views which are useful for

1

CHAPTER 1. INTRODUCTION 2

designing a chip. Cell is a component performing a basic function and a view is a

particular representation of a cell. Due to Increased complexity and shorter time to

market SOC designers cannot really concentrate on design of basic building blocks.

This database can be reused in various SOCs.

There are different types of libraries present:

1.1.1 CORE Library:

1. It consists of a group of cells called standard cells.

2. They implement the basic logic functions.

3. Examples are Inverter, AND, Flops, Latches etc.

4. Those cells are already designed in a specific process technology.

5. Physical/ logic/ timing/ electric models are already created for those cells.

1.1.2 IO Library:

1. It consists of a group of cells called I/O buffers.

2. Those cells are already designed in a specific process technology

3. I/O buffers are designed to interface the off-chip signals to inside chip envi-

ronment and vice-versa

4. I/O’s are placed on the periphery of the chip .Any signal which comes from

off-chip environment (external voltages are at a typical voltage of 2.5V, 3.3V or

5V) into the chip, must be checked by I/O for any discrepancy in its behavior

other than defined by the core for that particular signal. If I/O finds any

signal defying the behavior expected from it, it modifies the signal so as to

ensure proper functioning of chip.

CHAPTER 1. INTRODUCTION 3

5. I/O’s also act as protection devices for the core. I/O also scans the signal

which is going from core to off-chip world.

1.1.3 Memory:

1. These contain Memories of Various Architectures.

2. Examples are SRAM, DRAM and ROM

3. At ST these are implemented as generators. Since there can be a number

of memory sizes we implement the basic building blocks (e.g. memory cell,

Decoding logic, sense amplifier etc.) and configure the generation of various

memory sizes.

4. The basic building blocks are already designed in a specific process technology.

1.1.4 Analog and Mixed Signal Library:

1. These contain IPs providing some innovative functions.

2. Examples are PLL, DAC, USB, etc.

3. These can be implemented as full custom hand crafted cells or in a semi-custom

manner using the CORE libraries.

1.2 Introduction of Certification

[5] CERTIFICATION is the process of validating hard and soft IPs for CAD view

compliance on various platforms (Synopsys, Cadence, Magma etc.). In Certification

process we check the various views present in the library/IP, Consistency across

views, Design flow compliance of views and Compliance of views in the integrated

environment. The final target of the certification is to get the library IP which has

CHAPTER 1. INTRODUCTION 4

consistent views and the usability of UNICAD flow with respect to the quality and

productivity of the SOC implementations.

1.3 My Contribution In The Thesis

Validation of different libraries within different technologies has done as the part

of the methodology. In this part, Some Plug-ins (ex. Syntaxcheck, Modelization,

Crosscheck, Mat10bbview etc.)are made which basically provide the platform to val-

idate the library. Library has to be loaded in this platform to being validated. Some

modules are also made my be me as described later(like automation of manufectur-

ing design check, access rights checking, automated setup creation with vey less

information given by the user and pre tool checking module) to automate the man-

ual process. Now as a replacement of IPScreen framework we are going to introduce

Unified environment in future .

1.4 Organization of The Thesis

In chapter 2, Literature Survey and background theory. In chapter 3, Tools and

Technology which i am using.

In chapter 4, Validation and certification of many library are done. In chapter

5,New Unified environment which can be the replacement of IPScreen. In chapter 6,

I have explained Implementation of my work and intermediate results which i had

obtained.

In chapter 6, Conclusion and Future work explained.

Chapter 2

Literature Survey (Background

Theory)

As discussed in the previous chapter that a Library is a collection of cells and

each cell has a certain view which is a particular representation of the cell. Each

cell may have Layout view, Schematic view, Symbolic view, Timing view etc. A cell

is delivered as a set of view and each view is used by different tool in a given design

flow.

5

CHAPTER 2. LITERATURE SURVEY (BACKGROUND THEORY) 6

Figure 2.1: Library View Block Diagram
[2]

The basic library views are classified into:

1. Front End Views: Views related to the timings or modelling of cell.

2. Back End Views: Views related to the physical design of a cell.

They are further classified into other views as shown in the figure below:

2.1 Back End Views

[2] The different types of back end views are symbol, schematic view, layout

view, abstract view and so on.

