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Abstract

Space Frame Structures are widely adopted for important structures like high-rise

buildings, industrial structures, oil and gas platforms etc which require higher safety

and accuracy in design. To understand actual behavior of structure, it should be

analyzed rigorously by considering structural nonlinearities.

The present study is concerned with the analysis of space frame structure. The lin-

ear and nonlinear analysis for static and dynamic loading conditions are carried out.

Main focus of analysis is on effects of geometric nonlinearity on behavior of space

frame structure.

Space frame elements with six degrees of freedom (three translations and three rota-

tions) at each node are considered. Single element per member is assumed. Linear

static analysis is performed using direct stiffness method. Natural frequencies and

mode shapes are calculated using free vibration analysis. Wilson-Theta method is

used for time stepped analysis of space frame and as a result time history plots are

developed. These methods are extended for nonlinear analysis. Mostly, space frames

are consisting of slender sections which can have large deformations. Due to large

deformations, second-order effects are developed which can be included in analysis

by updating stiffness matrix. In present study, geometric stiffness matrix which is

depending on deformed geometry is considered. Different solution methods for non-

linear equilibrium equations are also discussed in brief. For static nonlinear analysis,

combined incremental and iterative method is adopted. Nonlinear response can be

evaluated by updating geometric stiffness matrix at the end of each incremental step.

To consider large strain and large deformation condition, both geometric stiffness as

well as geometry of structure are updated at the end of each incremental step. Unbal-

anced forces are calculated at the end of each incremental step and are recovered by

performing iterations. Same incremental-iteration method is used for time stepped
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method. In nonlinear dynamic analysis, incremental forces are depended on time de-

pendent forces. Combination of Wilson-Theta method and Newton-Raphson method

is adopted for nonlinear dynamic analysis.

Detail procedures of linear and nonlinear analysis for both static and dynamic con-

ditions are presented. Computer programs are developed based on these procedures.

Computer programs are capable of finding linear and nonlinear response. Single bay

single storey as well as multi storey frames are analyzed for static and dynamic load-

ing conditions for both linear and nonlinear case. Space frame building with plan

dimension of (15m × 20m) with varying number of storeys from 6 storey to 30 storey

with storey height of 5m are analyzed to understand the effects of height on nonlinear

behavior of space frame. Loading conditions are kept same for all types of multi-storey

frames to compare results. In static loading condition, equivalent static earthquake

loads based on IS:1893-2002 are considered for multi storey frames and for dynamic

case, time dependent lateral forces are applied at top storey of each frame. Results

of linear analysis are compared with ETABS results for validation. Nonlinear anal-

ysis results are compared with finite element analysis results to validate procedure

of nonlinear analysis. Load displacement curves and time history curves are plotted

based on results obtained from developed programs.
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Chapter 1

Introduction

1.1 General

Space frames are most generalized structure that can represent different class of struc-

tures. Space frames are widely used as supporting structure for low-rise building,

industrial buildings, oil and gas platforms, high-rise buildings etc. Space frame is

more popular because of its simplicity in construction. It also possesses typical and

speedy construction procedure and hence highly recommended by engineers. It also

provides flexibility to assemble other architecturally attractive structures.

From structural engineer point of view, space frame is the three dimensional struc-

ture consisting of beams and columns which are so arranged that forces are transferred

in three dimensional manner. Also space frame elements are long in comparison to

their cross-sections. Every frame has many joints which can be points of intersection

of the elements, points of support and free end of elements.

1
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Analysis of structure is prerequisite for designing any structure. Structural anal-

ysis is used to determine internal forces, stresses, displacements and strains for given

loading conditions. Based on the analysis results, structural engineers are able to de-

sign structures for different load combinations to withstand under worst conditions.

Structural analysis is also useful to understand the behavior of space frame in terms

of load-deformation curves for different loading conditions. These are useful to check

whether the proposed structural design is efficient or not.

Mostly space frames are statically indeterminate so that it is very difficult to an-

alyze it through hand calculations. Also it is difficult to understand general behavior

of space frame as it has many elements which are in space so that specific load path

can not be predicted. Space frame behaves differently for different conditions like for

low rise building it is behaving like shear frame whereas for high rise building it is

behaving as cantilever frame. To predict accurate behavior of space frame, appropri-

ate analysis techniques should be adopted. There are numbers of analysis techniques

which involve different nonlinearities and load behavior. For example if frame is sub-

jected to large deformation then geometric nonlinear analysis is helpful. The choice

of analysis depends on the specific requirements. All these analysis problems can

be solved by use of computers. Introduction of efficient computer based analysis

techniques reduce time and efforts for analysis of complex space frame structures.

1.2 Types of Structural Analysis

Structural analysis is mainly concerned with finding out the internal forces, defor-

mations and behavior of frame elements when subjected to external forces. Various

analysis types are available which depend on the types of loads, stress-strain relation-

ship of material and induced second-order effects. Types of analysis are
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a. Static Analysis

In static analysis, effects of steady loading conditions on a structure are calcu-

lated. Generally all loads except dead load on structure are time dependent.

But when the variation of loads are less or in other word, changes in magnitude

and direction of loads are sufficiently slow, induced inertia forces can be ne-

glected. Hence, Static analysis is simplified analysis procedure. Static analysis

used to determine displacements, stresses and strains induced due to external

loads which do not induce inertia and damping effects.

Loads like externally applied forces, gravity forces, imposed displacements, tem-

perature effects etc. are included in static analysis.

b. Dynamic Analysis

Dynamic Analysis is a type of analysis which covers the behavior of structures

subjected to dynamic loading which have high acceleration. Changes in magni-

tude or direction of loads are faster compared to natural frequency of structure.

Loads like wind load, blast load, earthquake load are dynamic in nature. In

dynamic analysis inertia forces, developed due to the applied dynamic load, are

also considered. Damping effects in structure can also be included in dynamic

analysis.

Structural response in terms of displacement, velocity and acceleration are cal-

culated in dynamic analysis. Different methods are available for time-history

analysis as well as modal analysis.
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c. Linear analysis

Every structure possesses some nonlinearity but to understand its behavior

quickly, linear analysis is adopted. There are some basic considerations for

linear analysis

• Equations of equilibrium are based on the initial geometry of structure and

remain same after load application.

• Material properties do not change.

• Stiffness of structure remains same throughout the analysis

• Structure returns to its original form when loads are removed

• Deformation and strain in every member are small.

• Material has infinite strength and infinitesimal deformation.

Linear analysis is widely used by professionals but it has some limitations. When

any of these conditions is not satisfied than nonlinear analysis is adopted.

d. Nonlinear analysis

When equilibrium equations for any structure are derived based on its deformed

geometry and actual material properties than realistic behavior can be traced.

This type of analysis is called nonlinear analysis. Nonlinearity in terms of

material, boundary conditions and geometry can be included and it requires

some mathematical modeling. Nonlinear analysis is not popular because it is

complex and time consuming.
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1.3 Need of Nonlinear Analysis

Linear elastic analysis is adopted by design engineers to predict member forces,

stresses and displacements because it is simple and one stepped analysis method

for given loads. It does not require any load increment or iterations. For dif-

ferent load cases, principle of superposition can be applied for linear analysis.

But it is unable to predict exact solutions as all structures have nonlinear be-

havior before reaching to ultimate conditions or limit state conditions. Hence,

modern codes include some nonlinear procedures. By considering nonlinear be-

havior, one can achieve realistic strength against failure conditions and actual

factor of safety. Nonlinear analysis is also highly recommended when structure

subjected to abnormal loading conditions like blast condition and during pro-

gressive collapse etc. For special structures like power plants, gas and oil plants,

it is required to understand nonlinear performance of structure to achieve desire

safety levels. To develop new high strength materials for areas like aero-space

engineering, tall structures and mechanical engineering, nonlinear analysis is

adopted.

Different nonlinear Analysis for structural engineering field are given below:

• Strength analysis

Strength analysis is performed to estimate the load, the structure can

support before global failure occurs.

• Stability analysis

It is used to find critical or limit conditions which are used for designing

purpose.

• Service configuration analysis

This type of analysis is used to find equilibrium at the service stage or

fabrication stage for slender structure like cable stayed bridge.
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• Reserve strength analysis

Reserve strength analysis is important to find load carrying capacity be-

yond limit states to assess safety under worst conditions.

• Progressive failure analysis

It is the combination of stability and strength analysis in which progressive

failure is considered.

For structural engineering, these analysis techniques are useful to understand

causes of failure of structure, safety and serviceability assessment of existing

structure which may have cracks, corrosion or aging conditions. It is also re-

quired to utilize full strength of materials so that more efficient design can be

proposed.

For research purpose, nonlinear analysis is also used to propose new material

models. For developing new guidelines for design, it is required. Nonlinear anal-

ysis requires large computations which are very difficult for manual calculation.

Development in computational capacity of modern computers and advanced

procedure, make nonlinear analysis popular for professionals.

1.4 Impact of Nonlinear Analysis

Compared to linear analysis, following conditions should be considered before

adopting nonlinear analysis.

• The principle of superposition cannot be applied.

• Results of several load cases can not be scaled for combination of actions

which can be done in linear analysis.
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• At a time one load case can be handled.

• Initial stress and strain levels are important for overall response of struc-

ture.

• Sequence of applied load is important to predict actual response.

1.5 Types of nonlinearities

As discussed in previous sections, every structure possesses nonlinearities. The

sources of nonlinearities for structural engineering problems are

(1) Geometric Nonlinearity

(2) Material Nonlinearity

(3) Contact Nonlinearity

Geometric Nonlinearity

When geometry of structure is changing as it deforms, the relation between force

and displacement does not remain linear. This type of nonlinearity is known as

Geometric Nonlinearity. In precise way, geometric nonlinearity cause additional

actions which are due to large deformations and change in position of loads. It

is associated with second order effects like P-delta effects. Second order effects

can be calculated by updating stiffness of the structure which is depended on

its deformed geometry. This can be understood with example of frame. In

Fig1.1(a), deflected lumped mass model of frame structure is shown. Due to

deflection, position of gravity load changes and additional forces are induced in

structures which is in form of horizontal forces between two consecutive storeys

as shown in Fig1.1(b). This is one of the examples of geometric nonlinearity.
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Effect of one degree of freedom on other degree of freedoms are considered in

geometric nonlinearity using geometric stiffness.

Figure 1.1: Load direction before and after deflection [16]

Geometric nonlinearity is included in space frame analysis when sections of

members are too slender or frame has large displacement.

Material Nonlinearity

Structural material has nonlinear stress-strain relationship after beyond elastic

limit and hence displacement and forces are affected. Nonlinear constitutive

relationship between stress and strain affects stiffness of structure. Many struc-

tural materials have large capacity to deform in plastic range and to utilize

full capacity of material, material nonlinearity should be considered in analysis.

Other variables like prestress, temperature, time, moisture etc can be included

in material nonlinearity. Plasticity, creep and visco-elasticity are effects of ma-

terial nonlinearity.

Different mathematical models are available for different material types which

can be used to consider effects of material nonlinearity. Fig 1.2 shows nonlinear

stress-strain relationship for concrete suggested by IRC 112 - 2011 for nonlinear
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structural analysis.

Figure 1.2: Nonlinear Stress-Strain relationship for concrete

Contact Nonlinearity

Contact nonlinearity is also known as boundary condition nonlinearity. When

boundary conditions change with respect to displacement magnitude than this

conditions should be considered in analysis. Fig 1.3 is example of contact non-

linearity. Under the effect of loading condition when cantilever beam deflects

by d units, its boundary condition changes.

Figure 1.3: Example of Contact Nonlinearity
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1.6 Nonlinear analysis of Space Frames

As discussed earlier, space frames are widely used for important structures

which require accuracy in design process. For that actual behavior of space

frame is required to find out for worst cases. Space frame elements have small

cross-section compare to their length so that space frame structure is highly

affected to second-order effects. There are wide range of high strength structural

materials that are used for space frame construction are available. It is always

advisable to use full capacity of materials. So both geometric nonlinearity and

material nonlinearity are considered in analysis of space frame. Many times

based on the demand, various combinations of nonlinearities are included for

nonlinear analysis. Basic combinations of nonlinearities are listed below: [16]

(1) First order elastic analysis

This is linear analysis in which both geometric and material nonlinearities

are not considered. This is simplest form of structural analysis.

(2) Second order elastic analysis

In this analysis, only geometric nonlinearity is considered to trace second-

order effects like P-delta analysis, buckling analysis.

(3) First order elasto-plastic analysis

This analysis only includes material nonlinearities. Space frame having

small deformation where second-order effects are too less so that geometric

nonlinearity can be neglected.

(4) Second order elasto-plastic analysis

It is most extreme condition where both geometric and material nonlin-

earities are considered in analysis.
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Above mentioned methods are useful to predict ultimate load carrying capacity

as well as static or dynamic response of space frame for required nonlinear

conditions.

1.7 Objectives of the study

Nonlinear analysis results gives accurate stresses, strains, displacements and internal

forces for space frame. Space frame is most common type type of structure which

requires safe and economical design. As discussed earlier in section 1.3, different

nonlinear analysis are applicable to space frame. These analysis types may be static

or dynamic. To understand behavior space frame, rigorous analysis procedure is

required which may includes all type of nonlinear analysis discussed in section 1.5.

Looking to above need the objectives of present study are:

• To study linear static and dynamic behavior of space frame and develop com-

puter program.

• To study the effects of nonlinearities on space frame and understand procedure

to include them in analysis procedure.

• To obtain nonlinear equilibrium equations for static and dynamic loading con-

ditions.

• To establish detail solution procedure for nonlinear static and dynamic equilib-

rium equations.

• To develop computer program for static and dynamic nonlinear analysis for

space frame.
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1.8 Scope of Work

To achieve above objectives the scope of work is decided as follows:

• Linear static analysis of space frame using direct stiffness method.

• Free vibration analysis to obtain dynamic properties of space frame.

• Developing computer program for time history analysis of space frame using

Wilson-Theta method.

• Develop method to include nonlinear effects in static and dynamic analysis

techniques.

• Formulation of nonlinear iterative analysis procedure for both static and dy-

namic analysis.

• Developing computer program for nonlinear static and dynamic analysis of space

frame in which geometric nonlinearity can be incorporated.

• Analysis of various multi storey space frames for same plan dimensions and

storey height for static and dynamic loading conditions for both linear and

nonlinear case using developed computer program.

1.9 Organization of report

The contents of major project are presented in various chapters as follows.

Chapter 1 gives an overview about space frames. It introduces types of nonlinear-

ities and different types of analysis techniques. Applications of nonlinear analysis are
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also mentioned. Based on need of the study, objectives and scope of work are defined.

Literature review related to nonlinear analysis is presented in Chapter 2. It

provides information about implementation of geometric and material nonlinearities.

