DESIGN, SYNTHESIS AND PHARMACOLOGICAL EVALUATION OF NOVEL LIGANDS FOR ADENOSINE RECEPTORS

A Thesis Submitted To NIRMA UNIVERSITY

In Partial Fulfillment Of The Requirements For The Degree Of

Doctor of Philosophy

In Science

ВҮ Dhaivatkumar Harikrishnabhai Pandya, м. Sc. (Reg. No: 10EXTPHDS26)

UNDER THE SUPERVISION OF

DR. KAMALA K. VASU, M. Sc., Ph.D.

B. V. PATEL PHARMACEUTICAL EDUCATION AND RESEARCH DEVELOPMENT (PERD) CENTRE, AHMEDABAD-380 054 GUJARAT, INDIA October 2014

Certificate

This is to certify that the thesis entitled "Design, synthesis and pharmacological evaluation of novel ligands for adenosine receptors" has been prepared by Mr. Dhaivatkumar Harikrishnabhai Pandya under my supervision and guidance. The thesis is his own original work completed after careful research and investigation. The work of the thesis is of the standard expected of a candidate for Ph.D. programme in Science and I recommend that it be sent for evaluation. Kamale K. Clam

Date: 15-10-2014

Dr. Kamala K Vasu

(Guide)

Dr. Manish Nivsarkar (Head of Institute)

Prof. Sarat Dalai (Dean, Faculty of Science)

Prof. Manjunath Ghate

(Dean, Faculty of Doctoral Studies and Research)

Dr. A. S. Patel (Executive Registrar)

Forwarded by

Declaration

I, Dhaivatkumar Harikrishnabhai Pandya, registered as Research Scholar, bearing Registration No. 10EXTPHDS26 for Doctoral Programme under the Faculty of Science of Nirma University do hereby declare that I have completed the course work, pre-synopsis seminar and my research work as prescribed under R. Ph.D. 3.5.

I do hereby declare that the thesis submitted is original and is the outcome of the independent investigations/research carried out by me and contains no plagiarism. The research is leading to the discovery of new facts and correlation of scientific facts already known. This work has not been submitted to any other University or Body in quest of a degree, diploma or any other kind of academic award.

I do hereby further declare that the text, diagrams or any other material taken from other sources have been acknowledged, referred and cited to the best of my knowledge and understanding.

Date: 15 10 2014

Signature of Student

Dedicated to

Рарра-Митту,

My Family and MANSI

ACKNOWLEDGEMENTS

I take this opportunity with immense pleasure to express my deep sense of gratitude to my research guide KAMALAMADAM who has encouraged and supported during the entire tenure of doctoral research. I thank her for excellent guidance, constant encouragement, advice and support during all the tough times of my project. I do sincerely acknowledge the freedom rendered to me by her for independent thinking, planning and executing the research. I consider myself very fortunate for this association with her which has given a significant boost in my career.

I am very much thankful to **Dr. V. Sudarsanam sir** for his constant support and curiosity about the development in my research work and new chemistry. His scientific guidance and suggestions has taught me a lot. I am thankful to him for his words of appreciation which always led me to think for innovative ideas.

I thank **Dr. Manish Nivsarkar**, Director, B. V. Patel PERD Centre for his constant encouragement, support and for providing the infrastructural facilities to do my research work. I also thank **Dr. Neeta Shrivastava** for her advice as and when required during my stay at PERD Centre and for conducting extracurricular activities like sports.

I would like to thank **Prof. Harish Padh**, Ex-Director of PERD Centre, for giving me the chance to do my Ph. D. in B. V. Patel PERD Centre. He has provided good platform to learn biological sciences, improve presentation and communication skills through seminars.

I thank **Prof. C. J. Shishoo**, Ex-Director, PERD centre for his constant encouragement and support during the progress of the work. I also thank and **Rajeshwarimadam** and **Ashvinimadam** for their constant support in recording the LC-MS of my compounds.

I would like to thank **Prof. D I Brahmbhatt** and **Prof. Manjunath Ghate**, my Research Progress Committee (RPC) members for their valuable comments and suggestions during RPC meetings.

I would like to take opportunity to thank my Lab seniors Dr. Jitendra, Dr. Arshi, Dr. Rahul, Dr. Hitesh, Dr. Amit, Abiramasundarimadam, Lakhan and my junior lab mates Jayesh, Sneha and Triveni for their help, support and excellent team spirit. It was one of wonderful time of life working and enjoying with all of them.

The moments shared with "Tea-club" members and "lunch time" friends like Mr. Tejas, Dr. Harnil, Dr. Chintan, Dr. Swati, Dr. Amita, Dr. Anshu, Mr. Baljinder, Dr. Arpan, Mr. Brijesh, Dr. Uma, Mr. Sandip, Mr. Ranjeet and Mr. Mehul will never be forgotten. My very special thanks to **Prof. Karl-Norbert Klotz, University of Würzburg, Germany** for screening my compounds for adenosine receptors. I extend my sincere thank to **Sonja Kachler** for compound testing.

I am thankful to **Prof. N. C. Desai**, Head, Department of Chemistry, Bhavnagar University for his kind help. My special thanks to **Dr. Anirban Samanta** and **Dr. Amit Shard** for their help.

I would also like to take this opportunity to thank all the faculty and staff in the NIPERD for their guidance and support. My thanks to all "NIPERD" students who came and went during my tenure of study and making my stay such an enjoyable experience. I acknowledge and thank Vinayakhai, Amruthai, Madhavhai, Saraswati madam, Jacobsir, Trivedihai, Bhavinimadam, Sujithai, prakashhai, Pandyabhai, Jasanihai, Kuralalji, Rajuhai, Shaktibhai, Maheshhai, Mangabhai and Dineshhhai for their help.

I sincerely acknowledge the Indian Council of Medical Research (ICMR), Government of India, New Delhi, for awarding Senior Research Fellowship (SRF). My sincere thanks to Cadila Pharmaceuticals Ltd. and DST-SAIF for recording NMR of my compounds. I am sincerely thankful to Nirma University for giving me the opportunity to get registered for my doctoral research.

Words are insufficient to express my gratitude to my beloved parents Mr. HARIKRISHNA B. PANDYA, Mrs. JAYSHREEBEN H. PANDYA, my younger brother Sanket and Grandmother. The present work would have not been possible without their blessings, indispensable help, support, patience and encouragement in all my endeavors. My special thank to my in-laws for their faith and trust in me.

Finally, no words can express the feelings towards my loving wife Mansi, who has contributed and sacrificed to enable me to reach to this stage. The moral support during difficult situations, sacrifice and care is just appreciable. With taking time from her classical music "sadhana" she has silently contributed lot to reach to the completion of present work.

Last but not least, I offer my prayer to Almighty without whose blessing nothing would have been possible.

DHAIVAT H. PANDYA

Abstract

The thesis deals with design, synthesis and pharmacological evaluation of novel ligands for adenosine receptors with their computational studies. It starts with introduction related to adenosine, adenosine receptors and various classes of adenosine receptor ligands. As there is great and extensive roles of adenosine receptor subtypes in both physiological and pathophysiological events, these receptors are becoming important drug targets in the treatment of a variety of diseases like cardiovascular disorders (A₁ adenosine receptor antagonist), Parkinson disease (A_{2A} adenosine receptor antagonist), inflammation (A_{2B}/A₃ adenosine receptor antagonist) etc. With all the studies it has emerged that adenosine receptors can be safely targeted by various ligands and various highly specific agonists and antagonists of adenosine receptors can be generated. As a result, increasing numbers of clinical trials testing of novel molecules in various indications have been initiated during the past decade.

For design of molecules, fragment based drug design approach was used and novel compounds thiophenyl-thiazole carboxamides with amied spacer were developed which was further validated by molecular docking study. Library of compound were synthesized and evaluated for their biological activity against adenosine receptors. All the molecules had shown good affinity and selectivity to adenosine receptors.

Keeping in mind the importance of thiophene and to see the SAR around 2-amino thiophenes, modification of the thiophenyl-thiazole carboxamides into thiophenyl-thiophene carboxamides with amide spacer were carried out for the new series of compounds. Synthetic methodology for the synthesis of this series of molecule was established and library of molecules were synthesized and evaluated for their biological activity against adenosine receptors. As per our findings, this is first time such a scaffold has been prepared and checked for activity against adenosine receptors.

Various reported 2-cyclicamino thiazoles have shown good affinity to adenosine receptors. 2-cyclicaminothiophene prepared in our lab was active as anti-inflammatory compounds. So in the new series of compounds we have tried to design similar structural feature with replacement of 2-cyclicaminothiophens with 2-cyclicaminothiazoles to come up at good adenosine receptor ligands. Here, novel synthetic methodology was developed

for the synthesis of novel 2,4- and 2,5- disubstituted 2-cyclicaminothiazoles. To best of our knowledge 2,4- and 2,5-disubstituted 2-cycloaminothiazoles has been checked first time against adenosine receptors.

In continuation of previous series of work, we designed some new 2-aminothiazole derivatives with major focus on aminothiazoles. Our previous work on 2-aminothiazole derivatives had shown good affinity and selectivity towards adenosine receptor. So, in this series of molecules we have kept aminothiazole moiety intact to see the change in biological activity from previous series of molecules. Library of compounds with structural diversification was synthesized and evaluated for their biological activity and activity to adenosine receptors. The molecules showed remarkable affinity, selectivity and activity to adenosine receptors. The selective and active molecules were further taken for molecular docking studies into the adenosine receptors to see their possible binding modes.

Further to see the structure–activity relationship and identify structural features influencing the biological activity 3D QSAR was carried out. The satisfactory predictive ability of 3D QSAR models observed for compounds indicates that these models could be successfully used for predicting activity of the antagonists and can guide the further modification of these compounds.

In addition to the designed molecules, we have also developed novel synthetic methodology for the synthesis of 2-aminothiadiazine and 2-cycloaminothiadiazine from various substituted thiosemicarbazide derivatives and phenacyl bromides.

In search of potential antagonist for adenosine receptors here we have designed novel molecules which were further validated with the molecular docking study. Synthetic methodology was developed and library of compounds with structural diversification was synthesized from various starting materials. Further all the molecules were characterized by spectral techniques like NMR and Mass. All the molecules were screened for their binding affinity to the adenosine receptor subtypes and the molecules were found to be selective and active. 3D QSAR study of adenosine receptor ligands shown a statistically significant result which is helpful for further modification.

INDEX

	Contonta	Page
	Contents	No.
	List of figures	i-iii
	List of tables	iv
	List of schemes	v
	List of abbreviation and symbols	vi
	List of materials and equipments	vii
Chapter-1	Adenosine receptors and its ligands	1-20
1.1	Introduction to Adenosine receptors	1
1.2	Adenosine receptor as therapeutic target	2
	1.2.1 The A_1 adenosine receptor	4
	1.2.2 The A_{2A} adenosine receptor	4
	1.2.3 The A_{2B} adenosine receptor	6
	1.2.4 The A_3 adenosine receptor	7
1.3	Adenosine receptor agonists	7
	1.3.1 A ₁ adenosine receptor agonists	8
	1.3.2 A _{2A} adenosine receptor agonists	9
	1.3.3 A _{2B} adenosine receptor agonists	9
	1.3.4 A ₃ adenosine receptor agonists	10
1.4	Adenosine receptor antagonists	11
	1.4.1 A ₁ adenosine receptor antagonists	11
	1.4.2 A _{2A} adenosine receptor antagonists	12
	1.4.3 A_{2B} adenosine receptor antagonists	13
	1.4.4 A ₃ adenosine receptor antagonists	14
1.5	Allosteric modulation of adenosine receptors	14
1.6	Selective disease targets for adenosine receptors	16
	Conclusion	20
Chapter-2	Rationale of the present work	21-28
2.1	Importance of drug discovery	21
2.2	Fragment based drug design approach : Design of new	
	thiophenyl-thiazole carboxamides as adenosine receptor	22
	ligands	
2.3	New 2-aminothiophene linked with substituted thiophenes	25
2.4	New di/tri substituted N-cycloaminothiazoles	26
2.5	2-aminothiazoles as adenosine receptor ligands	27
2.6	Novel synthetic methodology: Synthesis of 2-	28
	amino/cycloamino thiadiazines	20

	Design, synthesis and biological evaluation of	
Chapter-3	thiophenyl-thiazole carboxamides adenosine receptor	29-58
	antagonists	
3.1	Introduction	29
3.2	Present work	30
3.3	Biological results and discussion	36
3.4	Conclusion	38
3.5	Experimental	38
	3.5.1 Protocol for molecular docking study	38
	3.5.2 General procedure for the synthesis of isothiocyanates	39
	3.5.3 Procedure for the synthesis of acetamidines and benzamidine	41
	3.5.4 General procedure for the synthesis of substituted 2-amino thiophenes	42
	3.5.5 General procedure for the synthesis of substituted 2-chloroacetamido thiophene	43
	3.5.6 General procedure for the synthesis of the synthesis of thiophene-2-yl thiazole carboxamides	45
	3.5.7 Method used for pharmacological evaluation	53
	Supporting Information	55
	Design, synthesis and biological evaluation of	
Chapter-4	N-cycloamino/disubstituted/diamino thiazoles coupled	59-82
	with thiophenes as adenosine receptor ligands	
4.1	Introduction	59
4.2	Present work	60
4.3	Biological results and discussion	65
4.4	Conclusion	67
4.5	Experimental	67
	4.5.1. General procedure for the synthesis of Aroyl isothiocyanates	67
	4.5.2. General procedure for the synthesis <i>N</i> -carbanothioyl arylamide	68
	4.5.3. General procedure for the synthesis of amidinothiourea	69
	4.5.4. General procedure for synthesis of disubstituted/diamino thiazoles coupled with thiophenes	71
	4.5.5. General procedure for synthesis of <i>N</i> -cycloaminothiazoles coupled with thiophenes	72
	4.5.6. Method used for pharmacological evaluation	79
	Supporting Information	80

Chapter-5 Thiophenyl-thiophene carboxamides: New ligands for		83-103		
Chapter-5	adenosine receptors	05-105		
5.1	Introduction			
5.2	Present work	84		
5.3	Biological results and discussion	88		
5.4	Conclusion	90		
5.5	Experimental	90		
	5.5.1 General procedure for the preparation of substituted 1-	90		
	morpholino-2-arylprop-2-ene-1-thione	70		
	5.5.2 General procedure for the preparation of substituted	92		
	methyl 3-amino-2-(arylcarbamothioyl)but-2-enoate			
	5.5.3 General procedure for the preparation of thiophenyl-	93		
	thiophene carboxamides	75		
	5.5.4 Method used for pharmacological evaluation	99		
	Supporting Information	100		
Chapter-6	Novel substituted N-cyclicamino thiazoles as adenosine	104-120		
	receptor ligands			
6.1	Introduction	104		
6.2	Present work			
6.3	Biological results and discussion			
6.4	Conclusion			
6.5	Experimental	110		
	6.5.1. General procedure for the synthesis of cyclicamino methanethiones	110		
	6.5.2 General procedure for synthesis of 2.5-disubstituted			
	<i>N</i> -cyclicamino thiazoles	111		
	6.5.3. General procedure for synthesis of 2.4-disubstituted			
	<i>N</i> -cyclicamino thiazoles	112		
	6.5.4. General procedure for synthesis of trisubstituted	112		
	N-cyclicamino thiazoles	112		
	6.5.5. Method used for pharmacological evaluation	117		
	Supporting Information	118		
Chanter-7	New substituted 2-amino thiazoles as adenosine receptor	121-142		
Chapter-7	ligands	121-142		
7.1	Introduction	121		
7.2	Present work			
7.3	Biological results and discussion			
7.4	Molecular docking studies	128		
7.5	Conclusion	129		
7.6	Experimental	129		

	7.6.1 General procedure for synthesis for <i>N</i> -aroyl- <i>N</i> '-	130
	aryi/neteroaryi tinourea derivatives	
	2-aminothiazoles	132
	7.6.3 Protocol for molecular docking study	139
	7.6.4 Method used for pharmacological evaluation	140
	Supporting Information	141
Chapter-8	3D-QSAR study of thiazole derivatives as adenosine receptor antagonists	143-160
8.1	Introduction	143
8.2	Present work	144
8.3	Materials and methods	144
	8.3.1 Data set	144
	8.3.2 Molecular modeling and Alignment	150
	8.3.3 CoMFA	151
	8.3.4 Regression	152
8.4	Results and Discussion	152
	8.4.1 CoMFA Statistical results	152
	8.4.2 CoMFA contour maps	157
8.5	Conclusion	
Chapter 9	Novel synthetic methodology: Development of new 2-amino/cvclicamino 1.3.4-thiadiazines	161-169
Chapter 9 9.1	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazines Introduction	161-169 161
Chapter 9 9.1 9.2	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazines Introduction Present Work	161-169 161 161
Chapter 9 9.1 9.2	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1Synthesis of substituted 2-amino 1,3,4- thiadiazine	161-169 161 161 161
Chapter 9 9.1 9.2	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2Synthesis of substituted 2-cyclicamino 1,3,4-	161-169 161 161 161 161 163
Chapter 9 9.1 9.2	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazine	161-169 161 161 161 161 163
Chapter 9 9.1 9.2 9.3	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusion	161-169 161 161 161 163 165
Chapter 9 9.1 9.2 9.3 9.3 9.4	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental	161-169 161 161 161 161 163 165 165
Chapter 9 9.1 9.2 9.3 9.4	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- avaliance	161-169 161 161 161 163 165 165 165
Chapter 9 9.1 9.2 9.3 9.4	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazines Introduction Present Work 9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine 9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazine Conclusion Experimental 9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate	161-169 161 161 161 163 165 165 165
Chapter 9 9.1 9.2 9.3 9.4	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2 General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazide	161-169 161 161 161 163 165 165 165 165 165 165
Chapter 9 9.1 9.2 9.3 9.4 9.4	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2 General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazide	161-169 161 161 161 163 165 165 165 165 165 165 165 165 165 165 165 165
Chapter 9 9.1 9.2 9.3 9.4 9.5	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2 General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 2-amino 1,3,4- thiadiazine	161-169 161 161 161 163 165 165 165 165 165 165 165 165 165 165 165
Chapter 9 9.1 9.2 9.3 9.3 9.4 9.5 9.5	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2 General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 2- amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- amino 1,3,4- thiadiazine	161-169 161 161 161 163 165 165 165 165 165 165 165 165 165 165 165 165 166 166 167
Chapter 9 9.1 9.2 9.3 9.4 9.5 9.6	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2 General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 2-amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2-amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2-amino 1,3,4- thiadiazine	161-169 161 161 161 163 165 165 165 165 166 166 167
Chapter 9 9.1 9.2 9.3 9.3 9.4 9.5 9.6 Chapter 10	Novel synthetic methodology: Development of new2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1 General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2 General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 2- amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- cyclicamino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- cyclicamino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- cyclicamino 1,3,4- thiadiazine	161-169 161 161 161 163 165 165 165 166 166 167 170-176
Chapter 9 9.1 9.2 9.3 9.4 9.5 9.6 Chapter 10	Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazinesIntroductionPresent Work9.2.1Synthesis of substituted 2-amino 1,3,4- thiadiazine9.2.2Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazineConclusionExperimental9.4.1General procedure for the synthesis of substituted 4- cyclicamino carbodithioate9.4.2General procedure for the synthesis of substituted 4- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 2-amino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- cyclicamino thiosemicarbazideGeneral procedure for the synthesis of substituted 2- cyclicamino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- cyclicamino 1,3,4- thiadiazineGeneral procedure for the synthesis of substituted 2- cyclicamino 1,3,4- thiadiazineReferences	161-169 161 161 161 163 165 165 165 166 166 167 170-176 177-186

List of Figures

Figure	Description of Figure	Page No
No.	Description of Figure	I age 110.
	CHAPTER-1	
1.1	Adenosine receptor signaling	2
1.2	Some of the potential uses of drugs that act as agonists (left) and	_
	antagonists (right) at the four different adenosine receptors are	3
1.0	Indicated	
1.3	ZM241385	5
1.4	A ₁ adenosine receptor agonists	8
1.5	A _{2A} adenosine receptor agonists	9
1.6	A _{2B} adenosine receptor agonists	10
1.7	A ₃ adenosine receptor agonists	10
1.8	A ₁ adenosine receptor antagonists	11
1.9	A _{2A} adenosine receptor antagonists	12
1.10	A _{2B} adenosine receptor antagonists	13
1.11	A ₃ adenosine receptor antagonists	14
1.12	Allosteric modulators of adenosine receptors	15
	CHAPTER-2	
2.1	Fragment linking approach for drug design	22
2.2	Example of Fragment linking approach: Development of Matrix	23
	Metalloproteinase Inhibitors	23
2.3	Fragment based drug design approach for design of molecule	25
2.4	Design of thiophenyl-thiophene conjugate	26
2.5	Design of di/trisubsituted N-cycloaminothiazoles	27
2.6	Design of subsituted 2-aminothiazoles	27
2.7	Novel 2-amino/cycloamino thiadiazines	28
	CHAPTER-3	
3.1	Designed thiophenyl-thiazole carboxamides	30
3.2	Docking study with A_{2A} adenosine receptor (a) Reference	
	molecule in the binding pocket (b) Designed molecule in the	31
	binding pocket	
3.3	Retrosynthetic analysis of designed molecule	31
3.4	LC-MS $(M+1)^+$ of PMCDP-1	33
3.5	¹ H NMR of PMCDP-1	34
3.6	¹³ C NMR of PMCDP-1	35
	CHAPTER-4	
4.1	Design of molecule <i>N</i> -cycloamino/disubstituted/diamino thiazoles	50
	coupled with thiophenes	59
4.2	LC-MS $(M+1)^+$ of PMCDP-16	61
4.3	¹ H NMR of PMCDP-16	62
4.4	¹³ C NMR of PMCDP-16	63

	CHAPTER-5	
5.1	(A) Drugs containing 2-aminothiophene structure	
	(B) 2-aminothiophene containing compounds as adenosine	83
	receptor modulators	
5.2	Design of thiophenyl-thiophene carboxamides	84
5.3	LC-MS $(M+1)^+$ of PMCDP-BTP-3	86
5.4	¹ H NMR of PMCDP-BTP-3	87
	CHAPTER-6	
6.1	Design of substituted N-cylicaminothiazoles	104
6.2	LC-MS $(M+1)^+$ of PMCDP-TZA1	106
6.3	¹ H NMR of PMCDP-TZA1	107
	CHAPTER-7	
7.1	Design of substituted 2-aminothiazoles	121
7.2	LC-MS $(M+1)^+$ of PMCDP-TZB2	123
7.3	¹ H NMR of PMCDP- TZB2	124
7.4	¹³ C NMR of PMCDP- TZB2	124
7.5	(a) Hydrogen interaction of PMCDP-TZB2 with A_{2A} adenosine	
1.0	receptor	128
	(b) PMCDP-TZB2 in binding pocket of adenosine A _{2A} receptor	120
7.6	(a) Hydrogen interaction of PMCDP-TZB22 with A_3 adenosine	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	receptor	129
	(b) PMCDP-TZB22 in binding pocket of adenosine A ₃ receptor	>
	CHAPTER-8	
8.1	Alignment of all the active molecules in training and test sets	
	(a) scaffold of compound PMCDP-TZB22, the atoms used for	1.50
	alignment are depicted as balls (b) 3D-view of aligned molecules	150
	of A_1 adenosine receptor antagonists	
8.2	Alignment of all the molecules in training and test sets (a)	
	scaffold of compound PMCDP-TZB2, the atoms used for	1 = 1
	alignment are depicted as balls (b) 3D-view of aligned molecules	151
	of A_{2A} adenosine receptor antagonists	
8.3	Alignment of all the molecules in training and test sets	
	(a) scaffold of compound PMCDP-TZB22, the atoms used for	151
	alignment are depicted as balls (b) 3D-view of aligned molecules	151
	of A_3 adenosine receptor antagonists	
8.4	Plot of the predicted versus observed pKi values for all the	
	molecules based on CoMFA ($q^2 = 0.554$, $r^2 = 0.977$) model of A ₁	156
	adenosine receptor antagonists	
8.5	Plot of the predicted versus observed pKi values for all the	
	molecules based on CoMFA ($q^2 = 0.448$, $r^2 = 0.96$) model of A _{2A}	156
	adenosine receptor antagonists	
8.6	Plot of the predicted versus observed pKi values for all the	
	molecules based on CoMFA ($q^2 = 0.502$, $r^2 = 0.982$) model of A ₃	157
	adenosine receptor antagonists	
8.7	(a) Steric contour maps around PMCDP-TZB22 (b) Electrostatic	150
	contour maps around PMCDP-TZB22	138

8.8	(a) Steric contour maps around PMCDP-TZB2 (b) Electrostatic contour maps around PMCDP-TZB2	159
8.9	(a) Steric contour maps around PMCDP-TZB22 (b) Electrostatic contour maps around PMCDP-TZB22	159
	CHAPTER-9	
9.1	LC-MS spectrum of PMCDP-TD1	162
9.2	LC-MS spectrum of PMCDP-TD9	164
	CHAPTER-10	
10.1	Active and selective adenosine receptor thiophenyl-thiazole carboxamides	171
10.2	Active and selective <i>N</i> -cycloamino/disubstituted/diamino thiazoles coupled with thiophenes against adenosine receptors	172
10.3	Active and selective thiophenyl-thiophene carboxamides against adenosine receptor	172
10.4	Active and selective <i>N</i> -cyclicamino thiazoles against adenosine receptor	173
10.5	Active and selective 2-amino thiazoles against adenosine receptor	174
10.6	Novel synthetic methodology for the 2-amino/cyclicamino thiadiazines	175
10.7	Proposed pharmacophore for lead optimization	176

List	of	Tab	les
	~-	-	

Table No.	Table Caption	Page No.
	CHAPTER-2	
2.1	Selected clinical-stage compounds originating from fragment based lead discovery	23
	CHAPTER-3	
3.1	Synthesis of thiophenyl-thiazole carboxamide derivatives	35
3.2	Binding affinity of synthesized molecules	37
	CHAPTER-4	
4.1	Synthesis of <i>N</i> -cycloamino/disubstituted/diamino thiazoles coupled with thiophenes	64
4.2	Binding affinity of synthesized molecules	65
	CHAPTER-5	
5.1	Synthesis of thiophenyl-thiophene carboxamides	87
	CHAPTER-6	
6.1	Synthesis of substituted <i>N</i> -cyclicaminothiazole derivatives	107
6.2	Binding affinity of synthesized <i>N</i> -cyclicaminothiazole derivatives	109
	CHAPTER-7	
7.1	Synthesis of substituted 2-aminothiazole derivatives	125
7.2	Binding affinity of synthesized substituted 2-aminothiazoles	127
	CHAPTER-8	
8.1	Structures and biological activity of A_1 adenosine receptor antagonists used for 3D QSAR study	144
8.2	Structures and biological activity of A_{2A} adenosine receptor antagonists used for 3D QSAR study	146
8.3	Structures and biological activity of A_3 adenosine receptor antagonists used for 3D OSAR study	148
8.4	Summary of CoMFA results for all the three datasets	153
8.5	Observed and predicted activities for training and test sets compounds by 3D QSAR models for A1 adenosine receptor antagonists	153
8.6	Observed and predicted activities for training and test sets compounds by 3D QSAR models for A_{2A} adenosine receptor antagonists	154
8.7	Observed and predicted activities for training and test sets compounds by 3D QSAR models for A_3 adenosine receptor antagonists	155
	CHAPTER-9	
9.1	Synthesis of 2-amino 1,3,4-thiadiazine derivatives	163
9.2	Synthesis of 2-cyclicamino 1,3,4-thiadiazine derivatives	164

List of Scheme

Scheme No.	Scheme Caption	Page No.
	CHAPTER-3	
3.1	A sequential one pot multicomponent synthesis of new thiophenyl- thiazole carboxamides	32
	CHAPTER-4	
4.1	Synthetic scheme for N-cycloamino thiazoles coupled thiophenes	60
4.2	Synthetic scheme for diamino thiazoles coupled with thiophenes	60
4.3	Synthetic scheme for disubstituted thiazoles coupled with thiophenes	61
	CHAPTER-5	
5.1	Synthetic Scheme for thiophenyl-thiophene carboxamides	85
	CHAPTER-6	
6.1	General synthetic schemes for di/tri substituted <i>N</i> -cylicaminothiazoles	105
	CHAPTER-7	
7.1	Synthetic scheme for substituted 2-aminothiazole	122
	CHAPTER-9	
9.1	Synthetic scheme for substituted 2-amino 1,3,4-thiadiazine	162
9.2	Synthetic scheme for substituted 2-cyclicamino 1,3,4-thiadiazine	163

List of abbreviations and symbols

%	Percent
°C	Degree Celsius
δ	Delta
ACN/MeCN	Acetonitrile
ARs	Adenosine receptors
COPD	Chronic obstructive pulmonary disorder
DCM	Dichloromethane
DMF	<i>N</i> , <i>N</i> -Dimethyl formamide
DMFDMA	<i>N</i> , <i>N</i> -dimethylformamide dimethyl acetal
EA	Ethyl acetate
GPCRs	G-protein-coupled receptors
Hz	Hertz
[³ H]CCPA	[³ H]2-chloro-N ⁶ -cyclopentyladenosine
[³ H]NECA	[³ H]5'-(<i>N</i> -ethylcarboxamido)adenosine
[³ H]HEMADO	[³ H] 2-hexyn-1-yl-N ⁶ -methyladenosine
h	Hour
IR	Infra red
LC-MS	Liquid chromatography-mass spectrometry
μΜ	Micromolar
mp	Melting Point
MeOH	Methanol
mL	Milliliter
nM	Nanomolar
NMR	Nuclear magnetic resonance
R _f	Retardation factor
TEA	Triethyl amine
THF	Tetrahydrofuran
	2

List of materials and equipments

Solvents and chemicals

Chloroform (LR grade, Ranbaxy Fine Chem Ltd., New Delhi)
Dichloromethane (LR grade, Qualigens Fine Chemicals, Mumbai)
Ethyl acetate (LR grade, Ranbaxy Fine Chem Ltd., New Delhi)
Hexane (LR grade, Ranbaxy Fine Chem Ltd., New Delhi)
Methanol (LR grade, Qualigens Fine Chemicals, Mumbai)
Anhydrous Sodium sulphate (LR, Ranbaxy Fine Chem Ltd., New Delhi)
Sodium hydroxide (LR, Himedia Laboratories, Mumbai)
Triethyl amine (LR grade, Qualigens Fine Chemicals, Mumbai)

Equipment

Corousel 6 stirrer (Radleys Discovery technologies) Rotary evaporator (Buchi, Switzerland/Heidolph, Germany) Magnetic Stirrer (Deepali United Private Ltd, Mumbai) Overheal Stirrer (Deepali United Private Ltd, Mumbai)

CHAPTER-1

Adenosine receptors and its ligands

PAGE NO. 1 TO 20

Chapter 1

Adenosine receptors and its ligands

1.1 Introduction to Adenosine Receptors

Purines are the most widespread chemical messengers in animal and plant kingdoms. Adenosine, a purine nucleoside is an endogenous ligand composed of adenine attached to ribose. Adenosine plays an important role in biochemical processes, such as energy transfer—as adenosine triphosphate (ATP) and adenosine diphosphate (ADP)—as well as in signal transduction as cyclic adenosine monophosphate (cAMP). It is identified as a major local regulator of tissue function especially when energy supply fails to meet cellular energy demand. Due to its ability to equalize energy intake to metabolic demand, it earned the reputation of a "**retaliatory metabolite**" (Sattin & Rall 1970).

Adenosine is a signaling molecule whose physiological functions are mediated by its interaction with four G-protein-coupled receptor (GPCR) subtypes, A_1 , A_{2A} , A_{2B} and A_3 respectively. Extracellular adenosine acts as a local modulator with a generally cytoprotective function in the body. Its effects on tissue protection and repair fall into four categories: increasing the ratio of oxygen supply to demand; protecting against ischaemic damage by cell conditioning; triggering anti-inflammatory responses; and the promotion of angiogenesis.

The adenosine receptors (ARs) differ in their affinity for adenosine. The A_1 and A_3 adenosine receptor subtypes have high and low affinity for adenosine, respectively. They couple to Gi protein to inhibit adenylate cyclase and thus lead to decrease the cyclic AMP (cAMP). By contrast, high affinity A_{2A} and low affinity A_{2B} adenosine receptor subtypes couples to Gs and stimulates adenylyl cyclase leading to an increase of cyclic AMP (cAMP) levels (Ham & Evans 2012) (Figure-1.1). These two subtype pairs also share higher sequence identity: the human A_1 and A_3 ARs are 49% identical, and the human A_{2A} and A_{2B} ARs are 59% identical.

Chapter-1

Figure 1.1 Adenosine receptor signaling

The four adenosine receptors have been cloned from several mammalian species, including human. There is extensive sequence similarity between species for the A_1 , A_{2A} and A_{2B} receptors, whereas A_3 receptors are more variable (Londos et al. 1980). Each adenosine receptor has different but overlapping functions. Each of them is unique in pharmacological profile, tissue distribution and binding partners. The greatest challenge in developing adenosine receptor ligands for specific clinical applications is that adenosine signaling is so widespread. Adenosine itself is present ubiquitously, adenosine receptors are widely distributed throughout the body and adenosine acting at these receptors exerts a broad spectrum of physiological and pathophysiological functions (Chen et al. 2013). By designing synthesizing and screening the molecules against adenosine receptors there is hope to be able to target a disease specifically by a selective compound.

1.2 Adenosine receptors as therapeutic target

As there is great and extensive roles of adenosine receptor subtypes in both physiologic and pathophysiologic events, these receptors are becoming important drug targets in the treatment of a variety of diseases. With more and more research going on in the field of adenosine receptors it has been possible to find out a number of physiological and pathophysiological processes where one or more adenosine receptors are involved. The list of such processes is quite wide, and since it is increasing each year it is likely that it will further lengthen.

ARs have been targets for drug development which is schematically shown in Figure 1.2 (Fredholm 2010). By far the most serious attempts have been made in the development of A_{2A} antagonists for neurodegeneration where several drugs companies have candidate drugs in late phases of clinical trial and one of them has been approved (Dungo & Deeks 2013). Adenosine receptors are found on almost all the cells and so the agonists are likely to produce unwanted side effects. On contrast selective antagonists will only affect those sites where receptors are active. The fact that a majority of humans already consume an adenosine antagonist, caffeine, on a daily basis of course also makes one wonder how much can be derived by additional blockade (Fredholm 2010).

Figure 1.2 Some of the potential uses of drugs that act as agonists (left) and antagonists (right) at the four different adenosine receptors are indicated (Fredholm 2010)

1.2.1 The A₁ adenosine receptor

The adenosine A₁AR is widely distributed in varying levels of expression about many different tissues in the human body, ranging from the colon to the brain. The highest levels found in the brain, especially at excitatory nerve endings (Daly & Padgett 1992). Activation of the A₁AR inhibits adenylyl cyclase activity, that activates potassium channels (including KATP channels in neurons and the myocardium), blocks transient calcium channels intracellular calcium and increases and inositol-1,4,5-trisphosphate[Ins(1,4,5)P3] levels by activating phospholipase C (PLC). A_1AR modulates neuronal activity by blocking neurotransmitter release and reducing the firing rate. The A₁AR mediates negative chronotropic and inotropic effects in the heart but they also exert effects in many other organs and cells. The physiology and pathophysiological effect are implicated in decreased renal blood flow, tubuloglomerular feedback, inhibition of renin release, inhibition of lipolysis, vasoconstriction, bronchoconstriction, inhibition of neurotransmitter release, inhibition of insulin and glucagon release, reduced heart rate, osteoclast activation and bone resportion, reduced respiration, sleep, analgesia, cardiac preconditioning (Fredholm 2010). Considerable advances have been made recently in the pharmacological and molecular characterization of A₁AR, which had been proposed as targets for drug design and discovery. Xanthine and xanthine derivatives, including the natural compounds theophylline and caffeine, constitute the prototypical group of antagonists at all ARs, and modifications of the xanthine structure have given various derivatives which have shown good subtype selectivity. Most of the selective A_1AR antagonists are xanthine-based derivatives (Baraldi, Tabrizi, Gessi, et al. 2008).

1.2.2 The A_{2A} adenosine receptor

The $A_{2A}AR$ has been most widely studied receptor among the all the adenosine receptors structurally as well as therapeutically. $A_{2A}AR$ are highly expressed in the spleen, thymus, leukocytes, blood platelets, striatopallidal GABAergic neurons and the olfactory bulb and expressed to a lesser extent in the heart, lung, blood vessels, and other brain regions. The $A_{2A}AR$ is important in mediating vasodilation, supporting the synthesis of new blood

Chapter-1

Figure 1.3 X-Ray crystallographic structure of the $A_{2A}AR$ bound to ZM241385 (Jaakola et al. 2008)

vessels and protecting tissues from collateral inflammatory damage. In the brain, $A_{2A}AR$ influences the activity of the indirect pathway of the basal ganglia. Various investigations are being conducted on a number of compounds to treat inflammation, cancer, ischemia reperfusion injury. $A_{2A}AR$ is highly expressed in the spleen, thymus, infectious diseases, wakefulness, neurodegeneration (including Parkinson's disease and Alzheimer's disease) and other CNS disorders (de Lera Ruiz et al. 2013). To understand the insights of receptor and its ligand binding interaction, the $A_{2A}AR$ has been resolved by X-ray crystallographic techniques (Jaakola et al. 2008; Lebon et al. 2011; Doré et al. 2011; Xu et al. 2011; Congreve et al. 2012). Normally, adenosine receptors have a common central core consisting of seven transmembrane helices (TM1–7), each TM being mainly α -helical and composed of 20–27 amino acids. Each TM domain is linked by three intracellular (IL1, IL2, and IL3) and three extracellular (EL1, EL2, and EL3) loops. ARs differ in the length and function of their *N*-terminal extracellular domain, their *C*-terminal intracellular

domain, and their intracellular/extracellular loops. Each of these areas provides very specific properties that are critical for achieving ligand selectivity among the different receptor subtypes. Figure 1.3 shows X-ray crystallographic structure of $A_{2A}AR$ bound to ZM241385 (Jaakola et al. 2008). Various agonist and antagonists synthesized are based on adenosine derivatives, xanthine derivatives, tricyclic molecules and many other derivatives and they have proved to be highly active and selective to $A_{2A}AR$ proving to be important in many diseases specifically neurological disorders (Shook & Jackson 2011).

