
International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

24

ERROR RESILIENCE IN CASE OF TEST DATA COMPRESSION

TECHNIQUE FOR IP CORE BASED SOC

Usha S Mehta, Rakesh G Trivedi, Nandish B Thaker

EC Dept, Institute of Technology, Nirma University, Ahmedabad, India

ABSTRACT

The fault coverage is the major quality criteria for any test data. Any bit flip in test data can

reduce the fault coverage and hence yield. As per recent trends, use of preprocessed and compressed

test data has been common for testing of IP core based SoC. The bit flip in such data can be more

dangerous to fault coverage. Further, the hidden structure of IP core does not allow the system

integrator to analyze the effect of bit flip on fault coverage. In this scenario, it is utmost necessary to

make the test data compression method error resilient. In this paper, we have proposed a method to

make test data error resilience. Its effect on % compression and test application time is calculated

using highly cited ISCAS89 benchmark circuits. Also the on-chip decoder required for error resilient

test data is proposed and corresponding results for area-overhead is shown.

Keywords: Error Resilience; Test Data Compression, IP core based SoC, EFDR.

I. INTRODUCTION

 This section includes the need of error resilience for compressed test data set used for SoC

testing.

A. Bit Flips and Need of Error Resilience in Test Data

While storing the test data in the ATE head or transferring the test data from ATE to DUT,

there are many reasons which may cause the bit flips in test data. As per [1], the major reasons of

such bit flips are: 1. the noise of loadboard which can affect transmission line between the ATE pins

and the DUT 2. The generation of test inputs as pin waveforms to the DUT. In general, as testing

requires very high speed (tens of millions of ATE cycles over hundreds of pins), few bit-flips must

This research work is supported by the GUJCOST-MRP on “New Testing Method at Design Level for Improvement in Performance of VLSI in
nanometer region”

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING

AND TECHNOLOGY (IJARET)

ISSN 0976 - 6480 (Print)
ISSN 0976 - 6499 (Online)
Volume 5, Issue 1, January (2014), pp. 24-35
© IAEME: www.iaeme.com/ijaret.asp
Journal Impact Factor (2013): 5.8376 (Calculated by GISI)
www.jifactor.com

IJARET

© I A E M E

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

25

be considered to be unavoidable in ATE environments. During manufacturing test process, a single

bit-flip can change data such that the fault coverage of the erroneous test set (as affected by bit-flips)

can be reduced. Reduction in fault coverage causes a lower yield and increase in defects per million

for products being shipped to customers. Hence it is necessary to make the test data error resilient.

B. Error Resilience in case of SoC

In today's era, the use of Intellectual Property (IP) cores have been very common for SoCs

and NoCs [2]. Such IP Core comes with ready – to – use test data. System Integrates has no

knowledge of its internal structure and hence if there is any error/bit flip in this ready – to – use test

data, its effect on fault coverage cannot be known. Further, considering a very huge SoC test data set

made up of individual IP test data, use of test data compression method has been the common

practice for SoCs [3].

As it is very much clear that any bit flip in test data damages the fault coverage, it must be

noted that bit flip in compressed test data is more dangerous because a single bit flip in compressed

test data may result in a large number of bit flips in decompressed test data when erroneous test data

is decompressed on chip. The coverage lose may be up to 30% in worst case for various compression

approach [1].

 Current research publications on test data compression scheme focuses on its compression

efficiency, on-chip decoder area and overall test application time. Only a little work is found on

error-resilience for compressed test data.

 In this paper, it has been emphasized that the error resilience is one of major quality criteria

for compressed test data in case of hidden structure of IP cores used in SoCs.

II. PREVIOUS WORK

During literature survey on error resilience, it is found that the work done by Hashempour H

and et.al in nearly 2005 is the remarkable.

First of all, let us understand the effect of a bit flip in compressed data on the corresponding

decompressed data set and fault coverage as described in [4].

(a) Constant size codeword and symbol

For the test data compression, if the coding style is with constant size codeword and constant

size symbol, than there will be minimum effect of bit flip as only one code word will be replace by

another erroneous code word and corresponding bits in decompressed data set may be affected.

(b) Variable size codeword and symbol

To get maximum compression efficiency, the current trends has focused on using variable

length of symbols as well as variable length of code words. Some of the examples of variable length

coding styles are Golomb[5], FDR[6], EFDR[7], MFDR[8], Huffman Coding[9], Selective Huffman

Code[10], Modified Selective Huffman Code[11] etc.

