APPLICATION OF PARALLEL
PROCESSING IN STRUCTURAL
ENGINEERING

By

Konark P. Patel
12MCLC21

2 NIRMA
UNIVERSITY

INSTITUTE OF TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May-2014

APPLICATION OF PARALLEL
PROCESSING IN STRUCTURAL
ENGINEERING

Major Project

Submitted in Partial Fulfillment of the Requirements for Degree of

MASTER OF TECHNOLOGY
IN
CIVIL ENGINEERING
(Computer Aided Structural Analysis And Design)
By

Konark P. Patel
12MCLC21

) UNIVERSITY

INSTITUTE OF TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May-2014

iii
Declaration

This is to certify that

e The thesis comprises my original work towards the Degree of Master of Tech-
nology in Civil Engineering (Computer Aided Structural Analysis And Design)

at Nirma University and has not been submitted elsewhere for a degree.

e Due acknowledgement has been made in the text to all other materials used.

Konark P. Patel

v

Certificate

This is to certify that the Major Project Report entitled “APPLICATION OF
PARALLEL PROCESSING IN STRUCTURAL ENGINEERING” submit-
ted by Mr. Konark P. Patel (Roll No: 12MCLC21) towards the partial fulfill-
ment of the requirements for the degree of Master of Technology in Civil Engineering
(Computer Aided Structural Analysis And Design) of Nirma University is the record
of work carried out by him under our supervision and guidance. The work submitted
has in our opinion reached a level required for being accepted for examination. The
results embodied in this major project work to the best of our knowledge have not
been submitted to any other University or Institution for award of any degree or

diploma.

Dr. P. V. Patel

Guide,

Professor and Head,
Department of Civil engineering,
Institute of Technology,

Nirma University,

Ahmedabad.

Dr. K. Kotecha

Director, Examiner

Institute of Technology,

Nirma University,

Ahmedabad. Date of Examination

Abstract

Today’s computing environments are becoming more multifaceted, exploiting the ca-
pabilities of a range of multi-core microprocessors, Central Processing Units (CPUs),
digital signal processors, and graphic processing units (GPUs). Due to heterogeneity
in hardware, the process of developing efficient software for such a wide array of ar-

chitectures poses a number of challenges to the programming community.

Solution of linear equations is a major mathematical process to solve many problems
of solid mechanics, fluid dynamics, structural engineering and so on. Since the size of
problems increases to achieve accuracy, number of linear equations to be solved also
increases and so is the time, to solve equations increases. Advancement of new par-
allel computation technology using inexpensive graphic card processors (multi-core
GPUs) and multi-core CPUs speed up the solution of various problems of structural

engineering.

In the present study, computationally intensive problems of structural engineering are
implemented on High Performance Computing Platforms like multi-core processors
and graphic processing units (GPUs). Direct methods like, Gaussian Elimination
and Modified Cholesky solver, for solving linear equations in form of [A][{x}={B}
are used. GPUs and CPUs are used for parallel computations with help of OpenCL
programming language. It is a step in the direction of heterogeneous computing for
smarter, faster and better analysis of problem. The main purpose of using this paral-
lel computation is to minimize the time of structural analysis of problem that involves

large number of linear equations.

For parallel implementation of Gaussian Elimination solver, linear equations sys-
tem representing equilibrium equations of finite element problem is used. Equa-

tions in form of [A]{x}={B} are generated from finite element analysis of axial bar

vi

using 3-node bar element where A=Square Stiffness Matrix, B=Load Vector and
x=Displacement vector. For solution of equations Matrix-[A] is inverted using se-
quential and parallel implementation of Gaussian Elimination. Sequential program
is developed using C++ and parallel program is developed using OpenCL language.
For comparing computational efficiency of parallel code, speedup factor which is ra-
tio of sequential execution time to parallel execution time is calculated for different
number of linear equations ranging 101 to 10001. Parallel execution time includes
processing time and communication time. As data is transferred between various
memories, communication time increases total computational time. Code is executed

on different CPUs and GPUs for parametric study.

For parallel implementation of Half-Band solver, which is based on modified cholesky
method, Direct Stiffness Method program of Plane Frame and Space Frame are used
for generating set of linear equation system. Here stiffness matrix is stored in banded
form to reduce memory requirements. Programs for sequential and parallel solution
of banded equations are developed using C++ and OpenCL languages. Problems
of varying size from 7650 Degrees of Freedom to 1,88,250 Degrees of Freedom are
solved using sequential and parallel Half-Band solver. The computational efficiency of
parallel code is studied based on speedup factor. Further to understand the efficiency
of program on different hardware platform, the parallel code is executed on multi-
core CPUs like Intel® Core™i3, i5, i7 processors with different specifications and
NVIDIA GPU. Major factors affecting computational efficiency of parallel program
are hardware specifications, algorithms used, size of problem, communication time.
When parallel code is implemented on multi-core CPUs, communication time is less
compared to implementation on GPU. In case of GPU, computational time is reduced

because of parallel operations on large number of cores.

vil

Acknowledgement

I would like to express my immense gratitude to my guide Dr. Paresh V. Patel,
Head of Civil Engineering Department, Institute of Technology, Nirma University,
Ahmedabad for his valuable guidance and continual encouragement throughout my
major project work. His constant support and interest in subject equipped me with
a great understanding of different aspects of the major project work. His extreme

supervision and direction right from beginning motivate me to complete this work.

My sincere thanks to Dr. Sharad P. Purohit, Professor, Civil Engineering Depart-
ment and Dr. Urmil V. Dave, Professor, Civil Engineering Department for their

kind suggestions and motivational words throughout the major project work.

A special thanks to Dr K Kotecha, Hon’ble Director, Institute of Technology, Nirma
University, Ahmedabad for providing required resources for my project and healthy

research environment.

I would like to thank all my friends for their everlasting support and encouragement

in all possible ways throughout the major project work.

Most importantly deepest appreciation and thanks to Almighty and my family for
their unending love, affection and personal sacrifices during the whole tenure of my

study at Nirma University.

Patel Konark P.
12MCLC21

viil

Abbreviations
GPU .. Graphics Processing Unit
HPC . High Performance Computing
GPGPU General-purpose computing on graphics processing units
TPP .o Theoretical Peak Performance
Flops... ..o Floating-point Operations Per Second
PFlops. ... Peta Floating-Point Operations Per Second
AP o Application Programming Interface
AMD .o Advanced Micro Device
IBM ... International Business Machine
OpenCL ... Open Computing Language
CUDA. ... Compute Unified Device Architecture
FPGA . Field-programmable gate array
LAPACK ... Linear Algebra Package
MAGMA Matrix Algebra on GPU and Multicore Architectures
GFLOD/S oo oo Giga Floating-point Operations Per Second
F B Finite Element
FEM . Finite Element Method

DE M . Discrete Element Method

Contents

Certificate

[Abstractl

[Acknowledgement)|

ABbbreviations
[List of Tables|

[List of Figures|

(1 Introduction to High Performance Computing|

(1.4 Domains of High Performance Computingl
(1.4.1 Cluster Computing|
(1.4.2 Grid Computing]
(1.4.3 Multicore Computing|

(1.5 Parallel Computing|
[1.5.1 Flynn’s taxonomy|. L.

[L.6 General-purpose computing on graphics processing units (GPGPU)| .

[I.7 Objective of Study]

(1.8 Scope of Workl.

(1.9 Organization of Report|

2 Literature Survey|
[2.1 Parallel Computing|
[2.2 Application of Parallel Computing on FEM|

2.4 Summary| Lo

X

iii

iv

vil

viil

xii

xiii

CONTENTS

[3 Introduction to OpenCL Programming|
BI Generall
[3.1.1 Benefits of OpenCL|.
[3.2 Modules of OpenCL}
[3.2.1 Language Specification|

[3.3 OpenCL Architecturel.

[3.3.2.2° Host Program|.

[3.3.3 The Memory Model[.

[3.4 Executing an OpenCL Program|
(3.5 Multiplication of Large Square Matrices|
[3.6 Parallel Implementation|
[3.6.1 OpenCL Kernell
[3.6.2 OpenCL Source code for C+—+.
[3.6.3 Comparison of Speedup and Efficiency|

[3.7 Summary|

[4.2 Algorithm of Gaussian Elimination|
[4.3 Sequential Implementation|o
4.4 Parallel Implementation|
[4.5 Summary|o

(5.2 Algorithm of Halt-Band Solver|.
[5.3 Sequential Implementation|o o000
[>.4 Parallel Implementation|
[5.5 Plane Frame Analysis|.
[>.6 Space Frame Analysis|.
[0.7 Summary|

(6 Summary and Conclusion|
(6.1 Summary|l
6.2 Conclusion|.
[6.3 Future Scope of Work{. L.

[A Gauss Elimination host program|

35
35
36
36
36
37
37
37
37
38
38
41
41
43
44
45
46
48
o7
61

62
62
66
66
67
85

86
86
88
89
90
93
104
109

110
110
111
113

114

CONTENTS xi

(B Half-Band Solver host program| 128

[C List of Paper Published/Communicated] 154

[References] 155

List of Tables

[3.1 Speedup For Paralle Square Matrix Multiplication Results| 58
4.1 Hardware used and their configurations| 69
4.2 Performance Comparison using Intel® Core'i3-3210 Processor(3M |
| Cache,3.20 GHz)| 71
4.3 Performance Comparison using Intel® Core'"i5-3450 Processor(6M |
| Cache, 3.50GHz)| 73
4.4 Performance Comparison using Intel® Core'"i7-3450 Processor(6M |
| Cache, 3.50GHz)| 75
4.5 Performance Comparison using Intel® Core"i7-2630QM Processor(2.0GHz)| 78
[£.6 Performance Comparison using NVIDIA GeForce GT 525M 1] 80
(5.1 Performance Comparison of Plane Frame Analysis using Intel®) Core' Vi3- |
| 3210 Processor(3M Cache,3.20 GHz)| 96
[5.2 Performance Comparison of Plane Frame Analysis using Intel® Core' “'i5- |
| 3450 Processor(6M Cache,3.50GHz)[. 97
[5.3 Performance Comparison using Intel® Core'"i7-3450 Processor(6M |
| Cache, 3.50GHz)| 98
[5.4 Performance Comparison using Intel® Core™"i7-2630QM Processor(2.0GHz)| 99
5.5 Pertormance Comparison using NVIDIA GekForce GT 5256M | 100
5.6 Performance Comparison using Intel® Core'i3-3210 Processor(3M |
| Cache,3.20 GHz)| 106
[5.7 Performance Comparison using Intel® Core'™i5-3450 Processor(6M |
| Cache, 3.50GHz)| 107
[5.8 Performance Comparison using Intel® Core'i7-3450 Processor(6M |
| Cache, 3.50GHz)| 108

xii

List of Figures

1.1 Japan’s Earth Simulator29] 7
1.2 IBM Blue Gene@] 7
1.3 IBM Blue Gene Diagram[30]] 8
(1.4 Generic dual-core processor| 10
[1.5 Connection Between Various Devices23]| 11
[L6 SISD flowl 14
................................. 14
L8 MISD flowl 15
L9 MIMD flow] 15
[1.10 Nvidia’s Tesla GPGPU card[31] 16
[LIT Inside View of GPUI. 17
2.1 Logical Structure of Cluster[d]] 26
3.1 OpenCL Platform Mod@:@] 38
3.2 ATI RadeonTM HD 5870 GPU architecture[24][26]| 39
3.3 Grouping Work-items Into Work-groups|24][26](. 40
3.4 Work-group Example@@] 40
3.5 OpenCL Memory Model24][26]] 42
3.6 OpenCL Execution modelR4[26] 43
[3.7 Matrix multiplication algorithm| 45
[3.8 Algorithm for converting a two-dimensional index space into linear for |

laying the matrix out in the GPU buffer with Row-Major And Column |

Major| 47
[3.9 GPU And CPU Implementation of Square Matrix Multiplication|. . . 59
[3.10 Comparison Of Computation Time For GPU And CPU Implementa- [

tion of Square Matrix Multiplication| 60
4.1 Performance Comparison using Intel® Core'"i3-3210 Processor(3M |

Cache,3.20 GHz)| 72
4.2 Performance Comparison using Intel® Core'"i5-3450 Processor(6M |

Cache,3.50GHz)| 74
4.3 Performance Comparison using Intel® Core'™i7-3450 Processor(6M |

Cache, 3.50GHz)| 76

LIST OF FIGURES xiv

4.4 Performance Comparison using Intel® Core'™i7-2630QM Processor(2.0GHz)| 79
[4.5 Performance Comparison using NVIDIA GeForce GT 525M| 81
[4.6 Comparison ot Execution Time ot Different Hardwares for Gauss Elim- |
[mationl 82
[4.7 Comparison of Communication Time of Different Hardwares for Gauss |
[Eliminationl 83
[4.8 Comparison of Speedup factor ot Different Hardwares for Gauss Elim- [
[mation| 84
[>.1 Band Matrix for sympatric square matrix (a) Square Matrix (b) Band |
| Matrix[35]] 87
[>.2 Plane Frame Schematic Diagram | 94
5.3 Plane Frame Member axes and degrees of freedom | 95
5.4 Performance Comparison of Plane Frame Analysis using Intel® Core' Vi3- |
| 3210 Processor(3M Cache,3.20 GHz)[. 96
[5.5 Performance Comparison of Plane Frame Analysis using Intel® Core' “i5- |
| 3450 Processor(6M Cache,3.50GHz)[. 97
[5.6 Performance Comparison of Plane Frame Analysis using Intel® Core' Vi7- |
| 3450 Processor(6M Cache,3.50GHz)[. 98
[5.7 Performance Comparison using Intel®) Core™"i7-2630QM Processor(2.0GHz)| 99
[5.8 Performance Comparison using NVIDIA GeForce GT 525M| 100
[5.9 Comparison of Execution Time ot Different Hardwares for Plane Frame |
| Analysis| 101
[.10 Comparison of Communication Time of Different Hardwares for Plane |
| Frame Analysis|. oo 102
[5.11 Comparison of Speedup factor ot Ditterent Hardwares for Plane Frame [
[Analysis| 103
[5.12 Space Frame Member Stifiness Matrix| 104
[>.13 Space Frame Member axes and degrees of freedom | 104
b.14 Space Frame Schematic Diagram | 105
5.15 Performance Comparison using Intel® Core'™i3-3210 Processor(3M |
| Cache,3.20 GHz)| 106
[5.16 Performance Comparison using Intel® Core'™i5-3450 Processor(6M |
| Cache,3.50GHz)| 107
[5.17 Performance Comparison using Intel® Core'™i7-3450 Processor(6M |
| Cache, 3.50GHz)| 108
[5.18 Speedup Factor Comparison| 109

Chapter 1

Introduction to High Performance

Computing

1.1 General

HPC(High Performance Computing) requires substantially more computational re-
sources than are available on current workstations, and typically require concurrent
(parallel) computation.

Alternatively HPC is any computational technique that solves a large problem faster

than possible using single, commodity systems. HPC can be achieved through
e Custom-designed, high-performance processors (e.g. Cray, NEC)
e Parallel computing
e Distributed computing
e Grid computing

First HPC systems were vector-based systems (e.g. Cray) named ’supercomputers’
because they were an order of magnitude more powerful than commercial systems.

Now, 'supercomputer’ has little meaning “large systems are now just scaled up ver-

1

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 2

sions of smaller systems”. However, ’high performance computing’ has many mean-

ings like
e can mean high floating-point Operations Per Second (flops) count

— per processor
— totaled over many processors working on the same problem

— totaled over many processors working on related problems

e can mean faster turnaround time

— more powerful system
— scheduled to first available system(s)

— using multiple systems simultaneously

HPC has had tremendous impact on all areas of computational science and engi-
neering in academia, government, and industry. Many problems have been solved
with HPC techniques that were impossible to solve with individual workstations or

personal computers.

1.2 Advances in Hardware and Platforms for HPC

Approaches to HPC have taken dramatic turns since the earliest systems were intro-
duced in the 1960s. Early HPC architectures pioneered by Seymour Cray relied on
compact innovative designs and local parallelism to achieve superior computational
peak performance. However, in time the demand for increased computational power
ushered in the age of massively parallel systems.

While the HPC computers of the 1970s used only a few processors, in the 1990s,
machines with thousands of processors began to appear and by the end of the 20th

century, massively parallel supercomputers with tens of thousands of “off-the-shelf”

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 3

processors were the convention. Some of the computers of the 21st century can use

over 100,000 processors (some being graphic units) connected by fast connections.

Throughout the decades, the management of heat density has remained a key issue for
most centralized supercomputers. The large amount of heat generated by a system
may also have other effects, e.g. reducing the lifetime of other system components.
There have been diverse approaches to heat management, from pumping Fluorinert
through the system, to a hybrid liquid-air cooling system or air cooling with normal

air conditioning temperatures.

Systems with a massive number of processors generally take one of two paths: in
one approach, known as grid computing, the processing power of a large number of
computers in distributed, diverse administrative domains, is opportunistically used
whenever a computer is available. In another approach, a large number of processors
are used in close proximity to each other, e.g. in a computer cluster. In such a central-
ized massively parallel system the speed and flexibility of the interconnect becomes
very important. The use of multi-core processors combined with centralization is an
emerging direction, e.g. as in the Cyclops64 system formerly known as Blue Gene
which is a cellular architecture in development by IBM. The Cyclops64 project aims

to create the first “supercomputer on a chip”.[32]

As the price/performance of general purpose graphic processors (GPGPUs) has im-
proved, a number of petaflop supercomputers such as Tianhe-I and Nebulae have
started to rely on them. However, other systems such as the K computer continue to
use conventional processors such as SPARC-based designs. The overall applicability
of GPGPUs in general purpose high performance computing applications has been
the subject of debate since past. A GPGPU may be tuned to score well on specific
benchmarks its overall applicability to everyday algorithms may be limited unless
significant effort is spent to tune the application towards it. However, GPUs are

gaining ground and in 2012 the Jaguar supercomputer was transformed into Titan

by replacing CPUs with GPUs.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 4

1.3 Evolution of HPC

The history of evolution of high performance computing is discussed in this section.[33]

Some of the benchmarks in computing are as follows:

Experimental /Special Purpose Computing

The

1939-Atanasoff and Berry build prototype electronic/digital computer at Iowa
State University

1941-Conrad Zuse completed Z3, first functional programmable electromechan-

ical digital computer

1943-Bletchley Park operated Colossus, computer based on vacuum tubes, by

Turing, Flowers, and Newman

1946-ENTAC developed by Eckert and Mauchly, at the University of Pennsyl-

vania

1951-UNIVAC I (also designed by Eckert and Mauchly), produced by Reming-

ton Rand, delivered to US Census Bureau

1952-ILLIAC 1T (based on Eckert, Mauchly, and von Neumann design), first

electronic computer built and housed at a University
Cray Years[33]

1962-Control Data Corp. introduced the first commercially successful super-
computer, the CDC 6600, designed by Seymour Cray. Theoretical Peak Perfor-
mance(TPP) of 9 MFlop/s

1967-Texas Instruments Advanced Scientific Computer, similar to CDC 6600,

included vector processing instructions

1968-CDC 6800, Crays redesign of 6600, remained fastest supercomputer until
mid 1970s. TPP of about 40MFlop/s.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 5

e 1976-Cray Research Incs Cray-I started vector revolution. TPP of about 250MFlop/s.

e 1982-Cray X-MP, Crays first multiprocessor computer, original 2 processor de-
sign had a TPP of 400MFlop/s, included shared memory access between pro-

CessOrs
Clusters Take Over[33]

e 1993-Cray introduced the T3D - an MPP (Massively Parallel Processing) based
on 32-2048 DEC Alpha (21064 RISC, 150MHz) processors and a proprietary

3D torus interconnect

e 1997-ASCI Red at Sandia delivered first TFlop/s (on the Linpack benchmark)

using Intel Pentium Pro processors and a custom interconnect.

e 2002-NECs Earth Simulator was a cluster of 640 vector supercomputers, deliv-

ered 35.61 TFlop/s on the Linpack benchmark.

e 2005-IBMs Blue Gene systems regained top rankings (again, according to Lin-
pack) using massive numbers of embedded processors and communication sub-
systems (more later), each running a stripped down Linux-based operating sys-

tem.

e 2008-IBM deployed a hybrid system of Opteron nodes coupled with Cell proces-
sors interconnected via Infiniband, achieved first sustained Peta Floating-Point

Operations Per Second (PFlop/s) on top500 list

e 2010-Tianhe-1A at the National Supercomputing Center in Tianjin, China, mix
of 14,336 Intel Xeon X5670 processors (86,016 cores) and 7168 Nvidia Tesla
M2050 general purpose GPUs, custom (Arch) interconnect, 2.566 PFlop/s

e 2011-K computer, at RIKEN in Kobe, Japan, 68544 2.0GHz 8-core Sparc64
VIIIfx processors (548,352 cores), custom (Tofu) interconnect, 8.162 PFlop/s

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 6

1.4 Domains of High Performance Computing

Various domains of high performance computing are discussed in this section.

1.4.1 Cluster Computing

A computer cluster consists of a set of loosely connected computers that work together
so that in many respects they can be viewed as a single system. The components of a
cluster are usually connected to each other through fastlocal area networks ("LAN"),
each node (computer used as a server) running its own instance of an operating sys-
tem. Computer clusters emerged as a result of convergence of a number of computing
trends including the availability of low cost microprocessors, high speed networks,
and software for high performance distributed computing.[34]

Clusters are usually deployed to improve performance and availability over that
of a single computer, while typically being much more cost-effective than single com-
puters of comparable speed or availability. [34]

Now let’s consider Japan’s Earth Simulator shown in Fig[I.I]and IBM Blue Gene
is shown in Fig[l.2] Fig|l.3] shows topology of devices of IBM Blue Gene. Both
clusters dominated the Top500 List from 2002-2004 with following configuartion

e (640 8-processor SX-8 (vector) SMPs (peak of 8GFlop/s per processor)
e 10 TB of Memory

Custom crossbar interconnect

700 TB disk + 1.2 PB Mass Storage

Reportedly consumes about 12MW of power

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

4 ., Interconnection Network(IN
Pracessor NOdE(F'N_I. 4 r c:gfrl,zts{gts:, Ll

Cabinetsi320)

65:11

Air Conditioning System T1yd
Power Supply System O Double Flocr for Cables

Figure 1.1: Japan’s Earth Simulator[29]

Figure 1.2: IBM Blue Gene[30]

7

CHAPTER 1.

