
APPLICATION OF PARALLEL
PROCESSING IN STRUCTURAL

ENGINEERING

By

Konark P. Patel

12MCLC21

DEPARTMENT OF CIVIL ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May-2014

APPLICATION OF PARALLEL
PROCESSING IN STRUCTURAL

ENGINEERING

Major Project

Submitted in Partial Fulfillment of the Requirements for Degree of

MASTER OF TECHNOLOGY

IN

CIVIL ENGINEERING

(Computer Aided Structural Analysis And Design)

By

Konark P. Patel

12MCLC21

DEPARTMENT OF CIVIL ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May-2014

iii

Declaration

This is to certify that

• The thesis comprises my original work towards the Degree of Master of Tech-

nology in Civil Engineering (Computer Aided Structural Analysis And Design)

at Nirma University and has not been submitted elsewhere for a degree.

• Due acknowledgement has been made in the text to all other materials used.

Konark P. Patel

iv

Certificate

This is to certify that the Major Project Report entitled “APPLICATION OF

PARALLEL PROCESSING IN STRUCTURAL ENGINEERING” submit-

ted by Mr. Konark P. Patel (Roll No: 12MCLC21) towards the partial fulfill-

ment of the requirements for the degree of Master of Technology in Civil Engineering

(Computer Aided Structural Analysis And Design) of Nirma University is the record

of work carried out by him under our supervision and guidance. The work submitted

has in our opinion reached a level required for being accepted for examination. The

results embodied in this major project work to the best of our knowledge have not

been submitted to any other University or Institution for award of any degree or

diploma.

Dr. P. V. Patel

Guide,

Professor and Head,

Department of Civil engineering,

Institute of Technology,

Nirma University,

Ahmedabad.

Dr. K. Kotecha ————————–

Director, Examiner

Institute of Technology,

Nirma University, —————————–

Ahmedabad. Date of Examination

v

Abstract

Today’s computing environments are becoming more multifaceted, exploiting the ca-

pabilities of a range of multi-core microprocessors, Central Processing Units (CPUs),

digital signal processors, and graphic processing units (GPUs). Due to heterogeneity

in hardware, the process of developing efficient software for such a wide array of ar-

chitectures poses a number of challenges to the programming community.

Solution of linear equations is a major mathematical process to solve many problems

of solid mechanics, fluid dynamics, structural engineering and so on. Since the size of

problems increases to achieve accuracy, number of linear equations to be solved also

increases and so is the time, to solve equations increases. Advancement of new par-

allel computation technology using inexpensive graphic card processors (multi-core

GPUs) and multi-core CPUs speed up the solution of various problems of structural

engineering.

In the present study, computationally intensive problems of structural engineering are

implemented on High Performance Computing Platforms like multi-core processors

and graphic processing units (GPUs). Direct methods like, Gaussian Elimination

and Modified Cholesky solver, for solving linear equations in form of [A]{x}={B}

are used. GPUs and CPUs are used for parallel computations with help of OpenCL

programming language. It is a step in the direction of heterogeneous computing for

smarter, faster and better analysis of problem. The main purpose of using this paral-

lel computation is to minimize the time of structural analysis of problem that involves

large number of linear equations.

For parallel implementation of Gaussian Elimination solver, linear equations sys-

tem representing equilibrium equations of finite element problem is used. Equa-

tions in form of [A]{x}={B} are generated from finite element analysis of axial bar

vi

using 3-node bar element where A=Square Stiffness Matrix, B=Load Vector and

x=Displacement vector. For solution of equations Matrix-[A] is inverted using se-

quential and parallel implementation of Gaussian Elimination. Sequential program

is developed using C++ and parallel program is developed using OpenCL language.

For comparing computational efficiency of parallel code, speedup factor which is ra-

tio of sequential execution time to parallel execution time is calculated for different

number of linear equations ranging 101 to 10001. Parallel execution time includes

processing time and communication time. As data is transferred between various

memories, communication time increases total computational time. Code is executed

on different CPUs and GPUs for parametric study.

For parallel implementation of Half-Band solver, which is based on modified cholesky

method, Direct Stiffness Method program of Plane Frame and Space Frame are used

for generating set of linear equation system. Here stiffness matrix is stored in banded

form to reduce memory requirements. Programs for sequential and parallel solution

of banded equations are developed using C++ and OpenCL languages. Problems

of varying size from 7650 Degrees of Freedom to 1,88,250 Degrees of Freedom are

solved using sequential and parallel Half-Band solver. The computational efficiency of

parallel code is studied based on speedup factor. Further to understand the efficiency

of program on different hardware platform, the parallel code is executed on multi-

core CPUs like Intel R© CoreTMi3, i5, i7 processors with different specifications and

NVIDIA GPU. Major factors affecting computational efficiency of parallel program

are hardware specifications, algorithms used, size of problem, communication time.

When parallel code is implemented on multi-core CPUs, communication time is less

compared to implementation on GPU. In case of GPU, computational time is reduced

because of parallel operations on large number of cores.

vii

Acknowledgement

I would like to express my immense gratitude to my guide Dr. Paresh V. Patel,

Head of Civil Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his valuable guidance and continual encouragement throughout my

major project work. His constant support and interest in subject equipped me with

a great understanding of different aspects of the major project work. His extreme

supervision and direction right from beginning motivate me to complete this work.

My sincere thanks to Dr. Sharad P. Purohit, Professor, Civil Engineering Depart-

ment and Dr. Urmil V. Dave, Professor, Civil Engineering Department for their

kind suggestions and motivational words throughout the major project work.

A special thanks to Dr K Kotecha, Hon’ble Director, Institute of Technology, Nirma

University, Ahmedabad for providing required resources for my project and healthy

research environment.

I would like to thank all my friends for their everlasting support and encouragement

in all possible ways throughout the major project work.

Most importantly deepest appreciation and thanks to Almighty and my family for

their unending love, affection and personal sacrifices during the whole tenure of my

study at Nirma University.

Patel Konark P.

12MCLC21

viii

Abbreviations

GPU .Graphics Processing Unit

HPC . High Performance Computing

GPGPU General-purpose computing on graphics processing units

TPP . Theoretical Peak Performance

Flops . Floating-point Operations Per Second

PFlops .Peta Floating-Point Operations Per Second

API . Application Programming Interface

AMD .Advanced Micro Device

IBM . International Business Machine

OpenCL . Open Computing Language

CUDA .Compute Unified Device Architecture

FPGA . Field-programmable gate array

LAPACK . Linear Algebra Package

MAGMA . Matrix Algebra on GPU and Multicore Architectures

GFlop/s . Giga Floating-point Operations Per Second

FE . Finite Element

FEM . Finite Element Method

DEM .Discrete Element Method

Contents

Declaration iii

Certificate iv

Abstract v

Acknowledgement vii

Abbreviations viii

List of Tables xii

List of Figures xiii

1 Introduction to High Performance Computing 1
1.1 General . 1
1.2 Advances in Hardware and Platforms for HPC 2
1.3 Evolution of HPC . 4
1.4 Domains of High Performance Computing 6

1.4.1 Cluster Computing . 6
1.4.2 Grid Computing . 9
1.4.3 Multicore Computing . 10

1.5 Parallel Computing . 12
1.5.1 Flynn’s taxonomy . 13

1.6 General-purpose computing on graphics processing units (GPGPU) . 16
1.7 Objective of Study . 17
1.8 Scope of Work . 18
1.9 Organization of Report . 19

2 Literature Survey 21
2.1 Parallel Computing . 22
2.2 Application of Parallel Computing on FEM 26
2.3 Parallel Solvers . 28
2.4 Summary . 34

ix

CONTENTS x

3 Introduction to OpenCL Programming 35
3.1 General . 35

3.1.1 Benefits of OpenCL . 36
3.2 Modules of OpenCL . 36

3.2.1 Language Specification . 36
3.2.2 Platform API . 37
3.2.3 Runtime API . 37

3.3 OpenCL Architecture . 37
3.3.1 The Platform Model . 37
3.3.2 The Execution Model . 38

3.3.2.1 Kernels . 38
3.3.2.2 Host Program . 41

3.3.3 The Memory Model . 41
3.4 Executing an OpenCL Program . 43
3.5 Multiplication of Large Square Matrices 44
3.6 Parallel Implementation . 45

3.6.1 OpenCL Kernel . 46
3.6.2 OpenCL Source code for C++ 48
3.6.3 Comparison of Speedup and Efficiency 57

3.7 Summary . 61

4 Gaussian Elimination 62
4.1 General . 62
4.2 Algorithm of Gaussian Elimination 66
4.3 Sequential Implementation . 66
4.4 Parallel Implementation . 67
4.5 Summary . 85

5 Half-Band Matrix Solver 86
5.1 General . 86
5.2 Algorithm of Half-Band Solver . 88
5.3 Sequential Implementation . 89
5.4 Parallel Implementation . 90
5.5 Plane Frame Analysis . 93
5.6 Space Frame Analysis . 104
5.7 Summary . 109

6 Summary and Conclusion 110
6.1 Summary . 110
6.2 Conclusion . 111
6.3 Future Scope of Work . 113

A Gauss Elimination host program 114

CONTENTS xi

B Half-Band Solver host program 128

C List of Paper Published/Communicated 154

References 155

List of Tables

3.1 Speedup For Paralle Square Matrix Multiplication Results 58

4.1 Hardware used and their configurations 69
4.2 Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M

Cache,3.20 GHz) . 71
4.3 Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M

Cache,3.50GHz) . 73
4.4 Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M

Cache,3.50GHz) . 75
4.5 Performance Comparison using Intel R© CoreTMi7-2630QM Processor(2.0GHz) 78
4.6 Performance Comparison using NVIDIA GeForce GT 525M 80

5.1 Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi3-
3210 Processor(3M Cache,3.20 GHz) 96

5.2 Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi5-
3450 Processor(6M Cache,3.50GHz) 97

5.3 Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M
Cache,3.50GHz) . 98

5.4 Performance Comparison using Intel R© CoreTMi7-2630QM Processor(2.0GHz) 99
5.5 Performance Comparison using NVIDIA GeForce GT 525M 100
5.6 Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M

Cache,3.20 GHz) . 106
5.7 Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M

Cache,3.50GHz) . 107
5.8 Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M

Cache,3.50GHz) . 108

xii

List of Figures

1.1 Japan’s Earth Simulator[29] . 7
1.2 IBM Blue Gene[30] . 7
1.3 IBM Blue Gene Diagram[30] . 8
1.4 Generic dual-core processor . 10
1.5 Connection Between Various Devices[23] 11
1.6 SISD flow . 14
1.7 SIMD flow . 14
1.8 MISD flow . 15
1.9 MIMD flow . 15
1.10 Nvidia’s Tesla GPGPU card[31] . 16
1.11 Inside View of GPU . 17

2.1 Logical Structure of Cluster[9] . 26

3.1 OpenCL Platform Model[24][26] . 38
3.2 ATI RadeonTM HD 5870 GPU architecture[24][26] 39
3.3 Grouping Work-items Into Work-groups[24][26] 40
3.4 Work-group Example[24][26] . 40
3.5 OpenCL Memory Model[24][26] . 42
3.6 OpenCL Execution model[24][26] . 43
3.7 Matrix multiplication algorithm . 45
3.8 Algorithm for converting a two-dimensional index space into linear for

laying the matrix out in the GPU buffer with Row-Major And Column
Major . 47

3.9 GPU And CPU Implementation of Square Matrix Multiplication . . . 59
3.10 Comparison Of Computation Time For GPU And CPU Implementa-

tion of Square Matrix Multiplication 60

4.1 Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M
Cache,3.20 GHz) . 72

4.2 Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M
Cache,3.50GHz) . 74

4.3 Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M
Cache,3.50GHz) . 76

xiii

LIST OF FIGURES xiv

4.4 Performance Comparison using Intel R© CoreTMi7-2630QM Processor(2.0GHz) 79
4.5 Performance Comparison using NVIDIA GeForce GT 525M 81
4.6 Comparison of Execution Time of Different Hardwares for Gauss Elim-

ination . 82
4.7 Comparison of Communication Time of Different Hardwares for Gauss

Elimination . 83
4.8 Comparison of Speedup factor of Different Hardwares for Gauss Elim-

ination . 84

5.1 Band Matrix for sympatric square matrix (a) Square Matrix (b) Band
Matrix[35] . 87

5.2 Plane Frame Schematic Diagram . 94
5.3 Plane Frame Member axes and degrees of freedom 95
5.4 Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi3-

3210 Processor(3M Cache,3.20 GHz) 96
5.5 Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi5-

3450 Processor(6M Cache,3.50GHz) 97
5.6 Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi7-

3450 Processor(6M Cache,3.50GHz) 98
5.7 Performance Comparison using Intel R© CoreTMi7-2630QM Processor(2.0GHz) 99
5.8 Performance Comparison using NVIDIA GeForce GT 525M 100
5.9 Comparison of Execution Time of Different Hardwares for Plane Frame

Analysis . 101
5.10 Comparison of Communication Time of Different Hardwares for Plane

Frame Analysis . 102
5.11 Comparison of Speedup factor of Different Hardwares for Plane Frame

Analysis . 103
5.12 Space Frame Member Stiffness Matrix 104
5.13 Space Frame Member axes and degrees of freedom 104
5.14 Space Frame Schematic Diagram . 105
5.15 Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M

Cache,3.20 GHz) . 106
5.16 Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M

Cache,3.50GHz) . 107
5.17 Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M

Cache,3.50GHz) . 108
5.18 Speedup Factor Comparison . 109

Chapter 1

Introduction to High Performance

Computing

1.1 General

HPC(High Performance Computing) requires substantially more computational re-

sources than are available on current workstations, and typically require concurrent

(parallel) computation.

Alternatively HPC is any computational technique that solves a large problem faster

than possible using single, commodity systems. HPC can be achieved through

• Custom-designed, high-performance processors (e.g. Cray, NEC)

• Parallel computing

• Distributed computing

• Grid computing

First HPC systems were vector-based systems (e.g. Cray) named ’supercomputers’

because they were an order of magnitude more powerful than commercial systems.

Now, ’supercomputer’ has little meaning “large systems are now just scaled up ver-

1

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 2

sions of smaller systems”. However, ’high performance computing’ has many mean-

ings like

• can mean high floating-point Operations Per Second (flops) count

– per processor

– totaled over many processors working on the same problem

– totaled over many processors working on related problems

• can mean faster turnaround time

– more powerful system

– scheduled to first available system(s)

– using multiple systems simultaneously

HPC has had tremendous impact on all areas of computational science and engi-

neering in academia, government, and industry. Many problems have been solved

with HPC techniques that were impossible to solve with individual workstations or

personal computers.

1.2 Advances in Hardware and Platforms for HPC

Approaches to HPC have taken dramatic turns since the earliest systems were intro-

duced in the 1960s. Early HPC architectures pioneered by Seymour Cray relied on

compact innovative designs and local parallelism to achieve superior computational

peak performance. However, in time the demand for increased computational power

ushered in the age of massively parallel systems.

While the HPC computers of the 1970s used only a few processors, in the 1990s,

machines with thousands of processors began to appear and by the end of the 20th

century, massively parallel supercomputers with tens of thousands of “off-the-shelf”

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 3

processors were the convention. Some of the computers of the 21st century can use

over 100,000 processors (some being graphic units) connected by fast connections.

Throughout the decades, the management of heat density has remained a key issue for

most centralized supercomputers. The large amount of heat generated by a system

may also have other effects, e.g. reducing the lifetime of other system components.

There have been diverse approaches to heat management, from pumping Fluorinert

through the system, to a hybrid liquid-air cooling system or air cooling with normal

air conditioning temperatures.

Systems with a massive number of processors generally take one of two paths: in

one approach, known as grid computing, the processing power of a large number of

computers in distributed, diverse administrative domains, is opportunistically used

whenever a computer is available. In another approach, a large number of processors

are used in close proximity to each other, e.g. in a computer cluster. In such a central-

ized massively parallel system the speed and flexibility of the interconnect becomes

very important. The use of multi-core processors combined with centralization is an

emerging direction, e.g. as in the Cyclops64 system formerly known as Blue Gene

which is a cellular architecture in development by IBM. The Cyclops64 project aims

to create the first “supercomputer on a chip”.[32]

As the price/performance of general purpose graphic processors (GPGPUs) has im-

proved, a number of petaflop supercomputers such as Tianhe-I and Nebulae have

started to rely on them. However, other systems such as the K computer continue to

use conventional processors such as SPARC-based designs. The overall applicability

of GPGPUs in general purpose high performance computing applications has been

the subject of debate since past. A GPGPU may be tuned to score well on specific

benchmarks its overall applicability to everyday algorithms may be limited unless

significant effort is spent to tune the application towards it. However, GPUs are

gaining ground and in 2012 the Jaguar supercomputer was transformed into Titan

by replacing CPUs with GPUs.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 4

1.3 Evolution of HPC

The history of evolution of high performance computing is discussed in this section.[33]

Some of the benchmarks in computing are as follows:

Experimental/Special Purpose Computing

• 1939-Atanasoff and Berry build prototype electronic/digital computer at Iowa

State University

• 1941-Conrad Zuse completed Z3, first functional programmable electromechan-

ical digital computer

• 1943-Bletchley Park operated Colossus, computer based on vacuum tubes, by

Turing, Flowers, and Newman

• 1946-ENIAC developed by Eckert and Mauchly, at the University of Pennsyl-

vania

• 1951-UNIVAC I (also designed by Eckert and Mauchly), produced by Reming-

ton Rand, delivered to US Census Bureau

• 1952-ILLIAC I (based on Eckert, Mauchly, and von Neumann design), first

electronic computer built and housed at a University

The Cray Years[33]

• 1962-Control Data Corp. introduced the first commercially successful super-

computer, the CDC 6600, designed by Seymour Cray. Theoretical Peak Perfor-

mance(TPP) of 9 MFlop/s

• 1967-Texas Instruments Advanced Scientific Computer, similar to CDC 6600,

included vector processing instructions

• 1968-CDC 6800, Crays redesign of 6600, remained fastest supercomputer until

mid 1970s. TPP of about 40MFlop/s.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 5

• 1976-Cray Research Incs Cray-I started vector revolution. TPP of about 250MFlop/s.

• 1982-Cray X-MP, Crays first multiprocessor computer, original 2 processor de-

sign had a TPP of 400MFlop/s, included shared memory access between pro-

cessors

Clusters Take Over[33]

• 1993-Cray introduced the T3D - an MPP (Massively Parallel Processing) based

on 32-2048 DEC Alpha (21064 RISC, 150MHz) processors and a proprietary

3D torus interconnect

• 1997-ASCI Red at Sandia delivered first TFlop/s (on the Linpack benchmark)

using Intel Pentium Pro processors and a custom interconnect.

• 2002-NECs Earth Simulator was a cluster of 640 vector supercomputers, deliv-

ered 35.61 TFlop/s on the Linpack benchmark.

• 2005-IBMs Blue Gene systems regained top rankings (again, according to Lin-

pack) using massive numbers of embedded processors and communication sub-

systems (more later), each running a stripped down Linux-based operating sys-

tem.

• 2008-IBM deployed a hybrid system of Opteron nodes coupled with Cell proces-

sors interconnected via Infiniband, achieved first sustained Peta Floating-Point

Operations Per Second (PFlop/s) on top500 list

• 2010-Tianhe-1A at the National Supercomputing Center in Tianjin, China, mix

of 14,336 Intel Xeon X5670 processors (86,016 cores) and 7168 Nvidia Tesla

M2050 general purpose GPUs, custom (Arch) interconnect, 2.566 PFlop/s

• 2011-K computer, at RIKEN in Kobe, Japan, 68544 2.0GHz 8-core Sparc64

VIIIfx processors (548,352 cores), custom (Tofu) interconnect, 8.162 PFlop/s

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 6

1.4 Domains of High Performance Computing

Various domains of high performance computing are discussed in this section.

1.4.1 Cluster Computing

A computer cluster consists of a set of loosely connected computers that work together

so that in many respects they can be viewed as a single system. The components of a

cluster are usually connected to each other through fastlocal area networks (”LAN”),

each node (computer used as a server) running its own instance of an operating sys-

tem. Computer clusters emerged as a result of convergence of a number of computing

trends including the availability of low cost microprocessors, high speed networks,

and software for high performance distributed computing.[34]

Clusters are usually deployed to improve performance and availability over that

of a single computer, while typically being much more cost-effective than single com-

puters of comparable speed or availability.[34]

Now let’s consider Japan’s Earth Simulator shown in Fig.1.1 and IBM Blue Gene

is shown in Fig.1.2. Fig.1.3 shows topology of devices of IBM Blue Gene. Both

clusters dominated the Top500 List from 2002-2004 with following configuartion

• 640 8-processor SX-8 (vector) SMPs (peak of 8GFlop/s per processor)

• 10 TB of Memory

• Custom crossbar interconnect

• 700 TB disk + 1.2 PB Mass Storage

• Reportedly consumes about 12MW of power

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 7

Figure 1.1: Japan’s Earth Simulator[29]

Figure 1.2: IBM Blue Gene[30]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 8

Figure 1.3: IBM Blue Gene Diagram[30]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 9

1.4.2 Grid Computing

A grid computer is multiple number of same class of computers clustered together.