As per [12], in variable length code words, the bit flip may cause the effect “propagation and

shift” which means either of these two conditions may arise: 1. the affected codeword is broken into

one or more valid code words 2. The affected codeword is broken into valid code words and a

“dangling suffix” which is not a valid codeword. Considering the example from [12], the set of

Huffman code words given by {0, 10, 110, 111}. A bit-flip affecting codeword 0 results into a zero

valid codeword and a dangling suffix of 1 which is not a valid codeword. A bit-flip affecting the first

bit of codeword 10, results into 00, i.e., two valid code words. A bit-flip at the second bit of

codeword 111, results into 101, i.e., one valid codeword and a dangling suffix of 1 which is not

valid.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

26

Fig.1. The shift effect of bit flip [12]

Fig. 2 The Propagation effect due to bit flip [12]

From above discussion, it can be concluded that because of a bit flip in codeword, one or

more code words can be lost and remaining code words are shifted by at least one codeword. This

contributes to synchronization loss. After decompression, it is important that the unaffected sequence

of bits appears exactly in the same location within the uncompressed test stream as it would if there

was no bit-flip. In the presence of bit-flips, this sequence is preceded by a corrupt sequence of

corrupt bits is different from the number of otherwise correct bits in the uncompressed stream, then

there is a loss of synchronization, i.e., the upcoming unaffected sequence of bits will be misplaced.

Synchronization loss acts as if the unaffected sequence of bits is a random set of bits.

 With a goal to reduce the negative effect of bit flips in test data on fault coverage, the effect

of bit flip in a specific test vector is constrained within that vector only by using bit padding and

vector padding[13]. Bit padding and vector padding avoids the propagation of error to next vectors.

 Still avoiding propagation does not provide the error free testing. So, in this paper, a method

is proposed for error free testing in case of SOC.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

27

III. PROPOSED METHOD

A very popular approach which corrects the negative effects of bit-flips in data

communication is based on the use of parity checks, for example, the data being transmitted is

padded with the even or odd parity bit. At receiver side the parity is checked and if the parity of

transmitted and received data does not match, the receiver requests the retransmission of data to the

transmitter.

The same concept of parity bit addition and checking we have adopted in this paper for error

resilience. The parity check ensures accurate data transmission between nodes during

communication. A parity bit is appended to the original data bits tocreate an even or odd bit number

with value one. The source then transmits this data via a link, and bits are checked and verified at the

destination. Data is considered accurate if the number of bits (even or odd) matches the number

transmitted from the source. Parity checking eliminates data communication errors and it is a simple

method of network data verification and has an easy and understandable working mechanism.

As an example, if the original code word is 1001001, there are three 1s. When even parity

checking is used, a parity bit with value 1 is added to the data’s right side to make the number of 1s

even; transmitted codeword becomes 10010011. However, if odd parity checking is used, then parity

bit value is zero; 10010010.

If the original codeword contains an even number of 1s (1101001), then parity bit of value 1

is added to the data’s right side to make the number of 1s odd, if odd parity checking is used and data

transmitted becomes 11010011. In case data is transmitted incorrectly, the parity bit value becomes

incorrect; thus, indicating error has occurred during transmission.

At first glance, this method may not be appraised considering that it increases the redundant

bits so data volume is increased and further, it demands the retransmission so transmission time

overhead may increase.

But considering the following facts, we are proposing the same parity bit method for error

resiliency in test data:

1. For maximum possible compression efficiency, majority of the test compression methods [14,

15] prefer to preprocess the test data using reordering and differentiation. Such preprocessed test

data is highly sensitive to bit flip. Even the bit padding or vector padding cannot stop the effect

of error propagation to next vector in case of reordering and difference vector.

2. Further, as stated earlier, when there is no scope of use of fault simulation, rather than knowing

the damage on fault coverage, the only option remains is to avoid the damage on fault coverage.

3. Reduction in compression ratio because of redundant parity bit is comparable to the reduction in

compression caused by other methods to enhance error resilience like bit padding or vector

padding.

4. The extra time required to retransmit the codeword can be a trade off against the error resilience

and fault coverage.

5. The extra area overhead in on-chip decoder because of parity checking may be negligible

considering the today’s million gate SoC.

Here, in this method, we are adding one parity bit at the end of each codeword and transmit the

data with parity bit itself.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

28

For example the original test vector is 000001110000000010001. We have selected here the

Hamming distance based reordering, column wise bit stuffing and difference vector as a

preprocessing method for data because it guarantees comparatively maximum compression [15].

Further, as per [16], the compression method which uses Runs of ‘0s followed by 1’ as well as Runs

of ‘1s followed by 0’ ensures the minimum number of symbols for a given test data set. If the number

of symbols will be minimum, the parity bits added per symbol will be less for given test data set.