INTRODUCTION TO HIGH PERFORMANCE COMPUTING 8

=
»
IS
-
"
=
=

System

G4 cabinets
Cabinet 65,536 nodes
2 midplanes {131,072 CPUs)
Node Card 1024 nodes (32x32x64)
16 compute cards (2,048 CPUs) 15‘;’;‘919;”5
0-2 |10 cards {Bx@x186) L
32 nodes 2.9/5.7 TFis 1.2 MW
2 FRU (field {64 CPUSs) 512 GiB* DDR 2,500 sq.ft.
2;‘: ;g"’:z replaceable unit} (4%4%2) 1520 KW MTEF 6.16 Days
4 MiB* DRAM 25mmx32Zmm S0MB0 GFis
2 nodes (4 CPUs) 16 GiE* DDR
{compare this vilh & 1988 (2x1x1)
Cray YMPI3at 27 GFls) | 2x(2.8/5.6) GFis
2x512 MiB* DDR * bitpifptysics nist govicuwUnitsinary Himl

15w

Figure 1.3: IBM Blue Gene Diagram[30]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 9

1.4.2 Grid Computing

A grid computer is multiple number of same class of computers clustered together.
A grid computer is connected through a super fast network and share the devices
like disk drives, mass storage, printers and RAM. Grid Computing is a cost effi-
cient solution with respect to Super Computing. Operating system has capability of

parallelism

Grid computing combines computers from multiple administrative domains to reach

a common goal, to solve a single task, and may then disappear just as quickly.

One of the main strategies of grid computing is to use middleware to divide and appor-
tion pieces of a program among several computers, sometimes up to many thousands.
Grid computing involves computation in a distributed fashion, which may also involve
the aggregation of large-scale clusters. The size of a grid may vary from small-confined
to a network of computer workstations within a corporation, for example-too large,
public collaborations across many companies and networks. “The notion of a confined
grid may also be known as an intra-nodes cooperation whilst the notion of a larger,

wider grid may thus refer to an inter-nodes cooperation”.

Grids are a form of distributed computing whereby a “super virtual computer” is
composed of many networked loosely coupled computers acting together to perform
very large tasks. This technology has been applied to computationally intensive
scientific, mathematical, and academic problems through volunteer computing, and
it is used in commercial enterprises for such diverse applications as drug discovery,
economic forecasting, seismic analysis, and back office data processing in support for

e-commerce and Web services.

Many distributed computing applications have been created, of which SETI@home

and Folding@home are the best-known examples.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 10

1.4.3 Multicore Computing

A multi-core processor is a processor that includes multiple execution units (“cores”)
on the same chip. These processors differ from superscalar processors, which can issue
multiple instructions per cycle from one instruction stream (thread). In contrast, a
multi-core processor can issue multiple instructions per cycle from multiple instruc-
tion streams. Each core in a multi-core processor can potentially be superscalar as
well that is, on every cycle, each core can issue multiple instructions from one in-
struction stream. Simultaneous multi-threading (of which Intel’s HyperThreading is
the best known) was an early form of pseudo-multi-coreism. A processor capable
of simultaneous multithreading has only one execution unit (”core”), but when that
execution unit is idling (such as during a cache miss), it uses that execution unit to
process a second thread. Figl[T.4shows diagram of a generic dual-core processor.IBM’s
Cell microprocessor, designed for use in the Sony PlayStation 3, is another prominent

multicore processor.

o N
CPU Core CPU Core
amdl ard
L1 Caches L1 Caches

t Back side *
Bus Interface
and
L# Cachas

Front side

Figure 1.4: Generic dual-core processor

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 11

Front-side

Graphics bus

card slot

High-speed
graphics bus
{AGP or PCI

Express)

Northbridge

(memory
controller hub)

Internal
Bus

PCl
;4 Onboard

Southbridge

(1/O controller
hub)

graphics
controller

IDE
SATA !
Ethe USE; i Cables and
Audio Codec ports leading
CMOS Memory off-board

PCI Slots S

Super I/O

Serial Port

Parallel Port

Flash ROM Floppy Disk
(BIOS) Keyboard
Mouse

Figure 1.5: Connection Between Various Devices[23]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 12

1.5 Parallel Computing

Parallel computing is a form of computation in which many calculations are carried
out simultaneously,operating on the principle that large problems can often be divided
into smaller ones, which are then solved concurrently (”in parallel”). There are several
different forms of parallel computing: bit-level, instruction level, data, and task par-
allelism. Parallelism has been employed for many years, mainly in high-performance
computing, but interest in it has grown lately due to the physical constraints pre-
venting frequency scaling.As power consumption (and consequently heat generation)
by computers has become a concern in recent years, parallel computing has become
the dominant paradigm in computer architecture, mainly in the form of multicore

processors.[22]

Parallel computers can be roughly classified according to the level at which the hard-
ware supports parallelism, with multi-core and multi-processor computers having mul-
tiple processing elements within a single machine, while clusters, MPPs, and grids use
multiple computers to work on the same task. Specialized parallel computer archi-
tectures are sometimes used alongside traditional processors, for accelerating specific

tasks.FiglL.5 shows block diagram of connection between various devices.[22]

Parallel computer programs are more difficult to write than sequential ones, [5] because
concurrency introduces several new classes of potential software bugs, of which race
conditions are the most common. Communication and synchronization between the
different subtasks are typically some of the greatest obstacles to getting good parallel
program performance. Nowadays, all of the hardware is parallel, as evident from

following facts:

e Right now it is difficult to buy a computer that has only a single processor -

even laptops have multiple cores.

e GPUs have a great many processing elements (Cell has 9, NVIDIA and ATI

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 13

offerings have hundreds).
e This increasing processor core count trend is going to continue for a while.

Some of the facts about the software that can actually concurrently use all of these

hardware resources are as:
e Software is lagging behind the hardware.
e Some specialized parallel libraries for multicore systems.

e Some APIs for harnessing multiple cores (OpenMP) and multiple machines

(MPI).

e Generally the software picture is one of tediously mapping applications to new

architectures and machines.

1.5.1 Flynn’s taxonomy

Michael J. Flynn created one of the earliest classification systems for parallel (and
sequential) computers and programs, now known as Flynn’s taxonomy. Flynn clas-
sified programs and computers by whether they were operating using a single set or
multiple sets of instructions, whether or not those instructions were using a single or
multiple sets of data. Based on that Flynn gave following taxonomy.Fig[I.0] to

shows graphical representation of Flynn’s taxonomy.

Single instruction | Multiple instruction
Single data SISD MISD
Multiple data SIMD MIMD

e SISD-Single Instruction, Single Data

— Sequential (non-parallel) instruction flow

— Predictable and deterministic

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 14

Load X
v SISD

Load Y

vy
Z=X+Y

S S
Store Z

- sequential, deterministic

clock ticks

-

Figure 1.6: SISD flow

e SIMD-Single Instruction, Multiple Data

— Single (typically assembly) instruction operates on different data in a given

clock tick.

— Requires predicatble data access patterns - ”vectors” that are contiguous

in memory.

Load X[:

e omp

§ o] - type of parallel computation

2 Z[3= X[+ YT - may be implemented as vector pipeline
v and/or processor arrays

Y StoreZ[]

Figure 1.7: SIMD flow

e MISD-Multiple Instruction, Single Data

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING

— Multiple instructions applied independently on same data.

— Theoretical rather than practical architecture - few implementations

_loadX | loadX MISD
e Y Yy
= el Sk - single data stream
f: Y Y
o

M= XY2 Z[2l X*V/d » - independent instructions

v v for each processing element
Y Store Z[1] |StoreZ[2]

Figure 1.8: MISD flow

e MIMD-Multiple Instruction, Multiple Data

— Multiple instructions applied independently on different data.

— Very flexible - can be asynchronous, non-deterministic

15

— Most modern supercomputers follow MIMD design, albeit with SIMD

components/sub-systems

_ LoadX | LoadA[] MIMD
¢ Y ¥
£ (bcadiiy (EEaariFE] - multiple data streams
S 2)!‘Y/Z o= funVc(A B) » - independent instructions
v v ’ | for each processing element
Y StoreZ | StoreC[:] |

Figure 1.9: MIMD flow

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 16

1.6 General-purpose computing on graphics pro-

cessing units (GPGPU)

General-purpose computing on graphics processing units (GPGPU) is a fairly re-
cent trend in computer engineering research. GPUs are co-processors that have been
heavily optimized for computer graphics processing. Computer graphics processing
is a field dominated by data parallel operations particularly linear algebra matrix
operations. In the early days, GPGPU programs used the normal graphics APIs for
executing programs. However, several new programming languages and platforms
have been built to do general purpose computation on GPUs with both NVIDIA
and AMD releasing programming environments with CUDA and Stream SDK re-
spectively.Fig[I.10] shows NVIDIA’s Tesla GPGPU card. Figll.T1] shows inside view
of GPU. Other GPU programming languages include BrookGPU, PeakStream, and
RapidMind. Nvidia has also released specific products for computation in their Tesla
series. The technology consortium Khronos Group has released the OpenCL spec-
ification, which is a framework for writing programs that execute across platforms
consisting of CPUs and GPUs. AMD, Apple, Intel, Nvidia and others are supporting
OpenCL.[25]

oS
nvioia.,
= = TEBLA"

Figure 1.10: Nvidia’s Tesla GPGPU card[31]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 17

MEMORY(GDRAM

S

GPU CHIP

Motherbeoard
Connection

Figure 1.11: Inside View of GPU

1.7 Objective of Study

Numerical simulations based on the Finite Element Method (FEM) are often very
time-consuming. Due to the fact that in the last decades FE Analysis is performed
with greater accuracy and dynamic boundary conditions, efficient and highly paral-
lel computation algorithms are still a major focus of current research. Also various
structural engineering problems like Static analysis of skeletal structure using direct
stiffness method, Static finite element analysis of plane stress and plate bending prob-
lems, Dynamic analysis of plane frame structures, Nonlinear analysis of structures etc.
requires intense computations and thus parallel algorithms for all these problems is
needed. Absence of such algorithms puts a hurdle for engineers to perform robust

and accurate simulations promptly without delaying the overall engineering process.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 18

The key objectives of study are as follows.

e To understand the parallel processing and its applications in structural engi-

neering

e To understand OpenCL language for generating algorithms for parallel comput-

ing of various problems of structural engineering

e To study various numerical methods used in various analysis problems of struc-

tural engineering for writing parallel code

e To compare the performance of parallel code on various types of CPUs and

GPUs.

1.8 Scope of Work

In order to achieve above objectives, the scope of work for major project is decided

as follows.

e Understanding fundamentals of high performance computing and its terminol-

ogy

e Study various techniques of parallel processing applicable in structural engi-

neering

e Understand architecture of GPU and mylti-core processors for developing ap-

propriate algorithms
e Understand OpenCL language and its specifications

e Development of computer program for numerical methods like Gauss Elimina-

tion which can run on GPU and multi-core processors

e Development of computer program for analysis of structures which can run

effectively on GPU and multi-core processors

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 19

e Comparison of runtime and efficiency of computer program on different hard-

ware configurations.

1.9 Organization of Report

The study carried out in this major project is related to the application of parallel
processing in structural engineering. Study includes different type of parallel algo-
rithms useful for solving various problems of structural engineering. The content of

major project is divided into different chapter as follows.

Chapter 1, gives introduction of High Performance Computing , its history and evolu-
tions in HPC. It also covers domains of High Performance Computing with examples
of each. Introduction to parallel computing and GPU and other high performance

computing machines are presented in this chapter.

Chapter 2, covers literature review. In this chapter, literature related to parallel pro-
cessing is reviewed and work carried out by various researchers is presented. It gives
idea about the work carried out in various areas of parallel processing through variety

of problems.

Chapter 3, contains introduction to OpenCL Language and its specifications. There
is brief discussion about benifits of OpenCL, its architecture. A code of matrix mul-

tiplication using GPU is prepared and its results are compared with CPU.
Chapter 4, contains study of Gaussian Elimination method using different devices
for parallel computing.Comparison of speedup and efficiency of parallel code is also

presented in this chapter.

Chapter 5, contains study of Half-Band matrix solver using different devices for par-

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 20

allel computing. Large size problems of plane frame and space frame analysis are
implemented on computers with multiple cores and GPU . Comparison of speedup

and efficiency of parallel code is also presented in this chapter.

Chapter 6, contains brief summary of the project and conclusions. Future scope of

work is also discussed in this chapter.

Chapter 2

Literature Survey

In the past two decades, the development of algorithms for structural engineering
applications has received a boost due to the advent of parallel computers. Consid-
erable research is being done in order to rewrite algorithms originally designed to
run on sequential machines as well as to develop new methods that take advantage
of the parallelism offered by the multiprocessing computers. This work is concerned
with some of the parallel algorithms that have been developed in this field. More
specifically, it is a survey of parallel algorithms that are of interest to structural en-
gineering. Such algorithms include parallel solvers direct and iterative! for linear
systems of algebraic equations, techniques for the parallelization of the finite element
method, and concurrent time-stepping algorithms for the solution of the equations

arising in structural dynamic problems.

The rapid rate at which technology is evolving has led to a need for more sophisticated
techniques that can take full advantage of the hardware available. Traditionally, soft-
ware has lagged behind hardware and there is a continuous need to maximize software
performance on multiprocessor systems. In chapter, work carried out by researchers
about application of parallel processing/computing in field of engineering are dis-
cussed to have an idea about evolution of parallel processing and its current trends

and its impact in field of structural engineering.

21

CHAPTER 2. LITERATURE SURVEY 22

2.1 Parallel Computing

Sotelino[l] gave an idea about parallel processing techniques in structural engi-
neering with various practical examples of application.Various parallel processing
techniques in Finite Element Analysis such as Sub-structuring, Operator splitting,
Element-by-element (EBE) strategies were explained.There was good discussion on
[terative solvers, Direct Solvers and Parallel Equation Solvers.The discussions in the
sections Iterative Solvers and Direct Solvers were concerned with the solution of a
system of linear algebraic equations.An attempt was made to provide a thorough sur-

vey of the methods that were directly related to structural engineering applications.

Hajjarz and Abel[2] presented strategy for the solution of the fully nonlinear tran-
sient structural dynamics problem in a coarse-grained parallel processing environ-
ment. Emphasis was placed on the analysis of three-dimensional framed structures
subjected to seismic loading. Study included long-duration dynamic loading, geo-
metric and material nonlinearity, and the wide distribution of vibrational frequencies
found in frame models. The implicit domain decomposition method described em-
ploys sub-structuring techniques and then a preconditioned conjugate gradient algo-
rithm for the iterative solution of the reduced set of unknowns along the substruc-
ture interfaces.The domain decomposition algorithm provided an efficient means for
solving the fully nonlinear transient structural dynamics problem in parallel. The
natural preconditioner which arised from sub-structuring analysis effectively reduced
the condition number of the interface coefficient matrix sufficiently to allow an itera-
tive conjugate gradient algorithm to be used for its solution. The iterative algorithm
might be easily streamlined for parallel processing since it consisted exclusively of

vector operations.

CHAPTER 2. LITERATURE SURVEY 23

Bahcecioclu and Kurc[3] did Nonlinear dynamic finite element analysis with GPU
using CUDA language. Newmark family of algorithms have been utilized by many
engineering applications for the solution of nonlinear dynamic analysis of various
structural models. Dynamic and nonlinear nature of such problems and numerical
stability requirements of the algorithms increase the need for computation power in
order to achieve practical solution times. Thus, this study intended to decrease the
analysis time for nonlinear dynamic analysis of large scale structural models utilizing
the GPUs. In the implementation, explicit version of the Newmark family of algo-
rithms was utilized. This type of algorithm enabled the computations to be applied
on each finite element eliminating the need for global matrix assembly. Two differ-
ent GPU implementations were tested. In the first approach, creation of elemental
matrices and computation of the explicit Newmark algorithm were separated into
two different kernels. The second approach combined these two kernels at compile
time into a single kernel code. Both implementations were developed using CUDA
language. Implementation details of both algorithms were discussed in detail noticing
optimization differences. Both GPU implementations were tested and compared with

a CPU implementation using models with varying sizes.

Kandasamy and Konig[4] presented an approach for meshing with the help of GPU
for robust simulations in engineering field. Parallel mesh generation for FE element
application was still an active research topic to compensate the demand for large scale,
dynamic and real-time FE problem analyses. Even though many different CPU based
parallel meshing implementation exist, the parallel computing power of graphic card
processor unit (GPU) had not yet fully approached for meshing applications. The
main focus of this paper was on presenting a research concept of parallel FE mesh
generation using multiple GPUs and promising preliminary results of GPU adopted
Delaunay triangulator. There were only few approaches of Delaunay triangulation
employing GPU and CPU, but they were not utilized for a FE meshing application.

This work was basically a 2D Delaunay mesh generator by incorporating the work

CHAPTER 2. LITERATURE SURVEY 24

from GPU-DT triangulation, which could employ on a single card. They presented a
mesh partitioning technique, an interfacing approach between subdomains, a parallel
Delaunay triangulation by employing multiple GPUs and a validation method for
Delaunay triangulation by edge flipping.

Kruzel and Banas[5] analyzed computational aspects of the problem of numerical
integration in finite element calculations and considered an OpenCL implementation
of related algorithms for processors with wide vector registers. As a platform for
testing the implementation they choose the PowerXCell processor, being an example
of the Cell Broadband Engine (CellBE) architecture. Although the processor was
considered old for todays standards (its design dates back to year 2001), they in-
vestigated its performance due to two features that it shares with recent Xeon Phi
family of coprocessors: wide vector units and relatively slow connection of computing
cores with main global memory. The performed analysis of parallelization options
could also be used for designing numerical integration algorithms for other processors
with vector registers, such as contemporary x86 microprocessors. They considered
higher order finite element approximations and implemented the standard algorithm
of numerical integration for prismatic elements.The obtained range of performance
numbers showed that in many situations high utilization of vector capabilities could
be achieved. This seems to be an important conclusion in light of a recently ob-
served trend to equip standard processor cores with wide vector registers and execu-
tion units. Another conclusion was that OpenCL could be used for relatively simple
porting of scientific codes to complex heterogeneous multi-core architectures, such as
CBE. Moreover, OpenCL allowed one to obtain a high performance code, due to the

support of explicit memory hierarchy management and vector operations.

Yang et al.[0] tested Cholesky decomposition on GPU and FPGAs.Cholesky decom-
position has been widely utilized for positive symmetric matrix factorization in solving

least square problems. Various parallel accelerators including GPUs and FPGAs had

CHAPTER 2. LITERATURE SURVEY 25

been explored to improve performance. In this paper, Cholesky decomposition was
implemented on both FPGAs and GPUs by designing a dedicated architecture for
FPGAs and exploiting massively parallel computation for GPUs. Performance of the
Cholesky decomposition on GPUs, CPUs, FPGAs, and hybrid systems were compared
in both single and double precision.Results showed that the FPGA implementation
had the highest efficiency with respect to clock cycles compared with their pure GPU
implementation, a hybrid system with MAGMA, and a CPU with LAPACK. The
GPU implementation was better than other implementations using MAGMA and
LAPACK library for small matrices, and the hybrid system with MAGMA was the

best for larger matrices.

Wang et al.[7] presented the GPU parallelization of complex three-dimensional soft-
ware for nonlinear analysis of concrete structures. It focused on coupled thermo-
mechanical analysis of complex structures. A coupled FEM/DEM approach (CDEM)
was given from a fundamental theoretical viewpoint. As the modeling of a large struc-
ture by means of FEM/DEM may lead to prohibitive computation times, a paralleliza-
tion strategy was required. With the substantial development of computer science, a
GPU-based parallel procedure was implemented. A comparative study between the
GPU and CPU computation results was presented, and the runtimes and speedups
were analyzed. The results showed that dramatic performance improvements were

gained from GPU parallelization.

Hsieh et al.[§] presented general sparse matrix and parallel computing technologies
for a finite element solution of large-scale structural problems in a PC cluster environ-
ment. The general sparse matrix technique was first employed to reduce execution
time and storage requirements for solving the simultaneous equilibrium equations
in finite element analysis. To further reduce the time required for large-scale struc-
tural analysis, two parallel processing approaches for sharing computational workloads

among collaborating processors were then investigated. One approach adopted a pub-

CHAPTER 2. LITERATURE SURVEY 26

licly available parallel equation solver, called SPOOLES, to directly solve the sparse
finite element equations, while the other employed a parallel substructure method
for the finite element solution. This work focused more on integrating the general
sparse matrix technique and the parallel substructure method for large-scale finite
element solutions. Additionally, numerical studies have been conducted on several
large-scale structural analysis using a PC cluster to investigate the effectiveness of
the general sparse matrix and parallel computing technologies in reducing time and

storage requirements in large-scale finite element structural analysis.

2.2 Application of Parallel Computing on FEM

Qian et al.[9] carried out research of Parallel Computing for Large-scale Finite Ele-
ment Model of WheelRail Rolling Contact.The parallel computing methods of contact
problem were analyzed firstly. Then, the contact algorithm and parallel computing

of ABAQUS was introduced. Fig2.1] shows logical structure of cluster used.

I—— ; LAN Switch
User

terminal | I

Management Node

| I Memory
Array

Gigabit Ethemnet Switch ~

P S

Computing Computing Computing
Nodc | Node 2 Node 12

Figure 2.1: Logical Structure of Cluster[9]

CHAPTER 2. LITERATURE SURVEY 27

The parallel computing environment using MPI in ABAQUS was put forward. On
the basis of cluster, some different finite element model was solved by implicit and ex-
plicit solution. It was found that the mesh size of wheel/rail contact field was refined
to 0.75mm in order to ensure accuracy for engineering.At last, the parallel computing

for the contact problem of wheel/rail was discussed using the speedup and efficiency.

Fan et al.[I0] presented application of parallel computing in Large Eigenvalue Prob-
lems for Engineering Structures.A parallel solving system was constructed via in-
tegrating predominant algorithms and their corresponding software packages into
the finite-element parallel computing frameworkPANDA. The finite element model
(FEM) of engineering structures was built in preprocessing commercial softwareMSC
Patran. Based on the interface between PANDA and MSC Patran, the model infor-
mation was translated in PANDA to generate stiffness and mass matrices in a parallel
way. Utilizing these matrices, a large-scale parallel computing of eigenvalues was car-
ried out via calling software packages in PANDA. The numerical results showed that
PANDA frame was competent for carrying out large-scale parallel computing of eigen-
value problems; in virtue of supercomputer, the computing scale attains millions of
freedom degrees; and the parallel efficiency was favorable.They gave a brief review
on some dominant algorithms and freely available software for the numerical solution
of large sparse eigenvalue problems. There was also description of whole processes
of parallel computing for eigenvalue problems arising from engineering structures. In
the analysis example solved, the number of freedom degree of the finite element model
was about 2.3 million.

