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ABSTRACT  

 
The fault coverage is the major quality criteria for any test data. Any bit flip in test data can 

reduce the fault coverage and hence yield. As per recent trends, use of preprocessed and compressed 

test data has been common for testing of IP core based SoC. The bit flip in such data can be more 

dangerous to fault coverage. Further, the hidden structure of IP core does not allow the system 

integrator to analyze the effect of bit flip on fault coverage. In this scenario, it is utmost necessary to 

make the test data compression method error resilient. In this paper, we have proposed a method to 

make test data error resilience. Its effect on % compression and test application time is calculated 

using highly cited ISCAS89 benchmark circuits. Also the on-chip decoder required for error resilient 

test data is proposed and corresponding results for area-overhead is shown. 

 

Keywords: Error Resilience; Test Data Compression, IP core based SoC, EFDR. 

 

I. INTRODUCTION 
  

 This section includes the need of error resilience for compressed test data set used for SoC 

testing. 
 

A. Bit Flips and Need of Error Resilience in Test Data  

While storing the test data in the ATE head or transferring the test data from ATE to DUT, 

there are many reasons which may cause the bit flips in test data. As per [1], the major reasons of 

such bit flips are: 1. the noise of loadboard which can affect transmission line between the ATE pins 

and the DUT 2. The generation of test inputs as pin waveforms to the DUT. In general, as testing 

requires very high speed (tens of millions of ATE cycles over hundreds of pins), few bit-flips must  
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be considered to be unavoidable in ATE environments. During manufacturing test process, a single 

bit-flip can change data such that the fault coverage of the erroneous test set (as affected by bit-flips) 

can be reduced. Reduction in fault coverage causes a lower yield and increase in defects per million 

for products being shipped to customers. Hence it is necessary to make the test data error resilient. 

 

B. Error Resilience in case of SoC 

In today's era, the use of Intellectual Property (IP) cores have been very common for SoCs 

and NoCs [2]. Such IP Core comes with ready – to – use test data. System Integrates has no 

knowledge of its internal structure and hence if there is any error/bit flip in this ready – to – use test 

data, its effect on fault coverage cannot be known. Further, considering a very huge SoC test data set 

made up of individual IP test data, use of test data compression method has been the common 

practice for SoCs [3].  

As it is very much clear that any bit flip in test data damages the fault coverage, it must be 

noted that bit flip in compressed test data is more dangerous because a single bit flip in compressed 

test data may result in a large number of bit flips in decompressed test data when erroneous test data 

is decompressed on chip. The coverage lose may be up to 30% in worst case for various compression 

approach [1].  

     Current research publications on test data compression scheme focuses on its compression 

efficiency, on-chip decoder area and overall test application time. Only a little work is found on 

error-resilience for compressed test data. 

     In this paper, it has been emphasized that the error resilience is one of major quality criteria 

for compressed test data in case of hidden structure of IP cores used in SoCs. 

 

II. PREVIOUS WORK 
 

During literature survey on error resilience, it is found that the work done by Hashempour H 

and et.al in nearly 2005 is the remarkable.  

First of all, let us understand the effect of a bit flip in compressed data on the corresponding 

decompressed data set and fault coverage as described in [4]. 

 

(a) Constant size codeword and symbol 

For the test data compression, if the coding style is with constant size codeword and constant 

size symbol, than there will be minimum effect of bit flip as only one code word will be replace by 

another erroneous code word and corresponding bits in decompressed data set may be affected. 

 

(b) Variable size codeword and symbol 

To get maximum compression efficiency, the current trends has focused on using variable 

length of symbols as well as variable length of code words. Some of the examples of variable length 

coding styles are Golomb[5], FDR[6], EFDR[7], MFDR[8], Huffman Coding[9], Selective Huffman 

Code[10], Modified Selective Huffman Code[11] etc. 