Hence, we have used here EFDR test data compression method. Let’s consider an example of the

EFDR coding method for given sequence for runs like: 000001110000000010001. The code words

will be like this: first bit of codeword will be to indicate the type of run followed by the bits indicating

the length of run.

Hence, now the data sequence will be 010101 1011 011100000 010000. This sequence of

code words appended with parity bits will now transfer from ATE to DUT. At DUT, the on chip

decoder first of all checks for parity of code word. If parity does not match, it is assumed that the code

word received has some error in it. So decoder will request retransmission of codeword. When the

parity check is correct, the codeword is decoded and the decompressed data sequence is applied to

scan chain for further testing.

run 000001 : type of run :0 code for run length of 5: 1010

EDFR codeword : 01010

run 110 : type of run :1 code for run length of 2: 01

EFDR codeword: 101

run 00000001 : type of run :0 code for run length of 7: 1110000

EFDR codeword: 01110000

run 0001 : type of run :0 code for run length of 3: 1000

EFDR codeword: 01000

Hence coded data sequence will be 01010 101 01110000 01000. In the proposed

method we will add each parity bit to coded data word. Here, in this method, odd

parity bit checking is used. So each code word now appended with parity bit as

follows:

codeword: 01010, parity bit: 1

codeword: 101, parity bit: 1

codeword: 01110000 , parity bit: 0

codeword: 01000, parity bit: 0

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

29

IV. EXPERIMENTAL RESULTS

A. Bit Overhead because of Error Resilience

The proposed method of error resilience for IP Core Based SoC is implemented using

MATLAB language. The experiments are conducted on a workstation with ai5 333os CPU, 2.70

GHz and 4 GB of memory. The seven largest ISCAS89 full-scan circuits have been considered for

this experiment. For all ISCAS89 circuits, the test sets (with don’t care) obtained from the Mintest

ATPG program is used. The test sets were pre-processed with HDR-CBS-DV scheme and then

applied EFDR test data compression and then parity bit was added to each codeword. Table I

presents the experimental results for the widely cited seven ISCAS 89 bench mark circuits. It

contains the total number of test patterns, total number of bits per vector and total number of bits in

original complete test set, the total number of symbols considering EFDR method, the %compression

achieved by EFDR, the % compression achieved in case of test data is pre-processed using

HDR+CBS+DV method and % compression when error resilience is added to test data. For each of

the case, the % compression without the application of proposed scheme from the original IEEE

papers is shown and the % compression after application of the proposed scheme is also clearly

shown. The amount of % compression obtained is computed as per the formula of % compression

given ahead. In this table, all the reference cases against which comparisons are made used exactly

similar source and conditions of test data i.e. all the reference cases have used the ISCAS89 circuits,

the test sets (with don’t care) obtained from the Mintest ATPG program. The original test data size is

matching perfectly. Also the % bit overhead because of error resilience is calculated for each

benchmark circuit.

Here the % compression and % bit overhead because of error resilience is calculated as

follows:

% �� �
��� 	 ��
 � 100

��_�

Where,

% dc = % data compression

tb = total # of bits in original test data

cb = # of bits in compressed data

or_c = total # of bits in original data

% �� � ��� �
100

��

Where,

% bo = % bit overhead

erb = # of error resilience bits added to compressed test set

tb = # total bits in test set

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

30

TABLE I: ERROR RESILIENCE FOR EDFR COMPRESSION METHOD

B. Test Time Overhead because of Error Resilience

Table II compares error resilience technique in terms of the number of clock cycles needed to

decompress the test sets, which corresponds to the test application time. The number of clock cycles

is obtained based on VHDL models of the decompression circuitry and the simulation results based

on Modelsim simulators. Here the reduction in clock cycles in spite of the added error resilience bits

is because of the effective modelling of FSM of on-chip decoder and reduction in FSM states as

discussed in next section.

TABLE II. PERFORMANCE EVALUATION IN TERMS OF CLOCK CYCLES

ISCAS 89

Benchmark

Circuits

of clock cycles % Performance

Improvement in

clock cycles

EFDR

Error Resilience

EFDR

S5378 102210 40179 60.69

S9234 171961 66385 61.40

S13207 679540 130058 80.86

S15850 325607 102001 68.67

S35932 115489 36805 68.13

S38417 702936 249615 64.49

S38584 846395 305053 63.96

AVG 420591 132871 68.41

ISCAS 89

Benchmark

Circuits

Test

vector

Bits/

vector

Total

Bits

of

Symbols

%

Compression

for

EFDR [7]