Fu[I1] discussed implementation of distributed finite element method over cluster of
workstation. A variety of parallel algorithms for finite element analysis were studied,
in which the domain decomposition method that having relatively coarse granularity
was suited for the distributed environment. With this scheme, the entire domain to
be solved was divided into several sub-domains and each sub-domain was assigned to

one of the processors engaged in the parallel computing.Using the developed code, a

CHAPTER 2. LITERATURE SURVEY 28

dam structural analysis problem was solved on workstation cluster. From the per-
formance test, the effectiveness of the distributed parallel computing algorithm of
finite element method was verified. Important factors affecting the performance of

the distributed parallel computing were found and analyzed.

On the basis of mode synthesis analysis, parallel algorithm of solving large-scale struc-
tural eigenproblem was presented by Chaojiang Fu[l2]. The eigen value problem of
the structure was solved using subspace iterative parallel method. The substructure
subspace iterative method was implemented using the stiffness matrix and mass ma-
trix of the substructures without assembling the stiffness and mass matrix of whole
structure. The numerical results showed that this parallel algorithm was effective
for large scale structure eigen problem. Parallel computing for numerical example
of structural modal analysis was performed on DELL workstation cluster in School
of Computer Engineering and Science, Shanghai University. It was a cluster with 8
processors arranged in 4 dual-processor nodes with 2.4GHz Intel Xeon chips (512KB
cache) and 1GB of memory per node. These nodes were connected with a 100Mbps
Ethernet interconnect. The MPI communication libraries have been used to manage

the message passing.

2.3 Parallel Solvers

Leow et al.[13] presented parallel implementation of a direct method for solving
Linear equations called Gaussian Elimination, which consists of forward elimination
and back substitution.The solution of a linear system of equations constitutes an
important part in the field of linear algebra that is widely used in industries like
aerospace, aeronautics, solid mechanics, fluid dynamics, oil research and numerous
others. Thorough evaluations had been performed for variants of implementation

that exploit different memory features on an NVIDIA Tesla C1060 GPU. Compared

CHAPTER 2. LITERATURE SURVEY 29

to a serial implementation on an Intel Core i7, the execution time for forward elim-
ination on the GPU was reduced by a factor of 183X when using both global and
shared memory systems, and by a factor of 185 when using only global memory. The

maximum size of matrix considered for study was 8192 x 8192

Sharma et al.[I4] presented the Gauss Jordan algorithm for matrix inversion on
a CUDA platform to exploit the large scale parallelization feature of a massively
multithreaded GPU. The algorithm was tested for various types of matrices and the
performance metrics were studied and compared with CPU based parallel methods.
They showed that the time complexity of matrix inversion scales as n as long as n?
threads can be supported by the GPU. Matrix inversion was an essential step in a wide
range of numerical problems starting with solving linear equations , structural anal-
yses using finite element method , 3D rendering ,digital filtering , image filtering and
image processing and constitutes an indispensable component in almost all math-
ematical /statistical software suites. Some of the common available algorithms for
computing the inverse of a matrix were Strassen, Strassen-Newton, Gaussian elim-
ination, GaussJordan, Coppersmith and Winograd, LUP Decomposition, Cholesky
decomposition, QR decomposition, RRQR factorization, Monte Carlo Methods for
inverse etc.The ability to invert large matrices accurately and quickly determines
the effectiveness of a wide range of computational algorithms and products. GPU
computing was ideally suited for massively parallel tasks as the thread creation and
memory transfer overheads were negligible. They had redesigned the Gauss Jordan
algorithm for matrix inversion on GPU based CUDA platform, tested it on five differ-
ent types of matrices (identity, sparse, banded, random and hollow) of various sizes.

Computation time for inverting different types of matrices was presented in the paper.

Reddy et al.[15] described the design and the implementation of parallel routines in
the Heterogeneous ScaLAPACK library that solve a dense system of linear equations.

It was discussed that the efficiency of these parallel routines was due to the most im-

CHAPTER 2. LITERATURE SURVEY 30

portant feature of the library, which was the automation of the difficult optimization
tasks of parallel programming on heterogeneous computing clusters. Other features
were the determination of the accurate values of the platform parameters such as the
speeds of the processors and the latencies and bandwidths of the communication links
connecting different pairs of processors, the optimal values of the algorithmic param-
eters such as the total number of processes, the 2D process grid arrangement and the
efficient mapping of the processes executing the parallel algorithm to the executing
nodes of the heterogeneous computing cluster. They described this process of automa-
tion. The Heterogeneous ScaLAPACK program used the multiprocessing approach,
where more than one process executed on each processor. The number of processes
to run on each processor during the program startup was determined automatically

by the Heterogeneous ScaLAPACK command-line interface tools.

Stefanski et al.[I0] evaluated the usability and performance of Open Comput-
ing Language (OpenCL) targeted for implementation of the Finite-Difference Time-
Domain (FDTD) method. The simulation speed was compared to implementations
based on alternative techniques of parallel processor programming. Moreover, the
portability of OpenCL FDTD code between modern computing architectures was as-
sessed. The average speed of OpenCL FDTD simulations on a GPU was about 1.1
times lower than a comparable CUDA based solver for domains with sizes varying
from 503 to 4003 cells. Although OpenCL code dedicated to GPUs can be executed
on multi-core CPUs, a direct porting did not provide satisfactory performance due to
an application of architecture specific features in GPU code. Therefore, the OpenCL
kernels of the developed FDTD code were optimized for multi-core CPUs. How-
ever, this improved OpenCL FDTD code was still about 1.5 to 2.5 times slower than
the FDTD solver developed in the OpenMP parallel programming standard. The
study concluded that, despite current performance drawbacks, the future potential of

OpenCL was significant due to its flexibility and portability to various architectures.

CHAPTER 2. LITERATURE SURVEY 31

Wang et al.[I7] used Gauss elimination and the Gauss-Jordan methods because of
their extensive use in finite element applications. In most cases, dense, nonsymmetric,
real systems were solved but similar methods for banded and complex systems were
presented. Sparse systems were not considered here although, these can obviously
be handled.In engineering applications it is often necessary to solve large systems
of equations that were either too large or require too much computer resources to
be economically feasible on standard computers. For this type of problem a parallel
machine was very attractive. The type of systems considered were those arising from
the application of the finite element method (FEM) to engineering applications. The
FEM was particularly computationally intensive, yet its various parts were either
intrinsically parallel or could be parallelized. By using a parallel processor, consider-
ably faster solution times could be achieved or, alternatively, larger problems could

be solved.

For the purpose of this work, the MPP was configured as an 128 x 128 array with
a 32 bit word length. For the solution of linear systems, the two most important
aspects related to the MPP were the number of memory planes in the ARray Unit
(ARU) and the size of the staging memory. The ARU contains 900 usable bit planes
of memory. This limits the number of real arrays (128%128, 32 bit) in the ARU to
28. The staging memory was limited to 512 real arrays. Parallel Pascal callable I/0
procedures could transfer only one 128 x 128 array in or out of the ARU at any one
time. This makes it necessary for any array larger than 128 x 128 to be blocked into
sub-arrays of 128 x 128. Thus, the smallest system considered is a 128 x 128 system

of equations.

Mani et al[l8] proposed a parallel Gaussian elimination technique for the solution
of linear equations. They considered the direct solution of [A|{x}={C}, where A is
a banded matrix with half bandwidth b. They modeled the situation as a acyclic
directed graph. In this graph, the nodes represented arithmetic operations applied to

CHAPTER 2. LITERATURE SURVEY 32

the elements of A and the arcs represent the precedence relation that exists among
the operations in the solution process. This graph gave the clear picture to the user
in identifying the operations that can be done in parallel . This graph was also useful
in scheduling operations to the processors. The absolute minimum completion time
and the lower bound on the minimum number of processors required to solve the
equations in minimum time can be found from it. Speedup approached a limit using
parallel processors, set by the absolute minimum time, was also brought out from this

graph.

The usefulness of acyclic directed graph in identifying parallel operations, computing
the minimum completion time, the minimum number of processors to complete the
graph in minimum time and the maximum achievable speedup were presented. The
absolute minimum completion time was dependent on the number of equations and
independent of the bandwidth. On the other hand, maximum achievable speedup and
the optimal number of processors required to complete the job in minimum time were
dependent on the half bandwidth and was independent of the number of equations. A
method of incorporating the inter-processor communication time and its effect on the
overall computation time was also brought out. This study was useful for engineers

working with large system of equations on a multiprocessor system.

McGinn et al.[19] presented a parallel algorithm for Gaussian Elimination. Elim-
ination in both a shared memory environment, using OpenMP, and in a distributed
memory environment, using MPI. Parallel LU and Gaussian algorithms for linear sys-
tems had been studied extensively and the paper presented the results of examining
various load balancing schemes on both platforms. It was noted from the results that
the impact on performance that occurs as one changes the size of Matrix i.e n. When
there was increase the value of n, the MPI program displays an improvement in per-
formance as opposed to the OpenMP program where performance increase seems to

diminish. It is possible that as n increases, one may find a point where the distributed

CHAPTER 2. LITERATURE SURVEY 33

environment will show a greater increase in performance than the shared platform.

Liu et al.[20] designed and developed a GPU based Bi-Conjugate Gradient STA-
Bilized (BiCGSTAB) solver that meets both generality and scalability requirements.
It was well suited for all types of banded linear systems. And this solver combined
a new matrix decomposition method with several optimizations for inter-GPU and
inter-machine communications to achieve good scalability on large-scale GPU clus-
ters.Solving a banded linear system efficiently is important to many scientific and
engineering applications. Current solvers achieve good scalability only on the linear
systems that can be partitioned into independent subsystems.They designed a number
of GPU and MPI optimizations to speedup inter-GPU and inter-machine communica-
tions and evaluated the solver on Poisson equation and advection diffusion equation
as well as several other banded linear systems. The solver achieved a speedup of
more than 21 times running from 6 to 192 GPUs on the XSEDE’s Keeneland super-
computer and because of small communication overhead, can scale upto 32 GPUs on

Amazon EC2 with relatively slow ethernet network.

Zhang et al.[21] presented a GPU based parallel Jacobis iterative solver for dense lin-
ear equations.Modern GPUs are high performance many-core processors fit for large
scale parallel computing. They provided a novel way for accelerating the solving pro-
cess.First, they introduced the backgrounds for accelerating linear equations solver
together with GPUs and the corresponding parallel platform CUDA on it. Then im-
plementation of Jacobis iterative method on CUDA was discussed. They compared
the experimental results of CUDA programs on GPU with traditional programs on
CPU. Experiments showed that it obtained a speedup of approximately 59 times with

single floating point at a low precision, 19 times with double at a high precision.

CHAPTER 2. LITERATURE SURVEY 34

2.4 Summary

In this chapter literature on parallel computing, parallel solvers are discussed briefly.

It gives an overview of the work carried out by various researchers in different fields

of structural engineering.

Chapter 3

Introduction to OpenCL

Programming

3.1 General

The Open Computing Language (OpenCL) is an open and royalty-free parallel com-
puting API designed to enable GPUs and other coprocessors to work in tandem with
the CPU, providing additional raw computing power. As a standard, OpenCL 1.0
was released on December 8, 2008, by The Khronos Group, an independent standards
consortium. Developers have long sought to divide computing problems into a mix
of concurrent subsets, making it feasible for a GPU to be used as a math copro-
cessor working with the CPU to handle general problems efficiently. The potential
of this heterogeneous computing model was encumbered by the fact that program-
mers could only choose proprietary programming languages, limiting their ability to
write vendor-neutral, cross-platform applications. Proprietary implementations such
as NVIDIA’s CUDA limited the hardware choices of developers wishing to run their

application on another system without having to retool it.[24] [26]

35

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 36

3.1.1 Benefits of OpenCL

A primary benefit of OpenCL is substantial acceleration in parallel processing. OpenCL
takes all computational resources, such as multi-core CPUs and GPUs, as peer compu-
tational units and correspondingly allocates different levels of memory, taking advan-
tage of the resources available in the system. OpenCL also complements the existing
OpenGL visualization API by sharing data structures and memory locations without
any copy or conversion overhead. A second benefit of OpenCL is cross-vendor soft-
ware portability. This low-level layer draws an explicit line between hardware and
the upper software layer. All the hardware implementation specifics, such as drivers
and runtime, are invisible to the upper-level software programmers through the use
of high-level abstractions, allowing the developer to take advantage of the best hard-
ware without having to reshuffie the upper software infrastructure. The change from
proprietary programming to open standard also contributes to the acceleration of

general computation in a cross-vendor fashion.[24] [26]

3.2 Modules of OpenCL

The OpenCL development framework is made up of three main parts:
1. Language specification
2. Platform layer API

3. Runtime API

3.2.1 Language Specification

The language specification describes the syntax and programming interface for writing
kernel programs that run on the supported accelerator (GPU, multi-core CPU, or
DSP). Kernels can be precompiled or the developer can allow the OpenCL to compile
the kernel program at runtime.[24][26]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 37

3.2.2 Platform API

The platform-layer API gives the developer access to software application routines
that can query the system for the existence of OpenCL-supported devices. This layer
also lets the developer use the concepts of device context and work-queues to select
and initialize OpenCL devices, submit work to the devices, and enable data transfer

to and from the devices.[24][26]

3.2.3 Runtime API

The OpenCL framework uses contexts to manage one or more OpenCL devices. The
runtime API uses contexts for managing objects such as command queues, memory
objects, and kernel objects, as well as for executing kernels on one or more devices

specified in the context.

3.3 OpenCL Architecture

3.3.1 The Platform Model

The OpenCL platform model is defined as a host connected to one or more OpenCL
devices. Figf3.1shows OpenCL Platform Model which comprises one host plus multi-
ple compute devices, each having multiple compute units, each of which have multiple
processing elements. A host is any computer with a CPU running a standard operat-
ing system. OpenCL devices can be a GPU, DSP, or a multi-core CPU. An OpenCL
device consists of a collection of one or more compute units (cores). A compute unit
is further composed of one or more processing elements. Processing elements execute
instructions as SIMD (Single Instruction, Multiple Data) or SPMD (Single Program,
Multiple Data). SPMD instructions are typically executed on general purpose devices
such as CPUs, while SIMD instructions require a vector processor such as a GPU or

vector units in a CPU.[24][20]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 38

Compute Device

Processing Compute Unit
Element

Figure 3.1: OpenCL Platform Model[24] [26]

Fig[3.2] shows ATI RadeonTM HD 5870 GPU architecture illustrating a compute
device construct. The ATI Radeon HD 5870 GPU is made up of 20 SIMD units,
which translates to 20 compute units in OpenCL. Each SIMD unit contains 16 stream
cores, and each stream core houses five processing elements. Thus, each compute unit

in the ATI Radeon HD 5870 has 80 (16 x 5) processing elements.

3.3.2 The Execution Model

The OpenCL execution model comprises two components: kernels and host programs.
Kernels are the basic unit of executable code that runs on one or more OpenCL
devices. Kernels are similar to a C function that can be data- or task-parallel. The
host program executed on the host system, defines devices context, and queues kernel
execution instances using command queues. Kernels are queued in-order, but can be

executed in-order or out-of-order.[24] [20]

3.3.2.1 Kernels

OpenCL exploits parallel computation on compute devices by defining the problem

into an N-dimensional index space. When a kernel is queued for execution by the host

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 39

Compute Unit

.
i
LE

3
&
=)

o)

Figure 3.2: ATI RadeonTM HD 5870 GPU architecture[24] [26]

sz)
=
I

program, an index space is defined. Each independent element of execution in this
index space is called a work-item. Each work-item executes the same kernel function
but on different data. When a kernel command is placed into the command queue,
an index space must be defined to let the device keep track of the total number of
work- items that require execution. The N-dimensional index space can be N=1, 2,
or 3. Processing a linear array of data would be considered N=1; processing an image
would be N=2, and processing a 3D volume would be N=3. Processing a 1024x1024
image would be handled this way: The global index space comprises a 2-dimensional
space of 1024 by 1024 consisting of 1 kernel execution (or work-item) per pixel with
a total of 1,048,576 executions. Within this index space, each work-item is assigned
a unique global ID. The work-item for pixel x=30, y=22 would have global ID of
(30,22). OpenCL also allows grouping of work-items together into work-groups, as
shown in the Fig[3.3| Fig[3.4] The size of each work-group is defined by its own local
index space. All work-items in the same work-group are executed together on the
same device. The reason for executing on one device is to allow work-items to share
local memory and synchronization. Global work-items are independent and cannot

by synchronized. Synchronization is only allowed between the work-items in a work-

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 40

group. The following example shows a two-dimensional image with a global size of

Synchronization between work-items
possible only within work-groups

32

Cannot synchronize between
workgroups

Figure 3.3: Grouping Work-items Into Work-groups[24] [26]

1024 (32x32). The index space is divided into 16 work-groups. The highlighted work-
group has an ID of (3,1) and a local size of 64 (8x8). The highlighted work-item in
the work- group has a local ID of (4,2), but can also be addressed by its global ID of

(28,10).[24] [26]

32 8

-

4 s sEes)
S [T focal id: (4,2)
L TP R LI L globalid: (28,10)

: 1T
B O
i [
1 I
B L

32

3 : = £ workgroup id: (3,1)
local size: 8x8=64

dimension: 2
global size: 32x32=1024
num of groups: 16

Figure 3.4: Work-group Example[24] [20]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 41

3.3.2.2 Host Program

The host program is responsible for setting up and managing the execution of kernels
on the OpenCL device through the use of context. Using the OpenCL API, the host

can create and manipulate the context by including the following resources:

Devices:A set of OpenCL devices used by the host to execute kernels.

Program Objects:The program source or program object that implements a

kernel or collection of kernels.

Kernels:The specific OpenCL functions that execute on the OpenCL device.

Memory Objects:A set of memory buffers or memory maps common to the

host and OpenCL devices.

After the context is created, command queues are created to manage execution of
the kernels on the OpenCL devices that were associated with the context. Command

queues accept three types of commands:

e Kernel execution commands run the kernel command on the OpenCL devices.

e Memory commands transfer memory objects between the memory space of the

host and the memory space of the OpenCL devices.

e Synchronization commands define the order in which commands are executed.

Commands are placed into the command queue in-order and execute either in-order
or out-of-order. In case of in-order mode, the commands are executed serially as they
are placed onto the queue. In out-of-order mode, the order the commands execute is

based on the synchronization constraints placed on the command.

3.3.3 The Memory Model

Since common memory address space is unavailable on the host and the OpenCL

devices, the OpenCL memory model defines four regions of memory accessible to

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 42

work-items when executing a kernel.[24] [26] The Fig[3.5shows the regions of memory
accessible by the host and the compute device:

Global memory is a memory region in which all work-items and work-groups

Private Private Private Private
Memory Memory Memory Memory

Local Memory Local Memory

Compute Device

Host

Figure 3.5: OpenCL Memory Model[24][26]

have read and write access on both the compute device and the host. This region of
memory can be allocated only by the host during runtime.

Constant memory is a region of global memory that stays constant throughout the
execution of the kernel. Work-items have only read access to this region. The host is
permitted both read and write access.

Local memory is a region of memory used for data-sharing by work-items in a work-
group. All work-items in the same work-group have both read and write access.
Private memory is a region that is accessible to only one work-item.

In most cases, host memory and compute device memory are independent of one
another. Thus, memory management must be explicit to allow the sharing of data
between the host and the compute device. This means that data must be explicitly

moved from host memory to global memory to local memory and back. This process

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 43

works by enqueuing read/write commands in the command queue. The commands
placed into the queue can either be blocking or non-blocking. Blocking means that
the host memory command waits until the memory transaction is complete before
continuing. Non-blocking means the host simply puts the command in the queue and

continues, not waiting until the memory transaction is complete.[24] [26]

3.4 Executing an OpenCL Program

The OpenCL framework is divided into a platform layer API and runtime API. The
platform API allows applications to query for OpenCL devices and manage them
through a context. The runtime API makes use of the context to manage the execution
of kernels on OpenCL devices.[24] [26] The basic steps involved in creating any OpenCL
program are shown in Fig[3.6]

!tm \!}’ N

Context

Programs Kernels Memory Objects Command Queue

sqr
arg(0] value images
arg{l] value

buffers

“‘-l o .f i
) Compile) Createdata & arguments > ?’”‘I. -
4 A execution .

Figure 3.6: OpenCL Execution model[24] [26]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 44

The execution of OpenCL program is carried out in following steps:
1. Query the host system for OpenCL devices.

2. Create a context to associate the OpenCL devices.

3. Create programs that will run on one or more associated devices.
4. From the programs, select kernels to execute.

5. Create memory objects on the host or on the device.

6. Copy memory data to the device as needed.

7. Provide arguments for the kernels.

8. Submit the kernels to the command queue for execution.

9. Copy the results from the device to the host.

3.5 Multiplication of Large Square Matrices

Execution of OpenCL program is illustrated through matrix multiplication applica-
tion. The task at hand is standard, i.e. to multiply two matrices. It is chosen
primarily due to the fact that quite a lot of information on the subject can be found
in different sources. Most of them, one way or another, offer more or less coordinated
solutions. The further discussion will give step-by-step clarifications of OpenCL ar-
chitecture, its memory model and programming through example of Square Matrix

Multiplication .

Below is a matrix multiplication formula well-known in linear algebra, modified for
computer calculations. The first index is the matrix row number, the second index
is the column number. Every output matrix element is calculated by sequentially

adding each successive product of elements in the first and second matrices to the

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 45

accumulated sum. Eventually, this accumulated sum is the calculated output matrix
element:

Cis = Clsj+ Yy Aisk * B

0<:<N

0<j<M

It can schematically be represented as shown in Figl3.7}

C(ij) C(iJ) Ali) .
= = + * B(J)

Figure 3.7: Matrix multiplication algorithm

3.6 Parallel Implementation

Since to create three linear buffers for the OpenCL kernel, it would be reasonable
to rework the initial algorithm so that it is as similar to the kernel algorithm as
possible. The code of the “non-parallel” program on a ‘ingle core CPU” with linear
buffers is provided together with the kernel code. The optimality of the code with
two-dimensional arrays does not mean that its analog will also be optimal for linear
buffers: all tests will have to be repeated. To avoid a possible matrix/buffer element
addressing confusion, a Matrix (M rows by N columns) is laid out in global GPU
memory as a linear buffer. One needs to calculate a linear shift of an element Ma-

trix[row][column].

There is in fact no fixed order of laying out a matrix in GPU memory since it is

determined by the logic of the problem alone. For example, elements of both matrices

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 46

could be laid out differently in buffers because as far as the matrix multiplication
algorithm is concerned, matrices are asymmetrical, i.e. the rows of the first matrix
are multiplied by the columns of the second matrix. Such rearrangement can greatly
affect the calculation performance in sequential reading of matrix elements from global
GPU memory in every iteration of the kernel.

