Evaluation of Open Source
Tools for Application Software
Testing over Commercial Tools

Submitted By
Akbari Hardi M.
13mcei01

UNIVERSITY

INSTITUTE OF TECHNOLOGY

g NIRMA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY
NIRMA UNIVERSITY
AHMEDABAD-382481
May 2015

Evaluation of Open Source
Tools for Application Software
Testing over Commercial Tools

Major Project

Submitted in partial ful llment of the requirements
for the degree of

Master of Technology in Computer Science and Engineering

Submitted By
Akbari Hardi M.
(13mcei01)

Guided By
Prof. Zunnun Narmawala (Internal) Mr. Deepak Khatri
(External) Ms. Anna Maria Rosario (External)

NIRMA

UNIVERSITY

INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY
AHMEDABAD-382481
May 2015

Certi cate

This is to certify that the major project entitled "Evaluation of Open Source Tools for
Application Software Testing over Commercial Tools" submitted by Akbari Hardi M.
(Roll No: 13cei01), towards the partial ful llment of the requirements for the award of
degree of Master of Technology in Computer Science and Engineering of Nirma
University, Ahmedabad, is the record of work carried out by her under my su-
pervision and guidance. In my opinion, the submitted work has reached a level
required for being accepted for examination. The results embodied in this project, to
the best of my knowledge, haven't been submitted to any other university or

institution for award of any degree or diploma.

Prof. Zunnun Narmawala
Guide & Assistant Professor,
CSE Department,

Institute of Technology,

Nirma University, Ahmedabad.

Dr. Sanjay Garg
Professor and Head,
CSE Department,

Institute of Technology,

Nirma University, Ahmedabad.

Prof. Sharada Valiveti
Associate Professor,
Coordinator M.Tech - INS
Institute of Technology,

Nirma University, Ahmedabad

Dr K Kotecha
Director,
Institute of Technology,

Nirma University, Ahmedabad

Statement of Originality
TR

[, Akbari Hardi M., Roll. No. 13mcei01, give undertaking that the Major Project en-
titted "Evaluation of Open Source Tools for Application Software Testing over
Commercial Tools" submitted by me, towards the partial ful llment of the require-
ments for the degree of Master of Technology in Computer Science & Engineering of
Institute of Technology, Nirma University, Ahmedabad, contains no material that has
been awarded for any degree or diploma in any university or school in any territory to
the best of my knowledge. It is the original work carried out by me and | give
assurance that no attempt of plagiarism has been made. It contains no material that
is previously published or written, except where reference has been made. |
understand that in the event of any similarity found subsequently with any published

work or any dissertation work elsewhere; it will result in severe disciplinary action.

[T
Signature of Student

Date:

Place:

Endorsed by Prof.
Zunnun Narmawala

(Signature of Guide)

Acknowledgements

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.
Zunnun Narmawala, Assistant Professor, Computer Science Department, Institute of
Technology, Nirma University, Ahmedabad for his valuable guidance and continual
encouragement throughout this work. The appreciation and continual support he has
imparted has been a great motivation to me in reaching a higher goal. His guidance
has triggered and nourished my intellectual maturity that | will bene t from, for a long

time to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon'ble Head of
Com-puter Science and Engineering Department, Institute of Technology, Nirma
University, Ahmedabad for his kind support and providing basic infrastructure and

healthy research environment.

A special thank you is expressed wholeheartedly to Dr K Kotecha, Hon'ble
Director, Institute of Technology, Nirma University, Ahmedabad for the

unmentionable motivation he has extended throughout course of this work.

| would also thank Mr. Deepak Khatri and Ms. Anna Maria Rosario for their

special attention and suggestions towards the project work.

Nevertheless, | express my gratitude toward my family, friends and colleagues for

their kind co-operation and encouragement which help me in completion of this project.

- Akbari Hardi M.
13mcei01

Vi

Abstract

A software developing organization undergoes various phases of development. Our company,
ST Microelectronics plays a vital role in software development and the same falls true for it
too. Testing is one of the most important phases and our dissertation has been pursued in
correlation to that. We have mainly paid attention on Security testing and Performance
testing.

We have surveyed various static source code analyzers. We have investigated issues
associated with them. Our dissertation concerns in development of open source software. The
existing licensed ones are found to be expensive and unable to be used in many
circumstances. Our proposed work has replaced them with feasible and cost effective open
source software which have met all the requirements of the existing ones. AppScan, YASCA,
FindBugs and RATS are tools which have been researched thoroughly and a feasible solution
in accordance to expense and security has been proposed and received.