1.2.3 The A_{2B} adenosine receptor

The A_{2B} AR is highly expressed in the gastrointestinal tract, bladder, lung, mast cells, eye, adipose tissue, brain, kidney, liver and other tissues. The A_{2B}AR is structurally closely related to the A2AAR and able to activate adenylate cyclase but it is functionally very different from $A_{2A}AR$. It has been postulated that this subtype may utilize signal transduction systems other than adenylate cyclase because of these functional differences (Livingston et al. 2004). Among all the adenosine receptors, the $A_{2B}AR$ is a low affinity receptor that is thought to remain silent under physiological conditions and to be activated in consequence of increased extracellular adenosine levels. As such there is no crystal structure of A_{2B}AR available; but the available structures of A_{2A}AR are suitable as templates for the study of A_{2B} AR models. Despite the similarity between the A_{2A} and A_{2B} ARs, there are many differences between the two receptor subtypes, e.g., the longer extracellular loop 2 of the $A_{2B}AR$ or the fact that the $A_{2A}AR$ possesses four disulfide bonds in the extracellularly oriented part of the protein whereas the A2BAR has been found to have only one disulfide bond. The adenosine A_{2B}AR's physiological role is very less understood, still it has been implicated to play key roles in various processes like modulation of arterial blood pressure and heart rate, glucose metabolism, angiogenesis induction, growth of some tumors, intestinal inflammation, myocardial ischemia, acute lung and kidney injury, inflammatory response and much involvement in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD) (Thimm et al. 2013). Several class of ligands found have shown good affinity towards A_{2B}AR are adenosine

derivatives, xanthine derivaties, pyrrolopyrimidines, pyrazolotriazolopyrimidines and 2-aminopyrazines (Taliani et al. 2013).

1.2.4 The A₃ adenosine receptor

The A₃AR is the last member of the adenosine receptors family to have been cloned (Jacobson & Gao 2006). Considering receptor distribution, the highest levels of human A₃AR mRNA have been found in lung and liver. However, A₃ARs have been detected in various tissues including testis, lung, kidney, placenta, heart, brain, spleen, liver, uterus, bladder, jejunum, aorta, proximal colon and eyes (Borea et al. 2009). A₃ARs, via the interaction with Gi proteins, inhibit adenylate cyclase, decreasing cyclic AMP accumulation and protein kinase A (PKA) activity. In addition, A3ARs, by coupling with Gq proteins, stimulate phospholypase C (PLC), causing an increase of calcium levels from intracellular stores, and modulate the protein kinase C (PKC) activity. In case of adenosine A₃AR also there is no crystal structure available, but for molecular modeling studies, the homology modeled structure of adenosine A₃AR is used. The functional role of A₃AR is implicated in many disorders like joint disorder, eye disorders, cancer, respiratory disorders and cardiovascular disorders. Majority of the A₃AR receptor agonists are nucleoside derivatives. Apart from nucleoside derivatives some of xanthine and pyridine derivatives are also reported to play agonist's role. Derivatives of pyrimidines, thiazoles, thiadiazoles, quinazolinones, quinoxalines, adenines, triazoloquinzoline, pyrazoloquinolines, pyridotriazolopyrazines have been reported to possess antagonist activity against A₃AR.

1.3 Adenosine Receptors agonists

Adenosine is an endogenous natural agonist which binds to all the ARs, so modification of adenosine is main approach for discovering AR agonists. Apart from adenosine xanthosine derivatives have been also good agonists. The structure-activity relationships of adenosine (1) at ARs have been extensively probed (Yan et al. 2003). Most of the useful analogues are modified in the N^6 -or 2-position of the adenine moiety and in the 3'-, 4'- or 5'-position of the ribose moiety. Highly selective agonists of the various receptor subtypes have been designed through both empirical approaches and a semi-rational approach based on molecular modeling (Kim et al. 2003; Tchilibon et al. 2005).

1.3.1 A₁ adenosine receptor agonists

To get A₁ adenosine receptor agonists, generally substitution of adenosine (**1**) at the N^{6} position with a wide range of alkyl, cycloalkyl, and arylalkyl groups increases selectivity. The most successful selective agonists of the A₁AR were achieved by substituting
adenosine at N^{6} position with cycloalkyl group. N^{6} -Cyclopentyladenosine (**2**, **CPA**) and
its 2-chloro analogue (**3**, **CCPA**) are among the most potent and selective A₁AR agonists
and they are in wide use as pharmacological agents. S(-)-ENBA (**4**) is an even more
potent and selective agonist for both human and rat A₁ARs compared with the three other
AR subtypes (Gao et al. 2003). Bayer Co.(Germany) discovered 2-amino-3, 5dicyanopyridine derivatives e.g. capadenoson (**5**), as non-nucleoside-derived adenosine
receptor agonists (Rosentreter et al. 2009). Other than these derivatives, several selective
adenosine derivatives, including GW493838 (**6**) and Tecadenoson (**7**) have been
evaluated in clinical trials for various indications (Müller & Jacobson 2011) (Figure 1.4).

Figurse 1.4 A₁ adenosine receptor agonists

1.3.2 A_{2A} adenosine receptor agonists

Substitution of adenosine at the 2-position, especially with (thio) ethers, secondary amines, and alkynes, has resulted in many synthetic analogues selective for the A_{2A}AR. NECA (**8**) is a potent nonselective agonist has a 5'-*N*-alkyluronamide modification, and a 5'-*N*-ethyluronamide modification has maintained or enhanced the selectivity for the A_{2A}AR which is present in case of CGS21680 (**12**). 2-(2- phenylethyl) amino is also important modification in case of CGS21680 for enhancing the affinity at A_{2A}AR. UK-432097 (**11**) is N^{6} -(2, 2- diphenylethyl) adenosine analogues, so some N^{6} -position substitutions have also been found to increase the affinity at the A_{2A}AR. Regadenoson (**9**, LexiscanTM) and Apadenoson (**10**) has been developed for vasodialation (Müller & Jacobson 2011) (Figure 1.5).

Figure 1.5 A_{2A} adenosine receptor agonists

1.3.3 A_{2B} adenosine receptor agonists

The adenosine $A_{2B}AR$ is least characterized subtype in the AR family. Combinations of changes at adenosine have resulted in compounds that activated the $A_{2B}AR$ with good selectivity. N^6 -substituted adenosines, N^6 -substituted-5'-N-alkyl-carboxamido adenosines, C^2 -substituted adenosines and C^2 -substituted-5'-N-alkyl-carboxamido adenosines have

been reported to show good affinity and selectivity towards $A_{2B}AR$ (**13, 14**). Apart from adenosine derivatives, BAY 60-6583 (**15**) is one of the 2-aminopyridine-3, 5-dicarbonitrilederivatives which is found to activate the $A_{2B}AR$ (Baraldi, Tabrizi, Fruttarolo, et al. 2008; Müller & Jacobson 2011) (Figure-1.6).

Figure 1.6 A_{2B} adenosine receptor agonists

1.3.4 A₃ adenosine receptor agonists

The vast majority of A₃AR agonists reported to date reflects the nucleoside structure of the endogenous ligand, adenosine. The most successful structural modification of the adenosine skeleton in enhancing A₃AR potency and selectivity involve N^6 -, C^2 -, and 5'-substitutions or combination of these. Substitution with an N^6 -benzyl group or substituted benzyl group increases selectivity for the A₃AR. IB-MECA (CF101, **16**) and the more selective agonist Cl-IB-MECA(CF102, **17**) have been widely used as pharmacological probes. The 4'-thioadenosine derivative LJ-529 (**18**) also acts as a highly potent and selective A₃AR agonist with a subnanomolar affinity.

Figure 1.7 A₃ adenosine receptor agonists

The new design which includes [3.1.0]bicyclohexane ring system in place of the ribose 5-membered ring was utilized to get more potent and selective analogues such as

MRS3558 (**19**), which displays nanomolar affinity at the A₃AR (Müller & Jacobson 2011; Baraldi et al. 2012) (Figure 1.7).

1.4 Adenosine receptors antagonists

Traditionally, the adenosine receptor antagonists have been xanthine derivatives. The natural products like caffeine and theophylline behaves as weak and nonselective AR antagonists. The structure activity relationship (SAR) of xanthine derivatives as AR antagonists has been the core research area to get selective AR antagonists. The effects of receptor subtype selectivity of substitution at the 1-, 3-, 7-, and 8-positions have been explored in detail. However, many new nonxanthine and non-purine derivatives have been developed as highly selective AR antagonists.

1.4.1 A₁ adenosine receptor antagonists

Potent and selective antagonists for A_1AR have been developed by modification of the xanthines at 8-position with aryl or cycloalkyl groups and these modification has led to high affinity and selectivity (Moro et al. 2006). For example, the 8-cyclopentyl derivative DPCPXor CPX (8-cyclopentyl-1, 3-dipropylxanthine, **20**) is highly selective at the human A_1AR .

Figure 1.8 A₁ adenosine receptor antagonists

Rolofylline(KW-3902, **21**) has a bicycloalkyl group present at 8^{th} position of xanthine ring and has a good selectivity. Bamifylline (**22**) is another selective derivative with benzyl group at 8^{th} position on xanthine ring. Apart from the xanthine derivatives, nonxanthine structures are also reported to show high affinity and selectivity towards A₁AR (Kiesman et al. 2009). FK-453 (**23**) is a pyrazole derivative and SLV-320 (**24**) is a pyrrolopyrimidine derivative, both are highly selective. New 2-aminothiazole derivatives which are PERD-MCD (**25**) derivatives have shown high A₁AR affinity and selectivity (Scheiff et al. 2010) (Figure 1.8).

1.4.2 A_{2A} adenosine receptor antagonists

Historically, A_{2A} AR antagonists have been divided into xanthine-based and non-xanthinebased derivatives. Modification of xanthines at the 8-position with alkenes has led to selectivity for the $A_{2A}AR$. Istradefylline (KW-6002, **26**) is a xanthine based, selective $A_{2A}AR$ antagonist that was approved recently for Parkinson's Disease (Dungo & Deeks 2013). MSX-2 (**27**) is selective $A_{2A}AR$ inhibitor which was further converted into two different prodrugs phosphate prodrug (MSX-3, **28**) and L-valine ester prodrug (MSX-4, **29**) to make them water soluble (Sauer et al. 2000; Vollmann et al. 2008).

Figure 1.9 A_{2A} adenosine receptor antagonists

Both are now broadly used as pharmacological tools in particular for *in vivo* studies. Xanthine derivatives however, have several limitations as pharmacologic tools because of poor pharmacokinetic profile. So number of monocyclic, fused bicyclic and tricyclic derivatives other than xanthine derivatives has been developed as adenosine $A_{2A}AR$ antagonists (de Lera Ruiz et al. 2013). ZM-241385 (**30**) is highly selective triazolopyrimidine derivative which may become useful for neurodegenerative diseases. Triazolopyrzaolopyrimidine derivatives like Preladenant (**31**) and benzothiazole derivatives like Tozadenant (**33**) have reached late stage clinical trials for Parkinson's Disease (Figure 1.9).

1.4.3 A_{2B} adenosine receptor antagonists

One of the first compounds as $A_{2B}AR$ antagonist was the xanthine derivative MRS1754 (34) which is potent and selective in humans. Furthermore potent and $A_{2B}AR$ selective xanthine derivatives include MRE-2029-F20 (35) and PSB-1115 (36) which have been used as radioligands. Besides xanthines derivatives, nonxanthine $A_{2B}AR$ antagonists have recently been developed is LAS38096 (37), a pyrimidine derivative. Other non-xanthine derivative includes thiazole in QAF 805 (38) which is Novartis compound. All of these $A_{2B}AR$ antagonists (Figure 1.10) have been in the development for various inflammatory diseases and asthma.(Baraldi, Tabrizi, Fruttarolo, et al. 2008)

1.4.4 A₃ adenosine receptor antagonists

Unlike other three adenosine receptor subtypes (A₁, A_{2A} and A_{2B}), the A₃AR has low binding affinity towards xanthine derivatives. Still, some of the cyclized xanthine derivatives like KF-26777 (**39**) showed good affinity and selectivity towards A₃AR. Because of low affinity towards xanthine derivatives, various classes of non-xanthine monocyclic, bicyclic and tricyclic heterocyclic derivatives were developed as A₃AR antagonists. Pyridine derivative like MRS1523 (**40**) and 2-amino thiazole derivative like CGH2466 (**41**) had shown nanomolar affinity towards A₃AR. VUF5574 (**42**) is a quinazoline derivative and LJ1251 (**43**) is thioadenosine derivatives which had shown antagonist activity towards A₃AR. Triazoloimidazolepyrimidine derivative OT-7999 (**44**) is developed for the treatment of glaucoma. The A₃AR antagonists are under consideration for treatment of cancer, stroke, asthma, COPD and inflammation (Baraldi et al. 2012) (Figure 1.11).

Figure 1.11 A₃ adenosine receptor antagonists

1.5 Allosteric modulation of adenosine receptors

Allosteric modulators of adenosine receptors are the alternative to direct acting AR agonist and antagonists. Allosteric modulators bind at a distinct site other than the natural

ligand binding site. They exert their effect only in the presence of the orthosteric ligand. A positive allosteric modulator (PAM) induces an enhancement of effects of the orthosteric ligand, while a negative allosteric modulator (NAM) attenuates those effects (Göblyös & Ijzerman 2009).

 $A_I AR$: Bruns and colleagues introduced the first allosteric modulators of A₁AR in 1990s (Bruns & Fergus 1990; Bruns et al. 1990). They described various 2-amino thiophene derivatives such as PD 71605 (**45**), PD 81723 (**46**) and PD 117975 (**47**) as allosteric modulators of A₁AR. Other thiophene derivative T62 (**48**) is clinically evaluated for treatment of neuropathic pain. Allosteric enhancers at the A₁AR have received attention as anti-arrhythmic cardiac agents, and, more recently, as anti-lipolytic agents. In addition, this class of compounds has therapeutic potential as analgesics and neuroprotective agents (Figure 1.12).

 A_{2A} *AR*: Allosteric modulation for the A_{2A}AR has not been much developed; still amiloride (49) and analogues developed by Gao and Ijerman were demonstrated to be allosteric inhibitors for the A_{2A}AR. However, these compounds are not selective for this subtype and they also allosterically modulate action at both A₁ and A₃ ARs (Göblyös & Ijzerman 2009).

 $A_{2B}AR$: Allosteric modulators for $A_{2B}AR$ have also been not much reported. Despite that, a recent report has shown the allosteric modulation of adenosine $A_{2B}AR$ by indole derivatives (Trincavelli et al. 2014).

Figure 1.12 Allosteric modulators of adenosine receptors

 $A_3 AR$: Allosteric modulation of the A₃AR was first observed by Gao et al with VUF5455 (50) and other 2-pyridinyl isoquinoline derivatives which were previously reported as A₃AR antagonists. Imidazoquinolinamines are another structural class of A₃AR modulators, which were originally A₁AR antagonists. Imidazoquinlinamine derivative DU124183 (51) is an allosteric enhancer of radioligand binding at the A₃AR (Baraldi et al. 2012).

1.6 Selective disease targets for Adenosine receptors

The various disorders targeted by drugs that are in pre or advanced clinical trials modulating adenosine receptors include CNS-disorders, cardiovascular disorders, antinflammatory, autoimmune disorders and cancer.

CNS disorders: Several pharmacological studies suggest that the $A_{2A}AR$ is involved in motor activity. In particular, adenosine $A_{2A}AR$ antagonists have been demonstrated to restore the deficits caused by degeneration of the striatonigral dopamine system, and therefore offer a possible treatment for Parkinson's Disease.

The current treatment for Parkinson's Disease is primarily based on dopamine replacement therapy. Levodopa (L-DOPA), a metabolic precursor of dopamine, has been used for the treatment of Parkinson's Disease for decades. The $A_{2A}AR$ is present in good concentration in striatum, which interacts with the D_2 receptor. Preclinical studies of $A_{2A}AR$ antagonist is demonstrating motor benefit in rodent and non-human primate models of Parkinson's disease (Richardson et al. 1997; Schwarzschild et al. 2006; Shook & Jackson 2011). So $A_{2A}AR$ antagonists have emerged as leading non-dopaminergic drugs for the treatment of Parkinson's Disease. Over the past 8 years, a total of 25 clinical trials have been conducted. Six double-blind, placebo-controlled clinical Phase IIb and Phase III trials of Istradefylline (KW-6002, **26**), involving a total of >2,000 patients with advanced Parkinson's Disease, and one Phase IIb trial with Preladenant (SCH420814, **31**), involving 253 patients with advanced Parkinson's Disease, have been reported (Hauser et al. 2011). These clinical Phase IIb and Phase III trials have shown a modest but significant reduction in the average 'off-time' by about 1.7 hours compared to the optimal
L-DOPA (levodopa) dose regimen. However, Preladenant did not prove to be effective in phase-III clinical trials so it was discontinued in May 2013, whereas Kyowa Hakko Kirin got the first global approval of drug Istradefylline (**26**) for Parkinson's Disease.

Adenosine as a contributing element in the pathophysiology of schizophrenia embraces several neurotransmitter systems and brain regions due to its multiple and widespread modulatory actions (Lara et al. 2006).

Cardiovascular disorders: The A_1AR is potential therapeutic target for a number of disorders including atrioventricular (AV) node block and supraventricular tachyarrhythmia (AR agonist); AV block of cardiac arrest (AR antagonist); bradyarrhythmias in transplanted hearts (AR antagonists); diuresis (AR antagonists). In patients with documented paroxysmal supraventricular tachycardias involving the AV node, 99% are successfully terminated with standard doses of adenosine (Strickberger et al. 1997).

Ellenbogen et al. in 2005 found that Tecadenoson (7) is a potent selective A_1AR agonist with a dose-dependent negative dromotropic effect on the AV node. They evaluated tecadenoson, a selective A_1AR agonist, for the acute termination of paroxysmal supraventricular tachycardia (PSVT). In the atrial-paced guinea pig heart model, tecadenoson caused an A_1AR receptor mediated negative dromotropic effect on the AV node and lengthening of the AV nodal refractory period, leading to termination of reentrant PSVT at doses that did not affect blood pressure (BP), sinus cycle length, or the His-ventricular interval. Side effects mediated by the A_{2A} , A_{2B} and A_3 ARs such as flushing, chest pressure, hypotension, and bronchospasm were infrequent, consistent with the A_1AR selectivity of the drug (Ellenbogen et al. 2005).

Impaired renal function is common in patients with acute heart failure; it directly contributes to deterioration of the heart and is associated with an adverse outcome, including increased mortality. Local adenosine production in the kidney is increased in patients with heart failure as a result of hypoxia caused by reduced renal perfusion and by stimulation with diuretics. Based on our understanding of the mechanisms associated with

renal dysfunction and the demonstrated control of renal function via A1AR, A1AR antagonists were developed. These antagonists reduced the risk of persistent worsening renal failure by >50% in a Phase IIb study involving 301 patients with acute heart failure, and improved renal plasma flow in 63 ambulatory patients with chronic heart failure. Based on these promising results, a placebo-controlled, randomized Phase III trial involving 2,033 patients with acute heart failure (the PROTECT study) was carried out with the A₁AR antagonist rolofylline; this was the largest study to date involving the use of A1AR antagonists to target renal function (Cotter et al. 2008). Unfortunately, the results were disappointing and rolofylline did not prevent persistent worsening renal function. The reason for this absence of renoprotective effects is likely to be due to an enhanced diuretic effect in the rolofylline group, which may have offset the effects of rolofylline on the preservation of renal function. Moreover, pharmacological and genetic studies have clearly demonstrated that A₁AR mediate protective effects against ischaemic kidney injury and brain injury, which is consistent with the increased frequency of stroke and seizure activity in clinical trials of A1AR antagonists. Thus, the development of A1 AR antagonists for the treatment of disorders associated with impaired fluid retention, such as congestive heart failure, should proceed with caution.

The $A_{2A}AR$ is involved in vasodilation in the aorta and coronary artery. It was suggested that the tachycardic effect of $A_{2A}AR$ activation is mediated by centrally located receptors, whereas its hypotensive effect is mediated by the peripheral $A_{2A}AR$ (Schindler et al. 2005). In the late 1960s and 1970s, metabolically stable AR agonists were tested clinically as antihypertensives, and this was an intended use of the $A_{2A}AR$ agonist CGS21680 (**12**); however its clinical path was stopped due to non selectivity towards adenosine receptors. In platelets, an $A_{2A}AR$ agonist was shown to inhibit aggregation by increasing intracellular cAMP levels, suggesting that adenosine agonists might have utility as antithrombotic agents. Then after various efforts has been carried out to further improve subtype-selectivity of $A_{2A}AR$ agonists for novel therapeutic applications, including imaging. Adenosine (**1**), under the name Adenoscan (Astellas Pharma), is used in myocardial stress imaging to evaluate coronary artery disease by achieving vasodilation in patients unable to exercise adequately. Regadenoson (CVT- 3146, **9**), a potent and selective $A_{2A}AR$ agonist, is approved drug for myocardial perfusion imaging (Hendel et al. 2005).

Inflammatory diseases, autoimmune disorders and cancer: The adenosine receptor subtypes are highly expressed in all the cells of immune system, the adenosine A_1 , A_{2A} , A_{2B} and A_3 receptors are being actively engaged as therapeutic targets for autoimmune diseases, chronic inflammatory disorders and cancer (Voors et al. 2011).

The potent A_3AR antagonists have been developed for therapeutic treatment of inflammatory diseases such as asthma and glaucoma. Activation of A_3AR has been shown to stimulate phospholipase C and to inhibit adenylate cyclase. A_3AR agonists also cause stimulation of phospholipase D and the release of inflammatory mediators, such as histamine from mast cells, which are responsible for inflammation and hypotension. For these reasons, the clinical use of A_3AR antagonists for the treatment of asthma and inflammatory disease has been suggested. Another suggestion says that this effect is mediated by the $A_{2B}AR$ in human and canine mast cells. A bioavailable thiazole derivative that acts as a mixed A_{2B}/A_3 AR antagonist, has failed to attenuate bronchial hyper responsiveness to inhaled AMP in a phase Ib clinical trial in asthmatics, but has also been investigated for other indications.

Based on preclinical pharmacology and encouraging safety data in Phase I studies, the A_3AR agonists CF101 (**16**) and CF102 (**17**) have been tested in several Phase II trials for rheumatoid arthritis (Gessi et al. 2011). Based on anecdotal findings from this trial indicating that CF101 also improved indicators of dry eye syndrome, a follow-up Phase II trial was carried out, which determined that CF101 improved the clearance of corneal staining, tear break-up time and tear meniscus height with no side effects. In addition, active Phase II clinical trials are underway to test the efficacy of A_3AR agonists for the treatment of hepatocellular carcinoma and hepatitis (Fishman et al. 2012). Furthermore, experimental studies in mice suggest a possible use of A_3AR agonists in suppressing melanoma growth by inducing T cell-mediated adoptive immunity and in the control of chronic neuropathological pain (Fishman et al. 2012; Chen et al. 2012). These therapeutic

effects of CF101 are believed to be mediated by its inhibition (via cAMP and calcium signaling) of the oxidative burst and its anti-inflammatory activity (Gessi et al. 2002).

Conclusion:

It has been proved by different studies that extracellular adenosine is an important modulator of various physiological and pathological processes. With all these studies, it has emerged that adenosine receptors can be safely targeted by various ligands and various highly specific agonists and antagonists of adenosine receptors can be generated. As a result, increasing numbers of clinical trials testing of novel adenosine-based drugs in various indications have been initiated during the past decade.

Activation of adenosine receptors is beneficial in the treatment of various inflammatory and autoimmune disorders, pain, arrhythmia as well as sleep disorders and some metabolic disorders. Because of adenosine receptors are widely distributed in the body adenosine receptor agonists produces effects in almost all the tissues which make them difficult to use.

Selective antagonists of the adenosine receptors are more important. So, inhibition of adenosine receptors is having larger effects in treatment of the diseases like asthma, neuroprotection, diabetes, pain and cancer. The fact that a majority of humans already consume an adenosine antagonist, caffeine, on a daily basis of course also makes one wonder how much benefit can be derived by additional blockade.

CHAPTER-2

Rationale of the present work

PAGE NO. 21 TO 28

Chapter 2

Rationale of the present work

2.1 Importance of Drug discovery

"Drug discovery" is the process of finding new drugs. It has evolved from early serendipitous discovery from natural sources to today's industrial-scale screening projects. Modern drug discovery starts with the identification of a biological target that can be modulated to induce the desired therapeutic effect. To search for potential drugs, compounds are tested for their ability to modulate the target. High-throughput screening (HTS) and combinatorial chemistry facilitate screening of libraries of millions of compounds. Historically, drug discovery has been a stronghold of chemistry, especially natural products chemistry and synthetic organic chemistry. So, chemistry has a major role on drug discovery, since other disciplines do not create the novel small molecules.

The exclusive role of heterocyclic compounds for drug discovery is best documented by the occurrence of a heterocyclic moiety in current drugs; the majority of drugs are heterocyclic compounds. Since there is no doubt that heterocyclic compounds are relevant targets for drug discovery, a substantial effort has been dedicated to the development of chemistries, both solid- and solution-phase, for combinatorial synthesis of heterocyclic libraries. The relevance of compounds composed from two or more heterocyclic rings for drug discovery, regardless of the target, can be best documented by the frequency with which bisheterocyclic compounds were identified as the most potent ones (Soural et al. 2008).

As mentioned in chapter-1, adenosine receptors are of great interest for new drug development. Agonist and antagonists of adenosine receptors have been developed and they are implicated in many diseases like cardiovascular diseases, diabetes, asthma and COPD, inflammation and cancer etc. Earlier, number of different derivatives of adenosine and xanthine were developed as selective and specific ligands for adenosine receptors.

Xanthine derivatives were mostly used as antagonists of adenosine receptors. However the problems associated with xanthine derivatives are limited creative possibilities on such a rigid core and poor water solubility. Because of these problems various nonxanthine mono, bi and tricyclic derivatives of thiazoles, thiophenes and triazolopyrimidines has been developed as adenosine receptor antagonists. Here based on fragment based drug design approach we have designed thiophenyl-thiazole carboxamides and further the design was modified into thiophenyl-thiophene carboxamides, *N*-cyclicaminothiazoles and substituted aminothiazoles.

2.2 Fragment based drug design approach : Design of new thiophenyl-thiazole carboxamides as adenosine receptor ligands

The fragment-based drug design (FBDD) approach has been established as an efficient tool in the search for new drugs (Erlanson et al. 2004; Rees et al. 2004) and few of them are in clinical trial (Hajduk & Greer 2007). FBDD has emerged as an alternative approach to traditional lead identification via high-throughput screening (HTS). Unlike HTS, FBDD identifies smaller compounds, the "fragments", which bind to different parts of a biological target, and linking of these "fragments" via linker results in good leads. Fragment evolution, fragment linking, fragment self assembly and fragment optimization are the main four fragment based drug design approaches (Rees et al. 2004). Here we have used fragment linking approach for the design of our molecule which involves two (or more) fragments, which are active against one receptor are joined together to give a higher affinity molecule (Figure 2.1).

Figure 2.1 Fragment linking approach for drug design (Rees et al. 2004)

The example of fragment based drug design is given in Figure-2.2, where matrix metalloproteinase inhibitor was developed by linking the two fragments biphenyl ring and acetamide derivative. Both the fragments were having biological activity in micromolar range. These fragments were merged into one molecule to give better biological activity (Figure 2.2).

Figure 2.2 Example of Fragment linking approach: Development of Matrix Metalloproteinase Inhibitors (Rees et al. 2004)

The drug Vemurafenib is the first drug designed through fragment based drug design approach to get regulatory approval. Selected clinical stage compounds developed through fragment based drug design approach are given in Table 2.1 (Baker 2013).

Table 2.1 Selected clinical-stage compounds originating from fragment-based lead
discovery (Baker 2013)

Drug	Target	Company	Status
Vemurafenib	Mutant BRAF Kinase	Plexxikon	Approved
	(Metastatic melanoma)		
MK-8931	β-secretase 1(Alzheimer's Disease)	Merck	Phase II/III
ABT-263	BLC-2/BLC-X _L (Leukaemia)	Abbot	Phase II
AT 13387	HSP90 (Gastrointestinal stromal tumours)	Astrex	Phase II
AT9283	Janus Kinase 2/Aurora	Astex	Phase II
	(multiple myeloma)		

23

The thiazole ring is an important heterocycle which plays a prominent role in nature and has broad therapeutic applications. Specifically, 2-aminothiazoles are an important class of heterocycles found in numerous biologically active compounds. They have been reported to possess antiviral, antibacterial, antiprion, and psychotropic activities. Compounds containing the aminothiazole moiety are also known to be a ligand of estrogen receptors, adenosine receptor antagonists, while other analogs exhibit antitumor properties (Fink et al. 1999; van Muijlwijk-Koezen et al. 2001; Kumar et al. 1993).

Thiophene is also equally important structural motif. It has been observed that the substitution of different heterocyclic moieties with thiophene nucleus modulates antiinflammatory, anti-cancer (Giordano et al. 2012; Giri et al. 2009) and act as allosteric adenosine modulators (Göblyös & Ijzerman 2011).

The synthesis of new thiazole derivatives such as thiazoles substituted with thiophene as fused heterocycles have been reported to exhibit affinity towards adenosine receptors. Our group has been working on new aminothiazoles and thiophenes and the outcome of the work resulted in many hits and leads (Giordano et al. 2012; Giri et al. 2009) for adenosine receptors (Inamdar 2007; Yerande 2008). Moreover this literature has shown that amide spacer plays important role in showing good biological activity against adenosine receptor. Keeping the biological importance of the both scaffold in view, we had designed the molecule as thiophenyl-thiazole carboxamides which is having fragments thiazole and thiophene scaffold in single molecule via amide linker (Figure 2.3).

Figure 2.3 Fragment based drug design approach for design of molecule

2.3 New 2-aminothiophene linked to substituted thiophenes

A number of reports have shown 2-aminothiophene molecules as active moiety against adenosine receptors (Aurelio et al. 2011; Göblyös & Ijzerman 2011). New thiophene derivatives synthesized in our lab had shown good biological activity in inflammation and cancer. Keeping in mind the importance of thiophene and to see the SAR around 2-amino thiophenes, modification of the thiophenyl-thiazole carboxamides into thiophenylthiophene carboxamides with amide spacer were carried out (Figure 2.4). As per our findings, this is first time such a scaffold has been prepared and checked for activity against adenosine receptors. Our older reports had shown that thiophenyl-thiophenes with keto spacer were highly active in cancer which was further patented (Giordano et al. 2012).

Figure 2.4 Design of thiophenyl-thiophene conjugate

2.4 New di/tri substituted N-cyclicaminothiazoles

As mentioned earlier, thiazoles have been highly active against adenosine receptors. 2-cycloaminothiophene prepared in our lab was active as anti-inflammatory compounds (Pillai et al. 2004). So here we have tried to design similar structural feature with replacement of 2-cyclicaminothiophens with 2-cyclicaminothiazoles to come up at good adenosine receptor ligands. Here, novel synthetic methodology was developed for the synthesis of novel 2,4- and 2,5- disubstituted 2-cyclicaminothiazoles. To best of our knowledge 2,4- and 2,5- disubstituted 2-cycloaminothiazoles has been checked first time against adenosine receptors. To see the SAR on thiazole moeity, here we have designed and synthesized new di/tri-substituted 2-cyclicaminothiazoles (Figure 2.5).

Chapter 2

Figure 2.5 Design of di/trisubsituted N-cyclicaminothiazoles

2.5 2-aminothiazoles as adenosine receptor ligands

In continuation of previous series of work, here we have design new 2-aminothiazole derivatives with major focus on aminothiazoles. In the last few decades 2-aminothiazoles had proved to be good non-xanthine adenosine receptor ligands. Our previous work on 2-aminothiazole derivatives had shown good affinity and selectivity towards adenosine receptor (Scheiff et al. 2010; Inamdar et al. 2013). So, in this series of molecules we have kept aminothiazole moiety intact to see the change in biological activity from previous series of molecules (Figure 2.6).

Figure 2.6 Design of subsituted 2-aminothiazoles

2.6 Novel synthetic methodology: Synthesis of 2-amino/cycloamino thiadiazines

In addition to the designed molecules, here we have developed novel synthetic methodology for the synthesis of 2-aminothiadiazine and 2-cycloaminothiadiazine from various substituted thiosemicarbazide derivatives and phenacyl bromides (Figure 2.7).

Figure 2.7 Novel 2-amino/cycloamino thiadiazines

CHAPTER-3

Design, synthesis and biological evaluation of thiophenyl-thiazole carboxamides as adenosine receptor antagonists

PAGE NO. 29 TO 58

Chapter 3

Design, synthesis and biological evaluation of thiophenyl-thiazole carboxamides as adenosine receptor antagonists

3.1 Introduction

Thiazoles and thiophenes have been reported as important structural feature as an individual heterocycle because they are having many pharmaceutical applications. 2-aminothiazole is an important and classic heterocyclic scaffold used in the drug discovery programs. All the described biological and physico-chemical properties of aminothioazole are probably due to its small ring structure with nitrogen atom behaving as hydrogen bond acceptor which makes the aminothiazole ring having Π excessive and Π deficient properties. The broad spectrum biological activities exhibited by this structure include anticancer (Lee et al. 2014), antiprion (Gallardo-Godoy et al. 2011), antimicrobial (Annadurai et al. 2012) and antituberculosis (Pieroni et al. 2014) activities that assign it as an indispensible heterocyclic feature in drug design. In addition to this, recently, our group has successfully employed 2-aminothiazole scaffolds in the design of anti-inflammatory agents as well as adenosine receptor antagonist (Scheiff et al. 2010; Inamdar et al. 2013).

Thiophene is an important structural motif in medicinal chemistry and it is considered as a classical bioisostere for the benzene ring and due to its small ring structure it is found in many therapeutically active substances. Multisubstituted 2-aminothiophenes are privileged structures, which attracted considerable attention in the designing of biologically active molecules. Moreover, they were found to have various biological applications such as antihypertensive, antipsychotic, as potent apoptosis inducer (Kemnitzer et al. 2009), a potential anti-inflammatory agent (Katada et al. 1999), antiosteoporosis agents and allosteric agonists and modulators of the A_1 adenosine receptor (Valant et al. 2012).

3.2 Present Work

Keeping in mind importance of thiazoles and thiophenes, the present work is focused on designing and synthesizing the molecules which incorporates both the biologically important heterocycles. Fragment based drug design approach is used to design the conjugated new thiophenyl-thiazoles with amide spacer as adenosine receptor ligands (Figure 3.1).

Figure 3.1 Designed thiophenyl-thiazole carboxamides

Molecular Docking for validation of designed molecule

In order to validate the designed molecule we have carried out the molecular docking study with adenosine A_{2A} adenosine receptor of our designed molecule (**b**) and compared with a reference molecule from US Patent **20060003986** (**a**) (Alanine et al. 2006). The reference molecule (**a**) was found to have hydrophobic interactions with the amino acids PHE168, LEU267, LEU249, MET 270 and TYR271 with binding energy of -8.70 kcal/mol. Whereas our designed molecule (**b**) was found to have hydrophobic interactions with the amino acids ILE 251, ILE 252, TRP268 and LEU269 with binding energy of -10.49 kcal/mol. We find that our designed molecule and reported molecule have comparable binding energy. This suggests that such type of compounds may have a good potential as A_{2A} adenosine receptors antagonists (Figure 3.2).

Chapter 3

Figure 3.2 Docking study with A_{2A} adenosine receptor (a) Reference molecule in the binding pocket (b) Designed molecule in the binding pocket

Retrosynthetic analysis of designed molecule

In order to design the synthetic route, retrosynthetic analysis was carried out (Figure 3.3).

Figure 3.3 Retrosynthetic analysis of designed molecule

In continuation of our synthesis of biologically active new heterocycles from amidinothiourea (A) (Kaila et al. 2008; Kaila et al. 2010), here we have synthesized series of thiophenyl-thiazole carboxamides (Table-1) from 2-chloroacetamidothiophenes (B) and amidinothioureas (A) as potential antagonists of adenosine receptors. The synthetic methodology for the formation of 2-aminothiazole was further published by our group (Jalani et al. 2013).

Amidinothioureas (**B**) can be can be obtained by reacting various isothiocyanates with amidines. This reaction is general for wide range of isothiocyanates and amidines. 2-chloroacetamidothiophenes (**A**) can be generated by the reaction between 2-aminothiophenes and chloroacetyl chloride. The 2-aminothiophene is prepared by Gewald's multicomponent reaction. The various amidinothioureas were reacted with substituted 2-chloroacetamido thiophenes under mild conditions for the synthesis of final designed molecule. Later on a sequential one-pot multicomponent reaction methodology was established by reacting isothiocyanates with amidines and 2-chloroacetamidothiophenes to furnish final designed molecule with good yields.

So, herein we report, a versatile sequencial one pot multicomponent reaction leading to thiophenyl-thiazole carboxamides by reacting different amidines, isothiocyanates and substituted 2-chloroacetamido thiophenes to furnish in good to excellent yields (Scheme 3.1).

Scheme 3.1 A sequential one pot multicomponent synthesis of new thiophenyl-thiazole carboxamides

As an example of reaction, we started the reaction with phenyl isothiocyanate (1 mmol) and tetramethyl guanidine (1 mmol) in DMF. The reaction mixture was stirred for 2 hrs and formation of amidinothiurea was checked with TLC. After the formation of amidinothiourea, Ethyl 2-(2-chloroacetamido)-4, 5, 6, 7-tetrahydrobenzo[*b*]thiophene-3-carboxylate (1 mmol) in DMF was added and allowed to stir for another 6 hrs at room temperature. Completion of the reaction was checked by TLC which showed different spot then the starting materials. The reaction mixture was added into the cold water and the resulted solid was filtered and dissolved in ethyl acetate followed by drying over sodium sulfate. The organic layer was then concentrated under reduced pressure to give the crude compound which was further treated with diethyl ether and/or hexane to produce the pure light yellow solid (**PMCDP-1**). The structure of this compound was assigned with the help of LC-MS, ¹H-NMR and ¹³C-NMR spectroscopy. The mass spectrum of **PMCDP-1** displayed the molecular ion peak at m/z 471.1 (M+1) which confirm the molecular weight of the compound 470.14 calculated for C₂₃H₂₆N₄O₃S₂ (Figure 3.4).

Figure 3.4 LC-MS $(M+1)^+$ of **PMCDP-1**

Further the structure of the molecule was confirmed by ¹H NMR (400 MHz, DMSO- d_6), which gave the characteristic peak of all the hydrogen present. The amide proton –NH singlet came at 12.28 δ and the thaizole –NH proton came at 10.75 δ . The protons of ester methyl group (-CH₃) were observe as triplet at 1.28-1.32 δ due to presence of adjacent methylene group (-CH₂). The eight protons of four methylene group were found in the range 1.74-2.71 δ . The two methyl group protons of –N(CH₃) were found as singlet at 2.88 δ . The ester methylene group present at the 3rd position of thiophene gave a quartet at 4.27-4.32 δ . All the five aromatic protons were observed from 7.02-7.61 δ (Figure 3.5).

Figure 3.5 ¹H NMR of **PMCDP-1**

Further, the structure was confirmed by ¹³C NMR (400 MH_z in DMSO- d_6). The carbonyl carbon present in the ester group of thiophene is observed most downfield at 165.17 δ . The other carbonyl carbon of amide was observed at 163.65 δ . The carbon of methyl group present on ester of thiophene was observed most upfield at 14.12 δ . The four methylene group carbons of cyclohexane attached to thiophene was observed in the range

of 22-26 δ . And the two methyl group carbons present in $-N(Me)_2$ of thiazole was observed at 43.45 δ . All the aromatic carbon present on phenyl, thiophene and thiazole rings were observed in the range of 98-161 δ .