It includes review of different papers related to analysis procedure for static and dy-

namic analysis.

Linear analysis procedures are presented in Chapter 3. Computer oriented anal-

ysis procedures for static linear, free vibration analysis and forced vibration analysis

are discussed. Development of program is also presented in this chapter.

In Chapter 4, Results of linear static and dynamic analysis obtained from com-

puter programs are also included and validated with ETABS results.

Chapter 5 gives solution methods for nonlinear equations. Geometric stiffness

matrix for space frame element is presented. Detail procedures for nonlinear static

and dynamic analysis are also discussed. Computer program development for nonlin-

ear analysis is also discussed.

Implementation of computer program for space frame is discussed in Chapter 6.

Results of nonlinear static analysis are also validated.

Summary and conclusion of present study is reported in Chapter 7. Future scope

of work is also included in this chapter.



Chapter 2

Literature Review

2.1 General

A brief review of previous studies on nonlinear analysis of frame structure is presented

in this chapter. Literatures also focus on effects of material and geometric nonlinear-

ities to Space frames. Various numerical methods for solving nonlinear equilibrium

equations are also reviewed. Various research papers have been refereed to under-

stand theoretical formulation of tangent stiffness matrix for space frame elements.

The available literature has been classified in three categories as follows

a. Formulation of tangent stiffness matrix for space frame element

b. Solution techniques for nonlinear equilibrium equations

c. Nonlinear analysis procedure for both geometric and material nonlinearities

14
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2.2 Formulation of Tangent Stiffness Matrix

Yang and McGuire[1] presented geometric stiffness matrix for space frame element.

Derivation of stiffness matrix was started from principle of virtual displacements.

Derivation of stiffness matrix for three dimensional element was evaluated based on

its deformed shape. Incremental equilibrium equation was developed which was based

on deform geometry of space frame and updated Lagrangian formulation. Defined

geometric stiffness matrix was symmetric and coefficients of matrix were depended

on the induced member end actions at the end of previous incremental step. Hence

tangent stiffness matrix, summation of elastic stiffness matrix and geometric stiffness

matrix, should be modified at the end of each incremental step.

Chang[2] presented higher order stiffness matrix for space frame. By incorporating

higher order stiffness matrix, number of iterations were reduced. Author had derived

higher order stiffness matrix by using rigid body rotation. When there was any in-

cremental load existing on structure, structure was allowed to undergo small rigid

rotation. Due to this rotation, Magnitude of forces remained same but the directions

of force changed hence additional actions were induced. Author had included these

actions in geometric stiffness matrix for space frame element and hence number of

iterations were reduced in force recovery step. Equilibrium equations were derived

from energy method. Proposed tangent stiffness matrix had elastic stiffness, geomet-

ric stiffness and higher order stiffness matrix. [Kt] = [Ke] + [Kg] + [Ki] .

Kassimali and Abbasnia[3] studied geometric nonlinearity for elastic space frame.

Methods for large deformation analysis and stability analysis of elastic frame was pre-

sented that considered large rotation and displacements at joints. Load-deformation

relationship for beam-column element was derived in which effect of axial force on

other degrees of freedom were considered. Detail procedure for analyzing space frame

was discussed. Change in chord length due to axial strain and flexural bowing were
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taken into consideration. Due to large deformations, coordinates were updated and

based on that transformation matrix was also recalculated. Author also suggested to

divide each member into small elements to reduce errors in computations.

Teh and Clarke[4] presented symmetry of tangent stiffness matrix. Symmetric tan-

gent stiffness matrix was change to asymmetric matrix due to introduction of higher

order stiffness matrix. These matrices were derived from Lagrangian formulations.

Asymmetry of stiffness matrix increases problems in matrix analysis method. Authors

had derived symmetric correction matrix for space frame element by considering equi-

librium at node which could be used in direct stiffness method. This method can be

used with modified Newton-Raphson method to predict buckling of 3-D frame.

2.3 Solution techniques for nonlinear equilibrium

equations

Chajes and Churchill[5] presented different methods to plot nonlinear load-deformation

curve. Geometric nonlinearity for elastic structure was considered. Detail procedure

for solution methods like linear incremental method (Fig 2.1(a)), nonlinear incremen-

tal method (Fig 2.1(b)) and direct method (Fig 2.1(c)) were established. Governing

equilibrium equations were derived and steps for solving them were described for all

methods. Main purpose of these methods was to find approximately exact behavior

of frame. Tangent stiffness matrices and Secant stiffness matrices were found using

energy principle for incremental method and direct method respectively.
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Figure 2.1: (A) linear incremental method, (B) Nonlinear incremental method, (C)
Direct Method

Yang et al.[6] studied incremental method for nonlinear analysis of space frame with

assumption of large deformation conditions. Incremental equation of equilibrium was

derived based on updated geometry of element using updated Lagrangian formula-

tion. Derived geometric stiffness matrix was asymmetric which was canceled out

by considering equilibrium condition for deformed conditions. Incremental equation

([ke] + [kg])∆u = ∆F was solved using incremental iterative procedure. Geometry

of space frame and transformation matrix for each member were updated after each

incremental step.

Suk et al.[7] presented effective solution technique that reduced time of computa-

tions for geometric dynamic nonlinear analysis. Predictor method was developed to

reduce time and efforts. Presented method was capable to replace modified Newton-

Raphson method. Algorithm of iteration scheme for dynamic nonlinear analysis was
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summarized. Undamped dynamic analysis was done using Newmark Beta method.

At each step, before stating iteration, prediction related to displacement was done

and then nonlinear iteration was started from predicted point so that required itera-

tions were decreased. Results suggested that predictor iteration method was able to

reduce 40-60 % time of computation. This was verified with dynamic analysis results

of cantilever beam and rotating plate.

2.4 Nonlinear Analysis of Space Frame

Thai and Kim[8] studied steel space frames including both geometric and mate-

rial nonlinearities. Fibre beam-column element was used. Geometric nonlinearities

were included using stability functions obtained from the stability solution of beam-

column. To consider material nonlinearities, stress-strain relation was adopted using

uniaxial stress-strain relations of fibers on the cross-sections. One element for beam

and column was proposed. Combined incremental and iterative method was used

for nonlinear analysis procedure. Effect of axial force and transverse displacement

(P-delta effect) was predicted for space frame. Flexural buckling of column for vari-

ous end cases like free at top and fixed at bottom, hinged at both ends, fixed beam

and space frames were analyzed. Above results were verified with the commercially

available software SAP2000. 20 storey steel space frame was analyzed and validated

with the available literatures.

Nguyen and Kim[9] studied steel space frame with semi-rigid connections. Non-

linear elastic dynamic analysis was done by considering only geometric nonlinearity.

Beam-column element was proposed for beam and column members. Tangent stiffness

matrix was calculated using stability function and geometric stiffness matrix. Combi-

nation of Newmark numerical integration method and Newton-Raphson method was

used to find dynamic properties of space frame. Semi-Rigid Connections were mod-

eled by spring. Three translational and three rotational springs were considered at
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each joint. Zero length members were used for nodal springs. Programming was done

in FORTRAN language and was verified by taking various literature problems as well

as software results. Various dynamic loading conditions were included in program.

Examples of various space frames subjected to impact load, time dependent force and

earthquake excitation were analyzed.

Abbasnia and Kassimali[10] presented method for large deformation elastic-plastic

analysis of space frame. Large deformation was considered for elastic system and then

extended it for elastic-plastic effects. Beam-column approach was adopted for frame

members which consider change in geometry and its effect on stiffness. Material was

assumed as elastic-plastic and yielding was considered at the end of member. It

implied that plastic hinges would develop at the end of the member. Member was

remain elastic between two plastic hinges developed at the end of each member. To

define force-displacement relationship, stability function was used. Four structures

were analyzed in which both nonlinearities were taken into consideration.

Liew et al.[11], developed improved analysis technique for plastic hinge analysis of

space frame. Beam-column element was used for frame members and beam-column

formulation was done by stability interpolation function. Material nonlinearity was

modeled using concentrated plastic hinge method. Plastic hinges between two ends

of member were allowed to developed. Incremental method with incremental load

control have been used. Elastic-plastic tangent stiffness matrix was used in analysis

process. Method can be used to predict buckling load of column, lateral torsional

buckling. Author suggested that accuracy of analysis would be improved by consid-

ering more number of element for beam and column of space frame. Six storey frame

(Fig 2.2) was analyzed and results are shown in Fig 2.3
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Figure 2.2: Space frame Detail

Figure 2.3: Hinge Location and Load-displacement curve
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Jiang et al.[12], presented spread of plasticity analysis of space frame. Material non-

linearity was modeled through Von Mises yield criteria. Experimental and benchmark

solutions were used to verify proposed method. Analyzed frame detail was shown in

Fig 2.2. Analysis requires discretization of member into number of elements. Au-

thor also proposed maximum number of element as nine. Method proposed is highly

computational intensive but it can be used to predict lateral torsional buckling.

Chan[13] studied analysis of space frame using secant stiffness matrix. Large defor-

mation static and dynamic analysis were done for various conditions and presented.

For nonlinear time history, response for space frame was obtained using combination

of Newmark Beta and Newton-Raphson approach. Bernoulli’s assumption of normal

plane section was adopted and Strains in space frame element were assumed small but

displacements and rotations were large. Linear elastic material was taken into con-

sideration. Suggestion was made to stop iterations in static and dynamic nonlinear

analysis. When unbalanced force was less than 0.1% of total applied load, iterations

were terminated. Technique had been verified using number of examples.

Mansouri and Saffari[14] proposed numerical method to solve nonlinear equation.

Proposed method was compared with Newton-Raphson method and proved as more

efficient and time saving. Method is known as Two-point iterative method. Compu-

tational time was reduced by 40 % as number of iteration could be reduced.
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2.5 Summary

Brief review of literature on nonlinear analysis of space frame structures is presented

in this chapter. Reviewed papers and books are useful to build the foundation for

nonlinear analysis procedure. Literature includes solution techniques to solve nonlin-

ear equations, methods to derive geometric stiffness matrix, static nonlinear analysis

of elastic frame using incremental-iteration methods, nonlinear time history analysis

method and applications of nonlinear analysis of space frame.



Chapter 3

Static and Dynamic Linear

Analysis of Space Frame

3.1 General

As discussed earlier, linear analysis gives response of space frame which may be good

approximation for some portion of nonlinear response. Many structures remain in op-

erational or service stage and for those conditions, linear analysis is widely accepted.

It is also required to understand linear analysis procedure because nonlinear analysis

is nothing but linear sequential analysis or say incremental linear analysis. In this

chapter, linear analysis procedure are described for both static and dynamic condi-

tions. Methods to solve multi-degrees of freedom (MDOF) system is also discussed.

Computer oriented analysis procedure, Direct stiffness method is used for linear static

analysis.

23
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3.2 Space Frame Element

Behavior of space frame can be found out by finding response of each members of

space frame. In typical analysis problem, behavior of each member under certain

loading conditions can be described by governing equation. Space frame consists of

many member which are connected to each other which is known as node. When

behavior of each node is known than only whole response of frame can be found out.

To get response at each node, proper degrees of freedom should be considered as per

field conditions. Then boundary value problem is to be solved to get response of each

node.

Here, for space frame where members are oriented in three dimension so that six

degrees of freedom are considered. (Three translational and three rotational DOFs).

For each member consisting two nodes, there are total 12 DOFs. Here beam element

with 12 DOFs and corresponding actions are shown in Fig. 3.1. Beam having length

L has two end A and B.

Figure 3.1: Space Frame Element
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3.2.1 Stiffness Matrix for Space Frame Element

Direct stiffness method is matrix analysis method. In which response is calculated

using equation:

[Sj]{D} = {F} (3.1)

Here [Sj] is global joint stiffness matrix. To construct structure stiffness, it is

required to find member stiffness matrix [Sm]. To find stiffness matrix for prismatic

space frame element shown in Fig. 3.1, consider unit deformation for single DOF at

a time and find corresponding restraint actions at two ends. This is nothing but joint

forces to produce unit deformation for particular DOF. Repeat this procedure for all

DOFs. This will form stiffness matrix which is symmetric square matrix.

[Sm] =



EAx

L
0 0 0 0 0 −EAx

L
0 0 0 0 0

12EIz
L3 0 0 0 6EIz

L2 0 −12EIz
L3 0 0 0 6EIz

L2

12EIy
L3 0 −6EIy

L2 0 0 0 −12EIy
L3 0 −6EIy

L2 0

GIx
L

0 0 0 0 0 −GIx
L

0 0

4EIy
L

0 0 0 6EIy
L2 0 2EIy

L
0

4EIz
L

0 −6EIz
L2 0 0 0 2EIz

L

EAx

L
0 0 0 0 0

sym 12EIz
L3 0 0 0 −6EIz

L2

12EIy
L3 0 6EIy

L2 0

GIx
L

0 0

4EIy
L

0

4EIz
L


(3.2)
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3.3 Linear Static Elastic Analysis

In this section detail procedure for static analysis of space frame is described. Material

is assumed as elastic. Main aim of linear analysis is to find deformations at each node

of space frame and find relevant stresses in each member. Procedure for finding

response of space frame is shown below.

3.3.1 Detail Steps for Static Linear Analysis

a. Identification of Structural Data

• In first step of analysis, all structural parameters like elastic modulus of

elasticity (E) , poisson’s ratio (µ), modulus of rigidity (G) and density are

defined. Define geometry of space frame in which provide information like

coordinates of all nodes (x,y,z) of space frame, assumed section properties

(Ix, Iy, Iz, A) of members and their locations. Also define support condi-

tions and their locations. These will be useful for boundary-value problems.

• All nodes are identified by index number. Each member has two joints

and they are denoted as j-end and k-end which is nothing but the index

number assigned to particular nodes. Corresponding degrees of freedom

are denoted by identifiers. This can be understood by Fig. 3.2. These are

useful for assembling load vector and overall stiffness matrix.



CHAPTER 3. STATIC ANDDYNAMIC LINEAR ANALYSIS OF SPACE FRAME27

Figure 3.2: Identifier for DOFs at J-end and K-end

b. Formation of Global Stiffness Matrix

• To calculate joint stiffness matrix of frame, first find out member stiffness

matrix of all members along their local axis using Eq. 3.2 which is de-

pended on the sectional properties of member and material details.

