
 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

213

A NOVEL METHODOLOGY FOR ANALYZING MALICIOUS BEHAVIOR

OF THE ANDROID APPLICATIONS

Namrata A. Patel
1
, Vijay Ukani

2
, Nilay Mistry

3

1,

2
Department of Computer Science & Engg, Institute of Technology, Nirma University,

Ahmedabad, India,
3
Asst. Professor, Department of Digital Forensic Division, Gujarat Forensic Sciences University,

Gandhinagar, India

ABSTRACT

Smart phones have evolved from simple mobile phones into sophisticated yet compact

minicomputers. Mobile gimmicks become vulnerable to various threats such as viruses, worms,

trojan horses and malwares. Until some sealed security measures like application signing and

validation of developers was introduced, the number of infected applications steadily increased.

Smart phones run on Android OS are one that continues to be a prime target for hackers. Our focus is

mainly on Android-powered mobile device applications. In these days for smart phones, Android has

become a very popular operating system. As we all aware, Android is a Linux-based operating

system. With this operating system user can easily share applications via online market store i.e.

Google market store. But, this platform includes different types of malicious applications. Because

malware on device can create numerous risks, which create problems while connectivity because of

security consequences. In this paper, it will be described that using methodology how we can analyze

malicious behavior of the Android applications so that users can safely use the android smart phones.

Keywords: Android Mobile Malware, Static Analysis, Dynamic Analysis, Reverse Engineering,

Smartphone Security.

I. INTRODUCTION

The speedy gain in smart phone users has enabled the application marketplace to develop

extensively. The black market presence has also risen quickly, where paid applications are altered for

free transfer. As an outcome, malicious applications are anticipated to disseminate with raising

frequency [1].

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING

AND TECHNOLOGY (IJARET)

ISSN 0976 - 6480 (Print)
ISSN 0976 - 6499 (Online)
Volume 5, Issue 4, April (2014), pp. 213-221
© IAEME: www.iaeme.com/ijaret.asp
Journal Impact Factor (2014): 7.8273 (Calculated by GISI)
www.jifactor.com

IJARET

© I A E M E

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

214

 An Android is an open source operating system. Android smart phones offer advanced

computing ability and connectivity as compared to other mobile operating systems. Android was

initially originated by Android Inc. and was afterward purchased by Google. Android is a Linux

based operating system. It was made for touch screen devices like smart phones, tablets, cameras,

set-top boxes, etc. and has attained the hands of millions of users. The architecture of android

operating system is designed in such manner so that communication at application level and end user

will be quite promiscuous. Android applications are coded in Java, a programming language [7]. But

Android has its own virtual machine i.e. DVM (Dalvik Virtual Machine) and to execute the android

applications, DVM is used.

 Android operating system is also used for business purposes. Risk will be high in business

level because people are transmitting sensitive information from one end to another end. As Android

allows remote access to official sensitive data e.g. personal information, which can lead to data hack

if smart phones are hacked into. For this intension of protection, Google has designed their operating

system to execute applications in specified sandboxes, which understate the potentiality of malware

attacks to the applications in smart phones [2].

 Due to convenient features inherent in smart phones, the number of smart phone users is

rapidly increasing. People use smart phones for various purposes such as web brows- ing, calling,

SMS, social networking, omnipresent access, and so on. Any technology that is in a lot of hands is a

target for malicious applications. Why not? Both official smart phone application markets such as the

Apples AppStore and Googles Android Market and nonofficial third party application markets called

Black markets have been growing at an eminent rate. However, as the Android Market and

Blackmarkets accept applications without any code review or security checks, hackers can easily

disseminate their malicious applications into the Android Market. That is, hackers can manipulate

any popular application from the market and repackage it to include malicious code. Trojan-SMS.

AndroidOS first appeared in August, 2010, Geinimi in December, 2010 and

Android/Spyware.PJApps.a in March, 2011, Gingerbreak in August, 2011. This represents the major

types of Android malware [6].

 The below chart illustrates worldwide smart phone operating system market share from Q1

2010 through Q1 2013[3]. All figures are based on unit sales to end users.

Fig. 1: Android market [3]

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

215

II. OBJECTIVE AND DEFINITIONS

The objective of this research paper is Suspicious Activity Assessment. The below figure

shows the major parts of malware analysis.

Fig. 2: Malware Analysis

 Static analysis involves human work to trace and examine malware, is more common because

of the comparatively small number of mobile malware. Static analysis can provide higher quality

results and lead to a better understanding [4].