The first implementation of the algorithm will feature matrices laid out in the same
manner - in row-major order. The first row elements will be first to be placed into the
buffer followed by all elements of the second row and so on. The formula of flattening
a 2-dimensional representation of a matrix Matr[M(rows)][N(columns)] onto linear

memory is as shown in Fig[3.8

3.6.1 OpenCL Kernel

The OpenCL kernel for matrix multiplication looks as follows:

__kernel
void matrixMultiplication(_-_global floatx A, __global floatx
B, __global float*x C, int widthA, int widthB)

int i = get_global_id (0);
int j = get_global_id(1);
float value=0;

for (int k = 0; k < widthA; k++)

value = value + A[k + j x widthA] = B[kx
widthB + i]; }
C[i 4+ widthA % j]| = value;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 47

FOW-Mma|or order:

o1 2 3 4 53 6 7 & 91011

matrix[4][8] =buff[4 * 12+ 8] =buff[56]

column-major order:

o1 2 3 4 5 6 7 & 91011

ronwy

e - N R R

matrix[4][8] =buff[4+8*9] =buff[76]

Figure 3.8: Algorithm for converting a two-dimensional index space into linear for
laying the matrix out in the GPU buffer with Row-Major And Column Major

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING

3.6.2 OpenCL Source code for C++4

//Program to multiply two matrices using OpenCL in GPU

//#include "stdafx.h”
#include < stdio.h >
#include < stdlib.h >
#include < time.h >
#include < ctime >

#include <time.h>

#define widthA 512
#define heightA 512
#define widthB heightA
#define heightB 512
#define widthC widthA
#define heightC heightB

#ifdef __APPLE__

#include < OpenCL/opencl.h >
#else

#include < CL/cl.h >

#endif

#define MEMSIZE (128)
#define MAX_SOURCE.SIZE (0x100000)

int main()

{

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 49

float = A = (float *)malloc(sizeof(float)xwidthAxheightA);
float = B = (float #*)malloc(sizeof(float)xwidthBxheightB);
float = C = (float *)malloc(sizeof(float)xwidthCxheightC);

float x Res = (float *)malloc(sizeof(float)xwidthCxheightC)

float = D= (float =*)malloc(sizeof(float)*widthCxheightC);

FILE % fpl = fopen(” matAdata.csv”, "w”);

if (Mfpl) {
fprintf(stderr, ”Failed to open matAdata.\n”);
exit (1) ;

}

clock_t bl=clock();

float p=1;

for (int i = 0;1 < widthA; i++)

{

for (int j=0;j<heightA ;j++) {
*(At+ixheight A+j)=p;
fprintf (fpl, "%f.,” ,*(A+ixheightA+j));
P+

}

fprintf (fpl, "\n”);

}

fclose (fpl);

fpl = fopen (” matBdata.csv”, "w”);
if (!fpl) {

fprintf(stderr, ”"Failed to open matAdata.\n"”);

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 50

exit (1) ;
}
float q=1;
for(int i = 0;1 < widthB; i4++)

{
for (int j=0; j<heightB;j++) {
*((B+ixheightB+j))=q;
fprintf(fpl, "%f,” ,*(B+ixheightA+j));
q++;
¥
fprintf (fpl, "\n”);
}

fclose (fpl);
clock_t el=clock();
double t1=((el—b1)=x1000)/CLOCKS_PERSEC;;
printf (” Time elapsed for initialisation:%f\n”,t1);
cl_device_id device_id = NULL;
cl_context context = NULL;
cl_command_queue command_queue = NULL;
cl_-mem memobjA = NULL;
cl_-mem memobjB = NULL;
cl_mem memobjC = NULL;
cl_ mem rowA = NULL;
cl.mem colC = NULL;
cl_program program = NULL;
cl_kernel kernel = NULL;
cl_platform_id platform_id = NULL;

cl_uint ret_num_devices;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING o1

cl_uint ret_num_platforms;

cl_int ret;

//char string [MEMSIZE];

FILE fp :
char fileName [] = 7./ hello.cl”;
char xsource_str;
size_t source_size;
int row = widthA;
int col = heightC;
/* Load the source code containing the kernelx/
fp = fopen(fileName, "1”);
if (Mfp) {
fprintf(stderr, ”Failed to load kernel.\n”);
exit (1)
}
source_str = (chars)malloc (MAX_SOURCE.SIZE) ;
source_size = fread(source_str, 1, MAXSOURCESIZE, fp);
fclose(fp);

/* Get Platform and Device Info x/
ret = clGetPlatformIDs (1, &platform_id , &ret_num _platforms)
ret = clGetDevicelDs(platform_id , CLDEVICE.TYPE.GPU, 1, &

device_id , &ret_num_devices);

/* Create OpenCL context x/

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 52

context = clCreateContext(NULL, 1, &device_id , NULL, NULL,
&ret) ;

/* Create Command Queue x/

command_queue = clCreateCommandQueue(context , device_id , 0,

&ret) ;

/* Create Memory Buffer x/

memobjA = clCreateBuffer (context , CLMEM READ WRITE, widthA
* heightA x sizeof(float), NULL, &ret);

memobjB = clCreateBuffer (context , CLMEMREAD WRITE, widthB
* heightB % sizeof(float), NULL, &ret);

memobjC = clCreateBuffer (context , CLMEMREAD WRITE, widthC
* heightC x sizeof(float), NULL, &ret);

rowA = clCreateBuffer (context , CLMEM . READ WRITE, sizeof(
int), NULL, &ret);

colC = clCreateBuffer (context , CLMEM READ WRITE, sizeof (
int), NULL, &ret);

clock_t b2=clock () ;
// Copy the lists A and B to their respective memory
buffers
ret = clEnqueueWriteBuffer (command_queue ,memobjA, CLTRUE
, 0,
widthA * heightA x sizeof(int), A, 0, NULL, NULL);
ret = clEnqueueWriteBuffer (command_queue, memobjB,
CL.TRUE, 0,
widthB * heightB x sizeof(int), B, 0, NULL, NULL)

I

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 53

ret = clEnqueueWriteBuffer (command_queue, rowA,
CL.TRUE, 0, sizeof(int), &row, 0, NULL, NULL);
ret = clEnqueueWriteBuffer (command_queue, colC,

CL.TRUE, 0, sizeof(int), &col, 0, NULL, NULL):

/* Create Kernel Program from the source x/
program = clCreateProgramWithSource(context, 1, (const char

xx)&source_str ,(const size_t x*)&source_size , &ret);

/* Build Kernel Program x/
ret = clBuildProgram (program, 1, &device_id , NULL, NULL,
NULL) ;

/* Create OpenCL Kernel =/
kernel = clCreateKernel (program, "matrixMultiplication”, &

ret);

/* Set OpenCL Kernel Arguments x/

ret = clSetKernelArg(kernel, 0, sizeof(cl.mem), (void *)&
memobjA) ;

ret = clSetKernelArg(kernel, 1, sizeof(cl.mem), (void *)&
memobjB) ;

ret = clSetKernelArg(kernel, 2, sizeof(clomem), (void *)&
memobjC) ;

//ret = clSetKernelArg(kernel, 0, sizeof(clomem), (void x*)&
memobjA) ;

ret = clSetKernelArg(kernel, 3, sizeof(int), (void x)&row):;

ret = clSetKernelArg(kernel, 4, sizeof(int), (void x)&col);

/* Execute OpenCL Kernel */

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING o4

//ret = clEnqueueTask (command_queue, kernel, 0, NULL,NULL);
size_t globalThreads[2] = {widthA, heightB };
size_t localThreads[2] = {8,8};

clEnqueueNDRangeKernel (command_queue, kernel, 2, NULL,
globalThreads , localThreads ,NULL, 0, NULL);

/* Copy results from the memory buffer x/

ret = clEnqueueReadBuffer (command_queue, memobjC, CL.TRUE,
0, widthA % heightC x
sizeof (float),Res, 0, NULL, NULL);

clock_t e2=clock () ;
double t2=((e2—b2)x1000)/CLOCKS_PERSEC;
printf (” Time elapsed for GPU:%f\n” t2);
fpl = fopen ("matGPURes.csv”, "w”);
if (lfpl) {
fprintf(stderr, ”Failed to open matAdata.\n”);
exit (1) ;

printf(”\nResult\n”);
for(int i = 0;i < widthA; i4++)
{
for (int j=0;j < heightC; j++)

{

fprintf (fpl, "%f,” ,x(Res+ixheightC+j)
) ;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 35

ret
ret
ret
ret
ret
ret
ret
ret

ret

}

fprintf(fpl, ”"\n”);

}
fclose (fpl);

clFlush (command_queue) ;

clFinish (command_queue) ;
clReleaseKernel (kernel);
clReleaseProgram (program) ;
clReleaseMemObject (memobjA) ;
clReleaseMemObject (memobjB) ;
clReleaseMemObject (memobjC) ;
clReleaseCommandQueue (command_queue) ;

clReleaseContext (context);

free(source_str);

//system (” pause”) ;

float sum=0.0;

clock_t b3=clock () ;

for (int i = 0;1 < widthA; i++)

{
for (int j = 0; j < heightC; j++)
{
sum = 0;
for (int k = 0; k < widthB; k++)
{

sum += Af[ixcol+k]| % Blkxrow+j

I;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING

}
D[ixheightC+j] = sum;

}

}

clock_t e3=clock();
double t3=((e3—b3)=*1000)/CLOCKS_PER.SEC};
printf(” Time elapsed for CPU:%f\n” ,t3);
fpl = fopen(” matNormalMultiplicationRes.csv” | "w”);
if (!fpl) {
fprintf(stderr, ”Failed to open matAdata.\n”);

exit (1) ;

printf(”\nResult\n”);
for(int i = 0;1 < widthA; i++)

26

{
for (int j=0;j < heightC; j++)
{
fprintf (fpl, "%f,” ;% (D+ixheightC+j));
}
fprintf (fpl, "\n”);
}

//system (” pause”) ;

return O;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING o7

3.6.3 Comparison of Speedup and Efficiency

In order to calculate speedup, we need to calculate following three time. In OpenCL
terminology, host refers to the hardware which carries out sequential instructions and
device refers to hardware which carries out parallel computations. If GPU is used as
parallel computing hardware than it is known as device. Similarly if CPU is used as
parallel computing hardware than it is known as both host and device. CPU-S stands
for sequential time taken by the CPU for computation and communication time is
time taken to transfer data from host variable to device buffer.It includes both transfer
time i.e transfer from host to device and transfer from device to host. Execution time
is a time taken by device for parallel computations.Both execution time and com-

munication time are affected by the temperature and latency of the device.

In order to record time. time function in time.h header file is used. Code given below

is example showing how time is recorded.

clock_t cl=clock () ;

for (i=1;u<=1000;i++)

{ cl[i]=a[i] + b[i]; }

clock_t c2=clock () ;

double ¢3=((c2—c1)%1000)/CLOCKS_PERSEC;

c3 gives time required for execution code taken as example.

clock_t td=clock () ;

cl[EnqueueWriteBuffer (command_queue, inputA, CLTRUE, 0,
sizeof (float) * DATASIZE, inputDataA, 0, NULL, NULL);

clock_t tb=clock ();

double t6=((tb—t4)=x1000)/CLOCKS_PER-SEC;;

t6 gives time required for loading data of buffer inputA into variable inputDataA.

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING o8

Now speedup factor is a ratio of total sequential computation time to total paral-
lel computation time.Prallel computation time is summation of execution time and

communication time. Mathematically speedup factor can be defined as follows.

TSequential
TParallel

Speedup factor =

Table 3.1: Speedup For Paralle Square Matrix Multiplication Results

SIZE OF GPU CPU Speedup

SQUARE| TIME(ms) TIME(ms)

MATRIX

8 171 0 -

72 140 0 -
136 172 31 0.180
200 171 62 0.363
264 203 156 0.768
328 187 280 1.497
392 202 484 2.396
456 249 795 3.193
520 312 1295 4.151
584 345 2059 5.968
648 447 2933 6.562
712 546 4150 7.601
776 668 6209 9.295
840 781 7940 10.166
904 921 9969 10.824

Various sizes of matrices are considered for implementation of matrix multiplication.
Device used for this matrix multiplication is ATI Mobility Radeon HD 4500/5100
Series. Table{3.] shows the time required for parallel computations. GPU time,
sequential computation CPU time and speedup. Parallel and sequential time required

for multiplication of matrices of N x N order on CPU and GPU respectively are shown

in Figf3.9 and

29

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING

uorjeordiymiy Xugey orenbg jo uonejuewedw] (D) PUY NdD :6°¢ 9IS

{sw)3IL NdD m

{sw)3IL NdD m

JZIS XIMLYIA

F06 ore 9L ITL a9 85 0zs 95t I6E 8T¢ ¥z ooz 9ET zi 2

ooosg

oooE

0000t

Q00ZT

(swiamiL

60

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING

uoryentdiymiy Xujey oxenbg jo uoryejuoweidw] NJD puy NdL) 104 owl], uoryeinduro)) jO uosuredwo)) ([¢ 2131

{sWjFmIL Nd) ——
(SWFNIL NdD ——

000T

oos oog

0oL 009

ZIS XI¥LYIN

005

oot

00E

0ot

00T

\

/

d

/

0oo0g

ooot

ooos

ooog

00001

O00ET

(sw)amiL

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 61

Fig[3.9) and it is observed that for matrices of sizes upto 328x328, there is
not much speed up. But for larger size of matrices there is significant speedup.
From the results it is clear that parallel processing reduces the overll computing
time.Parallel processing is much faster than sequential processing in case of square
matrix multiplication problem considered here. It can be concluded that use of GPU

for general Purpose Computing is useful in field of Structural Analysis.

3.7 Summary

In this chapter, introduction of OpenCL language along with its memory model and
modules is explained in brief. It also gives an idea about OpenCL program kernel and
its functioning. Multiplication of square matrices to illustrate application of OpenCL

on GPU is presented in this chapter.

Chapter 4

Gaussian Elimination

4.1 General

Gaussian Elimination is widely used numerical method for the solution of simultane-
ous linear algebraic equations in which the unknowns are eliminated by combining
the equations. The main aim of this method is to reduce a set of n equations in n
unknowns to an equivalent triangular set (an equivalent set is a set having identical
solution values) which is then easily solved by ”back substitution”. This method,

hence, consists of two steps:

1. Triangularization

2. Back Substitution.

It is not practical to solve the linear algebraic equations by Cramer’s Rule for n >
3. This method is quite uneconomical as compared to elimination methods and also
difficult to automate. It does establish that there is a unique solution for all equations
provided |A| # 0. A square matrix whose determinant is zero is known as a singular
matrix. The solution of equations which have a singular or near singular coefficient

matrix will require special consideration. Usually, computational time is proportional

62

CHAPTER 4. GAUSSIAN ELIMINATION 63

to the number of mathematical operations i.e multiplications or additions. The num-

ber of multiplication in Cramer’s Rule is (n — 1)(n + I)!

Thus, the solution of ten simultaneous equations by determinants would require
3592512000 multiplications. With the multiplications performed on the computer
at the rate of 2600/sec, atleast 38 hours is required to solve 10 equations by Cramer’s
Rule. To obtain a solution for 26 equations 3 x (10)!® years would be required to
obtain a solution. Yet in problems of engineering we use this method for solving

equations less than three.Consider the set of equations below

E? = @111 + a12x2 + ... + a1pT, = b1 (41)
ES = 49121 + Q999 + ... + AonTy = bg (42)
E? = a;1T1 + a;9T9 + ... + Qi 5 + ...+ apx, = bl (43)
EY = @121 + apoZo + ... + Gy = by, (4.4)

Triangularization process

The first equation(4.1) EY of system is divided by the coefficient of z; in that equa-
tion(4.1]) to obtain

0
, E a a a b
1 12 13 1n 1
Elz—::E1+—:v2—|——x3+...+—xn:— (4.5)
a1 a1 11 a1 ay

Equation(|4.5)) is next multiplied by the co-efficient of z; in Equation(4.2) Y and

resulting equation is subtracted from EY thus eliminating z; from E3 as follows.

CHAPTER 4. GAUSSIAN ELIMINATION

21412 (21013

E; = Eg —CL21E11 = <a22 —)172+ (CL23 —

a11 ai

Similarly
E, = E’—a, E;

And so on

/ o 0 !/
E. =FE°—a.FE,

s+ (ag, —

64

(4.8)

The equation used to eliminate the unknowns in the equations which follow it is called

the 'Pivot Equation’. In the pivot equation, the coe-efficient of unknown which is to

be eliminated from subsequent equations is known as the pivot co-efficient (aq; in

the preceding steps).Followig the above steps considering the second equation(4.2])

as pivot equation and repeating same steps to eliminate x, from all equations.This

entire procedure is repeated (n-1) times to get following form.

B ! ! ! 7
L apy apg a1]
X1

i !

0 1 oay Ay,

X2
0 1
X =

1 Tn
n— . -

_O 0 0 i

Back Substitution

After triangular set of equations has been obtained, that last equation in this equiv-

alent set yields the value of x,, directly as

(4.9)

CHAPTER 4. GAUSSIAN ELIMINATION 65

This value is then back substituted in the next-to-last equations of the triangular set
to obtain a value of z,,_; as
_ 1n—1 n—1
Tn-1 = b1 — a5, gy Taandsoon. (4.10)
Reviewing the procedure outlined in Triangularization, it can be seen that the ele-
ments of the reduced matrix-A" can be written directly from the original matrix-A,
using the formula as
/ aik(akj)

Ajj = Qij —

411
-~ (4.11)

where k < j<mand k+1<i<n

After obtaining the augmented matrix of the equivalent triangular set of equations,
the x; values are obtained by back substitution.

In order to program this in computer, we can write

k=1, k—1
a (a”
ab = ok — % (4.12)
App
bk_l . lf:—l . bk—l
bip = = ek (4.13)
Qg

where k +1 < j<n
E+1<i<n

i=row number of matrix
j=column number of matrix
k=number identifying pivot row
n=number of rows in matrix

m=number of columns in matrix

CHAPTER 4. GAUSSIAN ELIMINATION 66

4.2 Algorithm of Gaussian Elimination

1 Assume N equations and Elimination has been completed upto (N —1)" variable

2 The Elimination of then n'* variable

® Upj = anj/a'nn
bn = bn/ann
e For i=n+1, a;; = a;; — aipan; for j=n+1

bi = bi — @inby
3 Now Set n=n+1 and go back to 2

4 Back Substitution
Solve Xy = b%‘l/aNN

Xy-1=by"7 = lay 3 Xn]

4.3 Sequential Implementation

The following code represents the sequential implementation of Gauss Elimination.

It consists both Triangularization and Back Substitutions.

for (u=l;u<=(1xnj) ;ut++)
{
temp=kj [u][u];
for (j=1;j <=(1xnj);j++)
kj[u][jl=kj[u][j]/temp;
ac[u]=ac[u]/temp;
for (i=1;i<=(1*nj);i++)
{

if (i=u)continue;

CHAPTER 4. GAUSSIAN ELIMINATION 67

tempi=kj [i] [u];
for (j=1;j<=(1xnj); j++)
Ki (6] 131=Ki [][7]—Kj [u][j]*templ
ac|i]=ac[i]—ac[u]*templ;

}

where [kj]=Matrix to be inversed and [ac|=Displacement Vector

After running this code, one gets directly the unknown vector {x} in form of vector

{ac}.

4.4 Parallel Implementation

Parallel implementation requires host program and kernel function.Entire host pro-
gram along with kernel function is given in Appendix{A] The following code represents
kernel functions that executes on parallel hardware i.e CPU/GPU. Only Triangular-

ization is done in parallel and Back Substitution is done sequentially.

1 Triangularization is divided into two kernel functions.

__kernel void add(-_global float xinputM, __global float
xinputA, __global float xinputB,const int size ,const

int t)

int globalld = get_global_id (0);
if (globalld < size—1-t)
{
*(inputM + size x (globalld + t + 1)+t) = *(
inputA + size * (globalld + t + 1) + t) / x*(
inputA + size x t + t);

CHAPTER 4. GAUSSIAN ELIMINATION 68

}

}

__kernel void add2(-_global float xinputM, __global float
xinputA, __global float xinputB,const int size ,const
int t)

{
int globalldx = get_global_id (0);
int globalldy = get_global_id (1);
if (globalldx < size—1-t && globalldy < size—t)

{
inputA [size*(globalldx+1+t)+(globalldy+t)] —=
inputM [size x(globalldx+1+t)+t] * inputA|[sizext
+(globalldy+t) |;
if (globalldy = 0)
{
inputB [globalldx+1+t] —= inputM[size (
globalldx+1+t)+(globalldy+t)]* inputB[t];
}
h
}

2 Back Substitution

for (i=0;i<size;i++)
{
finalVec [size —i —1]=inputDataB [size —1 —1];
for (j=0;j<i;j++)
{
finalVec [size—i —1]—=x(inputDataA+size x(size —i

—1)+(size—j—1))*finalVec [size—j —1];

CHAPTER 4. GAUSSIAN ELIMINATION

finalVec [size—i—1]=finalVec[size—i —1]/*(inputDataA+

sizex(size—1—1)+(size—i—1));

69

Equations in form of [A[{x}={B} using finite element analysis of axial bar using 3-

node bar element where A=Square Stiffness Matrix, B=Load Vector and x=Displacement

vector. For comparing computational efficiency of parallel code, speedup factor which

is ratio of sequential execution time to parallel execution time is calculated for dif-

ferent number of linear equations ranging 101 to 10001. Different types of hardwares

used are listed in Table{4.I] given below.

Table 4.1: Hardware used and their configurations

I\SI; Notation Hardware Specification h(dﬁﬁ?
1 3 Intel Coiﬁﬁiéfggézsor (3M 4GB
5 s Intel Co1sé;ic-lf:20§(})’160§e;)301 (6M 4GB
3 - Intel (012270-13:20“})‘1(?;;5)301 (6M 39 GB
5 1-7 laptop GPU NVIDIA GeForce GT 525M 2GB

Results of sequential and parallel implementation are measured in millisecond i.e ms.

CPU-S stands for sequential time and CPU-P stands for parallel time. CPU-P is

summation of execution time and communication time.

Communication time de-

pends on bandwidth of computer system considered. Bandwidth refers to amount of

data transferred per unit time. Different computer systems have different bandwidth

of data transfer.

CHAPTER 4. GAUSSIAN ELIMINATION 70

Tablef4.2] shows results of speedup for set of linear equation systems tested on Intel®
Core™i3-3210 Processor(3M Cache,3.20 GHz). It is seen that for small set of equa-
tions i.e. 101 and 201 number of equations sequential computing time is equal to
parallel computing time. For solving 301 and 401 number of equations, sequential
computing time is more compared to parallel computing time. For solving number
of equations from 101 to 601 there is no communication time which means that data
transfer is done at maximum speed. For solving equations more than 701, sequen-
tial computing time is increasing considerably but parallel computing time is lesser.
Maximum speed up of 838 for solving 10001 number of equations is obtained. Fig/d.T]

is graphical representation of the results.