A grid computer is connected through a super fast network and share the devices

like disk drives, mass storage, printers and RAM. Grid Computing is a cost effi-

cient solution with respect to Super Computing. Operating system has capability of

parallelism

Grid computing combines computers from multiple administrative domains to reach

a common goal, to solve a single task, and may then disappear just as quickly.

One of the main strategies of grid computing is to use middleware to divide and appor-

tion pieces of a program among several computers, sometimes up to many thousands.

Grid computing involves computation in a distributed fashion, which may also involve

the aggregation of large-scale clusters. The size of a grid may vary from small-confined

to a network of computer workstations within a corporation, for example-too large,

public collaborations across many companies and networks. “The notion of a confined

grid may also be known as an intra-nodes cooperation whilst the notion of a larger,

wider grid may thus refer to an inter-nodes cooperation”.

Grids are a form of distributed computing whereby a “super virtual computer” is

composed of many networked loosely coupled computers acting together to perform

very large tasks. This technology has been applied to computationally intensive

scientific, mathematical, and academic problems through volunteer computing, and

it is used in commercial enterprises for such diverse applications as drug discovery,

economic forecasting, seismic analysis, and back office data processing in support for

e-commerce and Web services.

Many distributed computing applications have been created, of which SETI@home

and Folding@home are the best-known examples.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 10

1.4.3 Multicore Computing

A multi-core processor is a processor that includes multiple execution units (“cores”)

on the same chip. These processors differ from superscalar processors, which can issue

multiple instructions per cycle from one instruction stream (thread). In contrast, a

multi-core processor can issue multiple instructions per cycle from multiple instruc-

tion streams. Each core in a multi-core processor can potentially be superscalar as

well that is, on every cycle, each core can issue multiple instructions from one in-

struction stream. Simultaneous multi-threading (of which Intel’s HyperThreading is

the best known) was an early form of pseudo-multi-coreism. A processor capable

of simultaneous multithreading has only one execution unit (”core”), but when that

execution unit is idling (such as during a cache miss), it uses that execution unit to

process a second thread. Fig.1.4 shows diagram of a generic dual-core processor.IBM’s

Cell microprocessor, designed for use in the Sony PlayStation 3, is another prominent

multicore processor.

Figure 1.4: Generic dual-core processor

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 11

Figure 1.5: Connection Between Various Devices[23]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 12

1.5 Parallel Computing

Parallel computing is a form of computation in which many calculations are carried

out simultaneously,operating on the principle that large problems can often be divided

into smaller ones, which are then solved concurrently (”in parallel”). There are several

different forms of parallel computing: bit-level, instruction level, data, and task par-

allelism. Parallelism has been employed for many years, mainly in high-performance

computing, but interest in it has grown lately due to the physical constraints pre-

venting frequency scaling.As power consumption (and consequently heat generation)

by computers has become a concern in recent years, parallel computing has become

the dominant paradigm in computer architecture, mainly in the form of multicore

processors.[22]

Parallel computers can be roughly classified according to the level at which the hard-

ware supports parallelism, with multi-core and multi-processor computers having mul-

tiple processing elements within a single machine, while clusters, MPPs, and grids use

multiple computers to work on the same task. Specialized parallel computer archi-

tectures are sometimes used alongside traditional processors, for accelerating specific

tasks.Fig.1.5 shows block diagram of connection between various devices.[22]

Parallel computer programs are more difficult to write than sequential ones,[5] because

concurrency introduces several new classes of potential software bugs, of which race

conditions are the most common. Communication and synchronization between the

different subtasks are typically some of the greatest obstacles to getting good parallel

program performance. Nowadays, all of the hardware is parallel, as evident from

following facts:

• Right now it is difficult to buy a computer that has only a single processor -

even laptops have multiple cores.

• GPUs have a great many processing elements (Cell has 9, NVIDIA and ATI

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 13

offerings have hundreds).

• This increasing processor core count trend is going to continue for a while.

Some of the facts about the software that can actually concurrently use all of these

hardware resources are as:

• Software is lagging behind the hardware.

• Some specialized parallel libraries for multicore systems.

• Some APIs for harnessing multiple cores (OpenMP) and multiple machines

(MPI).

• Generally the software picture is one of tediously mapping applications to new

architectures and machines.

1.5.1 Flynn’s taxonomy

Michael J. Flynn created one of the earliest classification systems for parallel (and

sequential) computers and programs, now known as Flynn’s taxonomy. Flynn clas-

sified programs and computers by whether they were operating using a single set or

multiple sets of instructions, whether or not those instructions were using a single or

multiple sets of data. Based on that Flynn gave following taxonomy.Fig.1.6 to 1.9

shows graphical representation of Flynn’s taxonomy.

Single instruction Multiple instruction

Single data SISD MISD

Multiple data SIMD MIMD

• SISD-Single Instruction, Single Data

– Sequential (non-parallel) instruction flow

– Predictable and deterministic

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 14

Figure 1.6: SISD flow

• SIMD-Single Instruction, Multiple Data

– Single (typically assembly) instruction operates on different data in a given

clock tick.

– Requires predicatble data access patterns - ”vectors” that are contiguous

in memory.

Figure 1.7: SIMD flow

• MISD-Multiple Instruction, Single Data

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 15

– Multiple instructions applied independently on same data.

– Theoretical rather than practical architecture - few implementations

Figure 1.8: MISD flow

• MIMD-Multiple Instruction, Multiple Data

– Multiple instructions applied independently on different data.

– Very flexible - can be asynchronous, non-deterministic

– Most modern supercomputers follow MIMD design, albeit with SIMD

components/sub-systems

Figure 1.9: MIMD flow

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 16

1.6 General-purpose computing on graphics pro-

cessing units (GPGPU)

General-purpose computing on graphics processing units (GPGPU) is a fairly re-

cent trend in computer engineering research. GPUs are co-processors that have been

heavily optimized for computer graphics processing. Computer graphics processing

is a field dominated by data parallel operations particularly linear algebra matrix

operations. In the early days, GPGPU programs used the normal graphics APIs for

executing programs. However, several new programming languages and platforms

have been built to do general purpose computation on GPUs with both NVIDIA

and AMD releasing programming environments with CUDA and Stream SDK re-

spectively.Fig.1.10 shows NVIDIA’s Tesla GPGPU card. Fig.1.11 shows inside view

of GPU. Other GPU programming languages include BrookGPU, PeakStream, and

RapidMind. Nvidia has also released specific products for computation in their Tesla

series. The technology consortium Khronos Group has released the OpenCL spec-

ification, which is a framework for writing programs that execute across platforms

consisting of CPUs and GPUs. AMD, Apple, Intel, Nvidia and others are supporting

OpenCL.[25]

Figure 1.10: Nvidia’s Tesla GPGPU card[31]

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 17

Figure 1.11: Inside View of GPU

1.7 Objective of Study

Numerical simulations based on the Finite Element Method (FEM) are often very

time-consuming. Due to the fact that in the last decades FE Analysis is performed

with greater accuracy and dynamic boundary conditions, efficient and highly paral-

lel computation algorithms are still a major focus of current research. Also various

structural engineering problems like Static analysis of skeletal structure using direct

stiffness method, Static finite element analysis of plane stress and plate bending prob-

lems, Dynamic analysis of plane frame structures, Nonlinear analysis of structures etc.

requires intense computations and thus parallel algorithms for all these problems is

needed. Absence of such algorithms puts a hurdle for engineers to perform robust

and accurate simulations promptly without delaying the overall engineering process.

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 18

The key objectives of study are as follows.

• To understand the parallel processing and its applications in structural engi-

neering

• To understand OpenCL language for generating algorithms for parallel comput-

ing of various problems of structural engineering

• To study various numerical methods used in various analysis problems of struc-

tural engineering for writing parallel code

• To compare the performance of parallel code on various types of CPUs and

GPUs.

1.8 Scope of Work

In order to achieve above objectives, the scope of work for major project is decided

as follows.

• Understanding fundamentals of high performance computing and its terminol-

ogy

• Study various techniques of parallel processing applicable in structural engi-

neering

• Understand architecture of GPU and mylti-core processors for developing ap-

propriate algorithms

• Understand OpenCL language and its specifications

• Development of computer program for numerical methods like Gauss Elimina-

tion which can run on GPU and multi-core processors

• Development of computer program for analysis of structures which can run

effectively on GPU and multi-core processors

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 19

• Comparison of runtime and efficiency of computer program on different hard-

ware configurations.

1.9 Organization of Report

The study carried out in this major project is related to the application of parallel

processing in structural engineering. Study includes different type of parallel algo-

rithms useful for solving various problems of structural engineering. The content of

major project is divided into different chapter as follows.

Chapter 1, gives introduction of High Performance Computing , its history and evolu-

tions in HPC. It also covers domains of High Performance Computing with examples

of each. Introduction to parallel computing and GPU and other high performance

computing machines are presented in this chapter.

Chapter 2, covers literature review. In this chapter, literature related to parallel pro-

cessing is reviewed and work carried out by various researchers is presented. It gives

idea about the work carried out in various areas of parallel processing through variety

of problems.

Chapter 3, contains introduction to OpenCL Language and its specifications. There

is brief discussion about benifits of OpenCL, its architecture. A code of matrix mul-

tiplication using GPU is prepared and its results are compared with CPU.

Chapter 4, contains study of Gaussian Elimination method using different devices

for parallel computing.Comparison of speedup and efficiency of parallel code is also

presented in this chapter.

Chapter 5, contains study of Half-Band matrix solver using different devices for par-

CHAPTER 1. INTRODUCTION TO HIGH PERFORMANCE COMPUTING 20

allel computing. Large size problems of plane frame and space frame analysis are

implemented on computers with multiple cores and GPU . Comparison of speedup

and efficiency of parallel code is also presented in this chapter.

Chapter 6, contains brief summary of the project and conclusions. Future scope of

work is also discussed in this chapter.

Chapter 2

Literature Survey

In the past two decades, the development of algorithms for structural engineering

applications has received a boost due to the advent of parallel computers. Consid-

erable research is being done in order to rewrite algorithms originally designed to

run on sequential machines as well as to develop new methods that take advantage

of the parallelism offered by the multiprocessing computers. This work is concerned

with some of the parallel algorithms that have been developed in this field. More

specifically, it is a survey of parallel algorithms that are of interest to structural en-

gineering. Such algorithms include parallel solvers direct and iterative! for linear

systems of algebraic equations, techniques for the parallelization of the finite element

method, and concurrent time-stepping algorithms for the solution of the equations

arising in structural dynamic problems.

The rapid rate at which technology is evolving has led to a need for more sophisticated

techniques that can take full advantage of the hardware available. Traditionally, soft-

ware has lagged behind hardware and there is a continuous need to maximize software

performance on multiprocessor systems. In chapter, work carried out by researchers

about application of parallel processing/computing in field of engineering are dis-

cussed to have an idea about evolution of parallel processing and its current trends

and its impact in field of structural engineering.

21

CHAPTER 2. LITERATURE SURVEY 22

2.1 Parallel Computing

Sotelino[1] gave an idea about parallel processing techniques in structural engi-

neering with various practical examples of application.Various parallel processing

techniques in Finite Element Analysis such as Sub-structuring, Operator splitting,

Element-by-element (EBE) strategies were explained.There was good discussion on

Iterative solvers, Direct Solvers and Parallel Equation Solvers.The discussions in the

sections Iterative Solvers and Direct Solvers were concerned with the solution of a

system of linear algebraic equations.An attempt was made to provide a thorough sur-

vey of the methods that were directly related to structural engineering applications.

Hajjarz and Abel[2] presented strategy for the solution of the fully nonlinear tran-

sient structural dynamics problem in a coarse-grained parallel processing environ-

ment. Emphasis was placed on the analysis of three-dimensional framed structures

subjected to seismic loading. Study included long-duration dynamic loading, geo-

metric and material nonlinearity, and the wide distribution of vibrational frequencies

found in frame models. The implicit domain decomposition method described em-

ploys sub-structuring techniques and then a preconditioned conjugate gradient algo-

rithm for the iterative solution of the reduced set of unknowns along the substruc-

ture interfaces.The domain decomposition algorithm provided an efficient means for

solving the fully nonlinear transient structural dynamics problem in parallel. The

natural preconditioner which arised from sub-structuring analysis effectively reduced

the condition number of the interface coefficient matrix sufficiently to allow an itera-

tive conjugate gradient algorithm to be used for its solution. The iterative algorithm

might be easily streamlined for parallel processing since it consisted exclusively of

vector operations.

CHAPTER 2. LITERATURE SURVEY 23

Bahcecioclu and Kurc[3] did Nonlinear dynamic finite element analysis with GPU

using CUDA language. Newmark family of algorithms have been utilized by many

engineering applications for the solution of nonlinear dynamic analysis of various

structural models. Dynamic and nonlinear nature of such problems and numerical

stability requirements of the algorithms increase the need for computation power in

order to achieve practical solution times. Thus, this study intended to decrease the

analysis time for nonlinear dynamic analysis of large scale structural models utilizing

the GPUs. In the implementation, explicit version of the Newmark family of algo-

rithms was utilized. This type of algorithm enabled the computations to be applied

on each finite element eliminating the need for global matrix assembly. Two differ-

ent GPU implementations were tested. In the first approach, creation of elemental

matrices and computation of the explicit Newmark algorithm were separated into

two different kernels. The second approach combined these two kernels at compile

time into a single kernel code. Both implementations were developed using CUDA

language. Implementation details of both algorithms were discussed in detail noticing

optimization differences. Both GPU implementations were tested and compared with

a CPU implementation using models with varying sizes.

Kandasamy and Konig[4] presented an approach for meshing with the help of GPU

for robust simulations in engineering field. Parallel mesh generation for FE element

application was still an active research topic to compensate the demand for large scale,

dynamic and real-time FE problem analyses. Even though many different CPU based

parallel meshing implementation exist, the parallel computing power of graphic card

processor unit (GPU) had not yet fully approached for meshing applications. The

main focus of this paper was on presenting a research concept of parallel FE mesh

generation using multiple GPUs and promising preliminary results of GPU adopted

Delaunay triangulator. There were only few approaches of Delaunay triangulation

employing GPU and CPU, but they were not utilized for a FE meshing application.

This work was basically a 2D Delaunay mesh generator by incorporating the work

CHAPTER 2. LITERATURE SURVEY 24

from GPU-DT triangulation, which could employ on a single card. They presented a

mesh partitioning technique, an interfacing approach between subdomains, a parallel

Delaunay triangulation by employing multiple GPUs and a validation method for

Delaunay triangulation by edge flipping.

Kruzel and Banas[5] analyzed computational aspects of the problem of numerical

integration in finite element calculations and considered an OpenCL implementation

of related algorithms for processors with wide vector registers. As a platform for

testing the implementation they choose the PowerXCell processor, being an example

of the Cell Broadband Engine (CellBE) architecture. Although the processor was

considered old for todays standards (its design dates back to year 2001), they in-

vestigated its performance due to two features that it shares with recent Xeon Phi

family of coprocessors: wide vector units and relatively slow connection of computing

cores with main global memory. The performed analysis of parallelization options

could also be used for designing numerical integration algorithms for other processors

with vector registers, such as contemporary x86 microprocessors. They considered

higher order finite element approximations and implemented the standard algorithm

of numerical integration for prismatic elements.The obtained range of performance

numbers showed that in many situations high utilization of vector capabilities could

be achieved. This seems to be an important conclusion in light of a recently ob-

served trend to equip standard processor cores with wide vector registers and execu-

tion units. Another conclusion was that OpenCL could be used for relatively simple

porting of scientific codes to complex heterogeneous multi-core architectures, such as

CBE. Moreover, OpenCL allowed one to obtain a high performance code, due to the

support of explicit memory hierarchy management and vector operations.

Yang et al.[6] tested Cholesky decomposition on GPU and FPGAs.Cholesky decom-

position has been widely utilized for positive symmetric matrix factorization in solving

least square problems. Various parallel accelerators including GPUs and FPGAs had

CHAPTER 2. LITERATURE SURVEY 25

been explored to improve performance. In this paper, Cholesky decomposition was

implemented on both FPGAs and GPUs by designing a dedicated architecture for

FPGAs and exploiting massively parallel computation for GPUs. Performance of the

Cholesky decomposition on GPUs, CPUs, FPGAs, and hybrid systems were compared

in both single and double precision.Results showed that the FPGA implementation

had the highest efficiency with respect to clock cycles compared with their pure GPU

implementation, a hybrid system with MAGMA, and a CPU with LAPACK. The

GPU implementation was better than other implementations using MAGMA and

LAPACK library for small matrices, and the hybrid system with MAGMA was the

best for larger matrices.

Wang et al.[7] presented the GPU parallelization of complex three-dimensional soft-

ware for nonlinear analysis of concrete structures. It focused on coupled thermo-

mechanical analysis of complex structures. A coupled FEM/DEM approach (CDEM)

was given from a fundamental theoretical viewpoint. As the modeling of a large struc-

ture by means of FEM/DEM may lead to prohibitive computation times, a paralleliza-

tion strategy was required. With the substantial development of computer science, a

GPU-based parallel procedure was implemented. A comparative study between the

GPU and CPU computation results was presented, and the runtimes and speedups

were analyzed. The results showed that dramatic performance improvements were

gained from GPU parallelization.

Hsieh et al.[8] presented general sparse matrix and parallel computing technologies

for a finite element solution of large-scale structural problems in a PC cluster environ-

ment. The general sparse matrix technique was first employed to reduce execution

time and storage requirements for solving the simultaneous equilibrium equations

in finite element analysis. To further reduce the time required for large-scale struc-

tural analysis, two parallel processing approaches for sharing computational workloads

among collaborating processors were then investigated. One approach adopted a pub-

CHAPTER 2. LITERATURE SURVEY 26

licly available parallel equation solver, called SPOOLES, to directly solve the sparse

finite element equations, while the other employed a parallel substructure method

for the finite element solution. This work focused more on integrating the general

sparse matrix technique and the parallel substructure method for large-scale finite

element solutions. Additionally, numerical studies have been conducted on several

large-scale structural analysis using a PC cluster to investigate the effectiveness of

the general sparse matrix and parallel computing technologies in reducing time and

storage requirements in large-scale finite element structural analysis.

2.2 Application of Parallel Computing on FEM

Qian et al.[9] carried out research of Parallel Computing for Large-scale Finite Ele-

ment Model of WheelRail Rolling Contact.The parallel computing methods of contact

problem were analyzed firstly. Then, the contact algorithm and parallel computing

of ABAQUS was introduced. Fig.2.1 shows logical structure of cluster used.

Figure 2.1: Logical Structure of Cluster[9]

CHAPTER 2. LITERATURE SURVEY 27

The parallel computing environment using MPI in ABAQUS was put forward. On

the basis of cluster, some different finite element model was solved by implicit and ex-

plicit solution. It was found that the mesh size of wheel/rail contact field was refined

to 0.75mm in order to ensure accuracy for engineering.At last, the parallel computing

for the contact problem of wheel/rail was discussed using the speedup and efficiency.

Fan et al.[10] presented application of parallel computing in Large Eigenvalue Prob-

lems for Engineering Structures.A parallel solving system was constructed via in-

tegrating predominant algorithms and their corresponding software packages into

the finite-element parallel computing frameworkPANDA. The finite element model

(FEM) of engineering structures was built in preprocessing commercial softwareMSC

Patran. Based on the interface between PANDA and MSC Patran, the model infor-

mation was translated in PANDA to generate stiffness and mass matrices in a parallel

way. Utilizing these matrices, a large-scale parallel computing of eigenvalues was car-

ried out via calling software packages in PANDA. The numerical results showed that

PANDA frame was competent for carrying out large-scale parallel computing of eigen-

value problems; in virtue of supercomputer, the computing scale attains millions of

freedom degrees; and the parallel efficiency was favorable.They gave a brief review

on some dominant algorithms and freely available software for the numerical solution

of large sparse eigenvalue problems. There was also description of whole processes

of parallel computing for eigenvalue problems arising from engineering structures. In

the analysis example solved, the number of freedom degree of the finite element model

was about 2.3 million.

Fu[11] discussed implementation of distributed finite element method over cluster of

workstation. A variety of parallel algorithms for finite element analysis were studied,

in which the domain decomposition method that having relatively coarse granularity

was suited for the distributed environment. With this scheme, the entire domain to

be solved was divided into several sub-domains and each sub-domain was assigned to

one of the processors engaged in the parallel computing.Using the developed code, a

CHAPTER 2. LITERATURE SURVEY 28

dam structural analysis problem was solved on workstation cluster. From the per-

formance test, the effectiveness of the distributed parallel computing algorithm of

finite element method was verified. Important factors affecting the performance of

the distributed parallel computing were found and analyzed.