As per [12], in variable length code words, the bit flip may cause the effect “propagation and 

shift” which means either of these two conditions may arise: 1. the affected codeword is broken into 

one or more valid code words 2. The affected codeword is broken into valid code words and a 

“dangling suffix” which is not a valid codeword. Considering the example from [12], the set of 

Huffman code words given by {0, 10, 110, 111}. A bit-flip affecting codeword 0 results into a zero 

valid codeword and a dangling suffix of 1 which is not a valid codeword. A bit-flip affecting the first 

bit of codeword 10, results into 00, i.e., two valid code words. A bit-flip at the second bit of  

codeword 111, results into 101, i.e., one valid codeword and a dangling suffix of 1 which is not 

valid. 
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Fig.1.   The shift effect of bit flip [12] 

 

 
Fig. 2 The Propagation effect due to bit flip [12] 

 

From above discussion, it can be concluded that because of a bit flip in codeword, one or 

more code words can be lost and remaining code words are shifted by at least one codeword. This 

contributes to synchronization loss. After decompression, it is important that the unaffected sequence 

of bits appears exactly in the same location within the uncompressed test stream as it would if there 

was no bit-flip. In the presence of bit-flips, this sequence is preceded by a corrupt sequence of 

corrupt bits is different from the number of otherwise correct bits in the uncompressed stream, then 

there is a loss of synchronization, i.e., the upcoming unaffected sequence of bits will be misplaced. 

Synchronization loss acts as if the unaffected sequence of bits is a random set of bits.  

     With a goal to reduce the negative effect of bit flips in test data on fault coverage, the effect 

of bit flip in a specific test vector is constrained within that vector only by using bit padding and 

vector padding[13]. Bit padding and vector padding avoids the propagation of error to next vectors. 

     Still avoiding propagation does not provide the error free testing. So, in this paper, a method 

is proposed for error free testing in case of SOC.  
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III. PROPOSED METHOD 
 

A very popular approach which corrects the negative effects of bit-flips in data 

communication is based on the use of parity checks, for example, the data being transmitted is 

padded with the even or odd parity bit. At receiver side the parity is checked and if the parity of 

transmitted and received data does not match, the receiver requests the retransmission of data to the 

transmitter.  

The same concept of parity bit addition and checking we have adopted in this paper for error 

resilience.  The parity check ensures accurate data transmission between nodes during 

communication. A parity bit is appended to the original data bits tocreate an even or odd bit number 

with value one. The source then transmits this data via a link, and bits are checked and verified at the 

destination. Data is considered accurate if the number of bits (even or odd) matches the number 

transmitted from the source. Parity checking eliminates data communication errors and it is a simple 

method of network data verification and has an easy and understandable working mechanism. 

As an example, if the original code word is 1001001, there are three 1s. When even parity 

checking is used, a parity bit with value 1 is added to the data’s right side to make the number of 1s 

even; transmitted codeword becomes 10010011. However, if odd parity checking is used, then parity 

bit value is zero; 10010010. 

If the original codeword  contains an even number of 1s (1101001), then parity bit of value 1 

is added to the data’s right side to make the number of 1s odd, if odd parity checking is used and data 

transmitted becomes 11010011. In case data is transmitted incorrectly, the parity bit value becomes 

incorrect; thus, indicating error has occurred during transmission. 

At first glance, this method may not be appraised considering that it increases the redundant 

bits so data volume is increased and further, it demands the retransmission so transmission time 

overhead may increase.  

But considering the following facts, we are proposing the same parity bit method for error 

resiliency in test data: 

 

1. For maximum possible compression efficiency, majority of the test compression methods [14, 

15] prefer to preprocess the test data using reordering and differentiation. Such preprocessed test 

data is highly sensitive to bit flip. Even the bit padding or vector padding cannot stop the effect 

of error propagation to next vector in case of reordering and difference vector. 

 

2. Further, as stated earlier, when there is no scope of use of fault simulation, rather than knowing 

the damage on fault coverage, the only option remains is to avoid the damage on fault coverage. 