Figure 3.6 ¹³C NMR of **PMCDP-1**

As the established one-pot synthetic methodology was in hand, we synthesized 18 molecules with structural diversification in good to excellent yields (PMCDP-n, Table-1).

Table 3.1 Synthesis of thiophenyl-thiazole carboxamide derivatives

-								
No	Code	\mathbf{R}_1 \mathbf{R}_2		\mathbf{R}_1 \mathbf{R}_2 \mathbf{R}_3		R ₃	R ₄	R ₅
1	PMCDP-1	-(CH	[₂) ₄	-COOEt	-N(Me) ₂	C_6H_4		
2	PMCDP-2	-(CH	[₂) ₄	-COOEt	Me	4-MeC ₆ H ₄		
3	PMCDP-3	-(CH	[₂) ₄	-COOEt	4-MeC ₆ H ₄	4-MeC ₆ H ₄		
4	PMCDP-4	-(CH	[₂) ₄	-COOEt	4-MeC ₆ H ₄	4-OMe C ₆ H ₄		
5	PMCDP-5	-(CH	$(2)_4$	-COOEt	4-MeC ₆ H ₄	C ₆ H ₄		
6	PMCDP-6	-(CH	[₂) ₄	-COOEt	-N(Me) ₂	4-Me C ₆ H ₄		
7	PMCDP-7	-(CH	[₂) ₄	-COOEt	-N(Me) ₂	CH ₃ OCO		
8	PMCDP-8	-(CH ₂) ₄		-CN	-N(Me) ₂	C ₆ H ₄		
9	PMCDP-10	-(CH ₂) ₄		-CN	-N(Me) ₂	4-MeC ₆ H ₄		
10	PMCDP-11	-(CH	[₂) ₄	-CONH ₂	-N(Me) ₂	4-MeC ₆ H ₄		
11	PMCDP-12	-(CH ₂) ₄		-CONH ₂	4-MeC ₆ H ₄	C ₆ H ₄		
12	PMCDP-13	-(CH ₂) ₄		-CN	4-MeC ₆ H ₄	4-MeC ₆ H ₄		
13	PMCDP-14	-(CH ₂) ₄		-CN	4-MeC ₆ H ₄	4-OMeC ₆ H ₄		
14	PMCDP-19	-(CH ₂) ₄		-CONH ₂	4-MeC ₆ H ₄	4-MeC ₆ H ₄		
15	PMCDP-20	-(CH ₂) ₄		-CN	Me	4-MeC ₆ H ₄		
16	PMCDP-21	-COOMe Me		-COOEt	-N(Me) ₂	4-OMeC ₆ H ₄		
17	PMCDP-22	-COOMe Me		-COOEt	Me	4-MeC ₆ H ₄		
18	PMCDP-25	-COOMe Me		-COOEt	-N(Me) ₂	4-MeC ₆ H ₄		

3.3 Biological results and discussion

The binding affinities of the newly synthesized compounds were evaluated by measuring the displacement of selective radioligands which were previously bound to the receptor expressed [Chinese hamster ovary cells (CHO) for hA₁AR, hA_{2A}AR and hA₃AR] at the cellular surface. In this assay, the displacement of specific [³H]CCPA binding at hA₁AR, specific [³H]NECA binding at the hA_{2A}AR and [³H]HEMADO at the hA₃AR were evaluated. Due to the lack of a suitable radioligand for hA_{2B}AR, the antagonist activity was determined in adenylyl cyclase experiments in CHO cells expressing the hA_{2B}AR (Klotz et al. 1985; Klotz et al. 1997). Ki (dissociation constant) value of the data was calculated using Cheng and Prusoff equation (Yung-Chi & Prusoff 1973), with geometric means of at least three experiments including 95% confidence intervals.

All the compounds showed affinity towards A_1 , A_{2A} and A_3 adenosine receptor subtypes. To be more specific **PMCDP-3**, **PMCDP-4**, **PMCDP-12** and **PMCDP-19** showed good affinity towards A_1 , A_{2A} and A_3 adenosine receptor subtypes with the Ki values in low micromolar range (**Table-2**). The compound **PMCDP-12** showed relatively less (h A_1 /h A_3 =7 and h A_{2A} /h A_3 =10 fold) selectivity against adenosine receptors. The other three compounds **PMCDP-3**, **PMCDP-4** and **PMCDP-19** were more selective towards A_3 adenosine receptor. The compound **PMCDP-3** was $hA_1/hA_3=13$ and $hA_{2A}/hA_3=13$ fold selective and **PMCDP-4** was $hA_1/hA_3=19$ and $hA_{2A}/hA_3=19$ fold selective, which was good. The most active compound **PMCDP-19** was found to be $hA_1/hA_3=>90$ and $hA_{2A}/hA_3=>90$ fold selective. Presence of phenyl or p-tolyl group on the 4th position of thiazole ring was found to be optimum for good activity for this series of compounds (Table 3.2).

Table 3.2 Binding affinity of synthesized molecules

N	C	Ki in µM at 95 % Confidence Limits				Selec	ctivity
	No Compound	hA ₁ ^a	hA _{2A} ^b	\mathbf{hA}_{2B}^{d}	hA ₃ ^c	hA ₁ /hA ₃	hA _{2A} /hA ₃
1	PMCDP-1	40	6.4	>10	4.1	9.75	1.56
2	PMCDP-2	>30	>30	>10	8.2	>3.65	>3.65
3	PMCDP-3	>30	>30	>10	2.2	>13.63	>13.63
4	PMCDP-4	>10	>10	>10	0.52	>19.23	>19.23
5	PMCDP-5	7.7	28.4	>10	4.1	1.87	6.92
6	PMCDP-6	23.5	18	>10	4.7	5	3.82
7	PMCDP-7	>100	>100	>10	>30	>3.33	>3.33
8	PMCDP-8	>30	>30	>10	35.6	>0.84	>0.84
9	PMCDP-10	>100	>10	>10	34	>2.94	>0.2941
10	PMCDP-11	32.4	22.3	>10	7.1	4.56	3.14
11	PMCDP-12	2.3	3.4	>10	0.33	6.96	10.30
12	PMCDP-13	>10	>10	>10	>10	>1	>1
13	PMCDP-14	>30	>30	>10	9.5	>9.15	>1.05
14	PMCDP-19	>30	>10	>10	0.33	>90	>90
15	PMCDP-20	>30	5.6	>10	3.9	>7.69	1.43
16	PMCDP-21	14	9.6	>10	2.7	5.18	3.55
17	PMCDP-22	>30	>30	>10	>30	>1	>0.33
18	PMCDP-25	19	26.6	>10	3.9	4.87	6.82

Data are expressed as geometric means with 95% confidence limits.

^aDisplacement of specific [3 H]CCPA binding at human A₁ receptors expressed in CHO cells.

^bDisplacement of specific [³H]NECA binding at human A_{2A} receptors expressed in CHO cells.

^dInhibition of NECA-stimulated adenylyl cyclase activity at human A_{2B} receptors expressed in CHO cells.

3.4 Conclusion

In conclusion, we have designed new series of thiophenyl-thiazole carboxamides as adenosine receptor antagonists, which was further validated with the docking study. The designed molecules were synthesized using newly developed one pot synthesis. All the compounds were investigated for their radio ligand binding assay in adenosine receptors. The compounds were found to have good affinity towards adenosine receptors. Particularly the compounds were active against A_3 adenosine receptor with high selectivity.

3.5 Experimental

Melting points were recorded on scientific melting point apparatus (Veego; Model: VMP-DS) and are uncorrected. The ¹H NMR spectra were recorded on Bruker NMR spectrometer (400 MHz) using TMS as an internal standard and ¹³C NMR spectra were recorded on Bruker NMR spectrometer at 75 MHz. Proton chemical shifts are expressed in ppm relative to internal tetramethylsilane. Mass spectra were recorded on Perkin Elmer Sciex API 165. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. IUPAC name of the compounds were generated using Cambridge soft ChemBioDraw ultra 12.0. Preparation of starting material amidinothiourea was carried out using the procedure described in the literatures (Rajappa, Sudarsanam & Yadav 1982; Rajappa, Sudarsanam, Advani, et al. 1982; Rajasekharan et al. 1986; Franklin et al. 2008). The molecular docking study was carried out in the flexidock tool available in software SYBYL 6.9.1.

3.5.1 Protocol for molecular docking study

The molecular docking study of our designed molecule and reference molecule with A_{2A} adenosine receptor was carried out by FlexiDock tool available in the SYBYL 6.9.1. The ligands were drawn using the SKETCH module available in the SYBYL 6.9.1. The

^c Displacement of specific [³H]HEMADO binding at human A₃ receptors expressed in CHO cells.

molecules were given Gasteigere-Huckel charges and minimized to a minimum energy conformation. The A2A adenosine receptor was downloaded from protein data bank (PDB ID: 3EML). The protein was already having a bound ligand, so that ligand was extracted and that site was taken as binding site. Flexible docking was facilitated through the FlexiDock utility in the Biopolymer module of SYBYL 6.9.1. During flexible docking, the ligand and the side chains of hydrophilic amino acids in the putative binding site were defined as rotatable bonds. After the hydrogen atoms were added to the receptor, atomic charges were recalculated by using Kollman All-atom for the protein and Gasteigere-Huckel for the ligand. H-bonding sites were marked for all residues in the active site and ligands with H-bond donor or acceptor. Ligands were pre-positioned in the putative binding cavity guided by several superimposition results. Default FlexiDock parameters were set at 3000-generations for genetic algorithms. To increase the binding interaction, the torsion angles of the side chains within 5 Å of the ligands were manually adjusted from the results of FlexiDock. Finally, the complexes were minimized by using the powell method with a fixed dielectric constant (4.0), until the conjugate gradient reached $0.001 \text{ kcal mol}^{-1}\text{A}^{-1}$.

Solution of aryl amines (0.0392 mole), triethylamine (0.129 mole) in THF (25 mL) was cooled to 0-5 °C. To the cold reaction mixture carbon disulfide (0.0431 mole) was added dropwise through addition funnel within 1h. The reaction mixture was allowed to stir at room temperature for 15-18h. Completion of dithiocarbamate salt formation was checked by TLC (MeOH: Hexane: Ethyl acetate- 0.5:3:1.5). The dithiocarbamate salt was filtered and washed with hexane (2 x 25 mL).

The air dried dithiocarbamate salt was dissolved in chloroform (40 mL) and triethyl amine (0.0392) was added to the reaction mixture. After stirring at 0-5 °C for 10 min,

ethyl chloroformate (0.047) was added to the reaction mixture and allowed to stir at room temperature for 1.5 h. To the reaction mixture 3M HCl was added and stirred for 10 min. Chloroform layer was separated and washed with 3 x 50 ml of water. The chloroform layer was dried over anhydrous sodium sulfate, and evaporated to give isothiocyanates. In case of impure isothiocyanates, it was purified by column chromatography using hexane as a mobile phase.

3.5.2.1 Synthesis of Phenyl isothiocyanate (1a)

Phenyl isothiocyanate was synthesized using the procedure as described in 3.5.2 by the reaction of aniline, carbon disulfide and ethyl chloroformate to afford the title compound as light yellow solid. Yield: 76.0%, bp 221-222°C, Rf: 0.77, MW: 135.19; LC-MS found (m/z): 136.1 $(M+1)^+$.

3.5.2.2 Synthesis of 4-Methyl phenyl isothiocyanate(1b)

4-Methyl phenyl isothiocyanate was synthesized using the procedure as described in 3.5.2 by the reaction of p-toluidine, carbon disulfide and ethyl chloroformate to afford the title compound as light yellow semi solid. Yield: 39%, mp $25-26^{0}$ C, Rf = 0.62 (Dichloromethane) MW: 149.21; LC-MS found (m/z): 150.1 (M+1)⁺.

3.5.2.3 Synthesis of 4-Methoxy phenyl isothiocyanate(1c)

4-Methoxy phenyl isothiocyanate was synthesized using the procedure as described in 3.5.2 by the reaction of 4-methoxy aniline, carbon disulfide and ethyl chloroformate to afford the title compound as light yellow semi solid. Yield: 69.0%, mp 18-19⁰C, Rf: 0.60, MW: 165.21; LC-MS found (m/z): 166.1 (M+1)⁺.

3.5.2.4 Synthesis of Methoxy carbonyl isothiocyanate(1d)

To a 50% aqueous solution of potassium thiocyanate (17.58gm, 0.2 moles) 0.736ml of quinoline was added. Then methyl chloroformate (20gm, 0.184 moles) was added drop wise with stirring at 8-12 °C, which was continued at same temperature for 7.5 hours. Then 12ml of petroleum ether and 22ml of water (both chilled to 2-4°C) were added followed by 0.6ml chilled concentrated hydrochloric acid to remove quinoline. Care was taken to maintain the temperature between 8-10 °C during the separation of the layers. The organic layer was dried over with sodium sulfate and distilled under vacuum to yield

(14gm, 0.107 moles, 58 %) methoxy carbonyl isothiocyanate as colourless, strong lachrymatory liquid.

3.5.3 Procedure for the synthesis of acetamidine and benzamidine

3.5.3.1 Synthesis of N,N-Diethyl acetamidine(2a) [CAS 14277-06-6]

37.12 g (0.9 mole) of acetonitrile was cooled to 10^{9} C and 60 g of anhydrous aluminium chloride was added during the course of 30 min, maintaining the temperature between 10^{9} C and 30^{9} C. Then 33.44g (0.45 mole) of diethylamine was added rapidly with cooling in 20 min; the internal temperature was raised to $60-70^{9}$ C. Later, the reaction mixture was cooled to 10^{9} C, and another lot of 60 g of anhydrous aluminium chloride was added, followed by 33.44(0.45 mole) g of diethyl amine as before. The inside temperature was maintained at 120^{9} C for 30 min. and then at $140-145^{9}$ C for 1 hr. The mixture was cooled to 70^{9} C and poured into ice with stirring, the temp not being allowed to rise above 15^{9} C. Then 400 mL of dichloromethane was added, followed by slow addition of a solution of 162 g sodium hydroxide in 400 mL of water. After stirring for 15 min, the dichloromethane layer was separated. The aqueous layer was again extracted with another 400 mL. of dichloromethane. The dichloromethane extracts were combined, dried over anhydrous sodium sulfate, and the solvent distilled off. The residual *N*,*N*-diethyl acetamidine was vacuum-distilled. B.P.50-55⁰C/ 5-6 mm Hg.

3.5.3.2 Synthesis of N,N-Diethyl 4-methylbenzamidines(2b)

30 g of 4-methyl benzonitrile was cooled to 10° C and 21.5 g of anhydrous aluminum chloride added during the course of 30 min, maintaining the temperature between 10° and

 30° C. Then 11.77g of diethylamine was added rapidly with cooling in 20 min; the internal temperature raise to 60-70°C. Later, the reaction mixture was cooled to 10°C, and another lot of 21.5 g of anhydrous aluminum chloride was added, followed by 11.77 g of diethyl amine as before. The inside temp was maintained at 120°C for 30 min. and then at 140-145°C for 1h. The mixture was cooled to 70°C and poured on ice with stirring, the temp not being allowed to rise above 15°C. Then 200 mL of dichloromethane was added, followed by slow addition of a solution of 38.64 g sodium hydroxide in 200 mL of water. After stirring for 15 min the dichloromethane layer was separated. The aqueous layer was again extracted with another 200 mL of dichloromethane. The dichloromethane extracts were combined, dried over anhydrous sodium sulfate, and the solvent distilled off. The residual N, N-Diethyl 4-methyl benzamidine was vacuum-distilled. B.P. 100-105⁰C/ 5-6 mm Hg.

3.5.4 General procedure for the synthesis of substituted 2-Amino thiophenes (Huang & Dömling 2011)

An equimolar (5 mmol) mixture of powdered sulfur and morpholine was stirred until total dissolution of the sulfur. The reaction is cooled to $0-10^{0}$ C. Then active methylene nitrile(5 mmol) and the ketone (5 mmol) were added to the reaction mixture and the reaction was stirred at room temperature for the time 5-7 hrs. After completion of the reaction, as monitored by TLC, the reaction mixture was poured into ice cold water to get solid. This solid was filtered, dried and recrystallized from methanol to give pure 2-aminothiophenes.

3.5.4.1 Synthesis of ethyl 2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3carboxylate(3a) [CAS :4506-71-2]

It was synthesized using the procedure as described in 3.5.4 by the reaction of cyclohexanone, ethyl cyanoacetate, sulphur and morpholine to afford the title compound as light yellow solid. Yield: 75 %, mp. 112-113 °C, M. W. = 225.08, LC-MS found (m/z): 226.1 (M+1)⁺.

3.5.4.2 Synthesis of 2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile(3b) [CAS :4651-91-6]

It was synthesized using the procedure as described in 3.5.4 by the reaction of cyclohexanone, malononitrile, sulphur and morpholine to afford the title compound as White solid. Yield: 79 %, mp. 151-153 °C.M.W.= 178.25, LC-MS (m/z): 179.2 (M+1).

3.5.4.3 Synthesis of 2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide(3c) [CAS :4815-28-5]

It was synthesized using the procedure as described in 3.5.4 by the reaction of cyclohexanone, cyanoacetamide, sulphur and morpholine to afford the title compound as light yellow solid. Yield: 70 %, mp. 195-197 °C M.W. = 196.30; LC-MS (m/z): 197.2 (M+1).

3.5.4.4 4-Ethyl 2-methyl 5-amino-3-methylthiophene-2,4-dicarboxylate (3D)

It was synthesized using the procedure as described in 3.5.4 by the reaction of methylacetoacetate, ethylcyanoacetate, sulphur and morpholine to afford the title compound as light yellow solid. Yield: 80 %, mp. 115-116 °C M.W. = 243.4; LC-MS (m/z): 245.6 (M+1).

3.5.4.5 2-Amino-5-methylthiophene-3-carbonitrile (3E)[138564-58-6]

It was synthesized using the procedure as described in 3.5.4 by the reaction of acetone, malononitrile, sulphur and morpholine to afford the title compound as light yellow solid. Yield: 63 %. It was directly used for the next step.

3.5.4.6 2-Amino-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydrobenzo[b]thiophene-3carboxamide (3F)

It was synthesized using the procedure as described in 3.5.4 by the reaction of dimedone, malononitrile, sulphur and morpholine to afford the title compound as light yellow solid. Yield: 52 %. It was directly used for the next step.

3.5.5 General procedure for the synthesis of substituted 2-Chloroacetamido thiophene

Substituted 2-amino thiophene (1 mmol) is dissolved into the dichloromethane (10 ml). To this triethyl amine (2.2 mmol) is added. The reaction is cooled to 0 0 C and stirred for 10 minutes. While maintaining the temperature, chloroacetyl chloride (1.1 mmol)

suspended in dichloromethane (5 ml) is added dropwise in 15 minutes. The reaction mixture is stirred at room temperature for 4 hrs. The completion of the reaction is checked by TLC. The reaction mixture is poured into the ice cold water and the layers are separated. The organic layer is washed with water (3 X 25). The organic layer is dried over anhydrous sodium sulfate, and then distilled off under reduced pressure to give crude 2-chloracetamido thiophene.

3.5.5.1 Ethyl 2-(2-chloroacetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3carboxylate (B1)[CAS 60442-41-3]

This intermediate was prepared using the procedure described in 3.5.5 using 3a and chloroacetyl chloride to give light brown solid. M.W. 301.7, LC-MS (m/z): 302.20 (M+1).

3.5.5.2 2-(2-Chloroacetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (B2)

This intermediate was prepared using the procedure described in 3.5.5 using **3b** and chloroacetyl chloride to give brownish white solid. M.W. 254.7, LC-MS (m/z): 255.3 (M+1).

3.5.5.3 2-(2-Chloroacetamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide (B3)

This intermediate was prepared using the procedure described in 3.5.5 using **3C** and chloroacetyl chloride to give light yellow solid. M.W. 272.7, LC-MS (m/z): 273.4 (M+1).

3.5.5.4 4-Ethyl 2-methyl 5-(2-chloroacetamido)-3-methylthiophene-2,4-dicarboxylate (B4)

This intermediate was prepared using the procedure described in 3.5.5 using **3D** and chloroacetyl chloride to give light yellow solid. LC-MS (m/z): 320.5 (M+1).

3.5.5.5 2-Chloro-N-(3-cyano-5-methylthiophen-2-yl)acetamide (B5)

This intermediate was prepared using the procedure described in 3.5.5 using **3E** and chloroacetyl chloride to give light yellow solid.

3.5.5.6 2-(2-Chloroacetamido)-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydrobenzo[b] thiophene-3-carboxamides (B6)

This intermediate was prepared using the procedure described in 3.5.5 using **3E** and chloroacetyl chloride to give white solid.

3.5.6 General procedure for the synthesis of the synthesis of Thiophene-2-yl thiazole carboxamides

To a hot air dried round bottomed flask, containing a solution of isothiocyanate (2.0 mmol) in DMF (5 mL), amidine/guanidine (2.0 mmol) was added at 20–25 ^oC and the solution was stirred for 2–3 h. To the above solution, 2-chloroacetamido thiophene compound (2.0 mmol) in DMF (5 mL) was added at ambient temperature and the reaction was further stirred for 6-8 h with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice cold water. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to yield pure solid compounds. The structures of compounds (**PMCDP-n**) were assigned with the help of NMR and mass spectra.

PMCDP-1: Ethyl 2-(4-(dimethylamino)-2-(phenylamino)thiazole-5-carboxamido)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 59%, yellow solid, mp : 202-205 0 C, Molecular formula: C₂₃H₂₆N₄O₃S₂, LC-MS calculated: 470.6, found: 471.3(M+1)⁺,¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.28-1.32(t, 3H), 1.71(s, 4H), 2.58(s, 2H), 2.71(s, 2H), 2.88(s, 6H), 4.27-4.32(q, 4H), 7.02(t, 1H), 7.33(t, 2H), 7.59(d, 2H), 10.75(s, 1H), 12.28(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ :

14.12, 22.31, 22.46, 22.67, 43.54, 59.93, 98.81, 110.23, 118.08, 122.73, 125.36, 129.08, 130.10, 139.87, 147.00, 157.45, 161.71, 163.65, 165.17

PMCDP-2: Ethyl 2-(4-methyl-2-(p-tolylamino)thiazole-5-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 63%, buff solid, mp: 220-223 ⁰C, **Molecular formula:** $C_{23}H_{25}N_3O_3S_2$, LC-MS calculated: 455.6, found: 476.6(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.29(t, 3H), 1.71(s, 4H), 2.26(s, 3H), 2.60(s, 3H), 2.60(s, 2H), 2.70(s, 2H), 4.26(q, 2H), 7.14(d, 2H), 7.46(d, 2H), 7.59(d, 2h), 10.61(s, 1H), 11.45(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 14.04, 17.62, 20.33, 22.22, 22.40, 23.64, 25.79, 60.44, 110.88, 118.23, 126.12, 129.47, 130.35, 131.84, 137.48, 146.76, 157.71, 165.75.

PMCDP-3: Ethyl 2-(4-(p-tolyl)-2-(p-tolylamino)thiazole-5-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 72%, white solid, mp: 231-234 ⁰C, **Molecular formula:** C₂₉H₂₉N₃O₃S₂, LC-MS calculated: 531.7, found: 532.4(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.16(t, 3H), 1.68(s, 4H), 2.26(s, 3H), 2.34(s, 3H), 2.57(s, 2H), 2.63(s, 2H), 3.99(q, 2H),7.14(d, 2H), 7.24(d, 2H), 7.48(q, 4h), 10.68(s, 1H), 11.07(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ: 13.99, 20.33, 20.87, 22.18, 22.37, 23.62, 25.69, 54.81, 59.95, 111.10, 113.30, 118.13, 126.23, 129.09, 129.21, 129.49, 130.35, 130.69 131.75, 137.58, 139.08, 145.79, 154.75, 157.65, 164.27, 164.61.

PMCDP-4:Ethyl2-(2-((4-methoxyphenyl)amino)-4-(p-tolyl)thiazole-5-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate

Yield: 70%, white solid, mp: 225-228 0 C, **Molecular formula:** C₂₉H₂₉N₃O₄S₂, LC-MS calculated: 547.5, found: 548.1(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.17(t, 3H), 1.67(d, 4H), 2.34(s, 3H), 2.55(s, 2H), 2.62(s, 2H), 3.72(s, 3H), 4.00(q, 2H), 6.92(d, 2H), 7.22(d, 2H), 7.50(d, 4H), 10.60(s, 1H), 11.02(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 14.10, 20.39, 20.87, 22.20, 22.42, 23.59, 25.71, 55.18, 60.13, 110.12, 114.31, 118.21, 126.23, 128.99, 129.33, 129.53, 130.33, 130.73, 131.78, 137.62, 139.18, 145.82, 154.83, 157.68, 164.37, 164.70.

PMCDP-5: Ethyl 2-(2-(phenylamino)-4-(p-tolyl)thiazole-5-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 76%, off white solid, mp: 235-237 0 C, **Molecular formula:** C₂₈H₂₇N₃O₃S₂, LC-MS calculated: 517.00, found: 518.6(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.18(t, 3H), 1.70(d, 4H), 2.38(s, 3H), 2.58(s, 2H), 2.65(s, 2H), 4.00(q, 2H), 7.03(t, 1H), 7.27(d, 2H), 7.34(t, 2H), 7.54(d, 2H) 7.64(d, 2H) 10.81(s, 1H), 11.12(s, 1H).

PMCDP-6: Ethyl 2-(4-(dimethylamino)-2-(p-tolylamino)thiazole-5-carboxamido)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 65%, off white solid, mp: 218-221 ⁰C, **Molecular formula:** C₂₄H₂₈N₄O₃S₂, LC-MS calculated: 484.63, found: 485.3(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.28(t, 3H), 1.71(d, 4H), 2.26(s, 3H), 2.57(s, 2H), 2.71(s, 2H), 2.87(s, 6H), 4.26(q, 2H), 7.15(d, 2H), 7.45(d, 2H), 10.67(s, 1H), 12.25(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ: 14.12, 20.32, 22.36, 22.45, 23.66, 25.91, 59.91, 98.36, 110.16, 118.37, 125.32, 129.49, 130.08, 131.97, 137.36, 147.03, 157.45, 161.88, 163.95, 165.19

PMCDP-7: Ethyl 2-(4-(dimethylamino)-2-((methoxycarbonyl)amino)thiazole-5carboxamido)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 55%, white solid, **Molecular formula:** $C_{19}H_{24}N_4O_5S_2$, LC-MS calculated: 452.5, found: 453.7(M+1)⁺,¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.35(t, 3H), 1.78(t, 4H), 2.65(s, 2H), 2.78(s, 2H), 2.88(s, 6H), 3.88(s 3H), 4.30(q, 2H), 8.33(s, 1H), 12.67(s, 1H).

PMCDP-8: *N*-(3-Cyano-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-4-(dimethylamino) -2-(phenylamino)thiazole-5-carboxamide

Yield: 60%, white solid, mp: 220-222 ⁰C, **Molecular formula:** $C_{21}H_{21}N_5OS_2$, LC-MS calculated: 423.3, found: 454.4(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.75(s, 4H), 2.59(s, 2H), 2.72(s, 2H), 2.88(s, 6H), 7.04(t, 1H), 7.35(t, 2H), 7.60(d, 2H), 10.85(s, 1H), 12.21(s, 1H).

PMCDP-10:*N*-(3-Cyano-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-4-(dimethylamino) -2- (p-tolylamino)thiazole-5-carboxamide

Yield: 60%, white solid, **Molecular formula:** C₂₂H₂₃N₅OS₂, LC-MS calculated: 437.6, found: 438.7(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.76(s, 4H), 2.59(s, 2H), 2.73(s, 2H), 2.87(s, 6H), 7.17(d, 2H), 7.46(d, 2H), 10.76(s, 1H), 12.20(s, 1H).

PMCDP-11: *N*-(3-Carbamoyl-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-4-(dimethylamino)-2-(p-tolylamino)thiazole-5-carboxamide

Yield: 62%, Light yellow solid, mp: 175-180 0 C, Molecular formula: C₂₂H₂₅N₅O₂S₂, LC-MS calculated: 455.3, found: 456.3(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.77(s, 4H), 2.28(s, 3H), 2.62(s, 2H), 2.72(s, 2H), 2.92(s, 6H), 6.80(d, 1H-NH₂), 7.11(d, 2H), 7.46(d, 2H), 10.48(s, 1H), 12.49(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 13.95, 20.39, 22.63, 22.52, 23.84, 25.34, 59.61, 98.47, 114.77, 118.12, 125.21, 128.42, 129.25, 131.54, 137.53, 143.19, 157.46, 161.21, 163.65, 167.41

Chapter 3

PMCDP-12: N-(3-Carbamoyl-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-2-

(phenylamino)-4-(p-tolyl)thiazole-5-carboxamide

Yield: 80%, Yellow solid, mp: 237-240 ⁰C, **Molecular formula:** C₂₆H₂₄N₄O₂S₂, LC-MS calculated: 488.1, found: 489.6(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.76(s, 4H), 2.38(s, 3H), 2.62(s, 2H), 2.68(s, 2H), 3.41(s, 2H, -NH₂), 6.97(t, 1H), 7.19(d, 2H), 7.28(d, 2H), 7.60-7.66(m, 4H), 10.55(s, 1H), 12.19(s, 1H). ¹³C NMR (400 MHz, DMSO- *d*₆) δ: 13.92, 20.62, 22.40, 22.52, 23.89, 25.35, 59.63, 113.20, 114.97, 117.67, 122.11, 126.26, 128.41, 129.17, 131.04, 133.46, 138.45, 140.18, 143.36, 154.51, 157.51, 163.19, 167.29.

PMCDP-13: *N*-(3-Cyano-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-4-(p-tolyl)-2-(p-tolylamino)thiazole-5-carboxamide

Yield: 75%, White solid, **Molecular formula:** $C_{27}H_{24}N_4OS_2$. LC-MS calculated: 484.7, found: 485.4(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.77(s, 4H), 2.29(s, 3H), 2.40(s, 3H), 2.66(s, 2H), 2.68(s, 2H), 7.14(d, 2H), 7.24(d, 2H), 7.48(q, 4H), 10.70(s, 1H), 11.67(s, 1H).
PMCDP-14: N-(3-Cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-2-((p-

methoxyphenyl)amino)-4-(p-tolyl)thiazole-5-carboxamide

Yield: 75%, White solid, **Molecular formula:** $C_{27}H_{24}N_4O_2S_2$, LC-MS calculated: 500.13, found: 501.3(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.67(d, 4H), 2.34(s, 3H), 2.55(s, 2H), 2.62(s, 2H), 3.72(s, 3H), 6.90(d, 2H), 7.21(d, 2H), 7.48(d, 4H), 10.54(s, 1H), 11.78(s, 1H).

PMCDP-19: *N*-(3-Carbamoyl-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-4-(p-tolyl)-2-(p-tolylamino)thiazole-5-carboxamide

Yield: 73%, Yellow solid, mp: 241-244 ⁰C, **Molecular formula:** C₂₇H₂₆N₄O₂S₂, LC-MS calculated: 502.6, found: 503.4(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.75(s, 4H), 2.28(s, 3H), 2.37(s, 3H), 2.62(s, 2H), 2.68(s, 2H), 6.76(d, 1H-NH₂), 7.11(d, 2H), 7.19(d, 2H), 7.50(d, 2H), 7.58(d, 2H), 10.51(s, 1H), 12.12(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ: 14.02, 20.41, 21.04, 22.40, 23.87, 25.26, 112.79, 115.19, 117.95, 126.11, 128.57, 129.17, 129.28, 131.08, 131.39, 137.74, 138.44, 143.11, 154.58, 157.45, 163.46, 167.24.

PMCDP-20: *N*-(3-Carbamoyl-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-4-methyl-2-(p-tolylamino)thiazole-5-carboxamide

Yield: 73%, White solid, **Molecular formula:** $C_{21}H_{22}N_4O_2S_2$, LC-MS calculated: 426.5, found: 427.4(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.80(s, 4H), 2.28(s, 3H), 2.52(d, 2H) 2.58(s, 3H), 2.61(s, 2H), 7.12(d, 2H), 7.46(d, 2H), 10.47(s, 1H), 10.82(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 17.78, 20.40, 21.73, 22.65, 23.49, 23.58, 95.06, 111.31, 114.25, 118.13, 127.99, 129.29, 130.80, 131.54, 137.67, 146.55, 156.47, 159.43, 164.56. PMCDP-21: 4-Ethyl 2-methyl 5-(4-(dimethylamino)-2-((4-methoxyphenyl)amino) thiazole-5-carboxamido)-3-methylthiophene-2,4-dicarboxylate

Yield: 66%, White solid, **Molecular formula:** C₂₃H₂₆N₄O₆S₂, LC-MS calculated: 502.6, found: 503.4(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.36(t, 3H), 2.68(s, 3H), 2.94(s, 6H), 3.76(s, 6H, 2x-CH₃), 4.33(q, 2H), 6.89(d, 2H), 7.50(d, 2H), 10.57(s, 1H), 12.53(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ: 13.97, 15.18, 43.40, 51.26, 55.03, 60.38, 112.73, 114.05, 115.37, 120.24 132.96, 144.03, 152.63, 155.27, 158.02, 162.62, 163.18, 164.90, 165.04.

Yield: 70%, White solid, mp: >250 0 C, Molecular formula: C₂₂H₂₃N₃O₅S₂, LC-MS calculated: 473.3, found: 474.6(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.36(t, 3H), 2.29(s, 3H), 2.64(s, 3H), 2.71(s, 3H), 3.80(s, 3H), 4.35(q, 2H), 7.14(d, 2H), 7.48(d, 2H), 10.68(s, 1H), 11.74(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 13.97, 15.18, 43.40, 51.26, 55.03, 60.38, 112.73, 114.05, 115.37, 120.24 132.96, 144.03, 152.63, 155.27, 158.02, 162.62, 163.18, 164.90, 165.04.

PMCDP-25: 4-Ethyl 2-methyl 5-(4-(dimethylamino)-2-(p-tolylamino)thiazole-5carboxamido)-3-methylthiophene-2,4-dicarboxylate

Yield: 73%, Yellow solid, **Molecular formula:** $C_{23}H_{26}N_4O_5S_2$, LC-MS calculated: 502.6, found: 503.5(M+1)⁺, ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.33(t, 3H), 2.28(s, 3H), 2.92(s, 6H), 3.78(s, 3H), 4.33(q, 2H), 7.17(d, 2H), 7.47(d, 2H), 10.80(s, 1H), 12.47(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 14.05, 15.23, 43.48, 51.30, 53.73, 60.20, 113.33, 114.50, 115.49, 121.44 133.26, 143.58, 152, 154.24, 158.12, 162, 163.29, 164.90, 165.33.

3.5.7 Method used for pharmacological evaluation

All pharmacological methods followed the procedures as described earlier. In brief, membranes for radioligand binding were prepared from CHO cells stably transfected with human adenosine receptor subtypes in a two-step procedure. In a first low speed step (1000 x g) cell fragments and nuclei were removed. The crude membrane fraction was sedimented from the supernatant at 100,000 x g. The membrane pellet was resuspended in the buffer used for the respective binding experiments, frozen in liquid nitrogen and stored at -80 $^{\circ}$ C. For the measurement of adenylyl cyclase activity only one high speed centrifugation of the homogenate was used. The resulting crude membrane pellet was resuspended in 50 mM Tris/HCl, pH 7.4 and immediately used for the cyclase assay. For radioligand binding 1 nM [³H]CCPA at A₁AR, 30 nM [³H]NECA at A_{2A}AR, 1 nM [³H]HEMADO were used. Non-specific binding of [³H]CCPA was determined in the

presence of 1mM theophylline, in the case of $[{}^{3}H]NECA$ and $[{}^{3}H]HEMADO$ 100 μ M R-PIA was used. Ki-values from competition experiments were calculated with the program SCTFIT (De Lean et al. 1982). Inhibition of NECA-stimulated adenylyl cyclase activity was determined as a measurement of affinity of compounds. EC50-values from these experiments were converted to Ki-values with the Cheng and Prusoff equation.

Note: All the biological assays were carried out in collaboration with Prof. Karl-Norbert Klotz, Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany. The biological assays were performed as per the standard protocols published by Prof. Klotz (**Ref. pg 36**).

Supporting Information (General Reaction Mechanism, LC-MS, ¹H-NMR and ¹³C NMR of representative compounds)

2 R² ΗN $R^1 - N^{\Theta}$ S R³ S H ۲۲ 5 3 6 1 1+2 intemediate R² -HX -HNEt₂ R¹_N R^1 R 7 н

General Reaction Mechanism for the formation of Thiazole

¹H NMR spectrum of PMCDP-5

56

T

Ó

¹³C NMR spectrum of PMCDP-5

70 160

130 120

110 100

¹³C NMR spectrum of PMCDP-6

CHAPTER-4

Design, synthesis and biological evaluation of N-cycloamino/disubstituted/diamino thiazoles coupled with thiophenes as adenosine receptor ligands

PAGE NO. 59 TO 82

Design, synthesis and biological evaluation of N-cycloamino/disubstituted/diamino thiazoles coupled with thiophenes as adenosine receptor ligands

4.1 Introduction

In continuation of our work on thiophenyl-thiazole carboxamides from chaper-3, here we have synthesized and evaluated new thiophenyl-thiazole carboxamides as adenosine receptor ligands. In the previous chapter the molecules were potentially active and the biological activity discussion of previous chapter suggested that the activity may be due to different group present on thiazole ring, so here we have modified the molecules to come up with better biological results.

Figure 4.1 Design of molecule *N*-cycloamino/disubstituted/diamino thiazoles coupled with thiophenes

Previous reports from our group suggested that 2-cyclicamino group at the 2nd position of thiazole ring resulted into good adenosine receptor ligands (Inamdar 2007; Pandya 2011). So keeping in mind the previous results, here we have designed, synthesized and tested three different set of thiophenyl-thiazolyl carboxamides. In one set, we have replaced

arylamino group of 2^{th} position of thiazole with *N*-cyclicamino group, in second set we have coupled thiophenes with disubstituted thiazoles and in third set of molecules diamino substituted thiazoles are coupled with thiophenes (Figure 4.1).

4.2 Present work

Present work describes the design of the three different kind of thiazoles coupled with thiophenes. We were majorly interested in the modification of the thiazole moity, as it is found to be active against adenosine receptors (Cole et al. 2009; Scheiff et al. 2010; Inamdar et al. 2013).