 On the other hand, Dynamic analysis involves automated tools to execute the malware in a

controlled system environment and check for malicious forms. Therefore a large sample of malware

can studied rapidly. Dynamic analysis is not yet common for mobile devices because of the trouble

of replicating the numerous mobile hardware, mobile operating systems, and their many different

versions [4]. Mobile malware also have different ways of spreading as opposed to desktop malware,

which further makes dynamic analysis more difficult. Obfuscation and encryption are quite common

for mobile malware, which also demand for extra steps in the analysis. Other sophisticated

techniques for evasion used by mobile malware include polymorphism (changing variables and

files), and steganography (hiding information in unexpected places). Reverse Engineering is a

process of analyzing an existing code or piece of software in order to scrutinize the software for any

vulnerability or any errors [5]. "Reverse engineering can therefore be stated as a method or process

of modifying a program in order to make it behave in a manner that the reverse engineer desires."

III. DETAILS OF OUR ANALYSIS METHODS

Our intention as a part of this effort is to identify unauthorized actions of applications that are

not initiated by users. Such activity may be triggered via background running process or self running

script. Our initiation is to characterize programs by statically examining how many such operations

(data or system resource access) found in the application. Mobile apps typically have intense user

interaction, allowing us to approximate implicit user intention with explicit user inputs and actions.

The control flow user interaction procedure is used in this section to describe the analysis. The

algorithm performs the following high level steps.

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

216

The final conclusion depends on two step analysis as below.

Scenario 1) Check for Behavior and permissions violation of an app

 Scenario 1.1) The first analysis is for those applications which are designed to use only in

offline mode (like some games) but uses internet besides user knowledge. Hacker may use such

behavior to transfer sensitive data. Initially the apk file will be decompiled with the steps described

in the static analysis flow. As a result we will have a source code for the application installed. Then

with the help of String tokenize algorithm every line of code will scan and check for the specific

keyword.

 Scenario 1.2) Second attempt is for those applications which runs on internet but connect

with more than one service end point (URL). This indicates some malicious activity without user

knowledge. Some sensitive data may transfer to hacker via second endpoint.

Below figure displays Flow Diagram of Scenario 1.

Fig. 3: Flow Diagram of Scenario 1

As a result of the above mentioned processing, the malicious count can be calculated

depending on the below equation.

Malicious Count(X %) = No. of malicious occurrences *100 (1)

 Total No. of lines

Scenario 2) No coupled unused or dead code without User interaction

� Static code analysis which is having some lines of code and which do not have coupling

with user action. It means those lines of code which will never going to call by any

action.

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

217

Below figure shows the Dependence Diagram of Scenario 2.

Fig. 4: Dependence Diagram of Scenario 2

� Logically every user action will create method dependent virtual path within the code.

These paths are dependent on use-cases of individual application. After every possible

virtual path, if we found some classes or methods which is not mapped with any virtual

path node then those lines could be used for malicious activities as those were never

called by any user action.

Different equation will be used to generate the malicious count from scenario 2. This time we will

use the number of dead or unused lines of code which never had been called from any user action.

Malicious Count(Y %) = No. of unused lines * 100 (2)

 Total No. of lines

Finally the average value of the result one and two makes the final output result of any application as

below,

 Final malicious Count (C %) = X + Y (3)

 2

IV. IMPLEMENTATION

Android framework provides simplified utilities to develop quick Android applications. In

eclipse version 3.5, Android plug-in(s) have been installed which provides developer friendly

environment [10]. All the approaches defined in above sections were implemented in a small

application to have a better look on how this approach can work for future industrial use.

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

218

 The intention behind this project is to generate malware count report for every application

installed on any android device. As android executable (.apk) does not give the direct source code,

with the help of some technique we have to first generate the source code out of the apk file. As a

first step the android framework has to install where the apk file will be process for decompilation.

As a result of apk decompilation the artifacts will be generated as below [5].

� Res folder: This folder comprises XMLs specifying the attributes, layout, drawables,

languages, etc.

� Android Manifest File: This file is one of the most essential XML file which contains

information about the permissions that the application needs or accesses. In other words

this file contains the Meta data regarding the application.

� Smali folder: This folder comprises the source code of the application in .smali format.

 Then the next step is to convert .dex files into jar files. The Jar file will contain all the third

party libraries and source code in .class format. Class files are byte code version of java source

which is non human readable. In the next step we will convert that into .java file.

Below figure displays Flow Diagram of the project.

Fig. 5: Flow diagram

Once we have the source code with us, all the approaches which we discussed in section 3 are

implemented programmatically to analyze the code for malicious activity. After this process the

report will be generated, this indicates the malicious count in percentage for each application

installed.

 To demonstrate the concept of Malware analysis, a sample application was created. This

application will implement the fundamentals of Malware detection and generates malicious count.

This application can run on any android version. Below images shows how the application will look

like. Figure 6.1 displays the main screen of the application. When user starts processing the

application, it will start scanning for malwares. This scenario is shown in Figure 6.2. As a result the

output will be shown to the user in well defined format as shown in Figure 7.