2.1.1 Symbol View

A Symbol view is a pictorial representation of a cell. It includes pins, symbol

graphics, labels and a selection box. Pins are input and output of a symbol. The

shape of the symbol indicates the cell function. Labels in the symbol are used to

add to the documentation of the design. Selection box in the symbol, defines the

CHAPTER 2. LITERATURE SURVEY (BACKGROUND THEORY) 7

Figure 2.2: Classification of Library Views
[2]

area of the symbol that an instance will be selectable by. A symbol view for an

inverter looks as shown in figure below:

2.1.2 SLIB

SLIB view is the derived view of symbol. It is actually the text representation

of the symbol view.

2.1.3 Schematic View

A schematic is a simplified representation of an electrical circuit. It shows the

different components of the circuit as simplified standard symbols, and the power

and signal connections between the devices. Schematic is the representation of a

cell at the transistor level. A schematic view includes component instances, wires

and pins.

CHAPTER 2. LITERATURE SURVEY (BACKGROUND THEORY) 8

Figure 2.3: Symbol View
[2]

Figure 2.4: Schematic View
[2]

CHAPTER 2. LITERATURE SURVEY (BACKGROUND THEORY) 9

.ends

2.1.4 Layout View

Layout view is the actual physical representation of the electrical circuit of the

cell that goes on the silicon.

2.1.5 Synopsys Technology File (.libs)

A technology library (STF/.lib) describes the structure, function, timing and

environment of the ASIC technology being used. The technology library consists of

the following information for synthesis:

1. Mapping: Functional information for each cell.

2. Optimization: Area and timing information for each cell.

3. DRC: DRC rule constraints on cells.

The .libs are defined on various PVT conditions. These PVT conditions basically

specify the conditions on which the cells of the library are characterized.

2.2 Summary

In this chapter, it is shown that the different library views which are mainly

classified in two ways. 1) FE (Front End) and 2) BE (Back End).

Chapter 3

Tools and Technology

3.1 Scripting Introduction

[9]

Scripting languages such as Perl and Tcl represent a very different style of pro-

gramming than system programming languages such as C or JavaTM. Scripting

languages are designed for ”gluing” applications; they use typeless approaches to

achieve a higher level of programming and more rapid application development

than system programming languages. Increases in computer speed and changes

in the application mix are making scripting languages more and more important for

applications of the future.

3.1.1 Comparison chart with Non-Scripting Language

A comparison of various programming languages based on their level (higherlevel

languages execute more machine instructions for each language statement) and their

degree of typing. System programming languages such as C tend to be strongly

typed and medium level (five to 10 instructions per statement). Scripting languages

10

CHAPTER 3. TOOLS AND TECHNOLOGY 11

such as Tcl tend to be weakly typed and very high level (100 to1,000 instructions

per statement).

Figure 3.1: Comparison Chart with other languages
[9]

3.2 Technology Used

I have used the following scripting languages on UNIX platform.

• C Shell.[6]

• Tool Command Language (TCL)[7]

• Perl.[8]

CHAPTER 3. TOOLS AND TECHNOLOGY 12

3.2.1 C Shell

[6] Some Points about C Shell

• The C shell is a command processor typically run in a text window, allowing

the user to type commands.

• It supports filename wildcarding, piping, here documents, command substitu-

tion, variables and control structures for condition-testing and iteration.

• The feature in this shell is the overall style of the language looked more like

C and was seen as more readable.

• The main design objectives for the C shell were that it should look more like

the C programming language and that it should be better for interactive use.

• It introduced numerous new features that made it easier, faster and more

friendly to use by typing commands at a terminal. Users could get things

done with a lot fewer keystrokes and it ran faster.

• The C shell operates one line at a time. Each line is tokenized into a set of

words separated by spaces or other characters with special meaning, including

parentheses, piping and input/output redirection operators, semicolons, and

ampersands.