The synthesis of *N*-cyclicaminothiazoles coupled with thiophenes was achieved by reacting various *N*-cyclicamino carbanothioyl arylamides with 2-chloroacetamido thiophenes at room temperature (Scheme 4.1). The *N*-cyclicamino carbanothioyl arylamide was synthesized by the reaction of aroyl isothiocynate with secondary amines. The synthesis of disubstituted thiazoles coupled with thiophenes was achieved by reacting monosubstituted thiourea with *N*,*N*-Dimethyl formamide dimethyl acetal (DMF-DMA) followed by addition of 2-chloroacetamido thiophene (Scheme 4.2). The synthesis of diamino substituted thiazoles coupled with thiophenes was achieved by reacting guanidinothiourea with 2-chloroacetamido thiophene (Scheme 4.3). All the compounds (**PMCDP-n**) were synthesized with good yields and they were confirmed by mass and NMRs.

Scheme 4.1 Synthetic scheme for N-cyclicamino thiazoles coupled with thiophenes

Scheme 4.3 Synthetic scheme for diamino thiazoles coupled with thiophenes

As an example, the reaction of *N*-phenyl thiourea with DMF-DMA was done to furnish *(E)-N,N*-dimethyl-*N'*-(phenylcarbamothioyl) formimidamide. This formimidamide intermediate (1 mmol) was further reacted with Ethyl 2-(2-chloroacetamido)-4, 5, 6, 7-tetrahydrobenzo[*b*]thiophene-3-carboxylate (1 mmol) in DMF at room temperature which resulted into **PMCDP-16** with good yields. It was further confirmed by LC-MS (M+), ¹H NMR and ¹³C NMR. The mass spectrum of **PMCDP-16** (Figure 4.2) displayed the molecular ion peak at m/z 428.1(M+1) which confirm the molecular weight of the compound 427.5 calculated for C₂₁H₂₁N₃O₃S₂.

Figure 4.2 LC-MS (M+1)⁺ of **PMCDP-16**

The structure of the molecule was further confirmed by ¹H NMR (500 MHz, CDCl₃), which gave the characteristic peak of all the hydrogens present. The amide proton -NH singlet came at 12.02 δ and the thaizole -NH singlet proton came at 8.20 δ . The protons of ester methyl group (-CH₃) was observe at 1.41-1.44 δ and splited into triplet due to presence of adjacent methylene group(-CH₂). The eight protons of four methylene group were found in the range 1.82-2.81 δ . The two protons of ester methylene group were found at 4.37-4.41 with quartet. All the five aromatic protons of phenyl ring were observed from 7.18-7.86 δ and singlet hydrogen of thiazole was observed at 7.97 δ (Figure-4.3).

Figure 4.3 ¹H NMR of PMCDP-16

62

Further, the structure of the molecule was confirmed by 13 C NMR (500 MH_Z in CDCl₃). The carbonyl carbon present in the ester group of thiophene is observed most downfield at 166.94 δ . The other carbonyl carbon of amide was observed at 157.48 δ . The carbon of methyl group present on ester of thiophene was observed most upfield at 14.137 δ . The four methylene group carbons of cyclohexane attached to thiophene was observed in the range of 22-26 δ . The methylene group carbon of ester was observed at 60.62. All the aromatic carbon present on phenyl, thiophene and thiazole rings were observed in the range of 98-147 δ (Figure 4.4).

Figure 4.4 ¹³C NMR of PMCDP-16

After establishing the synthetic methodology, we synthesized library of compounds with structural divercification (PMCDP-n, Table 4.1).

Table 4.1 Synthesis of N-cycloamino/disubstituted/diamino thiazoles coupled with

110. 1-10	No.	1-	10
-----------	-----	----	----

No	Name	R ₁	R ₂	R ₃	R ₄	R 5
1	PMCDP-16	-(CH ₂) ₄ -		-COOEt	-H	Ph
2	PMCDP-17	-(CH ₂) ₄ -		-COOEt	-H	4-Me Ph
3	PMCDP-18	-(CH ₂)	-(CH ₂) ₄ -		-H	4-Cl Ph
4	PMCDP-23	-COOMe	-Me	-COOEt	-H	4-Cl Ph
5	PMCDP-31	-(CH ₂) ₄ -		-CN	-H	4-Cl Ph
6	PMCDP-32	-COOMe	-Me	-COOEt	-H	Ph
7	PMCDP-33	-(CH ₂)	-(CH ₂) ₄ -		-H	4-Cl Ph
8	PMCDP-36	-COOMe	-Me	-CN	-NH ₂	4-Me Ph
9	PMCDP-40	-Me	-H	-COOEt	-H	4-F Ph
10	PMCDP-41	o		-CONH ₂	-NH ₂	Ph

No. 11-19

No	Name	R ₁	R ₂	R ₃	R ₄	X
11	PMCDP-24	-(CH ₂) ₄ -		-COOEt	Ph	0
12	PMCDP-26	-(CH ₂) ₄ -		-CN	Ph	N-Me
13	PMCDP-27	-(CH ₂))4-	-CN	Furan-2-yl	N-Me

64

14	PMCDP-28	-COOMe	Me	-COOEt	Furan-2-yl	0
15	PMCDP-29	-(CH ₂))4-	-COOEt	Furan-2-yl	0
16	PMCDP-30	-COOMe	Me	-COOEt	Ph	0
17	PMCDP-34	-COOMe	Me	-CONH ₂	Furan-2-yl	0
18	PMCDP-35	-COOMe	Me	-CN	Furan-2-yl	0
19	PMCDP-37	-COOMe	Me	-CN	Furan-2-yl	N-Me

4.3 Biological results and discussion

The binding affinity of the compounds was evaluated as per the procedure described in the chapter-3. The compounds **PMCDP-24**, **PMCDP-29** and **PMCDP-41** found to show affinity towards A_1 , A_{2A} and A_3 adenosine receptors with Ki values in micromolar range. The compound **PMCDP-29** was non-selective with $hA_1/hA_3=1.7$ and $hA_{2A}/hA_3=2.1$. The compound **PMCDP-24** was $hA_1/hA_3>10$ and $hA_{2A}/hA_3>10$ fold selective and **PMCDP-41** was $hA_1/hA_3>2$ and $hA_{2A}/hA_3>2$ fold selective. Presence of phenyl or 2-furyl group on the 4th position of thiazole ring was found to be responsible for good activity for this series of compounds. Whereas presence of hydrogen on the 4th position of thiazole ring was found to be deleterious for the biological activity (Table 4.2).

Table 4.2 Binding affinity of synthesized molecules

No. 1 to10

No	Compound	Ki in µM at 95 % Confidence Limits					
		hA ₁ ^a	$\mathbf{hA_{2A}}^{\mathrm{b}}$	$\mathbf{hA_{2B}}^{d}$	hA ₃ ^c		
1	PMCDP-16	>100	>100	>10	>100		
2	PMCDP-17	>10	>10	>10	>3		
3	PMCDP-18	>30	>30	>10	>30		

4	PMCDP-23	>10	>10	>10	>10
5	PMCDP-31	>100	>100	>10	>30
6	PMCDP-32	>10	>10	>10	>3
7	PMCDP-33	N.D.	N.D.	N.D.	N.D.
8	PMCDP-36	>10	>10	>10	>10
9	PMCDP-40	>30	>100	>10	14.5
10	PMCDP-41	>10	>10	>10	4.9

No. 11-19

No	Compound	Ki in µM at 95 % Confidence Limits					
		hA ₁ ^a	$\mathbf{hA_{2A}}^{\mathrm{b}}$	$\mathbf{hA_{2B}}^{d}$	hA ₃ ^c		
11	PMCDP-24	>30	>30	>10	2.9		
12	PMCDP-26	>100	>100	>100	>100		
13	PMCDP-27	>10	>10	>10	>10		
14	PMCDP-28	>30	18	>10	7.3		
15	PMCDP-29	7.2	9.1	>10	4.3		
16	PMCDP-30	>10	>10	>10	>10		
17	PMCDP-34	>100	>100	>10	>100		
18	PMCDP-35	>10	>10	>10	>10		
19	PMCDP-37	>10	8.3	>10	>10		

Data are expressed as geometric means with 95% confidence limits.

^aDisplacement of specific [³H]CCPA binding at human A₁ receptors expressed in CHO cells. ^bDisplacement of specific [³H]NECA binding at human A_{2A} receptors expressed in CHO cells. ^c Displacement of specific [³H]HEMADO binding at human A₃ receptors expressed in CHO cells.

 d Inhibition of NECA-stimulated adenylyl cyclase activity at human A_{2B} receptors expressed in CHO cells.

4.4 Conclusion

In conclusion, here have designed new series of new we N-cycloamino/disubstituted/diamino thiazoles coupled with thiophenes. Further, the molecules were synthesized and evaluated for their radio ligand binding assay against adenosine receptors. The compounds were active towards adenosine receptors and particularly they were found selectivity against A₃ adenosine receptor with high selectivity. But overall the affinity of the molecules to adenosine receptor was found to be less as compared to affinity of the molecules from chapter-3.

4.5 Experimental

Melting points were recorded on scientific melting point apparatus (Veego; Model: VMP-DS) and are uncorrected. The ¹H NMR spectra were recorded on Bruker NMR spectrometer (400 MHz) using TMS as an internal standard and ¹³C NMR spectra were recorded on Bruker NMR spectrometer at 75 MHz. Proton chemical shifts are expressed in ppm relative to internal tetramethylsilane. Mass spectra were recorded on Perkin Elmer Sciex API 165. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. IUPAC name of the compounds were generated using Cambridge soft ChemBioDraw ultra 12.0. The preparations of substituted 2-chloroacetamido thiophenes are described in the chaptet-3.

4.5.1. General procedure for the synthesis of Aroyl isothiocyanates

A mixture of aroyl chloride (1 mmole), and tetra butyl ammonium bromide (3 mol %) was stirred at $0-10^{\circ}$ C in chloroform. Potassium thiocyanate(1 mmol) solution in water was added drop wise over a 25 minutes and stirring is continued for an additional 2 hours at room temperature. The mixture was then separated and the water layer was extracted with chlorform. The combined organic layer was dried with magnesium sulphate. This solution was filtered and the solvent was evaporated under reduced pressure to yield crude aroyl isothiocyanate as oil. It was stored under nitrogen at 0°C. It was used further without purification.

4.5.1.1. Synthesis of Benzoyl Isothiocyanate

Benzoyl isothiocyanate was synthesized using the procedure as described in 4.5.1 by the reaction of benzoyl chloride and pottasium thiocyanate to afford crude product. It was used further without purification. Rf: 0.82 (Chloroform).

4.5.1.2. Synthesis of Furoyl Isothiocyanate

Furoyl isothiocyanate was synthesized using the procedure as described in 4.5.1 by the reaction of furoyl chloride and pottasium thiocyanate to afford crude product. It was used further without purification. Rf: 0.70 (Chloroform).

4.5.2. General procedure for the synthesis *N*-Cyclicamino carbanothioyl arylamide

To a stirred solution of aroyl isothiocynate (1 mmol) in THF at room temperature, morpholine (1eq) was added dropwise via syringe. The reaction was stirred for 3h and reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into the cold water to give precipitates of the desired product. The resultant solid was filtered through high vacuum suction pump and then dissolved in chloroform and dried over anhydrous Na_2SO_4 . The solvent was removed on rotary evaporator to give desired compounds which was sufficiently pure and directly used for the next step.

4.5.2.1. Synthesis of N-(Morpholine-4-carbonothioyl)benzamide (C1)

The title compound was synthesized using the procedure as described in 4.5.2 by the reaction of benzoyl isothiocyante and morpholine to afford the product. **%Yield:** 58, **LCMS:** (M+1) at 251, **Molecular Formula:** $C_{12}H_{14}N_2O_2S$, **m.p.=** 141-3°C, **Rf:** 0.71 (Tol :ACN :: 7:3).

4.5.2.2. Synthesis of N-(4-Methylpiperazine-1-carbonothioyl)benzamide (C2)

68

The title compound was synthesized using the procedure as described in 4.5.2 by the reaction of benzoyl isothiocyante and 4-methyl piperazine to afford the product.

4.5.2.3. Synthesis of N-(Morpholine-4-carbonothioyl)furan-2-carboxamide (C3)

The title compound was synthesized using the procedure as described in 4.5.2 by the reaction of furoyl isothiocyante and morpholine to afford the product.

4.5.2.4. Synthesis of N-(4-Methylpiperazine-1-carbonothioyl)furan-2carboxamide(C4)

The title compound was synthesized using the procedure as described in 4.5.2 by the reaction of benzoyl isothiocyante and 4-methyl piperazine to afford the product.

4.5.3. General procedure for the synthesis of Amidinothiourea

To a stirred solution of N-aryl thiourea (1 mmol) in methanol at room temperature, N,N-dimethylformamide dimethylacetal (DMF-DMA, 1.5 mmol) were added drop wise via syringe. The resultant reaction mixture was stirred for 2 hours to give white precipitates of the N-monosubstituted thiourea (amidinothiourea). The solid was filtered and washed with methanol to give sufficiently pure product which was directly used for the next step.

The title compound was synthesized using the procedure as described in 4.5.3 by the reaction of *N*-phenyl thiourea and *N*,*N*-dimethylformamide dimethylacetal(DMF-DMA) to afford the title product.

4.5.3.2. Synthesis of (E)-N,N-Dimethyl-N'-(p-tolylcarbamothioyl) formimidamide(C6)

The title compound was synthesized using the procedure as described in 4.5.3 by the reaction of *N*-(p-tolyl) thiourea and *N*,*N*-dimethylformamide dimethylacetal(DMF-DMA) to afford the title product.

4.5.3.3. Synthesis of (E)-N'-((4-Chlorophenyl)carbamothioyl)-N,Ndimethylformimidamide (C7)

The title compound was synthesized using the procedure as described in 4.5.3 by the reaction of N-(4-chloro phenyl) thiourea and N,N-dimethylformamide dimethylacetal(DMF-DMA) to afford the title product.

4.5.3.4. Synthesis of (E)-N'-((4-Fluorophenyl)carbamothioyl)-N,Ndimethylformimidamide (C8)

The title compound was synthesized using the procedure as described in 4.5.3 by the reaction of N-(4-fluoro phenyl) thiourea and N,N-dimethylformamide dimethylacetal(DMF-DMA) to afford the title product.

To a stirred suspension of guanidine hydrochloride (3 mmole) and phenyl isothiocyanate (1 mmole) in THF, was added sodium hydroxide (3 mmole) dissolved in water at 0°C in

10 min. Stirring was continued at ambient temperature for 4 hours. The solid generated during the reaction was filtered with 10 ml water and washed with water and dried to give the title product. TLC : Mobile Phase : Ethylacetate, Rf : 0.63. Mass (LC-MS Found, M+1) : 195

To a stirred suspension of guanidine hydrochloride (3 mmole) and 4-methyl phenyl isothiocyanate (1 mmole) in THF, was added sodium hydroxide (3 mmole) dissolved in water at 0°C in 10 min. Stirring was continued at ambient temperature for 4 hours. The the solid generated during the reaction was filtered with 10 ml water and washed with water and dried to give the title product.

4.5.4. General procedure for synthesis of disubstituted/diamino thiazoles coupled with thiophenes

To a hot air dried round bottomed flask, containing a solution of amidinothiourea (1 mmol) in DMF (5 mL), 2-chloroacetamidothiophene (1 mmol) in DMF (5 mL) was added at ambient temperature and the reaction was further stirred for 6-8 h with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-n**) were assigned with the help of NMR and mass spectra.

4.5.5. General procedure for synthesis of *N*-Cycloaminothiazoles coupled with thiophenes

To a hot air dried round bottomed flask, containing a solution of *N*-cyclicamino carbanothioyl arylamides in DMF (5 mL), 2-chloroacetamidothiophene in DMF (5 mL) was added at ambient temperature and the reaction was further stirred for 6-8 h with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-n**) were assigned with the help of NMR and mass spectra.

PMCDP-16:Ethyl2-(2-(phenylamino)thiazole-5-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate

Yield: 63%, Off white solid, mp: 226-229 ⁰C, **Molecular formula:** C₂₁H₂₁N₃O₃S₂, LC-MS calculated: 427.1, found: 428.3(M+1), ¹H NMR (400 MHz, CDCl₃) δ: 1.41(t, 3H), 1.82(d, 4H), 2.69(s, 2H), 2.81(s, 2H), 4.37(q, 2H), 7.18(d, 1H), 7.40-7.46(m, 4H), 7.97(s, 1H), 8.20(s, 1H, -NH), 12.02(s, 1H, -NH). ¹³C NMR (400 MHz, DMSO-*d*₆) δ: 14.37, 22.84, 23, 24.43, 26.41, 30.96, 60.62, 111.51, 119.23, 124.54, 126.96, 129.80, 130.99, 139.15, 142.61, 147.70, 157.48, 166.94.

PMCDP-17:Ethyl2-(2-(p-tolylamino)thiazole-5-carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate

Yield: 67%, Light yellow solid, mp: 235-239 ⁰C, **Molecular formula:** C₂₂H₂₃N₃O₃S₂, LC-MS calculated: 441.3, found: 442.3(M+1). ¹H NMR (400 MHz, CDCl₃) δ: 1.41(t, 3H), 1.82(s, 4H), 2.38(s, 3H), 2.68(s, 2H), 2.81(s, 2H), 4.36(q, 2H), 7.23(d, 2H), 7.28(d, 2H), 7.92(s, 1H), 7.95(s, 1H, -NH), 11.98(s, 1H, -NH).

PMCDP-18: Ethyl 2-(2-((4-chlorophenyl)amino)thiazole-5-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 67%, Light yellow solid, mp: 230-233 0 C, Molecular formula: C₂₁H₂₀ClN₃O₃S₂, LC-MS calculated: 461.1, found: 462.3(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.31(t, 3H), 1.72(s, 4H), 2.61(s, 2H), 2.71(s, 2H), 4.28(q, 2H), 7.39(d, 2H), 7.65(d, 2H), 7.92(s, 1H), 10.95(s, 1H, -NH), 11.58(s, 1H, -NH).

PMCDP-23: 4-Ethyl 2-methyl 5-(2-((4-chlorophenyl)amino)thiazole-5carboxamido)-3-methylthiophene-2,4-dicarboxylate

Yield: 68%, White solid, mp: >250 0 C, Molecular formula: C₂₀H₁₈ClN₃O₅S₂, LC-MS calculated: 479.1, found: 480.4(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.35(t, 3H),

2.67(s, 3H), 3.79(s, 3H), 4.34(q, 2H), 7.39(d, 2H), 7.65(d, 2H), 7.98(s, 1H), 11.03(s, 1H, -NH), 11.73(s, 1H, -NH).

PMCDP-24: Ethyl 2-(2-morpholino-4-phenylthiazole-5-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 74%, Off white solid, mp: 235-237 0 C, **Molecular formula:** C₂₅H₂₇N₃O₄S₂, LC-MS calculated: 497.2, found: 498.4(M+1).¹H NMR (400 MHz, CDCl₃) δ : 1.25(t, 3H), 1.78(s, 4H), 2.65(s, 2H), 2.72(s, 2H), 3.62(s, 4H), 3.85(s, 4H), 4.06(q, 2H), 7.42(d, 3H), 7.67(d, 2H), 11.20(s, 1H).

PMCDP-26: *N*-(3-Cyano-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-2-(4-methyl piperazin-1-yl)-4-phenylthiazole-5-carboxamide

Yield: 72%, Off white solid, mp: 219-222 0 C, **Molecular formula:** C₂₄H₂₅N₅O₁S₂, LC-MS calculated: 463.4, found: 464.4(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.74(s, 4H), 2.46(s, 2H), 2.59(s, 2H), 2.85(s, 3H), 3.36(s, 8H), 7.43(s, 3H), 7.62(s, 2H), 10.49(s, 1H), 10.84(s, 1H).

Yield: 69%, Off white solid, mp: >250 0 C, **Molecular formula:** C₂₂H₂₃N₅O₂S₂, LC-MS calculated: 453.4, found: 454.4(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.77(s, 4H), 2.67(s, 2H), 2.74(s, 2H), 3.52(t, 4H), 3.71(t, 4H), 6.70(s, 1H), 7.08(d, 1H), 7.85(s, 1H), 11.49(s, 1H, -NH).

PMCDP-28: 4-Ethyl 2-methyl 5-(4-(furan-2-yl)-2-morpholinothiazole-5carboxamido)-3-methylthiophene-2,4-dicarboxylate

Yield: 59%, Off white solid, mp: 182-185 ⁰C, **Molecular formula:** $C_{22}H_{23}N_3O_7S_2$, LC-MS calculated: 505.1, found: 506.7(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.41(t, 3H), 2.80(s, 3H), 3.64(s, 4H), 3.87(s, 7H), 6.58(s, 1H), 7.18(s, 1H), 7.73(s, 1H), 12.52(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ : 14.27, 15.60, 47.93, 51.59, 60.89, 66.07, 111.81, 113.92, 114.63, 115.57, 117.42, 143.24, 144.31, 144.82, 148.86, 152.93, 158.98, 163.60, 165.85, 170.86.

PMCDP-29: Ethyl 2-(4-(furan-2-yl)-2-morpholinothiazole-5-carboxamido)-4,5,6,7tetrahvdrobenzo[*b*]thiophene-3-carboxylate

Yield: 59%, White solid, mp: 199-202 ⁰C, **Molecular formula:** $C_{23}H_{25}N_3O_5S_2$, LC-MS calculated: 487.1, found: 487.5(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.24(t, 3H), 1.73(s, 4H), 2.61(s, 2H), 2.72(s, 2H), 3.52(t, 4H), 3.72(t, 4H), 4.21-4.28(s, 2H), 6.68(q, 1H), 7.10 (d, 1H), 7.86(s, 1H), 11.99(s, 1H, -NH).

PMCDP-30: 4-Ethyl 2-methyl 3-methyl-5-(2-morpholino-4-phenylthiazole-5carboxamido)thiophene-2,4-dicarboxylate

Yield: 59%, White solid, mp: 197-199 ⁰C, **Molecular formula:** $C_{24}H_{25}N_3O_6S_2$, LC-MS calculated: 515.1, found: 515.6(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.41(t, 3H), 2.80(s, 3H), 3.64(s, 4H), 3.87(s, 7H), 6.58(s, 1H), 7.18(s, 1H), 7.73(s, 1H), 12.52(s, 1H) ¹³C NMR (400 MHz, DMSO- d_6) δ : 14.27, 15.60, 47.93, 51.59, 60.89, 66.07, 111.81, 113.92, 114.63, 115.57, 117.42, 143.24, 144.31, 144.82, 148.86, 152.93, 158.98, 163.60, 165.85, 170.86.

Yield: 60%, White solid, mp: 203-206 0 C, **Molecular formula:** C₁₉H₁₅ClN₄OS₂, LC-MS calculated: 414.1, found: 415.6(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 1.73(s, 4H), 2.60(s, 2H), 2.72(s, 2H), 7.39(d, 2H), 7.65(d, 2H), 7.92(s, 1H), 10.98(s, 1H, -NH), 11.72(s, 1H, -NH).

PMCDP-32:4-Ethyl2-methyl3-methyl-5-(2-(phenylamino)thiazole-5-carboxamido)thiophene-2,4-dicarboxylate

Yield: 57%, White solid, **Molecular formula:** C₂₀H₁₉N₃O₅S₂, LC-MS calculated: 445.1, found: 446.4(M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.32(t, 3H), 2.26(s, 3H), 2.90(s, 6H), 3.78(s, 3H), 4.33(q, 2H), 7.19(d, 1H), 7.40-7.46(m, 4H), 7.97(s, 1H), 10.20(s, 1H, -NH), 12.02(s, 1H, -NH).

PMCDP-33: *N*-(3-Carbamoyl-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)-2-((4-chlorophenyl)amino)thiazole-5-carboxamide

Yield: 54%, White solid, **Molecular formula:** C₁₉H₁₇ClN₄O₂S₂, LC-MS calculated: 432.1, found: 433.7(M+1). ¹H NMR (400 MHz, CDCl₃) δ: 1.71(s, 4H), 2.61(s, 2H), 2.74(s, 2H), 6.39(s, 2H,-NH₂), 7.40(d, 2H), 7.63(d, 2H), 7.92(s, 1H), 10.98(s, 1H, -NH), 11.72(s, 1H, -NH).

PMCDP-34: Methyl 4-carbamoyl-5-(4-(furan-2-yl)-2-morpholinothiazole-5carboxamido)-3-methylthiophene-2-carboxylate

Yield: 50%, White solid, Molecular formula: $C_{22}H_{22}N_4O_5S_2$, LC-MS calculated: 486.1, found: 487.7(M+1).

PMCDP-35:Methyl4-cyano-5-(4-(furan-2-yl)-2-morpholinothiazole-5-carboxamido)-3-methylthiophene-2-carboxylate

Yield: 53%, off white solid, **Molecular formula:** $C_{22}H_{20}N_4O_4S_2$, LC-MS calculated: 468.1, found: 469.4(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 2.82(s, 3H), 3.65(s, 4H), 3.78(s, 3H), 3.87(s, 4H), 6.58(s, 1H), 7.18(s, 1H), 7.73(s, 1H), 12.52(s, 1H).

PMCDP-36: Methyl 5-(4-amino-2-(p-tolylamino)thiazole-5-carboxamido)-4-cyano-3methylthiophene-2-carboxylate

Yield: 58%, Yellow solid, mp: 193-196 0 C, **Molecular formula:** C₁₉H₁₇N₅O₃S₂, LC-MS calculated: 427.1, found: 428.7(M+1). ¹H NMR (400 MHz, CDCl₃) δ : 2.38(s, 3H), 2.80(s, 3H), 3.77(s, 3H), 6.05(s, NH₂), 6.58(s, 1H), 7.37-7.40(d, 2H), 7.65-7.68(d, 2H), 10.98(s, 1H, -NH), 11.70(s, 1H, -NH).

PMCDP-37: Methyl 4-cyano-5-(4-(furan-2-yl)-2-(4-methylpiperazin-1-yl)thiazole-5carboxamido)-3-methylthiophene-2-carboxylate

Yield: 55%, Yellow solid, **Molecular formula:** $C_{21}H_{21}N_5O_4S_2$, LC-MS calculated: 471.1, found: 472.6(M+1).

PMCDP-40: *N*-(3-Cyano-5-methylthiophen-2-yl)-2-((4-fluorophenyl)amino) thiazole-5-carboxamide

Yield: 49%, Yellow solid, Molecular formula: $C_{16}H_{11}FN_4OS_2$, LC-MS calculated: 358.1, found: 359.6(M+1).

PMCDP-41: 4-Amino-*N*-(3-carbamoyl-6,6-dimethyl-4-oxo-4,5,6,7-tetrahydrobenzo [*b*]thiophen-2-yl)-2-(phenylamino)thiazole-5-carboxamide

Yield: 49%, Yellow solid, **Molecular formula:** $C_{21}H_{21}N_5O_3S_2$, LC-MS calculated: 455.1, found: 455.6(M+1).

4.5.6. Method used for pharmacological evaluation

The methods described in the chapter-3 were used for the pharmacological evaluation of the compounds.

Supporting Information (LC-MS, ¹H-NMR, ¹³C NMR, of representative compounds)

LC-MS spectrum of PMCDP-28

¹H spectrum of PMCDP-28

81

¹³C spectrum of PMCDP-28

CHAPTER-5

Thiophenyl-thiophene carboxamides: New ligands for adenosine receptors

PAGE NO. 83 TO 103

Thiophenyl-thiophene carboxamides: New ligands for adenosine receptors

5.1 Introduction

Thiophenes are important class of heterocyclic compounds as they are found to have many applications in pharmaceutical sciences (Gronowitz, 1991), fragrance compounds (Stevens, 1993), important pharmacophores (Sperry & Wright, 2005) and polymers (Roncali, 1992). Further aminothiophene molecules are important structure found to be present in many drugs like Olanzepine and Tinoridine which has been approved for Schizophrenia and anti-inflammatory agents respectively (Figure 5.1A). 2-aminothiophene incorporating compounds have been reported to be modulators of adenosine receptor, especially as allosteric modulators (Göblyös & Ijzerman, 2011) (Figure 5.1B).

Figure 5.1 (A) Drugs containing 2-aminothiophene structure (B) 2-aminothiophene containing compounds as adenosine receptor modulators

5.2 Present work

As explained earlier thiophene moiety is found to be present in many of the pharmaceutical agents and also shown high affinity towards adenosine receptors (Aurelio et al., 2011; Valant et al., 2012). Many of the thiophene derivatives prepared in our lab like quinzoline-thiophenes, thiophenyl-thiophenes, thiazolyl-thiophenes have been found to be highly active in NF-kB and AP-1 implicated in inflammation and cancer which was further patented (Giordano, Vasu, & Sudarsanam, 2012). Dimerization of receptors either homo or heterodimers for activation have been implicated in various diseases. So combining two pharmacophoric feature in one single molecular framework can even bind to dimerised receptor and may result in distinct biological effect.

So, keeping in mind the importance of thiophene and in continuation of our earlier work, here we have modified the thiophenyl-thiazole carboxamides into thiophenyl-thiophene carboxamides as adenosine receptor ligands (Figure 5.2). As per our findings, this thiophenyl-thiophene carboxamides are new scaffold and it is checked first time in adenosine receptors for their biological activity.

Figure 5.2 Design of thiophenyl-thiophene carboxamides
In the present work we have synthesized two different thiophenes to come up at thiophenyl-thiophene carboxamides. One thiophene formation was carried out from the Willgerodt-kindler intermediate (D), whereas the other thiophene formation was achieved by enamine-isothiocyanate (D) intermediate. These both intermediates were reacted with the 2-chloracetamido thiophene (B) derivatives to achieve the thiophenyl-thiophene carboxamides. All the compounds (**PMCDP-BTP-n**) were synthesized with good yields and they were confirmed by mass and NMRs. The two synthetic schemes are illustrated in Scheme 5.1.

Scheme 5.1 Synthetic Scheme for thiophenyl-thiophene carboxamides

As an example, willgerodt kindler intermediate (*Z*)-3-(dimethylamino)-1-morpholino-2-(pyridin-4-yl)prop-2-ene-1-thione (1 mmol) was reacted with Ethyl 2-(2chloroacetamido)-4, 5, 6, 7-tetrahydrobenzo[*b*]thiophene-3-carboxylate (1 mmol) in DMF at room temperature which resulted into **PMCDP-BTP-3** with good yields. It was further confirmed by LC-MS (M+1) and ¹H NMR. The mass spectrum of **PMCDP-BTP-3** (Figure 5.3) displayed the molecular ion peak at m/z 498.3(M+1) which confirm the molecular weight of the compound 497.1 calculated for C₂₅H₂₁N₃O₄S₂.

Figure 5.3 LC-MS (M+1) of PMCDP-BTP-3

The structure of the molecule was further confirmed by ¹H NMR (300 MHz, DMSO-D6), which gave the characteristic peak of all the hydrogen present. The amide proton –NH singlet came at 12.06 δ . The protons of ester methyl group (-CH₃) was observe at 1.38-1.43 δ and splited into triplet due to presence of adjacent methylene group (-CH₂). The sixteen protons of eight methylene group were found in the range 1.80-3.81 δ . The two protons of ester methylene group were found at 4.33-4.41 with quartet. All the five

aromatic protons of phenyl ring were observed from 7.62-8.66 δ and singlet hydrogen of thiophene was observed at 7.70 δ (Figure-5.4).

Figure 5.4 ¹H NMR spectrum of **PMCDP-BTP-3**

After establishing the synthetic methodology, we library of compounds with structural diversification were synthesized (**PMCDP-BTP-n, Table-5.1**).

Table 5.1 Synthesis of thiophenyl-thiophene carboxamides

Code	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆
PMCDP-BTP-1	-(C	H ₂) ₄ -	-COOEt	Morpholin-4-yl	-Ph	-H
PMCDP-BTP-2	-(C	H ₂) ₄ -	-CONH ₂	Morpholin-4-yl	-Ph	-H

PMCDP-BTP-3	-(CH ₂)	1-	-COOEt	Morpholin-4-yl	Pyridin-4- yl	-H
PMCDP-BTP-4	-(CH ₂)	t-	-CN	Morpholin-4-yl	-Ph	-H
PMCDP-BTP-5	-(CH ₂).	t-	-COOEt	Morpholin-4-yl	p-Cl Ph	-H
PMCDP-BTP-6	-(CH ₂).	t-	-CONH ₂	Morpholin-4-yl	p-Cl Ph	-H
PMCDP-BTP-7	-COOMe	-Me	-COOEt	Morpholin-4-yl	p-Cl Ph	-H
PMCDP-BTP-8	-COOMe	-Me	-CN	Morpholin-4-yl	Pyridin-3- yl	-H
PMCDP-BTP-13	-COOMe	-Me	-COOEt	-NHPh(4-Me)	-COOMe	-Me
PMCDP-BTP-14	-(CH ₂)/	1-	-CONH ₂	-NHCOPh (4-OMe)	-COOMe	-Me
PMCDP-BTP-15	-(CH ₂).	t-	-CONH ₂	-NHPh(4-Me)	-COOMe	-Me
PMCDP-BTP-17	-COOMe	-Me	-CN	Morpholin-4-yl	-Ph	-H
PMCDP-BTP-19	-(CH ₂).	t-	-CONH ₂	-NHPh(4-Me)	-COOMe	-Me
PMCDP-BTP-21	-COOMe	-Me	-CN	-NHCOPh (4-OMe)	-COOMe	-Me

5.3 Biological results and discussion

The binding affinity of the synthesized compounds was evaluated as per the procedure described in the chapter-3. The compounds **PMCDP-BTP-4**, **PMCDP-BTP-8**, **PMCDP-BTP-13** and **PMCDP-BTP-14** found to show affinity towards A_1 , A_{2A} and A_3 adenosine receptors with Ki values in micromolar range. The compound **PMCDP-BTP-13** was non-selective with Ki values of 2.5 μ M, 1.4 μ M and 7.5 μ M against adenosine A_1 , A_{2A} and A_3 receptors respectively. The compound **PMCDP-BTP-4**, **PMCDP-BTP-8**, **PMCDP-BTP-14** was selective against adenosine A_3 receptor with the Ki values 0.9, 10.2 and 21.7 μ M respectively. The compounds with the tri-substituted thiophenes coupled with the tetrasubstituted thiophenes were found to be lost in the activity, **PMCDP-BTP-4** being the exception. The compound **PMCDP-BTP-13** was found to inhibit the three receptors because of high substitution on the both of the thiophene rings.

Table 5.2 Binding affinity of synthesized thiophenyl-thiophene carboxamides

Ът		Ki in µM at 95 % Confidence Limits					
NO	Compound	hA ₁ ^a	hA _{2A} ^b	$\mathbf{hA_{2B}}^{d}$	hA ₃ ^c		
1	PMCDP-BTP-1	>10	>10	>10	>10		
2	PMCDP-BTP-2	>10	>10	>10	>10		
3	PMCDP-BTP-3	>10	>10	>10	>10		
4	PMCDP-BTP-4	>100	>30	>30	0.9		
5	PMCDP-BTP-5	>100	>100	>10	>100		
6	PMCDP-BTP-6	>100	>100	>10	>100		
7	PMCDP-BTP-7	>10	>10	>10	>10		
8	PMCDP-BTP-8	>30	>30	>10	10.2		
9	PMCDP-BTP-13	2.5	1.4	>10	7.5		
10	PMCDP-BTP-14	>100	>100	>10	21.7		
11	PMCDP-BTP-15	>100	>100	>10	>30		
12	PMCDP-BTP-17	N.D.	N.D.	N.D.	N.D.		
13	PMCDP-BTP-19	N.D.	N.D.	N.D.	N.D.		
14	PMCDP-BTP-21	N.D.	N.D.	N.D.	N.D.		

Data are expressed as geometric means with 95% confidence limits.

^aDisplacement of specific [³H]CCPA binding at human A₁ receptors expressed in CHO cells.

^bDisplacement of specific [³H]NECA binding at human A_{2A} receptors expressed in CHO cells.

^c Displacement of specific [³H]HEMADO binding at human A₃ receptors expressed in CHO cells.

^dInhibition of NECA-stimulated adenylyl cyclase activity at human A_{2B} receptors expressed in CHO cells.

5.4 Conculsion

Here we have designed and synthesized new thiophenyl-thiophene carboxamides. Further the molecules were evaluated for their radio ligand binding assay against adenosine receptors. The compounds were active towards adenosine receptors and particularly one molecule PMCDP-BTP-4 was active against A₃ adenosine receptor with high selectivity. Overall the affinity of this series of molecules was similar to the chapter-4 molecules.

5.5 Experimental

The ¹H NMR spectra were recorded on Bruker NMR spectrometer (400 MHz) using TMS as an internal standard and ¹³C NMR spectra were recorded on Bruker NMR spectrometer at 75 MHz. Proton chemical shifts are expressed in ppm relative to internal tetramethylsilane. Mass spectra were recorded on Perkin Elmer Sciex API 165. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. IUPAC name of the compounds were generated using Cambridge soft ChemBioDraw ultra 12.0. The preparations of substituted 2-chloroacetamido thiophenes (**B**) are described in the chaptet-3. The preparation of the synthesis of 1-morpholino-2-phenylethanethione has been well documented in the literature (Pillai et al., 2004). The preparation of enamine and isothiocyanate has been also given in the literature (Franklin et al., 2008; Molvi, Vasu, Yerande, Sudarsanam, & Haque, 2007; Pillai et al., 2005).

5.5.1 General procedure for the preparation of substituted 1-Morpholino-2-arylprop-2-ene-1-thione (D)

In a hot air dried flask, 1-morpholino-2-arylethanethione (1.0 mmol) and N,Ndimethylformamide dimethyl acetal (1.5 mmol) were mixed together and heated to 80– 85^{0} C for 6–10 h. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (4:6), showing the consumption of both the starting materials. The crude reaction mixture is distilled off to remove the *in-situ* generated solvent methanol. Then the mixture is treated with the hexane and/or ether to generate the intermediate 1morpholino-2-arylprop-2-ene-1-thione which was directly taken for the next final step without further purification.

5.5.1.1. Preparation of (Z)-3-(Dimethylamino)-1-morpholino-2-phenylprop-2-ene-1thione (D1)

The title compound was synthesized using the procedure as described in 5.5.1 by the reaction of 1-morpholino-2-phenylethanethione and N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

5.5.1.2. Preparation of (Z)-3-(Dimethylamino)-1-morpholino-2-(p-tolyl)prop-2-ene-1thione (D2)

The title compound was synthesized using the procedure as described in 5.5.1 by the reaction of 1-morpholino-2-(p-tolyl)ethanethione and N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

5.5.1.3. Preparation of (Z)-3-(Dimethylamino)-1-morpholino-2-(pyridin-4-yl)prop-2ene-1-thione (D3)

91

The title compound was synthesized using the procedure as described in 5.5.1 by the reaction of 1-morpholino-2-(pyridin-4-yl)ethanethione and N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

5.5.1.4. Preparation of (Z)-3-(Dimethylamino)-1-morpholino-2-(pyridin-3-yl)prop-2ene-1-thione (D4)

The title compound was synthesized using the procedure as described in 5.5.1 by the reaction of 1-morpholino-2-(pyridin-3-yl)ethanethione and N,N-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

5.5.2 General procedure for the preparation of substituted Methyl 3amino-2-(arylcarbamothioyl)but-2-enoate (D)

To demonstrate the practical viability of the present protocol, we started the reaction by stirring a solution of aryl/aroyl isothiocyanate (1 mmol) and methyl enamino ester (1 mmol) in a mixture of solvent tetrahydrofuran. The reaction mixture was warmed to $60-65^{0}$ C and maintained for 5-6 h. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (4:6), showing the consumption of both the starting materials. The crude reaction mixture is distilled off to remove the solvent. Then the mixture is treated with the hexane and/or ether to generate the methyl 3-amino-2-(arylcarbamothioyl) but-2-enoate which was directly taken for the next final step without further purification.