Table{4.3|shows results of speedup for set of linear equation systems tested on Intel®
Core™i5-3450 Processor(6M Cache,3.50GHz). It is seen that for small set of equa-
tions i.e. 101 and 301number of equations sequential computing time is equal to
parallel computing time. For solving number of equations more than 301,sequential
computing time is more compared to parallel computing time. For solving number
of equations from 101 to 301 there is no communication time which means that data
transfer is done at optimum speed. For solving number of equations from 101 to 1301,
there is no execution time for parallel computing which means that all computations
are done in single fraction of second. Maximum speed up of 1100 for solving 10001

number of equations is obtained. Figl4.2]is graphical representation of the results.

Table{4.4] shows results of speedup for set of linear equation systems tested on Intel®
Core™i7-3450 Processor(6M Cache,3.50GHz). This hardware is having 32GB RAM
in divided into 4 different slots each of 8 GB.Due to multiple slots, it is seen that
for small set of equations i.e. 301 number of equations there is communication time.
Maximum speed up of 316 for solving 5001 number of equations is obtained. Fig/4.3]

is graphical representation of the results.

CHAPTER 4. GAUSSIAN ELIMINATION 71

Table 4.2: Performance Comparison using Intel® Core™i3-3210 Processor(3M
Cache,3.20 GHz)

NO OF C'PU-.S EXECUTION | COMMUNICATION TTOH—E&J];L SPEEDUP
EQUATIONS | (ms)i3 TIME(ms) TIME(ms) CPU-P(ms)

101 - i - - -
201 - - - - -
301 16 - - - -
401 31 - - - -
501 78 15 - 15 5.200
601 140 16 - 16 8.750
701 219 15 16 31 7.065
801 312 16 16 32 9,750
901 502 16 16 32 15.688
1001 718 15 16 31 23.161
1101 1030 15 15 30 34.333
1201 1357 16 16 32 42406
1301 1841 16 15 31 59387
1401 2359 18 15 33 71.485
1501 3025 16 31 47 64.362
1601 3915 16 31 47 83.208
1701 4540 16 31 47 96.596
1801 5505 31 31 62 90.242
1901 6286 47 16 63 99.778
2001 7292 31 32 63 115.746
2501 14414 31 31 62 232.484
3001 24679 47 46 93 265.366
3501 39000 62 62 124 314.516
4001 57969 78 78 156 371.596
4501 80652 79 108 187 431.294
5001 109975 93 124 217 506.797
10001 863695 250 780 1030 838.539

CHAPTER 4. GAUSSIAN ELIMINATION

. (e
10 N S N
660T

5.4
) 0 1 P P
8 O

m

A
N
O
T T e L T
T T L L

e o

F 100
L
O S
L
1T TG L

T T L L L

A
OvT]
M7y]

~

59

696LS

0p06E l
4

649

6L

9879

6SEC

r~
[3]
[xs}

080T

8TL

705

Z1g ¢

611

—

84

1€

aT

1000000
100000
10000
1000
100

10 +
1

(sw)awy

W CPU-S(ms)i3
ETOTALTIME CPU-P

AR T T R T P e
'@Q”@'\‘?‘)%@@@@%@ﬁ

No. of Equations

Figure 4.1: Performance Comparison using Intel® Core™i3-3210 Processor(3M Cache,3.20 GHz)

CHAPTER 4. GAUSSIAN ELIMINATION 73

Table 4.3: Performance Comparison using Intel® Core™™i5-3450 Processor(6M
Cache,3.50GHz)

NO OF C'PU-.S EXECUTION | COMMUNICATION Tl(,}];\[;]‘EL SPEEDUP
EQUATIONS | (ms)i5 TIME (ms) TIME(ms) CPU-P(ms)

101 - - - - -
201 16 - - - -
301 15 - - - -
401 31 - 16 16 0.516
501 78 - 16 16 4.875
601 125 - 16 16 7.813
701 203 - 15 13 13.533
801 312 - 16 16 19.500
901 452 - 15 15 30.133
1001 624 - 16 16 39.000
1101 05 - 15 15 60.333
1201 1263 - 16 16 78.938
1301 1638 - 30 30 34.600
1401 2137 - 16 16 133.563
1501 2793 15 15 30 03.100
1601 3432 5 16 31 110.710
1701 4290 16 3l 47 91.277
1801 5320 13 16 31 171.613
1901 6364 16 15 31 205.290
2001 7597 16 16 32 237.406
2501 16239 32 46 78 208.192
3001 28610 16 46 62 461.452
3501 44662 32 47 79 565.342
4001 65988 63 78 141 468.000
4501 91681 G2 109 171 536.146
5001 128762 78 125 203 634.296
10001 1081534 172 811 983 1100.238

CHAPTER 4. GAUSSIAN ELIMINATION

18916

88659

99v1

10000000

1000000

100000

10000

(sw)awn i

1000
100
10

1

S I T A S S T T R SRR T A N S S P S P S P T
U I N i N N R I U T R

B CPU-S (ms) i5

No. of Equations

B TOTAL TIME CPU-P

Figure 4.2: Performance Comparison using Intel® Core™™i5-3450 Processor(6M Cache,3.50GHz)

74

CHAPTER 4. GAUSSIAN ELIMINATION

75

Table 4.4: Performance Comparison using Intel® Core™i7-3450 Processor(6M

Cache,3.50GHz)

NO OF C'PU-.S EXECUTION | COMMUNICATION T(?JTAL TIL-IE SPEEDUP
EQUATIONS | (ms)i7 TIME(ms) TIME(ms) CPU-P(ms)

101 - 15 - - -
201 31 16 - 16 1.938
301 93 16 15 31 3.000
401 203 - 31 31 6.548
501 405 32 13 47 8.617
601 687 47 13 62 11.081
701 1092 46 16 62 17.613
801 1700 63 13 78 21.795
201 2324 62 32 94 24.723
1001 3370 78 47 125 26.960
1101 4337 93 48 141 30.759
1201 5709 93 48 141 40.489
1301 7223 109 62 171 42.240
1401 8829 109 63 172 51.331
1501 11216 109 94 203 55.251
1601 13354 172 77 249 53.631
1701 16068 157 93 250 64.272
1801 19297 156 109 265 72.819
1901 21965 156 125 281 78.167
2001 25678 171 109 280 91.707
2501 50045 219 187 406 123.264
3001 86455 234 207 531 162.815
3501 136593 297 369 666 205.005
4001 203080 344 483 827 245,562
4501 289396 406 624 1030 280.967
5001 394883 468 781 1249 316.159

76

CHAPTER 4. GAUSSIAN ELIMINATION

(ZHOH0G €'oudR)) N9)I0880001J (GFE-Ll 0100 @[ou] Sursn uostredwo)) 9dURWIONS] ¢ 9G]

d-NdJ IWILTYLOL
L1 (sw)s-ndom suonenb3 jo "oy

T00S T0S¥ T00¥ TOSE TOOE TOST TO0OT T06T TOBT TOLT TO9T TOST TOVT TOET TOCT TOTT TOOT TO6 TO8 TOL

109 10S TO¥F TOE

1-’#

ItL

T0€ 10T

91

Lo

cb

Sov

L89

ULt
Vo

LEEY

6288
£7T
604

T
9TZIT

895¢
PoF
L
o3
V

SS1798
S005

cbhadc

96%83

£88Y6E

0t

0ot

000T

0000T

000001

000000T

(sw)awny

CHAPTER 4. GAUSSIAN ELIMINATION 77

Table{4.5| shows results of speedup for set of linear equation systems tested on Intel®
Core™i7-2630QM Processor(2.0GHz). It is seen that for small set of equations i.e.
101 and 201 number of equations sequential computing time is equal to parallel com-
puting time. For solving number of equations more than 301, sequential computing
time is more compared to parallel computing time. For number of equations from
101 to 801, there is no communication time which means that data transfer is done at
maximum speed. Since this hardware is on laptop, there is execution time right from
101 equations. For given hardware, maximum speed up of 1702 for solving 10001

number of equations is obtained. Fig[4.4]is graphical representation of the results.

Table{4.6]shows results of speedup for set of linear equation systems tested on NVIDIA
GeForce GT 525M. It is seen that for small set of equations i.e. 101 and 201 num-
ber of equations sequential computing time is equal to parallel computing time. For
number of equations more than 301, sequential computing time is more compared to
parallel computing time. For solving number of equations from 101 to 501, there is
no communication time which means that data transfer is done at optimum speed.
Since this hardware is on laptop, there is execution time right from 301 number of
equations onwards. For given hardware, maximum speed of 1702 for solving 10001

number of equations is obtained. Fig[4.5is graphical representation of the results.

CHAPTER 4. GAUSSIAN ELIMINATION

Table 4.5:

sor(2.0GHz)

78

Performance Comparison using Intel® Core™i7-2630QM Proces-

NO OF _ [(;E;}T-:: EXECUTION | COMMUNICATION T(?JT.'—*LL TIME SPEEDUP
EQUATIONS | | TIME(ms) TIME(ms) CPU-P(ms)
Laptop

101 - 16 - - -
201 - 16 - - -
301 21 12 2 14 1.500
401 47 15 - 15 3.133
501 91 21 2 23 3957
601 140 31 - 31 4516
701 234 32 - 32 7.313
301 359 46 - 46 7.804
001 531 31 16 47 11.298
1001 733 47 15 62 11.823
1101 1029 47 15 62 16.597
1201 1435 47 16 63 22.778
1301 1935 47 15 62 31.210
1401 2449 62 18 30 30.613
1501 3073 46 32 78 39.397
1601 3698 78 29 107 34.561
1701 4461 62 16 78 57.192
1801 5359 73 12 85 63.047
1901 6130 78 16 04 65.213
2001 7036 04 15 109 64.550
2501 13307 04 15 109 122.083
3001 24929 110 30 140 178.064
3501 42556 140 47 187 227.572
4001 66221 172 47 219 302.379
4501 07843 250 78 328 298.302
5001 133582 281 04 375 356.219
10001 1222107 421 297 718 1702.099

CHAPTER 4. GAUSSIAN ELIMINATION

[4

o

GEET

EVBLE

Tea9y

9S§T

oy
<
~

r~
b=

A1 A
| g N

"1-'

T T eI L I T
T UL QT
(T T L

T IO [T
I
I [AL L
0RO A
A
M AL (T
) A
TTTT L L
[1TT L (L]
([P
ML L
BRI
ol

9¢€0/

0ETS

6SES

T9%p

[y

o~

SE6T

EEL

L)
52]
o

el

orT ==

16

10000000

1000000

100000

10000
1000
100

(sw)auny

10
1

&
S
g

&
)
N

Dy By S N S Dy Sy .2
O S)
PR P& A & PP

&
4

&
>

B CPU-S (ms) i7 Laptop

No. of Equations

HTOTALTIME CPU-P

Figure 4.4: Performance Comparison using Intel® Core™i7-2630QM Processor(2.0GHz)

79

CHAPTER 4. GAUSSIAN ELIMINATION

30

Table 4.6: Performance Comparison using NVIDIA GeForce GT 525M

NO OF (Cj_})j-; EXEC‘UTIQN COMMUNICATION TOT}‘_J_ T]:ME SPEEDUP
EQUATIONS Lanton TIME(ms) TIME(ms) CPU-P(ms)
Plog

101 - - - - -
201 - - - - -
301 21 16 - 16 1.313
401 47 32 - 32 1.469
501 91 16 - 16 5.088
601 140 16 15 31 4516
701 234 16 16 32 7.313
801 359 47 15 62 5.790
201 531 31 19 50 10.620
1001 733 32 15 47 15.596
1101 1029 47 18 65 15.831
1201 1435 47 16 63 22.778
1301 1935 47 19 66 29.318
1401 2449 46 21 67 36.552
1501 3073 63 15 78 39.397
1601 3698 78 15 93 39.763
1701 4461 62 16 78 57.192
1801 5359 63 15 78 68.705
1901 6130 94 15 109 56.239
2001 7036 78 16 24 74.851
2501 13307 124 32 156 85.301
3001 24929 140 31 171 145.784
3501 42556 157 46 203 209.635
4001 66221 187 63 250 264.884
4501 07843 234 63 297 329,438
5001 133582 281 63 344 388.320
10001 1222107 672 312 084 1241.979

CHAPTER 4. GAUSSIAN ELIMINATION

JUL
T T 100
£V8L6
12799
9ShTt
Se6T
L T L T
O
EE4
TE
: : : g g g = -
] = 8 g 8
g S =
=
(sw)awny

No. of Equations

Figure 4.5: Performance Comparison using NVIDIA GeForce GT 525M

. Iy Sy oY oy o S
DR D P& A P

oy
B CPU-S (ms) i7 L3ptop

)

ETOTALTIME CPU-P

82

UOTYRUTWI]F] SSNBE) 10] SoIeMPIR] JULISJI(] JO SWIL], UOIINDISXH Jo uosLredwo)) :9'§ 2Ingig

T00T

T0TT
T

T
T0L
10t
10z
Tot

X

suonenb3 jo ‘oN
S aEBEENBRERRERE
o o 0 0 o Q0 o 0 o o o 0 o o
L
Nd9 doideT 21 (sw) gndo -+ areesnnttin T R TIT
:awn_oﬁq._h_ﬁmrc”_m._-_mul _..(h.....

. e stevgeesnernnils

doyde £1(sw)gdngy -+

doyde /1 (sw) §-Nd) =
L1{sw) dNdD eeeeee

L1 {sw) §Nd) =—

G (sw)g-Ndd oo
§! (W) §:Nd) ==
€1(5W) N veveere
€1 (sw) $ndd

ot

0000T

CHAPTER 4. GAUSSIAN ELIMINATION

(sw) auny

83

CHAPTER 4. GAUSSIAN ELIMINATION

UOIJRUIWI[F SSNRr) 10} SoIeMPIRH JUSIOPL(] JO OWIL], UOIjedIunmuIwo)) jo uostreduoy)) f oInsrj

suonenb3 joon

4,

)&%.r&m z%z%&z%o zo&.t%é&%.k%r&oo.&%r»o&&%rz%.).a_.. S PEFEFESS

A
FF$
\ ﬁ
Nd9 dojde £ =— o1

dojde] £] ———

L] m—

A
)
$

€] —

00T

(sw) awny

84

CHAPTER 4. GAUSSIAN ELIMINATION

UOIJRUTWI[F] SSNRE) I0] SoIeMpIe oI Jo 1030e] dnpoadg jo uostreduro)) 9§ oInSI

suotjenb3 jo -on

&
a%z%z%u & z%&r%&z%z%z%t%taﬁf%rto&.f%r}o@.m.wnfmz.f 1&% FeoLLg &S

0
00T
\ o0t
Ndo doyde f| = \/\ (000.]
dojdeq f1———
L) —
008
Gl
El—
* 000T
! 00ZT
00%T
0091
008T

dn-paads

CHAPTER 4. GAUSSIAN ELIMINATION 85

Fig[4.6] shows comparison of execution time of both parallel and sequential code of
Gauss Elimination. Solid line and dashed line represents results of sequential ex-
ecution time and parallel execution time respectively. It is observed that parallel
execution time lesser than sequential execution time for all the types of hardwares
used in parametric study. Parallel execution time of Intel® Core™i5-3450 Processor
is least followed by Intel® Core™i3 Processor. Parallel execution time of Intel®)

Core™i7-2630QM Processor and NVIDIA GeForce GT 525M GPU are nearly same.

Fig[d.7 shows comparison of communication time of all 5 computer systems used for
parametric study. Intel® Core™i7-3450 Processor system is taking maximum com-
munication time. This is due to multiple slots of 32 GB RAM divided into 4 slots
each of 8 GB. Intel® Core™i7-2630QM Processor is taking least communication
time among all 5 computer systems upto 2501 number of equations but after that
NVIDIA GeForce GT 525M GPU is taking least communication time for larger num-

ber of equations.

Figld.§| shows comparison of speedup factor of all 5 computer systems considered.
Intel® Core™i7-2630QM Processor gives maximum speedup factor of 1702.099 among
all 5 computer systems followed by NVIDIA GeForce GT 525M GPU with speedup
factor of 1241.979. For parallel implementation of Gauss Elimination, Intel® Core™™i7-

2630QM gives optimum performance among 5 computer systems.

4.5 Summary

In this chapter, Gaussian Elimination method for solving linear equations i.e. [A]{x}={B}
where [A] is square matrix, with the help of an algorithm is presented. Its sequential
and parallel implementations on multi-core CPUs and GPUs is presented. Based on
different number of linear equation systems tested on different computer systems,

results of execution time, communication time and speedup factor are presented.

Chapter 5

Half-Band Matrix Solver

5.1 General

Generally in analysis of various types of structures, stiffness matrices are square and
symmetric consisting of many zero elements. So, storing stiffness matrix in square
form will require large memory and large number of computations. If matrix is stored
in Half-Band form, amount of memory required and number of computations will be

reduced drastically.

Consider the symmetric matrix shown below. There are some zero elements.

aj; a2 aiz aig Qais
Q21 Q22 (23 Q24 A5 A26
asy gz a3z A34 aAzs A3 A37
41 Q42 Q43 Q44 Qg5 Qg6 Q47 Q48
as1 G52 (53 As4 G55 (56 As57 A58
G2 A3 Agq Qg5 Aee Ge7 A68
arz Qr4 Qrs Qre Gy Arg

g4 dAgs Gge Agy Agg

86

CHAPTER 5. HALF-BAND MATRIX SOLVER 87

It is enough to store elements on the upper portion of the main diagonal as shown. As
far as the first row is concerned, one has to store all the five elements. But in second
row one need not to store as; since as; = a1 which is already stored. Similarly, in
the third row we store elements ass to ag; and the storage scheme is shown in matrix

below

a1 G122 13 QAi4 Gi5
Q22 Q23 Q24 dA25 26
a3z a34 0ags Aaze 37
G4q Q45 Q46 Q47 (48
as5 As6 Gs7 A58

Ges g7 g8

Q77 Qrg

agg

By using this procedure insted of storing 8x8=64 elements, in band matrix only
8x5=40 elements are stored. This is the greatest advantage in saving the storage
memory.To solve the banded-matrix modified Gauss Elimination solver is used. The

band- matrix is stored as shown in Figurdb.] below

[Column semi band — o _ mc.‘;an:"dwgi
iam\\ﬂg: & & 85 B ;, 44|m 422,)42; Aos o5 |
a1 &w\\l'@\&u as s A i A Ao A A Aos |
841 a2 845\&4\ ass 847 fag -%{1/ Az Az As 4!5:

e A % % a7 +51Awﬁsaﬁsa
ap 43 am aas\-"sq\aav ass
ars an s & @n am
84 8ps 86 &7\&3\

(@ / / ®

Main diagonal

Figure 5.1: Band Matrix for sympatric square matrix (a) Square Matrix (b) Band
Matrix[35]

CHAPTER 5. HALF-BAND MATRIX SOLVER
5.2 Algorithm of Half-Band Solver

1 CcC = CL12/CL11

2 Modify second row elements as follows

ai12a12

gy = 31 — an

gy = gz — P42
gy = (3 — B2
gy = az — H242

ail

3 Modify right hand side b, as

o _aizbr
b2 b2 a1

4 Now change value of changing value of a5 as follows

’

After following above four steps we get following matrix.

a7 Q12 Q13 Q14 G15
Qg1 Qgp Qg3 G24 Q25
asz1 a3z az3 Aaz4 Aaszs
G41 Q42 Q43 A44 A45
51 G52 053 0As4

Qg1 Gg2 (g3

arnn ar

agy

38

Taking the second equation, one may follow the same steps as 1 to 4 as before. This

is to be repeated for (NE —1) times.For N equation and modifying the a; element

ANLANK
aN1

!
ary = aryg —

CHAPTER 5. HALF-BAND MATRIX SOLVER 89

I __anrby
b[— b[ant

5.3 Sequential Implementation

Based on algorithm discussed previously, sequential code for Half-Band solver is as

follows.

a Factorization

NIl=nra—-nb+1;

NMenra —1;

MR=nb ;

for (N=1;N<=\M; N++)

{ BN=ac [N];
ac [NJ=BN/Kj [N] 1]
if (N>NL) MR=nra —N +1;
for (L=2;L<=MR; L++)

{ C=kj [N]J[L]/kj [N][1];
i=N + L —1;
1=0;
for (K=L; K<=MR; K++)
{ j=i+1
kj[i][j]=kj[1][Jj]= Cxkj[N][K];
}
ac|i]=ac[i]—-CxBN;
kj [NJ[L]=C;

b Back Substitution

CHAPTER 5. HALF-BAND MATRIX SOLVER 90

ac [nra|=ac[nral]/kj[nra][1];

for (N=1;N<=NM;N++)

{
i=i—1;
if (N<nb)
MR=N+1;
for (j=2;j<=aMR; j++)
{ k=it —1;
acli]=ac[i]— kj[i][]j]*ac[k];
}
}

5.4 Parallel Implementation

Parallel implementation requires host program and kernel function.Entire host pro-
gram along with kernel function is given in Appendix{B| The following code represents

kernel functions that executes on parallel hardware i.e CPU/GPU.

a Factorization is divided into five kernel functions.

__kernel void add(-_global float xinputM, __global float
xinputA, __global float =xinputB,const int size ,const

int t,const int MRg)

int globalld = get_global_id (0);
if (globalld < MRg)

(inputM + + size % t 4+ globalld + 1) = x(
inputA + size % t + globalld + 1) / x(

CHAPTER 5. HALF-BAND MATRIX SOLVER 91

inputA + size % t);

}

}

__kernel void add2(__global float xinputM, __global float
xinputA, __global float =xinputB,const int size ,const
int t,const int MRg)

{
int globalldx = get_global_id (0);

int globalldy = get_global_id (1);
if (globalldx < MRg && globalldy < (MRg-globalldx
))
{
inputA [size*(globalldx+1+t)+(globalldy)] —=
inputM[+ size % t + globalldx + 1] =
inputA [sizext+(globalldy)+1+globalldx |;
}
}

__kernel void add3(-_global float xinputM, __global float
xinputA, __global float xinputB,const int size ,const

int t,const int MRg)

int globalld = get_global_id (0);
if (globalld < MRg)
{

inputB [globalld+14+t] —= inputM [size * t +
globalld + 1] % inputB[t];

CHAPTER 5. HALF-BAND MATRIX SOLVER 92

}

}

__kernel void add4(-_global float xinputM, __global float
xinputA, __global float =xinputB,const int size ,const
int t,const int MRg)

{
int globalld = get_global_id (0);

if (globalld = 1)
{
inputB [txgloballd] = inputB[txgloballd] /
inputA [sizextxgloballd |;
}

}

__kernel void add5(__global float xinputM, __global float
xinputA, __global float =xinputB,const int size ,const
int t,const int MRg)

{
int globalld = get_global_id (0);

if (globalld < MRg)
{
*(inputA + + size x t + globalld + 1) = %(
inputM + size * t + globalld + 1);
}
}

b Back Substitution

i=nra—1;

CHAPTER 5. HALF-BAND MATRIX SOLVER 93

inputDataB [nra—1]=inputDataB [nra —1]/inputDataA [(nra—1)*nb
5
for (Ng=0;Ng<=NMg; Ng++)
{ i=i—1;
if (Ng<(nb—1))
MRg=Ng+1;
for (j=1;j<=MRg; j++)
{
k=i+j ;
inputDataB [i|=inputDataB[i]— inputDataA [i
xnb + j]xinputDataB[k];

5.5 Plane Frame Analysis

In the case of plane frame, all the members lie in the same plane and are inter-
connected by rigid joints. The internal forces at a cross-section of a plane frame
member consist of bending moment, shear force and an axial force. The significant
deformations in the plane frame are only flexural and axial. Typical plane frame
considered for analysis is shown in Fig[5.2] The Global Stiffness matrix is stored in
Half-Band manner. Subsequently half-banded matrix is inverted using Cholesky fac-
torization. Global stiffness matrix is rectangular matrix in which number of rows
is equals to numbers of Degrees of Freedom and number of columns equals to half-
bandwidth. Thus matrix size turns out to be DoFxnb where, DoF= Degrees of
Freedom and nb=half-bandwidth. For solution of equations, Half-Band matrix solver

is used. Speedup factor called Tsequntial/Tparallel is also calculated.