The achieved results have been used further for perfromance testing. We have also proposed
a solution which can achieve TMMI level 3. LoadRunner, Jmeter, locust, LoadTester and
BlazeMeter tools have been studied too. The whole analysis has given the most optimal
solution, useful for replacing expensive licensed versions of tools with a cost effective
alternative approach which fulfils both, security and performance testing.

Vii

Abbreviations

TMMI Test Maturity Model Integration

PT Performance testing

viii

Contents

Certi cate iv

Statement of Originality %

Acknowledgements Vi

Abstract Vi

Abbreviations viii

List of Figures Xi

List of Tables 1

1 Introduction 2

1.1 Knowledge Discovery Process 2

1.2 ProblemStatement............ 2

1.3 Objectiveof Study 3

14 Scopeof Work....... 3

2 Literature Survey 4

2.1 LiteratureReview 4

2.2 Performance Testing Types [1],[2],[3] - viivn ... 5

2.3 ComparisonofTools 6

3 Comparative Study of Tools 8

31 LoadRunner 8

3.1.1 Architecture 8

3.1.2 Working:o 9

313 Testresults 13

3.2 Jdmeter. 13
3.2.1 Archietectureandworking 13

322 Testresults 14

33 Locust . ..o 16

3.3.1 Architectureandworking 16

3.32 Testresults 17

34 LoadTester 17

3.4.1 Architectureandworking 18

342 Testresult 18

35 BlazeMeter 18

3.5.1 Workingo
352 Testresult

3.6 Comparison

4 Conclusions and future work

4.1 Conclusion .
4.2 Future Work

References

19
19
20

26
26
26

27

List of Figures

2.1
2.2

3.1
32
3.3
34
35
36
37
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
347
3.18
3.19
3.20
3.21

Performancetesting..................
Load TestingProcess

Load Runner Architecture
Load RunnerWorking,
Load RunnerVUGen 11
Load Runner Analysis
Load Runner Controller
Load Runner Controller Design
Load Runner Runtime Settings
JMeter Archietecture L 15
JMeter Analysis 16
JMeter Thread Setting 21
JMeter Working 21
LocustExample 22
Locust Working Architecture 22
LocustRunning 23
Locust Test Analysis 23
Locust Test Analysis 23
Load Test CreatingDataset
Loadtest Altering Datasource
Locust Test Analysis
BlazeMeter Working
BlazeMeter Analysis

Xi

o © [1N&)]

11

12
15

24
24
24
25
25

List of Tables

31
3.2
33
34
3.5
36

13
14
17
18
20
20

Chapter 1

Introduction

STMicroelectronics is the world's 5th largest semiconductor company with net rev-
enues of US $11.51 billion in 2013. ST serves customers across the spectrum of elec-
tronics applications with innovative semiconductor solutions by leveraging its vast array
of tech-nologies, design expertise and combination of intellectual property port- folio,
strategic partnerships and manufacturing strength. STMicroelectronics was created in
1987 by the merger of SGS Microelectronic of Italy and Thomson Semi- conductors of

France with the aim of becoming a world leader in the sub-micron area.[4]

1.1 Knowledge Discovery Process

Performance testing is by and large testing performed to decide how a application
per-forms as far as responsiveness and strength under a speci ¢ workload. It can
likewise serve to explore, measure, accept or check other quality traits of the system,
for example, adaptability, dependability and asset utilization.

Performance testing is a subset of Performance engineering and is a software
engineering practice which endeavors to incorporate execution with the usage,

outline and building design of a application or system to be tested. [5], [6], [7]

1.2 Problem Statement

Testing is one of the important phases of SDLC. Performance testing is genuinely viewed as
a standout amongst the most in fact complex sorts of programming testing, on the grounds

that it obliges testers on broad to have specialized information and involvement

in programming. Having such a test, you will nd out about the bottlenecks in your
application and in system, focus for yourself the at scaling it with the quantity of

clients and get elaborated proposals to enhance execution.