%

Compression

for

HDR-CBS-

DV

+

EFDR [15]

%

Compression

for

HDR-CBS-DV

+

EFDR

+

Error

Resilience Bit

% Bit

Overhead

Because

of Error

Resilience

S5378 111 214 23754 1732 51.93 60.03 52.7406 7.2914

S9234 159 247 39273 2802 45.89 57.56 50.4290 7.1347

S13207 236 700 165200 3132 81.85 86.40 84.5133 1.8959

S15850 126 611 76986 3623 67.99 70.43 65.7288 4.7061

S35932 16 1763 28208 860 Not Available 74.48 71.4407 3.0488

S38417 99 1664 164736 10077 60.57 65.67 59.5535 6.1171

S38584 136 1464 199104 12773 62.91 63.10 56.6849 6.4152

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

31

V. ON CHIP DECODER

Fig. 3 shows the proposed on-chip decoder for error resilient EFDR test data compression

method. The decoder accepts EFDR encoded code words with maximum run length of 2000. The

codeword is checked for even parity and if parity checking is successful then required run is generated

otherwise a request of retransmission of codeword is sent to ATE.

Fig. 3 Proposed Error Resilient EFDR On-chip Decoder

The proposed decoder consists of FSM, SR Latch, XOR, run generator, storage register and

Log2K bit counter. The description of various signals is as follow:

Parity: Parity signal checks for parity of 1s in given codeword.

clk: global clock to every block.

bit_in_serial: Serial input from encoder.

next_bit_in: shows readiness to accept next incoming bit. The next bit is accepted only if this bit is

high.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

32

Reset: to reset the FSM.R or S : this signal is used to store the run type.

Increment: to increment the Log2K bit counter for every head bit.

decrement: to decrement the Log2K bit Counter for every head bit.

Count: to keep feed backing the FSM about the state of count in Log2K bit Counter.

Length_total: to give total length of input code word to Run Generator so that it can compute the run

length encoded in code word.

Hold: To temporary hold transmission.

symbol_done: It shows when a symbol is successfully decoded.

The function of various blocks is as follows:

SR Latch :If run type is '0', r input is made high and for run type of '1' s input is made high.

Storage Register:On encounter of every bit, it is moved down into storage register and the total

length is computed which helps to determine the total length of run.

Log2K bit Counter:This counter is used to detect the end of codeword. It will be incremented for

every input head bit and decremented for every input tail bit.

Run Generator:It will generate the total length for run. It will always generate run of 0s'. The output

of this is given as input to the XOR gate. Now, if run type is '1', then Q = '1' and run of 0s' generated

by this block will be XORed with Q which will generate run of 1s' bit by bit on every clock.

Parity Checker:It calculates parity and returns whether parity is odd or even.

Six states of FSM are as below:

S0: This is the reset state. Also this state accepts the first input bit and determines whether the run

will be “run of 1s'” or “run of 0s'”.

S1: It will accept the first bit of code word to determine whether the run is of length is 1 or 2 or more.

S2:

1. If second input bit or first bit of code word is a '0' then it is clear that the run is either of

length 1 or 2. So, FSM will reside in this state for one other cycle to accept next bit. After

accepting this bit, it again in the same S2 state.

2. Now, the next likely input bit is parity bit. The FSM will compute the parity and if parity is

even, run of required length will be generated in the same state.

3. Otherwise, it will send a retransmission signal and the FSM will come into its reset state i.e.

S0 again.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

33

Fig. 4 FSM for Proposed Error Resilient EFDR On-chip Decoder

S3:

1. If run is having length of more than 2, FSM will come down to this state.

2. It will reside in this state and keep on accepting next bits till it encounter a '0' which is an

indication of end of the head.

3. Meanwhile at each encounter of head bit the Log2K counter is incremented.

4. On encounter of '0', it will come in the next state.

S4: Here, it will reside till all the tail bits are accepted and saved in the Storage Register. It will

accept the parity bit and move down to state S5.

S5: If parity is even then run of required length is generated. Otherwise, the retransmission signal is

made high and FSM gets reset.

A. Operation of other blocks

If run type is '0', r input to SR Latch is made high and for run type of '1' s input is made high.

On encounter of every bit, it is moved down into storage register and the total length is computed

which helps to determine the total length of run. Log2K bit counter is used to detect the end of

codeword. It will be incremented for every input head bit and decremented for every input tail bit.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

34

Run Generator will generate the total length for run. It will always generate run of 0s'. The output of

this is given as input to the XOR gate. Now, if run type is '1', then Q = '1' and run of 0s' generated by

run generator block will undergo the following logical operation

Decoded_Output = (Run Generator o/p) xor Q

Which will generate run of 1s' bit by bit on every clock. Same operation will follow if run

type is zero.