3.2.2 Tool Command Language (Tcl)

[9] In this section I have described Introduction and features of TCL.

• Introduction

– Tcl, or Tool Command Language, is a an elegant, versatile, feature-

rich, simple-to-learn yet very powerful industrial-strength open-source

programming language and development platform.

CHAPTER 3. TOOLS AND TECHNOLOGY 13

– Tcl is one of the only languages that can replace both the smallest and

largest programming tasks.

– Tcl syntax is described in just a dozen rules.

– There are no reserved words and no specialized syntax for control struc-

tures, conditionals, and so on.

– In addition to being a programming language, Tcl is also a cross-platform

C library.

• Features

– Cross-platform scripting.

– Cross-platform C library

– String handling

– Regular expressions

3.2.3 Perl

[8] In this section I have described Introduction about perl.

• Introduction

– Perl is a family of high-level, general-purpose, interpreted, dynamic pro-

gramming languages.

– Though Perl is not officially an acronym,[5] there are various backronyms

in use, such as: Practical Extraction and Reporting Language.

– Perl is a stable, cross platform programming language.

– Perl is an Open Source software, licensed under its Artistic License, or

the GNU General Public License (GPL).

CHAPTER 3. TOOLS AND TECHNOLOGY 14

• Features

– Perl takes the best features from other languages, such as C, awk, sed,

sh, and BASIC, among others.

– Perl supports both procedural and object-oriented programming.

– The Perl interpreter can be embedded into other systems.

– Perl is an interpreted, which means that your code can be run as is, with-

out a compilation stage that creates a non portable executable program.

3.3 Summary

In this section I have described literature survey of scripting language and lan-

guages which I am using in my project.

Chapter 4

IPSCREEN and PLUG-INS

IPSCREEN[14] is the framework on which PLUG-INS are going to be run. In

fact, IPSCREEN and PLUG-INS both are tools but IPSCREEN[14] provide the

basic environment to execute the PLUG-INS.

Many PLUG-INS can be loaded in IPSCREEN[14] simultaneously. One PLUG-

IN can also execute for many different libraries. So, Likewise every library and every

PLUG-IN can be loaded in IPSCREEN[14] at the same time.

All PLUG-INS can be run at the same time for different libraries. Parallel

certification can also be done for different libraries to reduce the time required for

certification of those libraries while doing serially.

4.1 IPSCREEN

[14] IPSCREEN is one kind of tool which is basically used for checking the design

statically. Many libraries and PLUG-INS can be loaded simultaneously. For each

library having each PLUG-IN generate a new tab for certification.

15

CHAPTER 4. IPSCREEN AND PLUG-INS 16

Figure 4.1: GUI of IPSCREEN
[14]

Discussion: It shows how the PLUG-INS and library are being loaded in the

IPSCREEN framework. the dialogue box part of the figure shows the loading process

of the library and PLUG-INS simultaneously.

CHAPTER 4. IPSCREEN AND PLUG-INS 17

4.2 PLUG-INS

[14] PLUG-INS are very useful to check the design and their views. Plug-ins ba-

sically work on the static checks . these checks are made in the TCL(Tool Command

Language)[5]. Different plug-ins are shown below.

1. Syntaxcheck

2. Modelization

3. Mat10bbview

4. Tagchecker

5. Crosscheck

6. Mat10comp

CHAPTER 4. IPSCREEN AND PLUG-INS 18

4.2.1 Syntaxcheck

This plug-in covers the syntax part of the Library. It means that the plug-in is

used to check the syntax of any files (which are inside the views) is correct or not.

For ex. if one stf (Synopsys Technology File) wants to be checked syntactically

by using anyone CAD tool then first the file has to be opened in the required tool.

Command used to check that file is going to be executed which checks the file.

Figure 4.2: GUI of Syntaxcheck PLUG-IN
[14]

Discussion: Different tasks are shown in the task area. The side part of the task

shows different status of the task. Red part shows the task is checked with errors.

Yellow part shows the task is checked with warnings. Green part shows the task is

checked with successfully. The dialogue box contains some red lines shows errors

coming during the loading of library or PLUG-INS.