• Find coordinate transformation matrix for all member to convert stiffness

matrix from local coordinate system to global coordinate system. It is

also known as Rotation Matrix [Rt]. Rotation matrix for all space frame

member except vertical member is as shown in Eq 3.3

As shown in Fig. 3.3, Space frame element is considered in space and

rotations of α, β and γ are applied to member axes Xm, Ym and Zm

respectively. Rotation matrix for same is derived to convert member axes

to structural axes. Xs, Ys and Zs
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Figure 3.3: Rotation of axes for space frame element

[R] =


Cx Cy Cz

−CxCycosα−Czsinα

Cxz
Cxzcosα

−CyCzcosα+Cxsinα

Cxz

CxCysinα−Czcosα

Cxz
−Cxzsinα CyCzsinα+Cxcosα

Cxz

 (3.3)

For vertical members,

[R] =


0 Cy 0

−Cycosα 0 sinα

Cysinα 0 cosα

 (3.4)

Now total Rotation matrix [Rt] is written as,
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[Rt]12×12 =


R3×3 0 0 0

0 R3×3 0 0

0 0 R3×3 0

0 0 0 R3×3

 (3.5)

Member stiffness matrix with respect to global coordinate system is

[Sms]12×12 = [Rt]
T [Sm][Rt] (3.6)

• After finding member stiffness matrix in global coordinate system, assem-

ble them to a overall stiffness matrix. In which joint stiffness of members

meeting at common node are added.

[Sj] =
∑

[Sms] (3.7)

• Rearrange overall stiffness matrix by incorporating the boundary condi-

tions which includes support conditions.

• This rearranged matrix is always a banded matrix. Hence it is convenient

to use banded matrix operation instead of square matrix to solve equilib-

rium equations.
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c. Formation of Load Vector

• Define loading conditions for space frame members like concentrated load,

uniformly distributed load etc. Find load vector for each members based

on provided information for local coordinates. For joint loads, add them

directly to load vector based on their locations and directions. {Ac}

• Covert load vector with respect to local coordinate system to global coor-

dinate system using equation.

{Ams} = [Rt]
T{Ac} (3.8)

• Assemble global load vector by adding member load vectors according to

their locations.

{Aj} =
∑
{Ams} (3.9)

d. Calculation of Results

• After Constructing the global stiffness and global load vector, equilibrium

equation is solved. To reduce time and efforts, solution of equation is cal-

culated using modified Cholesky method. In this method, banded stiffness

matrix is factorized into upper triangle and then back substitution is ap-

plied to find unknown displacements.
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[Sj]{Ds} = {Aj} (3.10)

• At the end, displacement response at each free nodes is known. Based on

that, member end actions for each member can be calculated by Eq. 3.11.

{Am} = [Sm]{Dm} (3.11)

where,

{Dm} = [Rt]{Dg} (3.12)

3.4 Linear Dynamic Analysis of Space Frame

Response of space frame is affected by inertia forces and damping forces induced

when dynamic loads are applied. Response of space frame can be found by solving

second order simultaneous differential equations. These can be solved using matrix

calculations. Equilibrium equation for dynamic condition which is also known as

equation of motion, is shown in Eq. 3.13.

[M ]{ü}+ [C]{u̇}+ [K]{u} = {F (t)} or [M ]{Ẍg} (3.13)
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where, [M ]{ü} = Inertial Force [C]{u̇} = Damping Force [K]{u} = Restoring Force

[M],[C] and [K] are respectively mass, damping and stiffness matrices of space frame;

{ü}, {u̇} and {u} are the acceleration, velocity and displacement. F(t) and [M]{Ẍg}

are external force vector and force induced by base excitation respectively.

Before proceeding to dynamic analysis, mass matrix and damping matrix for space

frame should be derived. Stiffness matrix is calculated using Eq. 3.2.

3.4.1 Mass Matrix for Space Frame Element

Mass matrix of space frame element as shown in Fig. 3.1 can be derived in two ways

• Lumped Mass Matrix

• Consistent Mass Matrix

Mass of space frame element is distributed along its length. The uniformly distributed

mass is denoted as m̄.

• Lumped Mass Matrix

Lumped mass matrix for space frame member having uniform section is simply

diagonal matrix. In lumped mass matrix, mass is equally distributed at two

ends. Coefficients of mass matrix corresponding to translations are equal to

one half of total mass of element and for torsional displacements, coefficients

are equal to polar mass moment of inertia per unit length (Im̄) = m̄Ix/A.

Whereas for flexural rotations, coefficients are assumed to be zero.

Lumped Mass Matrix is shown in Eq. 3.14.
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[M ] =
m̄L

2



1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

Ix
A

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

sym 1 0 0 0 0 0

1 0 0 0 0

1 0 0 0

Ix
A

0 0

0 0

0



(3.14)

• Consistent Mass Matrix

In consistent mass matrix, mass of uniform space frame element is distributed

according to its displacement functions. This assumption is widely used in anal-

ysis. The derivation of consistent mass matrix is based on some mathematical

calculations.

Figure 3.4: Flexural Degrees of freedom and their boundary values
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Assume displacement function for flexural behavior of element (Fig. 3.4) is

v = c1 + c2y + c3y
2 + c4y

3 (3.15)

Differentiation of Eq. 3.15 gives

θy = c2 + 2c3y + 3c4y
2 (3.16)

Now use boundary conditions for fixed end conditions,

At x = 0, v = v1 and θy = θ1

At x = L, v = v2 and θy = θ2

Put these values in Eq. 3.15 and 3.16 and find value of c1, c2, c3 and c4. Put all

these in Eq. 3.15. This will give displacement function with respect to nodal

displacement which is also know as shape function. This can be denoted by,

V =
{
N1 N2 N3 N4

}


v1

θ1

v2

θ2


(3.17)

where,

N1(x) = 1 - 3( x
L

)2 + 2( x
L

)3

N2(x) = x(1 - x
L

)2
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N3(x) = 3( x
L

)2 - 2( x
L

)3

N4(x) = x2

L
( x
L

- 1)

By integrating Eq. 3.18, consistent mass matrix for flexural behavior can be

calculated,

mij =

∫ L

0

m̄Ni(x)Nj(x)dx (3.18)

Mass matrix for flexural displacements is shown below

[M ] =
m̄L

420


156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2

 (3.19)

Same procedure is applied to flexural behavior with respect to minor axis and

same matrix can be found out. For axial and torsional displacement, displace-

ment function is assumed as linear function (refer Fig. 3.5 and 3.6). so that

shape function N1 and N2 can be derived as

N1 = 1 - x
L

and N2 = x
L

and hence using Eq. 3.18, mass matrix for axial displacement and torsional

displacement are derived which are shown in Eq. 3.20 and 3.21 respectively.
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Figure 3.5: Axial degrees of freedom and their boundary values

Figure 3.6: Torsional degrees of freedom and their boundary values

[M ]axial =
m̄L

6

 2 1

1 2

 (3.20)

[M ]torsional =
Im̄L

6

 2 1

1 2

 (3.21)

By assembling above Eq. 3.19, 3.20 and 3.21 according to their degrees of

freedom, final consistent mass matrix can be formed,
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Consistent mass matrix for space frame element,

[M ] =
m̄L

420



140 0 0 0 0 0 70 0 0 0 0 0

156 0 0 0 22L 0 54 0 0 0 −13L

156 0 −22L 0 0 0 54 0 13L 0

140 Ix
A

0 0 0 0 0 70 Ix
A

0 0

4L2 0 0 0 −13L 0 −3L2 0

4L2 0 13L 0 0 0 −3L2

sym 140 0 0 0 0 0

156 0 0 0 −22L

156 0 22L 0

140 Ix
A

0 0

4L2 0

4L2


(3.22)

3.4.2 Damping Matrix for Space Frame Element

Damping in space frame structure can be approximately calculated by classical damp-

ing. In this section, procedure is described to construct classical damping matrix.

Rayleigh Damping can be found for space frame having similar damping mechanisms

over its height. Classical damping matrix is depended on mass and stiffness of struc-

ture.

Classical Damping Matrix

[C] = a0[M ] + a1[K] (3.23)
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where,

a0 = ξ
2ωiωj
ωi + ωj

(3.24)

a1 = ξ
2

ωi + ωj
(3.25)

where,

ωi and ωj = frequencies of ith and jth mode

ξ = Damping ratio depended on structural material

Classical damping is different for different modes as damping ratio changes. For

lower modes of vibration, damping ratio is assumed as constant. For higher modes

of vibration, damping ratio should be changed. For space frame analysis, focus is

on frame response for lower modes of vibration where damping ratio for concrete

material and steel material are 5% and 2% respectively.

3.4.3 Free vibration analysis

Free vibration analysis is useful to find dynamic properties of space frame. Modal

frequencies and modal vectors are obtained from free vibration analysis. Equation of

motion can be written for undamped free vibration as

[M ]{ü}+ [K]{u} = 0 (3.26)
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Now assume the solution of Eq. 3.26 as {u} = {a} sin(ωt - α). Put this in Eq. 3.26

will give

−ω2[M ]{a}sin(ωt− α) + [K]{a}sin(ωt− α) = {0} (3.27)

rearranging above equation gives,

[[K]− ω2[M ]]{a} = {0} (3.28)

Above equation is true when determinant of matrix [[K] - ω2[M ]] is equal to zero.

The expansion of this equation results in polynomial equation of degree n. Solution of

this equation gives ω2
i where, i = 1,2,...,n. where n is the number of modes considered.

Solution of this equation can be found out by Eigen value method. Eigen values give

square of natural frequencies of different modes (ω2
i ) and Eigen vectors give mode

shapes of different modes.

3.4.3.1 Analysis Procedure

In this section, analysis steps for free vibration of analysis of space frame is listed.

• Identification of Structural Data

Define all information related to material properties and cross-sectional prop-

erties. Define mass per unit length for all members. Also define coordinates of

each node of space frame.
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• Construction of Stiffness matrix and Mass Matrix

Calculate member stiffness matrices and assemble to overall stiffness matrix.

Member mass matrices are also calculated based on lumped mass or consistent

mass. Same procedure described in Linear static analysis for assembling stiffness

and mass matrix is used.

• Solution of Characteristic equation det[[M] - ω2[K]] = 0

Natural frequencies and corresponding mode shapes are calculated using inverse

iteration method.

3.4.4 Time-History Analysis of Space Frame

Response of space frame in form of displacements, velocity and acceleration is required

for designing any frame for its extreme conditions. Time history analysis is useful

for designing earthquake resistant structure, machine foundation, oil and gas plant

structures. Method is capable of providing response curves at each floor level which

can be used in industrial building design where each floor contains different services

and has different safety requirements.

For forced vibrations or base excitation conditions, time history plots are developed

by time stepped methods. Different numerical integration methods for time stepped

analysis are listed below:

a. Newmark Beta Method

b. Wilson Theta Methd

c. Runge-Kutta Method

d. Houbolt Method
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All these methods are incremental time stepped methods for solving equation of

motion as shown in Eq. 3.13. Among all these methods, Wilson-Theta method is

conditionally stable. Only requirement for accurate result is proper selection of value

of theta (θ). Wilson-Theta method is acceleration based method. Basic assumption

of Wilson-Theta method is that acceleration varies linearly over the time interval from

t to (t + θ∆t). Compared to Newmark Beta method, linear acceleration variation is

extended for time (t + θ∆t) instead of (t + ∆t).

3.4.4.1 Wilson Theta Method

Incremental equation of motion for step-by-step linear acceleration method with ex-

tended time (ti + τ) where τ = θ∆t can be written as, [18]

[M ]{̂∆üi}+ [C]{̂∆u̇i}+ [K]{̂∆ui} = {̂∆Fi} (3.29)

Incremental quantities can be defined for ith time step as,

{̂∆üi} = ü(ti + τ)− ü(ti)

{̂∆u̇i} = u̇(ti + τ)− u̇(ti)

{̂∆ui} = u(ti + τ)− u(ti)

{̂∆Fi} = F (ti + τ)− F (ti)

(3.30)

Assumption for linear variation is shown in Fig. 3.7.

Linear expression for acceleration at time t can be defined as,

ü(t) = üi +
∆̂üi
τ

(t− ti) (3.31)
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Figure 3.7: Assumption of Linear Variation of acceleration

Integrating Eq. 3.31 between limits ti and t gives velocity and again integrating Eq.

3.31 gives displacement.

u̇(t) = u̇i + üi(t− ti) +
∆̂üi
2τ

(t− ti)2 (3.32)

u(t) = ui + u̇i(t− ti) +
1

2
üi(t− ti)2 +

∆̂üi
6τ

(t− ti)3 (3.33)

Putting value of t = ti + τ in Eq. 3.32 and 3.33, gives incremental quantities



CHAPTER 3. STATIC ANDDYNAMIC LINEAR ANALYSIS OF SPACE FRAME43

∆̂u̇i = üiτ +
1

2
∆̂üiτ (3.34)

and

∆̂ui = u̇iτ +
1

2
üiτ

2 +
1

6
∆̂üiτ

2 (3.35)

Now make equation in terms of ∆̂üi from equation 3.35 and put it in Eq. 3.34, will

give incremental quantities ∆̂üi and ∆̂u̇i. Both equations have only one unknown

quantity which is incremental displacement (∆̂ui) for time increment (ti + τ).

∆̂üi =
6

τ 2
∆̂ui −

6

τ
u̇i − 3üi (3.36)

∆̂u̇i =
3

τ
∆̂ui − 3u̇i −

τ

2
üi (3.37)

Put above two equations in Eq. 3.29, will form linear equations with only unknown

∆̂ui. Compare it with equation

[Ki]{∆̂ui} = {∆Fi} (3.38)

where,
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Ki = [K] +
6

τ 2
[M ] +

3

τ
[C] (3.39)

and

∆Fi = ∆̂Fi + [M ](
6

τ
u̇i + 3üi) + [C](3u̇i +

τ

2
üi) (3.40)

After finding ∆̂ui, all other incremental quantities can be calculated for time incre-

ment (t + τ). Based on extended acceleration, acceleration increment for (t + ∆ t)

can be derived. Steps for finding response quantities for space frame are discussed in

next sections.

Wilson-Theta Method is conditionally stable if theta (θ) ≥ 1.38. Numerical stability

is depended on results of direct integration method. For θ ≥ 1.38, any value of ∆t

will give stable results. For accuracy of results, ∆t value should be small.

3.4.4.2 Analysis Procedure

a. Identification of Space frame data and Construction of Stiffness, Mass

and Damping matrix

Based on the information provided, construct member stiffness matrix, consis-

tent mass matrix and damping matrix as defined in previous sections. Assemble

all matrices and rearrange them by incorporating boundary conditions. Make

banded matrices for stiffness, mass and damping.

b. Initialization

Read initial vectors of displacements {u0}, velocity {u̇0} and forces {F0} at each

node of space frame for all degrees of freedom. Calculate initial acceleration
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based on following equation.

[M ]{ü0} = {F0} − [C]{u̇0} − [K]{u0} (3.41)

c. Define values of θ and ∆t

Select θ ≥ 1.38 and value of ∆t ≤ Tmin

Π
. where, Tmin = smallest time period of

the system considered.