94

CHAPTER 5. HALF-BAND MATRIX SOLVER

s

WRISRI(] JTIRWAYDS dWRIL] dUR[J :Z'G 9IN3I

%z

Q|

D o«

Ad2.10]s

&

. A

¢
<Sheqc>

Y

CHAPTER 5. HALF-BAND MATRIX SOLVER

AE- 0 =£ 90 0
12 [§ —12 [§
0 Bl Bl 0 BT Bl
L3 L2 L3 L2
0 6ET 4FE1 0 —6F1 2ET1
L? L L2 L
=E 0o 48 0 0
0 —12FE1 —6FEI 0 12E1 —6FE1
L3 L? L3 L?
6ET1 2E1 —6ET1 4ET
0o s& 2L 4EL
L L2 L L2 L]

Plane Frame member Stiffness Matrix for member axes is shown below:

95

- ry

Figure 5.3: Plane Frame Member axes and degrees of freedom

Results of sequential and parallel implementation are measured in millisecond i.e ms.
CPU-S stands for sequential time and CPU-P stands for parallel time. CPU-P is
summation of execution time and communication time. Communication time de-
pends on bandwidth of computer system considered. Bandwidth refers to amount of

data transferred per unit time. Different computer systems have different bandwidth

of data transfer.

CHAPTER 5. HALF-BAND MATRIX SOLVER

96

Tablef5.1] shows results of speedup for Analysis of Plane Frame with different number

of bays and storeys tested on Intel® Core™i3-3210 Processor(3M Cache,3.20 GHz).

It is observed that for small frame speedup factor is less than unity. Maximum

speedup factor 1.782 is obtained in case of 200bay x 200storey. Given hardware

gives optimum results from plane frame having 120600 degrees of freedom. Figl5.4]is

graphical representation of the results.

Table 5.1: Performance Comparison of Plane Frame Analysis using Intel®) Core

3210 Processor(3M Cache,3.20 GHz)

TMig_

NO OF \ , , TOTAL
BAYS & MATRIX SIZE gﬁgg E)I(E]IEBSI‘]EJ(ES)N ¢ OMJ]\“/{QEC;:)TION TIME SPEEDUP
STOREYS CPU-P(ms)
50X50 7650 x 156 390 312 343 655 0.595
100X100 30300 x 306 5709 1249 3260 4509 1.266
150X150 67950 x 456 28314 2902 13400 16302 1.737
200X200 120600 x 606 92540 10686 41246 51932 1.782
250X250 188250 x 756 | 223922 75738 493429 569167 0.393
600000
500000
400000
E
T 300000
.E
200000
100000 a)

W CPU-S (ms) i3

50X50

B TOTAL TIME CPU-P(ms)

100X100 150X150

Models

200X200

250X250

Figure 5.4: Performance Comparison of Plane Frame Analysis using Intel® Core™i3-
3210 Processor(3M Cache,3.20 GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER

97

Table]5.2 shows results of speedup for Analysis of Plane Frame with different number
of bays and storeys tested on Intel® Core™i5-3450 Processor(6M Cache,3.50GHz).

It is observed that for small frame speedup factor is less than unity. Maximum

speedup factor 2.847 is obtained in case of 150bay x 150storey. Given hardware

gives optimum results from plane frame having 67950 degrees of freedom.Fig/5.5] is

graphical representation of the results.

Table 5.2: Performance Comparison of Plane Frame Analysis using Intel® Core

3450 Processor(6M Cache,3.50GHz)

TMi5_

NO OF BAYS CPU-S | EXECUTION | COMMUNICATION | TOTAL TIME
& STOREYS MATRIX SIZE (ms) 15 TIME(ms) TIME(ms) CPU-P(ms) SPEEDUP
S50X50 7650 x 156 406 188 264 452 0.898
100X100 30300 x 306 5897 780 2138 2918 2.021
150X150 67950 x 456 29219 1685 8579 10264 2.847
200X200 120600 x 606 94053 9750 28190 37940 2.479
250X250 188250 x 756 | 228665 42401 279006 321407 0.711

350000

321407

300000

250000

200000

Time(ms)

150000

100000

50000

B4053

g @
§ ¢

2918

r

| 5897

29219

0264

o

W CPU-S (ms)i5

50%50

B TOTALTIME CPU-P(ms)

100X100

150X150

Models

200X200

250%250

Figure 5.5: Performance Comparison of Plane Frame Analysis using Intel® Core
3450 Processor(6M Cache,3.50GHz)

M5

CHAPTER 5. HALF-BAND MATRIX SOLVER

98

Tablef5.3 shows results of speedup for Analysis of Plane Frame with different number
of bays and storeys tested on Intel® Core™i7-3450 Processor(6M Cache,3.50GHz).

It is observed that for small frame speedup factor is less than unity. Maximum

speedup factor 3.910 is obtained in case of 250bay x 250storey. Given hardware

gives optimum results from plane frame having 188250 degrees of freedom.Fig5.6] is

graphical representation of the results.

Table 5.3: Performance Comparison using Intel® Core™i7-3450 Processor(6M

Cache,3.50GHz)

NO OF TOTAL
BAYS & | MATRIX SIZE gﬁg; E};EEZEESN COM?&?E&‘)HON TIME | SPEEDUP
STOREYS CPU-P(ms)
50X30 7650x 156 | 328 1466 38 1504 0218
100X100 | 30300x306 | 4875 5725 287 6012 0.811
150X150 | 67950x456 | 23861 12395 957 13352 1.787
200X200 | 120600x 606 | 77340 21724 242 23966 3227
250X250 | 188250x 756 | 187690 | 43630 4370 43000 3.910
200000 8
180000
160000
140000
120000
E
'g 100000
80000 ~
60000 g
40000 b g
20000 — §
i EEE
0 —— j— |
W CPU-5(ms)i7 50X50 100X100 150X150 200X200 250X250
B TOTAL TIME CPU-P(ms) Models
Figure 5.6: Performance Comparison of Plane Frame Analysis using Intel® Core™i7-

3450 Processor(6M Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER

Table]5.4] shows results of speedup for Analysis of Plane Frame with different number
of bays and storeys tested on Intel® Core™i7-2630QM Processor(2.0GHz). Tt is
observed that for small frame speedup factor is less than unity. Maximum speedup
factor 2.017 is obtained in case of 100bay x 100storey. Given hardware gives opti-

mum results from plane frame having 30300 degrees of freedom.Figl5.7 is graphical

representation of the results.

Table 5.4:
sor(2.0GHz)

Performance Comparison using Intel® Core™i7-2630QM Proces-

NO OF CPU-S TOTAL
BAYS & | MATRIX SIZE | (ms)i7 E)T(EESITE(ESN COM?&JEI(E;;TION TIME | SPEEDUP
STOREYS Laptop CPU-P(ms)
50X50 7650 x 156 718 983 15 998 0.719
100X100 | 30300x306 | 10795 5116 235 5351 2.017
150X150 | 67950x456 | 53727 28767 561 29328 1832
200X200 | 120600 x 606 | 168668 | 101369 1075 102444 1.646
250X250 | 188250x 756 | 411107 | 264749 1716 266465 1.543
450000 S
400000
350000
300000 3
&
__ 250000
£
E
= 200000 3
150000
3
100000 -
50000 - - E
===
M CPU-S(ms)i7 Laptop 90X50 100X100 150X150 200%200 250X250
B TOTALTIME CPU-P(ms) Medels
Figure 5.7: Performance Comparison using Intel® Core™i7-2630QM Proces-

sor(2.0GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER

100

Table 5.5 shows results of speedup for Analysis of Plane Frame with different number
of bays and storeys tested on Intel® Core™i7-2630QM Processor(2.0GHz). Tt is

observed that for small frame speedup factor is less than unity. Maximum speedup

factor 2.023 is obtained in case of 100bay x 100storey. Given hardware gives opti-

mum results from plane frame having 30300 degrees of freedom.Figl5.8]is graphical

representation of the results.

Table 5.5: Performance Comparison using NVIDIA GeForce GT 525M

NO OF BAYS MATRIX 511;5-13 EXECUTION | COMMUNICATION | TOTAL TIME SPEEDUP
& STOREYS SIZE Laptop TIME(ms) TIME(ms) GPU-P(mns)
50X50 7650 x 156 718 702 - 702 1.023
100X100 30300 x 306 10795 5117 218 5335 2.023
150X150 67950 x 456 53727 28798 530 29328 1.832
200X200 120600 x 606 168668 101448 1091 102539 1.645
250X250 188250 x 756 411107 264827 1731 266558 1.542

450000

411107

400000

350000

300000

250000

Time(ms)

200000

266558

168668

150000

100000

102539

53727

9328

50000

o
<]
0

10795
5335

|
r

W CPU-S (ms) i7 Laptop 20%X30

mTOTAL TIME CPU-P(ms)

100X100

150X150 200X200

Madels

250X250

Figure 5.8: Performance Comparison using NVIDIA GeForce GT 525M

CHAPTER 5. HALF-BAND MATRIX SOLVER 101

450000

—— CPUS(ms) i3
------- CPU-P(ms) i3
—— CPU-$ (ms) i5
coveves CPU-P (M) iS

Time (ms)

= CPU-5(ms) i7

------- CPU-P(ms)i7

= CPU-§ (s} i7 Laptop
veeeees CPU-P(ms)i7 Laptop
e CPU-S (ms) I7 Laptop GPU

------- GPU-P(ms)i7 Laptop GPU

50X%50 100X100 150150 200X200 250X250

NO OF BAYS & STOREYS

Figure 5.9: Comparison of Execution Time of Different Hardwares for Plane Frame
Analysis

Fig[5.9) shows comparison of execution time of both parallel and sequential code of
Half-Band Solver. Solid line and dashed line represents results of sequential execution
time and parallel execution time respectively. It is observed that parallel execution
time lesser than sequential execution time for all the types of hardwares used in
parametric study. Parallel execution time of Intel® Core™i5-3450 Processor is least

followed by Intel® Core™i7-3450 Processor.

CHAPTER 5. HALF-BAND MATRIX SOLVER 102

1000000

1000 — 5

|
/

S0X50 100X100 150X150 200X200 250X%250

Time (ms)

—— |7 Laptop

= |7 Laptop GPU

NO OF BAYS & STOREYS

Figure 5.10: Comparison of Communication Time of Different Hardwares for Plane
Frame Analysis

Fig shows comparison of communication time of all 5 computer systems used
for parametric study. Intel® Core™i3-3210 Processor system is taking maximum
communication time. This is due to large large amount of data transfer. Intel®)

Core™i7-2630QM Processor and NVIDIA GeForce GT 525M GPU are taking least

communication time among all 5 computer systems.

CHAPTER 5. HALF-BAND MATRIX SOLVER 103

4.5

3.5

25 —_—i2
—i5
2 —i7
=7 Laptop
15 / AN \\ —— i7 Laptop GPU

0.5

Speed-Up

50X50 100X100 150X150 200X200 250X250

NO OF BAYS & STOREYS

Figure 5.11: Comparison of Speedup factor of Different Hardwares for Plane Frame
Analysis

Fig[5.11] shows comparison of speedup factor of all 5 computer systems considered.
Intel® Core™i7-3450 Processor gives maximum speedup factor of 3.910 among all
5 computer systems for plane frame having size 250bay x 250storey followed by
Intel® Core™i5-3450 Processor with speedup factor of 2.847 for plane frame having
size 150bay x 150storey. For parallel implementation of Half-Band Solver for plane
frame analysis , Intel® Core™i7-3450 Processor gives optimum performance among

5 computer systems.

CHAPTER 5. HALF-BAND MATRIX SOLVER 104

5.6 Space Frame Analysis

In the case of space frame, all the members lie in the 3 different planes and are in-
terconnected by rigid joints. The internal forces at a cross-section of a space frame
member consist of 3-bending moments, 2-shear forces and an axial force. Three differ-
ent space frame models, 5 x 5 x 5, 10 x 10 x 10 and 20 x 20 x 20 (bays — = X bays —
y X storeys — z) are considered. Fig shows typical space frame diagram.

[E4
L
5 szf‘
12E
0 0 S ;
L ; symmetric
G/
0 0 0 =
—6El " aE
0 0 i/ :
GET g "
0 -0 0 o0 '
i L
By 0 g o g9 =
% o -
0 —tiﬂ'__ 0 0 0 - = 12’53!-'
" ﬂ -12EL, 0 6EL, 12E1,
F . B v |
0 0 0 -(;"] o0 0 0 ("L" '
0 g 25 2EL, o o o ."f:f.-_ f‘ff-_
; : ~6EI 7
o SEL 0 o o 2L = o g g 2B
r L L L |

Figure 5.12: Space Frame Member Stiffness Matrix

Far

1 .
4 1 %J @ kﬁ FRTe]

— p—>—» — g
: 4
\
1
|

A s

Y i

In

Figure 5.13: Space Frame Member axes and degrees of freedom

CHAPTER 5. HALF-BAND MATRIX SOLVER

A A I — 7]
A V%

105

Figure 5.14: Space Frame Schematic Diagram

CHAPTER 5. HALF-BAND MATRIX SOLVER

Table 5.6 shows results of speedup for Analysis of Space Frame with different number
of bays and storeys tested on Intel® Core™i3-3210 Processor(3M Cache,3.20 GHz).
It is observed that for small space frame speedup factor is less than unity. Maximum

speedup factor 1.492 is obtained in case of 10 x 10 x 10 space frame model.Fig

is graphical representation of the results.

Table 5.6: Performance Comparison using Intel® Core™i3-3210 Processor(3M

Cache,3.20 GHz)

NO OF

100

10

IR
W CPU-5 (ms) i3

5X5X5

B TOTAL TIME CPU-P(ms)

10X10X10

Models

20X20X20

MATRIX CPU-S | EXECUTION | COMMUNICATION | TOTAL TIME
BAYS & . SPEEDUP
STOREYS SIZE (ms) i3 | TIME(ms) TIME(ms) CPU-P(ms)

SX5X5 1080 x 222 93 47 63 110 0.845
10X10X10 | 7260 x 732 7192 342 4477 4819 1.492
20X20X20 | 52920 x 2652 | 731922 10249 855802 866051 0.845

1000000
100000
10000

% 1000

=

Figure 5.15: Performance Comparison using Intel® Core™i3-3210 Processor(3M

Cache,3.20 GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 107

Tablef5.7 shows results of speedup for Analysis of Space Frame with different number
of bays and storeys tested on Intel® Core™i5-3450 Processor(6M Cache,3.50GHz).
It is observed that for small space frame speedup factor is less than unity. Maximum
speedup factor 3.4 is obtained in case of 10 x 10 x 10 space frame model. Fig[5.16]is

graphical representation of the results.

Table 5.7: Performance Comparison using Intel® Core™i5-3450 Processor(6M
Cache,3.50GHz)

BliOY(S)I;c MATRIX CPU-S | EXECUTION | COMMUNICATION | TOTAL TIME SPEEDUP
STOREYS SIZE (ms)15 | TIME(ms) TIME(ms) CPU-P(ms)

SX5X5 1080 x 222 94 32 46 78 1.205
10X10X10 | 7260 x 732 7425 187 1997 2184 3.400
20X20X20 | 52920 x 2652 | 749518 6662 491713 498375 1.504

1000000

100000
10000
% 1000
E
100
10 4
1
HCPUSS (ms]i5 SXSXS 10X10x10 2020420
®mTOTAL TIME CPU-P(ms) Models

Figure 5.16: Performance Comparison using Intel® Core™i5-3450 Processor(6M
Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER

108

Tablef5.§ shows results of speedup for Analysis of Space Frame with different number
of bays and storeys tested on Intel® Core™i7-3450 Processor(6M Cache,3.50GHz).

It is observed that for small space frame speedup factor is less than unity. Maximum

speedup factor 5.096 is obtained in case of 20 x 20 x 20 space frame model.Fig[5.17]

is graphical representation of the results.

Table 5.8: Performance Comparison using Intel® Core™i7-3450 Processor(6M
Cache,3.50GHz)

100

NO OF BAYS & MATRIX CPU-S | EXECUTION | COMMUNICATION T,ngg‘ SPEEDUP
STOREYS SIZE (ms) 17 TIME(ms) TIME(ns) CPU-P(ms)
5X5X5 1080 x 222 83 201 9 210 0.395
10X10X10 7260 x 732 6247 1619 166 1785 3.500
20X20X20 52920 x 2652 | 624549 118248 4305 122553 5.096
1000000
100000
10000
% 1000
P

210

10

|
m|CPU-S [ms)i7
W TOTAL TIME CPU-P(ms)

SX5X5

10X10x10

20X20X20
Models

Figure 5.17: Performance Comparison using Intel® Core™i7-3450 Processor(6M
Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 109

6.000

5.000

4.000

3.000

Speed-UpFactors

o .////\ ~

Lo — [—

0.000

—&—S5PEED-UPi3
SK5X3 10X10X10 20X20X20
~—SPEED-UPi>
Madels
SPEED-UPi7

Figure 5.18: Speedup Factor Comparison

Fig shows speedup factor comparison for all 3 models of Space Frame using 3 dif-
ferent processors. It is observed that Intel® Core™i7-3450 Processor(6M Cache,3.50GHz)

gives maximum speedup factor.

5.7 Summary

In this chapter, Half-Band Storage method is described with the help of an example.
Half-Band solver for solving linear equations i.e. [A]{x}={B} where [A] is rectangular
matrix, with the help of an algorithm is presented. Its sequential and parallel imple-
mentations on multi-core CPUs and GPUs is presented. Different size of plane frame
and space frame are considered for sequential and parallel implementation. Results

of execution time, communication time and speedup factor are presented.

Chapter 6

Summary and Conclusion

6.1 Summary

Solution of linear equation system in form of [A]{x}={B}, is highly compute inten-
sive in structural analysis program. It is implemented on high performance computing
platforms like multi-core processors and graphics processing units in present study. In
structural analysis, Matrix [A] representing Stiffness matrix, can be stored in square
form or half-band form. As stiffness matrix is square, symmetric consisting of many
zero elements, half-band storage will require less memory and reduces computations.
In present study Gauss Elimination and modified Cholesky factorization methods are
used for solving linear equations having Matrix [A] in square form and half-band
form. OpenCL and C++ programming language are used for parallel and sequential

implementation over variety of high performance computing platform.

For parallel implementation of Gaussian Elimination solver, linear equations sys-
tem representing equilibrium equations of finite element problem is used. Equa-
tions in form of [A[{x}={B} are generated from finite element analysis of axial bar
using 3-node bar element where A=Square Stiffness Matrix, B=Load Vector and

x=Displacement vector. For solution of equations Matrix-[A] is inverted using se-

110

CHAPTER 6. SUMMARY AND CONCLUSION 111

quential and parallel implementation of Gaussian Elimination. Sequential program
is developed using C++ and parallel program is developed using OpenCL language.
For comparing computational efficiency of parallel code, speedup factor which is ra-
tio of sequential execution time to parallel execution time is calculated for different
number of linear equations ranging 101 to 10001. Parallel execution time includes
processing time and communication time. As data is transferred between various
memories, communication time increases total computational time. Code is executed

on different CPUs and GPUs for parametric study.

For parallel implementation of Half-Band solver, which is based on modified cholesky
method, Direct Stiffness Method program of Plane Frame and Space Frame are used
for generating set of linear equation system. Here stiffness matrix is stored in banded
form to reduce memory requirements. Programs for sequential and parallel solution
of banded equations are developed using C++ and OpenCL languages. Problems
of varying size from 7650 Degrees of Freedom to 1,88,250 Degrees of Freedom are
solved using sequential and parallel Half-Band solver. The computational efficiency
of parallel code is studied based on speedup factor. Further to understand the effi-
ciency of program on different hardware platform, the parallel code is executed on
multi-core CPUs like Intel® Core™i3, i5, i7 processors with different specifications

and NVIDIA GPU.

6.2 Conclusion
Based on present study, following conclusions are derived:

e Parallel processing reduces computing time for solving linear equation system

in form of [A]{x}={B} significantly.

e Various types of CPUs and GPUs have different computing capacities depending

on number of cores present in them.

CHAPTER 6. SUMMARY AND CONCLUSION 112

Performance of the parallel implementation depends on the type of numerical

problem taken and data-dependencies.

e Gauss Elimination parallel implementation tested on different CPUs and GPUs

reveals that it gives better efficiency.

e Use of CPU as parallel processing hardware results in significant reduction in
communication time. On other hand, use of GPU as parallel processing hard-
ware results in significant reduction in execution time due to large number of

computing cores present.
e Parallel Implementation of Gauss Elimination

— Intel® Core™i5-3450 Processor exhibits least execution time of 78ms for

solving 5001 number of linear equations system.

— Computer system with Intel® Core™i7-3450 Processor exhibits maxi-
mum communication time for all set of linear equation system due to mul-

tiple slot 32GB RAM.

— Maximum speed-up factor of 1702 is achieved by system having Intel®)

Core™i7-2630QM Processor for solving 10001 number of linear equations.

— Intel® Core™i7-2630QM Processor (2.0GHz) is best suited for the par-

allel implementation of problem considered in this study.
e Parallel Implementation of Half-Band solver
— Intel® Core™i5-3450 Processor exhibits least execution time of 42401ms

for solving plane frame of 250bay x250 storey.