CHAPTER 4. IPSCREEN AND PLUG-INS 19

4.2.2 Modelization

This plug-in covers the modeling of the views. It means that the views are

modeled correctly or not statically. This ensures accurate library functionality in

the flow.

For ex. one stf (Synopsys Technology File) wants to be checked whether the

required attributes are present in that file then some front end checks are going to

be operated on that file and finally one command will generate the final report for

the same.

Figure 4.3: GUI of Modelization PLUG-IN
[14]

Discussion: The figure contains the different modeling tasks which are performed

on the library views. The figure shows the DRC with errors, LVS with warnings

and FRAM view with successful result.

CHAPTER 4. IPSCREEN AND PLUG-INS 20

4.2.3 Mat10bbview

This plug-in is basically used for checking in the sense of views presence in the

library structure. It also checks that mandatory views are present, and aligned with

library structure.

The indexation of any library is done correctly or not and according to that

indexation, the library is structured as per the standard guidelines or not, is going

to be checked statically by using the basic TCL (Tool Command Language)[13]

commands.

Figure 4.4: GUI of MAT10bbview PLUG-IN
[14]

Discussion: The figure contains the tasks based on the bbview file. Data index-

ation and coherence task is checked with some errors. If anyone wants to see those

errors then one has to click on the ”View Report” button.

CHAPTER 4. IPSCREEN AND PLUG-INS 21

4.2.4 Tagchecker

This plug-in is used to cover the Tags defined for the Library. It checks the Tags

given to every cells in the Library and also checks the Fields inside each Tags.

Whenever any product (Library) is going to be submitted to any customer, the

Tags (Fields) of the library must be checked. Tags are like Name of the library,

Version of the library, Type of the library, Date, Time etc. If any of the Tags is

incorrect then library would not be submitted to the customer.

Figure 4.5: GUI of Tagchecker PLUG-IN
[14]

Discussion: Figure shows the two another status of the tasks. Yellow part shows

the ”Running” status of the task. It means the task is being run. Purple part shows

”Waiting” status of the task. It means this task will run when the above task has

completed.

CHAPTER 4. IPSCREEN AND PLUG-INS 22

4.2.5 Crosscheck

This plug-in is designed to ensure views consistency.Similar view consistency

ensures that same type of views are consistent among them (i.e. all liberty files,all

lef files, all .v files etc). Cross view consistency ensures that all different views or

Cross-Views are consistent with each other (i.e. .lef vs .lib, .lef vs .v etc).

In this PLUG-IN, The basic logic which is going to be used is : if X = Y and

Y = Z then X = Z. Means if .lef = .lib and .lib = .v then .lef = .v . Some basic

TCL(Tool Command Language)[12] commands are used to check like this.

Figure 4.6: GUI of Crosscheck PLUG-IN
[14]

Discussion: Figure shows that all tasks are checked successfully. That means all

the views are compliant with each other. Side bar shows the different options which

are used after loading the library and PLUG-INS.

CHAPTER 4. IPSCREEN AND PLUG-INS 23

4.2.6 Mat10comp

This plug-in is designed to compare two versions of the same library. So we can

elaborate the new version is how much effective then the older version.

In this PLUG-IN, the whole process is done by one tool named as LIBCOMP[14].

This tool has some command which themselves compares the different files between

two versions of the same library whenever they will be called. After executed any

command, it generates particular report for the same.

Figure 4.7: GUI of MAT10comp PLUG-IN
[14]

Discussion: Here, the red part shows that task has run successfully and It has

compared those files between the two versions of the same library which has been

loaded. once the ”structure comparison” task has run successfully then other tasks

are seen on the screen.

CHAPTER 4. IPSCREEN AND PLUG-INS 24

4.3 Summary

In this chapter, it is explained that how ipscreen and plug-ins are useful in the

checking of design statically. This chapter shows that how PLUG-INS do the hectic

job in a very easy method in a very short time. Syntax, Model and structure of any

library are easily checked by the PLUG-INS. we can design more checks by using

TCL (Tool Command Language).