 

3. Reduction in compression ratio because of redundant parity bit is comparable to the reduction in 

compression caused by other methods to enhance error resilience like bit padding or vector 

padding. 

 

4. The extra time required to retransmit the codeword can be a trade off against the error resilience 

and fault coverage. 

 

5. The extra area overhead in on-chip decoder because of parity checking may be negligible 

considering the today’s million gate SoC. 

 

Here, in this method, we are adding one parity bit at the end of each codeword and transmit the 

data with parity bit itself.  
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For example the original test vector is 000001110000000010001. We have selected here the 

Hamming distance based reordering, column wise bit stuffing and difference vector as a 

preprocessing method for data because it guarantees comparatively maximum compression [15]. 

Further, as per [16], the compression method which uses Runs of ‘0s followed by 1’ as well as Runs 

of ‘1s followed by 0’ ensures the minimum number of symbols for a given test data set. If the number 

of symbols will be minimum, the parity bits added per symbol will be less for given test data set. 

Hence, we have used here EFDR test data compression method. Let’s consider an example of the 

EFDR coding method for given sequence for runs like: 000001110000000010001. The code words 

will be like this: first bit of codeword will be to indicate the type of run followed by the bits indicating 

the length of run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, now the data sequence will be 010101 1011 011100000 010000. This sequence of 

code words appended with parity bits will now transfer from ATE to DUT. At DUT, the on chip 

decoder first of all checks for parity of code word. If parity does not match, it is assumed that the code 

word received has some error in it. So decoder will request retransmission of codeword. When the 

parity check is correct, the codeword is decoded and the decompressed data sequence is applied to 

scan chain for further testing. 

 

 

 

 

run 000001     : type of run :0 code for run length of  5: 1010 

EDFR codeword : 01010 

 

run 110        :         type of run :1  code for run length of  2: 01         

EFDR codeword: 101  

 

run 00000001 : type of run :0      code for run length of  7: 1110000     

EFDR codeword: 01110000 

 

run 0001         : type of run :0      code for run length of  3: 1000     

EFDR codeword: 01000 

 

Hence coded data sequence will be 01010 101 01110000 01000. In the proposed 

method we will add each parity bit to coded data word. Here, in this method, odd 

parity bit checking is used. So each code word now appended with parity bit as 

follows: 

codeword:  01010,   parity bit: 1 

codeword: 101, parity bit: 1   

codeword: 01110000 , parity bit: 0 

codeword: 01000, parity bit: 0 
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IV.  EXPERIMENTAL RESULTS 
 

A. Bit Overhead because of Error Resilience 

The proposed method of error resilience for IP Core Based SoC is implemented using 

MATLAB language. The experiments are conducted on a workstation with ai5 333os CPU, 2.70 

GHz and 4 GB of memory. The seven largest ISCAS89 full-scan circuits have been considered for 

this experiment. For all ISCAS89 circuits, the test sets (with don’t care) obtained from the Mintest 

ATPG program is used. The test sets were pre-processed with HDR-CBS-DV scheme and then 

applied EFDR test data compression and then parity bit was added to each codeword. Table I 

presents the experimental results for the widely cited seven ISCAS 89 bench mark circuits. It 

contains the total number of test patterns, total number of bits per vector and total number of bits in 

original complete test set, the total number of symbols considering EFDR method, the %compression 

achieved by EFDR, the % compression achieved in case of test data is pre-processed using 

HDR+CBS+DV method and % compression when error resilience is added to test data. For each of 

the case, the % compression without the application of proposed scheme from the original IEEE 

papers is shown and the % compression after application of the proposed scheme is also clearly 

shown. The amount of % compression obtained is computed as per the formula of % compression 

given ahead. In this table, all the reference cases against which comparisons are made used exactly 

similar source and conditions of test data i.e. all the reference cases have used the ISCAS89 circuits, 

the test sets (with don’t care) obtained from the Mintest ATPG program. The original test data size is 

matching perfectly. Also the % bit overhead because of error resilience is calculated for each 

benchmark circuit. 