Calculate constant values,

τ = θ∆t, a1 = 3
τ
, a2 = 6

τ

a3 = τ
2

and a4 = 6
τ2

d. Formation of effective stiffness matrix

Form effective stiffness matrix using following equation,

[K] = [K] + a4[M ] + a1[C] (3.42)

e. Formation of effective load vector

Form incremental load vector for ith step, by linear interpolating load for time

interval ti and (ti + τ). Here load increment is considered for extended time

period. (θ∆t).

{∆̂Fi} = {Fi+1}+ ({Fi+2} − {Fi+1})(θ − 1)− {Fi} (3.43)
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where,

F (t)i = F (i ∗∆t) for ith time increment.

Find increment load vector ∆̂Fi,

{∆̂Fi} = {∆̂Fi}+ (a2[M ] + 3[C]){u̇i}+ (3[M ] + a3[C]){üi} (3.44)

where,

{u̇i} = velocity vector for ith time step at each free nodes of space frame {üi}

= acceleration vector for ith time step at each free nodes of space frame

f. Solution for incremental displacement vector {∆̂ui} for extended time

period

Solve following equation by modified Cholesky method for {∆̂ui}.

[K]{∆̂ui} = {∆Fi} (3.45)

g. Calculation of incremental acceleration {∆̂üi} for extended time pe-

riod

{∆̂üi} = a4{∆̂ui} − a2{u̇i} − 3{üi} (3.46)

h. Find incremental quantities for increment of ∆t

Linear variation of acceleration is assumed for extended time period. Using this

assumption, incremental acceleration is calculated by,
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{∆üi} =
{∆̂üi}
θ

(3.47)

Other incremental quantities are,

{∆u̇i} = {üi}∆t+
1

2
{∆üi}∆t (3.48)

{∆ui} = {u̇i}∆t+
1

2
{üi}∆t2 +

1

6
{∆üi}∆t2 (3.49)

i. Find response quantities at time (ti+1)

{ui+1} = {ui}+ {∆ui}

{u̇i+1} = {u̇i}+ {∆u̇i}

{üi+1} = {üi}+ {∆üi}

(3.50)

Repeat steps from (e) to (i) for each increments. where value of i = 0,1,2,... Results of

analysis gives response of space frame for each time steps. Using those, time history

curve can be developed.
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3.5 Computer Program Development

Computer programs for linear analysis are developed for fast computations. These

programs are also useful to develop nonlinear analysis program. Each analysis pro-

gram consists of three major steps

• Pre processing

• Processing

• Post Processing

In pre processing step, input files are generated based on user defined data. This is

important for designing the actual analysis problem. Same data are used in second

step. In processing step, analysis is performed based on developed procedures. After

performing whole analysis, desire results are obtained and output file is generated in

last step called post processing.

3.5.1 Static Linear Analysis

Computer program is developed based on the procedure discussed in previous sections.

In first step of analysis, input file is generated based on user defined data. Input file

consists of geometry of space frame, material properties, cross-sectional properties

and boundary conditions. Analysis steps are performed in second step. In that

section, stiffness matrices for each structural members are calculated and analysis is

performed. At the end of analysis, displacements at each node are found out. Based

on these displacements, member end actions are calculated and presented in output

files. Base reactions are also calculated. Flow chart for developed computer program

is shown in Fig. 3.8.
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Figure 3.8: Flow Chart : Static Linear Analysis
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3.5.2 Dynamic Analysis

Dynamic analysis consists of two part. Programs are developed for both the cases.

• Free Vibration Analysis

• Forced Vibration Analysis

3.5.2.1 Free Vibration Analysis

Free vibration analysis is useful to find out natural frequencies and mode shapes

of space frame which will be useful for forced vibration. First step of program is to

develop input files which includes geometry of space frame, material properties, cross-

sectional properties, mass per unit length for each member and boundary conditions.

Based on those data, consistent mass matrices and stiffness matrices are developed

in core program. Analysis is performed based on Inverse Iteration Method. Output

file is generated in terms of natural frequencies and mode shapes for desire modes.

Flow of computer program is shown in Fig 3.9.

3.5.2.2 Forced Vibration Analysis

Forced Vibration Analysis is performed based on Wilson-Theta method. Analysis

procedure is discussed in previous sections. Input parameters are generated which is

same as for free vibration analysis. In core program, stiffness matrices and consistent

mass matrices are calculated. Based on those matrices, Rayleigh damping matrix is

calculated. Forcing function is to be developed based on user defined data. Time

increment method is used. Responses are calculated for each time increment. As a

output, time history responses at desire node for desire degree of freedom are recorded.

Output file is generated. Based on those data, Time history plots can be developed.

Flow of program is shown in Fig. 3.10 and 3.11.
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Figure 3.9: Flow Chart : Free Vibration Analysis
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Figure 3.10: Flow Chart : Forced Vibration Analysis
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Figure 3.11: Flow Chart : Forced Vibration Analysis (Continued)
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3.6 Summary

In this chapter, detail procedures for linear static and dynamic analysis are discussed.

Dynamic linear analysis involves free vibration and forced vibration of multi degrees

of freedom. Computer programs are developed based on these method. Flow charts

of developed computer programs are presented. All these computer oriented methods

can be extended for nonlinear analysis by incorporating incremental and iteration

methods. Linear analysis methods provide base for formation of nonlinear analysis

procedure hence it is required to understand each steps of analysis.



Chapter 4

Linear Analysis : Results and

Discussions

4.1 General

Linear analysis results give good approximation of displacements for given loading

conditions. Also results of different loading conditions can be easily superimposed.

Linear analysis procedure is also useful to established nonlinear analysis steps. In

this chapter, linear analysis of space frame for both static and dynamic loading con-

ditions are performed. Developed computer programs are used to analyze space frame

which will be used to prepare nonlinear analysis program. Results of linear analysis

are presented for various space frames. Results of displacements for static linear,

time period of different modes and time history responses plots are presented in this

chapter. Validation of results is done by comparing results with ETABS results.

55
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4.2 Results and Discussion

4.2.1 Single bay Single Storey Frame

Single bay single storey frame shown in Fig. 4.1 for static and dynamic loading con-

ditions. Main purpose of analysis is to validate computer oriented analysis procedure.

Figure 4.1: Plan and 3-D view of space frame

Space Frame Data

Plan Dimension : 5m×5m

Storey Height : 8m

Beam and Column Size : (200×200) mm

Grade of Concrete : M25

Poisson’s Ratio (µ) : 0.2

Support Condition : Fixed



CHAPTER 4. LINEAR ANALYSIS : RESULTS AND DISCUSSIONS 57

4.2.1.1 Static Analysis Results

Figure 4.2: Static Load Case

Here self weight of members are neglected. Loads are applied on each joints of first

storey. Program and ETABS results in terms of displacement are shown in Table 4.1.

Displacement of each node of first storey are same due to symmetric loading.

Table 4.1: Static Linear Analysis Result
Displacements at node 3 Program Results ETABS Results

Dx 824 mm 823.9 mm
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4.2.1.2 Dynamic Analysis

• Parameters of dynamic analysis

Damping Ratio ξ = 5 %

For Time History Analysis,

Time dependent Force : F(t) = 50 sin(t) at node 3 for t = 0 to t = 30 s (Fig.

4.3)

Time Increment : t = 0.1 second

θ = 1.5

Figure 4.3: Dynamic Load Case

• Free Vibration Analysis

Table 4.2: Results of Natural Time Period
Program Result ETABS Result

Time Period (second) 0.7117 0.764



CHAPTER 4. LINEAR ANALYSIS : RESULTS AND DISCUSSIONS 59

• Forced Vibration Analysis

Response of space frame is calculated in terms of displacement, velocity and

acceleration. Time history plots are prepared in Fig. 4.4 and 4.5 based on

Program and ETABS results.

Figure 4.4: Program Result of time history analysis

Figure 4.5: ETABS Result of time history analysis

Results of time history analysis obtained from program are presented in terms of

time history curve as shown in Fig. 4.4. Same frame is modeled in ETABS and

analyzed. Results of program are having good agreement with ETABS results.

Also time period value is matched with ETABS results. Maximum responses

are presented in Table 4.3 which is also verified with ETABS results.
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Table 4.3: Maximum Response of displacement, velocity and acceleration

Program Results ETABS Results

Displacement (m) + ve 0.283 m at t = 1.5 s 0.292 m at t = 1.4 s
-ve -0.300 m at t = 4.7 s -0.294 m at t = 1.4 s

Velocity (m/s) + ve 0.424 m/sec at t = 0.4 s 0.490 m/sec at t = 0.4 s
-ve -0.296 m/sec at t = 3.1 s -0.351 m/sec at t = 3.1 s

Acceleration (m/s2) + ve 1.965 m/s2 at t = 0.2 s 2.008 m/s2 at t=0.3 s
-ve -1.275 m/s2 at t = 0.5 s -1.768 m/s2 at t = 0.6 s

4.2.2 Multi-storey space frames

Various space frames are analyzed using computer program. Results of computer

programs are compared with ETABS results. Analysis is performed for both static

and dynamic loading conditions. Data of space frames like plan of space frame (Fig.

4.6), storey height, beam dimensions, slab and wall thickness etc, earthquake param-

eters are kept similar to compare results with each other. Various data like number

of storeys, column sizes are varying for each model.

Common data of space frames

• Plan Dimension : (15×20) m

• Storey Height : 5 m

• Beam Size : (300×450) mm

• Zone : V

• Soft soil condition

• I = 1 and R = 5

• Fixed at base
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Figure 4.6: Plan and Elevation of multi-storey space frames (Common for all models)
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Column sizes and base shear of different models of multi-storey frames are shown in

Table 4.4.

Table 4.4: Column sizes and Base shear for Space Frames

Model Name Column Size
Grade of
Concrete

Base Shear
(Vbx) (kN)

6 storey (450×450) M30 3425 kN
10 storey (600×600) M30 2955.2 kN
15 storey (750×750) M30 3890.8 kN
20 storey (1000×1000) M40 4456.7 kN
25 storey (1100×1100) M40 4456.7 kN
30 storey (1200×1200) M40 4728.3 kN

Static Load Data

Self weight of each elements are found out and distributed at each nodes of frame.

Earthquake in x direction is considered and based on assumed parameters of site

conditions, base shear (Vbx) is calculated for various frames and value of base shear

is shown in Table 4.4.

Lateral loads are distributed to each storey as per IS 1893:2002 and these are applied

to each nodes of storey depending on contributory area.

Based on joint loads for gravity and earthquake conditions, load vector is formed

which is used in static analysis. Steps for formation of load vector is presented.
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Formation of Load Vector

a. Self weight of each elements of frame are calculated at each node of frame for

all storeys. To consider worst case, only dead weight of slabs (130 mm thick),

walls (230 mm thk.) on all beams, beams and columns are calculated. Live

Load = 5 kN/m2 and Floor Finish = 1 kN/m2

b. Self weight of each storeys are distributed among all nodes of that storey.

c. Earthquake loads are considered. Base shear (Vbx) is calculated for soft soil

strata and earthquake zone V.

Vbx = AhW , where W = total weight of building and Ah = Z
2

I
R

Sa

g
.

d. Based on storey weight, lateral forces are calculated (Qi).

Qi = Vbx
WiH

2
i∑

WiH2
i

e. Lateral force for each storey is distributed among all nodes based on weight

ratio of that node. Hence, lateral force is distributed to all nodes.

f. At the end, load vectors are formed based on self weight and lateral load for

each nodes. This is used as input parameter for analysis.

Same procedure is followed for each frame model to calculate forces at each node.
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4.2.2.1 Static linear Analysis Results

Analysis is performed for static loads are analysis results are compared with ETABS

results. Results of displacements in X-direction for node number 20 (Refer Fig. 4.6)

of top storey of each model are compared with that of ETABS results and presented

in Table 4.5.

Table 4.5: Results of displacement of node 20 of top storey in X direction

Model Name Program Result ETABS Result
6 storey 0.255 m 0.261 m
10 storey 0.279 m 0.288 m
15 storey 0.509 m 0.527 m
20 storey 0.613 m 0.664 m
25 storey 0.812 m 0.815 m
30 storey 1.023 m 1.105 m

. Variation between results of displacements are about 2% - 5% which are in accepted

limit.

4.2.2.2 Dynamic linear Analysis Results

1. Free Vibration Analysis Results

Free vibration analysis are performed to find out dynamic properties of space frames

which will be used in forced vibration analysis. In free vibration analysis, consistent

mass matrix is used. Free vibration results for 6 storey, 10 storey, 15 storey, 20 storey,

25 storey and 30 storey are shown in Tabular form. Results of free vibration are com-

pared with ETABS results.
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Table 4.6: Time Periods of different modes of 6 storey Frame

Mode Time Period (sec)
Program Results ETABS results

1 - X 1.039 1.013

1-Y 1.017 0.998

1-Torsion 0.943 0.893

2-X 0.387 0.337

2-Y 0.333 0.333

2-Torsion 0.326 0.299

Table 4.7: Time Periods of different modes of 10 storey Frame

Mode Time Period (sec)
Program Results ETABS results

1 - X 1.739 2.219

1-Y 1.687 2.152

1-Torsion 1.536 1.882

2-X 0.552 0.705

2-Y 0.537 0.686

2-Torsion 0.495 0.605

3-X 0.481 0.389

3-Y 0.367 0.381

3-Torsion 0.360 0.340

Results of free vibration analysis for 6 storey frame and 10 storey frame are shown

in Table 4.6 and 4.7. Results are compared with ETABS results. Program results

are differing from ETABS results for lower modes by 20% to 30% whereas for higher

modes, results are verified as variation between two results are approximately 3% -

6%. Possible reasons for difference between two results are distribution of mass at

various nodes and consideration of DOFs for program and ETABS.
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Table 4.8: Time Periods of different modes of 15 storey Frame

Mode Time Period (sec)
Program Results ETABS results

1 - X 2.766 3.316

1-Y 2.670 3.203

1-Torsion 2.306 2.657

2-X 0.873 1.048

2-Y 0.847 1.017

2-Torsion 0.748 0.855

3-X 0.555 0.572

3-Y 0.476 0.559

3-Torsion 0.465 0.482

Table 4.9: Time Periods of different modes of 20 storey Frame

Mode Time Period (sec)
Program Results ETABS results

1-X 4.060 5.899

1-Y 3.918 5.667

1-Torsion 2.920 3.983

2-X 1.248 1.846

2-Y 1.212 1.785

2-Torsion 0.962 1.291

3-X 0.655 0.992

3-Y 0.641 0.968

3-Torsion 0.637 0.735

Results of free vibration for 15 storey frame and 20 storey frame are shown in Table

4.8 and 4.9. Results of three modes are compared with ETABS results. Lower mode

results are differing from ETABS by 16% - 32%. For other modes, results are verified.