Chapter 5

Implemantation and Intermediate

Results

5.1 Automatic Setup Creation

Earlier following files were required to create manually-

• Command file in which under test library’s path, name and some other infor-

mation required to fill manually which can maximise human mistakes.

• List of tool required by the plugins with their versions.

• List of plugins user wants to run on their libraries.

25

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 26

Figure 5.1: Manual Setup Creation Process

But now in this automatic setup creation module, all files are created auto-

matically, User just required to provied a few information. Following steps I have

implemented to achieve this automation-

• I have developed a TCL script which searches the” LIBRARIES” directory in

current working area, this directory has the under test library.

• After the successful search, I have grepped information of library full path.

• Each library has an index file namely vc.bbview , this file contains all the

information of library including library’s IP type (either Memory, StdCell,

Macro or IO) as well as library’s actual name.

• Since this index file is very large and it is difficult to find required information

directly, I have used Regular Expressions for collecting all the information.

• With regular expressions I have created some patterns by analysing all kind

of index files of libraries.

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 27

• Hence here I have library name, its technology as well as library type. All

these informations are redirected to a file.

Tool List creation -

• Now to create ToolList i have used al RefSpec[10] Tool which is ST specific

tool.

• This tool uses a specification file or technology specification file as an input,

Since this file is technology dependent hence all libraries irrespective of library

type can use this file. But they should have same technology.

• Using this file refspec creates a tool List.

• After creation of this toolList file a script which is in Shell runs and removes

duplicated lines, extra spaces and commented lines.

Plugin List creation -

• Earlier user needed to provide a file which contains Plugin name and thier

respective path.

• Now user just need to give a plugin name on command line , and inside the

script all plugins are extracted and a plugin list file is created.

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 28

Figure 5.2: Manual versus Automatic setup creation

5.1.1 Results of Automated Setup Creation

As a result user just needed to provide library name (which is under-test), Auxiliary

library plugin name in following format.

ipsSetup -libraries ”list of under test libraries seperated by spaces” -

plugins ”list of plugins” -auxLib ”list of auxiliary libraries” -runbatchMode

”yes or no”

5.2 Pre Tool Checking Module

Since Plugins uses tools for validation, so we have to provide the same in the tool

list. After loading the Plugin and tool list , it gives an error that tool is missing (If

that tool is not available), So user have to update setup again and rerun the plugin

again. This is a very irritating work to update the tool list and run the checks again.

I have developed a module of pre tool checking before ipscreen runs.

• I developed the pre tool Checking module that Checks the existence of every

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 29

tool that is pesent in tool list, If not present then it shows error prior to the

Plugin Load.

• I have used shell scripting a parsed through each lines.

• The checks which are going to be run by user are identified and their respective

tools are extracted.

• Now all required tools from tool list are picked and checked existence in the

central area or the given paths.

• Since I could do the checking of whole toolList file but in order to save time

the developed script only checks the required tools.

5.3 Access rights checking of whole library pack-

age

This module is to check the access rights of whole library package in order to make

sure that library have defined access rights.

• To implement this module I have used Tcl as well as Shell scripting.

• I made a script which checks directory with 755 permission and files with 644

permission.

• Firstly I have listed a list using shell utility and redirected them all in a file.

• And checked the directory with ”drwxr-xr-x” and files with ”-rw-r–r–”

5.3.1 Results

I have added this check in syntaxcheck plugin. Now user do not need to check this

manually or stand alone script. He/She just click on the button of access rights

check and their library will be checked fully and results will be displayed.

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 30

5.4 Mat10Comp plugin new Archicture

Following changes are done by me in existing plugin.

• Since in existing plugin many intermediatery files are created so it is taking

more runtime and space.

• Another problem is task were running on same .lib and .db files (ST specific

files) on each run.

• For the first problem I used SED and AWK commands which do not create

extra files but they keep data in buffer, hence it saves reading and writing time

from files.

• For the second problem I have restricted to run tasks on same .lib and .db

once by default.

• I have also corrected the formatting of its output through shell and tcl scripts.