An e ective performance testing will extend the greater part of the execution issues,
which could be identi ed with database, system, programming, equipment and so on.
The essential objective incorporates making the benchmark conduct of the application
tested. There are various industry-characterized benchmarks, which ought to be met.
Performance testing does not plan to discover abandons in the application accordingly.
It really addresses some more basic errand of testing the benchmark and the norms set
for the application. Exactness and close observing of the execution and consequences

of the test is the essential normal for execution testing.[8] [9]

At ST Micro security testing of all the applications is done using HP Load runner
which is licensed software. It costs much and company wants to cut cost so we try to
analyze other options available which could provide all the required functionality. We
tried to compare the feasible options and then demonstrated its pros and cons. We

proposed feasible solution and also added the missing features.

1.3 Objective of Study

The main objective of this study is to suggest feasible solution to licensed software
used for performance testing which could be cost e ective as well as functionally
proper. After researching on all the options available for the same, a detailed study

on 3 tools is done in order to compare with presently used tools.

1.4 Scope of Work

In this study we focus on performance testing only, other types of testing is not
focused. Program analysis is the process of automatically analyzing the behavior of
computer programs. Two main approaches in program analysis are static program
analysis and dynamic program analysis. This work focuses on analysis of tools that

could help the organization.

Chapter 2

Literature Survey

Literature Survey is an important aspect in the development of any project. While
working on testing, we have come across new terms and various concepts. These
have played a vital role in the growing phase of our studies and while working on it.

Below is the brief description of our literature survey that has built a strong base:

2.1 Literature Review

Performance testing, inside organization, includes the roles, activities, tools, practices
and deliverable applied at each period of the SDLC and guarantees that an answer will
be composed, actualized, and operationally upheld to meet the non-utilitarian necessi-
ties for execution, (for example, throughput or memory use). It might be then again
alluded to as operational e ciency or application e ciency tuning inside programming of
the application. As the association between application achievement and business
achievement keeps on picking up acknowledgment, especially in the portable space, ap-
plication e ciency tuning has tackled a safeguard and perfectible part inside the product
advancement life cycle. Thus, the term is commonly used to portray the courses of ac-
tion, individuals and team needed to adequately test non-useful necessities, guarantee
adherence to administration levels and upgrade application execution before deploying
the application. The term e ciency envelops more than simply the product and sup-
porting foundation, and in that capacity the term operational e ciency is ideal from a
large scale view. Adherence to the non-utilitarian necessities is additionally approved
post-organization by checking the creation of applications. Operational e ciency, using

Performance testing, has turned into a di erent control at various organizations, with

tasking separate yet parallel to Systems Engineering. It is pervasive, including
individu-als from various hierarchical units; yet overwhelmingly inside the ICT
department. [4], [?],[9], [?]

3
- n

Figure 2.1: Performance testing

2.2 Performance Testing Types [1], [Z], [3]

Load testing: A load test is normally led to comprehend the conduct of the appli-
cation under a particular expected burden. This can be the normal simultaneous

number of clients on the application performing a particular number of
exchanges inside the set span. This test will give out the reaction times of all
the critical busi-ness discriminating exchanges. In the event that the database,
application server, and so forth are likewise checked, then this basic test can

itself point towards bot-tlenecks in the application programming.

Load Testing Process

|. Identify Key scenarios

2. Idenuly Worload
3. Identify Metrics —T
4. Create Test Cases

Iterate

5. Simulate Load ‘
7. Analyze Results

Figure 2.2: Load Testing Process

-

o

~

Stress testing: It is typically used to comprehend the maximum furthest reaches
of limit inside the application. This sort of test is done to focus the application

framework's power regarding great load and helps application executives to
gure out whether it will perform adequately if the present burden goes well over

the normal tested.[10]

Soak testing It is also known as endurance testing. It is generally done to g-ure
out whether the framework can maintain the consistent expected burden. Amid
tests, memory use is checked to distinguish potential holes. Likewise critical, yet
fre-quently disregarded is execution debasement, i.e. to guarantee that the
throughput and/or reaction times after some long stretch of supported movement
are tanta-mount to or better than toward the start of the test. It basically includes
applying a huge burden to a framework for an ampli ed, critical time of time. The

objective is to nd how the framework carries on under supported utilization.

Spike testing It is nished by abruptly expanding the heap created by an extensive
number of users, and watching the conduct of the application. The objective is to

gure out if execution will endure, the application will fall at, or it will have the
capacity to handle emotional changes in burden.

Con guration testing As opposed to testing for execution from a heap viewpoint, tests
are made to focus the impacts of design changes to the application framework's

parts on the framework's execution and conduct. A typical illustration would be
trying di erent things with distinctive routines for burden adjusting.