Possible reasons for difference between two results are distribution of mass at various

nodes and consideration of DOFs for program and ETABS.
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Table 4.10: Time Periods of different modes of 25 storey Frame

Mode Time Period (sec)
Program Results ETABS results

1-X 5.540 6.081

1-Y 5.333 5.855

1-Torsion 3.629 3.823

2-X 1.705 1.872

2-Y 1.653 1.815

2-Torsion 1.214 1.233

3-X 0.895 0.984

3-Y 0.876 0.963

3-Torsion 0.720 0.697

Table 4.11: Time Periods of different modes of 30 storey Frame

Mode Time Period (sec)
Program Results ETABS results

1-X 7.210 7.785

1-Y 6.920 7.478

1-Torsion 4.274 4.429

2-X 2.215 2.393

2-Y 2.144 2.316

2-Torsion 1.446 1.437

3-X 1.161 1.255

3-Y 1.135 1.228

3-Torsion 0.867 0.821

Free vibration analysis is performed for 25 storey and 30 storey frames. Results are

shown in Table 4.10 and 4.11. Observed variation in results of program and ETABS

are about 4% - 8%. Possible reasons for difference between two results are distribution

of mass at various nodes and consideration of DOFs for program and ETABS. Results

of free vibration are used in forced vibration.
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2. Forced Vibration Analysis Results

In forced vibration analysis, damping effects are also included. Response quantities

are calculated using Wilson theta method.

Where,

• Forcing function : F(t) = 500 sin(t) for t = 0 to t = 15 second at corner nodes

1,4,17 and 20 of top storey

• θ = 1.5

• Time increment, ∆t = 0.05 second

• ωi = Natural frequency of first mode in X direction for each model

• ξ = 5%

Response quantities for node 20 of Top Storey of each model are recorded.

Figure 4.7: Magnitude and direction of time dependent Force
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Figure 4.8: Program Results : Time History Analysis of 6 Storey Frame

Figure 4.9: ETABS Results : Time History Analysis of 6 Storey Frame
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Table 4.12: Maximum Response quantities for 6 Storey Frame

Maximum Responses Program Results
ETABS

Results

Displacement (m) “+ ve” 0.254 0.231
“- ve” -0.258 -0.218

Velocity (m/s) “+ ve” 0.365 0.351
“- ve” -0.289 -0.278

Acceleration (m/s2) “+ ve” 1.675 1.262
“- ve” -0.875 -1.206

Dynamic linear analysis is performed for 6 Storey frame subjected to time dependent

force using developed computer program. Time history of responses like displace-

ments, velocity and accelerations are calculated and recorded for top node. Results

are shown in Fig. 4.8. Same frame is also analyzed in ETABS. Results of ETABS are

shown in Fig. 4.9. Results of developed program are in good agreement with ETABS

results. Maximum responses are also presented in Table 4.12. Variation between

program results and ETABS results is approximately 4% - 9%.
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Figure 4.10: Program Results : Time History Analysis of 10 Storey Frame

Figure 4.11: ETABS Results : Time History Analysis of 10 Storey Frame
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Table 4.13: Maximum Response quantities for 10 Storey Frame

Maximum Responses Program Results
ETABS

Results

Displacement (m) “+ ve” 0.360 0.333
“- ve” -0.333 -0.292

Velocity (m/s) “+ ve” 0.425 0.406
“- ve” -0.410 -0.389

Acceleration (m/s2) “+ ve” 1.180 0.874
“- ve” -0.919 -1.013

Developed computer program is used for analysis of 10 storey frame subjected to

dynamic force. Results are recorded for node 20 of top storey. Based on those results,

time history curves (Fig. 4.10) are plotted. To validate program results, same frame

is analyzed in ETABS. Results of ETABS are shown in Fig. 4.11. Maximum response

quantities are also compared (4.14). Displacement based on computer program are

10% higher than displacement based on ETABS.
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Figure 4.12: Program Results : Time History Analysis of 15 Storey Frame

Figure 4.13: ETABS Results : Time History Analysis of 15 Storey Frame
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Table 4.14: Maximum Response quantities for 15 Storey Frame

Maximum Responses Program Results
ETABS

Results

Displacement (m) “+ ve” 0.528 0.524
“- ve” -0.454 -0.441

Velocity (m/s) “+ ve” 0.534 0.557
“- ve” -0.665 -0.666

Acceleration (m/s2) “+ ve” 0.824 0.740
“- ve” -0.991 -1.036

Linear time history analysis is performed for 15 storey space frame using developed

program and ETABS. Results of both analysis are presented in terms of time history

curves in Fig. 4.12 and 4.13. Both curves are almost similar to each other. Maximum

response of displacement, velocity and acceleration for t=0 to t=15 second are shown

Table 4.14. Displacement based on developed computer program is same as displace-

ment based on ETABS. Velocity and acceleration based on program and ETABS are

differing by 4%-8%.
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Figure 4.14: Program Results : Time History Analysis of 20 Storey Frame

Figure 4.15: ETABS Results : Time History Analysis of 20 Storey Frame
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Table 4.15: Maximum Response quantities for 20 Storey Frame

Maximum Responses Program Results
ETABS

Results

Displacement (m) “+ ve” 0.705 0.721
“- ve” -0.820 -0.834

Velocity (m/s) “+ ve” 0.904 0.929
“- ve” -0.859 -0.899

Acceleration (m/s2) “+ ve” 1.122 1.191
“- ve” -0.902 -0.958

20 storey frame subjected to dynamic force is analyzed using developed program.

Results of node 20 for X-direction are recorded and time history curves are developed

which is shown in Fig. 4.14. Same frame is also analyzed in ETABS. Results of

ETABS are shown in Fig. 4.15. Maximum displacement, velocity and acceleration

are shown in Table 4.15. Variation between results obtained from developed computer

program and ETABS is about 2%-6%.
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Figure 4.16: Program Results : Time History Analysis of 25 Storey Frame

Figure 4.17: ETABS Results : Time History Analysis of 25 Storey Frame
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Table 4.16: Maximum Response quantities for 25 Storey Frame

Maximum Responses Program Results
ETABS

Results

Displacement (m) “+ ve” 1.940 2.111
“- ve” -1.809 -1.930

Velocity (m/s) “+ ve” 1.968 2.115
“- ve” -1.765 -1.885

Acceleration (m/s2) “+ ve” 1.978 2.118
“- ve” -2.120 -2.304

Dynamic linear analysis results for 25 storey frame based on developed computer

program and ETABS are shown in Fig. 4.16 and 4.17 respectively. Program results

are verified with ETABS results. Maximum responses are also shown in Table 4.16.

Here frequency of forcing function is same as natural frequency of space frame hence

resonance is observed. Results of program and ETABS are almost similar which shows

efficiency of program.
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Figure 4.18: Program Results : Time History Analysis of 30 Storey Frame

Figure 4.19: ETABS Results : Time History Analysis of 30 Storey Frame
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Table 4.17: Maximum Response quantities for 30 Storey Frame

Maximum Responses Program Results
ETABS

Results

Displacement (m) “+ ve” 1.555 1.675
“- ve” -1.871 -1.975

Velocity (m/s) “+ ve” 1.882 1.962
“- ve” -1.640 -1.726

Acceleration (m/s2) “+ ve” 1.695 1.774
“- ve” -1.416 -1.515

Dynamic analysis for 30 storey frame subjected to time dependent force is performed.

Results are shown in Fig. 4.18 and 4.19 in terms of time history curve. Maximum

results are also shown in Table 4.17. Responses in form of displacement, velocity and

acceleration obtained from computer program and ETABS are differing by 4%-8%.

Comparison of static and dynamic loading conditions for various space frames are

made which validates developed programs. Also stability and efficiency of results are

checked. Same programs are also extended for nonlinear analysis.

4.3 Summary

Linear static and dynamic analysis for various space frames are performed using

computer program. Validation of results verifies analysis procedures of static and

dynamic analysis. Analysis results obtained from computer program are verified

with the analysis results of ETABS. Hence these procedures will be used to develop

computer oriented analysis procedure for nonlinear case.



Chapter 5

Nonlinear Static and Dynamic

Analysis

5.1 General

Linear analysis results are generally used for designing structural members but to

understand exact behavior of structure, it is required to find nonlinear response.

Nonlinearities may be due to large deformations or due to nonlinear constitutive

relationship. Nonlinear analysis is nothing but incremental linear analysis in which

applied loads are divided into small increments. In this chapter, nonlinear equilibrium

equations are derived for static and dynamic loading conditions. Various methods to

solve these nonlinear equations are also discussed. Main focus of this chapter is on

geometric nonlinear analysis.

5.2 Various conditions of Nonlinear Analysis

Based on deformation and strain levels, various conditions are defined which can

reduce efforts and time of analysis. Conditions are derived considering both material

and geometric nonlinearities.

81
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a. Small Strain and Small deformation

In this case, nonlinear analysis become material nonlinear analysis as overall

structure deformation and local strain levels are small. No second order effects

are considered.

Figure 5.1: Small Strain and Small Deformation

b. Small strain and Large deformation

When structural deformation is large and member deformation or local strains

are small, nonlinear analysis is adopted. Here due to small strain levels, geom-

etry of space frame is not updated. Nonlinear response can be calculated by

incorporating geometric stiffness matrix. Material nonlinearity may be there.

Figure 5.2: Small strain and Large deformation
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c. Large strain and Large deformation

This is very general case where both structural deformation as well as local

strains are large. In this condition, both geometry of space frame and geometric

stiffness matrix are updated based on deformed geometry of structure. Both

material as well as geometric nonlinearities are considered.

Figure 5.3: Large strain and Large deformation

5.3 Geometric Nonlinear Analysis

Space frames have large number of slender sections which may subjected to large

deformations. Due to large deformations, second order effects are induced. Buckling

of space frame is also caused due to large deformations. These result into change in

geometry and hence load deformation behavior changes. Effects of large deformation

are included by updating stiffness of space frame. Incremental approach is used to

solve geometric nonlinear problems.

To understand incremental approach, Consider Fig. 5.4, in which three stages of

deformations are shown. Applied loads are divided into two increments. C0 is initial
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configuration, C1 is last known deformed configuration and C2 is current deformed

configuration. From C0 to C1, frame is analyzed based on initial geometry of structure.

Hence for every nonlinear analysis, first step is always elastic linear analysis. At the

end of first step, induced forces are known. From C1 to C2, equilibrium equations are

derived based on deformed geometry of C1 configuration. Results of C2 configuration

are final results. Here, nonlinear analysis is done in two increments.

Figure 5.4: Deformation configurations [17]

This is general procedure of nonlinear analysis. For geometric nonlinear analysis,

geometric stiffness of structure is calculated based on known deformed geometry (C1

configuration).

5.3.1 Geometric Stiffness Matrix for Space Frame Element

Geometric stiffness means effects of unit deformation at one degree of freedom on

other degrees of freedom. In simple words, force corresponding to nodal coordinate

i due to unit displacement at coordinate j. (i and j are different DOFs). Geometric

stiffness matrix is derived based on energy method. Consider two configuration C1
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and C2, where induced forces for C1 configuration are shown in Fig. 5.5. Now to

calculate deformations for C2 configuration, stiffness matrix should be updated based

on known deformed geometry. Geometric Stiffness matrix[17] for space frame element

(Fig. 5.5) is shown in Eq. 5.1.

Figure 5.5: Induced actions for C1 configuration

[Kg] =



0 a c 0 0 0 0 −a −c 0 0 0

b 0 d g −h −a −b 0 l −g −h

b e h g −c 0 −b m h −g

f i k 0 −d −e −f −i −k

j 0 0 −g −h −i n −o

j 0 h −g −k o n

0 a c 0 0 0

sym b 0 −l g h

b −m −h g

f a c

j 0

j



(5.1)
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where,

a = Mza+Mzb

L2 ; b = 6Fxb

5L

c = −Mya+Myb

L2 ; d = Mya

L

e = Mza

L
; f = FxbIx

AL

g = Mxb

L
; h = −Fxb

10

i = Mza+Mzb

6
; j = 2FxbL

15

k = −Mya+Myb

6
; l =

Myb

L

m = Mzb

L
; n = −FxbL

30

o = −Mxb

2

Above geometric stiffness matrix is symmetric. Components of geometric stiffness

matrix depend on joint actions of last known geometry. In geometric nonlinear anal-

ysis, tangent stiffness matrix is calculated using Eq. 5.2.

[Kt] = [Ke] + [Kg] (5.2)
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5.4 Methods of Solution

In nonlinear analysis, whole analysis is divided into number of steps. Loads are

applied as a series of small increments and for each step deformations are calculated.

Change in stiffness can be employed by considering tangent stiffness matrix. Hence

incremental equilibrium equation can be defined as Eq 5.3.

[Kt]{∆w} = {∆W} (5.3)

where, {∆w} is incremental displacement corresponding to load increment {∆W}.

To solve this type of incremental equation, various methods[15] are available like

• Incremental Method

• Iterative Method (Newton Raphson Method)

• Combination of Incremental and iterative Method

5.4.1 Incremental Method

Figure 5.6: Incremental Method [15]
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a. Specify initial conditions. {w}0

b. Form tangent stiffness matrix using initial geometric condition. [Kt]0

c. Specify Load Increment. {∆W}

d. Solve [Kt]0{∆w}0 = {∆W} for {∆w}0

e. Update displacement using {w}1 = {w}0 + {∆w}0

f. Find joint actions and update tangent stiffness matrix. [Kt]1

for each increments (i), where, i = 2,3,...,n.

g. Solve [Kt]i−1{∆w}i−1 = {∆W} for {∆w}i−1

h. Update displacement using {w}i = {w}i−1 + {∆w}i−1

i. Find joint actions and update tangent stiffness matrix. [Kt]i

Repeat steps g to i for all increment.

Graphical representation is shown in Fig. 5.6. Smooth line shows actual load defor-

mation curve. At the end of each step, there is always some difference between actual

and calculated solution. This error increases as load increment is kept large.

5.4.2 Iterative Method (Newton Raphson Method)

Iterative method is adopted to reduce the error in terms of unbalanced forces. Un-

balanced force {dg} which is difference between external and internal forces, is found

out at the end of each iteration. Based on equilibrium equation, displacements {dw}

corresponding to unbalanced forces are found out using [Kt]{dw} = {dg}. As number

of iteration increases, unbalanced force reduces. Iterations are continued till tolerance

limit of unbalanced force is achieved. Graphical representation of iterative method is

shown in Fig. 5.7.
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Figure 5.7: Iteration Method [15]

5.4.3 Combination of Incremental and iterative Method

This method is used to overcome the limitations of incremental method. Error in

each incremental step is eliminated by iteration method. This combined steps can be

understood with the help of graphical representation. Fig. 5.8.