Here the % compression and % bit overhead because of error resilience is calculated as 

follows: 

 

% �� �
��� 	 ��
 � 100

��_�
 

 

Where, 

 

% dc = % data compression 

tb = total # of bits in original test data 

cb = # of bits in compressed data 

or_c = total # of bits in original data 

 

% �� � ��� �
100

��
 

 

Where,  

 

% bo = % bit overhead 

erb = # of error resilience bits added to compressed test set 

tb = # total bits in test set 
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TABLE I: ERROR RESILIENCE FOR EDFR COMPRESSION METHOD 

 

 
B. Test Time Overhead because of Error Resilience  

Table II compares error resilience technique in terms of the number of clock cycles needed to 

decompress the test sets, which corresponds to the test application time. The number of clock cycles 

is obtained based on VHDL models of the decompression circuitry and the simulation results based 

on Modelsim simulators. Here the reduction in clock cycles in spite of the added error resilience bits 

is because of the effective modelling of FSM of on-chip decoder and reduction in FSM states as 

discussed in next section. 

 

 

TABLE II.  PERFORMANCE EVALUATION IN TERMS OF CLOCK CYCLES 

ISCAS 89 

Benchmark 

Circuits 

# of clock cycles % Performance 

Improvement in 

clock cycles 

  

EFDR 

Error Resilience 

EFDR 

S5378 102210 40179 60.69 

S9234 171961 66385 61.40 

S13207 679540 130058 80.86 

S15850 325607 102001 68.67 

S35932 115489 36805 68.13 

S38417 702936 249615 64.49 

S38584 846395 305053 63.96 

AVG 420591 132871 68.41 

 

ISCAS 89 

Benchmark 

Circuits 

# Test 

vector 

# Bits/ 

vector 

# Total 

Bits 

# of 

Symbols 

 

% 

Compression 

for 

EFDR [7] 

% 

Compression 

for 

HDR-CBS-

DV 

+ 

EFDR [15] 

% 

Compression 

for 

HDR-CBS-DV 

+ 

EFDR 

+ 

Error 

Resilience Bit 

% Bit 

Overhead 

Because 

of Error 

Resilience 

S5378 111 214 23754 1732 51.93 60.03 52.7406 7.2914 

S9234 159 247 39273 2802 45.89 57.56 50.4290 7.1347 

S13207 236 700 165200 3132 81.85 86.40 84.5133 1.8959 

S15850 126 611 76986 3623 67.99 70.43 65.7288 4.7061 

S35932 16 1763 28208 860 Not Available 74.48 71.4407 3.0488 

S38417 99 1664 164736 10077 60.57 65.67 59.5535 6.1171 

S38584 136 1464 199104 12773 62.91 63.10 56.6849 6.4152 
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V.  ON CHIP DECODER 
 

Fig. 3 shows the proposed on-chip decoder for error resilient EFDR test data compression 

method. The decoder accepts EFDR encoded code words with maximum run length of 2000. The 

codeword is checked for even parity and if parity checking is successful then required run is generated 

otherwise a request of retransmission of codeword is sent to ATE. 

 

 
Fig. 3 Proposed Error Resilient EFDR On-chip Decoder 

 

The proposed decoder consists of FSM, SR Latch, XOR, run generator, storage register and 

Log2K bit counter. The description of various signals is as follow: 

 

Parity: Parity signal checks for parity of 1s in given codeword.  

 

clk: global clock to every block. 

 

bit_in_serial: Serial input from encoder. 

 

next_bit_in: shows readiness to accept next incoming bit. The next bit is accepted only if this bit is 

high. 
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Reset: to reset the FSM.R or S : this signal is used to store the run type. 

 

Increment: to increment the Log2K bit counter for every head bit. 