On the basis of mode synthesis analysis, parallel algorithm of solving large-scale struc-

tural eigenproblem was presented by Chaojiang Fu[12]. The eigen value problem of

the structure was solved using subspace iterative parallel method. The substructure

subspace iterative method was implemented using the stiffness matrix and mass ma-

trix of the substructures without assembling the stiffness and mass matrix of whole

structure. The numerical results showed that this parallel algorithm was effective

for large scale structure eigen problem. Parallel computing for numerical example

of structural modal analysis was performed on DELL workstation cluster in School

of Computer Engineering and Science, Shanghai University. It was a cluster with 8

processors arranged in 4 dual-processor nodes with 2.4GHz Intel Xeon chips (512KB

cache) and 1GB of memory per node. These nodes were connected with a 100Mbps

Ethernet interconnect. The MPI communication libraries have been used to manage

the message passing.

2.3 Parallel Solvers

Leow et al.[13] presented parallel implementation of a direct method for solving

Linear equations called Gaussian Elimination, which consists of forward elimination

and back substitution.The solution of a linear system of equations constitutes an

important part in the field of linear algebra that is widely used in industries like

aerospace, aeronautics, solid mechanics, fluid dynamics, oil research and numerous

others. Thorough evaluations had been performed for variants of implementation

that exploit different memory features on an NVIDIA Tesla C1060 GPU. Compared

CHAPTER 2. LITERATURE SURVEY 29

to a serial implementation on an Intel Core i7, the execution time for forward elim-

ination on the GPU was reduced by a factor of 183X when using both global and

shared memory systems, and by a factor of 185 when using only global memory. The

maximum size of matrix considered for study was 8192 × 8192

Sharma et al.[14] presented the Gauss Jordan algorithm for matrix inversion on

a CUDA platform to exploit the large scale parallelization feature of a massively

multithreaded GPU. The algorithm was tested for various types of matrices and the

performance metrics were studied and compared with CPU based parallel methods.

They showed that the time complexity of matrix inversion scales as n as long as n2

threads can be supported by the GPU. Matrix inversion was an essential step in a wide

range of numerical problems starting with solving linear equations , structural anal-

yses using finite element method , 3D rendering ,digital filtering , image filtering and

image processing and constitutes an indispensable component in almost all math-

ematical/statistical software suites. Some of the common available algorithms for

computing the inverse of a matrix were Strassen, Strassen-Newton, Gaussian elim-

ination, GaussJordan, Coppersmith and Winograd, LUP Decomposition, Cholesky

decomposition, QR decomposition, RRQR factorization, Monte Carlo Methods for

inverse etc.The ability to invert large matrices accurately and quickly determines

the effectiveness of a wide range of computational algorithms and products. GPU

computing was ideally suited for massively parallel tasks as the thread creation and

memory transfer overheads were negligible. They had redesigned the Gauss Jordan

algorithm for matrix inversion on GPU based CUDA platform, tested it on five differ-

ent types of matrices (identity, sparse, banded, random and hollow) of various sizes.

Computation time for inverting different types of matrices was presented in the paper.

Reddy et al.[15] described the design and the implementation of parallel routines in

the Heterogeneous ScaLAPACK library that solve a dense system of linear equations.

It was discussed that the efficiency of these parallel routines was due to the most im-

CHAPTER 2. LITERATURE SURVEY 30

portant feature of the library, which was the automation of the difficult optimization

tasks of parallel programming on heterogeneous computing clusters. Other features

were the determination of the accurate values of the platform parameters such as the

speeds of the processors and the latencies and bandwidths of the communication links

connecting different pairs of processors, the optimal values of the algorithmic param-

eters such as the total number of processes, the 2D process grid arrangement and the

efficient mapping of the processes executing the parallel algorithm to the executing

nodes of the heterogeneous computing cluster.They described this process of automa-

tion.The Heterogeneous ScaLAPACK program used the multiprocessing approach,

where more than one process executed on each processor. The number of processes

to run on each processor during the program startup was determined automatically

by the Heterogeneous ScaLAPACK command-line interface tools.

Stefanski et al.[16] evaluated the usability and performance of Open Comput-

ing Language (OpenCL) targeted for implementation of the Finite-Difference Time-

Domain (FDTD) method. The simulation speed was compared to implementations

based on alternative techniques of parallel processor programming. Moreover, the

portability of OpenCL FDTD code between modern computing architectures was as-

sessed. The average speed of OpenCL FDTD simulations on a GPU was about 1.1

times lower than a comparable CUDA based solver for domains with sizes varying

from 503 to 4003 cells. Although OpenCL code dedicated to GPUs can be executed

on multi-core CPUs, a direct porting did not provide satisfactory performance due to

an application of architecture specific features in GPU code. Therefore, the OpenCL

kernels of the developed FDTD code were optimized for multi-core CPUs. How-

ever, this improved OpenCL FDTD code was still about 1.5 to 2.5 times slower than

the FDTD solver developed in the OpenMP parallel programming standard. The

study concluded that, despite current performance drawbacks, the future potential of

OpenCL was significant due to its flexibility and portability to various architectures.

CHAPTER 2. LITERATURE SURVEY 31

Wang et al.[17] used Gauss elimination and the Gauss-Jordan methods because of

their extensive use in finite element applications. In most cases, dense, nonsymmetric,

real systems were solved but similar methods for banded and complex systems were

presented. Sparse systems were not considered here although, these can obviously

be handled.In engineering applications it is often necessary to solve large systems

of equations that were either too large or require too much computer resources to

be economically feasible on standard computers. For this type of problem a parallel

machine was very attractive. The type of systems considered were those arising from

the application of the finite element method (FEM) to engineering applications. The

FEM was particularly computationally intensive, yet its various parts were either

intrinsically parallel or could be parallelized. By using a parallel processor, consider-

ably faster solution times could be achieved or, alternatively, larger problems could

be solved.

For the purpose of this work, the MPP was configured as an 128 × 128 array with

a 32 bit word length. For the solution of linear systems, the two most important

aspects related to the MPP were the number of memory planes in the ARray Unit

(ARU) and the size of the staging memory. The ARU contains 900 usable bit planes

of memory. This limits the number of real arrays (128*128, 32 bit) in the ARU to

28. The staging memory was limited to 512 real arrays. Parallel Pascal callable I/0

procedures could transfer only one 128 × 128 array in or out of the ARU at any one

time. This makes it necessary for any array larger than 128 × 128 to be blocked into

sub-arrays of 128 × 128. Thus, the smallest system considered is a 128 × 128 system

of equations.

Mani et al[18] proposed a parallel Gaussian elimination technique for the solution

of linear equations. They considered the direct solution of [A]{x}={C}, where A is

a banded matrix with half bandwidth b. They modeled the situation as a acyclic

directed graph. In this graph, the nodes represented arithmetic operations applied to

CHAPTER 2. LITERATURE SURVEY 32

the elements of A and the arcs represent the precedence relation that exists among

the operations in the solution process. This graph gave the clear picture to the user

in identifying the operations that can be done in parallel . This graph was also useful

in scheduling operations to the processors. The absolute minimum completion time

and the lower bound on the minimum number of processors required to solve the

equations in minimum time can be found from it. Speedup approached a limit using

parallel processors, set by the absolute minimum time, was also brought out from this

graph.

The usefulness of acyclic directed graph in identifying parallel operations, computing

the minimum completion time, the minimum number of processors to complete the

graph in minimum time and the maximum achievable speedup were presented. The

absolute minimum completion time was dependent on the number of equations and

independent of the bandwidth. On the other hand, maximum achievable speedup and

the optimal number of processors required to complete the job in minimum time were

dependent on the half bandwidth and was independent of the number of equations. A

method of incorporating the inter-processor communication time and its effect on the

overall computation time was also brought out. This study was useful for engineers

working with large system of equations on a multiprocessor system.

McGinn et al.[19] presented a parallel algorithm for Gaussian Elimination. Elim-

ination in both a shared memory environment, using OpenMP, and in a distributed

memory environment, using MPI. Parallel LU and Gaussian algorithms for linear sys-

tems had been studied extensively and the paper presented the results of examining

various load balancing schemes on both platforms. It was noted from the results that

the impact on performance that occurs as one changes the size of Matrix i.e n. When

there was increase the value of n, the MPI program displays an improvement in per-

formance as opposed to the OpenMP program where performance increase seems to

diminish. It is possible that as n increases, one may find a point where the distributed

CHAPTER 2. LITERATURE SURVEY 33

environment will show a greater increase in performance than the shared platform.

Liu et al.[20] designed and developed a GPU based Bi-Conjugate Gradient STA-

Bilized (BiCGSTAB) solver that meets both generality and scalability requirements.

It was well suited for all types of banded linear systems. And this solver combined

a new matrix decomposition method with several optimizations for inter-GPU and

inter-machine communications to achieve good scalability on large-scale GPU clus-

ters.Solving a banded linear system efficiently is important to many scientific and

engineering applications. Current solvers achieve good scalability only on the linear

systems that can be partitioned into independent subsystems.They designed a number

of GPU and MPI optimizations to speedup inter-GPU and inter-machine communica-

tions and evaluated the solver on Poisson equation and advection diffusion equation

as well as several other banded linear systems. The solver achieved a speedup of

more than 21 times running from 6 to 192 GPUs on the XSEDE’s Keeneland super-

computer and because of small communication overhead, can scale upto 32 GPUs on

Amazon EC2 with relatively slow ethernet network.

Zhang et al.[21] presented a GPU based parallel Jacobis iterative solver for dense lin-

ear equations.Modern GPUs are high performance many-core processors fit for large

scale parallel computing. They provided a novel way for accelerating the solving pro-

cess.First, they introduced the backgrounds for accelerating linear equations solver

together with GPUs and the corresponding parallel platform CUDA on it. Then im-

plementation of Jacobis iterative method on CUDA was discussed. They compared

the experimental results of CUDA programs on GPU with traditional programs on

CPU. Experiments showed that it obtained a speedup of approximately 59 times with

single floating point at a low precision, 19 times with double at a high precision.

CHAPTER 2. LITERATURE SURVEY 34

2.4 Summary

In this chapter literature on parallel computing, parallel solvers are discussed briefly.

It gives an overview of the work carried out by various researchers in different fields

of structural engineering.

Chapter 3

Introduction to OpenCL

Programming

3.1 General

The Open Computing Language (OpenCL) is an open and royalty-free parallel com-

puting API designed to enable GPUs and other coprocessors to work in tandem with

the CPU, providing additional raw computing power. As a standard, OpenCL 1.0

was released on December 8, 2008, by The Khronos Group, an independent standards

consortium. Developers have long sought to divide computing problems into a mix

of concurrent subsets, making it feasible for a GPU to be used as a math copro-

cessor working with the CPU to handle general problems efficiently. The potential

of this heterogeneous computing model was encumbered by the fact that program-

mers could only choose proprietary programming languages, limiting their ability to

write vendor-neutral, cross-platform applications. Proprietary implementations such

as NVIDIA’s CUDA limited the hardware choices of developers wishing to run their

application on another system without having to retool it.[24][26]

35

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 36

3.1.1 Benefits of OpenCL

A primary benefit of OpenCL is substantial acceleration in parallel processing. OpenCL

takes all computational resources, such as multi-core CPUs and GPUs, as peer compu-

tational units and correspondingly allocates different levels of memory, taking advan-

tage of the resources available in the system. OpenCL also complements the existing

OpenGL visualization API by sharing data structures and memory locations without

any copy or conversion overhead. A second benefit of OpenCL is cross-vendor soft-

ware portability. This low-level layer draws an explicit line between hardware and

the upper software layer. All the hardware implementation specifics, such as drivers

and runtime, are invisible to the upper-level software programmers through the use

of high-level abstractions, allowing the developer to take advantage of the best hard-

ware without having to reshuffle the upper software infrastructure. The change from

proprietary programming to open standard also contributes to the acceleration of

general computation in a cross-vendor fashion.[24][26]

3.2 Modules of OpenCL

The OpenCL development framework is made up of three main parts:

1. Language specification

2. Platform layer API

3. Runtime API

3.2.1 Language Specification

The language specification describes the syntax and programming interface for writing

kernel programs that run on the supported accelerator (GPU, multi-core CPU, or

DSP). Kernels can be precompiled or the developer can allow the OpenCL to compile

the kernel program at runtime.[24][26]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 37

3.2.2 Platform API

The platform-layer API gives the developer access to software application routines

that can query the system for the existence of OpenCL-supported devices. This layer

also lets the developer use the concepts of device context and work-queues to select

and initialize OpenCL devices, submit work to the devices, and enable data transfer

to and from the devices.[24][26]

3.2.3 Runtime API

The OpenCL framework uses contexts to manage one or more OpenCL devices. The

runtime API uses contexts for managing objects such as command queues, memory

objects, and kernel objects, as well as for executing kernels on one or more devices

specified in the context.

3.3 OpenCL Architecture

3.3.1 The Platform Model

The OpenCL platform model is defined as a host connected to one or more OpenCL

devices. Fig.3.1 shows OpenCL Platform Model which comprises one host plus multi-

ple compute devices, each having multiple compute units, each of which have multiple

processing elements. A host is any computer with a CPU running a standard operat-

ing system. OpenCL devices can be a GPU, DSP, or a multi-core CPU. An OpenCL

device consists of a collection of one or more compute units (cores). A compute unit

is further composed of one or more processing elements. Processing elements execute

instructions as SIMD (Single Instruction, Multiple Data) or SPMD (Single Program,

Multiple Data). SPMD instructions are typically executed on general purpose devices

such as CPUs, while SIMD instructions require a vector processor such as a GPU or

vector units in a CPU.[24][26]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 38

Figure 3.1: OpenCL Platform Model[24][26]

Fig.3.2 shows ATI RadeonTM HD 5870 GPU architecture illustrating a compute

device construct. The ATI Radeon HD 5870 GPU is made up of 20 SIMD units,

which translates to 20 compute units in OpenCL. Each SIMD unit contains 16 stream

cores, and each stream core houses five processing elements. Thus, each compute unit

in the ATI Radeon HD 5870 has 80 (16 × 5) processing elements.

3.3.2 The Execution Model

The OpenCL execution model comprises two components: kernels and host programs.

Kernels are the basic unit of executable code that runs on one or more OpenCL

devices. Kernels are similar to a C function that can be data- or task-parallel. The

host program executed on the host system, defines devices context, and queues kernel

execution instances using command queues. Kernels are queued in-order, but can be

executed in-order or out-of-order.[24][26]

3.3.2.1 Kernels

OpenCL exploits parallel computation on compute devices by defining the problem

into an N-dimensional index space. When a kernel is queued for execution by the host

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 39

Figure 3.2: ATI RadeonTM HD 5870 GPU architecture[24][26]

program, an index space is defined. Each independent element of execution in this

index space is called a work-item. Each work-item executes the same kernel function

but on different data. When a kernel command is placed into the command queue,

an index space must be defined to let the device keep track of the total number of

work- items that require execution. The N-dimensional index space can be N=1, 2,

or 3. Processing a linear array of data would be considered N=1; processing an image

would be N=2, and processing a 3D volume would be N=3. Processing a 1024x1024

image would be handled this way: The global index space comprises a 2-dimensional

space of 1024 by 1024 consisting of 1 kernel execution (or work-item) per pixel with

a total of 1,048,576 executions. Within this index space, each work-item is assigned

a unique global ID. The work-item for pixel x=30, y=22 would have global ID of

(30,22). OpenCL also allows grouping of work-items together into work-groups, as

shown in the Fig.3.3 Fig.3.4. The size of each work-group is defined by its own local

index space. All work-items in the same work-group are executed together on the

same device. The reason for executing on one device is to allow work-items to share

local memory and synchronization. Global work-items are independent and cannot

by synchronized. Synchronization is only allowed between the work-items in a work-

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 40

group. The following example shows a two-dimensional image with a global size of

Figure 3.3: Grouping Work-items Into Work-groups[24][26]

1024 (32x32). The index space is divided into 16 work-groups. The highlighted work-

group has an ID of (3,1) and a local size of 64 (8x8). The highlighted work-item in

the work- group has a local ID of (4,2), but can also be addressed by its global ID of

(28,10).[24][26]

Figure 3.4: Work-group Example[24][26]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 41

3.3.2.2 Host Program

The host program is responsible for setting up and managing the execution of kernels

on the OpenCL device through the use of context. Using the OpenCL API, the host

can create and manipulate the context by including the following resources:

• Devices:A set of OpenCL devices used by the host to execute kernels.

• Program Objects:The program source or program object that implements a

kernel or collection of kernels.

• Kernels:The specific OpenCL functions that execute on the OpenCL device.

• Memory Objects:A set of memory buffers or memory maps common to the

host and OpenCL devices.

After the context is created, command queues are created to manage execution of

the kernels on the OpenCL devices that were associated with the context. Command

queues accept three types of commands:

• Kernel execution commands run the kernel command on the OpenCL devices.

• Memory commands transfer memory objects between the memory space of the

host and the memory space of the OpenCL devices.

• Synchronization commands define the order in which commands are executed.

Commands are placed into the command queue in-order and execute either in-order

or out-of-order. In case of in-order mode, the commands are executed serially as they

are placed onto the queue. In out-of-order mode, the order the commands execute is

based on the synchronization constraints placed on the command.

3.3.3 The Memory Model

Since common memory address space is unavailable on the host and the OpenCL

devices, the OpenCL memory model defines four regions of memory accessible to

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 42

work-items when executing a kernel.[24][26] The Fig.3.5 shows the regions of memory

accessible by the host and the compute device:

Global memory is a memory region in which all work-items and work-groups

Figure 3.5: OpenCL Memory Model[24][26]

have read and write access on both the compute device and the host. This region of

memory can be allocated only by the host during runtime.

Constant memory is a region of global memory that stays constant throughout the

execution of the kernel. Work-items have only read access to this region. The host is

permitted both read and write access.

Local memory is a region of memory used for data-sharing by work-items in a work-

group. All work-items in the same work-group have both read and write access.

Private memory is a region that is accessible to only one work-item.

In most cases, host memory and compute device memory are independent of one

another. Thus, memory management must be explicit to allow the sharing of data

between the host and the compute device. This means that data must be explicitly

moved from host memory to global memory to local memory and back. This process

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 43

works by enqueuing read/write commands in the command queue. The commands

placed into the queue can either be blocking or non-blocking. Blocking means that

the host memory command waits until the memory transaction is complete before

continuing. Non-blocking means the host simply puts the command in the queue and

continues, not waiting until the memory transaction is complete.[24][26]

3.4 Executing an OpenCL Program

The OpenCL framework is divided into a platform layer API and runtime API. The

platform API allows applications to query for OpenCL devices and manage them

through a context. The runtime API makes use of the context to manage the execution

of kernels on OpenCL devices.[24][26]The basic steps involved in creating any OpenCL

program are shown in Fig.3.6.

Figure 3.6: OpenCL Execution model[24][26]

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 44

The execution of OpenCL program is carried out in following steps:

1. Query the host system for OpenCL devices.

2. Create a context to associate the OpenCL devices.

3. Create programs that will run on one or more associated devices.

4. From the programs, select kernels to execute.

5. Create memory objects on the host or on the device.

6. Copy memory data to the device as needed.

7. Provide arguments for the kernels.

8. Submit the kernels to the command queue for execution.

9. Copy the results from the device to the host.

3.5 Multiplication of Large Square Matrices

Execution of OpenCL program is illustrated through matrix multiplication applica-

tion. The task at hand is standard, i.e. to multiply two matrices. It is chosen

primarily due to the fact that quite a lot of information on the subject can be found

in different sources. Most of them, one way or another, offer more or less coordinated

solutions. The further discussion will give step-by-step clarifications of OpenCL ar-

chitecture, its memory model and programming through example of Square Matrix

Multiplication .

Below is a matrix multiplication formula well-known in linear algebra, modified for

computer calculations. The first index is the matrix row number, the second index

is the column number. Every output matrix element is calculated by sequentially

adding each successive product of elements in the first and second matrices to the

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 45

accumulated sum. Eventually, this accumulated sum is the calculated output matrix

element:

Ci,j = Ci,j +
∑P

k=o Ai,k ∗Bk,j

0 ≤ i ≤ N

0 ≤ j ≤M

It can schematically be represented as shown in Fig.3.7:

Figure 3.7: Matrix multiplication algorithm

3.6 Parallel Implementation

Since to create three linear buffers for the OpenCL kernel, it would be reasonable

to rework the initial algorithm so that it is as similar to the kernel algorithm as

possible. The code of the “non-parallel” program on a ‘ingle core CPU” with linear

buffers is provided together with the kernel code. The optimality of the code with

two-dimensional arrays does not mean that its analog will also be optimal for linear

buffers: all tests will have to be repeated. To avoid a possible matrix/buffer element

addressing confusion, a Matrix (M rows by N columns) is laid out in global GPU

memory as a linear buffer. One needs to calculate a linear shift of an element Ma-

trix[row][column].