Figure 5.8: Combination of Incremental and iterative Method [15]
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a. Specify initial conditions. {w}0

b. Form tangent stiffness matrix using initial geometric condition. [Kt]0

c. Specify Load Increment. {∆W}

d. Solve [Kt]0{∆w}0 = {∆W} for {∆w}0

e. Update displacement using {w}1 = {w}0 + {∆w}0

f. Find joint actions and update tangent stiffness matrix. [Kt]1

for each increments (i), where, i = 2,3,...,n.

g. Solve [Kt]i−1{∆w}i−1 = {∆W} for {∆w}i−1

h. Update displacement using {w}i = {w}i−1 + {∆w}i−1

i. Find joint actions and update tangent stiffness matrix. [Kt]i

j. for each iteration (j) where j = 1,2,...,itr

• Find unbalanced force. {g} = external force - internal force.

• Find displacements corresponding to load vector {g}.

• Solve [Kt]i{dw}j = {g} for {dw}j.

• Update geometry. {w}i = {w}i + {dw}j

• Find joint actions and update tangent stiffness matrix. [Kt]i

k. Repeat step j till tolerance limit for unbalanced force reaches.

l. Repeat steps g to k for all increments.

Draw nonlinear load-displacement curve.
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5.5 Static Nonlinear Analysis

As discussed earlier, nonlinear static analysis is linear incremental method. In this

section, detail procedure of static nonlinear analysis is listed in which combined in-

cremental and iteration method is used. Nonlinear static equation can be written in

incremental form as Eq. 5.4. Algorithm of linear static analysis is extended to solve

nonlinear problem. Detail steps are prepared for space frame structure. For combined

incremental and iterative method, load factor(λ) should be properly selected to divide

incremental loads. Load sequences should be properly maintained.

[Kt]{∆D} = {∆F} (5.4)

Before proceeding for algorithm, it is important to understand derivation of unbal-

anced forces at the beginning of iteration. Unbalanced forces is found out by incor-

porating equilibrium conditions for each nodes. For matrix calculation, unbalanced

forces should be in vector form and can be calculated using Eq. 5.5.



g1

g2

.

.

.

g6∗nfj


=



∆F1

∆F2

.

.

.

∆F6∗nfj


−



∆Agg1

∆Agg2

.

.

.

∆Agg6∗nfj


(5.5)

where {∆Agg}= Difference of Joint actions of two consecutive increments or iterations

with respect to global coordinate system. and nfj = number of free joints.
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5.5.1 Detailed Analysis Procedure

Detail procedure for nonlinear static analysis is derived in two stages. First step is

elastic analysis and second stage is incremental steps.

Elastic Analysis

a. Identification of space frame data

b. Construction of Global Tangent Stiffness Matrix [Kt] = [Ke] + [Kg]

For first incremental step, [Kt] = [Ke].

c. Formation of Incremental Load Vector {∆F}

d. Solution of equation

Solve [Kt]{∆D} = {∆F} + {PL} for {∆D}, where {PL} = permanent loads

(e.g. Gravity Loads)

Calculate Total displacement, {D} = {∆D}.

Calculate member end actions {Am} for each member using Eq. 3.11.

Also find out induced forces at each free node of space frame {Agg} based on

total displacement.

e. Update geometry of space frame and construction of new elastic stiff-

ness matrix

Update coordinates of each node using,

{x} = {x}+ {Dx}

{y} = {y}+ {Dy}

{z} = {z}+ {Dz}

(5.6)

Based on new coordinates, develop new elastic stiffness matrix.
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f. Construction of Geometric Stiffness Matrix [Kg]

Based on member end action {Am}, form geometric stiffness matrix for each

member using Eq. 5.1. Assemble them to form global geometric stiffness matrix.

Incremental Steps

a. Update Global Tangent Stiffness Matrix [Kt] = [Ke] + [Kg].

b. Solution of equation

Solve [Kt]{∆D} = {∆F} for {∆D} .

Update Total displacement, {D} = {D} + {∆D}

Find member end actions for all members {Am}.

For updated total displacement find joint actions. {Agg}

c. Update geometry of space frame and construction of new elastic stiff-

ness matrix

d. Construction of Geometric Stiffness Matrix [Kg]

Iteration Steps

(1) Update Global Tangent Stiffness Matrix [Kt] = [Ke] + [Kg]

(2) Construction of Unbalanced Force Vector {g}

Using Eq. 5.5, calculate unbalanced force.

(3) Solution of Equation

Solve [Kt]{dd} = {g} for {dd}.

Update Total displacement, {D} = {D} + {dd}

Find member end actions for all members {Am}.

For updated total displacement find joint actions. {Agg}
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(4) Construction of Geometric Stiffness Matrix [Kg]

(5) Check tolerance limit for unbalanced force

Find root mean square value of unbalanced forces and incremental loads.

gRMS =

√
g21+g22+...+g26∗nfj

6∗nfj
(5.7)

∆FRMS =

√
∆F 2

1 +∆F 2
2 +...+∆F 2

6∗nfj

6∗nfj
(5.8)

Now ratio of unbalanced force to incremental load should be less than

tolerance limit. If this condition is not satisfied repeat iteration steps till

gRMS

∆FRMS
< tolerance limit

Repeat incremental steps till desire load limit is achieved.

Displacements response of desire node are recorded at the end of each incremen-

tal step. Above method is based on load control approach so it is not possible to

trace load-deformation curve for snap-back curve. Whenever applied loads exceed

the ultimate loads, results at the end of iteration will never converged and hence load

deformation path can not be found.
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5.6 Dynamic Nonlinear Analysis

In dynamic nonlinear analysis, combination of time stepped method and iteration

method is used. Wilson-theta method is adopted to plot time history response. Algo-

rithm for nonlinear analysis is same as linear time history analysis. Time increment

method is used for both linear and nonlinear analysis. Only difference is inclusion of

Newton-Raphson iteration method.

Dynamic equilibrium equation can be written in incremental form as Eq. 5.9. Here

increments are applied with respect to time. Hence load increment vector is not same

for all steps.

[M ]{∆ü}+ [C]{∆u̇}+ [K]{∆u} = {∆F (t)} or [M ]{Ẍg} (5.9)

5.6.1 Detailed Analysis Procedure

With some modification in linear time history analysis procedure, algorithm for non-

linear analysis is prepared. Dynamic analysis is also divided into two stage. First is

elastic analysis stage and second is incremental stage.

In first step of analysis, full gravity loads are included with first time incremental

loads and then linear analysis is performed. It is also important to include gravity

loads in nonlinear analysis because gravity loads produces second order effects due

to lateral displacements. Also it is not advisable to use superimposition of gravity

load analysis result and dynamic analysis result for nonlinear case. Hence, gravity

load analysis is the first step of nonlinear dynamic analysis. Same steps of linear time

history analysis are used for first step. Detail steps are listed below.
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a. Identification of Space frame data and Construction of Stiffness, Mass

and Damping matrix

b. Initialization

Read initial vectors of displacements {u0}, velocity {u̇0} and forces {F0} at each

node of space frame for all degrees of freedom. Calculate initial acceleration

based on following equation.

[M ]{ü0} = {F0} − [C]{u̇0} − [K]{u0} (5.10)

c. Define values of θ and ∆t

d. Formation of effective stiffness matrix

Form effective stiffness matrix using following equation, where value of a1, a2,

a3 and a4 are same as discussed in section 3.4.4.2

[K] = [Kt] + a4[M ] + a1[C] (5.11)

e. Formation of effective load vector

Form incremental load vector for ith step, by linear interpolating load for time

interval ti and (ti + τ). Here load increment is considered for extended time

period. (θ∆t).

{∆̂Fi} = {Fi+1}+ ({Fi+2} − {Fi+1})(θ − 1)− {Fi} (5.12)
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where,

F (t)i = F (i ∗∆t) for ith time increment.

• For (i = 0) first step, full gravity load vector {PL} is added to {∆̂Fi} =

{∆̂Fi} + {PL}.

• For other steps (i ≥ 1), only incremental load vector {∆̂Fi} is considered.

Find effective load vector ∆̂Fi,

{∆̂Fi} = {∆̂Fi}+ (a2[M ] + 3[C]){u̇i}+ (3[M ] + a3[C]){üi} (5.13)

where,

{u̇i} = velocity vector for ith time step at each free nodes of space frame {üi}

= acceleration vector for ith time step at each free nodes of space frame

f. Solution for incremental displacement vector {∆̂ui} for extended time

period

Solve following equation for {∆̂ui}

[K]{∆̂ui} = {∆Fi} (5.14)

Calculated member end actions corresponding to {∆̂ui} displacement.

Construct geometric stiffness matrix.

For first step (i=0), there will be no iteration steps. So that Total displacement

Vector {D} = {∆̂ui}
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From second incremental steps (for i ≥ 1), unbalanced forces are generated due

to modification of tangent stiffness. Iteration steps are included in step f for all

next increments (i=1,2,...,n). Iteration steps are same as static nonlinear case.

Iteration Steps (Newton Raphson Method

(1) Update effective stiffness matrix [K]

(2) Find unbalanced Force {g}

(3) Solve [K]{dd} = {g}

(4) Update Displacement Value

{∆̂ui} = {∆̂ui} + {dd} Update Total displacement Vector, {D} = {D} +

{∆̂ui}

(5) Construct geometric stiffness matrix based on induced actions

(6) Check tolerance limit

At the end of iteration, correct value of incremental displacement is calculated.

using equation {∆̂ui} = Total displacement at the end of increment (i) - Total

displacement at the end of increment (i-1)

g. Calculation of incremental acceleration {∆̂üi} for extended time pe-

riod

{∆̂üi} = a4{∆̂ui} − a2{u̇i} − 3{üi} (5.15)

h. Find incremental quantities for increment of ∆t

Linear variation of acceleration is assumed for extended time period. Using this

assumption, incremental acceleration is calculated by,
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{∆üi} =
{∆̂üi}
θ

(5.16)

Other incremental quantities are,

{∆u̇i} = {üi}∆t+
1

2
{∆üi}∆t (5.17)

{∆ui} = {u̇i}∆t+
1

2
{üi}∆t2 +

1

6
{∆üi}∆t2 (5.18)

i. Find response quantities at time (ti+1)

{ui+1} = {ui}+ {∆ui}

{u̇i+1} = {u̇i}+ {∆u̇i}

{üi+1} = {üi}+ {∆üi}

(5.19)

Repeat steps from (d) to (i) for each increments. Results of analysis gives response

of space frame for each time steps. Using those, nonlinear time history curves can be

developed.
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5.7 Computer Program Development

Nonlinear analysis methods discussed in above sections are computer oriented meth-

ods. For effective and efficient solutions, computer programs are developed. Incremental-

iterative method is used for static and dynamic analysis. Load control strategy is used

to trace nonlinear path. Every nonlinear analysis method is divided into three step.

• Linear Analysis Step

• Increment Steps

• Iterative Steps

Last two steps are repeated for all load increments.

5.7.1 Static Nonlinear Analysis

Computer program is developed for procedure discussed in previous sections. Input

file is generated based on user defined data. Input file includes initial geometry of

space frame, material properties, cross-sectional details and boundary conditions.

These data are generated by using C++ program. Core program consists of above

three step. In first step of analysis, load vector is calculated in which full gravity load

and first incremental load are considered. Displacement and member end forces are

calculated based on linear elastic analysis. Subsequently program generates geometric

stiffness matrix at the end of each step. Also geometry of space frame is updated

at the end of each step. In second step, only incremental load vector is used and

analyzed. Unbalanced forces generated at the end of step is reduced by iterations.

Same procedure is adopted for each load increment. Analysis is performed till required

load is achieved. Results in terms of load deformations data are calculated. Results

at required node are recorded in output files. Based on those data, load deformation

curves can be developed. Flow chart of developed computer program is presented in

Fig. 5.9, 5.10 and 5.11.
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Figure 5.9: Flow Chart : Static Nonlinear Analysis (1st Step)
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Figure 5.10: Flow Chart : Static Nonlinear Analysis (2nd Step)
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Figure 5.11: Flow Chart : Static Nonlinear Analysis (3rd Step)
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5.7.2 Dynamic nonlinear Analysis

Combination of Wilson-Theta method and Newton-Raphson method is used to ana-

lyze space frame for dynamic loading condition. Input file is generated as discussed in

dynamic linear analysis. In pre-processing step, values of ∆t and θ is selected by user.

Consistent mass matrix and Rayleigh damping matrix are constant throughout the

analysis. This analysis is also includes three steps. In first step, full gravity load and

first incremental load are adopted and analyzed. Results of this step is used as initial

conditions for second steps. Geometric stiffness matrix is calculated at the end of

each step and based on that tangent stiffness matrix is updated. Unbalanced forces

which are generated at the end of each steps are recovered by iterations. Results

in form of time history responses for displacements, velocity and accelerations are

calculated. Results of desire node and desire degree of freedom are recorded. Based

on those results, time history responses can be plotted. Flow of Nonlinear dynamic

analysis is shown in Fig 5.12, 5.13 and 5.14.
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Figure 5.12: Flow Chart : Dynamic Nonlinear Analysis (1st Step)
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Figure 5.13: Flow Chart : Dynamic Nonlinear Analysis (2nd Step)
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Figure 5.14: Flow Chart : Dynamic Nonlinear Analysis (3rd Step)
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5.8 Summary

In this chapter, Geometric stiffness matrix for space frame element is presented.

Solution methods of nonlinear equation are discussed. Using incremental-iteration

method, computer program for static and dynamic nonlinear analysis considering ge-

ometric nonlinearity are developed. Same procedure can be extended for material

nonlinearity. The programs developed for nonlinear analysis are useful to find be-

havior of space frame subjected to wind force, earthquake forces or other abnormal

loading like blast load or progressive collapse conditions.



Chapter 6

Nonlinear Analysis : Results and

Discussions

6.1 General

Computer program development as discussed in chapter 5 are used used for geometric

nonlinear analysis of space frame. In this chapter, space frames with varying height

are analyzed by incorporating geometric nonlinearity. Static nonlinear analysis results

in terms of load-displacement curves are presented. Nonlinear analysis is performed by

updating only tangent stiffness matrix and by updating both tangent stiffness matrix

and geometry of space frames. Results of static nonlinear analysis are compared with

that of obtained FEM based software results. Dynamic nonlinear analysis is also

performed and results in terms of time history responses are presented.

109
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6.2 Results and Discussion

In this section, various frames are analyzed. Results are presented in form of load

displacement plots and time history responses.

6.2.1 Single bay Single Storey Frame

Single bay single storey space frame as discussed in chapter 4 for linear analysis is

considered here to illustrate nonlinear behavior.

• Plan Dimension : 5m×5m

• Storey Height : 8m

• Beam and Column Size : (200×200) mm

• Grade of Concrete : M25

• Poisson’s Ratio (µ) : 0.2

• Support Condition : Fixed

6.2.1.1 Static Nonlinear Analysis Result

As nonlinear analysis is carried out in incremental manner, Loads are divided into

small increments. Loading conditions for single storey frame is shown in Fig. 6.1.