— Maximum speedup factor of 3.9 is achieved by system having Intel®)
Core™i7-3450 Processor for solving plane frame of 250bayx250 storey
with 188250 Degrees of Freedom and 756 half-bandwidth.

CHAPTER 6. SUMMARY AND CONCLUSION 113

— Maximum speedup factor of 3.5 is achieved by Intel® Core™i7-3450 Pro-
cessor for solving space frame of 20x20x20(bays-xxbays-y xstorey) with

52920 Degrees of Freedom and 2652 half-bandwidth.

6.3 Future Scope of Work

The study carried in this project can be extended to include following aspects:

e Parallelization of complete structural analysis problem rather than only con-

centrating on equation solution.

e Various structural engineering problems like FEM analysis using numerical in-

tegration, non-linear dynamic analysis.
e Development of efficient algorithm to suit different hardware platforms.

e A heterogenous program which uses both GPU and CPU simultaneously for

carrying out different instruction on different data.

Appendix A

Gauss Elimination host program

#include<stdio .h>
#include<conio .h>
#include <math.h>
#include<stdlib .h>

#include <time .h>

#ifdef __APPLE__

#include <OpenCL/opencl.h>
#else

#include <CL/cl.h>

#endif

#define cal(zz,qq) ((qq *) calloc(zz,sizeof(qq)))
using namespace std;

const char xProgramSource =

114

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 115

7 __kernel void add(_-_-global float xinputM, __global float =x
inputA, __global float xinputB, const int size ,const int t)
\n™\

"{\n7\

7 int globalld = get_global_id (0);\n”\

7 if (globalld < size—1-t)\n”\

’ {\n7\

K «(inputM + size % (globalld + t + 1)+
t) = *(inputA + size *x (globalld + t + 1) + t) / *(inputA
+ size x t + t);\n"\

S AT

77}\1,177 ;

const char xProgramSource2 =

7 __kernel void add2(__global float xinputM, __global float =x
inputA, __global float xinputB, const int size ,const int t)
\n™\

"\

7 int globalldx = get_global_id (0);\n”\

7 int globalldy = get_global_id (1);\n”\

7 if (globalldx < size—1-t && globalldy < size—t)\n

: i

inputA [size x(
globalldx+1+t)+(globalldy+t)] —= inputM|[size x(globalldx+1+
t)+t] * inputA[sizext+(globalldy+t)];\n”\
» if (globalldy = 0)\n”\
" {\n7\

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 116

inputB[globalldx+1+t |
—= inputM [size x(globalldx+14+t)+(globalldy+t)] * inputB |t
J5\n"\
: Py
” P\

int ne,nj,i,nrj,j,b,im[5] ,n,u;

float temp,templ;

FILE =f1 ,xf2;
system (7 cls”);

fl=fopen (”input.txt” 7 r”);
f2=fopen (" out.txt” ,”w”);

FILE xft=fopen (” time.txt” ”w");

fscanf (f1,”%d” ,&ne) ;
nj=(2*ne)+1;
fprintf (ft ,” Number of Equations=%d\n”,nj);

clock_t cd=clock ();
float % ac = (float *)malloc(sizeof(float)x(nj+1));
float *xkj = (float =x) calloc(nj+1,sizeof(float x));
for (i=1;i<=nj;i++)

kj[i] = (float %) calloc(nj+1,sizeof(float));

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM

clock_t chb=clock ();
double ¢6=((cb—c4)=*1000)/CLOCKS_PER-SEC};
//cl starts

cl_context context;
cl_context_properties properties[3];
cl_kernel kernel kernel2;
cl_command_queue command_queue;
cl_program program ,program?2;
cl_int err;

cl_uint num_of_platforms=0;
cl_platform_id platform_id;
cl_device_id device_id;

cl_uint num_of_devices=0;
cl_mem inputA, inputB ,inputM;

cl_int ret;

size_t global ,global2[2] local2[2];
int DATA SIZE=nj*nj;

117

float sinputDataA= (float x)malloc(sizeof(float)*DATASIZE);

float *finalVec= (float x)malloc(sizeof(float)*nj);

float xinputDataB= (float *)malloc(sizeof(float)*nj);

float =sinputDataM= (float x)malloc(sizeof(float)*DATASIZE);

FILE xf3=fopen(”out.csv” ,”"w");

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 118

fprintf (£3,” Before kernel matrix\n”);
for (i=0;i<lxnj;i++)

{
for (j=05j<l¥nj;j++)
{
fscanf (f1,”%f” &inputDataA [j + njx*i
1)
kj[i+4+1][j+1]=inputDataA[j + njxi];
inputDataM [j 4+ njxi | = 0;
//fprintf (£3,7%f,” /inputDataA[j + njx
i)
¥
//fprintf (£3,7\n");
h

/xfprintf (f2,” Global Stiffness matrix\n”);
for (i=1;i<=l*nj;i++)

{
for (j=1;j<=1*nj;j++)
fprintf (£2 7 Shd%d=Yt TLiniL kil
fprintf (f2,”\n"”);
}+/
for (i=0;i<l*nj;i++)
{

fscanf (f1,”%f” &inputDataB[i]) ;
ac[i+1]=inputDataB[i];

}
/xfprintf (f2 ,7AC\n"”);

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 119

for (i=1;i<=1*nj;i++)
{
fprintf (2,7 AG%d=%f\n" ;i ;ac[i]);
e/
// retreive a list of platforms avaible
if (clGetPlatformIDs (1, &platform_id , &num_of_platforms)!=
CL_SUCCESS)
{
printf(” Unable to get platform_id\n”);

return 1;

}

// try to get a supported GPU device
if (clGetDevicelDs(platform_id , CLDEVICE.TYPE.CPU, 1, &
device_id , &num_of_devices) != CL.SUCCESS)

{

printf(” Unable to get device_id\n”);

return 1;

}

// context properties list — must be terminated with 0

properties [0]= CL.CONTEXT PLATFORM;
properties|[l]= (cl_context_properties) platform_id;

properties|[2]= 0;

// create a context with the GPU device
context = clCreateContext (properties 1, & device_id ,NULL,NULL,&

err) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 120

// create command queue using the context and device
command_queue = clCreateCommandQueue (context , device_id , 0, &

err) ;

// create a program from the kernel source code
program = clCreateProgramWithSource(context ,1,(const char xx)

&ProgramSource , NULL, &err)

// compile the program

if (clBuildProgram (program, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program\n”);

return 1;

}

// specify which kernel from the program to execute

kernel = clCreateKernel (program, ”"add”, &err);

// create buffers for the input and ouput

inputA = clCreateBuffer (context , CLMEM READ WRITE, sizeof (
float) x DATASIZE, NULL, NULL);

inputM = clCreateBuffer (context , CLMEM READ WRITE, sizeof (
float) * DATASIZE, NULL, NULL):

inputB = clCreateBuffer (context , CLMEM READ WRITE, sizeof (
float) # nj, NULL, NULL):

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 121

// load data into the input buffer
clock_t gb=clock ();
clEnqueueWriteBuffer (command_queue, inputA, CLTRUE, 0,
sizeof (float) * DATASIZE, inputDataA, 0, NULL, NULL);
clEnqueueWriteBuffer (command_queue, inputM, CL.TRUE, 0,
sizeof (float) % DATASIZE, inputDataM, 0, NULL, NULL);
clEnqueueWriteBuffer (command_queue, inputB, CLTRUE, 0,
sizeof (float) * nj, inputDataB, 0, NULL, NULL);
clock_t gb=clock ();
double t3=((gb—g5)=*1000)/CLOCKS_PERSEC;
//part—2 starts
// create command queue using the context and device
command_queue = clCreateCommandQueue (context , device_id , 0, &

err) ;

// create a program from the kernel source code

program2 = clCreateProgramWithSource (context ,1,(const char

x%) &ProgramSource2, NULL, &err);

// compile the program

if (clBuildProgram (program2, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program—2\n");

return 1;

}

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 122

// specify which kernel from the program to execute
kernel2 = clCreateKernel (program2, "add2”, &err);

int size=nj;

size_t globalWorksizeFanl [1];
size_t globalWorksizeFan2 [2];

globalWorksizeFanl [0] = §;
globalWorksizeFan2 [0] = 8;
globalWorksizeFan2 [1] = 8;

// part—2 ends
clock_t gl=clock ();
for (int t=0; t<(size—1); t++) {
// kernel args
cl_int argchk;
argchk = clSetKernelArg(kernel, 0, sizeof(cl.mem), (
void x)&inputM) ;
argchk |= clSetKernelArg(kernel, 1, sizeof(cl.mem), (
void #)&inputA);
argchk |= clSetKernelArg(kernel, 2, sizeof(cl.mem), (
void *)&inputB);
argchk |= clSetKernelArg(kernel, 3, sizeof(int), (
void x)&size);
argchk |= clSetKernelArg(kernel, 4, sizeof(int), (
void *)&t);

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 123

// launch kernel
clEnqueueNDRangeKernel (command_queue , kernel ;, 1, 0,

globalWorksizeFanl ,NULL,0, NULL, NULL):

// kernel args
argchk = clSetKernelArg (kernel2, 0, sizeof(
cl.mem), (void x*)&inputM);
argchk |= clSetKernelArg(kernel2, 1, sizeof(cl.mem),
(void *)&inputA);
argchk |= clSetKernelArg(kernel2, 2, sizeof(cl-mem),
(void x)&inputB);
argchk |= clSetKernelArg(kernel2, 3, sizeof(int), (
void x)&size);
argchk |= clSetKernelArg(kernel2, 4, sizeof(int), (
void)&t) ;

// launch kernel
clEnqueueNDRangeKernel (command_queue, kernel2, 2, 0,

globalWorksizeFan2 ,NULL,0, NULL, NULL) ;

clock_t g2=clock();
double t1=((g2—gl)=x1000)/CLOCKS_PERSEC;;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 124

clock_t g3=clock ();
// copy the results from out of the output buffer
clEnqueueReadBuffer (command_queue, inputA, CL.TRUE, 0, sizeof
(float) *DATASIZE, inputDataA, 0, NULL, NULL);
//clEnqueueReadBuffer (command_queue, inputM, CL.TRUE, 0,
sizeof (float) *DATASIZE, inputDataM, 0, NULL, NULL);
clEnqueueReadBuffer (command_queue, inputB, CL.TRUE, 0, sizeof
(float) =*nj, inputDataB, 0, NULL, NULL);
clock_t gd=clock ();
double t2=((g4—g3)=x1000)/CLOCKS_PERSEC;;

// print the results
fprintf (£3,” After kernel matrix\n”);
for (1=0;i<lxnj;i++)

{
for (j=0;j<l¥nj;j++)
{
// fprintf (£3,7%f,” inputDataA] + njx*i
DE
}
//fprintf (£3,”7\n”);
}
// cleanup — release OpenCL resources

clReleaseMemObject (inputA) ;
clReleaseMemObject (inputB) ;
clReleaseMemObject (inputM) ;

clReleaseProgram (program) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 125

clReleaseKernel (kernel);
clReleaseCommandQueue (command_queue) ;

clReleaseContext (context);

clock_t gr=clock ();

for (i=0;i<size;i++)

{
finalVec [size —i —1]=inputDataB [size —1 —1];
for (j=0;j<i;j++)

{
finalVec [size —i —1]—=x(inputDataA+size
*(size—i—1)+(size—j—1)) x finalVec
[size—j —1];
}

finalVec [size—i—1]=finalVec [size—i—1]/ x*(
inputDataA+size x(size—i—1)+(size—i—1));

}
clock_t g8=clock ();

double t4=((g8—g7)=x1000)/CLOCKS_PERSEC;;
double t5=t14+t2+t3+t4;

fprintf (ft,” Time elapsed for GPU:%f\n” ,t5);
fprintf (ft,” Time elapsed for execution:%f\n” t1+t4);

//cl ends

fprintf(f2,”SOLUTION OF EQUATION\n”) ;
clock_t cl=clock ();
for (u=1;u<=(1*nj) ;u++)

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 126

{
temp=kj [u][u];
//fprintf ({27 temp=Uf" ,temp) ;
for (j=1;j<=(1xnj);j++)
kj (] []=Kj [u] [}]/temp;
ac[u]=ac[u]/temp;
J/fprintf (£2,” S%d%d=Y%f VoL sjlullil);
//fprintf (£2 .7 AG%d=%f\n" ,u,ac[u]) ;
for (i=1;i<=(1%nj);i++)
{
if (i=u)continue;
templ=kj [i][u];
for (j=1;j<=(1xnj);j++)
kj (i [gl=kj [V][3]=kj[u][j]
templ;
ac[i]=ac[i]—ac|[u]xtempl;
}
}

clock_t c2=clock ();
double ¢3=((c2—c1)%1000)/CLOCKS_PER-SEC};
double ¢7=c3+c6;
fprintf (ft,” Time elapsed for CPU:%f\n”,c7);
fprintf (ft,” Time elapsed for communication:%f\n” t2+
t3);

/ *

fprintf (f2,” Modified Global Stiffness matrix\n”);

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 127

for (i=1;i<=1*nj;i++)

{
for (j=1;j<=1*nj;j++)
fprintf (£2 ,” S%d%d=%t oL ki)
fprintf (f2,7\n”);
e/

/+*fprintf (£3,”\ nModified Global Stiffness matrix\n”);
for (i=1;i<=1*nj;i++)

{
for (j=1;j<=l¥nj; j++)
fprintf(£3,7%f,” kj[i][j]);
fprintf (£f3,”\n”);
}#/

fprintf (£2,” Modified AC\n");
for (i=1;i<=1%nj;i++)
{
//fprintf (2,7 AG-%d=%f GAGY%d=%f\n" ;i ,ac[i], 1,
finalVec[i—1]);

free (ac);
free (kj);

(

(

free (inputDataA) ;

free (inputDataB) ;
(

free (inputDataM) ;

Appendix B

Half-Band Solver host program

#include<stdio .h>
#include<conio .h>
#include <math . h>
#include<stdlib .h>

#include <time .h>

#ifdef __APPLE__
#include <OpenCL/opencl.h>

#else
#include <CL/cl.h>

#endif

//#define DATA SIZE 100
#define cal(zz,qq) ((qq *) calloc(zz,sizeof(qq)))

using namespace std;

const char xProgramSource =

128

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 129

7 __kernel void add(_-_-global float xinputM, __global float =x

inputA, __global float xinputB, const int size ,const int t,
const int MRg)\n”\
’7{\1177\

7 int globalld = get_global_id (0);\n”\

v if (globalld < MRg)\n”\

’ {\n"\

7 «(inputM + + size x t 4+ globalld +
1) = *(inputA + size * t 4+ globalld + 1) / =*(inputA +
size * t);\n”\

S AT

77}\1,177 ;

const char xProgramSource2 =

7 __kernel void add2(__global float xinputM, __global float =x

inputA, __global float xinputB,const int size ,const int t,
const int MRg)\n”\
77{\n77\

7 int globalldx = get_global_id (0);\n”\
7 int globalldy = get_global_id (1);\n”\
K if (globalldx < MRg && globalldy < (MRg-globalldx
)\

: iy

inputA [size x(
globalldx+1+t)+(globalldy)] —= inputM[+ size * t +
globalldx + 1] * inputA [sizext+(globalldy)+l+globalldx];\

n77

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 130

7 //inputB [globalldx+1+
t] —= inputM[size x(globalldx+14+t)+t] * inputB[t];\n”\

7 //inputB[t] = inputB]
t] / inputA[sizext];\n”\

K //*(inputA + size x t + globalldx +
1)=x(inputM + size x (globalldx + t + 1)+t);\n”\

" By

"H\n7;

const char xProgramSource3 =

” __kernel void add3(__global float xinputM, __global float =x

inputA, __global float xinputB,const int size ,const int t,
const int MRg)\n"\
77{\1,177\

7 int globalld = get_global_id (0);\n”\

7 if (globalld < MRg)\n”\

” i

7 inputB[globalld+14+t] —= inputM[size x
t + globalld 4 1] % inputB[t];\n”\

7 //inputB[t] = inputB[t] / inputA[size
615\ 0"\

K //*(inputA + + size x t + globalld +

1) = x(inputM + size * t + globalld + 1);\n”\

AR

77}\n7’ ’

const char xProgramSourced4 =

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 131

” __kernel void add4(__global float xinputM, __global float =x

inputA, __global float xinputB, const int size ,const int t,
const int MRg)\n”\
’7{\1177\

7 int globalld = get_global_id (0);\n”\
7 if (globalld = 1)\n”\

b2 {\n”\

7 inputB[txgloballd] = inputB[tx
globalld] / inputA[sizextxgloballd];\n"\

b2 }\n77\

77}\n7’ ’

const char xProgramSourceb =

7 __kernel void add5(_--global float xinputM, __global float =x

inputA, __global float xinputB, const int size ,const int t,
const int MRg)\n"\
’7{\1177\

7 int globalld = get_global_id (0);\n”\

” if (globalld < MRg)\n”\

’ {\n7\

7 //inputB [globalld+1+t] —= inputM[size
x t + globalld + 1] % inputB[t];\n”\

K //inputB[t] = inputB[t] / inputA[size
*6)5\ 07\

K *(inputA + + size x t 4+ globalld +
1) = *(inputM + size % t 4+ globalld + 1);\n”\

S AT

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM
77}\]:17? ’

int main()

{
int nra,nb,i,j;
//float x;
//float kj[120][120];

//float sxxkj=malloc(1000%sizeof (intx));
FILE *f1 ,xf2 xf4 xf5 %6 ,xfp;
system (7 c¢ls”);

fl=fopen ("in.txt”,”r”);

f2=fopen (" out.txt” ,”w”);

2 7

I

f4=fopen (" rec.txt”,’r

()
f5=fopen (” dis.txt”,”1r”);
f6=fopen (” flow . txt” ,"w”);
fp=fopen (" paraflow . txt”,”w”);
fscanf (f4,”%d” &nra) ;

fscanf (f4,”%d” ,&nb) ;

clock_t cl=clock();

132

float xxkj = (float =x) calloc(nra+1,sizeof(float x))

Y

for (i=1;i<=nra;i++)

kj[i] = (float =) calloc(nb+1,sizeof(float));

clock_t c2=clock ();
double tcl=((c2—cl)=*1000)/CLOCKS_PERSEC;;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 133

//float xxkjp = (float =x) calloc(nra+1,sizeof(float

)
//for (i=0;i<=nra;i++)
//kjp[i] = (float x) calloc(nb+1,sizeof(float
));

printf ("NRA=%d\n NB=%d\n” ,nra ,nb);
//fprintf ({2 ,” Global Stiffness matrix\n”);
for (i=1;i<=nra;i++)

{
for (j=1;j<=nb; j++)
{
[/ kjp [1=1][j —1]=kj[i][}j]=0;
kj[1][j]=0;
fscanf (f4,7% 17 &kj[i]][j]);
//kip [1=1][j=1=kj[i][]];
//fprintf ({2 7 S%d%d=%f 7Ll kil
AERDE
}
//fprintf (f2,7\n”);
}

clock_t c3=clock ();

float * ac = (float =*)malloc(sizeof(float)x*(nra+1));
clock_t cd=clock ();

double tc2=((c4—c3)x1000)/CLOCKS_PERSEC;;

//float % acp = (float *)malloc(sizeof(float)=*(nra+1)

)

//fprintf ({2 ,” Modified AC\n”);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 134

for (i=1;i<=nra;i++)
{
//acp i ~1=ac[i]=0;
ac[1]=0;
fscanf (f5,”%f” ,&ac[i]) ;
//acp i ~1j=ac[i];
//fprintf (£2,” AG%d=%f\n" ,i,ac[i]) ;

//cl starts

cl_context context;

cl_context_properties properties [3];

cl_kernel kernel ,kernel2 , kernel3 , kernel4 , kernel);
cl_command_queue command_queue;

cl_program program ,program?2 ,program3,program4 ,programy ;
cl_int err;

cl_uint num_of_platforms=0;

cl_platform_id platform_id;

cl_device_id device_id;

cl_uint num_of_devices=0;

cl_-mem inputA, inputB ,inputM;

cl_int ret;

size_t global ,global2[2] local2[2];

int DATA SIZE=nraxnb;

float xinputDataA= (float x)malloc(sizeof(float)*DATASIZE);
float xinputDataB= (float *)malloc(sizeof(float)xnra);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 135
float xinputDataM= (float x*)malloc(sizeof(float)+*DATASIZE);

FILE *xf31=fopen(”out.csv” ,"w");
//fprintf (£31,7\n");
//fprintf (31 ,” Before kernel matrix,”);
//fprintf(£31,7\n");

for (1=0;i<nra;i++)

{
for (j=0;j<nb; j++)
{
inputDataA [j + nbxi | = kj[i+1][]+1];
inputDataM [j+ nbxi |=0;
//fprintf (£31.,7%f,” /inputDataA[j + nb
¥1])5
}
//fprintf (£31,7\n");
}

/s
//fprintf (£31,7\n");
//fprintf(f31,” before ban KJ\n”);
//fprintf (£31,7\n");
for (i=0;i<lxnra;i++)
{
for (j=0;j<lsnb;j++)

{

fprintf (£31,7%f,” , kj[i+1][j+1]);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 136

}
fprintf (£31,7\n”);

*/
//fprintf ({2 ,7AC\n") ;
for (i=1;i<=nra;i++)

{
inputDataB [i —1]=0;
inputDataB [i—1] = ac[i];
//fprintf (2,7 AGY%d=%f\n" ,i,inputDataB[i —1]);
}
//new CL

// retreive a list of platforms avaible
if (clGetPlatformIDs (1, &platform_id, &num_of_platforms)!=
CL_SUCCESS)
{
printf(” Unable to get platform_id\n”);

return 1;

}

// try to get a supported GPU device
if (clGetDevicelDs(platform_id , CLDEVICE.TYPE.CPU, 1, &
device_id , &num_of_devices) != CL_SUCCESS)

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 137

printf(” Unable to get device_id\n”);

return 1;

}

// context properties list — must be terminated with 0
properties [0]= CL.CONTEXT PLATFORM;
properties[l]= (cl_context_properties) platform_id;

properties[2]= 0;

// create a context with the GPU device
context = clCreateContext (properties 1, & device_id ,NULL,NULL,&

err);

// create command queue using the context and device
command_queue = clCreateCommandQueue (context , device_id , 0, &

err) ;

// create a program from the kernel source code
program = clCreateProgramWithSource(context ,1,(const char xx)

&ProgramSource, NULL, &err);

// compile the program

if (clBuildProgram (program, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program\n”);

return 1;

}

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 138

// specify which kernel from the program to execute
kernel = clCreateKernel (program, "add”, &err);
clock_t gl=clock();