5.5.2.1. Preparation of (E)-Methyl 3-amino-2-(p-tolylcarbamothioyl)but-2-enoate (D5) The title compound was synthesized using the procedure as described in 5.5.2 by the reaction of 4-methyl phenyl isothiocyanate and (Z)-methyl 3-aminobut-2-enoate to afford the title product.

5.5.2.2. Preparation of (E)-Methyl 3-amino-2-((4-methoxybenzoyl) carbamothioyl)but-2-enoate (D6)

The title compound was synthesized using the procedure as described in 5.5.2 by the reaction of 4-methoxy benzoyl isothiocyanate and (Z)-methyl 3-aminobut-2-enoate to afford the title product.

5.5.3 General procedure for the preparation of thiophenyl-thiophene carboxamides

To a hot air dried round bottomed flask, containing a solution of 1-morpholino-2arylprop-2-ene-1-thione or methyl 3-amino-2-(arylcarbamothioyl)but-2-enoate (1 mmol) in DMF (5 mL), 2-chloroacetamidothiophene (1 mmol) in DMF (5 mL) was added at ambient temperature and the reaction was further stirred for 3-4 h with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through buchner funnel. These precipitates were dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-BTP-n**) were assigned with the help of NMR and mass spectra.

PMCDP-BTP-1: Ethyl 2-(5-morpholino-4-phenylthiophene-2-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 63%, White solid, mp: 192-196 ⁰C, **Molecular formula:** C₂₆H₂₈N₂O₄S₂, LC-MS calculated: 496.1, found: 496.7(M+). ¹H NMR (400 MHz, CDCl₃) δ: 1.33(t, 3H), 1.76(s, 4H), 2.61(s, 2H), 2.72(s, 2H), 3.02(s, 4H), 4.37(q, 2H), 7.29(t, 1H), 7.40(t, 2H), 7.61(s, 1H), 7.67(d, 2H), 11.94(s, 1H, NH).

PMCDP-BTP-2: 2-(5-Morpholino-4-phenylthiophene-2-carboxamido)-4,5,6,7tetrahydrobenzo[*b*]thiophene-3-carboxamide

Yield: 60%, White solid, mp : 180-183 ⁰C, **Molecular formula:** C₂₄H₂₅N₃O₃S₂, LC-MS calculated: 467.1, found: 468.5(M+1) ¹H NMR (400 MHz, CDCl₃) δ: 1.71(s, 4H), 2.62(s, 2H), 2.71(s, 2H), 2.91(t, 4H), 3.66(t, 4H), 7.27(t, 1H), 7.42(t, 2H), 7.62(s, 1H), 7.67(d, 2H), 12.77(s, 1H, NH).

PMCDP-BTP-3: Ethyl 2-(5-morpholino-4-(pyridin-4-yl)thiophene-2-carboxamido)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate

94

Yield: 50%, light green solid, mp: 177-180 0 C, **Molecular formula:** C₂₅H₂₇N₃O₄S₂, LC-MS calculated: 497.1, found: 498.5(M+1) ¹H NMR (400 MHz, CDCl₃) δ : 1.38(t, 3H), 1.80(s, 4H), 2.67(s, 2H), 2.79(s, 2H), 3.02(t, 4H), 3.78(t, 4H), 4.33(q, 2H), 7.61(d, 2H), 7.70(s, 1H), 8.64(d, 2H), 12.06(s, 1H, NH).

PMCDP-BTP-4: *N*-(3-Cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-5morpholino-4-phenylthiophene-2-carboxamide

Yield: 59%, light yellow solid, mp: 214-216 0 C, **Molecular formula:** C₂₄H₂₃N₃O₂S₂, LC-MS calculated: 449.1, found: 449.8 (M+) ¹H NMR (400 MHz, CDCl₃) δ : 1.82(t, 4H), 2.57 (m, 4H), 3.03(q, 4H), 3.74(q, 4H), 7.27-7.32(m, 1H), 7.38(q, 2H), 7.62(t, 3H), 8.58(s, 1H, NH).

PMCDP-BTP-5:Ethyl2-(4-(4-chlorophenyl)-5-morpholinothiophene-2-
carboxamido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate

Yield: 59%, light yellow solid, mp: 183-186 0 C, Molecular formula: C₂₆H₂₇ClN₂O₄S₂, LC-MS calculated: 530.3, found: 531.4 (M+1) ¹H NMR (400 MHz, CDCl₃) δ : 1.37-1.40(t, 3H), 1.79(s, 4H), 2.65(s, 2H), 2.77(s, 2H), 2.99(s, 4H), 4.34(q, 2H), 7.36(d, 2H), 7.61(s, 3H), 11.98(s, 1H, NH). ¹³C NMR (400 MHz, CDCl₃) δ : 14.38, 22.87, 23.01, 24.43, 26.44, 60.56, 66.35, 111.39, 125.18, 125.95, 126.87, 128.94, 129.03, 130.93, 131.38, 132.87, 133.84, 140.04, 158.23, 159.59, 166.95.

PMCDP-BTP-6: 2-(4-(4-Chlorophenyl)-5-morpholinothiophene-2-carboxamido)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxamide

Yield: 73%, light yellow solid, **Molecular formula:** C₂₄H₂₄ClN₃O₃S₂, LC-MS calculated: 501.2, found: 502.6 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.82(s, 2H), 2.55(s, 2H), 2.67(s, 2H), 2.85(s, 2H), 2.97(s, 4H), 3.73(s, 4H), 7.41(s, 2H), 7.59-7.67(m, 4H), 8.03(s, 1H), 8.58(s, 1H).

PMCDP-BTP-7: 4-Ethyl 2-methyl 5-(4-(4-chlorophenyl)-5-morpholinothiophene-2carboxamido)-3-methylthiophene-2,4-dicarboxylate

Yield: 73%, white solid, mp: 179-183 ⁰C Molecular formula: C₂₅H₂₅ClN₂O₆S₂, LC-MS calculated: 548.2, found: 549.6 (M+1). ¹H NMR (400 MHz, CDCl₃) δ: 1.41(t, 3H), 2.74(s, 3H), 3.00(t, 4H), 3.74(t, 4H), 3.84(s, 3H), 4.38(q, 2H), 7.37(d, 2H), 7.59(t, 2H), 12.26(s, 1H, NH). ¹³C NMR (400 MHz, CDCl₃) δ: 14.25, 15.24, 51.68, 52.23, 61.31, 66.26, 113.71, 117.12, 123.93, 125.82, 129, 132.25, 133.04, 133.67, 145.05, 153.32, 158.76, 160.49, 163.40, 166.83.

PMCDP-BTP-8:Methyl4-cyano-3-methyl-5-(5-morpholino-4-(pyridin-3-
yl)thiophene-2-carboxamido)thiophene-2-carboxylate

Yield: 50%, light brown solid, mp: 210-213 0 C, **Molecular formula:** C₂₂H₂₀N₄O₄S₂, LC-MS calculated: 468.2, found: 469.5 (M+1). ¹H NMR (400 MHz, CDCl₃) δ : 2.58(s, 3H), 3.01(q, 4H), 3.75(q, 4H), 3.84(s, 3H) 7.39(q, 1H), 8.06(d, 1H), 8.30(s, 1H), 8.51(d, 1H), 8.90(s, 1H), 11.63(s, 1H). ¹³C NMR (400 MHz, CDCl₃) δ : 14.17, 51.40, 51.94, 65.53, 97.32, 113.69, 117.52, 122.58, 123.24, 123.79, 130.93, 133.55, 134.17, 143.73, 147.72, 148.03, 151.60, 159.41, 161.36, 161.96.

PMCDP-BTP-13: 4-Ethyl 2-methyl 5-(4-(methoxycarbonyl)-3-methyl-5-(p-tolylamino)thiophene-2-carboxamido)-3-methylthiophene-2,4-dicarboxylate

Yield: 59%, light brown solid, mp: 156-158 0 C, **Molecular formula:** C₂₄H₂₄N₂O₇S₂, LC-MS calculated: 516.1, found: 517.5 (M+1).

PMCDP-BTP-14: Methyl 2-benzamido-5-((3-carbamoyl-4,5,6,7-

tetrahydrobenzo [b] thiophen-2-yl) carbamoyl) - 4-methyl thiophene-3-carboxylate

Yield: 65%, off white solid, **Molecular formula:** $C_{24}H_{23}N_3O_5S_2$, LC-MS calculated: 497.1, found: 498.7 (M+1).

PMCDP-BTP-15: Methyl 5-((3-carbamoyl-4,5,6,7-tetrahydrobenzo[*b*]thiophen-2-yl)carbamoyl)-4-methyl-2-(p-tolylamino)thiophene-3-carboxylate

Yield: 62%, light yellow solid, **Molecular formula:** C₂₄H₂₅N₃O₄S₂, LC-MS calculated: 483.1, found: 484.6 (M+1). ¹H NMR (400 MHz, CDCl₃) δ: 1.78(s, 2H), 2.39(s, 3H), 2.56(s, 2H), 2.62(s, 3H), 2.66(s, 2H), 2.85(s, 2H), 3.89(s, 3H), 7.26(d, 2H), 7.39(d, 2H), 7.77(s, 2H), 11.70(s, 1H).

PMCDP-BTP-17: Methyl 4-cyano-3-methyl-5-(5-morpholino-4-(pyridin-3-yl)thiophene-2-carboxamido)thiophene-2-carboxylate

Yield: 62%, light yellow solid, mp: 225-228 0 C, **Molecular formula:** C₂₃H₂₁N₃O₄S₂, LC-MS calculated: 467.1, found: 468.4 (M+1). ¹H NMR (400 MHz, CDCl₃) δ : 2.58(s, 3H), 3.01(q, 4H), 3.75(q, 4H), 3.84(s, 3H), 7.37(d, 2H), 7.59(t, 2H), 7.70 (s, 1H), 11.60(s, 1H).

PMCDP-BTP-19: Methyl 5-((3-carbamoyl-4,5,6,7-tetrahydrobenzo[b]thiophen-2yl)carbamoyl)-4-methyl-2-(phenylamino)thiophene-3-carboxylate

Yield: 65%, White solid, **Molecular formula:** C₂₃H₂₃N₃O₄S₂, LC-MS calculated: 469.1, found: 470.4 (M+1). ¹H NMR (400 MHz, CDCl₃) δ: 1.82(s, 2H), 2.55(s, 2H), 2.60(s, 3H), 2.67(s, 2H), 2.85(s, 2H), 3.89(s, 3H), 7.01-7.03(t, 1H), 7.26(d, 2H), 7.39(d, 2H), 7.77(s, 2H), 11.70(s, 1H).

PMCDP-BTP-21: Methyl 4-cyano-5-(5-(4-methoxybenzamido)-4-

(methoxycarbonyl)-3-methylthiophene-2-carboxamido)-3-methylthiophene-2carboxylate

Yield: 65%, White solid, Molecular formula: $C_{24}H_{21}N_3O_7S_2$, LC-MS calculated: 469.1, found: 470.4 (M+1).

5.5.4 Method used for pharmacological evaluation

The methods described in the chapter-3 were used for the pharmacological evaluation for the compounds.

Supporting Information (LC-MS, ¹H-NMR, ¹³C NMR, of representative compounds)

General Reaction Mechanism for the formation of Thiophene via Willgerodt-Kindler Mechanism

100

LC-MS spectrum of PMCDP-BTP-8

101

CHAPTER-6

Novel substituted *N*-cyclicamino thiazoles as adenosine receptor ligands

PAGE NO. 104 TO 120

Novel substituted N-cyclicamino thiazoles as adenosine receptor ligands

6.1 Introduction

In the earlier chapters we had described the design and synthesis of new substituted thiophenyl-thiazole carboxamide and thiophenyl-thiophene carboxamide analogues which showed good affinity to adenosine receptors. To come up to more active molecules, here we have designed new confirmationally restricted thiazoles i.e. substituted *N*-cyclicamino thiazoles. Substituted thiazole moieties have been reported to show affinity towards adenosine receptors. Particularly disubstituted thiazole derivatives reported by Ijherman and co authors showed good affinity to adenosine receptors (van Muijlwijk-Koezen et al. 2001). 2-cyclicaminothiophenes prepared in our lab was active as anti-inflammatory compounds (Pillai et al. 2004). Here we have tried to design similar structural feature with replacement of 2-cycloaminothiophens with 2-cycloaminothiazoles to come up at good adenosine receptors, so here we have designed new substituted *N*-cyclicamino thiazole derivatives for adenosine receptors (Figure 6.1).

Figure 6.1 Design of substituted N-cylicaminothiazoles

6.2 Present Work

The present work describes the synthesis of new 2,4/2,5- disubstituted and trisubstituted *N*-cycilcamino thiazoles (**PMCDP-TZAn**). The synthesis of 2,4-disubstituted thiazoles were achieved by the reaction between various cyclicamino carbothioamide and phenacyl bromide. Synthesis of 2, 5-disubstituted thiazoles was achieved by reaction between cyclicamino carbothioamide, DMF-DMA and phenacyl bromide. And the trisubstituted thiazoles were synthesized by the reaction between *N*-cyclicamino carbonhioyl arylamide and halomethylene compounds. All the structures of the molecules were further confirmed by spectral techniques like Mass and NMR. They were further evaluated for their binding affinity against adenosine receptor. All the three schemes are illustrated in Scheme 6.1.

Scheme 6.1 General synthetic schemes for di/tri substituted *N*-cyclicaminothiazoles As an example, the reaction of *N*-morpholine thiourea with DMF-DMA was done to furnish (Z)-*N*-((dimethylamino)methylene)morpholine-4-carbothioamide. This carbothioamide (1 mmol) intermediate was further reacted with p-chloro phenacyl bromide (1 mmol) in DMF at room temperature which resulted into **PMCDP-TZA1** with

good yields. The structure was further confirmed by LC-MS and ¹H NMR.

The mass spectrum of **PMCDP-TZA1** (Figure 6.2) displayed the molecular ion peak at m/z 309.4(M+1)+ which confirms the molecular weight of the compound 308.7 calculated for C₁₄H₁₃ClN₂O₂S.

Figure 6.2 LC-MS (M+1) of PMCDP-TZA1

The structure of the molecule was further confirmed by ¹H NMR (500 MHz, DMSO D6), which gave the characteristic peaks of all the hydrogens present. The eight protons of four methylene groups present in the morpholine were found in the range of 3.60-3.72 δ . The four aromatic protons of the phenyl ring were found in the range of 7.58-7.79 δ with doublets. The single hydrogen of the thiazole moiety was found most downfield as singlet at 7.86 δ (Figure 6.3).

Figure 6.3 ¹H NMR spectrum of **PMCDP-TZA1**

After confirmation, library of compounds with structural diversification was synthesized (PMCDP-TZAn, Table 6.1).

Table 6.1 Synthesis of substituted N-cyclicaminothiazole derivatives

No	Name	R ₁	R ₂	R ₃
1	PMCDP-TZA1	(4-Cl)PhCO	Н	Morpholin-4-yl
2	PMCDP-TZA2	(4-Cl)PhCO	Н	Pyrrolidin-4-yl
3	PMCDP-TZA3	(4-SO ₂ Me)PhCO	Н	Pyrrolidin-4-yl

4	PMCDP-TZA5	(4-OMe)PhCO	Н	Pyrrolidin-4-yl
5	PMCDP-TZA7	(4-OMe)PhCO	Н	Morpholin-4-yl
6	PMCDP-TZA8	Η	4-ClC ₆ H ₄	Morpholin-4-yl
7	PMCDP-TZA9	Pyridine-4-yl	C ₆ H ₅	Morpholin-4-yl
8	PMCDP-TZA12	Pyridine-4-yl	Furan-2-yl	Morpholin-4-yl
9	PMCDP-TZA13	Pyridine-4-yl	Furan-2-yl	2,4 Dichloro phenyl
				piperazin-4-yl
10	PMCDP-TZA14	Pyridine-4-yl	C ₆ H ₅	piperazin-4-yl 2,4 Dichloro phenyl
10	PMCDP-TZA14	Pyridine-4-yl	C ₆ H ₅	piperazin-4-yl 2,4 Dichloro phenyl piperazin-4-yl
10 11	PMCDP-TZA14 PMCDP-TZA15	Pyridine-4-yl H	C ₆ H ₅ 4-MeC ₆ H ₄	piperazin-4-yl 2,4 Dichloro phenyl piperazin-4-yl Morpholin-4-yl
10 11 12	PMCDP-TZA14 PMCDP-TZA15 PMCDP-TZA16	Pyridine-4-yl H Pyridine-4-yl	C ₆ H ₅ 4-MeC ₆ H ₄ C ₆ H ₅	piperazin-4-yl 2,4 Dichloro phenyl piperazin-4-yl Morpholin-4-yl Diethyl amino

6.3 Biological results and discussion

The binding affinity of the synthesized compounds was evaluated as per the procedure described in the chapter-3. The compounds **PMCDP-TZA9**, **PMCDP-TZA13**, **PMCDP-TZA14** and **PMCDP-TZA16** were found to show affinity towards A_1 , A_{2A} and A_3 adenosine receptors. The compound **PMCDP-TZA14** was selective with affinity for the A_3 subtype (K_i 8.4 µm). The molecule **PMCDP-TZA16** was the most active compound showed less selective due to significant affinity for the A_1 , A_{2A} and A_3 subtypes. Particularly trisubstituted thiazoles were found to be active in this series of molecules. Presence of phenyl or 2-furyl group on the 4th position of thiazole ring was found to be responsible for good activity for the compounds. The presence of hydrogen on the 4th position of thiazole ring was found to be deleterious for the activity (**Table 6.2**).

Table 6.2 Binding affinity of synthesized N-cyclicaminothiazole derivatives

No	Compound	Ki in μM at 95 % Confidence Limits					
110	Compound	hA ₁ ^a	hA _{2A} ^b	hA _{2B} ^d	hA ₃ ^c		
1	PMCDP-TZA1	>100	>100	>10	>100		
2	PMCDP-TZA2	>100	>100	>10	>30		
3	PMCDP-TZA3	>100	>100	>10	>100		
4	PMCDP-TZA5	N.D.	N.D.	N.D.	N.D.		
5	PMCDP-TZA7	N.D.	N.D.	N.D.	N.D.		
6	PMCDP-TZA8	>100	>100	>20	>100		
7	PMCDP-TZA9	2.61	5.57	>20	11.8		
8	PMCDP-TZA12	N.D.	N.D.	N.D.	N.D.		
9	PMCDP-TZA13	18.2	>100	>20	24.9		
10	PMCDP-TZA14	>100	>100	>20	8.44		
11	PMCDP-TZA15	>100	>100	>100	>20		
12	PMCDP-TZA16	0.836	1.77	>20	1.89		
13	PMCDP-TZA17	>100	>100	>20	30.2		

Data are expressed as geometric means with 95% confidence limits.

^aDisplacement of specific [³H]CCPA binding at human A₁ receptors expressed in CHO cells. ^bDisplacement of specific [³H]NECA binding at human A_{2A} receptors expressed in CHO cells. ^c Displacement of specific [³H]HEMADO binding at human A₃ receptors expressed in CHO cells. ^dInhibition of NECA-stimulated adenylyl cyclase activity at human A_{2B} receptors expressed in CHO cells.

6.4 Conclusion

In conclusion, here we have designed new di and trisubstituted *N*-cyclicaminothiazoles for adenosine receptors. New synthetic methodology was developed for the synthesis of

novel 2,4- and 2,5- disubstituted 2-cyclicaminothiazoles. The structure of all the compounds were confirmed and then investigated for their radio ligand binding assay in adenosine receptors. The compound PMCDP-TZA16 was the most active compound as it showed affinity towards the A_1 , A_{2A} and A_3 subtypes in low micromolar range. Overall these series of molecules showed better affinity then the molecules from chapter-4 and chapter-5.

6.5 Experimental

The ¹H NMR spectra were recorded on Bruker NMR spectrometer (400 MHz) using TMS as an internal standard and ¹³C NMR spectra were recorded on Bruker NMR spectrometer at 75 MHz. Proton chemical shifts are expressed in ppm relative to internal tetramethylsilane. Mass spectra were recorded on Perkin Elmer Sciex API 165. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. IUPAC name of the compounds were generated using Cambridge soft ChemBioDraw ultra 12.0. The synthesis of *N*-cyclicamino carbanothioyl arylamide has been described in the chaper-4.

6.5.1. General procedure for the synthesis of cyclicamino methanethiones

To a stirred solution of cyclic amino carbothioamide (1 mmol) in methanol at room temperature, N,N-dimethylformamide dimethylacetal (DMF-DMA, 1.2 mmol) was added drop wise via syringe. The reaction mixture is stirred for 2 hours and the progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). The solvent is distilled off to get the reaction mass which is further triturated to get solid compound cyclicamino methanethione (amidinothiourea). The solid was filtered and washed with methanol to give crude product which was directly used for the next step.

6.5.1.1. Synthesis of (Z)-N-((Dimethylamino)methylene)morpholine-4carbothioamide(E1)

110

The title compound was synthesized using the procedure as described in 6.5.1 by the reaction of morpholin-4-carbothioamide and *N*,*N*-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

6.5.1.2. Synthesis of (Z)-N-((Dimethylamino)methylene)pyrrolidine-4carbothioamide(E2)

The title compound was synthesized using the procedure as described in 6.5.1 by the reaction of pyrrolidin-4-carbothioamide and *N*,*N*-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

6.5.1.3. Synthesis of (Z)-N-((Dimethylamino)methylene)piperidine-4carbothioamide(E3)

The title compound was synthesized using the procedure as described in 6.5.1 by the reaction of pyrrolidin-4-carbothioamide and *N*,*N*-dimethylformamide dimethylacetal (DMF-DMA) to afford the title product.

6.5.2. General procedure for synthesis of 2,5-disubstituted *N*-cyclicamino thiazoles

To a hot air dried round bottomed flask, containing a solution of cyclicamino methanethione (1 mmol) in methanol (2 mL), phenacyl bromide (1 mmol) in methanol (5 mL) was added at ambient temperature and the reaction was further stirred for 4 h with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and

dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-TZAn**) were assigned with the help of NMR and mass spectra.

6.5.3. General procedure for synthesis of 2,4-disubstituted *N*-cyclicamino thiazoles

To a hot air dried round bottomed flask, containing a solution of cyclicamino 4carbothioamide (1 mmol) in methanol (2 mL), phenacyl bromide (1 mmol) in methanol (5 mL) was added and the reaction was further stirred for 4 h at 50⁰ C. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-TZAn**) were assigned with the help of NMR and mass spectra.

6.5.4. General procedure for synthesis of trisubstituted *N*-cyclicamino thiazoles

To a hot air dried round bottomed flask, containing a solution of *N*-cyclicamino carbanothioyl arylamide (1 mmol) in methanol (5 mL), halomethylene compound (1 mmol) in methanol (2 mL) was added. To this solution triethylamine (2 mmol) was added as base and the reaction was further stirred for 4 h at 50° C. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium

sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-TZAn**) were assigned with the help of NMR and mass spectra.

PMCDP-TZA1: (4-Chlorophenyl)(2-morpholinothiazol-5-yl)methanone

Yield: 81%, light yellow solid, mp: 174-181 0 C, Molecular formula: C₁₄H₁₃ClN₂O₂S, LC-MS calculated: 308.7, found: 309.4 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 3.60(s, 4H), 3.72(s, 4H), 7.58 (d, 2H), 7.77 (d, 2H), 7.86(s, 1H).

PMCDP-TZA2: (4-Chlorophenyl) (2-(pyrrolidin-1-yl)thiazol-5-yl)methanone

Yield: 80%, white solid, mp: 144-147 0 C, **Molecular formula:** C₁₄H₁₃ClN₂OS, LC-MS calculated: 292.1, found: 292.7 (M+). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.14 (t, 2H), 2.01(s, 4H), 3.06(d, 2H), 7.57(d, 2H), 7.74(d, 2H), 7.83(s, 1H).

PMCDP-TZA3: (4-(Methylsulfonyl)phenyl)(2-(pyrrolidin-1-yl)thiazol-5-

yl)methanone

113

Yield: 79%, white solid, mp: 172-177 0 C, **Molecular formula:** C₁₅H₁₆N₂O₃S₂, LC-MS calculated: 336.2, found: 336.9 (M+). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 2.05(s, 4H), 2.5(s, 2H), 3.22(s, 3H), 3.51(s, 2H), 7.77(s, 1H), 7.91(d, 2H), 8.03(d, 2H).

PMCDP-TZA5: (4-Methoxyphenyl) (2-(pyrrolidin-1-yl)thiazol-5-yl)methanone

Yield: 73%, white solid, mp: 139-144 0 C, Molecular formula: C₁₅H₁₆N₂O₂S, LC-MS calculated: 288.4, found: 289.3 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 2.03(s, 4H), 2.25(s, 2H), 3.48(d, 2H), 3.83(s, 3H), 7.01(d, 2H), 7.70(d, 2H), 7.98(s, 1H).

PMCDP-TZA7: (4-Methoxyphenyl)(2-(morpholin-1-yl)thiazol-5-yl)methanone

Yield: 78%, white solid, mp: 144-146 0 C, Molecular formula: C₁₅H₁₆N₂O₃S, LC-MS calculated: 304.5, found: 305.3 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 3.56(t, 4H), 3.72(d, 4H), 3.84(s, 3H), 7.02(d, 2H), 7.74(d, 3H).

PMCDP-TZA8: 4-(4-(4-Chlorophenyl)thiazol-2-yl)morpholine

Yield: 59%, white solid, mp: 250-253 0 C, Molecular formula: C₁₃H₁₃ClN₂OS, LC-MS calculated: 280.3, found: 281.5 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 3.57(s, 4H),

3.65(s, 4H), 7.60(d, 2H), 7.80(d, 2H), 7.90(s, 1H). ¹³H NMR (400 MHz, DMSO-*d*₆) δ: 48.18, 48.64, 65.38, 65.28, 103.19, 128.32, 129.49, 132.23, 133.11, 146.61, 170.66. PMCDP-TZA9: 4-(4-Phenyl-5-(pyridin-4-yl)thiazol-2-yl)morpholine

Yield: 75%, light yellow solid, mp: 187-190 ⁰C, Molecular formula: C₁₈H₁₇N₃OS, LC-MS calculated: 323.1, found: 324.8 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.48(t, 4H), 3.75(t, 4H), 7.09(q, 2H), 7.32(q, 3H), 7.42(q, 2H), 8.38(q, 2H). ¹³H NMR (400 MHz, DMSO-*d*₆) δ: 47.84, 65.36, 117.42, 122.29, 128.14, 128.20, 128.66, 134.83, 140.02, 149.05, 149.60, 168.82.

PMCDP-TZA12: 4-(4-(Furan-2-yl)-5-(pyridin-4-yl)thiazol-2-yl)morpholine

Yield: 71%, light yellow solid, **Molecular formula:** C₁₆H₁₅N₃O₂S, LC-MS calculated: 313.1, found: 314.6 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.49(t, 4H), 3.79(t, 4H), 7.03(t, 1H), 7.33(d, 1H), 7.42(q, 1H), 7.86(q, 2H), 8.38(q, 2H).

PMCDP-TZA13: 2-(4-(2,4-Dichlorophenyl)piperazin-1-yl)-4-(furan-2-yl)-5-(pyridin-4-yl)thiazole

Yield: 77%, white solid, **Molecular formula:** C₂₂H₁₈Cl₂N₄OS, LC-MS calculated: 456.2, found: 457.7 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.12(t, 4H), 3.66(t, 4H), 6.52(q,

1H), 6.69(q, 1H), 7.17(d, 1H), 7.28(q, 2H), 7.33(q, 1H), 7.49(d, 1H), 7.55(q, 1H), 8.51(q, 2H).

PMCDP-TZA14: 2-(4-(2,4-Dichlorophenyl)piperazin-1-yl)-4-phenyl-5-(pyridin-4-yl)thiazole

Yield: 82%, white solid, mp: 210-214 0 C Molecular formula: C₂₄H₂₀Cl₂N₄S, LC-MS calculated: 456.2, found: 457.5 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 3.10(t, 4H), 3.60(t, 4H), 6.59(d, 1H), 7.17(q, 2H), 7.38(t, 1H), 7.49(t, 2H), 7.77(d, 2H), 7.81(s, 1H), 7.95(2H, d) 8.51(q, 2H).

PMCDP-TZA15: 4-(4-(p-Tolyl)thiazol-2-yl)morpholine

Yield: 65%, off white solid, **Molecular formula:** $C_{14}H_{16}N_2OS$, LC-MS calculated: 260.6, found: 261.5 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 2.32(s, 3H), 3.44(t, 4H), 3.75(t, 4H), 7.06(s, 1H), 7.15(d, 2H), 7.72(d, 2H).

PMCDP-TZA16: N,N-Diethyl-4-phenyl-5-(pyridin-4-yl)thiazol-2-amine

Yield: 70%, light yellow solid, mp: 145-148 ⁰C, **Molecular formula:** C₁₈H₁₉N₃S, LC-MS calculated: 309.1, found: 309.8 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.52(t, 2H), 3.49(q, 4H), 7.05(q, 2H), 7.33(q, 3H), 7.43-7.45(m, 2H), 8.34(q, 2H).

PMCDP-TZA17: 2-(Piperidin-1-yl)-4-(pyridin-2-yl)thiazole

Yield: 48%, light yellow solid, **Molecular formula:** C₁₃H₁₅N₃S, LC-MS calculated: 245.3, found: 246.2 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.52(t, 4H), 1.59(t, 4H), 3.53(t, 4H), 7.82(t, 2H), 8.45(q, 2H).

6.5.5. Method used for pharmacological evaluation

The methods described in the chapter-3 were used for the pharmacological evaluation for the compounds.

Supporting Information (LC-MS, ¹H-NMR and ¹³C NMR of representative compounds)

119

CHAPTER-7

New substituted 2-amino thiazoles as adenosine receptor ligands

PAGE NO. 121 TO 142

New substituted 2-amino thiazoles as adenosine receptor ligands

7.1 Introduction

One of these novel classes of monocyclic non-xanthine adenosine receptor antagonists recently developed are thiazole derivatives. Novartis compound QAF-805 with 2-aminothiazole ring couple to pyrazine and imidazole heterocycles had shown high affinity in A_{2B} and A_3 adenosine receptors (Press et al. 2005) and the molecule was further developed in asthma (Müller & Jacobson 2011). Different thiazole derivatives designed and synthesized in our department had shown remarkable affinity and selectivity towards adenosine receptors (Scheiff et al. 2010; Inamdar et al. 2013) (Figure 7.1).

Figure 7.1 Design of substituted 2-aminothiazoles

Various stubstituted thiazoles synthesized in chapter-6, had shown good affinity towards adenosine receptors. So, in continuation of previous series of work, here we have design new series of 2-aminothiazole and coupled it with either heterocyclic derivatives or aryl acid derivatives. Further the affinity of these molecules for the adenosine receptors is examined.

7.2 Present work

In this chapter we have modified our design from substituted thiophenyl-thiophene carboxamide and thiophenyl-thiophene carboxamide to substituted 2-aminothiazole derivatives. The synthesis substituted 2-amino thiazoles was achieved by the reaction between *N*-aroyl-*N*'-aryl/heteroaryl thiourea derivatives and halomethylene compounds. The structures of the molecules (**PMCDP-TZBn**) were further confirmed by spectral techniques like Mass and NMR. They were further evaluated for their binding affinity against adenosine receptor. The most active compounds against the subtypes were further docked into the binding site of the respective subtypes to see the possible interaction between the compound and the receptor. The synthetic scheme is illustrated in scheme 7.1.

Scheme 7.1 Synthetic scheme for substituted 2-aminothiazole

As an example, benzoyl isothiocyanate is reacted with 2-aminopyridine to get the intermediate *N*-(pyridine-2-ylcarbamothioyl)benzamide. This intermediate (1 mmol) was dissolved in DMF and 4-(bromoacetyl)pyridine hydrobromide (1 mmol) in DMF was added to it. The reaction was heated to 50° C and it was stirred for 3 hrs. The reaction was monitored by TLC. After completion of reaction, the reaction mixture was poured into ice cold water and the resulted precipitate was collected. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compound

PMCDP-TZB2. The structure of the molecule was further confirmed by LC-MS, ¹H NMR and ¹³C NMR.

The mass spectrum of **PMCDP-TZB2** (Figure 7.2) displayed the molecular ion peak at m/z 358.7(M+) which confirms the molecular weight of the compound 358.1 calculated for C₂₀H₁₄N₄OS.

Figure 7.2 LC-MS (M)⁺ of PMCDP-TZB2

Further the structure of the molecule was confirmed by ¹H NMR (400 MHz, DMSO-*d6*), and it gave the characteristic peak of all the hydrogens present in the molecule. The single –NH proton was observed at 12.17 as singlet. All the other hydrogens were aromatic and found in the region of 7.04-8.43 (Figure 7.3). Further, the structure was confirmed by ¹³C NMR (400 MH_Z in DMSO-*d6*). The carbonyl carbon present in the molecule was observed most downfield at 188.4. All the aromatic carbon present on phenyl, thiophene and thiazole rings were observed in the range of 111.5-161.9 δ (Figure 7.4).

Figure 7.3 ¹H NMR spectrum of **PMCDP-TZB2**

Figure 7.4 ¹³C NMR spectrum of **PMCDP-TZB2**

After confirmation, library of compounds with structural diversification were synthesized (PMCDP-TZAn, Table 7.1).

		PMCDP-12	Б	
No	Code	R ₁	R ₂	R ₃
1	PMCDP-TZB2	4-Pyridoyl	C ₆ H ₅	Pyridin-2-yl
2	PMCDP-TZB4	(4-OMe)Ph-CO	Furan-2-yl	EtOOC
3	PMCDP-TZB5	4-Pyridoyl	Furan-2-yl	EtOOC
4	PMCDP-TZB7	(4-Cl)PhCO	4-OMeC ₆ H ₄	Соон
5	PMCDP-TZB9	(4-Cl)PhCO	Furan-2-yl	Pyrimidin-2-yl
6	PMCDP-TZB10	4-Pyridoyl	4-OMeC ₆ H ₄	Соон
7	PMCDP-TZB11	4-Pyridoyl	4-OMeC ₆ H ₄	NC S
8	PMCDP-TZB12	CF3 O N	Furan-2-yl	Pyrimidin-2-yl
9	PMCDP-TZB13	(4-OMe)PhCO	C ₆ H ₅	H ₂ NOC
10	PMCDP-TZB14	Pyridine-4-yl	C ₆ H ₅	H ₂ NOC
11	PMCDP-TZB15	(4-OMe)PhCO	Furan-2-yl	Pyrimidin-2-yl

 Table 7.1 Synthesis of substituted 2-aminothiazole derivatives

12	PMCDP-TZB16	(4-OMe)PhCO	C ₆ H ₅	Pyrimidin-2-yl
13	PMCDP-TZB19	$H_2N N $	C ₆ H ₅	H ₂ NOC
14	PMCDP-TZB20		4-OMeC ₆ H ₄	NC
15	PMCDP-TZB21	Pyridine-4-yl	C ₆ H ₅	Pyrimidin-2-yl
16	PMCDP-TZB22	Pyridine-4-yl	C ₆ H ₅	Pyridin-2-yl

7.3 Biological results and discussion

The new compounds were investigated in radioligand binding studies at human adenosine receptors as per the procedure described in the chapter-3. Interestingly, most of the compounds showed moderate to high affinity with selectivity at adenosine receptors, with K_i values in the low micromolar to nanomaolar range. The affinity and selectivity toward A₁, A_{2A} and A₃ receptors was considerably high compared to A_{2B} receptor. The compounds **PMCDP-TZB2** (K_i value: A_{2A} = 32.9 nM, A₃ = 42.6 nM), **PMCDP-TZB15** (K_i value: A_{2A} = 418 nM, A₃ = 383 nM), and **PMCDP-TZB22** (K_i value: A₁ = 4.54, A_{2A} = 52.5, A_{2B} = 27.5, A₃ = 1.92), are nonselective compounds with high affinity. For the hA₁ adenosine receptor, compounds **PMCDP-TZB14** and **PMCDP-TZB21** showed high affinity (K_i : 361 nM and 20.2 nM respectively) with high selectivity (>15 folds and >10 folds respectively). For the hA_{2A} adenosine receptor, compound **PMCDP-TZB9** showed high affinity (K_i : 169 nM) with selectivity (>7 folds). For the hA₃ adenosine receptor, compounds **PMCDP-TZB7**, and **PMCDP-TZB16** showed high affinity (K_i : 390 nM, 34.7 nM and 28.2 nM respectively) with high selectivity (>160 folds, >98 folds and >45 folds respectively). All the binding affinity is given in the Table 7.2.

Table 7.2 Binding affinity of synthesized substituted 2-aminothiazoles

No	Compound	Ki in µM at 95 % Confidence Limits						
		A ₁	A _{2A}	A _{2B}	A ₃			
1	PMCDP-TZB2	416	32.9	>10,000	42.6			
2	PMCDP-TZB4	>30	5700	>10,000	390			
3	PMCDP-TZB5	>30	21,700	>10,000	7,080			
4	PMCDP-TZB7	5,790	3,430	>10,000	34.7			
5	PMCDP-TZB9	>30,000	169	>10,000	1100			
6	PMCDP-TZB10	28,900	6,020	>10,000	1,180			
7	PMCDP-TZB11	16,800	24,500	>10,000	2,550			
8	PMCDP-TZB12	>10,000	>10,000	>10,000	>10,000			
9	PMCDP-TZB13	2,700	6,160	>10,000	2,570			
10	PMCDP-TZB14	361	7,270	>10,000	5,350			
11	PMCDP-TZB15	10,100	418	>10,000	383			
12	PMCDP-TZB16	1260	2110	>10,000	28.2			
13	PMCDP-TZB19	>10,000	2320	>10,000	2190			
14	PMCDP-TZB20	>10,000	>10,000	>10,000	2030			
15	PMCDP-TZB21	20.2	1230	218	393			
16	PMCDP-TZB22	4.54	52.5	27.5	1.92			

Data are expressed as geometric means with 95% confidence limits.