A load factor(λ) of 10 is assumed which is used to decide the load increment i.e.

Incremental load vector {∆F} = {F}
λ

. If number of steps equal to λ, full load is

applied. If number of steps are more than λ, load beyond actual load can be applied.
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Figure 6.1: Space frame subjected to Loads

Here incremental load vector is calculated by dividing load vector by factor(λ). Re-

sponse of space frame is measured in terms of displacement in X-direction for top

node (3). Results of nonlinear analysis (NLA) is validated with FEM based software

Results.

Figure 6.2: Load Displacement Curve for node 3 of first storey
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Table 6.1: Displacement Results of NLA using Computer Program

Load (kN) Displacement in X-direction (m)
NLA Without Geometry Update NLA With Geometry Update

0 0.000 0.000
5 0.082 0.082
10 0.173 0.180
15 0.266 0.283
20 0.363 0.396
25 0.465 0.527
30 0.573 0.652
35 0.687 0.794
40 0.808 0.953
45 0.935 1.122
50 1.070 -

55 1.213 -

60 1.365 -

65 1.528 -

70 1.701 -

75 1.886 -

80 2.085 -

85 2.299 -

90 2.529 -

95 2.779 -

100 3.049 -
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Table 6.2: Displacement Results of NLA using FEM based software

Load (kN)
Displacement in
X-direction (m)

0.000 0.000
7.628 0.145
14.579 0.290
23.895 0.506
35.816 0.827
50.375 1.295
68.547 1.988
83.018 2.577
85.457 2.674
87.742 2.764
90.915 2.889
95.177 3.058
98.494 3.200
100.788 3.323

Results of nonlinear static analysis program are shown in Table 6.1. Both without

geometry update and with geometry update conditions are considered. Results of

nonlinear analysis with updating geometry condition are not available after load of

45kN due to some program error. Frame is also analyzed using FEM based software.

Members of space frame are divided into number of elements for finite element anal-

ysis. Load displacement result are shown in Table 6.2. Results of analysis are plotted

as shown in Fig. 6.2. For initial load increments, load deformation curves for all three

analysis are almost same. After 20kN load, Results of NLA with geometry update

and without geometry update are differed which indicate effect of deformed geometry.

Hence it is required to update the geometry of structure at the end of each step for

large deformation. Results of computer program for NLA with geometry update are

good in agreement with FEM based results.
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6.2.1.2 Dynamic Nonlinear Analysis Results

Space frame shown in Fig. 6.3 is subjected to gravity loads and time dependent

lateral load.

Figure 6.3: Loading Condition for Nonlinear Dynamic Analysis

Dynamic Analysis data,

• Damping Ratio ξ = 5 %

• ω = 8.82 rad/sec

• Force : F(t) = 50 sin(t) at node 3 for t = 0 to t = 30 second(Figure 6.3)

• Time Increment : t = 0.1 second

• θ = 1.5
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Displacement, Velocity and Acceleration responses in x direction for node 3 of top

storey is plotted. Gravity load is considered to trace second order effects. Comparison

is made with linear analysis to get the idea of secondary effects.

Figure 6.4: Time history Response for Displacement in X direction

Figure 6.5: Time history Response for Velocity in X direction
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Figure 6.6: Time history Response for acceleration in X direction

Table 6.3: Comparison of maximum response of Linear and Nonlinear analysis

Max u (m) Max u̇ (m/s) Max ü (m/s2)

”+Ve” value Linear 0.283 0.424 1.988
Nonlinear 0.363 0.553 2.282

”-Ve” value Linear -0.300 -0.296 -1.290
Nonlinear -0.384 -0.369 -1.351

Comparison between result of dynamic linear analysis as discussed in chapter 4 and

results of dynamic nonlinear analysis are shown in Fig. 6.4, 6.5 and 6.6. Time history

responses are changed due to inclusion of geometric nonlinearity. Second order effects

are also traced in response curve. Maximum responses are also compared with linear

analysis in Table 6.3. It is observed that due to second order effects, displacement is

increased by 28%.
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6.2.2 Multi-storey Space Frame

To understand the effect of height on nonlinear behavior, space frame with different

heights are analyzed using program developed as discussed in chapter 5. Plan dimen-

sion of space frame as shown in Fig. 6.7, storey height, beam size are kept same for

all space frame.

• Plan Dimension : (15×20) m

• Storey Height : 5m

• Beam Dimension : (300×450) mm

• Zone : V

• Soft soil condition

• I = 1 and R = 5

• Fixed at base

6.2.2.1 Static Nonlinear Analysis Results

In addition to self weight of structure, space frames are subjected to lateral load due to

earthquake as per IS 1893. Gravity load analysis is performed in first step of analysis

then lateral forces are applied incrementally. Results of analysis are presented in form

of load displacement curve.

A load factor(λ) of 50 is assumed which is used to decide the load increment i.e.

Incremental load vector {∆F} = {F}
λ

.

Various models are considered in which sizes of columns are varying. Base shear for

different models are also shown in Table 4.4. Results of displacements in x-direction

corresponding to incremental loads are presented in tabular form. Displacements are

calculated at node number 20 of top storey. (Fig. 6.7). Load vector calculations are

also same as discussed in chapter 4.
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Figure 6.7: Plan and Elevation of multi-storey space frames (Common for all models)
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Table 6.4: Load displacement data for 6 storey frame (Vbx = 3425 kN)

F/Vbx
Displacement in X direction (m)

NLA Without Geometry Update NLA With geometry Update

0 0 0
0.02 0.005 0.005
0.04 0.011 0.011
0.06 0.016 0.017
0.08 0.022 0.022
0.1 0.027 0.028
0.12 0.033 0.033
0.14 0.038 0.039
0.16 0.044 0.044
0.18 0.049 0.050
0.2 0.054 0.055
0.22 0.060 0.060
0.24 0.065 0.066
0.26 0.070 0.071
0.28 0.076 0.077
0.3 0.082 0.082
0.32 0.087 0.088
0.34 0.093 0.093
0.36 0.098 0.098
0.38 0.103 0.104
0.4 0.109 0.109
0.42 0.114 0.115
0.44 0.120 0.120
0.46 0.125 0.125
0.48 0.131 0.131
0.5 0.136 0.136
0.52 0.142 0.142
0.54 0.147 0.147
0.56 0.152 0.152
0.58 0.158 0.158
0.6 0.163 0.163
0.62 0.169 0.168
0.64 0.174 0.174
0.66 0.180 0.179
0.68 0.185 0.184
0.7 0.191 0.190
0.72 0.196 0.195
0.74 0.201 0.200
0.76 0.207 0.206
0.78 0.212 0.211
0.8 0.218 0.216
0.82 0.223 0.222
0.84 0.229 0.227
0.86 0.234 0.232
0.88 0.240 0.237
0.9 0.245 0.243
0.92 0.251 0.248
0.94 0.256 0.254
0.96 0.261 0.260
0.98 0.267 0.266

1 0.272 0.271
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Figure 6.8: Load displacement curve at top for 6 storey frame

Results of nonlinear analysis of 6 storey frame is shown in Table 6.4. NLA is per-

formed for both without geometry update and with geometry update. Results of

both cases are almost same. Compared to displacement obtained from linear analy-

sis, displacement obtained from nonlinear analysis is increased by 4.2 % for maximum

lateral load due to earthquake.
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Table 6.5: Load displacement data for 10 storey frame (Vbx = 2955.2 kN)

F/Vbx
Displacement in X direction (m)

NLA Without Geometry Update NLA With geometry Update

0 0 0
0.02 0.006 0.006
0.04 0.012 0.013
0.06 0.018 0.019
0.08 0.024 0.025
0.1 0.030 0.031
0.12 0.036 0.037
0.14 0.042 0.043
0.16 0.048 0.049
0.18 0.054 0.055
0.2 0.060 0.061
0.22 0.066 0.067
0.24 0.072 0.073
0.26 0.078 0.079
0.28 0.084 0.085
0.3 0.090 0.091
0.32 0.096 0.097
0.34 0.102 0.103
0.36 0.108 0.109
0.38 0.114 0.115
0.4 0.120 0.121
0.42 0.126 0.127
0.44 0.132 0.133
0.46 0.138 0.139
0.48 0.144 0.145
0.5 0.151 0.151
0.52 0.157 0.157
0.54 0.163 0.163
0.56 0.169 0.169
0.58 0.175 0.175
0.6 0.181 0.181
0.62 0.187 0.187
0.64 0.193 0.193
0.66 0.199 0.199
0.68 0.205 0.205
0.7 0.211 0.211
0.72 0.217 0.217
0.74 0.223 0.223
0.76 0.229 0.229
0.78 0.235 0.235
0.8 0.241 0.241
0.82 0.247 0.247
0.84 0.253 0.253
0.86 0.259 0.259
0.88 0.265 0.265
0.9 0.271 0.271
0.92 0.277 0.277
0.94 0.283 0.282
0.96 0.289 0.288
0.98 0.295 0.294

1 0.301 0.300
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Figure 6.9: Load displacement curve at top for 10 storey frame

NLA results of load-displacement curve are shown in Table 6.5. For 10 storey frame

results of NLA without geometry update and with geometry update are similar. At

maximum lateral load due to earthquake, displacement obtained from nonlinear anal-

ysis is 7% more than displacement obtained from linear analysis.
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Table 6.6: Load displacement data for 15 storey frame (Vbx = 3890.8 kN)

F/Vbx
Displacement in X direction (m)

NLA Without Geometry Update NLA With geometry Update

0 0 0
0.02 0.010 0.010
0.04 0.023 0.026
0.06 0.033 0.038
0.08 0.045 0.049
0.1 0.055 0.060
0.12 0.068 0.072
0.14 0.078 0.083
0.16 0.090 0.095
0.18 0.101 0.106
0.2 0.112 0.117
0.22 0.124 0.129
0.24 0.135 0.140
0.26 0.147 0.152
0.28 0.158 0.163
0.3 0.169 0.174
0.32 0.181 0.186
0.34 0.192 0.197
0.36 0.204 0.208
0.38 0.215 0.220
0.4 0.226 0.231
0.42 0.238 0.242
0.44 0.249 0.254
0.46 0.261 0.265
0.48 0.272 0.276
0.5 0.283 0.287
0.52 0.295 0.299
0.54 0.306 0.310
0.56 0.318 0.321
0.58 0.329 0.332
0.6 0.340 0.343
0.62 0.352 0.355
0.64 0.363 0.366
0.66 0.375 0.377
0.68 0.386 0.388
0.7 0.397 0.399
0.72 0.409 0.410
0.74 0.420 0.421
0.76 0.432 0.432
0.78 0.443 0.445
0.8 0.454 0.457
0.82 0.466 0.470
0.84 0.477 0.481
0.86 0.489 0.495
0.88 0.500 0.506
0.9 0.511 0.520
0.92 0.523 0.531
0.94 0.534 0.544
0.96 0.546 0.554
0.98 0.557 0.568

1 0.568 0.580
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Figure 6.10: Load displacement curve at top for 15 storey frame

Load displacement results are shown in Table 6.6. For 15 storey frame also, Load-

displacement curves for NLA without geometry update and with geometry update

are almost similar. (Refer Fig. 6.10). Displacement based on nonlinear analysis

for maximum lateral load is 13.73% more compared to displacement based on linear

analysis.
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Table 6.7: Load displacement data for 20 storey frame (Vbx = 4456.7 kN)

F/Vbx
Displacement in X direction (m)

NLA Without Geometry Update NLA With geometry Update

0 0 0
0.02 0.012 0.012
0.04 0.028 0.033
0.06 0.040 0.048
0.08 0.056 0.061
0.1 0.068 0.075
0.12 0.082 0.089
0.14 0.096 0.103
0.16 0.110 0.117
0.18 0.124 0.131
0.2 0.138 0.146
0.22 0.152 0.160
0.24 0.166 0.174
0.26 0.180 0.188
0.28 0.194 0.202
0.3 0.208 0.216
0.32 0.222 0.230
0.34 0.237 0.244
0.36 0.251 0.258
0.38 0.265 0.271
0.4 0.279 0.285
0.42 0.293 0.299
0.44 0.307 0.313
0.46 0.321 0.327
0.48 0.335 0.341
0.5 0.349 0.355
0.52 0.363 0.368
0.54 0.377 0.382
0.56 0.391 0.396
0.58 0.405 0.410
0.6 0.419 0.423
0.62 0.433 0.440
0.64 0.447 0.454
0.66 0.461 0.471
0.68 0.475 0.485
0.7 0.489 0.503
0.72 0.504 0.517
0.74 0.518 0.533
0.76 0.532 0.546
0.78 0.546 0.562
0.8 0.560 0.576
0.82 0.574 0.592
0.84 0.588 0.608
0.86 0.602 0.624
0.88 0.616 0.640
0.9 0.630 0.656
0.92 0.644 0.672
0.94 0.658 0.688
0.96 0.672 0.704
0.98 0.686 0.719

1 0.700 0.735
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Figure 6.11: Load displacement curve at top for 20 storey frame

For 20 storey frame, NLA results are shown in Table 6.7. Load displacement curves

are plotted. It is observed that after lateral load of 0.6Vbx, effect of deformed geometry

is observed and hence deflection results of NLA without geometry update and NLA

with geometry update are deferred. Displacement based on NLA with geometry

update is 5% more than displacement based on NLA without geometry update. At

maximum lateral load of Vbx, deflection for nonlinear case is 19.9% more than that of

linear analysis.
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Table 6.8: Load displacement data for 25 storey frame (Vbx = 4456.7 kN)

F/Vbx
Displacement in X direction (m)

NLA Without Geometry Update NLA With geometry Update

0 0 0
0.02 0.015 0.015
0.04 0.036 0.045
0.06 0.052 0.066
0.08 0.072 0.083
0.1 0.091 0.100
0.12 0.109 0.119
0.14 0.128 0.138
0.16 0.146 0.157
0.18 0.165 0.175
0.2 0.183 0.194
0.22 0.202 0.212
0.24 0.220 0.231
0.26 0.239 0.249
0.28 0.257 0.268
0.3 0.276 0.286
0.32 0.294 0.305
0.34 0.313 0.323
0.36 0.331 0.342
0.38 0.350 0.360
0.4 0.368 0.378
0.42 0.387 0.397
0.44 0.405 0.415
0.46 0.424 0.433
0.48 0.442 0.451
0.5 0.461 0.469
0.52 0.479 0.492
0.54 0.498 0.511
0.56 0.516 0.535
0.58 0.535 0.554
0.6 0.553 0.577
0.62 0.572 0.595
0.64 0.590 0.617
0.66 0.609 0.636
0.68 0.627 0.658
0.7 0.646 0.680
0.72 0.664 0.703
0.74 0.683 0.726
0.76 0.701 0.749
0.78 0.720 0.772
0.8 0.738 0.794
0.82 0.757 0.817
0.84 0.775 0.839
0.86 0.794 0.861
0.88 0.813 0.883
0.9 0.831 0.906
0.92 0.850 0.927
0.94 0.868 0.949
0.96 0.887 0.971
0.98 0.905 0.993

1 0.924 1.014
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Figure 6.12: Load displacement curve at top for 25 storey frame

Load displacement results of developed programs are shown in Table 6.8. It is ob-

served that after lateral load of 0.5Vbx, effect of deformed geometry is observed .