5.4.1 Intermediate Results

Some of the tasks are taken from both new and old plugin that is Mat10comp.v.2.0

and Mat10comp.v.1.1 respectively. In both versions tasks are running in parellel.

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 31

Figure 5.3: Situational Analysis

5.5 Manufecturing Design Check

Layout is a view of a cell in a Library. And this should be aligned according to the

layout design rules.

• Earlier every team has to check this manually that their library has aligned

with layout Design rule. So this was very tedious task.

• I developed this check in Cadence SKILL language .[12].

• For Doing this first thing needed was to Parse Rules File.[13]

• So I Developed a parser that picks appropiate values from rule files and makes

a database.

• And using this file I check that under test libraries follows that rule or not.

CHAPTER 5. IMPLEMANTATION AND INTERMEDIATE RESULTS 32

• Layout is a view of a cell in a Library. And this should be aligned according

to the layout design rules.

• Since every cell has two types of Power pins: Power and Ground Pins.

• I need to check that two adjacent pins with same polarity have the minimum

distance as defined in the Layout rules.

Figure 5.4: Layout View of a Cell

5.6 Summary

In this chapter, it is explained that how i implemented features and their inter-

mediate results through chart.

Chapter 6

New Approach Unified

Environment

Since In IPScreen we have to load Libraries load PLUG-INS . This is a time as

well as space consuming process to validate Libraries. To overcome some of the

limitations this Approch came into the picture.

6.1 Some Points related to this New Environment

• Since it do not require to Load library and Plugins hence it takes less memory

on disk and comparatively less runtime.

• Its all Setup file can be created Automatically,

• It do not Provides GUI , in first phase it will work on command line interface,

GUI can be provided in its next release.

• It supports Full batch mode.

• It provides pre-checking of tools.

• Plus point of this Environment is if user want to run specific checks on specific

view then he can do that without running whole plugin.

33

CHAPTER 6. NEW APPROACH UNIFIED ENVIRONMENT 34

Figure 6.1: Executive Summary old and new approach

• One of the best feature of this tool is regression environment. It Provides

following features-

– It provides Run option to the failing checks through command line inter-

face.

– This facility is totally full batch mode supported.

– User can run all failing checks at once or one by one.

– IPScreen[3] provides this facility but that is time consuming and not fully

batch mode supported.

6.2 My Contribution in this unified environment

• I have actively participated in unified environment architectural discussion.

• I am constantly working on its output part for making it user friendly.

CHAPTER 6. NEW APPROACH UNIFIED ENVIRONMENT 35

6.2.1 Implementation of Dashboard Creation

When user validates their IPs , different checks performed and as the end

results they get Reports. Now excel format reports are always better because

user can easily write their comments on this format. But the main concern is

unlike html reports excel format is not formatted well, So the very challenging

task is to make it user friendly. I have used following steps to make report

well formatted in excel.

Figure 6.2: GUI of Crosscheck PLUG-IN

– When checks run on the views they creates their seperate areas. And

makes some logs(log of scripts execution) and status files (final status) of

the check run.

– To bring all the results of different checks together it was needed to parse

CHAPTER 6. NEW APPROACH UNIFIED ENVIRONMENT 36

all the files from their respective directories of checks.

– I have designed a parser in Shell and Tcl language which parses through

the areas and makes a common unix report. This report can also be used

by the user.

– I have developed a module in Perl[8] language to create a well formatted

excel report.

– This report is such intelligent that user can find required information

easily.

6.3 Summary

In this chapter, it is shown that how new environment is different and better

then existing Framework that is IPScreen . And how its reporting is different from

IPScreen.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In the field of validation, automation through PLUG-INS are milestones and

they are now playing an importent role to validate libraries. All PLUG-INS are to

be used to validate any library. By using these PLUG-INS , whole validation is done

in 1 day instead of 5-6 days . So, we get the time efficiency of 86 percent.Manual

work is being automated in order to save time as well as time. A new approach

(Unified Environment) is going to be built with backward compatiblity , the reason

behind to make validation very fast as well as view base, using this approach the

disk space used would be very less as compared to previous solution..