Isolation testing Separation testing is not unique to testing but rather includes
rehashing a test execution that brought about a framework issue. Such testing can

frequently detach and a rm the de ciency space.[11]

2.3 Comparison of Tools

After a detailed discussion with team members it was decided to compare following
tools: After nal discussion with expert, it was deduced to do detailed study of 4 tools

viz Jmeter, locust, LoadTester and BlazeMeter.

Table 2.1: Comparison of Tools

Name of tool Platform License type
Load Runner Windows Commercial
Jmeter Windows, Linux Open source
AgileLoad Windows Open source
locust Linux Open source
LoadTester Windows Freemium
WAPT Linux Open source
PyLOT Windows Open source
BlazeMeter Windows Commercial

Chapter 3

Comparative Study of Tools

3.1 Load Runner

LoadRunner is a product testing apparatus from Hewlett-Packard. It is utilized to test
applications, measuring application conduct and execution under burden.HP LoadRunner
can reenact a large number of clients simultaneously utilizing application programming,
recording and later investigating the execution of key parts of the application. LoadRun-ner
reproduces client action by producing messages between application parts instead of
reenacting collaborations with the client interface, for example, keypresses or mouse de-
velopments. The messages to be created are put away in scripts. LoadRunner can create
the scripts by recording them, for example, logging HTTP appeals beween a customer web

program and an application's web server. [12] [13]

3.1.1 Architecture

[14],[15], [16] The key segments of HP LoadRunner are: Load Generator

produces the load against the application by taking after scripts.

VuGen (Virtual User Generator) for creating and altering scripts

Controller controls, dispatches and groupings occasions of Load Generator - deter-
mining which script to use, for to what extent and so on. Amid runs the Controller

gets constant checking information and showcases status.

Agents procedure oversees association in the middle of Controller and Load

Gener-ator occasions.

Analysis collects logs from di erent burden generators and organizations
reports for visualization of run result information and checking information.

m Scenarios 2
& Graphs
T l m \A internet
YuG

Controller Analysrs l copy/

s / S ﬁ\‘ paste

Logs

Monitoring m
Start/Stop \
Ru Diag -ondk
. 45 Access |

Load Generator(s) Crystal
m W virtual Reports
HTTP Protocol E Users

Mercury

‘ Client Emulation 5 b
Diagnostics

Capture & Record

Servers/Environment Probesl
Under Test ents

Figure 3.1: Load Runner Architecture

3.1.2 Working:

Load Runner works by making virtual clients who take the spot of genuine clients
working customer programming, for example, Internet Explorer sending solicitations
utilizing the HTTP convention to IS or Apache web servers. Demands from
numerous virtual client customers are created by "Load Generators" with a speci ¢
end goal to make a heap on di erent servers under test.

These load generator specialists are began and halted by the "Controller" project. The
Controller controls burden test runs in light of "Scenarios" conjuring arranged "Scripts" and
related "Run-time Settings". Scripts are created utilizing the "Virtual user script Generator"
(named "V U Gen"), It creates C language script code to be executed by virtual clients by
catching system movement between Internet application customers and servers. With Java

customers, VuGen catches calls by snaring inside the customer JVM.

Amid runs, the status of every machine is checked by the Controller. Toward the
end of every run, the Controller consolidates its checking logs with logs acquired
from burden generators, and makes them accessible to the "Analysis" program,
which can then make run result reports and diagrams for Microsoft Word, Crystal

Reports, or a HTML page program.

Every HTML report page created by Analysis incorporates a connection to results
in a content record which Microsoft Excel can open to perform extra investigation.
Error amid every run is put away in a database. [17] [13]

How LoadRunner Works

Application Under Test
2.Thousands of virtual

users perform real-life < — t —
transactions on a . & 3 8
system to emulate % . b

production traffic.

3. Real-time monitors capture
performance data across all tiers,
servers and network resources
and display information on the
Controller.

4. Results tored i
LoadRunner ConmN data?)sause r:::):it%'y e
1. The Controller is a central Siowing wsens &

. te reports and
console from which the load test genem ¢
is managed and monitored. perform analysis.