There is in fact no fixed order of laying out a matrix in GPU memory since it is

determined by the logic of the problem alone. For example, elements of both matrices

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 46

could be laid out differently in buffers because as far as the matrix multiplication

algorithm is concerned, matrices are asymmetrical, i.e. the rows of the first matrix

are multiplied by the columns of the second matrix. Such rearrangement can greatly

affect the calculation performance in sequential reading of matrix elements from global

GPU memory in every iteration of the kernel.

The first implementation of the algorithm will feature matrices laid out in the same

manner - in row-major order. The first row elements will be first to be placed into the

buffer followed by all elements of the second row and so on. The formula of flattening

a 2-dimensional representation of a matrix Matr[M(rows)][N(columns)] onto linear

memory is as shown in Fig.3.8.

3.6.1 OpenCL Kernel

The OpenCL kernel for matrix multiplication looks as follows:

k e r n e l

void mat r i xMu l t i p l i c a t i on (g l o b a l f l o a t ∗ A, g l o b a l f l o a t ∗

B, g l o b a l f l o a t ∗ C, i n t widthA , i n t widthB)

{

i n t i = g e t g l o b a l i d (0) ;

i n t j = g e t g l o b a l i d (1) ;

f l o a t va lue =0;

f o r (i n t k = 0 ; k < widthA ; k++)

{

value = value + A[k + j ∗ widthA] ∗ B[k∗

widthB + i] ; }

C[i + widthA ∗ j] = value ;

}

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 47

Figure 3.8: Algorithm for converting a two-dimensional index space into linear for
laying the matrix out in the GPU buffer with Row-Major And Column Major

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 48

3.6.2 OpenCL Source code for C++

//Program to mult ip ly two matr i ce s us ing OpenCL in GPU

//#inc lude ” s tda fx . h”

#inc lude < s t d i o . h >

#inc lude < s t d l i b . h >

#inc lude < time . h >

#inc lude < ctime >

#inc lude <time . h>

#d e f i n e widthA 512

#d e f i n e heightA 512

#d e f i n e widthB heightA

#d e f i n e heightB 512

#d e f i n e widthC widthA

#d e f i n e heightC heightB

#i f d e f APPLE

#inc lude < OpenCL/ openc l . h >

#e l s e

#inc lude < CL/ c l . h >

#e n d i f

#d e f i n e MEM SIZE (128)

#d e f i n e MAX SOURCE SIZE (0 x100000)

i n t main ()

{

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 49

f l o a t ∗ A = (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗widthA∗heightA) ;

f l o a t ∗ B = (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗widthB∗heightB) ;

f l o a t ∗ C = (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗widthC∗heightC) ;

f l o a t ∗ Res = (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗widthC∗heightC)

;

f l o a t ∗ D= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗widthC∗heightC) ;

FILE ∗ fp1 = fopen (” matAdata . csv ” , ”w”) ;

i f (! fp1) {

f p r i n t f (s tde r r , ” Fa i l ed to open matAdata .\n”) ;

e x i t (1) ;

}

c l o c k t b1=c lock () ;

f l o a t p=1;

f o r (i n t i = 0 ; i < widthA ; i++)

{

f o r (i n t j =0; j<heightA ; j++) {

∗(A+i ∗heightA+j)=p ;

f p r i n t f (fp1 , ”%f , ” ,∗ (A+i ∗heightA+j)) ;

p++;

}

f p r i n t f (fp1 , ”\n”) ;

}

f c l o s e (fp1) ;

fp1 = fopen (” matBdata . csv ” , ”w”) ;

i f (! fp1) {

f p r i n t f (s tde r r , ” Fa i l ed to open matAdata .\n”) ;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 50

e x i t (1) ;

}

f l o a t q=1;

f o r (i n t i = 0 ; i < widthB ; i++)

{

f o r (i n t j =0; j<heightB ; j++) {

∗ ((B+i ∗heightB+j))=q ;

f p r i n t f (fp1 , ”%f , ” ,∗ (B+i ∗heightA+j)) ;

q++;

}

f p r i n t f (fp1 , ”\n”) ;

}

f c l o s e (fp1) ;

c l o c k t e1=c lock () ;

double t1 =((e1−b1) ∗1000) /CLOCKS PER SEC ; ;

p r i n t f (”Time e lapsed f o r i n i t i a l i s a t i o n :% f \n” , t1) ;

c l d e v i c e i d d e v i c e i d = NULL;

c l c o n t e x t context = NULL;

cl command queue command queue = NULL;

cl mem memobjA = NULL;

cl mem memobjB = NULL;

cl mem memobjC = NULL;

cl mem rowA = NULL;

cl mem colC = NULL;

c l program program = NULL;

c l k e r n e l k e rne l = NULL;

c l p l a t f o r m i d p l a t f o rm id = NULL;

c l u i n t re t num dev ice s ;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 51

c l u i n t ret num plat forms ;

c l i n t r e t ;

// char s t r i n g [MEM SIZE] ;

FILE ∗ fp ;

char f i leName [] = ” ./ h e l l o . c l ” ;

char ∗ s o u r c e s t r ;

s i z e t s o u r c e s i z e ;

i n t row = widthA ;

i n t c o l = heightC ;

/∗ Load the source code conta in ing the ke rne l ∗/

fp = fopen (fi leName , ” r ”) ;

i f (! fp) {

f p r i n t f (s tde r r , ” Fa i l ed to load ke rne l .\n”) ;

e x i t (1) ;

}

s o u r c e s t r = (char ∗) mal loc (MAX SOURCE SIZE) ;

s o u r c e s i z e = f r ead (s o u r c e s t r , 1 , MAX SOURCE SIZE, fp) ;

f c l o s e (fp) ;

/∗ Get Platform and Device In f o ∗/

r e t = clGetPlat formIDs (1 , &p la t fo rm id , &ret num plat forms)

;

r e t = clGetDeviceIDs (p la t fo rm id , CL DEVICE TYPE GPU, 1 , &

dev i c e i d , &ret num dev ice s) ;

/∗ Create OpenCL context ∗/

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 52

context = clCreateContext (NULL, 1 , &dev i c e i d , NULL, NULL,

&r e t) ;

/∗ Create Command Queue ∗/

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 ,

&r e t) ;

/∗ Create Memory Buf f e r ∗/

memobjA = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, widthA

∗ heightA ∗ s i z e o f (f l o a t) , NULL, &r e t) ;

memobjB = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, widthB

∗ heightB ∗ s i z e o f (f l o a t) , NULL, &r e t) ;

memobjC = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, widthC

∗ heightC ∗ s i z e o f (f l o a t) , NULL, &r e t) ;

rowA = c lCrea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

i n t) , NULL, &r e t) ;

colC = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

i n t) , NULL, &r e t) ;

c l o c k t b2=c lock () ;

// Copy the l i s t s A and B to t h e i r r e s p e c t i v e memory

b u f f e r s

r e t = clEnqueueWriteBuffer (command queue , memobjA , CL TRUE

, 0 ,

widthA ∗ heightA ∗ s i z e o f (i n t) , A, 0 , NULL, NULL) ;

r e t = clEnqueueWriteBuffer (command queue , memobjB ,

CL TRUE, 0 ,

widthB ∗ heightB ∗ s i z e o f (i n t) , B, 0 , NULL, NULL)

;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 53

r e t = clEnqueueWriteBuffer (command queue , rowA ,

CL TRUE, 0 , s i z e o f (i n t) , &row , 0 , NULL, NULL) ;

r e t = clEnqueueWriteBuffer (command queue , colC ,

CL TRUE, 0 , s i z e o f (i n t) , &col , 0 , NULL, NULL) ;

/∗ Create Kernel Program from the source ∗/

program = clCreateProgramWithSource (context , 1 , (const char

∗∗)&s o u r c e s t r , (const s i z e t ∗)&s o u r c e s i z e , &r e t) ;

/∗ Build Kernel Program ∗/

r e t = clBuildProgram (program , 1 , &dev i c e i d , NULL, NULL,

NULL) ;

/∗ Create OpenCL Kernel ∗/

ke rne l = c lCreateKerne l (program , ” mat r i xMu l t i p l i c a t i on ” , &

r e t) ;

/∗ Set OpenCL Kernel Arguments ∗/

r e t = clSetKerne lArg (kerne l , 0 , s i z e o f (cl mem) , (void ∗)&

memobjA) ;

r e t = clSetKerne lArg (kerne l , 1 , s i z e o f (cl mem) , (void ∗)&

memobjB) ;

r e t = clSetKerne lArg (kerne l , 2 , s i z e o f (cl mem) , (void ∗)&

memobjC) ;

// r e t = clSetKerne lArg (kerne l , 0 , s i z e o f (cl mem) , (void ∗)&

memobjA) ;

r e t = clSetKerne lArg (kerne l , 3 , s i z e o f (i n t) , (void ∗)&row) ;

r e t = clSetKerne lArg (kerne l , 4 , s i z e o f (i n t) , (void ∗)&c o l) ;

/∗ Execute OpenCL Kernel ∗/

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 54

// r e t = clEnqueueTask (command queue , kerne l , 0 , NULL,NULL) ;

s i z e t g loba lThreads [2] = {widthA , heightB } ;

s i z e t l oca lThreads [2] = {8 ,8} ;

clEnqueueNDRangeKernel (command queue , kerne l , 2 , NULL,

globalThreads , loca lThreads ,NULL, 0 , NULL) ;

/∗ Copy r e s u l t s from the memory b u f f e r ∗/

r e t = clEnqueueReadBuffer (command queue , memobjC , CL TRUE,

0 , widthA ∗ heightC ∗

s i z e o f (f l o a t) , Res , 0 , NULL, NULL) ;

c l o c k t e2=c lock () ;

double t2 =((e2−b2) ∗1000) /CLOCKS PER SEC ; ;

p r i n t f (”Time e lapsed f o r GPU:% f \n” , t2) ;

fp1 = fopen (”matGPURes . csv ” , ”w”) ;

i f (! fp1) {

f p r i n t f (s tde r r , ” Fa i l ed to open matAdata .\n”) ;

e x i t (1) ;

}

p r i n t f (”\ nResult\n”) ;

f o r (i n t i = 0 ; i < widthA ; i++)

{

f o r (i n t j =0; j < heightC ; j++)

{

f p r i n t f (fp1 , ”%f , ” ,∗ (Res+i ∗heightC+j)

) ;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 55

}

f p r i n t f (fp1 , ”\n”) ;

}

f c l o s e (fp1) ;

r e t = c lF lush (command queue) ;

r e t = c l F i n i s h (command queue) ;

r e t = c lRe l ea s eKerne l (k e rne l) ;

r e t = clReleaseProgram (program) ;

r e t = clReleaseMemObject (memobjA) ;

r e t = clReleaseMemObject (memobjB) ;

r e t = clReleaseMemObject (memobjC) ;

r e t = clReleaseCommandQueue (command queue) ;

r e t = c lRe leaseContext (context) ;

f r e e (s o u r c e s t r) ;

// system (” pause ”) ;

f l o a t sum=0.0;

c l o c k t b3=c lock () ;

f o r (i n t i = 0 ; i < widthA ; i++)

{

f o r (i n t j = 0 ; j < heightC ; j++)

{

sum = 0 ;

f o r (i n t k = 0 ; k < widthB ; k++)

{

sum += A[i ∗ c o l+k] ∗ B[k∗row+j

] ;

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 56

}

D[i ∗heightC+j] = sum ;

}

}

c l o c k t e3=c lock () ;

double t3 =((e3−b3) ∗1000) /CLOCKS PER SEC ; ;

p r i n t f (”Time e lapsed f o r CPU:% f \n” , t3) ;

fp1 = fopen (” matNormalMult ipl icat ionRes . csv ” , ”w”) ;

i f (! fp1) {

f p r i n t f (s tde r r , ” Fa i l ed to open matAdata .\n”) ;

e x i t (1) ;

}

p r i n t f (”\ nResult\n”) ;

f o r (i n t i = 0 ; i < widthA ; i++)

{

f o r (i n t j =0; j < heightC ; j++)

{

f p r i n t f (fp1 , ”%f , ” ,∗ (D+i ∗heightC+j)) ;

}

f p r i n t f (fp1 , ”\n”) ;

}

// system (” pause ”) ;

r e turn 0 ;

}

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 57

3.6.3 Comparison of Speedup and Efficiency

In order to calculate speedup, we need to calculate following three time. In OpenCL

terminology, host refers to the hardware which carries out sequential instructions and

device refers to hardware which carries out parallel computations. If GPU is used as

parallel computing hardware than it is known as device. Similarly if CPU is used as

parallel computing hardware than it is known as both host and device. CPU-S stands

for sequential time taken by the CPU for computation and communication time is

time taken to transfer data from host variable to device buffer.It includes both transfer

time i.e transfer from host to device and transfer from device to host. Execution time

is a time taken by device for parallel computations.Both execution time and com-

munication time are affected by the temperature and latency of the device.

In order to record time. time function in time.h header file is used. Code given below

is example showing how time is recorded.

c l o c k t c1=c lock () ;

f o r (i =1;u<=1000; i++)

{ c [i]=a [i] + b [i] ; }

c l o c k t c2=c lock () ;

double c3 =((c2−c1) ∗1000) /CLOCKS PER SEC ; ;

c3 gives time required for execution code taken as example.

c l o c k t t4=c lo ck () ;

c lEnqueueWriteBuffer (command queue , inputA , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ DATA SIZE, inputDataA , 0 , NULL, NULL) ;

c l o c k t t5=c lo ck () ;

double t6 =((t5−t4) ∗1000) /CLOCKS PER SEC ; ;

t6 gives time required for loading data of buffer inputA into variable inputDataA.

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 58

Now speedup factor is a ratio of total sequential computation time to total paral-

lel computation time.Prallel computation time is summation of execution time and

communication time. Mathematically speedup factor can be defined as follows.

Speedupfactor =
TSequential

TParallel

Table 3.1: Speedup For Paralle Square Matrix Multiplication Results

Various sizes of matrices are considered for implementation of matrix multiplication.

Device used for this matrix multiplication is ATI Mobility Radeon HD 4500/5100

Series. Table-3.1 shows the time required for parallel computations. GPU time,

sequential computation CPU time and speedup. Parallel and sequential time required

for multiplication of matrices of N × N order on CPU and GPU respectively are shown

in Fig.3.9 and 3.10

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 59

F
ig

u
re

3.
9:

G
P

U
A

n
d

C
P

U
Im

p
le

m
en

ta
ti

on
of

S
q
u
ar

e
M

at
ri

x
M

u
lt

ip
li
ca

ti
on

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 60

F
ig

u
re

3.
10

:
C

om
p
ar

is
on

O
f

C
om

p
u
ta

ti
on

T
im

e
F

or
G

P
U

A
n
d

C
P

U
Im

p
le

m
en

ta
ti

on
of

S
q
u
ar

e
M

at
ri

x
M

u
lt

ip
li
ca

ti
on

CHAPTER 3. INTRODUCTION TO OPENCL PROGRAMMING 61

Fig.3.9 and 3.10 it is observed that for matrices of sizes upto 328×328, there is

not much speed up. But for larger size of matrices there is significant speedup.

From the results it is clear that parallel processing reduces the overll computing

time.Parallel processing is much faster than sequential processing in case of square

matrix multiplication problem considered here. It can be concluded that use of GPU

for general Purpose Computing is useful in field of Structural Analysis.

3.7 Summary

In this chapter, introduction of OpenCL language along with its memory model and

modules is explained in brief. It also gives an idea about OpenCL program kernel and

its functioning. Multiplication of square matrices to illustrate application of OpenCL

on GPU is presented in this chapter.

Chapter 4

Gaussian Elimination

4.1 General

Gaussian Elimination is widely used numerical method for the solution of simultane-

ous linear algebraic equations in which the unknowns are eliminated by combining

the equations. The main aim of this method is to reduce a set of n equations in n

unknowns to an equivalent triangular set (an equivalent set is a set having identical

solution values) which is then easily solved by ”back substitution”. This method,

hence, consists of two steps:

1. Triangularization

2. Back Substitution.

It is not practical to solve the linear algebraic equations by Cramer’s Rule for n >

3. This method is quite uneconomical as compared to elimination methods and also

difficult to automate. It does establish that there is a unique solution for all equations

provided |A| 6= 0. A square matrix whose determinant is zero is known as a singular

matrix. The solution of equations which have a singular or near singular coefficient

matrix will require special consideration. Usually, computational time is proportional

62

CHAPTER 4. GAUSSIAN ELIMINATION 63

to the number of mathematical operations i.e multiplications or additions. The num-

ber of multiplication in Cramer’s Rule is (n− 1)(n + I)!

Thus, the solution of ten simultaneous equations by determinants would require

3592512000 multiplications. With the multiplications performed on the computer

at the rate of 2600/sec, atleast 38 hours is required to solve 10 equations by Cramer’s

Rule. To obtain a solution for 26 equations 3 × (10)18 years would be required to

obtain a solution. Yet in problems of engineering we use this method for solving

equations less than three.Consider the set of equations below

E0
1 = a11x1 + a12x2 + ... + a1nxn = b1 (4.1)

E0
2 = a21x1 + a22x2 + ... + a2nxn = b2 (4.2)

...

E0
i = ai1x1 + ai2x2 + ... + aijxj + ... + ainxn = bi (4.3)

...

E0
n = an1x1 + an2x2 + ... + annxn = bn (4.4)

Triangularization process

The first equation(4.1) E0
1 of system is divided by the coefficient of x1 in that equa-

tion(4.1) to obtain

E
′

1 =
E0

1

a11
= x1 +

a12
a11

x2 +
a13
a11

x3 + ... +
a1n
a11

xn =
b1
a11

(4.5)

Equation(4.5) is next multiplied by the co-efficient of x1 in Equation(4.2) E0
2 and

resulting equation is subtracted from E0
2 thus eliminating x1 from E0

2 as follows.

CHAPTER 4. GAUSSIAN ELIMINATION 64

E
′

2 = E0
2−a21E

1
1 = (a22−

a21a12
a11

)x2 +(a23−
a21a13
a11

)x3 +(a2n−
a21a1n
a11

)xn = b2−
a21b1
a11
(4.6)

Similarly

E
′

i = E0
i − ai1E

′

1 (4.7)

And so on

E
′

n = E0
n − an1E

′

1 (4.8)

The equation used to eliminate the unknowns in the equations which follow it is called

the ′PivotEquation′. In the pivot equation, the coe-efficient of unknown which is to

be eliminated from subsequent equations is known as the pivot co-efficient (a11 in

the preceding steps).Followig the above steps considering the second equation(4.2)

as pivot equation and repeating same steps to eliminate x2 from all equations.This

entire procedure is repeated (n-1) times to get following form.

1 a
′
12 a

′
13 ... a

′
1n

0 1 a
′
23 a

′
2n

0 ... 1

...

0 0 0 ... an−1nn

X

x1

x2

...

...

xn

=

b
′
1

b
′
2

...

...

bn−1n

Back Substitution

After triangular set of equations has been obtained, that last equation in this equiv-

alent set yields the value of xn directly as

xn =
bn−1n

an−1nn

(4.9)

CHAPTER 4. GAUSSIAN ELIMINATION 65

This value is then back substituted in the next-to-last equations of the triangular set

to obtain a value of xn−1 as

xn−1 = bn−1n−1 − an−1n(n−1)xnandsoon. (4.10)

Reviewing the procedure outlined in Triangularization, it can be seen that the ele-

ments of the reduced matrix-A
′

can be written directly from the original matrix-A,

using the formula as

a
′

ij = aij −
aik(akj)

akk
(4.11)

where k ≤ j ≤ m and k + 1 ≤ i ≤ n

After obtaining the augmented matrix of the equivalent triangular set of equations,

the xi values are obtained by back substitution.

In order to program this in computer, we can write

akij = ak−1ij −
ak−1kj (ak−1ik)

ak−1kk

(4.12)

bik =
bk−1i − ak−1ik − bk−1k

ak−1kk

(4.13)

where k + 1 ≤ j ≤ n

k + 1 ≤ i ≤ n

i=row number of matrix

j=column number of matrix

k=number identifying pivot row

n=number of rows in matrix

m=number of columns in matrix

CHAPTER 4. GAUSSIAN ELIMINATION 66

4.2 Algorithm of Gaussian Elimination

1 Assume N equations and Elimination has been completed upto (N−1)th variable

2 The Elimination of then nth variable

• anj = anj/ann

bn = bn/ann

• For i=n+1, aij = aij − ainanj for j=n+1

bi = bi − ainbn

3 Now Set n=n+1 and go back to 2

4 Back Substitution

Solve XN = bN−1N /aNN

XN−1 = bN−2N−1 − [aN−2N−1XN]

4.3 Sequential Implementation

The following code represents the sequential implementation of Gauss Elimination.