VI. CONCLUSION

It has been shown that the error resilience is a very essential quality of test data particularly

when the test data is preprocessed and compressed and to be used with IP core based SoC. By using

the current available techniques, the propagation of effect of bit flip to the next vector can be avoided

but cannot be corrected. In proposed technique, the effect of bit flip is corrected. The corresponding

overhead in terms of test data volume and testing time is also calculated. Further, the on-chip

decoder for the proposed scheme is developed and its area overhead is shown. In short, this paper

focuses on making the preprocessed-compressed test data more robust against bit flip error.

REFERENCES

[1] HamidrezaHashempour, et al, “Evaluation, Analysis, and Enhancement of Error Resilience for

Reliable Compression of VLSI Test Data,” IEEE Transactions on Instrumentation and

Measurement, Vol. 54, No. 5, October, 2005.

[2] U. Mehta, K. Dasgupta, and N. Devashrayee, “Survey of test data compression techniques

emphasizing code based schemes," Proceedings of 12th Euromicro Conference on Digital

System Design Architectures, Methods and Tools (DSD 09). Patras, Greece: IEEE, August

2009, pp. 617-620.

[3] N. Touba, “Survey of test vector compression techniques,”, IEEE Design and Test of

Computers, July 2006.

[4] H. Hashempour, L. Schiano, and F. Lombardi, “Error resilient test data compression using

Tunstall codes,” in Proc. IEEE Int. Conf. Defect and Fault Tolerance in VLSI Systems, 2004,

pp. 316–323.

[5] A. Chandra and K. Chakrabarty, “Test data compression for system on a chip using Golomb

codes,” Proceedings of the 18th IEEE VLSI Test Symposium, (VTS 00), 2000.

[6] Chandra and K. Chakrabarty, “Frequency directed run length (FDR) codes with application to

system on a chip test data compression,” Proceedings of the 19th IEEE VLSI Test Symposium

(VTS 01), March 2001.

[7] Maleh and R. A. Abaji, “Extended frequency directed run length code with improved

application to system on chip test data compression,” Proceedings of the International

Conference on Electronics, Circuits and Systems, pp. 449-452, September 2002.

[8] A. Chandra and K. Chakrabarty, “Test data compression and test resource partitioning for

system on a chip using frequency directed run length (FDR) codes,” IEEE Transactions on

Computers , Volume 52 Issue 8, August 2003.

[9] P. Gonciari et al., “Variable length input Huffman coding for system on a chip test,” IEEE

Transactions on Computer Aided Design , Volume 22 Issue 6, pp. 783-796, June 2003.

[10] X. Kavousianoset al., “Optimal selective Huffman coding for test data compression,” IEEE

Transactions on Computers, Volume 56 Issue 8, August 2007.

International Journal of Advanced Research in Engineering and Technology (IJARET),

ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 1, January (2014), © IAEME

35

[11] U. Mehta, K. Dasgupta, and N. Devashrayee, “Modified selective Huffman coding for

optimization of test data compression, test application time and area overhead," International

Journal of Electronics Testing: Theory and Application (JETTA), Springer Publications, vol.

26, no. 6, pp. 679-688, December 2010.

[12] H. Hashempour, L. Schiano, and F. Lombardi, “Evaluation of error resilience for reliable

compression of test data,” in Proc. Design and Test in Eur. (DATE) Conf., 2005, pp. 1284–

1289.

[13] P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. thesis, Dept. Elect. Comput.

Eng., Georgia Inst. Technology, Atlanta, GA, 1967.

[14] U. Mehta, K. Dasgupta, and N. Devashrayee, “Weighted transition Based Reordering, Colum

wise Bit Filling and Difference Vector –A Power Aware Test Data Compression Method," An

Open Access International Journal "VLSI Design", Special issue on “CAD for Gigascale SoC

Design and Verification Issues”.

[15] U. Mehta, K. Dasgupta, and N. Devashrayee, “Hamming distance based reordering and

column wise bit stuffing with difference vector: A better scheme for test data compression

with run length based codes," Proceedings of 23rd International Conference on VLSI Design

(VLSID 10). Bangalore: IEEE, 2010, pp. 33-38.

[16] U. Mehta, K. Dasgupta and N. Devashrayee, “Combining unspecified test data bit filling

methods and run length based codes to estimate compression, power and area overhead”,

IEEE Asia Pacific 33rd Conference on Circuits and Systems (APCCS-10), Malaysia, ISBN:

978-0-7695-4076-4 , December 2010.

