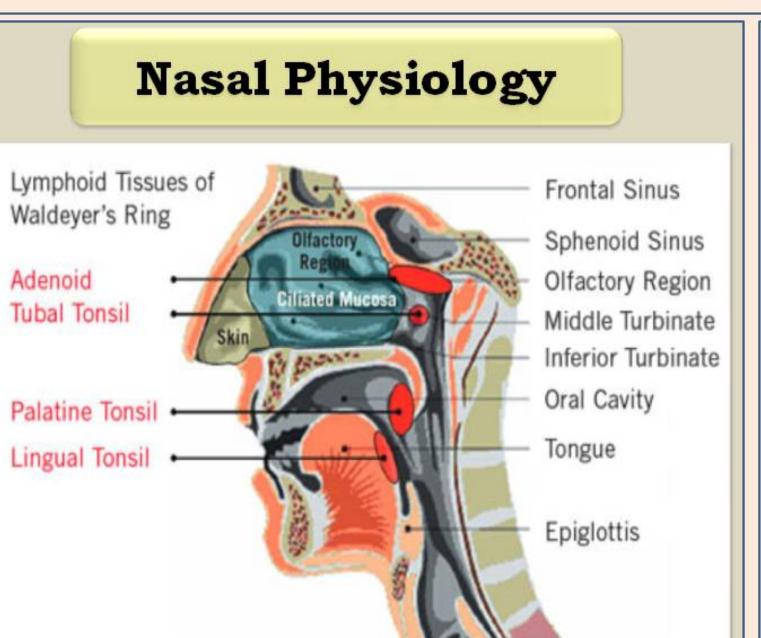
NANOPARTICLES FOR BRAIN TARGETING THROUGH NASAL ROUTE: HOPE OR HYPE

Sharma Om Prakash, Mehta Tejal A.


Department of Pharmaceutics, Institute of Pharmacy, Nirma University,

S. G. Highway, Ahmedabad-38248I, Gujarat, India

Email: opsharmaipsdr@gmail.com

INSTITUTE OF PHARMACY

Barriers to Brain Delivery

Physical barrier

(Endothelial cells, Capillary pericytes & Perivascular astrocytes)

Enzymatic barrier

(Various types of ecto-enzymes)

Efflux barrier

(Transporters like p-gp)

Strategies to Overcome Barrier

Invasive Delivery

- •Intra-cerebro-ventricular (ICV) infusion
- Intra-thecal delivery
- •BBB disruption (Osmotic, Ultrasound, Bradykinin-analogue)
- Lipidization, transporters,
 Nanocarriers

Non-Invasive Delivery

•Nasal to brain drug delivery

Advantages of Nasal Drug Delivery

Absence of blood brain barrier

Rapid onset of action

Reduce health workers' risks of needle-stick injuries

Improve patient compliance

Allow patients to selfmedicate

Can be use chronically

Critical Factors for Nasal Drug Delivery

Physico-chemical factors (Chemical form, Particle Size, Polymorphism etc.)

Formulation factors (pH, Penetration enhancers, Preservatives etc.)

Physiological factors (Pathological condition, blood flow, Clearance etc.)

Patient related factor (Head position, Insertion sight, inhalational speed etc.)

Device related factors (Spray cone angle, turbulence, Injected speed etc.)

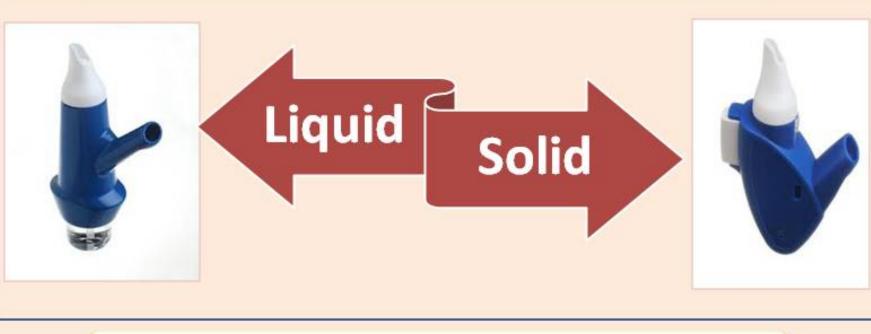
Efficiency of Nasal Nanoparticulate Delivery over Nasal and Intravenous Solution

Polymer	Drug	Intranasal Solution	Intravenous route	Reference
Chitosan	Bromocripti -ne	2 times	3 times	Md et al., 2013
PLGA	Olanzapine	6.35 times	10.86 times	Seju et al., 2011
Chitosan	Venlafaxine	3 times	8 times	Haque et al., 2012
Chitosan	Rivastigmin e	2 times	3 times	Fazil et al., 2012
PLA-PEG	Zidovudine	1.3 times	Not Done	Mainardes et al., 2010
Chitosan	Thymoquin- one	18 times	More than 100 times	Alam et al., 2012
MPEG- PLA	Nimodipine	1.56 times	Not done	Zhang et al., 2006