^aDisplacement of specific [³H]CCPA binding at human A₁ receptors expressed in CHO cells. ^bDisplacement of specific [³H]NECA binding at human A_{2A} receptors expressed in CHO cells. ^c Displacement of specific [³H]HEMADO binding at human A₃ receptors expressed in CHO cells. ^dInhibition of NECA-stimulated adenylyl cyclase activity at human A_{2B} receptors expressed in CHO cells.

7.4 Molecular docking study

The molecular docking study of the most active molecules **PMCDP-TZB2** and **PMCDP-TZB22** was carried out with the A_{2A} and A_3 adenosine receptors respectively in SurflexDock, SYBYL X-2.0. The molecule PMCDP-TZB2 was docked into the binding pocket of A_{2A} adenosine receptor (PDB ID: 3EML). The bound ligand was removed from the receptor and PMCDP-TZB2 was docked at the same site. The molecule was found to interact with ASN253 and TYR271 by H-bonding interaction. The nitrogen of 4-pyridoyl ring was interacted with hydrogen of hydroxyl group of TYR271 and the nitrogen of 2-pyridyl present on thiazole interacted with amido hydrogen of ASN253. The docking CSCORE was found to be 5 (Figure 7.5). The molecule **PMCDP-TZB22** was docked into the binding pocket of A_3 adenosine receptor (PDB ID: 10EA). The active site was defined by automatic method of SurflexDock and the ligand PMCDP-22 was docked into it. The molecule was found to interact with ASN250 by H-bonding interaction. The nitrogen of ASN250 with the CSCORE of 4 (Figure 7.6).

Figure 7.5(a) Hydrogen interaction of PMCDP-TZB2 with A_{2A} adenosine receptor (b) PMCDP-TZB2 in binding pocket of adenosine A_{2A} receptor

Figure 7.6(a) Hydrogen interaction of PMCDP-TZB22 with A_3 adenosine receptor (b) PMCDP-TZB22 in binding pocket of adenosine A_3 receptor

7.5 Conclusion

In conclusion, here we have designed new series of 2-aminothiazoles. The compounds were synthesized and investigated for their radio ligand binding assay against adenosine receptors. Particularly this series of compounds were found to show high affinity with selectivity towards adenosine receptors in nanomoar range. And the affinity of this series of molecules was highest as compared to the molecules from previous chapters. Further molecular docking study of the most active compounds (towards A_{2A} and A_3 receptor) was carried out in SurflexDock, SYBYL-X 2.0.

7.6 Experimental

The ¹H NMR spectra were recorded on Bruker NMR spectrometer (400 MHz) using TMS as an internal standard and ¹³C NMR spectra were recorded on Bruker NMR spectrometer at 75 MHz. Proton chemical shifts are expressed in ppm relative to internal tetramethylsilane. Mass spectra were recorded on Perkin Elmer Sciex API 165. TLC was carried out on Merck Kieselgel 60 PF₂₅₄. IUPAC name of the compounds were generated using Cambridge soft ChemBioDraw ultra 12.0. The molecular docking study was carried out in the SurflexDock tool available in software SYBYL X-2.0. The synthesis of 6-(chloromethyl)- N^2 , N^2 -dimethyl-1,3,5-triazine-2,4-diamine is well documented in literature (Inamdar et al. 2013).

7.6.1 General procedure for synthesis for *N*-aroyl-*N*'-aryl/heteroaryl thiourea derivatives

To a stirred solution of aroyl isothiocynate (1 mmol) in THF at room temperature, aryl or heteroaryl amine dissolved in THF (1 mmol) was added drop wise. The reaction was stirred for 3h and monitored by TLC. After completion of the reaction, the reaction mixture was poured into the cold water to give precipitates of the desired product. The resultant solid was filtered through high vacuum suction pump and then dissolved in chloroform and dried over anhydrous Na₂SO₄ to remove traces of water. Removal of solvent on rotary evaporator afforded desired compounds after triturating with hexane.

7.6.1.1. Synthesis of N-(Pyridin-2-ylcarbamothioyl)benzamide (F1)

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of benzoyl isothiocyante and 2-aminopyridine to afford the product. **Yield:** 70 %, **LC-MS found:** (M+1) at 258, **Molecular Formula:** $C_{13}H_{11}N_3OS$

7.6.1.2. Synthesis of N-(Pyrimidin-2-yl carbamothioyl)benzamide (F2)

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of benzoyl isothiocyanate and 2-aminopyrimdine to afford the product. **Yield:** 66 %, **LC-MS found:** (M+1) at 259, **Molecular Formula:** $C_{12}H_{10}N_4OS$.

7.6.1.3. Synthesis of 2-(3-Benzoylthioureido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3carboxamide (F3)

130

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of benzoyl isothiocyante and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide to afford the product. **Yield:** 75 %, **LC-MS Found:** (M+1) at 360, **Molecular Formula:** $C_{17}H_{17}N_3O_2S_2$

7.6.1.4. Synthesis of N-(Pyrimidin-2-yl carbamothioyl)furan-2-carboxamide (F4)

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of furoyl isothiocyante and 2-aminopyrimidin to afford the product. **Yield:** 59 %, **LC-MS Found:** (M+) at 248, **Molecular Formula:** $C_{10}H_8N_4O_2S$

7.6.1.5. Synthesis of Ethyl 2-(3-(furan-2-carbonyl)thioureido)-4,5,6,7tetrahydrobenzo[b]thiophene-3-carboxylate (F5)

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of furoyl isothiocyante and ethyl 2-amino-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylateto afford the product. **Yield:** 55 %, **LC-MS Found:** (M+) at 378.2, **Molecular Formula:** $C_{17}H_{18}N_2O_4S_2$

7.6.1.6. Synthesis of N-((3-Cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2yl)carbamothioyl)-4-methoxybenzamide (F6)

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of 4-methoxy benzoyl isothiocyante and 2-amino-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxamide to afford the product. **Yield:** 67 %, **LC-MS Found:** (M+) at 371, **Molecular Formula:** $C_{18}H_{17}N_3O_2S_2$

The title compound was synthesized using the procedure as described in 7.6.1 by the reaction of 4-methoxy benzoyl isothiocyante and 4-aminobenzoic acid to afford the product. **Yield:** 58 %, **LC-MS Found:** (M+) at 330, **Molecular Formula:** $C_{16}H_{14}N_2O_4S$

7.6.2 General procedure for the synthesis substituted of 2-aminothiazoles

To a hot air dried round bottomed flask, containing a solution of *N*-aroyl-*N*'aryl/heteroaryl thiourea (1 mmol) in DMF (5 mL), substituted phenacyl bromide (1 mmol) or helomethylene compound in DMF (2 mL) was added and the reaction was further stirred for 4 h at 50° C. (3 mmol of TEA was added in case of use of starting material like 4-(bromoacetyl)pyridine hydrobromide or 4-chloromethyl pyridine hydrochloride) Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-TZBn**) were assigned with the help of NMR and mass spectra. PMCDP-TZB2: (4-Phenyl-2-(pyridin-2-ylamino)thiazol-5-yl) (pyridin-4yl)methanone

Yield: 59%, Yellow solid, mp: 160-164 ⁰C, **Molecular formula:** C₂₀H₁₄N₄OS, LC-MS calculated: 358.3, found: 359.4 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 7.04(q, 1H), 7.15(d, 1H), 7.26(t, 2H), 7.34(d, 2H), 7.43(t, 1H), 7.56(d, 2H), 7.79-7.84(m, 1H) 8.38(q, 3H), 12.172(s, 1H). ¹³C NMR (400 MHz, DMSO-*d*₆) δ: 111.49, 116.83, 123.68, 124.73, 127.81, 128.82, 131.97, 137.85, 138.19, 142.18, 146.15, 148.81, 150.71, 152.66, 161.94, 188.39.

PMCDP-TZB4: Ethyl 2-((4-(furan-2-yl)-5-(4-methoxybenzoyl)thiazol-2-yl)amino)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 63%, light yellow solid, **Molecular formula:** C₂₆H₂₄N₂O₅S₂, LC-MS calculated: 508.3, found: 509.5 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.16(q, 3H), 1.71(d, 4H), 2.44(d, 2H), 2.65(d, 2H), 3.72(s, 3H), 4.01(t, 2H), 6.61(q, 1H), 6.86(d, 2H), 6.95(d 1H), 7.59(d, 2H), 7.89(s, 1H), 12.72(s, 1H).

PMCDP-TZB5: Ethyl 2-((4-(furan-2-yl)-5-isonicotinoylthiazol-2-yl)amino)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carboxylate

Yield: 53%, off white solid, **Molecular formula:** C₂₄H₂₁N₃O₄S₂, LC-MS calculated: 479.1, found: 479.7 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.16(q, 3H), 1.73(t, 4H), 2.61(t, 2H), 2.79(t, 2H), 4.08(q, 2H), 6.59(q, 1H), 6.97(q, 1H), 7.65(q, 2H), 7.86(s, 1H), 8.27(d, 1H), 8.55(q, 2H).

PMCDP-TZB7: 4-((5-(4-Chlorobenzoyl)-4-(4-methoxyphenyl)thiazol-2-yl)amino) benzoic acid

Yield: 55%, light yellow solid, mp: 154-158 0 C, Molecular formula: C₂₄H₂₇ClN₂O₄S, LC-MS calculated: 464.4, found: 463.5 (M-1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.16(q, 3H), 1.73(t, 4H), 2.61(t, 2H), 2.79(t, 2H), 4.08(q, 2H), 6.59(q, 1H), 6.97(q, 1H), 7.65(q, 2H), 7.86(s, 1H), 8.27(d, 1H), 8.55(q, 2H).

PMCDP-TZB9: (4-Chlorophenyl)(4-(furan-2-yl)-2-(pyrimidin-2-ylamino)thiazol-5-yl)methanone

Yield: 57%, yellow solid, mp: 170-174 ⁰C, **Molecular formula:** C₁₈H₁₁ClN₄O₂S, LC-MS calculated: 382.5, found: 383.4 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 5.82(s, 1H), 6.30(s, 1H), 7.10(d, 2H), 7.62(d, 2H), 8.16(d, 2H), 8.81(s, 2H), 12.68(s, 1H).

PMCDP-TZB10: 4-((5-Isonicotinoyl-4-(4-methoxyphenyl)thiazol-2-yl)amino)benzoic acid

Yield: 55%, light yellow solid, mp: 140-144 0 C, **Molecular formula:** C₂₃H₁₇N₃O₄S, LC-MS calculated: 431.6, found: 430.6 (M-1).

PMCDP-TZB11: 2-((5-Isonicotinoyl-4-(4-methoxyphenyl)thiazol-2-yl)amino)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carbonitrile

Yield: 55%, off white solid, mp: 17-174 ⁰C, **Molecular formula:** C₂₅H₂₀N₄O₂S₂, LC-MS calculated: 472.1, found: 472.8 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.80(s, 3H), 2.53(s, 4H), 3.78(s, 4H), 4.01(t, 2H), 6.79(d, 2H), 7.38(d, 2H), 7.59(d, 2H), 8.42(d, 2H), 12.19(s, 1H).

PMCDP-TZB12: (4-(Furan-2-yl)-5-(3-methyl-4-((trifluoromethoxy)methyl)pyridin-2-yl)-*N*-(pyrimidin-2-yl)thiazol-2-amine

Yield: 66%, yellow solid, mp: 233-236 0 C, **Molecular formula:** C₁₉H₁₄F₃N₅O₂S, LC-MS calculated: 433.1, found: 433.8 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 1.90(s, 3H), 4.86 (q, 2H), 6.41(d, 1H), 6.45(q, 1H), 7.01(t, 1H), 7.15(d, 1H), 7.49(s, 1H), 8.41(d, 1H), 8.61(d, 2H) 12.72(s, 1H).

PMCDP-TZB13: 2-((5-(4-Methoxybenzoyl)-4-phenylthiazol-2-yl)amino)- 4, 5, 6, 7tetrahydrobenzo[*b*]thiophene-3-carboxamide

Yield: 62%, White solid, **Molecular formula:** C₂₅H₂₀N₄O₂S₂, LC-MS calculated: 489.7, found: 490.3 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.71(s, 4H), 2.57(s, 2H), 2.65(s, 2H), 3.83(s, 3H), 4.89(q, 2H), 7.18(S, 1H), 7.41(d, 2H), 7.51(d, 2H), 7.80(m, 4H), 12.72(s, 1H).

PMCDP-TZB14: 2-((4-Phenyl-5-(pyridin-4-yl)thiazol-2-yl)amino)- 4, 5, 6, 7tetrahydrobenzo[*b*]thiophene-3-carboxamide

Yield: 57%, yellow solid, **Molecular formula:** $C_{23}H_{20}N_4OS_2$, LC-MS calculated: 432.5, found: 433.2 (M+1). ¹H NMR (400 MHz, DMSO- d_6) δ : 1.76(s, 4H), 2.65(m, 4H), 7.39-7.41(m, 3H), 7.50-7.53(m, 3H), 7.95(d, 1H), 8.49(d, 2H) 11.54(d, 1H), 11.82(s, 1H), 14.40(s, 1H).

PMCDP-TZB15: (4-(Furan-2-yl)-2-(pyrimidin-2-yl amino) thiazol-5-yl) (4methoxyphenyl)methanone

Yield: 65%, light yellow solid, mp: 212-215 ⁰C, **Molecular formula:** C₁₉H₁₄N₄O₃S, LC-MS calculated: 378.4, found: 379.2 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.86(s, 3H), 5.85(s, 1H), 7.03(d, 2H), 7.31(s, 1H), 7.62(d, 2H), 8.16(d, 2H), 8.81(s, 2H), 12.75(s, 1H).

PMCDP-TZB16: (4-Methoxyphenyl) (4-phenyl-2-(pyrimidin-2-ylamino)thiazol-5-yl)methanone

Yield: 68%, Light yellow solid, mp: 200-203 ⁰C, **Molecular formula:** C₂₁H₁₆N₄O₂S, LC-MS calculated: 388.4, found: 389.3 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.86(s, 3H), 6.94(s, 1H), 6.99(d, 2H), 7.31(m, 3H), 7.78(m, 4H), 8.66 (d, 2H), 12.90(s, 1H).

PMCDP-TZB19:2-((5-(4-Amino-6-(dimethylamino)-1,3,5-triazin-2-yl)-4-phenylthiazol-2-yl)amino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide

Yield: 60%, yellow solid, mp: 137-141⁰C, **Molecular formula:** C₂₃H₂₄N₈OS₂, LC-MS calculated: 492.5, found: 493.4 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.90(s, 3H), 4.86(q, 2H), 6.41 (d, 1H), 6.45(q, 1H), 7.01(t, 1H), 7.15(d, 1H), 7.49 (s, 1H), 8.41(d, 1H), 8.61(d, 2H) 12.72(s, 1H).

PMCDP-TZB20: 2-((5-(4-Amino-6-(dimethylamino)-1,3,5-triazin-2-yl)-4-(4-methoxyphenyl)thiazol-2-yl)amino)-4,5,6,7-tetrahydrobenzo[*b*]thiophene-3-carbonitrile

Yield: 62%, bright yellow solid, mp: 148-152 0 C, Molecular formula: C₂₃H₂₄N₈OS₂, LC-MS calculated: 504.5, found: 505.2 (M+1).

PMCDP-TZB21: 4-Phenyl-5-(pyridin-4-yl)-N-(pyrimidin-2-yl)thiazol-2-amine

Yield: 81%, light yellow solid, mp: 175-180 0 C, Molecular formula: C₁₈H₁₃N₅S, LC-MS calculated: 331.2, found: 332.5 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 6.41(d, 1H),

6.45(s, 1H), 7.01(t, 1H), 7.28(t, 1H), 7.57(m, 3H), 7.99(q, 2H), 8.77(d, 2H) 12.07(s, 1H), 13.67(s, 1H).

PMCDP-TZB22: 4-Phenyl-5-(pyridin-4-yl)-N-(pyridin-2-yl)thiazol-2-amine

Yield: 81%, light yellow solid, mp: >250^oC, **Molecular formula:** $C_{18}H_{13}N_5S$, LC-MS calculated: 331.2, found: 332.5 (M+1). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 7.06(q, 1H), 7.15(d, 1H), 7.30(t, 2H), 7.38(d, 2H), 7.43(t, 1H), 7.56(d, 2H), 7.80(t, 1H) 8.38(q, 3H), 12.20 (s, 1H).

7.6.3 Protocol for molecular docking study

The molecular docking study of our the two most active molecules PMCDP-TZB2 and PMCDP-TZB22 was carried out with A_{2A} and A_3 adenosine receptors respectively in SuflexDock tool available in the SYBYL X-2.0 (Sybyl-X 2.0, Tripos International, A Certara company). The ligands were drawn using the SKETCH module available in the SYBYL X-2.0. The molecules were given Gasteigere-Huckel charges and minimized to a minimum energy conformation. The x-ray crystallographic A_{2A} adenosine receptor was downloaded from protein data bank (PDB ID: 3EML). The A_{2A} adenosine receptor was already having a bound ligand, so that ligand was extracted and that site was taken as binding site. During the protein preparation water molecule was removed, hydrogen atoms, atom types were fixed charges were added and staged minimization was done. The protomol generation gave the binding site of protein and the flexible docking of PMCDP-TZB2 with A_{2A} adenosine receptor was facilitated through the SuflexDock, SYBYL X-2.0. For the docking of PMCDP-TZB22 with A_3 adenosine receptor, the homology modeled receptor (PDB ID: 1EAO) was downloaded from protein data bank. The protein and ligands were prepared explained as earlier.

7.6.4 Method used for pharmacological evaluation

The methods described in the chapter-3 were used for the pharmacological evaluation for the compounds.

Supporting Information (LC-MS and ¹H-NMR of representative compounds)

LC-MS spectrum of PMCDP-TZB15

¹H spectrum of PMCDP-TZB15

CHAPTER-8

3D-QSAR study of thiazole derivatives as adenosine receptor antagonists

PAGE NO. 143 TO 160

3D-QSAR study of thaizole derivatives as adenosine receptor antagonists

8.1 Introduction

The understanding of how a molecular structure brings about a particular effect in a biological system is a key to unlock the relationship between molecule and biological system. Development of these relationships has proved to be the foundation for the development of predictive models. If we take a series of chemicals and attempt to form a *quantitative relationship* between the biological effects (i.e. the *activity*) and the chemistry (i.e. the *structure*) of each of the chemicals, then we are able to form a *quantitative structure–activity relationship* or QSAR. The purpose of QSAR studies is (a) To predict biological activity and physico-chemical properties by rational means and (b) To comprehend and rationalize the mechanisms of action within a series of chemicals.

Three-dimensional quantitative structure–activity relationship (3D-QSAR) techniques are the most prominent computational means to support chemistry within drug design projects where no three-dimensional structure of the macromolecular target is available. The primary aim of these techniques is to establish a correlation of biological activities of a series of structurally and biologically characterized compounds with the spatial fingerprints of numerous field properties of each molecule like as steric and electrostatic interactions. The number of 3D-QSAR studies has exponentially increased over the last decade, since a variety of methods are commercially available in user-friendly, graphically guided software. 3D-QSAR correlates spatially localized features across a chemical series with biological activity. As the descriptors used to represent chemical structure usually encode location dependent structural characteristics that account for activity, the molecular structures need to be aligned across the series. Descriptor types distinguish the two primary types of 3D-QSAR methods: lattice-based descriptors and surface based descriptors. Among the lattice-based methods, CoMFA is by far the most studied and applied 3D-QSAR method (Cramer et al. 1988). In principle, 3D QSAR is more powerful than classical QSAR, because:

- 3D structures are considered instead of only 2D structures
- More heterogeneous sets of compounds can be included than in classic QSAR
- Molecular fields are calculated instead of just substituent constants
- Contour maps show the effect of certain chemical properties in certain regions.

8.2 Present work

In the present work we have performed COMFA studies on the all the molecules which have shown activity towards adenosine receptor subtypes from chapter-3, chapter-4, chapter-6 and chapter-7. Three different set of molecules with biological activities against A_1 , A_{2A} and A_3 and were taken and the COMFA study was performed. The statistical results and contour maps generated through 3D QSAR study were analyzed.

8.3 Material and Method

8.3.1 Data set

The study involved the three different set of molecules active against A_1 , A_{2A} and A_3 adenosine receptor subtypes. The data set of (i) 18 active compounds against A_1 subtype (ii) 18 active compounds against A_{2A} subtype and (iii) 26 active compounds against A_3 subtype was taken for the study. The affinity (K_i) was transformed to negative logarithmic units marked as p K_i in the CoMFA. The data set was divided into training set to generate the 3D-QSAR models and test set to evaluate the predictive ability of the developed models. (Table 8.1-8.3)

Table 8.1 Structures and biological activity of A1 adenosine receptor antagonists used for3D QSAR study

No	Code	R ₁	R ₂	R ₃		R ₄	R 5	PK _i		
								(A ₁)		
1	PMCDP-5	-(CH ₂)	t-	-COO	Et 4	4-MeC ₆ H ₄	C ₆ H ₅	5.11		
2	PMCDP-6	-(CH ₂)	t-	-COO	Et	-N(Me) ₂	4-MeC ₆ H ₄	4.63		
3	PMCDP-12	-(CH ₂)	t-	-CON	H_2 4	4-MeC ₆ H ₄	C ₆ H ₅	5.63		
4	PMCDP-21	-COOMe	Me	-COO	Et	-N(Me) ₂	4-OMeC ₆ H ₄	4.85		
5	PMCDP-25	-COOMe	Me	-COO	Et	-N(Me) ₂	4-MeC ₆ H ₄	4.72		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
No	Code	\mathbf{R}_1 \mathbf{R}_2]	R ₃]	R ₄	X	PK _i		
								(A ₁)		
6	PMCDP-29	-(CH ₂) ₄ -	-C0	DOEt	Fura	ın-2-yl	0	5.14		
			R ₁ -	R ₂ N S	[_] R₃					
No	Code	R ₁			\mathbf{R}_2		R ₃	PK _i (A ₁)		
7	PMCDP-TZA9	Pyridine	e-4-yl	(C ₆ H ₅	Mc	rpholin-4-yl	5.58		
8	PMCDP-TZA13	Pyridine	e-4-yl	yl Furan-2-yl		1 2,4-D 1 pij	ichloro phenyl perazin-4-yl	4.73		
9	PMCDP-TZA16	9 Pyridine	e-4-yl	0	C_6H_5	Di	ethyl amino	6.07		
	$ \begin{array}{c} $									
No	Code	R	1		R ₂		R ₃	PK _i		
								(A ₁)		
10	PMCDP-TZB2	4-Pyri	doyl		C_6H_5	F	yridin-2-yl	6.38		

11	PMCDP-TZB7	(4-Cl)PhCO	4-OMeC ₆ H ₄	Соон	5.23
12	PMCDP-TZB11	4-Pyridoyl	4-OMeC ₆ H ₄	NC S	4.77
13	PMCDP-TZB13	(4-OMe)PhCO	C ₆ H ₅	H ₂ NOC	5.56
14	PMCDP-TZB14	Pyridine-4-yl	C ₆ H ₅	H ₂ NOC	6.44
15	PMCDP-TZB15	(4-OMe)PhCO	Furan-2-yl	Pyrimidin-2-yl	4.99
16	PMCDP-TZB16	(4-OMe)PhCO	C ₆ H ₅	Pyrimidin-2-yl	5.90
17	PMCDP-TZB21	Pyridine-4-yl	C ₆ H ₅	Pyrimidin-2-yl	7.70
18	PMCDP-TZB22	Pyridine-4-yl	C ₆ H ₅	Pyridin-2-yl	8.34

Table 8.2 Structures and biological activity of A_{2A} adenosine receptor antagonists used for 3D QSAR study

	$ \begin{array}{c} $											
No	NoCode R_1 R_2 R_3 R_4 R_5 $\begin{array}{c} PK_i \\ (A_{2A}) \end{array}$											
1	PMCDP-5	-(CH ₂)2	ļ -	-COOEt	$4-MeC_6H_4$	C ₆ H ₄	4.54					
2	PMCDP-6	-(CH ₂)2	ļ-	-COOEt	-N(Me) ₂	4-MeC ₆ H ₄	4.74					
3	PMCDP-11	-(CH ₂)2	ļ-	-CONH ₂	-N(Me) ₂	4-MeC ₆ H ₄	4.65					
4	PMCDP-20	-(CH ₂)2	ļ-	-CONH ₂	4-MeC ₆ H ₄	C ₆ H ₅	5.25					
5	PMCDP-21	-COOMe	Me	-COOEt	-N(Me) ₂	4-OMeC ₆ H ₄	5.02					
6	PMCDP-25	-COOMe	Me	-COOEt	$-N(Me)_2$	$4-\text{MeC}_6\text{H}_4$	4.76					

	$ \begin{array}{c} $										
No	Code	R ₁	R ₂	R ₃	R ₄	X	PK _i (A _{2A})				
7	PMCDP-28	-COOMe	Me	-COOEt	Furan-2-yl	0	4.74				
8	PMCDP-29	-(CH ₂)	4-	-COOEt	Furan-2-yl	0	5.04				
9	PMCDP-37	-COOMe	Me	-CN	Furan-2-yl	N-Me	5.08				
	$ \begin{array}{c} $										
No	Code	R	1	R ₂	R	3	PKi				
				2		5	(A _{2A})				
10	PMCDP-TZB2	4-Pyri	doyl	C ₆ H ₅	Pyridi	n-2-yl	7.48				
11	PMCDP-TZB4	(4-OMe))PhCO	Furan-2-yl	EtOOC	s	5.24				
12	PMCDP-TZB9	(4-Cl)F	PhCO	4-OMeC ₆ H	4	—СООН	6.77				
13	PMCDP-TZB13	(4-OMe))PhCO	C ₆ H ₅	H ₂ NOC	s	5.21				
14PMCDP-TZB14Pyridine-4-yl C_6H_5 H_2NOC 5.1						5.14					
15	PMCDP-TZB15	(4-OMe))PhCO	Furan-2-yl	Pyrimic	lin-2-yl	6.38				
16	PMCDP-TZB16	(4-OMe))PhCO	C ₆ H ₅	Pyrimic	lin-2-yl	5.68				
17	PMCDP-TZB21	Pyridin	e-4-yl	C ₆ H ₅	Pyrimic	lin-2-yl	5.91				
18	PMCDP-TZB22	Pyridin	e-4-yl	C ₆ H ₅	Pyridi	n-2-yl	7.28				

Table 8.3 Structures and biological activity of A_3 adenosine receptor antagonists used for

3D QSAR study

	$ \begin{array}{c} $									
No	Code	R ₁	R ₂	R ₃	R ₄		R ₅	PK _i		
								(A ₃)		
1	PMCDP-2	-(CH ₂) ₄	ļ -	-COOEt	Me	4-	MeC_6H_4	5.08		
2	PMCDP-3	-(CH ₂) ₄	ļ-	-COOEt	P-MeC ₆ H	[4 4-	MeC ₆ H ₄	5.66		
3	PMCDP-4	-(CH ₂) ₄	ļ-	-COOEt	P-MeC ₆ H	I ₄ 4-0	DMeC ₆ H ₄	6.28		
4	PMCDP-5	-(CH ₂) ₄	ļ-	-COOEt	$4-\text{MeC}_6\text{H}$	[4	C ₆ H ₅	5.39		
5	PMCDP-6	-(CH ₂) ₄	ļ-	-COOEt	-N(Me) ₂	4-	MeC ₆ H ₄	5.33		
6	PMCDP-8	-(CH ₂) ₄	ļ-	-CONH ₂	4-MeC ₆ H	[4	C ₆ H ₅	4.45		
7	PMCDP-11	-COOMe	Me	-COOEt	-N(Me) ₂	4-0	DMeC ₆ H ₄	5.15		
8	PMCDP-14	-(CH ₂).	4	-CN	4-MeC ₆ H	I ₄ 4-0	DMeC ₆ H ₄	5.02		
9	PMCDP-19	-(CH ₂) ₄	ļ-	-CONH ₂	4-MeC ₆ H	I ₄ P-	MeC ₆ H ₄	6.48		
10	PMCDP-20	-(CH ₂) ₄	ļ-	-CN	Me	P-	MeC ₆ H ₄	5.41		
11	PMCDP-25	-COOMe	Me	-COOEt	-N(Me) ₂	4-	MeC ₆ H ₄	5.41		
	$ \begin{array}{c} $									
No	Code	R ₁	R ₂	R ₃	F	R ₄	X	PK _i		
								(A ₃)		
12	PMCDP-24	-(CH2	2)4-	-COO	Et C ₆	H_5	0	5.54		
13	PMCDP-28	-COOMe	Me	-COO	Et Furar	n-2-yl	0	5.14		
14	PMCDP-29	-(CH2	2)4-	-COO	Et Furar	n-2-yl	0	5.37		

	$ \begin{array}{c} $								
No	Code	R ₁ R ₂	R ₃		R ₄		R ₅	PK _i	
								(A ₃)	
15	PMCDP-41	o	-CONH	H_2	-NH	[₂	C ₆ H ₅	5.31	
		I		≻_N H	R ₃				
No	Code	R ₁			R ₂		R ₃	PK _i	
		1			2		5	(A ₃)	
16	PMCDP-TZB2	4-Pyrid	oyl	(C_6H_5	Pyridin-2-yl		7.38	
17	PMCDP-TZB4	(p-OMe)I	PhCO	Furan-2-yl		EtOOC s		6.41	
18	PMCDP-TZB7	(4-Cl)Pł	nCO	4-OMeC ₆ H ₄			Соон	7.47	
19	PMCDP-TZB9	(4-Cl)Pł	nCO	4-OI	MeC ₆ H ₄		Соон	5.96	
20	PMCDP-TZB11	4-Pyrid	oyl	4-OI	MeC ₆ H ₄	NC	s	5.59	
21	PMCDP-TZB13	(4-OMe)I	PhCO	(C_6H_5	H ₂ NO	c s	5.59	
22	PMCDP-TZB14	Pyridine	-4-yl	yl C ₆ H ₅ H ₂ NOC		c s	5.27		
23	PMCDP-TZB15	(4-OMe)I	PhCO	Fur	an-2-yl	Pyrii	nidin-2-yl	6.42	
24	PMCDP-TZB16	(4-OMe)I	PhCO	(C_6H_5	Pyrii	nidin-2-yl	7.55	
25	PMCDP-TZB21	Pyridine	-4-yl	(C_6H_5	Pyrii	nidin-2-yl	6.41	
26	PMCDP-TZB22	Pyridine	-4-yl	(C_6H_5	Pyr	idin-2-yl	8.72	

149

8.3.2 Molecular modeling and Alignment

All the molecules were drawn using the SKETCH module available in SYBYL X-2.0 and the staticstical anyalysis was performed in the QSAR module of SYBYL X-2.0 (Sybyl-X 2.0, Tripos International, A Certara company). Energy minimization of the molecular structure was performed using the Powell gradient algorithm with the Tripos force field (Clark et al. 1989) and Gasteiger–Huckel charge (Gasteiger & Marsili 1980). The lowest energy conformation was considered to perform 3D-QSAR calculations. Here the most potent compound (i) PMCDP-TZB22 for A₁ adenosine receptor (ii) PMCDP-TZB2 for A_{2A} adenosine receptor (iii) PMCDP-TZB22 for A₃ adenosine receptor were chosen as the template for alignment. The reference atoms for (i) A₁ adenosine receptor antagonist shown in figure 1a (ii) A_{2A} adenosine receptor antagonist shown in figure 3a were chosen for alignment of the compounds. Each compound was aligned to the template using the Align Database function due to its easy implementation and effectiveness. The core structure taken for alignment and the aligned compounds for the three different databases are displayed in for Figure 8.1, Figure 8.2 and Figure 8.3.

Figure 8.1 Alignment of all the active molecules in training and test sets (a) scaffold of compound PMCDP-TZB22, the atoms used for alignment are depicted as balls (b) 3D-view of aligned molecules of A_1 adenosine receptor antagonists

Figure 8.2 Alignment of all the molecules in training and test sets (a) scaffold of compound PMCDP-TZB2, the atoms used for alignment are depicted as balls (b) 3D-view of aligned molecules of A_{2A} adenosine receptor antagonists

Figure 8.3 Alignment of all the molecules in training and test sets (a) scaffold of compound PMCDP-TZB22, the atoms used for alignment are depicted as balls (b) 3D-view of aligned molecules of A_3 adenosine receptor antagonists

8.3.3 CoMFA

The CoMFA descriptors, steric (Lennard–Jones 6–12 potential) and electrostatic (Coulomb potential) fields energies between the probe and the test molecule at each lattice intersection were calculated with a grid step size of 2 Å using sp³ C⁺ as probe atom. The CoMFA fields generated automatically were scaled by the CoMFA-STD method with default energy of 30 kcal/mol.

8.3.4 Regression

The partial least squares (PLS) (Ståhle & Wold 1987) method implemented in the QSAR module of SYBYL was used to construct and validate the models. The CoMFA descriptors derived above and pK_i values were used as dependent variable in PLS regression analysis. The performance of models was calculated using the leave-one-out (LOO) cross-validation method (Wold 1978; Cramer et al. 1988). The cross-validated coefficient, q^2 , was evaluated as:

$$q^{2} = 1 - \frac{\sum_{i=1}^{n} \left(Y_{\text{predicted}} - Y_{\text{observed}}\right)^{2}}{\sum_{i=1}^{n} \left(Y_{\text{observed}} - Y_{\text{mean}}\right)^{2}}$$

where $Y_{predicted}$, $Y_{observed}$, and Y_{mean} are predicted, observed, and mean values of the target property (pK_i), respectively. The optimal number of components (ONC) equal to that yielding the highest cross-validated q² was used to generate the final PLS regression (noncross-validated conventional analysis) models. The conventional correlation coefficient r² and its standard error of estimate (SEE) were subsequently computed for the final PLS models. CoMFA coefficient maps were generated by interpolation of the pairwise products between the PLS coefficients and the standard deviations of the corresponding CoMFA descriptor values.

8.4 Result and Discussion

8.4.1 CoMFA Statistical results

CoMFA models were developed for three different set of compounds and all the models gave statistically significant results. The statistical results for CoMFA models are summarized in table 4. The best CoMFA model gave (1) the cross-validated q^2 of 0.554 with an optimal number of components (ONC) of 3 and non-cross-validated correlation coefficient r^2 of 0.977 for data set of A₁ adenosine receptor antagonists, (2) the crossvalidated q^2 of 0.448 with an optimal number of components (ONC) of 3 and non-crossvalidated correlation coefficient r^2 of 0.96 for data set of A_{2A} adenosine receptor antagonists and (3) the cross-validated q^2 of 0.502 with an optimal number of components (ONC) of 6 and non-cross-validated correlation coefficient r^2 of 0.982 for data set of A_3 adenosine receptor antagonists (Table 8.4).

Further to test the predictive ability of the model, the three CoMFA models were selected for the prediction of the biological activity for the same three set of molecules. These results are a clear indication that our models have good predictive ability. Table 8.5-8.7 shows the observed and predicted biological activity for all the three data sets. These models were further taken for the generation of contour maps and analysis of biological activity of the compounds. The plots of the predicted versus observed pK_i values for the three models are shown in Figure 8.5-8.7.

Table 8.4 Summary of CoMFA results for all the three datasets

Adenosine receptor		A ₁	A _{2A}	A ₃
No. of Molecules	Training Set	12	13	21
	Test Set	5	5	5
q ^{2a}		0.554	0.448	0.502
r ^{2b}		0.977	0.96	0.982
SEE ^c		0.264	0.22	0.165
ONC ^d		3	3	6

^aCross-validated correlation coefficient after leave-one-out procedure.

^bOptimal number of principal components.

^cCorrelation coefficient.

^dStandard error of estimate.

Table 8.5 Observed and predicted activities for training and test sets compounds by 3D

No	Code	Observed PK _i (A ₁)	Predicted PK _i (A ₁)	Residue
1	PMCDP-5	5.11	5.12	0.01
2	PMCDP-6	4.74	4.74	0
3	PMCDP-12	5.64	5.10	-0.54
4	PMCDP-21	4.86	4.75	-0.11
5	PMCDP-25	4.72	4.73	0.01

QSAR models for A1 adenosine receptor antagonists
6	PMCDP-29	5.14	4.22	-0.92
7	PMCDP-TZA9	5.58	6.05	0.47
8	PMCDP-TZA13	4.74	4.51	-0.23
9	PMCDP-TZA16	6.08	6.46	0.38
10	PMCDP-TZB2	6.38	6.34	-0.04
11	PMCDP-TZB7	5.24	5.18	-0.06
12	PMCDP-TZB11	4.77	4.78	0.01
13	PMCDP-TZB13	5.57	5.50	-0.07
14	PMCDP-TZB14	6.44	6.35	-0.09
15	PMCDP-TZB15	5.00	5.66	0.66
16	PMCDP-TZB16	5.90	6.09	0.19
17	PMCDP-TZB21	7.70	7.68	-0.02
18	PMCDP-TZB22	8.35	8.18	-0.17

Table 8.6 Observed and predicted activities for training and test sets compounds by 3D

No	Code	Observed	Predicted	Residue	
		$\mathbf{PK}_{i}(\mathbf{A}_{2\mathbf{A}})$	$PK_i(A_{2A})$		
1	PMCDP-5	4.54	4.44	-0.1	
2	PMCDP-6	4.74	4.81	0.07	
3	PMCDP-11	4.65	5.06	0.41	
4	PMCDP-20	5.25	5.22	-0.03	
5	PMCDP-21	5.02	4.99	-0.03	
6	PMCDP-25	5.58	4.55	-1.03	
7	PMCDP-28	4.74	4.64	-0.1	
8	PMCDP-29	5.04	5.18	0.14	
9	PMCDP-37	5.08	5	-0.08	
10	PMCDP-TZB2	7.48	7.21	-0.27	
11	PMCDP-TZB4	5.24	5.21	-0.03	
12	PMCDP-TZB9	6.77	6.86	0.09	
13	PMCDP-TZB13	5.21	5.14	-0.07	
14	PMCDP-TZB14	5.14	5.41	0.27	
15	PMCDP-TZB15	6.38	6.62	0.24	
16	PMCDP-TZB16	6.68	6.76	0.08	
17	PMCDP-TZB21	5.91	6.32	0.41	
18	PMCDP-TZB22	7.28	6.97	-0.31	

QSAR models for A_{2A} adenosine receptor antagonists

Table 8.7 Observed and predicted activities for training and test sets compounds by 3D

No	Code	Observed PK. (A.)	Predicted PK. (A.)	Residue
1	PMCDP-2	$\frac{1}{5} \frac{1}{100}$	5.02	-0.06
2	PMCDP-3	5.65	5.62	0.00
3	PMCDP-4	6.28	6.28	0.01
4	PMCDP-5	5 39	5 38	-0.01
5	PMCDP-6	5 33	5 33	-0.01
6	PMCDP-8	0.55 4.45	<u> </u>	0
7	PMCDP-11	5.15	5.14	_0.01
8	PMCDP-14	5.02	5.02	-0.01
9	PMCDP-19	6.48	6 59	0.11
10	PMCDP-20	5 41	5 41	0.11
11	PMCDP-25	5.41	5.41	0
12	PMCDP-24	5 54	5 53	-0.01
13	PMCDP-28	5.14	5.13	-0.01
14	PMCDP-29	5 37	5 36	-0.01
15	PMCDP-41	5 31	5 31	0
16	PMCDP_T7R2	7 38	7 37	-0.01
17	PMCDP-TZB2	6.41	6.41	-0.01
18	PMCDP-T7B7	7 47	7 47	0
10	PMCDP-TZB9	5.96	5.96	0
20	PMCDP-T7B11	5.50	5.50	0.01
20	PMCDP-TZB13	5 59	5.6	0.01
22	PMCDP-TZB14	5.27	5.0	0.01
23	PMCDP-TZB15	6.42	6.42	0
23	PMCDP-TZB16	7 55	7 55	0
25	PMCDP-TZB21	6.41	6.41	0
26	PMCDP-TZB22	8.72	8.72	0

QSAR models for A_3 adenosine receptor antagonists

Figure 8.4 Plot of the predicted versus observed pK_i values for all the molecules based on CoMFA ($q^2 = 0.554$, $r^2 = 0.977$) model of A₁ adenosine receptor antagonists

Figure 8.5 Plot of the predicted versus observed pK_i values for all the molecules based on CoMFA ($q^2 = 0.448$, $r^2 = 0.96$) model of A_{2A} adenosine receptor antagonists

Figure 8.6 Plot of the predicted versus observed pK_i values for all the molecules based on CoMFA ($q^2 = 0.502$, $r^2 = 0.982$) model of A₃ adenosine receptor antagonists

8.4.2 CoMFA contour maps

The steric and electrostatic contour maps of the best CoMFA model are shown in Figure 7-9. Compounds PMCDP-TZB2 was used as reference for the contour maps of A_1 and A_3 adenosine receptor whereas PMCDP-TZB22 was used as a reference in case of contour maps of A_{2A} adenosine receptor. The green contours represent regions where bulky substituents would increase the activity, while the yellow contours represent regions where steric bulky group would be unfavourable. Furthermore, the blue and red contours depict the position where positively charged groups and negatively charged groups would be favorable, respectively.