It consists both Triangularization and Back Substitutions.

f o r (u=1;u<=(1∗nj) ; u++)

{

temp=kj [u] [u] ;

f o r (j =1; j <=(1∗nj) ; j++)

kj [u] [j]= kj [u] [j] / temp ;

ac [u]=ac [u] / temp ;

f o r (i =1; i <=(1∗nj) ; i++)

{

i f (i==u) cont inue ;

CHAPTER 4. GAUSSIAN ELIMINATION 67

temp1=kj [i] [u] ;

f o r (j =1; j <=(1∗nj) ; j++)

kj [i] [j]= kj [i] [j]−kj [u] [j]∗ temp1 ;

ac [i]=ac [i]−ac [u]∗ temp1 ;

}

}

where [kj]=Matrix to be inversed and [ac]=Displacement Vector

After running this code, one gets directly the unknown vector {x} in form of vector

{ac}.

4.4 Parallel Implementation

Parallel implementation requires host program and kernel function.Entire host pro-

gram along with kernel function is given in Appendix-A. The following code represents

kernel functions that executes on parallel hardware i.e CPU/GPU. Only Triangular-

ization is done in parallel and Back Substitution is done sequentially.

1 Triangularization is divided into two kernel functions.

\ k e r n e l void add (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t)

{

i n t g l o b a l I d = g e t g l o b a l i d (0) ;

i f (g l o b a l I d < s i z e−1−t)

{

∗(inputM + s i z e ∗ (g l o b a l I d + t + 1)+t) = ∗(

inputA + s i z e ∗ (g l o b a l I d + t + 1) + t) / ∗(

inputA + s i z e ∗ t + t) ;

CHAPTER 4. GAUSSIAN ELIMINATION 68

}

}

k e r n e l void add2 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t)

{

i n t g l oba l Idx = g e t g l o b a l i d (0) ;

i n t g l oba l Idy = g e t g l o b a l i d (1) ;

i f (g l oba l Idx < s i z e−1−t && g loba l Idy < s i z e−t)

{

inputA [s i z e ∗(g l oba l Idx+1+t)+(g l oba l Idy+t)] −=

inputM [s i z e ∗(g l oba l Idx+1+t)+t] ∗ inputA [s i z e ∗ t

+(g l oba l Idy+t)] ;

i f (g l oba l Idy == 0)

{

inputB [g l oba l Idx+1+t] −= inputM [s i z e ∗(

g l oba l Idx+1+t)+(g l oba l Idy+t)]∗ inputB [t] ;

}

}

}

2 Back Substitution

f o r (i =0; i<s i z e ; i++)

{

f i na lVec [s i z e−i−1]=inputDataB [s i z e−i −1] ;

f o r (j =0; j<i ; j++)

{

f i na lVec [s i z e−i−1]−=∗(inputDataA+s i z e ∗(s i z e−i

−1)+(s i z e−j−1))∗ f i na lVec [s i z e−j −1] ;

CHAPTER 4. GAUSSIAN ELIMINATION 69

}

f i na lVec [s i z e−i−1]= f i na lVec [s i z e−i −1]/∗(inputDataA+

s i z e ∗(s i z e−i −1)+(s i z e−i −1)) ;

}

Equations in form of [A]{x}={B} using finite element analysis of axial bar using 3-

node bar element where A=Square Stiffness Matrix, B=Load Vector and x=Displacement

vector. For comparing computational efficiency of parallel code, speedup factor which

is ratio of sequential execution time to parallel execution time is calculated for dif-

ferent number of linear equations ranging 101 to 10001. Different types of hardwares

used are listed in Table-4.1 given below.

Table 4.1: Hardware used and their configurations

Results of sequential and parallel implementation are measured in millisecond i.e ms.

CPU-S stands for sequential time and CPU-P stands for parallel time. CPU-P is

summation of execution time and communication time. Communication time de-

pends on bandwidth of computer system considered. Bandwidth refers to amount of

data transferred per unit time. Different computer systems have different bandwidth

of data transfer.

CHAPTER 4. GAUSSIAN ELIMINATION 70

Table-4.2 shows results of speedup for set of linear equation systems tested on Intel R©

CoreTMi3-3210 Processor(3M Cache,3.20 GHz). It is seen that for small set of equa-

tions i.e. 101 and 201 number of equations sequential computing time is equal to

parallel computing time. For solving 301 and 401 number of equations, sequential

computing time is more compared to parallel computing time. For solving number

of equations from 101 to 601 there is no communication time which means that data

transfer is done at maximum speed. For solving equations more than 701, sequen-

tial computing time is increasing considerably but parallel computing time is lesser.

Maximum speed up of 838 for solving 10001 number of equations is obtained. Fig.4.1

is graphical representation of the results.

Table-4.3 shows results of speedup for set of linear equation systems tested on Intel R©

CoreTMi5-3450 Processor(6M Cache,3.50GHz). It is seen that for small set of equa-

tions i.e. 101 and 301number of equations sequential computing time is equal to

parallel computing time. For solving number of equations more than 301,sequential

computing time is more compared to parallel computing time. For solving number

of equations from 101 to 301 there is no communication time which means that data

transfer is done at optimum speed. For solving number of equations from 101 to 1301,

there is no execution time for parallel computing which means that all computations

are done in single fraction of second. Maximum speed up of 1100 for solving 10001

number of equations is obtained. Fig.4.2 is graphical representation of the results.

Table-4.4 shows results of speedup for set of linear equation systems tested on Intel R©

CoreTMi7-3450 Processor(6M Cache,3.50GHz). This hardware is having 32GB RAM

in divided into 4 different slots each of 8GB.Due to multiple slots, it is seen that

for small set of equations i.e. 301 number of equations there is communication time.

Maximum speed up of 316 for solving 5001 number of equations is obtained. Fig.4.3

is graphical representation of the results.

CHAPTER 4. GAUSSIAN ELIMINATION 71

Table 4.2: Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M
Cache,3.20 GHz)

CHAPTER 4. GAUSSIAN ELIMINATION 72

F
ig

u
re

4.
1:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

u
si

n
g

In
te

l
R ©

C
or

eT
M

i3
-3

21
0

P
ro

ce
ss

or
(3

M
C

ac
h
e,

3.
20

G
H

z)

CHAPTER 4. GAUSSIAN ELIMINATION 73

Table 4.3: Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M
Cache,3.50GHz)

CHAPTER 4. GAUSSIAN ELIMINATION 74

F
ig

u
re

4.
2:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

u
si

n
g

In
te

l
R ©

C
or

eT
M

i5
-3

45
0

P
ro

ce
ss

or
(6

M
C

ac
h
e,

3.
50

G
H

z)

CHAPTER 4. GAUSSIAN ELIMINATION 75

Table 4.4: Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M
Cache,3.50GHz)

CHAPTER 4. GAUSSIAN ELIMINATION 76

F
ig

u
re

4.
3:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

u
si

n
g

In
te

l
R ©

C
or

eT
M

i7
-3

45
0

P
ro

ce
ss

or
(6

M
C

ac
h
e,

3.
50

G
H

z)

CHAPTER 4. GAUSSIAN ELIMINATION 77

Table-4.5 shows results of speedup for set of linear equation systems tested on Intel R©

CoreTMi7-2630QM Processor(2.0GHz). It is seen that for small set of equations i.e.

101 and 201 number of equations sequential computing time is equal to parallel com-

puting time. For solving number of equations more than 301, sequential computing

time is more compared to parallel computing time. For number of equations from

101 to 801, there is no communication time which means that data transfer is done at

maximum speed. Since this hardware is on laptop, there is execution time right from

101 equations. For given hardware, maximum speed up of 1702 for solving 10001

number of equations is obtained. Fig.4.4 is graphical representation of the results.

Table-4.6 shows results of speedup for set of linear equation systems tested on NVIDIA

GeForce GT 525M. It is seen that for small set of equations i.e. 101 and 201 num-

ber of equations sequential computing time is equal to parallel computing time. For

number of equations more than 301, sequential computing time is more compared to

parallel computing time. For solving number of equations from 101 to 501, there is

no communication time which means that data transfer is done at optimum speed.

Since this hardware is on laptop, there is execution time right from 301 number of

equations onwards. For given hardware, maximum speed of 1702 for solving 10001

number of equations is obtained. Fig.4.5 is graphical representation of the results.

CHAPTER 4. GAUSSIAN ELIMINATION 78

Table 4.5: Performance Comparison using Intel R© CoreTMi7-2630QM Proces-
sor(2.0GHz)

CHAPTER 4. GAUSSIAN ELIMINATION 79

F
ig

u
re

4.
4:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

u
si

n
g

In
te

l
R ©

C
or

eT
M

i7
-2

63
0Q

M
P

ro
ce

ss
or

(2
.0

G
H

z)

CHAPTER 4. GAUSSIAN ELIMINATION 80

Table 4.6: Performance Comparison using NVIDIA GeForce GT 525M

CHAPTER 4. GAUSSIAN ELIMINATION 81

F
ig

u
re

4.
5:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

u
si

n
g

N
V

ID
IA

G
eF

or
ce

G
T

52
5M

CHAPTER 4. GAUSSIAN ELIMINATION 82

F
ig

u
re

4.
6:

C
om

p
ar

is
on

of
E

x
ec

u
ti

on
T

im
e

of
D

iff
er

en
t

H
ar

d
w

ar
es

fo
r

G
au

ss
E

li
m

in
at

io
n

CHAPTER 4. GAUSSIAN ELIMINATION 83

F
ig

u
re

4.
7:

C
om

p
ar

is
on

of
C

om
m

u
n
ic

at
io

n
T

im
e

of
D

iff
er

en
t

H
ar

d
w

ar
es

fo
r

G
au

ss
E

li
m

in
at

io
n

CHAPTER 4. GAUSSIAN ELIMINATION 84

F
ig

u
re

4.
8:

C
om

p
ar

is
on

of
S
p

ee
d
u
p

fa
ct

or
of

D
iff

er
en

t
H

ar
d
w

ar
es

fo
r

G
au

ss
E

li
m

in
at

io
n

CHAPTER 4. GAUSSIAN ELIMINATION 85

Fig.4.6 shows comparison of execution time of both parallel and sequential code of

Gauss Elimination. Solid line and dashed line represents results of sequential ex-

ecution time and parallel execution time respectively. It is observed that parallel

execution time lesser than sequential execution time for all the types of hardwares

used in parametric study. Parallel execution time of Intel R© CoreTMi5-3450 Processor

is least followed by Intel R© CoreTMi3 Processor. Parallel execution time of Intel R©

CoreTMi7-2630QM Processor and NVIDIA GeForce GT 525M GPU are nearly same.

Fig.4.7 shows comparison of communication time of all 5 computer systems used for

parametric study. Intel R© CoreTMi7-3450 Processor system is taking maximum com-

munication time. This is due to multiple slots of 32 GB RAM divided into 4 slots

each of 8 GB. Intel R© CoreTMi7-2630QM Processor is taking least communication

time among all 5 computer systems upto 2501 number of equations but after that

NVIDIA GeForce GT 525M GPU is taking least communication time for larger num-

ber of equations.

Fig.4.8 shows comparison of speedup factor of all 5 computer systems considered.

Intel R© CoreTMi7-2630QM Processor gives maximum speedup factor of 1702.099 among

all 5 computer systems followed by NVIDIA GeForce GT 525M GPU with speedup

factor of 1241.979. For parallel implementation of Gauss Elimination, Intel R© CoreTMi7-

2630QM gives optimum performance among 5 computer systems.

4.5 Summary

In this chapter, Gaussian Elimination method for solving linear equations i.e. [A]{x}={B}

where [A] is square matrix, with the help of an algorithm is presented. Its sequential

and parallel implementations on multi-core CPUs and GPUs is presented. Based on

different number of linear equation systems tested on different computer systems,

results of execution time, communication time and speedup factor are presented.

Chapter 5

Half-Band Matrix Solver

5.1 General

Generally in analysis of various types of structures, stiffness matrices are square and

symmetric consisting of many zero elements. So, storing stiffness matrix in square

form will require large memory and large number of computations. If matrix is stored

in Half-Band form, amount of memory required and number of computations will be

reduced drastically.

Consider the symmetric matrix shown below. There are some zero elements.

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36 a37

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a62 a63 a64 a65 a66 a67 a68

a73 a74 a75 a76 a77 a78

a84 a85 a86 a87 a88

86

CHAPTER 5. HALF-BAND MATRIX SOLVER 87

It is enough to store elements on the upper portion of the main diagonal as shown. As

far as the first row is concerned, one has to store all the five elements. But in second

row one need not to store a21 since a21 = a12 which is already stored. Similarly, in

the third row we store elements a33 to a37 and the storage scheme is shown in matrix

below

a11 a12 a13 a14 a15

a22 a23 a24 a25 a26

a33 a34 a35 a36 a37

a44 a45 a46 a47 a48

a55 a56 a57 a58

a66 a67 a68

a77 a78

a88

By using this procedure insted of storing 8×8=64 elements, in band matrix only

8×5=40 elements are stored. This is the greatest advantage in saving the storage

memory.To solve the banded-matrix modified Gauss Elimination solver is used. The

band- matrix is stored as shown in Figure5.1 below

Figure 5.1: Band Matrix for sympatric square matrix (a) Square Matrix (b) Band
Matrix[35]

CHAPTER 5. HALF-BAND MATRIX SOLVER 88

5.2 Algorithm of Half-Band Solver

1 c = a12/a11

2 Modify second row elements as follows

a
′
21 = a21 − a12a12

a11

a
′
22 = a22 − a13a12

a11

a
′
23 = a23 − a14a12

a11

a
′
24 = a24 − a15a12

a11

3 Modify right hand side b2 as

b
′
2 = b2 − a12b1

a11

4 Now change value of changing value of a12 as follows

a
′
12 = c

After following above four steps we get following matrix.

a
′
11 a12 a13 a14 a15

a
′
21 a

′
22 a

′
23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54

a61 a62 a63

a71 a72

a81

Taking the second equation, one may follow the same steps as 1 to 4 as before. This

is to be repeated for (NE−1) times.For N th equation and modifying the athNL element

a
′
IJ = aIJ − aNLaNK

aN1

CHAPTER 5. HALF-BAND MATRIX SOLVER 89

b
′
I = bI − aNLbN

aN1

5.3 Sequential Implementation

Based on algorithm discussed previously, sequential code for Half-Band solver is as

follows.

a Factorization

NL=nra−nb+1;

NM=nra−1;

MR=nb ;

f o r (N=1;N<=NM;N++)

{ BN=ac [N] ;

ac [N]=BN/ kj [N] [1] ;

i f (N>NL) MR=nra −N +1;

f o r (L=2;L<=MR; L++)

{ C=kj [N] [L] / k j [N] [1] ;

i=N + L −1;

j =0;

f o r (K=L ;K<=MR;K++)

{ j=j +1;

k j [i] [j]= kj [i] [j]− C∗ kj [N] [K] ;

}

ac [i]=ac [i]−C∗BN;

kj [N] [L]=C;

}

}

b Back Substitution

CHAPTER 5. HALF-BAND MATRIX SOLVER 90

i=nra ;

ac [nra]=ac [nra] / k j [nra] [1] ;

f o r (N=1;N<=NM;N++)

{

i=i −1;

i f (N<nb)

MR=N+1;

f o r (j =2; j<=MR; j++)

{ k=i+j −1;

ac [i]=ac [i]− kj [i] [j]∗ ac [k] ;

}

}

5.4 Parallel Implementation

Parallel implementation requires host program and kernel function.Entire host pro-

gram along with kernel function is given in Appendix-B. The following code represents

kernel functions that executes on parallel hardware i.e CPU/GPU.

a Factorization is divided into five kernel functions.

k e r n e l void add (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t , const i n t MRg)

{

i n t g l o b a l I d = g e t g l o b a l i d (0) ;

i f (g l o b a l I d < MRg)

{

∗(inputM + + s i z e ∗ t + g l o b a l I d + 1) = ∗(

inputA + s i z e ∗ t + g l o b a l I d + 1) / ∗(

CHAPTER 5. HALF-BAND MATRIX SOLVER 91

inputA + s i z e ∗ t) ;

}

}

k e r n e l void add2 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t , const i n t MRg)

{

i n t g l oba l Idx = g e t g l o b a l i d (0) ;

i n t g l oba l Idy = g e t g l o b a l i d (1) ;

i f (g l oba l Idx < MRg && globa l Idy < (MRg−g l oba l Idx

))

{

inputA [s i z e ∗(g l oba l Idx+1+t)+(g l oba l Idy)] −=

inputM[+ s i z e ∗ t + g loba l Idx + 1] ∗

inputA [s i z e ∗ t+(g l oba l Idy)+1+g loba l Idx] ;

}

}

k e r n e l void add3 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t , const i n t MRg)

{

i n t g l o b a l I d = g e t g l o b a l i d (0) ;

i f (g l o b a l I d < MRg)

{

inputB [g l o b a l I d+1+t] −= inputM [s i z e ∗ t +

g l o b a l I d + 1] ∗ inputB [t] ;

CHAPTER 5. HALF-BAND MATRIX SOLVER 92

}

}

k e r n e l void add4 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t , const i n t MRg)

{

i n t g l o b a l I d = g e t g l o b a l i d (0) ;

i f (g l o b a l I d == 1)

{

inputB [t∗ g l o b a l I d] = inputB [t∗ g l o b a l I d] /

inputA [s i z e ∗ t∗ g l o b a l I d] ;

}

}

k e r n e l void add5 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t

∗ inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const

i n t t , const i n t MRg)

{

i n t g l o b a l I d = g e t g l o b a l i d (0) ;

i f (g l o b a l I d < MRg)

{

∗(inputA + + s i z e ∗ t + g l o b a l I d + 1) = ∗(

inputM + s i z e ∗ t + g l o b a l I d + 1) ;

}

}

b Back Substitution

i=nra−1;

CHAPTER 5. HALF-BAND MATRIX SOLVER 93

inputDataB [nra−1]=inputDataB [nra−1]/ inputDataA [(nra−1)∗nb

] ;

f o r (Ng=0;Ng<=NMg; Ng++)

{ i=i −1;

i f (Ng<(nb−1))

MRg=Ng+1;

f o r (j =1; j<=MRg; j++)

{

k=i+j ;

inputDataB [i]=inputDataB [i]− inputDataA [i

∗nb + j]∗ inputDataB [k] ;

}

}

5.5 Plane Frame Analysis

In the case of plane frame, all the members lie in the same plane and are inter-

connected by rigid joints. The internal forces at a cross-section of a plane frame

member consist of bending moment, shear force and an axial force. The significant

deformations in the plane frame are only flexural and axial. Typical plane frame

considered for analysis is shown in Fig.5.2.The Global Stiffness matrix is stored in

Half-Band manner. Subsequently half-banded matrix is inverted using Cholesky fac-

torization. Global stiffness matrix is rectangular matrix in which number of rows

is equals to numbers of Degrees of Freedom and number of columns equals to half-

bandwidth. Thus matrix size turns out to be DoF×nb where, DoF= Degrees of

Freedom and nb=half-bandwidth. For solution of equations, Half-Band matrix solver

is used. Speedup factor called Tsequntial/Tparallel is also calculated.

CHAPTER 5. HALF-BAND MATRIX SOLVER 94

F
ig

u
re

5.
2:

P
la

n
e

F
ra

m
e

S
ch

em
at

ic
D

ia
gr

am

CHAPTER 5. HALF-BAND MATRIX SOLVER 95

Plane Frame member Stiffness Matrix for member axes is shown below:

AE
L

0 0 −AE
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−AE
L

0 0 AE
L

0 0

0 −12EI
L3

−6EI
L2 0 12EI

L3
−6EI
L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L

Figure 5.3: Plane Frame Member axes and degrees of freedom

Results of sequential and parallel implementation are measured in millisecond i.e ms.

CPU-S stands for sequential time and CPU-P stands for parallel time. CPU-P is

summation of execution time and communication time. Communication time de-

pends on bandwidth of computer system considered. Bandwidth refers to amount of

data transferred per unit time. Different computer systems have different bandwidth

of data transfer.

CHAPTER 5. HALF-BAND MATRIX SOLVER 96

Table-5.1 shows results of speedup for Analysis of Plane Frame with different number

of bays and storeys tested on Intel R© CoreTMi3-3210 Processor(3M Cache,3.20 GHz).

It is observed that for small frame speedup factor is less than unity. Maximum

speedup factor 1.782 is obtained in case of 200bay × 200storey. Given hardware

gives optimum results from plane frame having 120600 degrees of freedom. Fig.5.4 is

graphical representation of the results.

Table 5.1: Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi3-
3210 Processor(3M Cache,3.20 GHz)

Figure 5.4: Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi3-
3210 Processor(3M Cache,3.20 GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 97

Table-5.2 shows results of speedup for Analysis of Plane Frame with different number

of bays and storeys tested on Intel R© CoreTMi5-3450 Processor(6M Cache,3.50GHz).

It is observed that for small frame speedup factor is less than unity. Maximum

speedup factor 2.847 is obtained in case of 150bay × 150storey. Given hardware

gives optimum results from plane frame having 67950 degrees of freedom.Fig.5.5 is

graphical representation of the results.