 

decrement: to decrement the Log2K bit Counter for every head bit. 

 

Count: to keep feed backing the FSM about the state of count in Log2K bit Counter. 

 

Length_total: to give total length of input code word to Run Generator so that it can compute the run 

length encoded in code word. 

Hold: To temporary hold transmission. 

 

symbol_done: It shows when a symbol is successfully decoded. 

 

The function of various blocks is as follows:  

 

SR Latch :If run type is '0', r  input is made high and for run type of '1' s input is made high. 

 

Storage Register:On encounter of every bit, it is moved down into storage register and the total 

length is computed which helps to determine the total length of run. 

 

Log2K bit Counter:This counter is used to detect the end of codeword. It will be incremented for 

every input head bit and decremented for every input tail bit. 

 

Run Generator:It will generate the total length for run. It will always generate run of 0s'. The output 

of this is given as input to the XOR gate. Now, if run type is '1', then Q = '1' and run of 0s' generated 

by this block will be XORed with Q which will generate run of 1s' bit by bit on every clock. 

 

Parity Checker:It calculates parity and returns whether parity is odd or even. 

 

Six states of FSM are as below: 

 

S0: This is the reset state. Also this state accepts the first input bit and determines whether the run 

will be “run of 1s'” or “run of 0s'”. 

 

S1: It will accept the first bit of code word to determine whether the run is of length is 1 or 2 or more. 

 

S2: 

1. If second input bit or first bit of code word is a '0' then it is clear that the run is either of 

length 1 or 2. So, FSM will reside in this state for one other cycle to accept next bit. After 

accepting this bit, it again in the same S2 state. 

 

2. Now, the next likely input bit is parity bit. The FSM will compute the parity and if parity is 

even, run of required length will be generated in the same state. 

 

3. Otherwise, it will send a retransmission signal and the FSM will come into its reset state i.e. 

S0 again. 
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Fig. 4 FSM for Proposed Error Resilient EFDR On-chip Decoder 

 

S3: 

1. If run is having length of more than 2, FSM will come down to this state. 

 

2. It will reside in this state and keep on accepting next bits till it encounter a '0' which is an 

indication of end of the head. 

 

3. Meanwhile at each encounter of head bit the Log2K counter is incremented. 

 

4. On encounter of '0', it will come in the next state. 

 

S4: Here, it will reside till all the tail bits are accepted and saved in the Storage Register. It will 

accept the parity bit and move down to state S5. 

 

S5: If parity is even then run of required length is generated. Otherwise, the retransmission signal is 

made high and FSM gets reset. 

 

A. Operation of other blocks 

If run type is '0', r  input to SR Latch is made high and for run type of '1' s input is made high. 

On encounter of every bit, it is moved down into storage register and the total length is computed 

which helps to determine the total length of run. Log2K bit counter is used to detect the end of 

codeword. It will be incremented for every input head bit and decremented for every input tail bit. 
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Run Generator will generate the total length for run. It will always generate run of 0s'. The output of 

this is given as input to the XOR gate. Now, if run type is '1', then Q = '1' and run of 0s' generated by 

run generator block will undergo the following logical operation 

 

Decoded_Output = (Run Generator o/p) xor Q 

 

Which will generate run of 1s' bit by bit on every clock. Same operation will follow if run 

type is zero. 

 

VI.  CONCLUSION 
 

It has been shown that the error resilience is a very essential quality of test data particularly 

when the test data is preprocessed and compressed and to be used with IP core based SoC. By using 

the current available techniques, the propagation of effect of bit flip to the next vector can be avoided 

but cannot be corrected. In proposed technique, the effect of bit flip is corrected. The corresponding 

overhead in terms of test data volume and testing time is also calculated. Further, the on-chip 

decoder for the proposed scheme is developed and its area overhead is shown. In short, this paper 

focuses on making the preprocessed-compressed test data more robust against bit flip error. 
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