• Analysis of CoMFA contour maps of A₁ adenosine receptor antagonists

In the CoMFA steric contour map (Fig. 7A), the steric favorable green contour on pyridine-2-yl at 2nd position of thiazole ring indicates that bulky group in this region is important for activity. The two steric unfavorable yellow contours near the on the both side of thiazole ring suggest that further substitution on these two pyridine rings may decrease activity. Moreover, in the CoMFA electrostatic contour map (Fig. 7B), a red

contour is majorly distributed on pyridine-2-yl at 2^{nd} position of thiazole ring where electronegative groups are favourable. These findings suggest that groups groups like - NO₂, -Cl or -CH₃ can increase the activity near red area.

Figure 8.7 (a) Steric contour maps around PMCDP-TZB22 (b) Electrostatic contour maps around PMCDP-TZB22

• Analysis of CoMFA contour maps of A_{2A} adenosine receptor antagonists

In the CoMFA steric contour map (Fig. 8A), the steric favorable green contour on phenyl ring at 4^{th} position of thiazole ring indicates that bulky group in this region is important for activity. The green contour map is also present just under the secondary amino (–NH) at 2^{nd} position of thiazole ring suggesting that bulk is important for the biological activity. In the electrostatic contour map (Fig. 8B), on the both side of thiazole ring suggested that electropositive groups are favoured. Red contour is present just under the thiazole moiety where electronegative groups are favourable. The groups -OH and -NH₂ can increase the activity near blue area and the groups -NO₂, -Cl or –CH₃ can increase the activity near red area.

Figure 8.8 (a) Steric contour maps around PMCDP-TZB2 (b) Electrostatic contour maps around PMCDP-TZB2

• Analysis of CoMFA contour maps of A₃ adenosine receptor antagonists

In the CoMFA steric contour map (Fig. 9A), the steric favorable green contour on phenyl ring at 4th position of thiazole ring indicates that bulky group in this region is important for activity. The green contour map is also present just under the para position of aminopyridine ring of thiazole moiety where more bulk can increase activity. The yellow contour present at the 4th position of the pyridine-4-yl indicates that no further bulk is required. In the electrostatic contour map (Fig. 9B), majorly blue contour is present on the both pyridine ring of the thiazole moiety suggesting that electropositive groups can favour the activity. Presence of groups like -OH and -NH₂ can increase the activity near blue area.

Figure 8.9 (a) Steric contour maps around PMCDP-TZB22(b) Electrostatic contour maps around PMCDP-TZB22

8.5 Conclusion

The CoMFA 3D-QSAR models for three set of A_1 , A_{2A} and A_3 receptor antagonists were developed. The best CoMFA models gave the cross-validated q^2 values of 0.554, 0.448 and 0.502 and the non-crossvalidated r^2 values of 0.977, 0.96 and 0.982 for A_1 , A_{2A} and A_3 adenosine receptor respectively. The CoMFA model showed better predictive ability for the activity. The CoMFA contour maps can help to understand the structure–activity relationship and identify structural features influencing the biological activity. Furthermore, the satisfactory predictive ability of 3D-QSAR models observed for the same set of compounds indicates that these models could be successfully used for predicting activity of the antagonists and can guide the further modification of these compounds.

CHAPTER-9

Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazines

PAGE NO. 161 TO 169

Novel synthetic methodology: Development of new 2-amino/cyclicamino 1,3,4-thiadiazines

9.1 Introduction

With the interest in the development of the biologically important heterocyclic compound, herein we have developed novel synthetic methodology for new 2-amino/cyclicamino 1,3,5-thiadiazines. The thiadiazines are important heterocyclic compounds and molecules bearing the 1,3,4-thiadiazine core have received attention due to their therapeutic activities (Schröder et al. 2001; Karegoudar et al. 2008; el-Shehry et al. 2010). Literature survey shows that the most common route for the synthesis of 1,3,4-thiadiazine derivatives is via the condensation of thiosemicarbazides and α -haloketones (Kilburn et al. 2002; Moghimi et al. 2013). In addition, the diversity of the possible thiadiazines from this method is limited due to the use of only two starting materials.

9.2 Present work

As part of development of structurally and biologically novel heterocycles, herein we report series of novel 2-amino/cyclicamino 1,3,4 thiadiazines from substituted 4-aryl thiosemicarbazide and 4-cyclicamino thiosemicarbazides.

9.2.1 Synthesis of substituted 2-amino 1,3,4- thiadiazine

The synthesis of 2-amino 1,3,4- thiadiazine involves reaction of substituted isothiocyanate with hydrazine in THF which gives substituted thiosemicarbazide intermediate. This thiosemicarbazide intermediate on further reaction with various α -haloketones followed by cyclization and dehydration at 50 0 C gives substituted 2-amino 1,3,4 thiadiazines (Scheme 9.1). Later this synthetic methodology was modified to the sequential one-pot reaction for the preparation of the substituted 2-amino 1,3,4-thiadiazines by reaction the three starting materials in the sequence of isothiocyanate, hydrazine and phenacyl bromide in one flask to give the desired product.

Scheme 9.1 Synthetic scheme for substituted 2-amino 1,3,4-thiadiazine

As an example, the reaction of p-tolyl isothiocyanate (1 mmol) was reacted with hydrazine (1.2 mmol) in THF to furnish 4-tolyl thiosemicarbazide. This thiosemicarbazide intermediate (1 mmol) was directly reacted with 4-chlorophenyacyl bromide (1 mmol) in THF at 50 $^{\circ}$ C which resulted into 5-(4-chlorophenyl)-*N*-(*p*-tolyl)-6H-1,3,4-thiadiazin-2-amine (**PMCDP-TD1**) with good yield. The mass spectrum of **PMCDP-TD1** (Figure 9.1) displayed the molecular ion peak at *m*/*z* 316.2(M+1) which confirms the molecular weight of the compound 315.06 calculated for C₁₆H₁₄ClN₃S.

Figure 9.1 LC-MS spectrum of PMCDP-TD1

4-ClC₆H₄

4-ClC₆H₄

R	$N \xrightarrow{N} R_2$	
Compound	R ₁	R ₂
PMCDP-TD1	4-MeC ₆ H ₄	4-ClC₆H₄
PMCDP-TD4	4-MeC ₆ H ₄	4-MeC ₆ H ₄

 $4-ClC_6H_4$

-H

Table 9.1 Synthesis of 2-amino 1,3,4-thiadiazine derivatives

9.2.2 Synthesis of substituted 2-cyclicamino 1,3,4- thiadiazine

No.

1

2

3

4

PMCDP-TD5

PMCDP-TD6

The synthesis of 2-cyclicamino 1,3,4-thiadiazine derivatives was started by the reaction of cyclic amine with 20 molar solution of sodium hydroxide and carbon disulphide in THF at 0-5 0 C. After 30 minutes methyl iodide was added dropwise at 0-5 0 C to this solution. Stirring was continued for 2 hrs and the mixture was poured into water. The precipitates of the product intermediate carbodithioate (**3**) was filtered, washed with hexane and dried for further reaction. The intermediate **3** was further dissolved in THF and to this solution hydrazine hydrate was added and the reaction was stirred for 8 hrs at room temperature to give 4-cyclicamino thiosemicarbazide (**4**). This 4-cyclicamino thiosemicarbazide on further reaction with various α -haloketones followed by cyclization and dehydration at 50 0 C gives substituted 2-cyclicamino 1,3,4 thiadiazines (**5**) (Schme 9.2).

As an example, the reaction of 4-(2,4-dichlorophenyl)piperazine-1-carbothiohydrazide (1 mmol) was reacted with 4-methoxy phenacyl bromide (1 mmol) in THF at 50 0 C to give 2-(4-(2,4-dichlorophenyl)piperazin-1-yl)-5-(p-tolyl)-6H-1,3,4-thiadiazine (**PMCDP-TD9**) with good yields. The mass spectrum of **PMCDP-TD9** (Figure-9.2) displayed the molecular ion peak at m/z 419.1(M+1) which confirms the molecular weight of the compound 418.06 calculated for C₂₀H₂₀Cl₂N₄S.

Figure 9.2 LC-MS spectrum of PMCDP-TD9

Table 9.2- Synthesis of 2-cyclicamino 1,3,4-thiadiazine derivatives

No.	Code	R ₁	X
1	PMCDP-TD9	4-MeC ₆ H ₄	2,4 dichloro phenyl piperazin-4-yl
2	PMCDP-TD10	4-MeC ₆ H ₄	0

9.3 Conclusion

In conclusion, we have developed a novel synthesis of 2-amino 1,3,4-thiadiazine and 2-cyclicamino 1,3,4-thiadiazine using substituted thiosemicarbazide and α -haloketones in good to excellent yields. The synthesis of 2-amino 1,3,4-thiadiazine was developed as one-pot synthesis. The advantage of this method is its facile conditions and the product can be isolated with good purity. This approach could be useful for the generation of compound libraries of thiadiazine scaffold with diverse substitutions.

9.4 Experimental

Mass spectra were recorded on Perkin Elmer Sciex API 165. TLC was carried out on Merck Kieselgel 60 PF_{254} . IUPAC name of the compounds were generated using Cambridge soft ChemBioDraw ultra 12.0.

9.4.1 General procedure for the synthesis of substituted 4-cyclicamino carbodithioate

To a stirred solution of cyclic amine (1 mmol) in THF at room temperature, aqueous 20 molar sodium hydroxide and carbon disulphide (1.3 mmol) were added at 0-5 0 C. After 30 minutes, methyl iodide (1.3 mmol) was added dropwise at 0-5 0 C to this solution. Stirring was continued for 2 hrs and the mixture was poured into water. The precipitates of the product intermediate 4-cyclicamino carbodithioate (**3**) was filtered, washed with hexane and dried for further reaction.

9.4.1.1 Synthesis of methyl 4-(2,4-dichlorophenyl)piperazine-1-carbodithioate

4-(2,4-dichlorophenyl)piperazine-1-carbodithioate was synthesized using the procedure described in 9.4.1 by the reaction of 1-(2,4-dichlorophenyl)piperazine, sodium hydroxide and methyl iodide to afford the crude product which was directly taken for the next step.

9.4.1.2 Synthesis of methyl morpholin-4-carbodithioate

Morpholin-4-carbodithioate was synthesized using the procedure described in 9.4.1 by the reaction of morpholine, sodium hydroxide and methyl iodide to afford the crude product which was directly taken for the next step.

9.4.2 General procedure for the synthesis of substituted 4-cyclicamino thiosemicarbazide

The 4-cyclicamino carbodithioate (**3**) was dissolved in THF and to this solution hydrazine hydrate was added and the reaction was stirred for 8 hrs at room temperature to give substituted 4-cyclicamino thiosemicarbazide (**4**).

9.4.2.1 Synthesis of 4-(2,4-Dichlorophenyl)piperazine-1-carbothiohydrazide

4-(2,4-dichlorophenyl)piperazine-1-carbothihydrazide was synthesized using the procedure described in 9.4.2 by the reaction of 4-(2,4-dichlorophenyl)piperazine-1-carbodithioate and hydrazine hydrate.

9.4.2.2 Synthesis of Morpholine-4-carbothiohydrazide

Morpholine-4-carbothiohydrazide was synthesized using the procedure described in 9.4.2 by the reaction of morpholin-4-carbodithioate and hydrazine hydrate.

9.5 General procedure for the synthesis of substituted 2-amino 1,3,4- thiadiazine

To a hot air dried round bottomed flask, containing a solution of isothiocyanate (1 mmol) in THF (5 mL), hydrazine (1.2 mmol) was added at 20-25 ⁰C and the solution was stirred for 2–3 h. To the above solution, phenacyl bromide (1 mmol) in THF (2 mL) was added

at ambient temperature and the reaction was further stirred for 6-8 h at 50 ^oC with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice cold saturated solution of sodium bicarbonate in water. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through Buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-TDn**) were assigned with the help mass spectra.

9.6 General procedure for the synthesis of substituted 2-cyclicamino 1,3,4- thiadiazine

To a hot air dried round bottomed flask, containing a solution of 4-cyclicamino thiosemicarbazide (1 mmol) in THF (5 mL), phenacyl bromide (1 mmol) in THF (2 mL) was added at ambient temperature and the reaction was further stirred for 6-8 h at 50 ^oC with stirring. Progress of the reaction was monitored by TLC using ethyl acetate/hexane (2:8). After the completion of reaction, the reaction mixture was poured into ice cold saturated solution of sodium bicarbonate in water. Upon stirring, precipitate was observed (in the case of no precipitation, reaction mass was extracted with either dichloromethane or ethyl acetate) which were collected through buchner funnel. These precipitates were then dissolved in either dichloromethane or ethyl acetate and dried over anhydrous sodium sulfate and concentrated under reduced pressure to furnish crude compound which were further treated with diethyl ether and/or hexane to produce the pure solid compounds. The structures of compounds (**PMCDP-TDn**) were assigned with the help mass spectra.

PMCDP-TD1: 5-(4-Chlorophenyl)-N-(p-tolyl)-6H-1,3,4-thiadiazin-2-amine

Yield: 72%, light yellow solid, **Molecular formula:** $C_{23}H_{14}ClN_3S$, LC-MS calculated: 315.6, found: 316.2(M+1).

PMCDP-TD4: N,5-Di-p-tolyl-6H-1,3,4-thiadiazin-2-amine

Yield: 67%, light yellow solid, **Molecular formula:** $C_{17}H_{17}N_3S$, LC-MS calculated: 295.3, found: 296.2(M+1).

PMCDP-TD5: N,5-Bis(4-chlorophenyl)-6H-1,3,4-thiadiazin-2-amine

Yield: 73%, light yellow solid, Molecular formula: $C_{15}H_{11}Cl_2N_3S$, LC-MS calculated: 335.3, found: 336.1(M+1).

PMCDP-TD6: 5-(4-Chlorophenyl)-6H-1,3,4-thiadiazin-2-amine

Yield: 68%, light yellow solid, **Molecular formula:** C₉H₈ClN₃S, LC-MS calculated: 225.1, found: 225.7(M+).

PMCDP-TD9: 2-(4-(2,4-Dichlorophenyl)piperazin-1-yl)-5-(*p*-tolyl)-6*H*-1,3,4-thiadiazine

Yield: 69%, off white solid, **Molecular formula:** $C_{20}H_{20}Cl_2N_4S$, LC-MS calculated: 418.06, found: 419.1(M+1).

Yield: 59%, light yellow solid, **Molecular formula:** $C_{14}H_{17}N_3OS$, LC-MS calculated: 275.1, found: 275.7(M+1).

CHAPTER-10

Summary

PAGE NO. 170 TO 176

Chapter-10 Summary

Chapter-1 deals with the introduction of related to adenosine, adenosine receptors and various classes of adenosine receptor ligands. The adenosine receptors have been a well-explored field of research over the years. The therapeutic potential that is on offer by being able to manipulate these receptors is immense because the distribution of the receptors is so wide-spread in the physiological system. As there is great and extensive roles of adenosine receptor subtypes in both physiological and pathophysiological events, these receptors are becoming important drug targets in the treatment of a variety of diseases like cardiovascular disorders (A₁ adenosine receptor antagonist), Parkinson disease (A_{2A} adenosine receptor antagonist), inflammation (A_{2B}/A₃ adenosine receptor antagonist) etc. With all the studies it has emerged that adenosine receptors can be safely targeted by various ligands and various highly specific agonists and antagonists of adenosine receptors can be generated. As a result, increasing numbers of clinical trials testing of novel molecules in various indications have been initiated during the past decade.

Chapter-2 deals with rationale behind the molecules designed in the work. Fragment based drug design approach was used for the design of molecule. Considering the good affinity of the two fragments 2-aminothiazole and 2-aminothiophene towards adenosine receptors, they were clubbed into one molecule for the design of the molecule. Further modification of the design was done to come up at good adenosine receptor antagonists. Novel synthetic methodology was also developed for the synthesis of new 2-amino 1,3,4-thiadiazines and 2-cyclicamino 1,3,4-thiadiazines.

Chapter-3 deals with the validation study of the designed thiophenyl-thiazole carboxamides by docking study. After docking validation, series of thiophenyl-thiazole carboxamides were synthesized and the synthetic methodology was further converted modified into one-pot synthetic methodology. Library of molecules were synthesized and all the molecules were tested into radio ligand binding assay for adenosine receptors.

Most of the molecules were found to show affinity towards adenosine receptors particularly towards A_3 adenosine receptor. Particularly the molecules **PMCDP-3**, **PMCDP-4**, **PMCDP-12** and **PMCDP-19** showed good affinity towards A_1 , A_{2A} and A_3 adenosine receptor subtypes. From this the molecules **PMCDP-3**, **PMCDP-4** and **PMCDP-19** were selective towards A_3 adenosine receptor (Figure 10.1).

Figure 10.1: Active and selective adenosine receptor thiophenyl-thiazole carboxamides

In the **chapter 4** we have modified the previous series of molecule in to *N*-cycloamino/disubstituted/diamino thiazoles coupled with thiophenes. Library of compounds were synthesized and all the molecules were tested into radio ligand binding assay for adenosine receptors. The molecules were found to show moderate to good activity. The compounds **PMCDP-24**, **PMCDP-29** and **PMCDP-41** found to show affinity towards A_1 , A_{2A} and A_3 adenosine receptors. **PMCDP-29** was nonselective whereas **PMCDP-24** and **PMCDP-41** were selective towards A_3 adenosine receptor. From SAR it was found that the molecules with 4th position phenyl or furyl group were found to be active where as the molecules with 4th position hydrogen was found to deleterious in the activity against adenosine receptors (Figure 10.2).

Figure 10.2 : Active and selective *N*-cycloamino/disubstituted/diamino thiazoles coupled with thiophenes against adenosine receptora

In the **Chapter-5** we modified our design from thiophenyl-thiazole carboxamides into thiophenyl-thiophene carboxamides for adenosine receptors. The substituted 2-chloroacetamido thiophene derivatives were coupled with wilgerodt kindler substituted 1-morpholino-2-arylprop-2-ene-1-thione adducts to generate library of thiophenyl-thiophene carboxamide derivatives. The compounds were characterized and they were screened for radio ligand binding assay for adenosine receptors. Particularly the compounds **PMCDP-BTP-4**, **PMCDP-BTP-8** and **PMCDP-BTP-13** found to show affinity towards A₁, A_{2A} and A₃ adenosine receptors. The compound **PMCDP-BTP-13** were selective whereas the compounds **PMCDP-BTP-4** and **PMCDP-BTP-8** were selective towards A₃ adenosine receptor (Figure 10.3).

Figure 10.3 : Active and selective thiophenyl-thiophene carboxamides against adenosine receptor

Chapter-6 discusses the synthesis novel di/tri substituted *N*-cyclicamino thiazoles and their biological activity against adenosine receptor. Here we designed new *N*-cyclicamino

thiazole based on our previous active trisubstituted *N*-cyclicamino thiophenes. The new disubstituted thaizoles were synthesized by new route of synthesis. These molecules were further confirmed by various spectral techniques and they were further evaluated for their binding affinity against adenosine receptor. The molecules **PMCDP-TZA9 PMCDP-TZA14** and **PMCDP-TZA16** were found to be active. Here the molecule **PMCDP-TZA14** was the most selective molecule against A_3 adenosine receptor, where as **PMCDP-TZA16** was the most active compound with good affinity towards A_1 , A_{2A} and A_3 adenosine receptors (Figure 10.4).

Figure 10.4 : Active and selective N-cyclicamino thiazoles against adenosine receptor

In the **Chapter-7** we discussed the design, synthesis and biological activity of new substituted 2-aminothiazoles for adenosine receptors. Based on novartis molecule and our published active molecules against adenosine receptors here we have synthesized new substituted 2-aminothiazoles. The molecules were further confirmed by various spectral techniques and they were further evaluated for their binding affinity against adenosine receptor. This series of molecules were found to be high affinity and selectivity towards adenosine receptors. Particularly the molecules **PMCDP-TZB2**, **PMCDP-TZB7**, **PMCDP-TZB16**, **PMCDP-TZB21** and **PMCDP-TZB22** were active in low nanomolar range. The molecules **PMCDP-TZB2** and **PMCDP-TZB26** were selective whereas the molecules **PMCDP-TZB7** and **PMCDP-TZB16** were selective in A₃; **PMCDP-TZB21** was selective in A₁ adenosine receptor. Docking study of the two most active molecules **PMCDP-TZB2** and **PMCDP-TZB22** was carried out with A_{2A} and A₃

adenosine receptors respectively to see the possible interaction and the analysis of the docking justified the biological activity of the two molecules (Figure 10.5).

Figure 10.5 : Active and selective 2-amino thiazoles against adenosine receptor

The **Chapter-8** deals with the 3D QSAR study of the active molecules against the A_1 , A_{2A} and A_3 receptor subtypes. The active molecules were taken from the chapter-3, 4, 6 and 7 and aminothiazole was taken as core for alignment. CoMFA was performed and all the statistical parameters were found to be within the range for good QSAR model. The q² and r² for a) the A_1 : 0.55 & 0.98 respectively, b) the A_{2A} : 0.45 & 0.96 respectively and c) the A_3 : 0.50 & 0.98 respectively. The CoMFA study generated steric and electrostatic contour maps which were further analyzed.

Chapter-9 discusses the novel synthetic methodology for the synthesis of new 1,3,4-thiadiazines. Here we report novel synthetic methodology has been developed for the synthesis of substituted 2-amino 1,3,4-thiadiazines and 2-cycloamino 1,3,4-

thiadiazines from various substituted thiosemicarbazide derivatives and phenacyl bromides (Figure 10.6).

Figure 10.6 : Novel synthetic methodology for the 2-amino/cyclicamino thiadiazines

Overall conclusion of the present work:

- In search of potential antagonist for adenosine receptors here we have adopted a fragment based drug design approach for the design of the new compounds. The designed molecule was further validated with the molecular docking study.
- Synthetic methodology was developed and library of compounds with structural diversification was synthesized from various starting materials. Further all the molecules were characterized by spectral techniques like NMR and Mass.
- All the molecules were screened for their binding affinity to the adenosine receptor subtypes and the molecules were found to be selective and active. Particularly 2-aminothiazoles series were active in low nanomolar range.
- 3D QSAR study of adenosine receptor ligands shown a statistically significant result which is helpful for further modification.
- In conclusion here we are proposing the pharmacophore for lead optimization (Figure 10.7). This suggested that near A, a lipophilic feature with hydrogen-bond donor and acceptor groups like nitrogen heterocycle with an amino function is favourable for better activity. Near B, a bulky and highly lipophilic pi excessive feature such as phenyl ring is favourable. And near C, a lipophilic feature with hydrogen-bond donor and acceptor groups like nitrogen heterocycle with an amino function is favourable.

Figure 10.7: Proposed pharmacophore for lead optimization

Future Prospects

- The molecules developed here are the new chemical entity (NCEs) for adenosine receptors.
- Selective and active adenosine receptor antagonist can screened *in vivo* in various diseases like like asthma, parkinson's disease, alzheimer's disease, cancer and cardiovascular diseases.
- The molecules can be chemically manipulated to make novel compounds which can be further checked for various biological activities.
- The novel molecules are also having importance as novel synthons.

References

PAGE NO. 177 TO 186

References

- Alanine, A., Flohr, A. & Miller, A., 2008. Benzothiazole derivatives as adenosine receptor ligands. US Patent 7317007 B2
- Annadurai, S. et al., 2012. Design and synthesis of 2-aminothiazole based antimicrobials targeting MRSA. *Bioorganic & Medicinal Chemistry Letters*, 22(24), pp.7719–7725.
- Aurelio, L. et al., 2011. The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9hexahydrocycloocta[*b*]thiophenes as allosteric modulators of the A₁ adenosine receptor. *Bioorganic & Medicinal Chemistry Letters*, 21(12), pp.3704–3707.
- Baker, M., 2013. Fragment-based lead discovery grows up. *Nature Reviews Drug Discovery*, 12(1), pp.5–7.
- Baraldi, P.G., Tabrizi, M.A., Gessi, S., et al., 2008. Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. *Chemical Reviews*, 108(1), pp.238–263.
- Baraldi, P.G. et al., 2012. Medicinal chemistry of A₃ adenosine receptor modulators: pharmacological activities and therapeutic implications. *Journal of Medicinal Chemistry*, 55(12), pp.5676–5703.
- Baraldi, P.G., Tabrizi, M.A., Fruttarolo, F., et al., 2008. Recent improvements in the development of A(2B) adenosine receptor agonists. *Purinergic Signalling*, 4(4), pp.287–303.
- Borea, P.A. et al., 2009. A₃ adenosine receptor: pharmacology and role in disease. *Handbook of Experimental Pharmacology*, (193), pp.297–327.
- Bruns, R.F. et al., 1990. Structure-activity relationships for enhancement of adenosine A₁ receptor binding by 2-amino-3-benzoylthiophenes. *Molecular Pharmacology*, 38(6), pp.950–958.
- Bruns, R.F. et al., 1990. Allosteric enhancement of adenosine A₁ receptor binding and function by 2-amino-3-benzoylthiophenes. *Molecular Pharmacology*, 38(6), pp.939–949.
- Chen, J.-F., Eltzschig, H.K. & Fredholm, B.B., 2013. Adenosine receptors as drug targets--what are the challenges? *Nature Reviews Drug discovery*, 12(4), pp.265–286.

- Chen, Z. et al., 2012. Controlling murine and rat chronic pain through A₃ adenosine receptor activation. *FASEB journal*: official publication of the Federation of American Societies for Experimental Biology, 26(5), pp.1855–1865.
- Clark, M., Cramer, R.D. & Van Opdenbosch, N., 1989. Validation of the general purpose tripos 5.2 force field. *Journal of Computational Chemistry*, 10(8), pp.982–1012.
- Cole, A.G. et al., 2009. Synthesis of 2-amino-5-benzoyl-4-(2-furyl)thiazoles as adenosine A_{2A} receptor antagonists. *Bioorganic & Medicinal Chemistry Letters*, 19(2), pp.378–381.
- Congreve, M. et al., 2012. Discovery of 1,2,4-triazine derivatives as adenosine A_{2A} antagonists using structure based drug design. *Journal of Medicinal Chemistry*, 55(5), pp.1898–1903.
- Cotter, G. et al., 2008. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A₁ receptor antagonist rolofylline in patients with acute heart failure and renal impairment. *Journal of Cardiac Failure*, 14(8), pp.631–640.
- Cramer, R.D., Patterson, D.E. & Bunce, J.D., 1988. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. *Journal of the American Chemical Society*, 110(18), pp.5959–5967.
- Daly, J.W. & Padgett, W.L., 1992. Agonist activity of 2- and 5'-substituted adenosine analogs and their N^6 -cycloalkyl derivatives at A₁ and A_{2A} adenosine receptors coupled to adenylate cyclase. *Biochemical Pharmacology*, 43(5), pp.1089–1093.
- Doré, A.S. et al., 2011. Structure of the adenosine A_{2A} receptor in complex with ZM241385 and the xanthines XAC and caffeine. *Structure (London, England: 1993)*, 19(9), pp.1283–93.
- Dungo, R. & Deeks, E.D., 2013. Istradefylline: first global approval. *Drugs*, 73(8), pp.875–882.
- Ellenbogen, K.A. et al., 2005. Trial to evaluate the management of paroxysmal supraventricular tachycardia during an electrophysiology study with tecadenoson. *Circulation*, 111(24), pp.3202–3208.

- El-Shehry, M.F. et al., 2010. Synthesis and molluscicidal evaluation of some new pyrazole, isoxazole, pyridine, pyrimidine, 1,4-thiazine and 1,3,4-thiadiazine derivatives incorporating benzofuran moiety. *European Journal of Medicinal Chemistry*, 45(11), pp.4783–4787.
- Erlanson, D.A., McDowell, R.S. & O'Brien, T., 2004. Fragment-based drug discovery. *Journal of Medicinal Chemistry*, 47(14), pp.3463–3482.
- Fink, B.E. et al., 1999. Novel structural templates for estrogen-receptor ligands and prospects for combinatorial synthesis of estrogens. *Chemistry & Biology*, 6(4), pp.205–219.
- Fishman, P. et al., 2012. Pharmacological and therapeutic effects of A₃ adenosine receptor agonists. *Drug Discovery Today*, 17(7-8), pp.359–366.
- Franklin, P.X. et al., 2008. 2-Amino-5-thiazolyl motif: a novel scaffold for designing antiinflammatory agents of diverse structures. *European Journal of Medicinal Chemistry*, 43(1), pp.129–134.
- Fredholm, B.B., 2010. Adenosine receptors as drug targets. *Experimental Cell Research*, 316(8), pp.1284–1288.
- Gallardo-Godoy, A. et al., 2011. 2-Aminothiazoles as therapeutic leads for prion diseases. *Journal of Medicinal Chemistry*, 54(4), pp.1010–1021.
- Gao, Z.-G. et al., 2003. N⁶-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A₃ adenosine receptors. *Biochemical Pharmacology*, 65(10), pp.1675–1684.
- Gasteiger, J. & Marsili, M., 1980. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. *Tetrahedron*, 36(22), pp.3219–3228.
- Gessi, S. et al., 2002. A₃ adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. *Molecular Pharmacology*, 61(2), pp.415–424.
- Gessi, S. et al., 2011. Adenosine receptor targeting in health and disease. *Expert Opinion on Investigational Drugs*, 20(12), pp.1591–1609.

- Giordano, A., Vasu, K.K. & Sudarsanam, V., 2012. Thiazole and thiophene analogues, and their use in treating autoimmune diseases and cancers. US Patent 8217037 B2
- Giri, R.S. et al., 2009. Design, synthesis and characterization of novel 2-(2,4disubstituted-thiazole-5-yl)-3-aryl-3*H*-quinazoline-4-one derivatives as inhibitors of NF-kB and AP-1 mediated transcription activation and as potential antiinflammatory agents. *European Journal of Medicinal Chemistry*, 44(5), pp.2184– 2489.
- Göblyös, A. & Ijzerman, A.P., 2009. Allosteric modulation of adenosine receptors. *Purinergic Signalling*, 5(1), pp.51–61.
- Göblyös, A. & Ijzerman, A.P., 2011. Allosteric modulation of adenosine receptors. *Biochimica et Biophysica Acta*, 1808(5), pp.1309–1318.
- Gronowitz, S. ed., 1991. *Chemistry of Heterocyclic Compounds:Thiophene and its derivatives*, Part 4, 44, pp 397-502. Hoboken, NJ, USA: John Wiley & Sons, Inc.
- Hajduk, P.J. & Greer, J., 2007. A decade of fragment-based drug design: strategic advances and lessons learned. *Nature Reviews Drug Discovery*, 6(3), pp.211–219.
- Ham, J. & Evans, B.A.J., 2012. An emerging role for adenosine and its receptors in bone homeostasis. *Frontiers in Endocrinology*, 3, pp.1-8.
- Hauser, R.A. et al., 2011. Preladenant in patients with Parkinson's disease and motor fluctuations: a phase 2, double-blind, randomised trial. *The Lancet Neurology*, 10(3), pp.221–229.
- Hendel, R.C. et al., 2005. Initial clinical experience with regadenoson, a novel selective A_{2A} agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. *Journal of the American College of Cardiology*, 46(11), pp.2069–2075.
- Huang, Y. & Dömling, A., 2011. The Gewald multicomponent reaction. *Molecular Diversity*, 15(1), pp.3–33.
- Inamdar, G.S., 2007. Design and synthesis of thiazole derivatives as ligands for adenosine receptors. Thesis submitted to M. K. Bhavnagar University.

- Inamdar, G.S. et al., 2013. New insight into adenosine receptors selectivity derived from a novel series of [5-substituted-4-phenyl-1,3-thiazol-2-yl] benzamides and furamides. *European Journal of Medicinal Chemistry*, 63, pp.924–934.
- Jaakola, V.-P. et al., 2008. The 2.6 angstrom crystal structure of a human A_{2A} adenosine receptor bound to an antagonist. *Science (New York, N.Y.)*, 322(5905), pp.1211–1217.
- Jacobson, K.A. & Gao, Z.-G., 2006. Adenosine receptors as therapeutic targets. *Nature Reviews Drug Discovery*, 5(3), pp.247–264.
- Jalani, H.B. et al., 2013. An efficient one-pot synthesis of functionally diverse 2aminothiazoles from isothiocyanates, amidines/guanidines and halomethylenes. *Tetrahedron Letters*, 54(39), pp.5403–5406.
- Kaila, J.C. et al., 2010. A convenient one-pot synthesis of trisubstituted 1,3,5-triazines through intermediary amidinothioureas. *Tetrahedron Letters*, 51(11), pp.1486–1489.
- Kaila, J.C. et al., 2008. A facile synthesis of structurally novel 1-aryl-2-arylamino-4alkyl/phenyl-5-aroyl-1H-imidazoles from amidinothioureas. *Tetrahedron Letters*, 49(50), pp.7220–7222.
- Karegoudar, P. et al., 2008. Synthesis, antimicrobial and anti-inflammatory activities of some 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and 1,2,4-triazolo[3,4-b][1,3,4]thiadiazines bearing trichlorophenyl moiety. *European Journal of Medicinal Chemistry*, 43(4), pp.808–815.
- Katada, J. et al., 1999. Cytotoxic effects of NSL-1406, a new thienopyrimidine derivative, on leukocytes and osteoclasts. *Bioorganic & Medicinal Chemistry Letters*, 9(6), pp.797–802.
- Kemnitzer, W. et al., 2009. Discovery of 4-anilino-*N*-methylthieno[3,2-*d*]pyrimidines and 4-anilino-*N*-methylthieno[2,3-*d*]pyrimidines as potent apoptosis inducers. *Bioorganic & Medicinal Chemistry Letters*, 19(13), pp.3536–3540.
- Kiesman, W.F., Elzein, E. & Zablocki, J., 2009. A₁ adenosine receptor antagonists, agonists, and allosteric enhancers. *Handbook of Experimental Pharmacology*, (193), pp.25–58.

- Kilburn, J.P., Lau, J. & Jones, R.C.F., 2002. Substituted 2-amino-1,3,4-thiadiazines: a novel solid-phase approach. *Tetrahedron Letters*, 43(18), pp.3309–3311.
- Kim, S.-K. et al., 2003. Modeling the adenosine receptors: comparison of the binding domains of A_{2A} agonists and antagonists. *Journal of Medicinal Chemistry*, 46(23), pp.4847–4859.
- Klotz, K.N. et al., 1985. Photoaffinity labeling of A₁-adenosine receptors. *The Journal of Biological Chemistry*, 260(27), pp.14659–14664.
- Klotz, K. N. et al., 1997. Comparative pharmacology of human adenosine receptor subtypes – characterization of stably transfected receptors in CHO cells. *Naunyn-Schmiedeberg's Archives of Pharmacology*, 357(1), pp.1–9.
- Kumar, Y. et al., 1993. Synthesis of 2,4-disubstituted thiazoles and selenazoles as potential antitumor and antifilarial agents. 1. Methyl 4-(isothiocyanatomethyl)thiazole-2-carbamates, -selenazole-2-carbamates, and related derivatives. *Journal of Medicinal Chemistry*, 36(24), pp.3843–3848.
- Lara, D.R. et al., 2006. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. *Progress in Neuro-psychopharmacology & Biological Psychiatry*, 30(4), pp.617–629.
- De Lean, A., Hancock, A.A. & Lefkowitz, R.J., 1982. Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. *Molecular Pharmacology*, 21(1), pp.5–16.
- Lebon, G. et al., 2011. Agonist-bound adenosine A_{2A} receptor structures reveal common features of GPCR activation. *Nature*, 474(7352), pp.521–525.
- Lee, Y.-S.E. et al., 2014. Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: optimization of in vitro potencies and pharmacokinetic properties. *Journal of Medicinal Chemistry*, 57(10), pp.4098–4110.
- De Lera Ruiz, M., Lim, Y.-H. & Zheng, J., 2014. Adenosine A_{2A} receptor as a drug discovery target. *Journal of Medicinal Chemistry*, 57(9), pp.3623-3650.
- Livingston, M., Heaney, L.G. & Ennis, M., 2004. Adenosine, inflammation and asthma-a review. *Inflammation Research*, 53(5), pp.171–178.