Table 5.2: Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi5-
3450 Processor(6M Cache,3.50GHz)

Figure 5.5: Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi5-
3450 Processor(6M Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 98

Table-5.3 shows results of speedup for Analysis of Plane Frame with different number

of bays and storeys tested on Intel R© CoreTMi7-3450 Processor(6M Cache,3.50GHz).

It is observed that for small frame speedup factor is less than unity. Maximum

speedup factor 3.910 is obtained in case of 250bay × 250storey. Given hardware

gives optimum results from plane frame having 188250 degrees of freedom.Fig.5.6 is

graphical representation of the results.

Table 5.3: Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M
Cache,3.50GHz)

Figure 5.6: Performance Comparison of Plane Frame Analysis using Intel R© CoreTMi7-
3450 Processor(6M Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 99

Table-5.4 shows results of speedup for Analysis of Plane Frame with different number

of bays and storeys tested on Intel R© CoreTMi7-2630QM Processor(2.0GHz). It is

observed that for small frame speedup factor is less than unity. Maximum speedup

factor 2.017 is obtained in case of 100bay × 100storey. Given hardware gives opti-

mum results from plane frame having 30300 degrees of freedom.Fig.5.7 is graphical

representation of the results.

Table 5.4: Performance Comparison using Intel R© CoreTMi7-2630QM Proces-
sor(2.0GHz)

Figure 5.7: Performance Comparison using Intel R© CoreTMi7-2630QM Proces-
sor(2.0GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 100

Table-5.5 shows results of speedup for Analysis of Plane Frame with different number

of bays and storeys tested on Intel R© CoreTMi7-2630QM Processor(2.0GHz). It is

observed that for small frame speedup factor is less than unity. Maximum speedup

factor 2.023 is obtained in case of 100bay × 100storey. Given hardware gives opti-

mum results from plane frame having 30300 degrees of freedom.Fig.5.8 is graphical

representation of the results.

Table 5.5: Performance Comparison using NVIDIA GeForce GT 525M

Figure 5.8: Performance Comparison using NVIDIA GeForce GT 525M

CHAPTER 5. HALF-BAND MATRIX SOLVER 101

Figure 5.9: Comparison of Execution Time of Different Hardwares for Plane Frame
Analysis

Fig.5.9 shows comparison of execution time of both parallel and sequential code of

Half-Band Solver. Solid line and dashed line represents results of sequential execution

time and parallel execution time respectively. It is observed that parallel execution

time lesser than sequential execution time for all the types of hardwares used in

parametric study. Parallel execution time of Intel R© CoreTMi5-3450 Processor is least

followed by Intel R© CoreTMi7-3450 Processor.

CHAPTER 5. HALF-BAND MATRIX SOLVER 102

Figure 5.10: Comparison of Communication Time of Different Hardwares for Plane
Frame Analysis

Fig.5.10 shows comparison of communication time of all 5 computer systems used

for parametric study. Intel R© CoreTMi3-3210 Processor system is taking maximum

communication time. This is due to large large amount of data transfer. Intel R©

CoreTMi7-2630QM Processor and NVIDIA GeForce GT 525M GPU are taking least

communication time among all 5 computer systems.

CHAPTER 5. HALF-BAND MATRIX SOLVER 103

Figure 5.11: Comparison of Speedup factor of Different Hardwares for Plane Frame
Analysis

Fig.5.11 shows comparison of speedup factor of all 5 computer systems considered.

Intel R© CoreTMi7-3450 Processor gives maximum speedup factor of 3.910 among all

5 computer systems for plane frame having size 250bay × 250storey followed by

Intel R© CoreTMi5-3450 Processor with speedup factor of 2.847 for plane frame having

size 150bay × 150storey. For parallel implementation of Half-Band Solver for plane

frame analysis , Intel R© CoreTMi7-3450 Processor gives optimum performance among

5 computer systems.

CHAPTER 5. HALF-BAND MATRIX SOLVER 104

5.6 Space Frame Analysis

In the case of space frame, all the members lie in the 3 different planes and are in-

terconnected by rigid joints. The internal forces at a cross-section of a space frame

member consist of 3-bending moments, 2-shear forces and an axial force.Three differ-

ent space frame models, 5× 5× 5, 10× 10× 10 and 20× 20× 20 (bays− x× bays−

y × storeys− z) are considered. Fig.5.14 shows typical space frame diagram.

Figure 5.12: Space Frame Member Stiffness Matrix

Figure 5.13: Space Frame Member axes and degrees of freedom

CHAPTER 5. HALF-BAND MATRIX SOLVER 105

F
ig

u
re

5.
14

:
S
p
ac

e
F

ra
m

e
S
ch

em
at

ic
D

ia
gr

am

CHAPTER 5. HALF-BAND MATRIX SOLVER 106

Table-5.6 shows results of speedup for Analysis of Space Frame with different number

of bays and storeys tested on Intel R© CoreTMi3-3210 Processor(3M Cache,3.20 GHz).

It is observed that for small space frame speedup factor is less than unity. Maximum

speedup factor 1.492 is obtained in case of 10 × 10 × 10 space frame model.Fig.5.15

is graphical representation of the results.

Table 5.6: Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M
Cache,3.20 GHz)

Figure 5.15: Performance Comparison using Intel R© CoreTMi3-3210 Processor(3M
Cache,3.20 GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 107

Table-5.7 shows results of speedup for Analysis of Space Frame with different number

of bays and storeys tested on Intel R© CoreTMi5-3450 Processor(6M Cache,3.50GHz).

It is observed that for small space frame speedup factor is less than unity. Maximum

speedup factor 3.4 is obtained in case of 10× 10× 10 space frame model. Fig.5.16 is

graphical representation of the results.

Table 5.7: Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M
Cache,3.50GHz)

Figure 5.16: Performance Comparison using Intel R© CoreTMi5-3450 Processor(6M
Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 108

Table-5.8 shows results of speedup for Analysis of Space Frame with different number

of bays and storeys tested on Intel R© CoreTMi7-3450 Processor(6M Cache,3.50GHz).

It is observed that for small space frame speedup factor is less than unity. Maximum

speedup factor 5.096 is obtained in case of 20 × 20 × 20 space frame model.Fig.5.17

is graphical representation of the results.

Table 5.8: Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M
Cache,3.50GHz)

Figure 5.17: Performance Comparison using Intel R© CoreTMi7-3450 Processor(6M
Cache,3.50GHz)

CHAPTER 5. HALF-BAND MATRIX SOLVER 109

Figure 5.18: Speedup Factor Comparison

Fig.5.18 shows speedup factor comparison for all 3 models of Space Frame using 3 dif-

ferent processors. It is observed that Intel R© CoreTMi7-3450 Processor(6M Cache,3.50GHz)

gives maximum speedup factor.

5.7 Summary

In this chapter, Half-Band Storage method is described with the help of an example.

Half-Band solver for solving linear equations i.e. [A]{x}={B} where [A] is rectangular

matrix, with the help of an algorithm is presented. Its sequential and parallel imple-

mentations on multi-core CPUs and GPUs is presented. Different size of plane frame

and space frame are considered for sequential and parallel implementation. Results

of execution time, communication time and speedup factor are presented.

Chapter 6

Summary and Conclusion

6.1 Summary

Solution of linear equation system in form of [A]{x}={B}, is highly compute inten-

sive in structural analysis program. It is implemented on high performance computing

platforms like multi-core processors and graphics processing units in present study. In

structural analysis, Matrix [A] representing Stiffness matrix, can be stored in square

form or half-band form. As stiffness matrix is square, symmetric consisting of many

zero elements, half-band storage will require less memory and reduces computations.

In present study Gauss Elimination and modified Cholesky factorization methods are

used for solving linear equations having Matrix [A] in square form and half-band

form. OpenCL and C++ programming language are used for parallel and sequential

implementation over variety of high performance computing platform.

For parallel implementation of Gaussian Elimination solver, linear equations sys-

tem representing equilibrium equations of finite element problem is used. Equa-

tions in form of [A]{x}={B} are generated from finite element analysis of axial bar

using 3-node bar element where A=Square Stiffness Matrix, B=Load Vector and

x=Displacement vector. For solution of equations Matrix-[A] is inverted using se-

110

CHAPTER 6. SUMMARY AND CONCLUSION 111

quential and parallel implementation of Gaussian Elimination. Sequential program

is developed using C++ and parallel program is developed using OpenCL language.

For comparing computational efficiency of parallel code, speedup factor which is ra-

tio of sequential execution time to parallel execution time is calculated for different

number of linear equations ranging 101 to 10001. Parallel execution time includes

processing time and communication time. As data is transferred between various

memories, communication time increases total computational time. Code is executed

on different CPUs and GPUs for parametric study.

For parallel implementation of Half-Band solver, which is based on modified cholesky

method, Direct Stiffness Method program of Plane Frame and Space Frame are used

for generating set of linear equation system. Here stiffness matrix is stored in banded

form to reduce memory requirements. Programs for sequential and parallel solution

of banded equations are developed using C++ and OpenCL languages. Problems

of varying size from 7650 Degrees of Freedom to 1,88,250 Degrees of Freedom are

solved using sequential and parallel Half-Band solver. The computational efficiency

of parallel code is studied based on speedup factor. Further to understand the effi-

ciency of program on different hardware platform, the parallel code is executed on

multi-core CPUs like Intel R© CoreTMi3, i5, i7 processors with different specifications

and NVIDIA GPU.

6.2 Conclusion

Based on present study, following conclusions are derived:

• Parallel processing reduces computing time for solving linear equation system

in form of [A]{x}={B} significantly.

• Various types of CPUs and GPUs have different computing capacities depending

on number of cores present in them.

CHAPTER 6. SUMMARY AND CONCLUSION 112

• Performance of the parallel implementation depends on the type of numerical

problem taken and data-dependencies.

• Gauss Elimination parallel implementation tested on different CPUs and GPUs

reveals that it gives better efficiency.

• Use of CPU as parallel processing hardware results in significant reduction in

communication time. On other hand, use of GPU as parallel processing hard-

ware results in significant reduction in execution time due to large number of

computing cores present.

• Parallel Implementation of Gauss Elimination

– Intel R© CoreTMi5-3450 Processor exhibits least execution time of 78ms for

solving 5001 number of linear equations system.

– Computer system with Intel R© CoreTMi7-3450 Processor exhibits maxi-

mum communication time for all set of linear equation system due to mul-

tiple slot 32GB RAM.

– Maximum speed-up factor of 1702 is achieved by system having Intel R©

CoreTMi7-2630QM Processor for solving 10001 number of linear equations.

– Intel R© CoreTMi7-2630QM Processor (2.0GHz) is best suited for the par-

allel implementation of problem considered in this study.

• Parallel Implementation of Half-Band solver

– Intel R© CoreTMi5-3450 Processor exhibits least execution time of 42401ms

for solving plane frame of 250bay×250 storey.

– Maximum speedup factor of 3.9 is achieved by system having Intel R©

CoreTMi7-3450 Processor for solving plane frame of 250bay×250 storey

with 188250 Degrees of Freedom and 756 half-bandwidth.

CHAPTER 6. SUMMARY AND CONCLUSION 113

– Maximum speedup factor of 3.5 is achieved by Intel R© CoreTMi7-3450 Pro-

cessor for solving space frame of 20×20×20(bays-x×bays-y×storey) with

52920 Degrees of Freedom and 2652 half-bandwidth.

6.3 Future Scope of Work

The study carried in this project can be extended to include following aspects:

• Parallelization of complete structural analysis problem rather than only con-

centrating on equation solution.

• Various structural engineering problems like FEM analysis using numerical in-

tegration, non-linear dynamic analysis.

• Development of efficient algorithm to suit different hardware platforms.

• A heterogenous program which uses both GPU and CPU simultaneously for

carrying out different instruction on different data.

Appendix A

Gauss Elimination host program

#inc lude<s t d i o . h>

#inc lude<con io . h>

#inc lude<math . h>

#inc lude<s t d l i b . h>

#inc lude<time . h>

#i f d e f APPLE

#inc lude <OpenCL/ openc l . h>

#e l s e

#inc lude <CL/ c l . h>

#e n d i f

#d e f i n e c a l (zz , qq) ((qq ∗) c a l l o c (zz , s i z e o f (qq)))

us ing namespace std ;

const char ∗ProgramSource =

114

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 115

” k e r n e l void add (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t)

\n”\

”{\n”\

” i n t g l o b a l I d = g e t g l o b a l i d (0) ;\n”\

” i f (g l o b a l I d < s i z e−1−t)\n”\

” {\n”\

” ∗(inputM + s i z e ∗ (g l o b a l I d + t + 1)+

t) = ∗(inputA + s i z e ∗ (g l o b a l I d + t + 1) + t) / ∗(inputA

+ s i z e ∗ t + t) ;\n”\

” }\n”\

”}\n ” ;

const char ∗ProgramSource2 =

” k e r n e l void add2 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t)

\n”\

”{\n”\

” i n t g l oba l Idx = g e t g l o b a l i d (0) ;\n”\

” i n t g l oba l Idy = g e t g l o b a l i d (1) ;\n”\

” i f (g l oba l Idx < s i z e−1−t && g loba l Idy < s i z e−t)\n

”\

” {\n”\

” inputA [s i z e ∗(

g l oba l Idx+1+t)+(g l oba l Idy+t)] −= inputM [s i z e ∗(g l oba l Idx+1+

t)+t] ∗ inputA [s i z e ∗ t+(g l oba l Idy+t)] ; \ n”\

” i f (g l oba l Idy == 0)\n”\

” {\n”\

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 116

” inputB [g l oba l Idx+1+t]

−= inputM [s i z e ∗(g l oba l Idx+1+t)+(g l oba l Idy+t)] ∗ inputB [t

] ; \ n”\

” }\n”\

” }\n”\

”}\n ” ;

i n t main ()

{

i n t ne , nj , i , nr j , j , b , im [5] , n , u ;

f l o a t temp , temp1 ;

FILE ∗ f1 ,∗ f 2 ;

system (” c l s ”) ;

f 1=fopen (” input . txt ” ,” r ”) ;

f 2=fopen (” out . txt ” ,”w”) ;

FILE ∗ f t=fopen (” time . txt ” ,”w”) ;

f s c a n f (f1 ,”%d”,&ne) ;

nj =(2∗ne) +1;

f p r i n t f (f t , ” Number o f Equations=%d\n” , nj) ;

c l o c k t c4=c lock () ;

f l o a t ∗ ac = (f l o a t ∗) mal loc (s i z e o f (f l o a t) ∗(nj +1)) ;

f l o a t ∗∗ kj = (f l o a t ∗∗) c a l l o c (nj +1, s i z e o f (f l o a t ∗)) ;

f o r (i =1; i<=nj ; i++)

kj [i] = (f l o a t ∗) c a l l o c (nj +1, s i z e o f (f l o a t)) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 117

c l o c k t c5=c lock () ;

double c6 =((c5−c4) ∗1000) /CLOCKS PER SEC ; ;

// c l s t a r t s

c l c o n t e x t context ;

c l c o n t e x t p r o p e r t i e s p r o p e r t i e s [3] ;

c l k e r n e l kerne l , k e rne l 2 ;

cl command queue command queue ;

c l program program , program2 ;

c l i n t e r r ;

c l u i n t num of plat forms =0;

c l p l a t f o r m i d p l a t f o rm id ;

c l d e v i c e i d d e v i c e i d ;

c l u i n t num of dev ices =0;

cl mem inputA , inputB , inputM ;

c l i n t r e t ;

s i z e t g loba l , g l oba l 2 [2] , l o c a l 2 [2] ;

i n t DATA SIZE=nj ∗nj ;

f l o a t ∗ inputDataA= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗DATA SIZE) ;

f l o a t ∗ f i na lVec= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗nj) ;

f l o a t ∗ inputDataB= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗nj) ;

f l o a t ∗ inputDataM= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗DATA SIZE) ;

FILE ∗ f 3=fopen (” out . csv ” ,”w”) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 118

f p r i n t f (f3 , ” Before ke rne l matrix\n”) ;

f o r (i =0; i <1∗nj ; i++)

{

f o r (j =0; j <1∗nj ; j++)

{

f s c a n f (f1 ,”% f ”,&inputDataA [j + nj ∗ i

]) ;

k j [i +1] [j +1]=inputDataA [j + nj ∗ i] ;

inputDataM [j + nj ∗ i] = 0 ;

// f p r i n t f (f3 ,”% f , ” , inputDataA [j + nj ∗

i]) ;

}

// f p r i n t f (f3 , ”\n”) ;

}

/∗ f p r i n t f (f2 , ” Global S t i f f n e s s matrix\n”) ;

f o r (i =1; i<=1∗nj ; i++)

{

f o r (j =1; j<=1∗nj ; j++)

f p r i n t f (f2 , ” S%d%d=%f ” , i , j , k j [i] [j]) ;

f p r i n t f (f2 , ”\n”) ;

}∗/

f o r (i =0; i <1∗nj ; i++)

{

f s c a n f (f1 ,”% f ”,&inputDataB [i]) ;

ac [i +1]=inputDataB [i] ;

}

/∗ f p r i n t f (f2 , ”AC\n”) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 119

f o r (i =1; i<=1∗nj ; i++)

{

f p r i n t f (f2 , ”AC−%d=%f \n” , i , ac [i]) ;

}∗/

// r e t r e i v e a l i s t o f p la t fo rms av a ib l e

i f (c lGetPlatformIDs (1 , &p lat fo rm id , &num of plat forms) !=

CL SUCCESS)

{

p r i n t f (” Unable to get p l a t f o rm id \n”) ;

r e turn 1 ;

}

// try to get a supported GPU dev i ce

i f (c lGetDeviceIDs (p la t fo rm id , CL DEVICE TYPE CPU, 1 , &

dev i c e i d , &num of dev ices) != CL SUCCESS)

{

p r i n t f (” Unable to get d e v i c e i d \n”) ;

r e turn 1 ;

}

// context p r o p e r t i e s l i s t − must be terminated with 0

p r o p e r t i e s [0]= CL CONTEXT PLATFORM;

p r o p e r t i e s [1]= (c l c o n t e x t p r o p e r t i e s) p l a t f o rm id ;

p r o p e r t i e s [2]= 0 ;

// c r e a t e a context with the GPU dev i ce

context = clCreateContext (p rope r t i e s ,1 ,& dev i c e i d ,NULL,NULL,&

e r r) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 120

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

// c r e a t e a program from the ke rne l source code

program = clCreateProgramWithSource (context , 1 , (const char ∗∗)

&ProgramSource , NULL, &e r r) ;

// compi le the program

i f (clBuildProgram (program , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program\n”) ;

r e turn 1 ;

}

// s p e c i f y which ke rne l from the program to execute

ke rne l = c lCreateKerne l (program , ”add ” , &e r r) ;

// c r e a t e b u f f e r s f o r the input and ouput

inputA = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

f l o a t) ∗ DATA SIZE, NULL, NULL) ;

inputM = c lCrea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

f l o a t) ∗ DATA SIZE, NULL, NULL) ;

inputB = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

f l o a t) ∗ nj , NULL, NULL) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 121

// load data in to the input b u f f e r

c l o c k t g5=c lo ck () ;

c lEnqueueWriteBuffer (command queue , inputA , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ DATA SIZE, inputDataA , 0 , NULL, NULL) ;

c lEnqueueWriteBuffer (command queue , inputM , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ DATA SIZE, inputDataM , 0 , NULL, NULL) ;

c lEnqueueWriteBuffer (command queue , inputB , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ nj , inputDataB , 0 , NULL, NULL) ;

c l o c k t g6=c lo ck () ;

double t3 =((g6−g5) ∗1000) /CLOCKS PER SEC ; ;

// part−2 s t a r t s

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

// c r e a t e a program from the ke rne l source code

program2 = clCreateProgramWithSource (context , 1 , (const char

∗∗) &ProgramSource2 , NULL, &e r r) ;

// compi le the program

i f (clBuildProgram (program2 , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program−2\n”) ;

r e turn 1 ;

}

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 122

// s p e c i f y which ke rne l from the program to execute

ke rne l 2 = c lCreateKerne l (program2 , ”add2 ” , &e r r) ;

i n t s i z e=nj ;

s i z e t globalWorksizeFan1 [1] ;

s i z e t globalWorksizeFan2 [2] ;

g lobalWorksizeFan1 [0] = 8 ;

globalWorksizeFan2 [0] = 8 ;

globalWorksizeFan2 [1] = 8 ;

// part−2 ends

c l o c k t g1=c lo ck () ;

f o r (i n t t =0; t<(s i z e −1) ; t++) {

// ke rne l args

c l i n t argchk ;

argchk = clSetKerne lArg (kerne l , 0 , s i z e o f (cl mem) , (

void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l , 1 , s i z e o f (cl mem) , (

void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l , 2 , s i z e o f (cl mem) , (

void ∗)&inputB) ;

argchk |= clSetKerne lArg (kerne l , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

argchk |= clSetKerne lArg (kerne l , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 123