// create buffers for the input and ouput

inputA = clCreateBuffer (context , CLMEM READ WRITE, sizeof (
float) x DATASIZE, NULL, NULL);

inputM = clCreateBuffer (context , CLMEM READ WRITE, sizeof (
float) x DATASIZE, NULL, NULL);

inputB = clCreateBuffer (context , CLMEMREAD WRITE, sizeof (
float) % nra, NULL, NULL);

// load data into the input buffer
clEnqueueWriteBuffer (command_queue, inputA , CL.TRUE, 0,
sizeof (float) * DATASIZE, inputDataA, 0, NULL, NULL);
clEnqueueWriteBuffer (command_queue, inputM, CLTRUE, 0,
sizeof (float) * DATASIZE, inputDataM, 0, NULL, NULL);
clEnqueueWriteBuffer (command_queue, inputB, CL.TRUE, 0,
sizeof (float) % nra, inputDataB, 0, NULL, NULL);
clock_t g2=clock();
double tgl=((g2—gl)=*1000)/CLOCKS_PERSEC;;

//part—2 starts
// create command queue using the context and device
command_queue = clCreateCommandQueue(context, device_id, 0, &

err);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 139

// create a program from the kernel source code
program?2 = clCreateProgramWithSource (context ,1,(const char

xx) &ProgramSource2, NULL, &err);

// compile the program

if (clBuildProgram (program2, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program—2\n");

return 1;

}

// specify which kernel from the program to execute

kernel2 = clCreateKernel (program2, ”7add2”, &err);

// part—2 ends

//part—3 starts
// create command queue using the context and device
command_queue = clCreateCommandQueue(context , device_id, 0, &

err);
// create a program from the kernel source code
program3 = clCreateProgramWithSource (context ,1,(const char

x%) &ProgramSourced , NULL, &err);

// compile the program

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 140

if (clBuildProgram (program3, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program—3\n”);

return 1;

}

// specify which kernel from the program to execute

kernel3 = clCreateKernel (program3, "add3”, &err);

// part—3 ends

//part—4 starts
// create command queue using the context and device
command_queue = clCreateCommandQueue (context , device_id , 0, &

err) ;

// create a program from the kernel source code

program4 = clCreateProgramWithSource (context ,1,(const char

x%) &ProgramSourced , NULL, &err);

// compile the program

if (clBuildProgram (program4, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program—4\n") ;

return 1;

}

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 141

// specify which kernel from the program to execute

kernel4 = clCreateKernel (program4, "add4”, &err);

// part—4 ends

//part—5 starts
// create command queue using the context and device
command_queue = clCreateCommandQueue (context , device_id , 0, &

err) ;

// create a program from the kernel source code

programb = clCreateProgramWithSource (context ,1,(const char

x%) &ProgramSource5, NULL, &err);

// compile the program

if (clBuildProgram (program5, 0, NULL, NULL, NULL, NULL) !=
CL_SUCCESS)

{

printf(” Error building program—5\n");

return 1;

}

// specify which kernel from the program to execute

kernelb = clCreateKernel (program5, "add5”, &err);

// part—>5 ends

int size=nb;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 142

size_t globalWorksizeFanl [1];
size_t globalWorksizeFan21 [1];
size_t globalWorksizeFan2 [2];
globalWorksizeFanl [0] = nb—1 ;
globalWorksizeFan21 [0] = 2;
globalWorksizeFan2 [0] = nb—1;
globalWorksizeFan2 [1] = nb—1;

int NLg,NMg,MRg,Ng,Lg,Kg, kg ;
//float BN,C;

clock_t g3=clock ();
NLg=(nra—1)—(nb—1)+1;
NMg=(nra—1)—1;

MRg=nb —1;

for (int t=0; t<=(nra—2); t++)
{
if (t>NLg) MRg=nra —t;

// kernel args

cl_int argchk;

argchk = clSetKernelArg(kernel, 0, sizeof(cl.mem), (
void x)&inputM) ;

argchk |= clSetKernelArg(kernel, 1, sizeof(clomem), (
void x)&inputA);

argchk |= clSetKernelArg(kernel, 2, sizeof(cl.mem), (

void x)&inputB) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 143

argchk |= clSetKernelArg(kernel, 3, sizeof(int), (
void *)&size);
argchk |= clSetKernelArg(kernel, 4, sizeof(int), (
void *)&t);
argchk |= clSetKernelArg(kernel, 5, sizeof(
int), (void *)&VRg);

// launch kernel
clEnqueueNDRangeKernel (command_queue , kernel ; 1, 0,

globalWorksizeFanl ,NULL,0, NULL, NULL):

// kernel args
argchk = clSetKernelArg(kernel2, 0, sizeof(
cl.mem) , (void x)&inputM):;
argchk |= clSetKernelArg(kernel2, 1, sizeof(cl.mem),
(void *)&inputA);
argchk |= clSetKernelArg(kernel2, 2, sizeof(cl-mem),
(void *)&inputB);
argchk |= clSetKernelArg(kernel2, 3, sizeof(int), (
void x)&size);
argchk |= clSetKernelArg(kernel2, 4, sizeof(int), (
void *)&t);
argchk |= clSetKernelArg(kernel2, 5, sizeof(
int), (void x)&MRg);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 144

// launch kernel
clEnqueueNDRangeKernel (command_queue, kernel2, 2, 0,

globalWorksizeFan2 ,NULL,0, NULL, NULL) ;

argchk = clSetKernelArg(kernel3, 0, sizeof(
clmem), (void x)&inputM):;
argchk |= clSetKernelArg(kernel3, 1, sizeof(cl.mem),
(void x*)&inputA) ;
argchk |= clSetKernelArg(kernel3, 2, sizeof(cl.mem),
(void *)&inputB);
argchk |= clSetKernelArg(kernel3, 3, sizeof(int), (
void x)&size);
argchk |= clSetKernelArg(kernel3, 4, sizeof(int), (
void *)&t);
argchk |= clSetKernelArg(kernel3, 5, sizeof(
int), (void x*)&MRg);

// launch kernel
clEnqueueNDRangeKernel (command_queue , kernel3 , 1, 0,

globalWorksizeFanl ,NULL,0, NULL, NULL) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 145

argchk = clSetKernelArg(kerneld, 0, sizeof(
clmem), (void x)&inputM):;
argchk |= clSetKernelArg(kerneld , 1, sizeof(cl.mem),
(void *)&inputA) ;
argchk |= clSetKernelArg(kerneld, 2, sizeof(cl.mem),
(void *)&inputB);
argchk |= clSetKernelArg(kerneld , 3, sizeof(int), (
void x)&size);
argchk |= clSetKernelArg(kerneld , 4, sizeof(int), (
void *)&t);
argchk |= clSetKernelArg(kerneld , 5, sizeof(
int), (void x*)&MRg);

// launch kernel
clEnqueueNDRangeKernel (command_queue , kerneld ; 1, 0,

globalWorksizeFan21 JNULL,0, NULL, NULL);

argchk = clSetKernelArg(kernel5, 0, sizeof(
clmem), (void x)&inputM):;
argchk |= clSetKernelArg(kernel5, 1, sizeof(cl.mem),
(void x*)&inputA) ;
argchk |= clSetKernelArg(kernel5, 2, sizeof(cl.mem),
(void *)&inputB);
argchk |= clSetKernelArg(kernel5, 3, sizeof(int), (

void x)&size);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 146

argchk |= clSetKernelArg(kernel5, 4, sizeof(int), (
void)&t) ;
argchk |= clSetKernelArg(kernel5, 5, sizeof(
int), (void x)&MRg);

// launch kernel
clEnqueueNDRangeKernel (command_queue , kernel5, 1, 0,

globalWorksizeFanl ,NULL,0, NULL, NULL) ;

clock_t gd=clock();
double tg2=((gd—g3)=*1000)/CLOCKS_PERSEC;;

clock_t gb=clock ();
// copy the results from out of the output buffer
clEnqueueReadBuffer (command_queue, inputA, CL.TRUE, 0, sizeof
(float) *DATASIZE, inputDataA, 0, NULL, NULL);
//clEnqueueReadBuffer (command_queue, inputM, CL.TRUE, 0,
sizeof (float) xnra, inputDataM, 0, NULL, NULL);
clEnqueueReadBuffer (command_queue, inputB, CL.TRUE, 0, sizeof
(float) =xnra, inputDataB, 0, NULL, NULL);
clock_t gb6=clock ();
double tg3=((gb—g5)=*1000)/CLOCKS_PERSEC;;
//fprintf (£31,” \n\n\nafterGPU\n"”);
/*for (i=0;i<lsnra;i++)

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 147

{
for (j=0;j <lxnb;j++)
{
fprintf (£31,”%f,” ,inputDataA [j + nbxi
1)
ki
fprintf (£31,”\n");

}

*/
//end new CL

int NL,NM,MR,N,L K, k;
float BN,C;

clock_t chb=clock ();
NL=nra—nb+1;

NMEnra —1;

MR=nb ;

for (N=1;N<=NM; N++)
{
BN=ac [N];
ac [N]=BN/kj [N][1];
if (N\SNL) MR=nra —N +1;
for (L=2;L<=MR; L++)

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 148

i=N + L —1;
1=0;
for (K=L; K<=MR; K++)
{
=it
kjp[i][j]=ki[i][i]= Cxkj[NJ[K];
}
ac|i]=ac[i]—-CxBN;
kj [NJ[L}=C;

}
clock_t cb=clock ();
double tc3=((c6—c5)*1000)/CLOCKS_PER.SEC};
/*
fprintf (£31,”\n"”);
fprintf (£31,” after ban KJ\n”);
fprintf (£31,7\n”);
for (1=0;i<lxnra;i++)

{
for (j=0;j<lxnb;j++)
{
fprintf (£31,”%f,” ,kj[i+1][j+1]);
}

fprintf (£31,7\n”);

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 149

*/

/xfprintf (f2,” Modified AC before backsub\n”);

for (i=1;i<=l*nra;i++)
{
fprintf ({2 ,” AG%d=)f
—1]);

/*
fprintf (f2,” Modified AC\n”);
for (i=1;i<=l*nra;i++)
{
fprintf (£2 ,” AG-%d=%f
i,inputDataB[i—1]);

e/

clock_t c7=clock ();

i=nra;
ac[nra]=ac[nra]/kj[nra][1];
for (N=1;N<=NM;N++)
{

i=i—1:

if (N<nb)

MRN1;
for (j=2;j<MR; j++)
{

k=i+j —1;

ACP-%d=%f\n" ,i,ac[i],i,acp|i

GAGYd=%f\n" ,i ,ac[i],

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM

ac[i]=ac[i]— kj[i][]]rac[k];

}
clock_t c¢8=clock();

double tcd=((c8—c7)x1000)/CLOCKS_PERSEC;;

//GPU banfac

/*

int NLg,NMg,MRg,Ng,Lg,Kg, kg ;
//float BN,C;
NLg=(nra—1)—(nb—1)+1;
NMg=(nra—1)—1;

MRg=nb —1;

for (Ng=0;Ng<=NMg; Ng++)
{
BN=inputDataB [Ng];
inputDataB [Ng]=BN/inputDataA [Ngnb];
if (Nge>NLg) MRg=nra —Ng;
for (Lg=1;Lg<=MRg; Lg++)
{

if (inputDataA [Ngxnb + Lg]==0)continue;
C=inputDataA [Ngxnb + Lg]/inputDataA [Ngxnb |;

i=Ng + Lg ;

1=0;

for (Kg=Lg; Ke<=MRg; Kg++)
{

150

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 151

inputDataA [i*nb 4+ j]=inputDataA [i*nb
+ j]— CxinputDataA [Ngxnb + Kg];
=i+
}
inputDataB [i]|=inputDataB [i]—C«BN;
inputDataA [Ngxnb + Lg]=C;

}
*/

// cleanup — release OpenCL resources
clReleaseMemObject (inputA) ;
clReleaseMemObject (inputB) ;
clReleaseMemObject (inputM) ;
clReleaseProgram (program) ;
clReleaseKernel (kernel);
clReleaseProgram (program?2);
clReleaseKernel (kernel2);
clReleaseProgram (program3) ;
clReleaseKernel (kernel3);
clReleaseProgram (program4) ;
clReleaseKernel (kerneld) ;
clReleaseProgram (programb) ;
clReleaseKernel (kernel5);
clReleaseCommandQueue (command_queue) ;

clReleaseContext (context);

//GPU Backsub

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 152

clock_t gr=clock();

i=nra—1;
inputDataB [nra—1]=inputDataB [nra—1]/inputDataA [(nra—1)*nb|;
for (Ng=0;Ng<=NMg; Ng++)

{
i=i—1;
if (Ng<(nb—1))
MRg=Ng+1;
for (j=1;j<=MRg; j++)
{
k=i+j;
inputDataB [i]=inputDataB [i]— inputDataA [ixnb
+ j]*inputDataB [k];
}
}

clock_t g8=clock ();
double tg4=((g8—g7)=x1000)/CLOCKS_PERSEC;;

// print the results

fprintf (£2,” Modified AC\n");
for (i=1;i<=lxnra;i++)

{

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 153

//fprintf ({2 7 AG%d=%f GAGYd=%f\n" ,i ,ac[i],
i,inputDataB[i—1]);

fprintf (£2 ,” AG-%d=%f GAGYd=%f\n" ,nra , ac|

nra|,nra,inputDataB [nra—1]);

fprintf (2,7 \nNRA=%d\n” ,nra) ;

fprintf (£2,” \nNB=%d\n"” ,nb) ;

fprintf (f2,”\nGPU Execution time=Xf\n", 6 tg2+tg4d);
fprintf (f2,”\nGPU Communication time=%f\n” tgl+tg3);
fprintf (£2,”\nCPU time=%f\n" ,tcl+tc2+tc3+tcd);
fprintf (2 ,”\nGPU time=%f\n” jtgl+tg2+tg3+tgd);

Appendix C

List of Paper
Published /Communicated

1 Application of Parallel Computing In Structural Engineering, National Confer-
ence on Emerging Trends in Technology Engineering & Management(NCEETM),Indus
University, Ahmedabad

2 Heterogeneous Linear Equation Solver Using Graphics Processing Unit (GPU),
Advances in Civil Engineering and Chemistry of Innovative Materials (ACECIM-
14), SRM University, Chennai

3 Heterogeneous Linear Equation Solver Using Graphics Processing Unit (GPU
And Central Processing Unit (CPU), International Civil Engineering Sympo-
sium (ICES-14),VIT University, Vellore

4 Accelerated Plane Frame Analysis Using Parallel Computing, Recent Advances
In Civil And Structural Engineering (Racse-"14), ADIT and BVM

154

References

1]

E. D. Sotelino, Parallel Processing Techniques in Structural Engineering Ap-
plications, Journal of Structural Engineering, Vol. 129, No. 12, December 1,
2003,ASCE

Jerome F. Hajjarz and John F. Abel, Parallel Processing Of Nonlinear Dynamic
Analysis Of Steel Frame Structures Using Domain Decomposition, Proceed-
ings of Ninth World Conference on Earthquake Engineering August 2-9, 1988,
Tokyo-Kyoto, JAPAN (Vol.V)

T. Bahcecioclu and O. Kure, Nonlinear dynamic finite element analysis with
GPU, 14th International Conference on Computing in Civil and Building
Engineering. by International Society for Computing in Civil and Building
Engineering,June-2012

V. Kandasamy and M. Konig, Parallel finite element mesh generator using mul-
tiple GPUs, 14th International Conference on Computing in Civil and Build-
ing Engineering. by International Society for Computing in Civil and Building
Engineering,June-2012

Filip Kruzel and Krzysztof Banas,Vectorized OpenCL implementation of nu-
merical integration for higher order finite elements, Computers and Mathemat-
ics with Applications, August-2013

Depeng Yang, Junqing Sun, JunKu Lee, Getao Liang, David D. Jenkins, Gre-
gory D. Peterson, and Husheng Li, Performance Comparison of Cholesky De-
composition on GPUs and FPGAs, 2012 Symposium on Application Accel-
erators in High-Performance Computing,National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign

Lixiang Wang, Shihai Li, Guoxin Zhang, Zhaosong Ma and Lei Zhang, A GPU-
based Parallel Procedure for Nonlinear Analysis of Complex Structures Using
a Coupled FEM/DEM Approach, Mathematical Problems in Engineering, Vol-
ume 2013 (2013)

Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Yao Hsu , Integration of General
Sparse Matrix and Parallel Computing Technologies for Large-Scale Structural

155

REFERENCES 156

[12]

[13]

[14]

[16]

[17]

[18]

[19]

Analysis ,Computer-Aided Civil and Infrastructure Engineering 17, Blackwell
Publishing, 350 Main Street, Malden, MA 02148, USA and 108 Cowley Road,
Oxford OX4 1JF, UK.

Xiao Qian, Wang Chengguo, Guo Ge, The Research of Parallel Computing for
Large-scale Finite Element Model of WheellRail Rolling Contact,IEEE

Xuanhua Fan, Rui-an Wu, Pu Chen, Zuogui Ning, Jian Li, Parallel Computing
of Large Eigenvalue Problems for Engineering Structures, 2011 International
Conference on Future Computer Sciences and Application,IEEE

Chaojiang Fu, Parallel Computing For Finite Element Structural Analysis On
Workstation Cluster, 2008 International Conference on Computer Science and
Software Engineering, IEEE

Chaojiang Fu, Parallel Computing For Finite Element Structural Modal Anal-
ysis On Workstation Cluster , International Conference on Information Science
and Engineering (ICISE2009) , IEEE

Yoon Kah Leow, Ali Akoglu, Ibrahim Guven, Erdogan Madenci, High Perfor-
mance Linear Equation Solver Using NVIDIA GPUs, NASA/ESA Conference
on Adaptive Hardware and Systems (AHS-2011)

Girish Sharma , Abhishek Agarwala , Baidurya Bhattacharya ,A fast paral-
lel Gauss Jordan algorithm for matrix inversion using CUDA, Computers and
Structures 128 (2013) 3137

Ravi Reddy,Alexey Lastovetsky,Pedro Alonso, Parallel Solvers for Dense Lin-
ear Systems for Heterogeneous Computational clusters, 978-1-4244-3750-4/09,
2009,IEEE

T. P. Stefanski, S. Benkler, N. Chavannes, N. Kuster,Parallel Implementation of
the Finite-Difference Time- Domain Method in Open Computing Language,978-
1-4244-7368-7/10/2010,IEEE

Jian-She Wang, Nathan Ida, Parallel Algorithms For Direct Solution Of Large
Systems Of Equations, CH2649-2/89/0000/0231 1988, IEEE

V. Mani, B. Dattaguru, N. Balakrishnan and T.S. Ramamurthy, Parallel Gaus-
sian Elimination For Banded Matrix, A Computational Model, Conference on
Computer and Communication Systems, September 1990, Hong Kong, IEEE

S.F.McGinn, R.E.Shaw, Parallel Gaussian Elimination Using OpenMP and
MPI, Proceedings of the 16th Annual International Symposium on High Per-
formance Computing Systems and Applications (HPCS.02) 0-7695-1626-2/02
2002, IEEE

REFERENCES 157

[20]

[21]

[22]

23]

[24]
[25]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

Hang Liu, Jung-Hee Seo, Rajat Mittal, H. Howie Huang, GPU-Accelerated
Scalable Solver for Banded Linear Systems, 978-1-4799-0898-1/13/ 2013, IEEE

Zhihui Zhang, Qinghai Miao, Ying Wang, CUDA-Based Jacobi’s Iterative
Method, 978-0-7695-3930-0/09 2009, IEEE

Parallel computing - Wikipedia http://en.wikipedia.org/wiki/Parallel_
computing

Graphics processing unit - Wikipedia http://en.wikipedia.org/wiki/
Graphics_processing_unit

Introduction to OpenCL Programming-Training Guide - AMD

General-purpose computing on graphics processing units - Wikipedia
http://en.wikipedia.org/wiki/General-purpose_computing_on_
graphics_processing_units

OpenCL Specifications by http://www.khronos.org

Heterogeneous Computing with OpenCL by Benedict Gaster, Lee Howes, David
R. Kaeli, Perhaad Mistry, Dana Schaa

OpenCL Zone - AMD Developer Central, http://developer.amd.com/
resources/heterogeneous-computing/opencl-zone

Earth Simulator - Wikipedia http://en.wikipedia.org/wiki/Earth_
Simulator

Blue Gene - Wikipedia http://en.wikipedia.org/wiki/Blue_Gene
Nvidia Tesla - Wikipedia http://en.wikipedia.org/wiki/Nvidia_Tesla
Supercomputer - Wikipedia http://en.wikipedia.org/wiki/Supercomputer

Introduction to High Performance Computing, M. D. Jones, Ph.D., Center for
Computational Research University at Buffalo State University of New York

Computer cluster - Wikipedi http://en.wikipedia.org/wiki/Computer_
cluster

Numerical Methods in Science and Engineering, By S. Rajasekaran

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://www.khronos.org
http://developer.amd.com/resources/heterogeneous-computing/opencl-zone
http://developer.amd.com/resources/heterogeneous-computing/opencl-zone
http://en.wikipedia.org/wiki/Earth_Simulator
http://en.wikipedia.org/wiki/Earth_Simulator
http://en.wikipedia.org/wiki/Blue_Gene
http://en.wikipedia.org/wiki/Nvidia_Tesla
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Computer_cluster

	Declaration
	Certificate
	Abstract
	Acknowledgement
	Abbreviations
	List of Tables
	List of Figures
	Introduction to High Performance Computing
	General
	Advances in Hardware and Platforms for HPC
	Evolution of HPC
	Domains of High Performance Computing
	Cluster Computing
	Grid Computing
	Multicore Computing

	Parallel Computing
	Flynn's taxonomy

	General-purpose computing on graphics processing units (GPGPU)
	Objective of Study
	Scope of Work
	Organization of Report

	Literature Survey
	Parallel Computing
	Application of Parallel Computing on FEM
	Parallel Solvers
	Summary

	Introduction to OpenCL Programming
	General
	Benefits of OpenCL

	Modules of OpenCL
	Language Specification
	Platform API
	Runtime API

	OpenCL Architecture
	The Platform Model
	The Execution Model
	Kernels
	Host Program

	The Memory Model

	Executing an OpenCL Program
	Multiplication of Large Square Matrices
	Parallel Implementation
	OpenCL Kernel
	OpenCL Source code for C++
	Comparison of Speedup and Efficiency

	Summary

	Gaussian Elimination
	General
	Algorithm of Gaussian Elimination
	Sequential Implementation
	Parallel Implementation
	Summary

	Half-Band Matrix Solver
	General
	Algorithm of Half-Band Solver
	Sequential Implementation
	Parallel Implementation
	Plane Frame Analysis
	Space Frame Analysis
	Summary

	Summary and Conclusion
	Summary
	Conclusion
	Future Scope of Work

	Gauss Elimination host program
	Half-Band Solver host program
	List of Paper Published/Communicated
	References