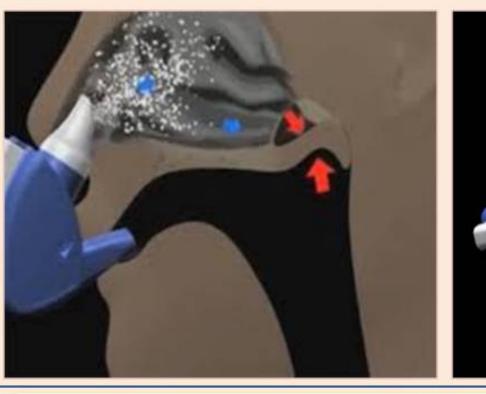
Surface Modification of Nanoparticles to Enhance Brain Delivery

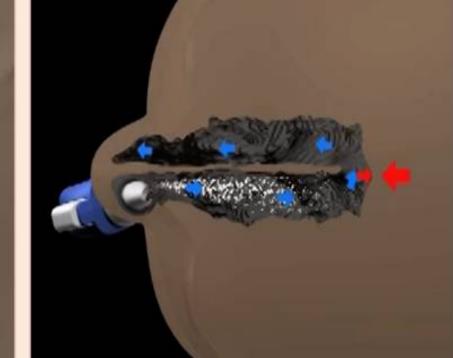
Conjugation	Coating	
Lectins	Chitosan Coating	
Poly Ethylene Glycol	Polysorbate Coating	
Wheat germ agglutinin	β- cyclodextrin derivatives	

List of Patents for Nasal to Brain Drug Delivery


Inventor	Patent No.	Drug	Description
Francosis et al.	US 6,054,462	Alniditan	 Chitosan nanoparticles Unit dose nasal spray Increase bioavailability at brain Reduce peripheral side effects.
Greco et al.	US 7,989,502 B2	Modafinil	 Lipid Microemulsion Given through OPTINOSE® Targeting upper third part of nasal cavity to increase brain delivery.
Frey II	US 6,180,603	Neurologic agaents	•Drug delivered along with lipophillic substance like Phosphatidylserine and ganglioside to increase absorption through olfactory region.

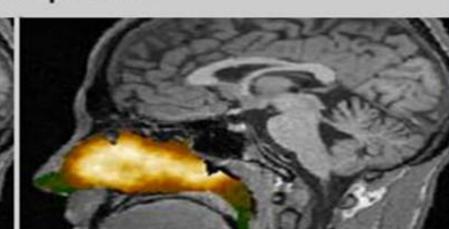
List of Patents for Nasal to Brain Drug Delivery Device


Inventor	Company	Patent No.	Description	
Hoekman	Impel	W020121191	 Propellant based device 	
et al.	Neurophar	53A2	 Specifically at olfactory region 	
	ma INC.,	(2012)	 For both solid and liquid 	
	WA, US		formulations.	
Djupesla	Optinose	US 7,347,201	•Exhalation breath-actuated device	
nd, P.G.	AS, Oslo, NO	B2	•Comprise of a nosepiece and	
		(2008)	mouthpiece.	
Heinz, H.	Boehringer	EP 2,020,249	•Inhaler actuated device	
	Ingelheim	A1	 For delivery of powder 	
	Pharma	(2009)	•Consist of one piercing element, an	
	GmbH & Co.		inhalational channel and an inlet	
	KG,		opening at lower housing part.	
	Germany			


ast of faccines for masar to brain brug beliver

OPTINOSE

Way to Deliver


Comparison with Conventional Device

Gamma-scintigraphy images from the same subject Cumulative distribution during 32 minutes

White areas in the nose = 20% or more of the max intensity

areas indicate = 0-20% of max intensity

Green areas in the nose = No deposition

Traditional Spray Pump

OptiNose

Conclusion

- •Nanoparticulate formulation improves the efficiency of brain drug delivery via nasal administration as compared to conventional nasal and Intravenous formulation.
- •Development of nanoparticulate formulation is a big hope for industrial scientist for treatment of brain diseases. However, delivery by suitable device can only decides its effectiveness.

References

Mistry et al, Nanoparticles for direct nose-to-brain delivery of drugs, International Journal of Pharmaceutics 379 (2009) 146–157

Illum, L. Nasal drug delivery — Recent developments and future prospects. Journal of Controlled Release 161 (2012) 254–263.

http://www.optinose.com, Accessed on 5 Feb. 2013

This Poster has been presented at Recent Advances in Drug Delivery Workshop organized by RPCP, CHARUSAT, at Changa on Feb. 21-23, 2013