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l , 1 , 0 ,

globalWorksizeFan1 ,NULL, 0 , NULL, NULL) ;

// ke rne l args

argchk = clSetKerne lArg (kerne l2 , 0 , s i z e o f (

cl mem) , (void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l2 , 1 , s i z e o f (cl mem) ,

(void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l2 , 2 , s i z e o f (cl mem) ,

(void ∗)&inputB) ;

argchk |= clSetKerne lArg (kerne l2 , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

argchk |= clSetKerne lArg (kerne l2 , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l2 , 2 , 0 ,

globalWorksizeFan2 ,NULL, 0 , NULL, NULL) ;

}

c l o c k t g2=c lo ck () ;

double t1 =((g2−g1) ∗1000) /CLOCKS PER SEC ; ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 124

c l o c k t g3=c lo ck () ;

// copy the r e s u l t s from out o f the output b u f f e r

clEnqueueReadBuffer (command queue , inputA , CL TRUE, 0 , s i z e o f

(f l o a t) ∗DATA SIZE, inputDataA , 0 , NULL, NULL) ;

// clEnqueueReadBuffer (command queue , inputM , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗DATA SIZE, inputDataM , 0 , NULL, NULL) ;

clEnqueueReadBuffer (command queue , inputB , CL TRUE, 0 , s i z e o f

(f l o a t) ∗nj , inputDataB , 0 , NULL, NULL) ;

c l o c k t g4=c lo ck () ;

double t2 =((g4−g3) ∗1000) /CLOCKS PER SEC ; ;

// p r i n t the r e s u l t s

f p r i n t f (f3 , ” After k e rne l matrix\n”) ;

f o r (i =0; i <1∗nj ; i++)

{

f o r (j =0; j <1∗nj ; j++)

{

// f p r i n t f (f3 ,”% f , ” , inputDataA [j + nj ∗ i

]) ;

}

// f p r i n t f (f3 , ”\n”) ;

}

// cleanup − r e l e a s e OpenCL r e s o u r c e s

clReleaseMemObject (inputA) ;

clReleaseMemObject (inputB) ;

clReleaseMemObject (inputM) ;

c lReleaseProgram (program) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 125

c lRe l ea s eKerne l (k e rne l) ;

clReleaseCommandQueue (command queue) ;

c lRe leaseContext (context) ;

c l o c k t g7=c lo ck () ;

f o r (i =0; i<s i z e ; i++)

{

f i na lVec [s i z e−i−1]=inputDataB [s i z e−i −1] ;

f o r (j =0; j<i ; j++)

{

f i na lVec [s i z e−i−1]−=∗(inputDataA+s i z e

∗(s i z e−i −1)+(s i z e−j−1)) ∗ f i na lVec

[s i z e−j −1] ;

}

f i na lVec [s i z e−i−1]= f i na lVec [s i z e−i −1]/ ∗(

inputDataA+s i z e ∗(s i z e−i −1)+(s i z e−i −1)) ;

}

c l o c k t g8=c lo ck () ;

double t4 =((g8−g7) ∗1000) /CLOCKS PER SEC ; ;

double t5=t1+t2+t3+t4 ;

f p r i n t f (f t , ” Time e lapsed f o r GPU:% f \n” , t5) ;

f p r i n t f (f t , ” Time e lapsed f o r execut ion :% f \n” , t1+t4) ;

// c l ends

f p r i n t f (f2 , ”SOLUTION OF EQUATION\n”) ;

c l o c k t c1=c lock () ;

f o r (u=1;u<=(1∗nj) ; u++)

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 126

{

temp=kj [u] [u] ;

// f p r i n t f (f2 , ” temp=%f ” , temp) ;

f o r (j =1; j <=(1∗nj) ; j++)

kj [u] [j]= kj [u] [j] / temp ;

ac [u]=ac [u] / temp ;

// f p r i n t f (f2 , ” S%d%d=%f ” ,u , j , s j [u] [j]) ;

// f p r i n t f (f2 , ”AC−%d=%f \n” ,u , ac [u]) ;

f o r (i =1; i <=(1∗nj) ; i++)

{

i f (i==u) cont inue ;

temp1=kj [i] [u] ;

f o r (j =1; j <=(1∗nj) ; j++)

kj [i] [j]= kj [i] [j]−kj [u] [j]∗

temp1 ;

ac [i]=ac [i]−ac [u]∗ temp1 ;

}

}

c l o c k t c2=c lock () ;

double c3 =((c2−c1) ∗1000) /CLOCKS PER SEC ; ;

double c7=c3+c6 ;

f p r i n t f (f t , ” Time e lapsed f o r CPU:% f \n” , c7) ;

f p r i n t f (f t , ” Time e lapsed f o r communication:% f \n” , t2+

t3) ;

/∗

f p r i n t f (f2 , ” Modif ied Global S t i f f n e s s matrix\n”) ;

APPENDIX A. GAUSS ELIMINATION HOST PROGRAM 127

f o r (i =1; i<=1∗nj ; i++)

{

f o r (j =1; j<=1∗nj ; j++)

f p r i n t f (f2 , ” S%d%d=%f ” , i , j , k j [i] [j]) ;

f p r i n t f (f2 , ”\n”) ;

}∗/

/∗ f p r i n t f (f3 , ”\ nModif ied Global S t i f f n e s s matrix\n”) ;

f o r (i =1; i<=1∗nj ; i++)

{

f o r (j =1; j<=1∗nj ; j++)

f p r i n t f (f3 ,”% f , ” , k j [i] [j]) ;

f p r i n t f (f3 , ”\n”) ;

}∗/

f p r i n t f (f2 , ” Modif ied AC\n”) ;

f o r (i =1; i<=1∗nj ; i++)

{

// f p r i n t f (f2 , ”AC−%d=%f GAC−%d=%f \n” , i , ac [i] , i ,

f i na lVec [i −1]) ;

}

f r e e (ac) ;

f r e e (k j) ;

f r e e (inputDataA) ;

f r e e (inputDataB) ;

f r e e (inputDataM) ;

}

Appendix B

Half-Band Solver host program

#inc lude<s t d i o . h>

#inc lude<con io . h>

#inc lude<math . h>

#inc lude<s t d l i b . h>

#inc lude<time . h>

#i f d e f APPLE

#inc lude <OpenCL/ openc l . h>

#e l s e

#inc lude <CL/ c l . h>

#e n d i f

//#d e f i n e DATA SIZE 100

#d e f i n e c a l (zz , qq) ((qq ∗) c a l l o c (zz , s i z e o f (qq)))

us ing namespace std ;

const char ∗ProgramSource =

128

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 129

” k e r n e l void add (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t ,

const i n t MRg)\n”\

”{\n”\

” i n t g l o b a l I d = g e t g l o b a l i d (0) ;\n”\

” i f (g l o b a l I d < MRg)\n”\

” {\n”\

” ∗(inputM + + s i z e ∗ t + g l o b a l I d +

1) = ∗(inputA + s i z e ∗ t + g l o b a l I d + 1) / ∗(inputA +

s i z e ∗ t) ;\n”\

” }\n”\

”}\n ” ;

const char ∗ProgramSource2 =

” k e r n e l void add2 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t ,

const i n t MRg)\n”\

”{\n”\

” i n t g l oba l Idx = g e t g l o b a l i d (0) ;\n”\

” i n t g l oba l Idy = g e t g l o b a l i d (1) ;\n”\

” i f (g l oba l Idx < MRg && globa l Idy < (MRg−g l oba l Idx

))\n”\

” {\n”\

” inputA [s i z e ∗(

g l oba l Idx+1+t)+(g l oba l Idy)] −= inputM[+ s i z e ∗ t +

g loba l Idx + 1] ∗ inputA [s i z e ∗ t+(g l oba l Idy)+1+g loba l Idx] ; \

n”\

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 130

” // inputB [g l oba l Idx+1+

t] −= inputM [s i z e ∗(g l oba l Idx+1+t)+t] ∗ inputB [t] ; \ n”\

” // inputB [t] = inputB [

t] / inputA [s i z e ∗ t] ; \ n”\

” //∗(inputA + s i z e ∗ t + g loba l Idx +

1)=∗(inputM + s i z e ∗ (g l oba l Idx + t + 1)+t) ;\n”\

” }\n”\

”}\n ” ;

const char ∗ProgramSource3 =

” k e r n e l void add3 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t ,

const i n t MRg)\n”\

”{\n”\

” i n t g l o b a l I d = g e t g l o b a l i d (0) ;\n”\

” i f (g l o b a l I d < MRg)\n”\

” {\n”\

” inputB [g l o b a l I d+1+t] −= inputM [s i z e ∗

t + g l o b a l I d + 1] ∗ inputB [t] ; \ n”\

” // inputB [t] = inputB [t] / inputA [s i z e

∗ t] ; \ n”\

” //∗(inputA + + s i z e ∗ t + g l o b a l I d +

1) = ∗(inputM + s i z e ∗ t + g l o b a l I d + 1) ;\n”\

” }\n”\

”}\n ” ;

const char ∗ProgramSource4 =

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 131

” k e r n e l void add4 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t ,

const i n t MRg)\n”\

”{\n”\

” i n t g l o b a l I d = g e t g l o b a l i d (0) ;\n”\

” i f (g l o b a l I d == 1)\n”\

” {\n”\

” inputB [t∗ g l o b a l I d] = inputB [t∗

g l o b a l I d] / inputA [s i z e ∗ t∗ g l o b a l I d] ; \ n”\

” }\n”\

”}\n ” ;

const char ∗ProgramSource5 =

” k e r n e l void add5 (g l o b a l f l o a t ∗ inputM , g l o b a l f l o a t ∗

inputA , g l o b a l f l o a t ∗ inputB , const i n t s i z e , const i n t t ,

const i n t MRg)\n”\

”{\n”\

” i n t g l o b a l I d = g e t g l o b a l i d (0) ;\n”\

” i f (g l o b a l I d < MRg)\n”\

” {\n”\

” // inputB [g l o b a l I d+1+t] −= inputM [s i z e

∗ t + g l o b a l I d + 1] ∗ inputB [t] ; \ n”\

” // inputB [t] = inputB [t] / inputA [s i z e

∗ t] ; \ n”\

” ∗(inputA + + s i z e ∗ t + g l o b a l I d +

1) = ∗(inputM + s i z e ∗ t + g l o b a l I d + 1) ;\n”\

” }\n”\

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 132

”}\n ” ;

i n t main ()

{

i n t nra , nb , i , j ;

// f l o a t x ;

// f l o a t k j [1 2 0] [1 2 0] ;

// f l o a t ∗∗ kj=mal loc (1000∗ s i z e o f (i n t ∗)) ;

FILE ∗ f1 ,∗ f2 ,∗ f4 ,∗ f5 ,∗ f6 ,∗ fp ;

system (” c l s ”) ;

f 1=fopen (” in . txt ” ,” r ”) ;

f 2=fopen (” out . txt ” ,”w”) ;

f 4=fopen (” rec . txt ” ,” r ”) ;

f 5=fopen (” d i s . txt ” ,” r ”) ;

f 6=fopen (” f low . txt ” ,”w”) ;

fp=fopen (” paraf low . txt ” ,”w”) ;

f s c a n f (f4 ,”%d”,&nra) ;

f s c a n f (f4 ,”%d”,&nb) ;

c l o c k t c1=c lock () ;

f l o a t ∗∗ kj = (f l o a t ∗∗) c a l l o c (nra+1, s i z e o f (f l o a t ∗))

;

f o r (i =1; i<=nra ; i++)

kj [i] = (f l o a t ∗) c a l l o c (nb+1, s i z e o f (f l o a t)) ;

c l o c k t c2=c lock () ;

double tc1 =((c2−c1) ∗1000) /CLOCKS PER SEC ; ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 133

// f l o a t ∗∗ kjp = (f l o a t ∗∗) c a l l o c (nra+1, s i z e o f (f l o a t

∗)) ;

// f o r (i =0; i<=nra ; i++)

// kjp [i] = (f l o a t ∗) c a l l o c (nb+1, s i z e o f (f l o a t

)) ;

p r i n t f (”NRA=%d\n NB=%d\n” , nra , nb) ;

// f p r i n t f (f2 , ” Global S t i f f n e s s matrix\n”) ;

f o r (i =1; i<=nra ; i++)

{

f o r (j =1; j<=nb ; j++)

{

// kjp [i −1] [j−1]=kj [i] [j]=0;

k j [i] [j]=0;

f s c a n f (f4 ,”% f ”,& kj [i] [j]) ;

// kjp [i −1] [j−1]=kj [i] [j] ;

// f p r i n t f (f2 , ” S%d%d=%f ” , i , j , k j [i

] [j]) ;

}

// f p r i n t f (f2 , ”\n”) ;

}

c l o c k t c3=c lock () ;

f l o a t ∗ ac = (f l o a t ∗) mal loc (s i z e o f (f l o a t) ∗(nra+1)) ;

c l o c k t c4=c lock () ;

double tc2 =((c4−c3) ∗1000) /CLOCKS PER SEC ; ;

// f l o a t ∗ acp = (f l o a t ∗) mal loc (s i z e o f (f l o a t) ∗(nra+1)

) ;

// f p r i n t f (f2 , ” Modif ied AC\n”) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 134

f o r (i =1; i<=nra ; i++)

{

// acp [i−1]=ac [i]=0;

ac [i]=0;

f s c a n f (f5 ,”% f ”,&ac [i]) ;

// acp [i−1]=ac [i] ;

// f p r i n t f (f2 , ”AC−%d=%f \n” , i , ac [i]) ;

}

// c l s t a r t s

c l c o n t e x t context ;

c l c o n t e x t p r o p e r t i e s p r o p e r t i e s [3] ;

c l k e r n e l kerne l , kerne l2 , kerne l3 , kerne l4 , ke rne l 5 ;

cl command queue command queue ;

c l program program , program2 , program3 , program4 , program5 ;

c l i n t e r r ;

c l u i n t num of plat forms =0;

c l p l a t f o r m i d p l a t f o rm id ;

c l d e v i c e i d d e v i c e i d ;

c l u i n t num of dev ices =0;

cl mem inputA , inputB , inputM ;

c l i n t r e t ;

s i z e t g loba l , g l oba l 2 [2] , l o c a l 2 [2] ;

i n t DATA SIZE=nra∗nb ;

f l o a t ∗ inputDataA= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗DATA SIZE) ;

f l o a t ∗ inputDataB= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗nra) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 135

f l o a t ∗ inputDataM= (f l o a t ∗) mal loc (s i z e o f (f l o a t)∗DATA SIZE) ;

FILE ∗ f 31=fopen (” out . csv ” ,”w”) ;

// f p r i n t f (f31 ,”\n”) ;

// f p r i n t f (f31 , ” Before ke rne l matrix , ”) ;

// f p r i n t f (f31 ,”\n”) ;

f o r (i =0; i<nra ; i++)

{

f o r (j =0; j<nb ; j++)

{

inputDataA [j + nb∗ i] = kj [i +1] [j +1] ;

inputDataM [j+ nb∗ i]=0;

// f p r i n t f (f31 ,”% f , ” , inputDataA [j + nb

∗ i]) ;

}

// f p r i n t f (f31 ,”\n”) ;

}

/∗

// f p r i n t f (f31 ,”\n”) ;

// f p r i n t f (f31 , ” be f o r e ban KJ\n”) ;

// f p r i n t f (f31 ,”\n”) ;

f o r (i =0; i <1∗nra ; i++)

{

f o r (j =0; j <1∗nb ; j++)

{

f p r i n t f (f31 ,”% f , ” , k j [i +1] [j +1]) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 136

}

f p r i n t f (f31 ,”\n”) ;

}

∗/

// f p r i n t f (f2 , ”AC\n”) ;

f o r (i =1; i<=nra ; i++)

{

inputDataB [i −1]=0;

inputDataB [i −1] = ac [i] ;

// f p r i n t f (f2 , ”AC−%d=%f \n” , i , inputDataB [i −1]) ;

}

//new CL

// r e t r e i v e a l i s t o f p la t fo rms av a ib l e

i f (c lGetPlatformIDs (1 , &p lat fo rm id , &num of plat forms) !=

CL SUCCESS)

{

p r i n t f (” Unable to get p l a t f o rm id \n”) ;

r e turn 1 ;

}

// try to get a supported GPU dev i ce

i f (c lGetDeviceIDs (p la t fo rm id , CL DEVICE TYPE CPU, 1 , &

dev i c e i d , &num of dev ices) != CL SUCCESS)

{

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 137

p r i n t f (” Unable to get d e v i c e i d \n”) ;

r e turn 1 ;

}

// context p r o p e r t i e s l i s t − must be terminated with 0

p r o p e r t i e s [0]= CL CONTEXT PLATFORM;

p r o p e r t i e s [1]= (c l c o n t e x t p r o p e r t i e s) p l a t f o rm id ;

p r o p e r t i e s [2]= 0 ;

// c r e a t e a context with the GPU dev i ce

context = clCreateContext (p rope r t i e s ,1 ,& dev i c e i d ,NULL,NULL,&

e r r) ;

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

// c r e a t e a program from the ke rne l source code

program = clCreateProgramWithSource (context , 1 , (const char ∗∗)

&ProgramSource , NULL, &e r r) ;

// compi le the program

i f (clBuildProgram (program , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program\n”) ;

r e turn 1 ;

}

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 138

// s p e c i f y which ke rne l from the program to execute

ke rne l = c lCreateKerne l (program , ”add ” , &e r r) ;

c l o c k t g1=c lo ck () ;

// c r e a t e b u f f e r s f o r the input and ouput

inputA = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

f l o a t) ∗ DATA SIZE, NULL, NULL) ;

inputM = c lCrea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

f l o a t) ∗ DATA SIZE, NULL, NULL) ;

inputB = c lCr ea t eBu f f e r (context , CL MEM READ WRITE, s i z e o f (

f l o a t) ∗ nra , NULL, NULL) ;

// load data in to the input b u f f e r

c lEnqueueWriteBuffer (command queue , inputA , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ DATA SIZE, inputDataA , 0 , NULL, NULL) ;

c lEnqueueWriteBuffer (command queue , inputM , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ DATA SIZE, inputDataM , 0 , NULL, NULL) ;

c lEnqueueWriteBuffer (command queue , inputB , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗ nra , inputDataB , 0 , NULL, NULL) ;

c l o c k t g2=c lo ck () ;

double tg1 =((g2−g1) ∗1000) /CLOCKS PER SEC ; ;

// part−2 s t a r t s

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 139

// c r e a t e a program from the ke rne l source code

program2 = clCreateProgramWithSource (context , 1 , (const char

∗∗) &ProgramSource2 , NULL, &e r r) ;

// compi le the program

i f (clBuildProgram (program2 , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program−2\n”) ;

r e turn 1 ;

}

// s p e c i f y which ke rne l from the program to execute

ke rne l 2 = c lCreateKerne l (program2 , ”add2 ” , &e r r) ;

// part−2 ends

// part−3 s t a r t s

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

// c r e a t e a program from the ke rne l source code

program3 = clCreateProgramWithSource (context , 1 , (const char

∗∗) &ProgramSource3 , NULL, &e r r) ;

// compi le the program

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 140

i f (clBuildProgram (program3 , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program−3\n”) ;

r e turn 1 ;

}

// s p e c i f y which ke rne l from the program to execute

ke rne l 3 = c lCreateKerne l (program3 , ”add3 ” , &e r r) ;

// part−3 ends

// part−4 s t a r t s

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

// c r e a t e a program from the ke rne l source code

program4 = clCreateProgramWithSource (context , 1 , (const char

∗∗) &ProgramSource4 , NULL, &e r r) ;

// compi le the program

i f (clBuildProgram (program4 , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program−4\n”) ;

r e turn 1 ;

}

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 141

// s p e c i f y which ke rne l from the program to execute

ke rne l 4 = c lCreateKerne l (program4 , ”add4 ” , &e r r) ;

// part−4 ends

// part−5 s t a r t s

// c r e a t e command queue us ing the context and dev i c e

command queue = clCreateCommandQueue (context , d ev i c e i d , 0 , &

e r r) ;

// c r e a t e a program from the ke rne l source code

program5 = clCreateProgramWithSource (context , 1 , (const char

∗∗) &ProgramSource5 , NULL, &e r r) ;

// compi le the program

i f (clBuildProgram (program5 , 0 , NULL, NULL, NULL, NULL) !=

CL SUCCESS)

{

p r i n t f (” Error bu i l d i ng program−5\n”) ;

r e turn 1 ;

}

// s p e c i f y which ke rne l from the program to execute

ke rne l 5 = c lCreateKerne l (program5 , ”add5 ” , &e r r) ;

// part−5 ends

i n t s i z e=nb ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 142

s i z e t globalWorksizeFan1 [1] ;

s i z e t globalWorksizeFan21 [1] ;

s i z e t globalWorksizeFan2 [2] ;

g lobalWorksizeFan1 [0] = nb−1 ;

globalWorksizeFan21 [0] = 2 ;

globalWorksizeFan2 [0] = nb−1;

globalWorksizeFan2 [1] = nb−1;

i n t NLg ,NMg,MRg, Ng , Lg , Kg, kg ;