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

219

Fig. 7: Final Output

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

220

Below figure displays Comparison of the different applications in percentage.

17

0.3

6.1

17.32
19.27

4.62
2.83

13.54

0

5

10

15

20

25

Application Name

Fig. 8: Graphical Analysis

V. CONCLUSION

Overall, malware analysis is a stimulating and ambitious area of computer security research.

The complication which we have gone through in malware analysis is only one area of the security

profession that is invariably evolving. The most appropriate way of understanding malwares is by

studying the working of an already existing malware. Our initiative with this research is an effort to

protect against threats in this huge security issues in mobile device.

VI. ACKNOWLEDGEMENTS

This research was supported by the Institute of Technology, Nirma University, Ahmedabad,

India and Gujarat Forensic Sciences University, Gandhinagar, India.

VII. REFERENCES

[1] S.-H. Seo, D.-G. Lee, and K. Yim, “Analysis on maliciousness for mobile applications," in

Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth

International Conference on, pp. 126-129, IEEE, 2012.

[2] A. G. Kirandeep, “Implementing security on android application," in The International

Journal of Engineering and Science (IJES) Volume 2, Issue 3, pp.56-59, IJES, 2013.

[3] “Androidmarket."http://www.statista.com/topics/840/smartphones/chart/1099/smartphone-

operating-system-market-share/.

[4] E. Erturk, “A case study in open source software security and privacy: Android adware," in

Internet Security (WorldCIS), 2012 World Congress on, pp. 189-191, IEEE, 2012.

[5] Stephen. A.Ridley, "Android Malware Reverse Engineering", Retrieved from:

http://dl.dropbox.com/u/2595211/HelloMotoAndroidReversing.

[6] A. Shabtai, “Malware detection on mobile devices," in Mobile Data Management (MDM),

2010 Eleventh International Conference on, pp. 289-290, IEEE, 2010.

 International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –

6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 213-221 © IAEME

221

[7] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A. Camtepe, S. Albayrak, and C.

Yildizli, “Smartphone malware evolution revisited: Android next target?," in Malicious and

Unwanted Software (MALWARE), 2009 4th International Conference on, pp. 1-7, IEEE,

2009.

[8] “Comparison of dalvik and java bytecode."

http://forensics.spreitz-enbarth.de/2012/08/27/comparison-of-dalvik-and-java-bytecode/.

[9] T. Eder, M. Rodler, D. Vymazal, and M. Zeilinger, “Ananas a framework for analyzing

android applications," in Availability, Reliability and Security (ARES), 2013, Eighth

International Conference on, pp. 711-719, IEEE, 2013.

[10] Installing the Eclipse Plugin, Android Developers

 developer.android.com/sdk/installing/installing-adt.html

[11] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “andromaly: a behavioral

malware detection framework for android devices," Journal of Intelligent Information

Systems, vol. 38, no. 1, pp. 161-190, 2012.

[12] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based malware

detection system for android," in Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, pp. 15-26, ACM, 2011.

[13] H. Lemoine, “The dyana framework dynamic analysis for android,"

[14] “Reverse engineering definition."

http://searchcio-midmarket.techtarget.com/definition/reverse-engineering.

[15] “Android sdk tool." https://developer.android.com/sdk/index.html.

[16] ”Jd-gui tool." http://jd.benow.ca/

[17] Alappanavar, P. B., Ms Ankeeta Bhujbal, and Mr Shantanu Deshmukh. "INTERNATIONAL

JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)." Journal Impact

Factor 4.2 (2013): 237-240.

[18] Asokan M, “Android Vs iOS – An Analysis”, International Journal of Computer Engineering

& Technology (IJCET), Volume 4, Issue 1, 2013, pp. 377 - 382, ISSN Print: 0976 – 6367,

ISSN Online: 0976 – 6375.

[19] Kirandeep and Anu Garg, “Implementing Security on Android Application”, International

Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 2, 2013,

pp. 576 - 589, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.

[20] Anirudha A. Kolpyakwar, Sonal Honale, Piyush M. Dhande and Pallavi A. Chaudhari,

“A Review on Cloud-Based Intrusion Detection System for Android Smartphones”,

International Journal of Advanced Research in Engineering & Technology (IJARET),

Volume 4, Issue 6, 2013, pp. 238 - 245, ISSN Print: 0976-6480, ISSN Online: 0976-6499.

[21] A.Edwinrobert and Dr.M.Hemalatha, “Behavioral and Performance Analysis Model for

Malware Detection Techniques”, International Journal of Computer Engineering &

Technology (IJCET), Volume 4, Issue 1, 2013, pp. 141 - 151, ISSN Print: 0976 – 6367,

ISSN Online: 0976 – 6375.