Figure 3.2: Load Runner Working

Following screen shows working:

10

soret [diee 1 E3 G
4.0 %
i e (AT BNTE B85 {

bz mhmetz Wrmaﬂmz “Eaarikhs

; 'xt“i's«rr sk = iﬁﬂi%sﬁeﬁﬁr%é%}_ = AV weh mehE
Iﬁ? i 1 ‘,W Wrﬂ& 759 x‘t’h v e

BGEEE, Fs E the tEBEesELitn,
I EVR Y SIS '{Se

nﬁwmmi‘ééﬁﬁﬁﬂﬁ‘):

ot GHE b Bdssarisa] EEs i, ERNIVEY;
3 wk&ﬂg,tiltfﬁﬁ o Tindit msesmelk Fote.wT geh [Eseoed by Goozie.
j

—_l,!_q I; Sy .;J

PR *..'

mmmm

000 [+ % o0 1900 06 20m x00
lw 2oenato fme mm et

W+ 05 aetets Al B

Figure 3.4: Load Runner Analysis

11

Figure 3.5: Load Runner Controller

| %= Sww Sweew Wt Magmee Tt Sy
I8 AT an

- " ’ x -

e B e
A% TS L W) W -

c——a - * Lo—— L v

ol S T S

Figure 3.6: Load Runner Controller Design

12

3.1.3 Test results

Following table shows results evaluated after execution of 43 applications (20 java, 16

.net and 7 php based) for this tool: NOTE:values are considered for 2 decimal points

only
Virtual User | Technology of| Response Memory Uti- | Success Rate| Error Rate
Application Time (sec) lization (MB) | (%)
1 0.001 2
10 Java 0.01 18.8 100 0
100 0.1 179.0.
1 0.002 5
10 .Net 0.2 48.7 100 0
100 2.034 583.76
1 0.016 3.45
10 php 0.189 33.23 100 0
100 2.002 289.69
Table 3.1: Table
3.2 Jmeter

Apache JMeter is open source programming, a 100% unadulterated Java desktop
appli-cation intended to load test utilitarian conduct and measure execution. It was
initially intended for testing Web Applications however has subsequent to extended
to other test capacities. Apache JMeter is an Apache extend that can be utilized as a
load testing ap-paratus for dissecting and measuring the execution of an assortment
of administrations, with an attention on web applications. JMeter can be utilized as a
unit test instrument for JDBC database connections: FTP, LDAP, Webservices, JMS,
HTTP. JMeter can likewise be arranged as a monitor, despite the fact that this is
regularly viewed as a specially appointed arrangement in lieu of cutting edge
observing arrangements. JMeter o ers variable parametrization, every string treats,

arrangement variables and a mixed bag of reports. [18] [19]

3.2.1 Archietecture and working

JMeter is written in the Java, with a produced Javadoc. Jmeter comprised of a Master
system (the Jmeter GUI) which controls remote slave frameworks running jmeter-server

examples which simultaneously forces stack on a target server, system or protest under

13

test by copying movement to and from customer programming.

The JMeter GUI (Apachedmeter.jar) is a multi-strung Java class running Java
Swing interfaces. It is conjured utilizing jmeter.bat. jmeter-server speaks with di erent
remote injector Java RMIRegistry administrations. Remote servers as a matter of
course listens to port 1099. [20] [21]

A Test Plan is a compartment for components which indicates the parameters for
test runs. Con g. components and Listeners can be on any level. Samplers store
screen server measurements into .jtl (JMeter Test Log) documents.

Every Thread Group reproduces an individual virtual client. Every string is a unit
of work that can be executed all the while or consecutively. To every string gathering
can be included Logic Controllers and Elements.

JMeter has a multi-threaded structural planning that empowers Java engineers to aug-
ment JMeter with custom plugins and usefulness augmentations, recorded at

code.google.com/p/jmeter-plugins/, depicted here.

JMeter presents diagrams of run results (end-to-end execution under load over

time). [18] [22] [27]

Following screen shows working:

3.2.2 Testresults

Following table shows results evaluated after execution of 43 applications (20 java, 16

.net and 7 php based) for this tool: NOTE:values are considered for 2 decimal points

only
Virtual User | Technology of| Response Memory Uti- | Success Rate| Error Rate
Application Time (sec) lization (MB) | (%)
1 0.001 2
10 Java 0.01 21.2 98.2 1.8
100 0.1 199.09
1 0.002 4.34
10 .Net 0.2 50.3 100 0
100 2.89 469.09
1 0.02 242
10 php 0.19 31.08 99 1
100 2.09 272.69