// f l o a t BN,C;

c l o c k t g3=c lo ck () ;

NLg=(nra−1)−(nb−1)+1;

NMg=(nra−1)−1;

MRg=nb−1;

f o r (i n t t =0; t<=(nra−2) ; t++)

{

i f (t>NLg) MRg=nra −t ;

// ke rne l args

c l i n t argchk ;

argchk = clSetKerne lArg (kerne l , 0 , s i z e o f (cl mem) , (

void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l , 1 , s i z e o f (cl mem) , (

void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l , 2 , s i z e o f (cl mem) , (

void ∗)&inputB) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 143

argchk |= clSetKerne lArg (kerne l , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

argchk |= clSetKerne lArg (kerne l , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

argchk |= clSetKerne lArg (kerne l , 5 , s i z e o f (

i n t) , (void ∗)&MRg) ;

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l , 1 , 0 ,

globalWorksizeFan1 ,NULL, 0 , NULL, NULL) ;

// ke rne l args

argchk = clSetKerne lArg (kerne l2 , 0 , s i z e o f (

cl mem) , (void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l2 , 1 , s i z e o f (cl mem) ,

(void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l2 , 2 , s i z e o f (cl mem) ,

(void ∗)&inputB) ;

argchk |= clSetKerne lArg (kerne l2 , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

argchk |= clSetKerne lArg (kerne l2 , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

argchk |= clSetKerne lArg (kerne l2 , 5 , s i z e o f (

i n t) , (void ∗)&MRg) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 144

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l2 , 2 , 0 ,

globalWorksizeFan2 ,NULL, 0 , NULL, NULL) ;

argchk = clSetKerne lArg (kerne l3 , 0 , s i z e o f (

cl mem) , (void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l3 , 1 , s i z e o f (cl mem) ,

(void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l3 , 2 , s i z e o f (cl mem) ,

(void ∗)&inputB) ;

argchk |= clSetKerne lArg (kerne l3 , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

argchk |= clSetKerne lArg (kerne l3 , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

argchk |= clSetKerne lArg (kerne l3 , 5 , s i z e o f (

i n t) , (void ∗)&MRg) ;

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l3 , 1 , 0 ,

globalWorksizeFan1 ,NULL, 0 , NULL, NULL) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 145

argchk = clSetKerne lArg (kerne l4 , 0 , s i z e o f (

cl mem) , (void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l4 , 1 , s i z e o f (cl mem) ,

(void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l4 , 2 , s i z e o f (cl mem) ,

(void ∗)&inputB) ;

argchk |= clSetKerne lArg (kerne l4 , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

argchk |= clSetKerne lArg (kerne l4 , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

argchk |= clSetKerne lArg (kerne l4 , 5 , s i z e o f (

i n t) , (void ∗)&MRg) ;

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l4 , 1 , 0 ,

globalWorksizeFan21 ,NULL, 0 , NULL, NULL) ;

argchk = clSetKerne lArg (kerne l5 , 0 , s i z e o f (

cl mem) , (void ∗)&inputM) ;

argchk |= clSetKerne lArg (kerne l5 , 1 , s i z e o f (cl mem) ,

(void ∗)&inputA) ;

argchk |= clSetKerne lArg (kerne l5 , 2 , s i z e o f (cl mem) ,

(void ∗)&inputB) ;

argchk |= clSetKerne lArg (kerne l5 , 3 , s i z e o f (i n t) , (

void ∗)&s i z e) ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 146

argchk |= clSetKerne lArg (kerne l5 , 4 , s i z e o f (i n t) , (

void ∗)&t) ;

argchk |= clSetKerne lArg (kerne l5 , 5 , s i z e o f (

i n t) , (void ∗)&MRg) ;

// launch ke rne l

clEnqueueNDRangeKernel (command queue , kerne l5 , 1 , 0 ,

globalWorksizeFan1 ,NULL, 0 , NULL, NULL) ;

}

c l o c k t g4=c lo ck () ;

double tg2 =((g4−g3) ∗1000) /CLOCKS PER SEC ; ;

c l o c k t g5=c lo ck () ;

// copy the r e s u l t s from out o f the output b u f f e r

clEnqueueReadBuffer (command queue , inputA , CL TRUE, 0 , s i z e o f

(f l o a t) ∗DATA SIZE, inputDataA , 0 , NULL, NULL) ;

// clEnqueueReadBuffer (command queue , inputM , CL TRUE, 0 ,

s i z e o f (f l o a t) ∗nra , inputDataM , 0 , NULL, NULL) ;

clEnqueueReadBuffer (command queue , inputB , CL TRUE, 0 , s i z e o f

(f l o a t) ∗nra , inputDataB , 0 , NULL, NULL) ;

c l o c k t g6=c lo ck () ;

double tg3 =((g6−g5) ∗1000) /CLOCKS PER SEC ; ;

// f p r i n t f (f31 ,”\n\n\nafterGPU\n”) ;

/∗ f o r (i =0; i <1∗nra ; i++)

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 147

{

f o r (j =0; j <1∗nb ; j++)

{

f p r i n t f (f31 ,”% f , ” , inputDataA [j + nb∗ i

]) ;

}

f p r i n t f (f31 ,”\n”) ;

}

∗/

//end new CL

i n t NL,NM,MR,N, L ,K, k ;

f l o a t BN,C;

c l o c k t c5=c lock () ;

NL=nra−nb+1;

NM=nra−1;

MR=nb ;

f o r (N=1;N<=NM;N++)

{

BN=ac [N] ;

ac [N]=BN/ kj [N] [1] ;

i f (N>NL) MR=nra −N +1;

f o r (L=2;L<=MR; L++)

{

// i f (k j [N] [L]==0) cont inue ;

C=kj [N] [L] / k j [N] [1] ;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 148

i=N + L −1;

j =0;

f o r (K=L ;K<=MR;K++)

{

j=j +1;

k j [i] [j]= kj [i] [j]− C∗ kj [N] [K] ;

}

ac [i]=ac [i]−C∗BN;

kj [N] [L]=C;

}

}

c l o c k t c6=c lock () ;

double tc3 =((c6−c5) ∗1000) /CLOCKS PER SEC ; ;

/∗

f p r i n t f (f31 ,”\n”) ;

f p r i n t f (f31 , ” a f t e r ban KJ\n”) ;

f p r i n t f (f31 ,”\n”) ;

f o r (i =0; i <1∗nra ; i++)

{

f o r (j =0; j <1∗nb ; j++)

{

f p r i n t f (f31 ,”% f , ” , k j [i +1] [j +1]) ;

}

f p r i n t f (f31 ,”\n”) ;

}

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 149

∗/

/∗ f p r i n t f (f2 , ” Modif ied AC be fo r e backsub\n”) ;

f o r (i =1; i<=1∗nra ; i++)

{

f p r i n t f (f2 , ”AC−%d=%f ACP−%d=%f \n” , i , ac [i] , i , acp [i

−1]) ;

}

/∗

f p r i n t f (f2 , ” Modif ied AC\n”) ;

f o r (i =1; i<=1∗nra ; i++)

{

f p r i n t f (f2 , ”AC−%d=%f GAC−%d=%f \n” , i , ac [i] ,

i , inputDataB [i −1]) ;

}∗/

c l o c k t c7=c lock () ;

i=nra ;

ac [nra]=ac [nra] / k j [nra] [1] ;

f o r (N=1;N<=NM;N++)

{

i=i −1;

i f (N<nb)

MR=N+1;

f o r (j =2; j<=MR; j++)

{

k=i+j −1;

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 150

ac [i]=ac [i]− kj [i] [j]∗ ac [k] ;

}

}

c l o c k t c8=c lock () ;

double tc4 =((c8−c7) ∗1000) /CLOCKS PER SEC ; ;

//GPU banfac

/∗

i n t NLg ,NMg,MRg, Ng , Lg , Kg, kg ;

// f l o a t BN,C;

NLg=(nra−1)−(nb−1)+1;

NMg=(nra−1)−1;

MRg=nb−1;

f o r (Ng=0;Ng<=NMg; Ng++)

{

BN=inputDataB [Ng] ;

inputDataB [Ng]=BN/inputDataA [Ng∗nb] ;

i f (Ng>NLg) MRg=nra −Ng ;

f o r (Lg=1;Lg<=MRg; Lg++)

{

i f (inputDataA [Ng∗nb + Lg]==0) cont inue ;

C=inputDataA [Ng∗nb + Lg] / inputDataA [Ng∗nb] ;

i=Ng + Lg ;

j =0;

f o r (Kg=Lg ; Kg<=MRg;Kg++)

{

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 151

inputDataA [i ∗nb + j]=inputDataA [i ∗nb

+ j]− C∗ inputDataA [Ng∗nb + Kg] ;

j=j +1;

}

inputDataB [i]=inputDataB [i]−C∗BN;

inputDataA [Ng∗nb + Lg]=C;

}

}

∗/

// cleanup − r e l e a s e OpenCL r e s o u r c e s

clReleaseMemObject (inputA) ;

clReleaseMemObject (inputB) ;

clReleaseMemObject (inputM) ;

c lReleaseProgram (program) ;

c lRe l ea s eKerne l (k e rne l) ;

c lReleaseProgram (program2) ;

c lRe l ea s eKerne l (ke rne l 2) ;

c lReleaseProgram (program3) ;

c lRe l ea s eKerne l (ke rne l 3) ;

c lReleaseProgram (program4) ;

c lRe l ea s eKerne l (ke rne l 4) ;

c lReleaseProgram (program5) ;

c lRe l ea s eKerne l (ke rne l 5) ;

clReleaseCommandQueue (command queue) ;

c lRe leaseContext (context) ;

//GPU Backsub

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 152

c l o c k t g7=c lo ck () ;

i=nra−1;

inputDataB [nra−1]=inputDataB [nra−1]/ inputDataA [(nra−1)∗nb] ;

f o r (Ng=0;Ng<=NMg; Ng++)

{

i=i −1;

i f (Ng<(nb−1))

MRg=Ng+1;

f o r (j =1; j<=MRg; j++)

{

k=i+j ;

inputDataB [i]=inputDataB [i]− inputDataA [i ∗nb

+ j]∗ inputDataB [k] ;

}

}

c l o c k t g8=c lo ck () ;

double tg4 =((g8−g7) ∗1000) /CLOCKS PER SEC ; ;

// p r i n t the r e s u l t s

f p r i n t f (f2 , ” Modif ied AC\n”) ;

f o r (i =1; i<=1∗nra ; i++)

{

APPENDIX B. HALF-BAND SOLVER HOST PROGRAM 153

// f p r i n t f (f2 , ”AC−%d=%f GAC−%d=%f \n” , i , ac [i] ,

i , inputDataB [i −1]) ;

}

f p r i n t f (f2 , ”AC−%d=%f GAC−%d=%f \n” , nra , ac [

nra] , nra , inputDataB [nra−1]) ;

f p r i n t f (f2 , ”\nNRA=%d\n” , nra) ;

f p r i n t f (f2 , ”\nNB=%d\n” ,nb) ;

f p r i n t f (f2 , ”\nGPU Execution time=%f \n” , tg2+tg4) ;

f p r i n t f (f2 , ”\nGPU Communication time=%f \n” , tg1+tg3) ;

f p r i n t f (f2 , ”\nCPU time=%f \n” , tc1+tc2+tc3+tc4) ;

f p r i n t f (f2 , ”\nGPU time=%f \n” , tg1+tg2+tg3+tg4) ;

}

Appendix C

List of Paper

Published/Communicated

1 Application of Parallel Computing In Structural Engineering, National Confer-

ence on Emerging Trends in Technology Engineering & Management(NCEETM),Indus

University, Ahmedabad

2 Heterogeneous Linear Equation Solver Using Graphics Processing Unit (GPU),

Advances in Civil Engineering and Chemistry of Innovative Materials (ACECIM-

14), SRM University, Chennai

3 Heterogeneous Linear Equation Solver Using Graphics Processing Unit (GPU

And Central Processing Unit (CPU), International Civil Engineering Sympo-

sium (ICES-14),VIT University, Vellore

4 Accelerated Plane Frame Analysis Using Parallel Computing, Recent Advances

In Civil And Structural Engineering (Racse-’14), ADIT and BVM

154

References

[1] E. D. Sotelino, Parallel Processing Techniques in Structural Engineering Ap-
plications, Journal of Structural Engineering, Vol. 129, No. 12, December 1,
2003,ASCE

[2] Jerome F. Hajjarz and John F. Abel, Parallel Processing Of Nonlinear Dynamic
Analysis Of Steel Frame Structures Using Domain Decomposition, Proceed-
ings of Ninth World Conference on Earthquake Engineering August 2-9, 1988,
Tokyo-Kyoto, JAPAN (Vol.V)

[3] T. Bahcecioclu and O. Kurc, Nonlinear dynamic finite element analysis with
GPU, 14th International Conference on Computing in Civil and Building
Engineering. by International Society for Computing in Civil and Building
Engineering,June-2012

[4] V. Kandasamy and M. Konig, Parallel finite element mesh generator using mul-
tiple GPUs, 14th International Conference on Computing in Civil and Build-
ing Engineering. by International Society for Computing in Civil and Building
Engineering,June-2012

[5] Filip Kruzel and Krzysztof Banas,Vectorized OpenCL implementation of nu-
merical integration for higher order finite elements, Computers and Mathemat-
ics with Applications, August-2013

[6] Depeng Yang, Junqing Sun, JunKu Lee, Getao Liang, David D. Jenkins, Gre-
gory D. Peterson, and Husheng Li, Performance Comparison of Cholesky De-
composition on GPUs and FPGAs, 2012 Symposium on Application Accel-
erators in High-Performance Computing,National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign

[7] Lixiang Wang, Shihai Li, Guoxin Zhang, Zhaosong Ma and Lei Zhang, A GPU-
based Parallel Procedure for Nonlinear Analysis of Complex Structures Using
a Coupled FEM/DEM Approach, Mathematical Problems in Engineering, Vol-
ume 2013 (2013)

[8] Shang-Hsien Hsieh, Yuan-Sen Yang and Po-Yao Hsu , Integration of General
Sparse Matrix and Parallel Computing Technologies for Large-Scale Structural

155

REFERENCES 156

Analysis ,Computer-Aided Civil and Infrastructure Engineering 17, Blackwell
Publishing, 350 Main Street, Malden, MA 02148, USA and 108 Cowley Road,
Oxford OX4 1JF, UK.

[9] Xiao Qian, Wang Chengguo, Guo Ge, The Research of Parallel Computing for
Large-scale Finite Element Model of WheeIlRail Rolling Contact,IEEE

[10] Xuanhua Fan, Rui-an Wu, Pu Chen, Zuogui Ning, Jian Li, Parallel Computing
of Large Eigenvalue Problems for Engineering Structures, 2011 International
Conference on Future Computer Sciences and Application,IEEE

[11] Chaojiang Fu, Parallel Computing For Finite Element Structural Analysis On
Workstation Cluster, 2008 International Conference on Computer Science and
Software Engineering, IEEE

[12] Chaojiang Fu, Parallel Computing For Finite Element Structural Modal Anal-
ysis On Workstation Cluster , International Conference on Information Science
and Engineering (ICISE2009) , IEEE

[13] Yoon Kah Leow, Ali Akoglu, Ibrahim Guven, Erdogan Madenci, High Perfor-
mance Linear Equation Solver Using NVIDIA GPUs, NASA/ESA Conference
on Adaptive Hardware and Systems (AHS-2011)

[14] Girish Sharma , Abhishek Agarwala , Baidurya Bhattacharya ,A fast paral-
lel Gauss Jordan algorithm for matrix inversion using CUDA, Computers and
Structures 128 (2013) 3137

[15] Ravi Reddy,Alexey Lastovetsky,Pedro Alonso, Parallel Solvers for Dense Lin-
ear Systems for Heterogeneous Computational clusters, 978-1-4244-3750-4/09,
2009,IEEE

[16] T. P. Stefanski, S. Benkler, N. Chavannes, N. Kuster,Parallel Implementation of
the Finite-Difference Time- Domain Method in Open Computing Language,978-
1-4244-7368-7/10/2010,IEEE

[17] Jian-She Wang, Nathan Ida, Parallel Algorithms For Direct Solution Of Large
Systems Of Equations, CH2649-2/89/0000/0231 1988, IEEE

[18] V. Mani, B. Dattaguru, N. Balakrishnan and T.S. Ramamurthy, Parallel Gaus-
sian Elimination For Banded Matrix, A Computational Model, Conference on
Computer and Communication Systems, September 1990, Hong Kong, IEEE

[19] S.F.McGinn, R.E.Shaw, Parallel Gaussian Elimination Using OpenMP and
MPI, Proceedings of the 16th Annual International Symposium on High Per-
formance Computing Systems and Applications (HPCS.02) 0-7695-1626-2/02
2002, IEEE

REFERENCES 157

[20] Hang Liu, Jung-Hee Seo, Rajat Mittal, H. Howie Huang, GPU-Accelerated
Scalable Solver for Banded Linear Systems, 978-1-4799-0898-1/13/ 2013, IEEE

[21] Zhihui Zhang, Qinghai Miao, Ying Wang, CUDA-Based Jacobi’s Iterative
Method, 978-0-7695-3930-0/09 2009, IEEE

[22] Parallel computing - Wikipedia http://en.wikipedia.org/wiki/Parallel_

computing

[23] Graphics processing unit - Wikipedia http://en.wikipedia.org/wiki/

Graphics_processing_unit

[24] Introduction to OpenCL Programming-Training Guide - AMD

[25] General-purpose computing on graphics processing units - Wikipedia
http://en.wikipedia.org/wiki/General-purpose_computing_on_

graphics_processing_units

[26] OpenCL Specifications by http://www.khronos.org

[27] Heterogeneous Computing with OpenCL by Benedict Gaster, Lee Howes, David
R. Kaeli, Perhaad Mistry, Dana Schaa

[28] OpenCL Zone - AMD Developer Central, http://developer.amd.com/

resources/heterogeneous-computing/opencl-zone

[29] Earth Simulator - Wikipedia http://en.wikipedia.org/wiki/Earth_

Simulator

[30] Blue Gene - Wikipedia http://en.wikipedia.org/wiki/Blue_Gene

[31] Nvidia Tesla - Wikipedia http://en.wikipedia.org/wiki/Nvidia_Tesla

[32] Supercomputer - Wikipedia http://en.wikipedia.org/wiki/Supercomputer

[33] Introduction to High Performance Computing, M. D. Jones, Ph.D., Center for
Computational Research University at Buffalo State University of New York

[34] Computer cluster - Wikipedi http://en.wikipedia.org/wiki/Computer_

cluster

[35] Numerical Methods in Science and Engineering, By S. Rajasekaran

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
http://www.khronos.org
http://developer.amd.com/resources/heterogeneous-computing/opencl-zone
http://developer.amd.com/resources/heterogeneous-computing/opencl-zone
http://en.wikipedia.org/wiki/Earth_Simulator
http://en.wikipedia.org/wiki/Earth_Simulator
http://en.wikipedia.org/wiki/Blue_Gene
http://en.wikipedia.org/wiki/Nvidia_Tesla
http://en.wikipedia.org/wiki/Supercomputer
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Computer_cluster

	Declaration
	Certificate
	Abstract
	Acknowledgement
	Abbreviations
	List of Tables
	List of Figures
	Introduction to High Performance Computing
	General
	Advances in Hardware and Platforms for HPC
	Evolution of HPC
	Domains of High Performance Computing
	Cluster Computing
	Grid Computing
	Multicore Computing

	Parallel Computing
	Flynn's taxonomy

	General-purpose computing on graphics processing units (GPGPU)
	Objective of Study
	Scope of Work
	Organization of Report

	Literature Survey
	Parallel Computing
	Application of Parallel Computing on FEM
	Parallel Solvers
	Summary

	Introduction to OpenCL Programming
	General
	Benefits of OpenCL

	Modules of OpenCL
	Language Specification
	Platform API
	Runtime API

	OpenCL Architecture
	The Platform Model
	The Execution Model
	Kernels
	Host Program

	The Memory Model

	Executing an OpenCL Program
	Multiplication of Large Square Matrices
	Parallel Implementation
	OpenCL Kernel
	OpenCL Source code for C++
	Comparison of Speedup and Efficiency

	Summary

	Gaussian Elimination
	General
	Algorithm of Gaussian Elimination
	Sequential Implementation
	Parallel Implementation
	Summary

	Half-Band Matrix Solver
	General
	Algorithm of Half-Band Solver
	Sequential Implementation
	Parallel Implementation
	Plane Frame Analysis
	Space Frame Analysis
	Summary

	Summary and Conclusion
	Summary
	Conclusion
	Future Scope of Work

	Gauss Elimination host program
	Half-Band Solver host program
	List of Paper Published/Communicated
	References