Displacement based on NLA with geometry update is 10% more than displacement

based on NLA without geometry update. At maximum lateral load of Vbx, deflection

for nonlinear case is 24.5% more than that of linear analysis. Hence it is important

to consider large deformation condition for high rise building.
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Table 6.9: Load displacement data for 30 storey frame (Vbx = 4728.3 kN)

F/Vbx
Displacement in X direction (m)

NLA Without Geometry Update NLA With geometry Update

0 0 0
0.02 0.020 0.020
0.04 0.051 0.068
0.06 0.072 0.103
0.08 0.099 0.125
0.1 0.126 0.148
0.12 0.152 0.175
0.14 0.179 0.204
0.16 0.205 0.232
0.18 0.232 0.258
0.2 0.258 0.285
0.22 0.285 0.312
0.24 0.312 0.339
0.26 0.338 0.366
0.28 0.365 0.392
0.3 0.392 0.419
0.32 0.418 0.446
0.34 0.445 0.472
0.36 0.472 0.499
0.38 0.498 0.525
0.4 0.525 0.561
0.42 0.552 0.591
0.44 0.578 0.627
0.46 0.605 0.655
0.48 0.632 0.691
0.5 0.659 0.730
0.52 0.685 0.769
0.54 0.712 0.808
0.56 0.739 0.848
0.58 0.765 0.887
0.6 0.792 0.925
0.62 0.819 0.964
0.64 0.845 1.002
0.66 0.872 1.040
0.68 0.899 1.077
0.7 0.925 1.114
0.72 0.952 1.151
0.74 0.979 1.188
0.76 1.005 1.224
0.78 1.032 1.260
0.8 1.059 1.295
0.82 1.085 1.331
0.84 1.112 1.366
0.86 1.139 1.400
0.88 1.165 1.435
0.9 1.192 1.469
0.92 1.219 1.502
0.94 1.245 1.536
0.96 1.272 1.569
0.98 1.299 1.602

1 1.326 1.634
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Figure 6.13: Load displacement curve at top for 30 storey frame

Load displacement data for 30 storey frame for nonlinear cases are shown Table

6.9. NLA without geometry update and with geometry update are performed based

on developed computer program. It is observed that after lateral load of 0.4Vbx,

effect of deformed geometry is observed. Displacement based on NLA with geometry

update is 18.9% more than displacement based on NLA without geometry update.

At maximum lateral load of Vbx, deflection for nonlinear case is 38% more than that

of linear analysis.
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6.2.2.2 Dynamic Nonlinear Analysis Results

Dynamic nonlinear analysis of space frame with different height are performed. Effects

of gravity loads are considered. Dynamic data of various models are same as discussed

in Chapter 4. Dynamic forces are applied on top storey of each frame. Results are

compared with linear analysis.

Dynamic Data for Each models are

• Forcing Function : F(t) = 500sin(t) for t = 0 to t = 15 second at node number

1, 4, 17 and 20 of top storey (Fig. 6.14).

• θ = 1.5

• ∆t = 0.05

• Responses in terms of displacements, velocity and acceleration in X - direction

at node number 20 of top storey are recorded.

Figure 6.14: Magnitude and direction of time dependent Force
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Results of various space frame models in form of time history curves are shown below,

Figure 6.15: Comparison of Displacement Response for 6 Storey Frame

Figure 6.16: Comparison of Velocity Response for 6 Storey Frame
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Figure 6.17: Comparison of Acceleration Response for 6 Storey Frame

Table 6.10: Comparison of Maximum Responses : 6 Storey Frame

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“+Ve” value Linear 0.254 0.365 1.675
Nonlinear 0.266 0.384 1.668

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“-Ve” value Linear -0.258 -0.289 -0.875
Nonlinear -0.275 -0.303 -0.916

Dynamic nonlinear analysis for 6 storey frame is performed using developed computer

program. Also results of nonlinear and linear analysis are compared in Fig. 6.15,

6.16 and 6.17. For 6 storey frame, nonlinear responses are almost same as linear

analysis. Maximum responses are also compared. Difference between responses based

on nonlinear analysis and response based on linear analysis are approximately 4% -

7%.



CHAPTER 6. NONLINEAR ANALYSIS : RESULTS AND DISCUSSIONS 134

Figure 6.18: Comparison of Displacement Response for 10 Storey Frame

Figure 6.19: Comparison of Velocity Response for 10 Storey Frame
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Figure 6.20: Comparison of Acceleration Response for 10 Storey Frame

Table 6.11: Comparison of Maximum Responses : 10 Storey Frame

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“+Ve” value Linear 0.360 0.425 1.180
Nonlinear 0.395 0.453 1.169

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“-Ve” value Linear -0.333 -0.410 -0.919
Nonlinear -0.355 -0.424 -0.980

Dynamic nonlinear analysis is performed for 10 storey space frame using developed

computer program. Second order effects are also included by incorporating geometric

nonlinearity. Results are shown in Fig. 6.18, 6.19 and 6.20. Velocity and acceleration

based on nonlinear analysis and linear analysis are almost same. Maximum displace-

ment, velocity and acceleration are presented in Table 6.11. Maximum displacement

based on nonlinear analysis is 10% more compared to that of linear analysis.
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Figure 6.21: Comparison of Displacement Response for 15 Storey Frame

Figure 6.22: Comparison of Velocity Response for 15 Storey Frame
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Figure 6.23: Comparison of Acceleration Response for 15 Storey Frame

Table 6.12: Comparison of Maximum Responses : 15 Storey Frame

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“+Ve” value Linear 0.528 0.534 0.824
Nonlinear 0.585 0.535 0.813

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“-Ve” value Linear -0.454 -0.665 -0.991
Nonlinear -0.498 -0.771 -1.065

Nonlinear dynamic analysis for 15 storey frame is performed and results in terms of

time history plots are shown in Fig. 6.21, 6.22 and 6.23. Maximum displacement

based on nonlinear analysis is increased by approximately 10% compared to max-

imum displacement based on linear analysis as discussed in chapter 4. Maximum

velocity and acceleration based on nonlinear analysis are also increased by 16% and

7% respectively compared to that of linear analysis due to second order effects.
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Figure 6.24: Comparison of Displacement Response for 20 Storey Frame

Figure 6.25: Comparison of Velocity Response for 20 Storey Frame
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Figure 6.26: Comparison of Acceleration Response for 20 Storey Frame

Table 6.13: Comparison of Maximum Responses : 20 Storey Frame

Max u (m) Max u̇ (m/s) Max ü (m/s2)

“+Ve” value Linear 0.705 0.904 1.122
Nonlinear 0.979 1.133 1.278

Max u (m) Max u̇ (d/s) Max ü (m/s2)

“-Ve” value Linear -0.820 -0.859 -0.902
Nonlinear -0.975 -0.964 -1.233

Dynamic nonlinear analysis for 20 storey frame is performed using developed program.

Comparison of nonlinear and linear analysis results are shown in Fig. 6.24, 6.25 and

6.26. For 20 storey frame, displacement obtained from nonlinear analysis is 39%

more than that of linear analysis. Velocity and acceleration results are also affected

due to large deformation. Maximum velocity and acceleration based on nonlinear

analysis are 12% and 36% increased respectively compared to that of linear analysis.

For given loading conditions, responses of 25 storey and 30 storey are diverging after

some increments.
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Results of space frame models suggest

• For lower storey frames or stiff frames have almost similar behavior when ana-

lyzed without updating geometry and with updating geometry. Also nonlinear

analysis results are marginally higher than linear analysis results. Displacement

based on static nonlinear analysis are 4% to 8% more compared to displacement

based on static linear analysis.

• As storey height increases, variations between the results of analysis without

updating geometry and with updating geometry are increased. It suggests that

for flexible type of space frame, large deformation condition should be considered

with second order effects. Displacements based on static nonlinear analysis are

20% to 40% more compared to that of static linear analysis.

• For dynamic loading condition, results of nonlinear analysis for stiff frame are

similar to linear analysis whereas for for flexible type of frame, nonlinear analysis

increases as height increases. It suggests that, second order effects are affecting

behavior of flexible type of building. This can be understood by comparing

nonlinear result with linear analysis result.

6.3 Summary

In this chapter, application of computer programs for nonlinear analysis of space

frame with various height are discussed. Load displacement curves for static non-

linear analysis and time history plots for dynamic nonlinear analysis are presented.

Nonlinear analysis is performed by considering with geometry update and without

geometry update. Comparison is made between linear and nonlinear analysis results.



Chapter 7

Summary and Conclusion

7.1 Summary

Space frames are widely used structural system which requires rigorous analysis so

that efficient and economical design can be proposed. It is difficult to understand

exact load path as loads are transferred in three dimensional manner. New analysis

techniques, which are based on performance of space frame, require detailed analysis

which can predict accurate response. In this work, analysis of space frame structure

is performed by considering linear and nonlinear condition to predict actual behavior.

Linear analysis is performed for static and dynamic loading conditions. Computer

Programs using C language are developed for static linear analysis, free vibration

analysis and forced vibration analysis. Direct numerical integration method (Wilson

Theta method) is used to obtain time history responses. For verification of linear

analysis result, space frames are modeled and analyzed in ETABS.

Space frame are mostly having slender sections which can have large deformation. Ad-

ditional forces are generated due to large deformation which can be incorporated by

considering geometric stiffness matrix. Computer Program using C language is devel-

oped by extending linear static analysis procedure for nonlinear incremental analysis.

141
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Newton-Raphson method is included to recover unbalanced forces induced at the end

of each increment. Large strain and large deformation conditions are considered for

nonlinear static analysis. Space frame subjected to incremental forces is analyzed

using FEM based software for validation of nonlinear analysis results obtained from

computer program. Space frames of varying heights under seismic loading are ana-

lyzed to understand effects of geometric nonlinearity. Developed computer programs

are applicable for analysis of large size space frames. Computer program using C lan-

guage for nonlinear dynamic analysis is also prepared and analysis results for space

frames are presented.

Single bay single storey frame subjected to gravity and lateral loads is analyzed for

static condition. Loads are applied incrementally and results are calculated for nonlin-

ear case. Results of static nonlinear analysis are compared with FEM based software

results. For dynamic loading condition, time dependent lateral force is applied at

top storey. Dynamic response in form of displacement, velocity and acceleration are

plotted in terms of time history curve. Multi-storey frames like 6 storey, 10 storey,

15 storey, 20 storey and 30 storey with plan dimension (15m × 20m) and storey

height 5m are analyzed for static and dynamic case to understand effect of height

on behavior of frame. Self weight of all members are calculated and applied at each

node. Equivalent earthquake load as per IS 1893(Part 1):2002 is considered for each

space frame and applied incrementally for static nonlinear analysis. Base shear v/s

displacement are plotted using computer program results and compared with linear

analysis. For dynamic nonlinear analysis, time dependent sinusoidal forces are ap-

plied at top storey of each frame. Time history curves are plotted for both linear and

nonlinear case.
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7.2 Conclusion

• Nonlinear Static Analysis of Space Frame

Based on geometric nonlinear static analysis of regular space frame subjected

to seismic forces as per IS 1893, following conclusions are derived.

– For low rise space frame, difference between displacement based on nonlin-

ear static analysis without updating geometry and with updating geometry

is small. In present study, displacement at top for 6 storey and 10 storey

frames under lateral load due to earthquake are almost similar for NLA

without and with geometry update. This suggest that analysis of stiff

frame can be performed by updating geometric stiffness matrix at the end

of each step. This will reduce computational efforts.

– As height of frames increase, difference in displacement, based on nonlin-

ear static analysis without geometry update and with geometry update, is

significant. For 15 storey, 20 storey, 25 storey and 30 storey space frames

under lateral load due to earthquake, displacements based on nonlinear

analysis with geometry update are 2%, 5%, 10% and 23% more compared

to displacement based on nonlinear analysis without geometry update re-

spectively. Hence it is required to update geometry of space frame along

with geometric stiffness matrix for geometric nonlinear analysis of flexible

space frames.

– When ratio of height to larger lateral dimension(H/L) is less than 4, non-

linear analysis can be performed by only updating geometric stiffness ma-

trix. For (H/L) greater than 4, geometric nonlinearity as well as effect

of deformed geometry should be included to trace actual nonlinear load-

displacement curve.

– In present study, displacements based on nonlinear static analysis for 6

storey, 10 storey, 15 storey, 20 storey, 25 storey and 30 storey frames are
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approximately 4%, 7%, 14%, 20%, 25% and 38% more than the displace-

ments based on linear static analysis respectively. It suggests that for

high rise frame, second order effects are affecting the behavior and hence

geometric nonlinearity should be considered.

– Gravity loads need to be considered at the initial steps of analysis to track

nonlinear behavior of space frames for static and dynamic loading condi-

tion.

• Nonlinear Dynamic Analysis of Space Frame

Based on geometric nonlinear analysis of regular space frame subjected to sinu-

soidal load at top storey, following conclusions are derived.

– Maximum displacement based on nonlinear dynamic analysis for 6 storey,

10 storey, 15 storey and 20 storey frames are approximately 5%, 10%, 12%

and 38% more compared to displacement based on linear dynamic analysis

respectively.

– Velocity and acceleration responses are affected due to geometric nonlin-

earity. For 6 storey, 10 storey, 15 storey and 20 storey, maximum velocity

based on nonlinear dynamic analysis are 5%, 7%, 16% and 25% more com-

pared to maximum velocity based on linear dynamic analysis and maxi-

mum accelerations based on nonlinear dynamic analysis are 5%, 7%, 7%

and 36% more compared to maximum acceleration based on linear dynamic

analysis. Response of dynamic analysis are also affected by frequency of

applied force.
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7.3 Future Scope of Work

The work presented in this report can be extended in future as follows

• Development of analysis procedure for static and dynamic conditions in which

both the material and geometric nonlinearities are incorporated.

• Study nonlinear dynamic effects of earthquake and wind for space frame struc-

ture.

• Development of computer program for nonlinear analysis using displacement

control method.

• Effect of abnormal loading conditions like progressive collapse conditions, blast

load etc can be studied using computer program developed in this study.

• Effect of material and geometric nonlinearity on irregular building configuration

can be studied.
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