7.2 Future Work

Since the Technology is going very fast hence I need to explore more in the field

of scripting and Enhance the functionally of new unified environment and making

this as much intelligent as it can minimize manual work which in turn reduces cost

and increases productivity .

37

References

[1] ST internal documents and Training manuals on LIBRARY BASICS

[2] ST internal documents and Training manuals on LIBRARY VIEWS

[3] ST internal documents and Training manuals on CAD INFRASTRUCTURE,

DESIGN KIT and Tools.

[4] Practical Programming in Tcl and Tk (4th Edition) by Brent B. Welch

[5] Tcl/Tk Cookbook by L. Sastry

[6] Wikipedia http://en.wikipedia.org/wiki/C_shell

[7] Tcl guide , http://wiki.tcl.tk/299

[8] Tutoials point ,http://www.tutorialspoint.com/perl/perl_introduction.

htm

[9] John K. Ousterhout ”Scripting: Higher Level Programming for the 21st Cen-

tury” Published in IEEE Computer magazine.

[10] ST internal tool RefSpec and User Manual.

[11] Bernard Laurent and Thierry Karger ”A System to Validate and Certify Soft

and Hard IP” Proceedings of the Design,Automation and Test in Europe Con-

ference and Exhibition (DATE03).

38

 http://en.wikipedia.org/wiki/C_shell
http://wiki.tcl.tk/299
 http://www.tutorialspoint.com/perl/perl_introduction.htm
 http://www.tutorialspoint.com/perl/perl_introduction.htm

REFERENCES 39

[12] Cadence SKILL guide https://secure1.cadence.com/loginapp/

CSSOLogin/login.action?TAM_OP=login&ERROR_TEXT=Successful%

20completion&URL=%2F&HOSTNAME=support.cadence.com&PROTOCOL=http

[13] ST internal Documents on DesignKits .

[14] ST internal documents and Training manuals on PLUG-INS.

[15] http://www.tcl.tk/doc/scripting.html

 https://secure1.cadence.com/loginapp/CSSOLogin/login.action?TAM_OP=login&ERROR_TEXT=Successful%20completion&URL=%2F&HOSTNAME=support.cadence.com&PROTOCOL=http
 https://secure1.cadence.com/loginapp/CSSOLogin/login.action?TAM_OP=login&ERROR_TEXT=Successful%20completion&URL=%2F&HOSTNAME=support.cadence.com&PROTOCOL=http
 https://secure1.cadence.com/loginapp/CSSOLogin/login.action?TAM_OP=login&ERROR_TEXT=Successful%20completion&URL=%2F&HOSTNAME=support.cadence.com&PROTOCOL=http
http://www.tcl.tk/doc/scripting.html

	Certificate
	Undertaking
	Acknowledgement
	Abstract
	Contents
	List of Figures
	Introduction
	Introduction of Library IP
	CORE Library:
	IO Library:
	Memory:
	Analog and Mixed Signal Library:

	Introduction of Certification
	My Contribution In The Thesis
	Organization of The Thesis

	Literature Survey (Background Theory)
	Back End Views
	Symbol View
	SLIB
	Schematic View
	Layout View
	Synopsys Technology File (.libs)

	Summary

	Tools and Technology
	Scripting Introduction
	Comparison chart with Non-Scripting Language

	Technology Used
	C Shell
	Tool Command Language (Tcl)
	Perl

	Summary

	IPSCREEN and PLUG-INS
	IPSCREEN
	PLUG-INS
	Syntaxcheck
	Modelization
	Mat10bbview
	Tagchecker
	Crosscheck
	Mat10comp

	Summary

	Implemantation and Intermediate Results
	Automatic Setup Creation
	Results of Automated Setup Creation

	Pre Tool Checking Module
	Access rights checking of whole library package
	Results

	Mat10Comp plugin new Archicture
	Intermediate Results

	Manufecturing Design Check
	Summary

	New Approach Unified Environment
	Some Points related to this New Environment
	My Contribution in this unified environment
	Implementation of Dashboard Creation

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