- Londos, C., Cooper, D.M. & Wolff, J., 1980. Subclasses of external adenosine receptors. Proceedings of the National Academy of Sciences of the United States of America, 77, pp.2551–2554.
- Moghimi, S. et al., 2013. A novel and easy route to 1,3,4-thiadiazine derivatives via the three-component reaction of phenylhydrazine, α-bromo aryl ketones and aryl isothiocyanates. *Tetrahedron Letters*, 54(46), pp.6215–6217.
- Molvi, K.I. et al., 2007. Syntheses of new tetrasubstituted thiophenes as novel antiinflammatory agents. *European Journal of Medicinal Chemistry*, 42(8), pp.1049– 1058.
- Moro, S. et al., 2006. Progress in the pursuit of therapeutic adenosine receptor antagonists. *Medicinal Research Reviews*, 26(2), pp.131–159.
- Van Muijlwijk-Koezen, J.E. et al., 2001. Thiazole and Thiadiazole Analogues as a Novel Class of Adenosine Receptor Antagonists. *Journal of Medicinal Chemistry*, 44(5), pp.749–762.
- Müller, C.E. & Jacobson, K.A., 2011. Recent developments in adenosine receptor ligands and their potential as novel drugs. *Biochimica et Biophysica Acta*, 1808(5), pp.1290–1308.
- Pandya, A.N., 2011. Design, Synthesis and Pharmacological Evaluation of novel 2aminoimidazole derivatives and related heterocycles. Thesis submitted to M. K. Bhavnagar University.
- Pieroni, M. et al., 2014. Design, synthesis and investigation on the structure-activity relationships of *N*-substituted 2-aminothiazole derivatives as antitubercular agents. *European Journal of Medicinal Chemistry*, 72, pp.26–34.
- Pillai, A.D. et al., 2004. Design, synthesis, and pharmacological evaluation of some 2-[4morpholino]-3-aryl-5-substituted thiophenes as novel anti-inflammatory agents: generation of a novel anti-inflammatory pharmacophore. *Bioorganic & Medicinal Chemistry*, 12(17), pp.4667–4671.
- Pillai, A.D. et al., 2005. Tetra substituted thiophenes as anti-inflammatory agents: exploitation of analogue-based drug design. *Bioorganic & Medicinal Chemistry*, 13(24), pp.6685–6692.

- Press, N.J. et al., 2005. A new orally bioavailable dual adenosine A_{2B}/A₃ receptor antagonist with therapeutic potential. *Bioorganic & Medicinal Chemistry Letters*, 15(12), pp.3081–3085.
- Rajappa, S., Sudarsanam, V., Advani, B.G., et al., 1982. A general synthesis of thiazoles.
 Part 5. Synthesis of 5-acyl-2-dialkylaminothiazoles. *Proceedings of the Indian Academy of Sciences - Chemical Sciences*, 91(5), pp.445–450.
- Rajappa, S., Sudarsanam, V. & Yadav, V.G., 1982. A general synthesis of thiazoles. Part
 6. Synthesis of 2-amino-5-heterylthiazoles. *Proceedings of the Indian Academy of Sciences - Chemical Sciences*, 91(5), pp.451–455.
- Rajasekharan, K.N., Nair, K.P. & Jenardanan, G.C., 1986. Studies on the Synthesis of 5-Acyl-2,4-diaminothiazoles from Amidinothioureas. *Synthesis*, 1986(05), pp.353– 355.
- Rees, D.C. et al., 2004. Fragment-based lead discovery. *Nature Reviews Drug Discovery*, 3(8), pp.660–672.
- Richardson, P.J., Kase, H. & Jenner, P.G., 1997. Adenosine A_{2A} receptor antagonists as new agents for the treatment of Parkinson's disease. *Trends in Pharmacological Sciences*, 18(9), pp.338–344.
- Roncali, J., 1992. Conjugated poly(thiophenes): synthesis, functionalization, and applications. *Chemical Reviews*, 92(4), pp.711–738.
- Rosentreter, U. et al., 2009. Substituted 2-thio-3,5-dicyano-4-aryl-6-aminopyridines and their use. US Patent 7504421 B2
- Sattin, A. & Rall, T.W., 1970. The Effect of Adenosine and Adenine Nucleotides on the Cyclic Adenosine 3',5'-Phosphate Content of Guinea Pig Cerebral Cortex Slices. *Molecular Pharmacology*, 6(1), pp.13–23.
- Sauer, R. et al., 2000. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A_{2A} selective adenosine receptor antagonists. *Journal of Medicinal Chemistry*, 43(3), pp.440–448.
- Scheiff, A.B. et al., 2010. 2-Amino-5-benzoyl-4-phenylthiazoles: Development of potent and selective adenosine A₁ receptor antagonists. *Bioorganic & Medicinal Chemistry*, 18(6), pp.2195–2203.

- Schindler, C.W. et al., 2005. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A₁ and A_{2A} subtype receptor agonists. *British Journal of Pharmacology*, 144(5), pp.642–650.
- Schröder, J. et al., 2001. Structure-Based Design and Synthesis of Potent Matrix Metalloproteinase Inhibitors Derived from a 6*H*-1,3,4-Thiadiazine Scaffold. *Journal* of Medicinal Chemistry, 44(20), pp.3231–3243.
- Schwarzschild, M.A. et al., 2006. Targeting adenosine A_{2A} receptors in Parkinson's disease. *Trends in Neurosciences*, 29(11), pp.647–654.
- Shook, B.C. & Jackson, P.F., 2011. Adenosine A_{2A} Receptor Antagonists and Parkinson's Disease. ACS Chemical Neuroscience, 2(10), pp.555–567.
- Soural, M., Bouillon, I. & Krchnák, V., 2008. Combinatorial libraries of bis-heterocyclic compounds with skeletal diversity. *Journal of Combinatorial Chemistry*, 10(6), pp.923–933.
- Sperry, J.B. & Wright, D.L., 2005. Furans, thiophenes and related heterocycles in drug discovery. *Current Opinion in Drug Discovery & Development*, 8(6), pp.723–740.
- Ståhle, L. & Wold, S., 1987. Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study. *Journal of Chemometrics*, 1(3), pp.185– 196.
- Stevens, R., 1993. Recent developments in flavor and fragrance chemistry, Proceedings of the 3rd International Haarmann & Reimer Symposium, edited by Rudolf Hopp and Kenji Mori, VCH, Weinheim, 1993. *Flavour and Fragrance Journal*, 8(6), pp.339– 340.
- Strickberger, S.A. et al., 1997. Adenosine-induced atrial arrhythmia: a prospective analysis. *Annals of Internal Medicine*, 127(6), pp.417–422.
- Sybyl-X 2.0, Tripos International, A Certara company, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.
- Taliani, S. et al., 2013. Modulation of A2B adenosine receptor by 1-Benzyl-3-ketoindole derivatives. *European Journal of Medicinal Chemistry*, 69, pp.331–337.

Publications

International Papers

- DHAIVAT H PANDYA, JAYESH A SHARMA, HITESH B JALANI, AMIT N PANDYA, V. SUDARSANAM, SONJA KACHLER, KARL NORBERT KLOTZ, KAMALA K VASU. Novel thiazole-thiophene conjugates as adenosine receptor antagonists: Synthesis, biological evaluation and docking studies. *Bio Med Chem Lett.* 2015, 25, 1306-1309
- HITESH B. JALANI, AMIT N. PANDYA, DHAIVAT H PANDYA, JAYESH A. SHARMA, V. SUDARSANAM, KAMALA K VASU. An efficient one-pot synthesis of functionally diverse 2-aminothiazoles from isothiocyanates, amidines/guanidines and halomethylenes. *Tet Lett.* 2013, 54, 5403-5406.
- MEENAKSHI SINGH, SUSHIL K. SINGH, MAHESH T. CHHABRIA, KAMALA K VASU, DHAIVAT H. PANDYA. "CoMFA and CoMSIA 3D QSAR models for a series of some condensed thieno[2,3-d]pyrimidin-4(3H)-ones with antihistaminic (H1) activity. *Med. Chem.* 2013, 9, 389-401.
- HITESH B. JALANI, AMIT N. PANDYA, DHAIVAT H PANDYA, JAYESH A. SHARMA, V. SUDARSANAM, KAMALA K VASU. "A concise, greener, solvent-free novel one-pot synthesis of trisubstituted thiophenes." *Tet Lett.* 2012, 53, 6927-6930.
- HITESH B. JALANI, AMIT N. PANDYA, DHAIVAT H PANDYA, JAYESH A. SHARMA, V. SUDARSANAM, KAMALA K VASU. "An efficient, greener, and solvent-free one-pot multicomponent synthesis of 3-substituted quinazolin-4(3H)ones and thienopyrimidin-4(3H)ones." *Tet. Lett.* 2012, 53, 4062-4064.
- HITESH B. JALANI, AMIT N. PANDYA, ARSHI B BARAIYA, JITENDRA KAILA, DHAIVAT H PANDYA, JAYESH A. SHARMA, V. SUDARSANAM, KAMALA K VASU. "An efficient synthesis of 2-aminopyrroles from enaminone–amidine adduct and phenacyl/benzyl/heteroalkyl-halides." *Tet Lett.* 2011, 52, 6331-6335.
- 7. A. ABIRAMASUNDARI, RAHUL P. JOSHI, HITESH B. JALANI, JAYESH A. SHARMA, **DHAIVAT H. PANDYA**, AMIT N. PANDYA, VASUDEVAN
SUDARSANAM, KAMALA K. VASU. "Stability-indicating assay method for determination of actarit, its process related impurities and degradation products: Insight into stability profile and degradation pathways." J. Pharm. Anal 2014, 4, 374-383.

Manuscript under preparation

- 1. Novel thiophenyl-thiophene conjugated as adenosine receptor antagonists: Design, Synthesis and docking studies.
- 2. 2-aminothiazoles as non-xanthine adenosine receptor antagonists: Synthesis, pharmacological evaluation and docking studies.

Patents

- 1. Novel 2-substituted thiazole compounds. Indian patent application no. 2294/MUM/2014.
- (5-thiazolyl/thienyl)-2-thienyl methanones. Indian patent application no. 2295/MUM/2014.

Posters

- DHAIVAT. H. PANDYA, JAYESH A. SHARMA, HITESH B. JALANI, AMIT N. PANDYA, V. SUDARSANAM, SONJA KACHLER, KARL N. KLOTZ, KAMALA K VASU. "Design and synthesis of thiophene-thiazole conjugates as new ligands for adenosine receptor subtypes" ICCB-2014, 6-8th February-2014, IICT, Hyderabad.
- JAYESH A SHARMA, DHAIVAT H. PANDYA, HITESH B. JALANI, MILEE AGARWAL, SNEHA PATEL, A. ABIRAMASUNDARI, V. SUDARSANAM, KAMALA K VASU K. "Potential anti-cancer agents – Dual pharmacophore approach." ICCB-2014, 6-8th February-2014, IICT, Hyderabad.

Bioorganic & Medicinal Chemistry Letters 25 (2015) 1306–1309

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Novel thiazole-thiophene conjugates as adenosine receptor antagonists: Synthesis, biological evaluation and docking studies *

Dhaivat H. Pandya^{a,†}, Jayesh A. Sharma^a, Hitesh B. Jalani^a, Amit N. Pandya^a, V. Sudarsanam^a, Sonja Kachler^b, Karl Norbert Klotz^b, Kamala K. Vasu^{a,*}

^a Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India

^b Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Germany

ARTICLE INFO

Article history: Received 28 October 2014 Revised 16 January 2015 Accepted 20 January 2015 Available online 28 January 2015

Keywords: Adenosine receptors Thiazoles Thiophenes Molecular docking

ABSTRACT

Here we report novel thiazole–thiophene conjugates as adenosine receptor antagonists. All the molecules were evaluated for their binding affinity for adenosine receptors. Most of the molecules were found to interact with the A_1 , A_{2A} and A_3 adenosine receptor subtypes with good affinity values. The most potent and selective compound **8n** showed an $A_3 K_i$ value of 0.33 μ M with selectivity ratios of >90 versus the A_1 and >30 versus the A_2 subtypes. For compound **8n** docking studies into the binding site of the A_3 adenosine receptor are provided to visualize its binding mode.

© 2015 Published by Elsevier Ltd.

Adenosine regulates a variety of cellular functions through interaction with the four G-protein coupled receptor (GPCR) subtypes A₁, A_{2A}, A_{2B} and A₃. The A₁ and A₃ adenosine receptors couple to G_i and thereby inhibit adenylyl cyclase (AC) with a consequent decrease of cellular cAMP levels. The A_{2A} and A_{2B} receptor couple to G_s and mediate a stimulation of AC resulting in enhanced intracellular cAMP levels.^{1,2} Adenosine receptor subtypes are a target of great interest because of their pathological involvement in numerous diseases. Activation of adenosine receptors is beneficial in many conditions like epilepsy, pain, cancer, etc. whereas inhibition of adenosine receptors is helpful in Parkinson's disease, Alzheimer's disease, asthma, diabetes and cancer.^{1–3}

Development of adenosine receptor antagonists is a major focus of medicinal chemistry since several decades. Many selective antagonists have been developed so far and are helpful in pathological conditions like renal failure (A_1), Parkinson's disease (A_{2A}), diabetes (A_{2B}), asthma and chronic obstructive pulmonary disease COPD (A_{2B}/A_3), glaucoma and cancer (A_3). The traditional xanthine derivatives like caffeine and theophylline are naturally occurring nonselective antagonists. Selective antagonists have been developed by modifying the xanthine or adenine scaffolds, or heterocyclic moieties with mono-, bi- or tricyclic ring systems.⁴ Several of them are in preclinical or clinical trials and the selective A_{2A} receptor antagonist Istradefylline got approval in Japan for the treatment of Parkinson's disease (Fig. 1). The major problem associated with xanthine derivatives is related to pharmacokinetic issues. Consequently, there is a need for new non-xanthine molecules. Structures incorporating thiazole, thiophene and benzothiazinones have been developed as selective adenosine receptor antagonists.⁵⁻⁷

As published in many reports, aminothiazoles and aminothiophenes are two important structural elements in adenosine receptor antagonists. Such 2-aminothiophene substituents are also found in modulation of adenosine receptors.⁸ Based on similar observations, Aurelio et al. published 2-aminothiophene derivatives as adenosine receptor modulators.⁹ Aminothiazole compounds as adenosine receptor antagonists have been reported from our group to show high affinity and selectivity.^{5,7} So keeping in mind the importance of both moieties, that is, thiophene and thiazole, here we have designed novel thiazole–thiophene conjugates with an amide spacer (Fig. 2).

The synthesis of thiazole-thiophenes (8a-8r, Table 1) was carried out by a four-step reaction. The respective starting derivatives of 2-chloroacetamidothiophene and amidinothiourea were prepared separately. The reaction between 2-chloroacetamidothiophenes (4) and amidinothioureas (7) was carried out to get the final thiazole-thiophene conjugate compounds (Scheme 1).

^{*} Communication Ref. No.: PERD250714.

^{*} Corresponding author. Tel.: +91 79 27439375; fax: +91 79 27450449.

E-mail address: kamalav@perdcentre.com (K.K. Vasu).

 $^{^{\}dagger}$ Dhaivat H. Pandya is registered research scholar in Institute of Science, Nirma University.

Tetrahedron Letters 54 (2013) 5403-5406

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

An efficient one-pot synthesis of functionally diverse 2-aminothiazoles from isothiocyanates, amidines/guanidines and halomethylenes *

Hitesh B. Jalani, Amit N. Pandya, Dhaivat H. Pandya, Jayesh A. Sharma, V. Sudarsanam, Kamala K. Vasu*

Department of Medicinal Chemistry, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India

ARTICLE INFO

Article history: Received 27 June 2013 Revised 19 July 2013 Accepted 23 July 2013 Available online 31 July 2013

Keywords: 2-Aminothiazoles Isothiocyanates Amidines Guanidines One-pot reaction

ABSTRACT

An efficient one-pot method for the synthesis of 2-aminothiazoles using simple starting materials like isothiocyanates, amidines/guanidines and various halomethylenes is reported. The synthesis of 2-amino-thiazoles involves reactions such as nucleophilic addition, S-alkylation and intramolecular nucleophilic substitution in which amines departs as the leaving group.

© 2013 Elsevier Ltd. All rights reserved.

2-Aminothiazole is an important and classic heterocyclic scaffold used in the drug discovery programs. The broad spectrum biological activities exhibited by this structure include anticancer,¹ antiviral,² antibacterial,³ antiprion⁴ and psychotropic activities⁵ that assign it as an indispensible heterocyclic feature in drug design. In addition to this, recently, our group has successfully employed 2aminothiazole scaffolds in the design of anti-inflammatory agents⁶ as well as adenosine receptor antagonist.⁷ Recently, 2-aminothiazole analogues have been identified as druglike candidates in the treatment of diabetes⁸ and *Mycobacterium tuberculosis*.⁹ Apart from biological properties, films of conjugated polyaminothioazole have recently been demonstrated to have electrochemical properties with high thermal stability.¹⁰ All the above described biological and physico-chemical properties of aminothioazole are probably due to its small ring structure with π excessive and π deficient properties, due to nitrogen atom behaving as hydrogen bond acceptor site.

In view of diverse biological and physico-chemical properties by 2-aminothiazoles scaffold, many synthetic protocols have been reported for their synthesis, which includes Hantzsch's cyclocondensation of thiourea with α -haloketones/ α -tosylketone¹¹ and the reactions of α -thiocyanate carbonyl compounds with aromatic or aliphatic amine hydrochlorides.¹² 2-Aminothiazoles are also synthesized by one-pot reaction of enolizable ketones with a mix-

Scheme 1. One-pot synthesis of 2-aminothiazoles.

* Communication Ref. No.: PERD-130613.

^{*} Corresponding author. Tel.: +91 79 27439375; fax: +91 79 27450449. *E-mail address:* kamkva@gmail.com (K.K. Vasu).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.07.122

389

CoMFA and CoMSIA 3D QSAR Models for a Series of Some Condensed Thieno[2,3-d]pyrimidin-4(3H)-ones with Antihistaminic (H₁) Activity

Meenakshi Singh^{a,*}, Sushil K. Singh^a, Mahesh T. Chhabria^{b,*}, Kamala Vasu^c and Dhaivat Pandya^c

^aDepartment of Pharmaceutics, Institute of Technology, Banaras Hindu University (BHU), Varanasi-221005, U.P., India

^bDepartment of Pharmaceutical Chemistry, L.M. College of Pharmacy, Navrangpura, Ahmedabad-380009, Gujarat, India

^c Medicinal Chemistry Research Laboratory, B. V. Patel Pharmaceutical Education Research and Development (PERD) Centre, Thaltej, Ahmedabad-380054, Gujarat, India

Abstract: Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoM-SIA) studies were carried out for a series of thienopyrimidines, novel Histamine H₁ receptor antagonists. Various models were generated. The best predictive CoMFA model gave significant correlation coefficients (cross-validated r^2 (q^2) = 0.514, non-cross-validated r^2 = 0.925), showing the influence of steric and electrostatic fields. Likewise, the best predictive CoMSIA model gave cross-validated r^2 (q^2) = 0.541, non-cross-validated r^2 = 0.862, eliciting the influence of steric, electrostatic, hydrophobic and hydrogen bond acceptor fields. The generated models were externally validated and well correlated with calculated (predicted) and experimental inhibitory concentration (IC₅₀) values, using test sets. The analysis of the contour maps of both CoMFA and CoMSIA models offer important structural insight for designing novel and more active Histamine H₁ receptor antagonists prior to their synthesis.

Keywords: CoMFA, CoMSIA, Thienopyrimidine derivatives, 3D QSAR.

1. INTRODUCTION

Histamine (2-[imidazol-4-yl]-ethylamine), a biological amine mediator exerts a wide range of effects over various biological process, viz. smooth muscle contraction, in inflammation, gastric acid secretion, as a neurotransmitter in central nervous system etc. Targeting its receptors has been a well known therapeutic strategy for over 60 years. Human histamine H₁ receptor (HHR₁), one of the G protein-coupled receptors (GPCRs) known for their constitutive activation in the absence of agonist binding, is involved in allergic reactions like rhinitis, urticaria, hay fever and asthma. Various Histaminic inverse agonists, also called antagonists inhibit this constitutive activity of GPCRs [1].

Three dimensional quantitative structure-activity relationships (3D QSAR) have been employed since early 1970s as useful tools to correlate data set information and to predict the physiochemical and pharmacological properties of untested molecules [2-4]. Compounds containing thienopyrimidine nucleus represents a very important chemical class of medicinal compounds due to their wide range of pharmacological properties, including antiallergic, antiinflammatory, analgesic, antispasmodic, antibacterial, antifungal etc [5].

As part of our research program aimed at investigating the 3D QSAR study of a series of thienopyrimidines, we have employed the comparative molecular field analysis (CoMFA) and the comparative molecular similarity indices analysis (CoMSIA) methods. The widely used CoMFA method is based on the assumption that the interactions between a receptor and its ligands are primarily non covalent in nature and conformation dependent [6, 7]. The CoMFA method calculates the energies of Steric and Electrostatic interactions between the 3D structures of a series of compounds and the probe atom kept at the various intersections of a regular 3D-lattice according to Lennard-Jones and Coulombic potentials respectively, and hence correlating the differences in those fields to biological activity. The resulting energies derived from these two potential functions can then be contoured to give a quantitative spatial description of the molecular properties. Partial least squares (PLS) analysis, with a cross validation procedure, was employed to select relevant components from the large set of CoMFA data to build up the best QSAR model. CoMSIA approach, calculated property fields based on similarity indices of drug molecules that have been brought into a common alignment [8, 9]. The fields of different physicochemical properties used a Gaussian type function for the distance dependence between the molecular atoms and the probe atom in order to avoid some of the inherent deficiencies arising from the Lennard-Jones and Coulomb potential functional forms. CoMSIA is applied to gain insight into how Steric, Electrostatic, Hydrophobic and Hydrogen bonding interactions influence the activity. The results from these studies will be helpful for better understanding of the molecular mecha-

^{*}Address correspondence to these authors at the Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Navrangpura, Ahmedabad-380009, Gujarat, India; Tel: +91-79-26302746; Fax: +91-79-26304865; E-mail: mahesh.chhabria@rediffmail.com; and Department of Pharmaceutics, Institute of Technology, Banaras Hindu University (BHU), Varanasi-221005, U.P., India; Tel: +91-542-6702736; Fax: +91-542-2316428; E-mail: meenu1013@gmail.com

Tetrahedron Letters 53 (2012) 6927-6930

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Tetrahedron Letters

Hitesh B. Jalani, Amit N. Pandya, Dhaivat H. Pandya, Jayesh A. Sharma, V. Sudarsanam, Kamala K. Vasu*

Department of Medicinal Chemistry, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India

ARTICLE INFO

Article history: Received 8 August 2012 Revised 3 October 2012 Accepted 5 October 2012 Available online 12 October 2012

Keywords: Trisubstituted thiophenes DMF-DMA Phenacyl bromides Solvent-free One pot reaction

ABSTRACT

Herein, we report a concise, greener, solvent-free, and novel one pot method for the synthesis of 2-morpholino-3-aryl-5-aroyl thiophenes using 1-morpholino-2-arylethanethione, *N*,*N*-dimethyl formamide dimethyl acetal, and various phenacyl bromides. The driving force for this reaction is the removal of *N*,*N*-dimethylamine from 3-(dimethylamino)-1-morpholino-2-arylprop-2-ene-1-thione resulting in various trisubstituted thiophenes (2-morpholino-3-aryl-5-aroyl thiophenes).

© 2012 Elsevier Ltd. All rights reserved.

Syntheses of small molecules, especially five-membered ring heterocycles have always attracted the scientific community, because of their vivid therapeutic importance. In addition to this, small heterocyclic scaffolds are present in more than 50% of pharmaceutical substances and allow various interactions with the biological targets due to the presence of side chains or various polar bonds, which are not accessible in carbocyclic scaffolds. It is also revealed that the diversity of synthetic methods used by the pharmaceutical industries to generate heterocycles containing products is based on only five-membered aromatic heterocycles representing more than top 200 best selling drugs.¹

Thiophene is an important structural motif in medicinal chemistry and it is considered as a classical bioisostere for the benzene ring and due to its small ring structure it is found in many therapeutically active substances (Fig. 1) such as Raloxifene, Olanzepine, Clopidogrel, Tiamenidine, Tiaprofenic acid, Suprofen, Raniliate strontium, potent PI3K inhibitors etc. One of the common methods for the synthesis of 2-morpholino thiophene is the Willgerodt– Kindler² reaction of acetophenone, sulfur, and morpholine which gives the intermediate 1-morpholino-2-arylethanethione. This 1-morpholino-2-arylethanthione intermediate on reaction with morpholine and triethyl orthoformate gives the dimorpholide compounds which on reaction with various aryl, aroyl halides result in 2-morpholino thiophenes.^{3,4} In addition to this, recently, Huang et al. developed a multi-step synthesis of 2-morpholino thiophene compound known for its PI3K activity.⁵ It has also been observed that the 2-aminothiophene compounds are well documented in the literature,^{6,7} but the most popular Gewald method,⁸ involves the multicomponent condensation of carbonyl compounds, cyanoacetates or malanonitrile, and elemental sulfur. The above mentioned processes are associated with drawbacks such as multistep reactions (except Gewald), harsh reaction conditions, complex and tedious experimental procedures, and lower yields. After a careful literature search, we realized that there is still a need to develop efficient and concise methods for the synthesis of thiophenes.

In continuation of our work on the synthesis of various bioactive heterocyclic compounds using *N*,*N*'-dimethyl formamide dimethyl acetal (DMF-DMA),^{9,10} we were interested to explore 1morpholino-2-arylethanethione intermediate resulting from the Willgerodt-Kindler reaction of various acetophenones, sulfur, and morpholine. We envisaged that this intermediate could be useful for the synthesis of thiophenes. We have developed an efficient, concise, greener, and novel sequential one-pot method for the synthesis of trisubstituted thiophenes from 1-morpholino-2arylethanethione, DMF-DMA, and various phenacyl bromides resulting in various 2-morpholino-3-aryl-5-aroyl (trisubstituted) thiophenes. This method neither requires any reagent for the cyclization nor the solvents (Scheme 1) which is reported herein. To the best of our knowledge, the formation of 2-morpholino-3-aryl-5aroyl (trisubstituted) thiophenes using N,N'-dimethyl formamide dimethyl acetal (DMF-DMA) has not been reported so far.

^{*} Communication Ref. No.: PERD-080712.

^{*} Corresponding author. Tel.: +91 79 27439375; fax: +91 79 27450449. *E-mail address:* kamkva@gmail.com (K.K. Vasu).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.10.022

Tetrahedron Letters 53 (2012) 4062-4064

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

An efficient, greener, and solvent-free one-pot multicomponent synthesis of 3-substituted quinazolin-4(3*H*)ones and thienopyrimidin-4(3*H*)ones $\stackrel{\approx}{}$

Hitesh B. Jalani, Amit N. Pandya, Dhaivat H. Pandya, Jayesh A. Sharma, V. Sudarsanam, Kamala K. Vasu*

Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India

ARTICLE INFO

Article history: Received 6 February 2012 Revised 21 May 2012 Accepted 23 May 2012 Available online 29 May 2012

Keywords:

3-Substituted-quinazolin-4(3*H*)ones 3-Substituted-thienopyrimidin-4(3*H*)ones Greener approach Formamidine One pot reaction

ABSTRACT

Herein, we report an efficient, greener, and solvent-free novel method for the synthesis of 3-substituted quinazolin-4(3H)ones and thienopyrimidin-4(3H)ones in a one-pot sequence using methyl anthranilate or 2-aminothiophene-3-carboxylate with *N*,*N*'-dimethyl formamide dimethyl acetal and various anilines. The driving force for this reaction is the removal of *N*,*N*'-dimethylamine by various anilines resulting in 3-substituted quinazolin-4(3H)ones and thienopyrimidin-4(3H)ones.

© 2012 Elsevier Ltd. All rights reserved.

Lots of efforts have been directed toward the design and applications of multicomponent reactions¹ because MCRs are powerful tools for the construction of organic molecules allowing the formation of several bonds in just a single reaction. In addition to this, carrying out such multicomponent reactions with non hazardous and environment friendly reagents could provide an interesting platform to the scientific community over the conventional approaches. To minimize the use of hazardous reagents, emphasis should be given to the development of greener approaches.

Quinazolin-4(3*H*)one is an important class of heterocycles which possess diverse range of biological properties such as antimalarial,² anticonvulsant,³ antibacterial,⁴ antidiabetic,⁵ and anticancer activities.⁶ Diverse range of the pharmacological activities of quinazolin-4(3*H*)one derivatives have tempted considerable interest for the synthesis of quinazolin-4(3*H*)one using versatile and greener methods. The most common method for the synthesis of 3-substituted quinazolin-4(3*H*)one involves the reaction of anthranilic acid with DMF and POCl₃, reported by Perumal et al.⁷ Other methods for the synthesis of 3-substituted quinazolin-4(3*H*)ones are from anthranilic acid derivatives.^{8–17} Recently, quinazolin-4(3*H*)ones were prepared using silica sulfuric acid,¹⁸ PCl₃,¹⁹ Zn/HCOONH₄ under microwave irradiation,²⁰ LiNO₃,²¹ and HATU.²² However, some of these methods are associated with drawbacks such as multistep reactions, costly reagents, harsh reaction conditions, complex and tedious experimental procedures, and low yields.

Considering the above facts, there is still need to develop efficient, greener, and economical methods for the synthesis of quinazolin-4(3*H*)ones. In addition to this, a majority of the condensed pyrimidin-4(3*H*)one heterocyclic compounds have been reported from 2-aminobenzoic acid.⁸ Earlier reports on the synthesis of 3-substituted quinazolin-4(3*H*)ones incorporate anthranilic acid as starting material, which has electron rich carboxylate resonance structure thus requires various lewis acid catalysts in order to become electron deficient for the cyclization. In case of methyl anthranilate, the carbonyl group being electrophilic in nature, allows the nucleophilic attack facile for the cyclization without use of any catalysts. To the best of our knowledge, the formation of 3-substituted quinazolin-4(3*H*)ones from methyl anthranilate has not been reported so far.

In continuation to our work on the synthesis of biologically important heterocycles such as quinazolin-4(3*H*)ones,²³ we were interested to investigate the formamidine intermediate resulting from the reaction of methyl anthranilate and *N*,*N'*-dimethyl formamide dimethyl acetal (DMF–DMA) can further converted to quinazolin-4(3*H*)ones with the help of various amines. The synthesis of formamidine using either amines or thioureas with DMF–DMA is well documented in the literatures.²⁴ This formamidine structure has tempted us to utilize it in the synthesis of quinazolin-4(3*H*)ones by heating it with various amines to elicit the 3-substituted quinazolin-4(3*H*)ones. Herein, we report an efficient, greener, sequential one-pot method for the synthesis of 3-substitued quinazolin-4(3*H*)ones from methyl anthranilate, DMF–DMA, and various

[☆] Communication Ref. No.: PERD-010512.

^{*} Corresponding author. Tel.: +91 79 27439375; fax: +91 79 27450449. *E-mail address:* kamkva@gmail.com (K.K. Vasu).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.05.104

Tetrahedron Letters 52 (2011) 6331-6335

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Verse ScienceDirect

An efficient synthesis of 2-aminopyrroles from enaminone–amidine adduct and phenacyl/benzyl/heteroalkyl-halides

Hitesh B. Jalani, Amit N. Pandya, Arshi B. Baraiya, Jitendra C. Kaila, Dhaivat H. Pandya, Jayesh A. Sharma, V. Sudarsanam, Kamala K. Vasu*

Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India

ARTICLE INFO

Article history: Received 25 June 2011 Revised 23 August 2011 Accepted 25 August 2011 Available online 1 September 2011

Keywords: 2-Aminopyrroles Enaminone Cyanamide 5-Exo trig N-alkylation ABSTRACT

Herein, we report an efficient and facile synthesis of substituted 2-aminopyrroles from the reaction of enaminone–amidine adduct and various phenacyl, benzyl, or heteroalkyl halides in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in good to excellent yields. The reaction proceeds through an intramolecular 5-*exo* trig cyclization resulting into diversely substituted 2-aminopyrroles. © 2011 Published by Elsevier Ltd.

Many natural and biologically active compounds like hemes, bile pigments, chlorophyll etc. have pyrrole as the basic scaffold which is also present in pharmaceuticals¹ and compounds of material sciences.² 2-Aminopyrroles are part of many different bioactive compounds with reported bioactivities like, IL-6 production inhibition, IkB kinase-β inhibition, intergrin antagonists, signals transduction modulators, antitumor, and antibacterial agents³ are a few of them. Despite the large number of methods for the synthesis of pyrroles reported so far, it is still challenging to prepare 2-aminopyrroles with various substituents directly from readily available building blocks. Several methods were reported for the synthesis of 2-aminopyrroles by Domling,⁴ Zhu,⁵ Nair⁶ and Shaabani⁷ using multi-component reactions of acidic nitriles or isocyanides as starting materials. 2-Aminopyrroles are not readily available precursors; in general, such species are difficult to make and are notoriously prone to decomposition if the adjacent carbon attached to the carbon of the amino group is not bearing the electron withdrawing groups. To the best of our knowledge, there are no simple and convenient methods for the synthesis of substituted 2-aminopyrroles using the readily available and simple starting materials like enaminone-amidine adduct and phenacyl/benzyl/ hetero-alkyl halides.

Enaminones (enamines) are versatile and readily available intermediates and their chemistry has received considerable attention in recent years.⁸ As far as the chemical reactivity of enamines is concerned, they can react with both electrophiles as well as nucleophiles.^{9,10} It is known that the electron rich double bond of enamino-ketones has stronger tendency to react as a nucleophile toward the electron deficient species. The existing methods for the synthesis of pyrroles from enamines and carbonyl compounds are facilitated by oxidizing agents for cyclization and results in pyrroles without amine function.¹¹

The focus of our group is to develop new synthetic methods for the small heterocyclic compounds particularly bearing the amino group within the heterocycles. We have developed the synthesis of 2-aminothiophene,¹² 2-aminothiazole¹³ and 2-aminoimidazole¹⁴ using different adducts of isothiocyanates with enamines or amidines. We have been working on the reaction of enamines/ enaminones with different isothiocyanates to produce the enaminone–isothiocyanate adducts which are useful intermediates for the synthesis of substituted 2-aminothiophenes.¹⁵ Herein, our interest was to check the reactions of enaminones with various electrophiles, in particular their reactions with cyanamide to get the enaminone–amidine adduct.

We reasoned that, we can use the nucleophilic nature of the enaminone by reacting them with electrophilic cyanamide (carbodimide) in the presence of a mild acid to produce the enaminone–amidine adduct. Further reaction of this adduct with active methylene halides could give the desired pyrroles. Herein, we report a novel synthesis of 2-aminopyrroles (**3** and **5**) by the reaction of enaminone–amidine adduct **1** with various phenacyl bromides **2**, benzyl and heteroalkyl halides **4** in the presence of DBU in good to excellent yield (Scheme 1).

^{*} Corresponding author. Tel.: +91 79 27439375; fax: +91 79 27450449. *E-mail addresses*: kamalav@perdcentre.com, kamkva@gmail.com (K.K. Vasu).

ORIGINAL ARTICLE

Contents lists available at ScienceDirect

www.elsevier.com/locate/jpa www.sciencedirect.com

Journal of Pharmaceutical Analysis

armaceur

Stability-indicating assay method for determination of actarit, its process related impurities and degradation products: Insight into

A. Abiramasundari, Rahul P. Joshi, Hitesh B. Jalani, Jayesh A. Sharma, Dhaivat H. Pandya, Amit N. Pandya, Vasudevan Sudarsanam, Kamala K. Vasu*

Department of Medicinal Chemistry, B.V. Patel PERD Centre, Ahmedabad, Gujarat 380054, India

Received 23 August 2013; accepted 14 January 2014 Available online 25 January 2014

KEYWORDS

Actarit; Forced degradation; Stability-indicating assay method

Abstract The stability of the drug actarit was studied under different stress conditions like hydrolysis (acid, alkaline and neutral), oxidation, photolysis and thermal degradation as recommended by International Conference on Harmonization (ICH) guidelines. Drug was found to be unstable in acidic, basic and photolytic conditions and produced a common degradation product while oxidative stress condition produced three additional degradation products. Drug was impassive to neutral hydrolysis, dry thermal and accelerated stability conditions. Degradation products were identified, isolated and characterized by different spectroscopic analyses. Drug and the degradation products were synthesized by a new route using green chemistry. The chromatographic separation of the drug and its impurities was achieved in a phenomenex luna C18 column employing a step gradient elution by high performance liquid chromatography coupled to photodiode array and mass spectrometry detectors (HPLC-PDA-MS). A specific and sensitive stability-indicating assay method for the simultaneous determination of the drug actarit, its process related impurities and degradation products was developed and validated.

© 2014 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. All rights reserved.

^ACommunication No: PERD 101212.

*Corresponding author. Tel.: +91 79 274 39375;

fax: +91 79 2745 0449.

E-mail addresses: abirami77@gmail.com (A. Abiramasundari), kamkva@gmail.com (K.K. Vasu).

Peer review under responsibility of Xi'an Jiaotong University.

Introduction 1.

Actarit is an orally active immunomodulator used in the treatment of rheumatoid arthritis. It suppresses secondary inflammation by activation of Lyt-2+ cells and shows prophylactic and therapeutic effects on secondary inflammation in adjuvant arthritis in rats [1,2]. It prevents the progression of articular lesions [3] and also curtails type II and type IV allergic reactions in mice [4-6].

2095-1779 © 2014 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jpha.2014.01.002

- Tchilibon, S. et al., 2005. (*N*)-methanocarba 2, N^6 -disubstituted adenine nucleosides as highly potent and selective A₃ adenosine receptor agonists. *Journal of Medicinal Chemistry*, 48(6), pp.1745–1758.
- Thimm, D. et al., 2013. Ligand-specific binding and activation of the human adenosine A_{2B} receptor. *Biochemistry*, 52(4), pp.726–740.
- Trincavelli, M.L. et al., 2014. Allosteric modulators of human A_{2B} adenosine receptor. *Biochimica et Biophysica Acta*, 1840(3), pp.1194–1203.
- Valant, C. et al., 2012. Synthesis and characterization of novel 2-amino-3benzoylthiophene derivatives as biased allosteric agonists and modulators of the adenosine A₁ receptor. *Journal of Medicinal Chemistry*, 55(5), pp.2367–2375.
- Vollmann, K. et al., 2008. Synthesis and properties of a new water-soluble prodrug of the adenosine A_{2A} receptor antagonist MSX-2. *Molecules (Basel, Switzerland)*, 13(2), pp.348–359.
- Voors, A. A. et al., 2011. Effects of the adenosine A₁ receptor antagonist rolofylline on renal function in patients with acute heart failure and renal dysfunction: results from PROTECT. *Journal of the American College of Cardiology*, 57(19), pp.1899–1907.
- Wold, S., 1978. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. *Technometrics*, 20(4), pp.397–405.
- Xu, F. et al., 2011. Structure of an agonist-bound human A_{2A} adenosine receptor. *Science* (*New York, N.Y.*), 332(6027), pp.322–327.
- Yan, L. et al., 2003. Adenosine receptor agonists: from basic medicinal chemistry to clinical development. *Expert Opinion on Emerging Drugs*, 8(2), pp.537–576.
- Yerande, S.G., 2008. Ligands for the adenosine receptors synthesis and pharmacological evaluation of compounds with selectivity for the adenosine A₁, A_{2A} and A₃ receptors. Thesis submitted to M.K. Bhavnagar University.
- Yung-Chi, C. & Prusoff, W.H., 1973. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochemical Pharmacology*, 22(23), pp.3099–3108.