Table 3.2: Table

14

Figure 3.7: Load Runner Runtime Settings

Figure 3.8: JMeter Archietecture

15

Figure 3.9: JMeter Analysis

3.3 Locust

It is an open source load testing tool written in Python. It permits you to characterize
client conduct with Python code, and swarm your framework with many concurrent
users. It is a simple to-utilize, appropriated, client burden testing device. Planned for
burden testing sites((or di erent frameworks) and making sense of what number of

simultaneous clients a framework can deal with. [23]

The thought is that amid a test, a swarm of users will attack application. The conduct
of every test client is characterized and the swarming methodology is observed from a
web Ul progressively. This will help to test and recognize bottlenecks in code before

letting genuine clients in ie. before deploying.[24], [25], [€]

3.3.1 Architecture and working

The execution stream begins in the primary capacity of main.py. Other alternatives
that it was begun with are parsed. The locust le that characterizes the test is stacked
and Locust classes with related "tasks" are parsed and put away. Assignments are
just adorned capacities that perform HTTP asks for, for example, GET and POST.

To do the actual HTTP requests the python standard library urllib2 is used. The browser
that is used by the simulated users is de ned in clients.py. When a request is executed the

time until a response has been received is recorded. It is implemented using

16

events. When a request is nished, an event is red to allow the stats module to store
a response time or possibly a failure.

Every recreated clients run in Greenlet strings. A greenlet is really not a genuine
string but rather sense well to consider it such. The greenlets are planned (brought
forth and slaughtered) by a runner in the runner beetle module. The runner it self is a
greenlet produced from the fundamental module. The runner can request its
recreated clients to begin (bringing forth greenlets) or to quit (slaughtering greenlets).
At the point when a mimicked client has been begun its nearby greenlet handles the
real demands and holding up.

Following screens show working:

3.3.2 Testresults

Following table shows results evaluated after execution of 43 applications (20 java, 16

.net and 7 php based) for this tool: NOTE:values are considered for 2 decimal points

only
Virtual User | Technology of| Response Memory Uti- | Success Rate| Error Rate
Application Time (sec) lization (MB) | (%)
1 2.05 3
10 Java 19.49 20.72 100 0
100 0.1 209.74
1 0.002 3.78
10 .Net 0.2 19.95 89.4 10.6
100 2.034 222.65
1 0.016 4.03
10 php 17.04 23.75 92 8
100 264.84 207.59

Table 3.3: Table

3.4 LoadTester

Web Performance Load Tester is Freemium for testing load on windows platform. It is
only web testing tool savvy enough to let you know what number of clients your site can
deal with. Use of another instrument to outline a considerable length of time attempting
to make sense of it in the event that you can even tell by any means. [26], [27]

At the push of a button you can create load from outside your system to test the

whole application stack, including the rewall, or produce load from inside your test lab

17

to focus on server execution without anyone's input. [28]

3.4.1 Architecture and working

Web Performance LoadTester for the most part perform either load testing or API
testing however not both. Then again, it can be arranged to test the whether every
call meets expectations (Functional & QA Testing), and the calls velocity.

The accompanying segment contains it's working four sections alongwith screens [29]:

recording an APl call using
browser making a dataset
altering the datasource

producing an arrangement of calls utilizing a custom dataset

3.4.2 Testresult

Following table shows results evaluated after execution of 43 applications (20 java, 16

.net and 7 php based) for this tool: NOTE:values are considered for 2 decimal points

only
Virtual User | Technology of| Response Success Rate| Error Rate
Application Time (sec (%)
1 0.001
10 Java 0.01 100 0
100 0.1
1 0.002
10 .Net 0.2 100 0
100 3
1 0.02
10 php 1.02 100 0
100 3.55

Table 3.4: Table

3.5 BlazeMeter

Blazemeter is windows based commercial testing tool. BlazeMeter is a self-
administration load testing platform-as-a-service (PaaS), which is used for execution
testing structure. BlazeMeter gives an undertaking evaluation, 'out-of-the-case'

1. [37]

burden testing answer for the designer community. [

18

3.5.1 Working

BlazeMeter gives testers with instruments to a basic reconciliation into their local im-
provement environment by giving versatile, web application, site, web-administration
or database testing that can reproduce many users who are going to a site
simultaneously utilizing the administration. [32] , [33]

Users can run numerous load tests keeping in mind the end goal to nd and x
execution bottlenecks. BlazeMeter's load trying stage has fabricated in
incorporations that can be stretched out with a progression of custom modules.

Blazemeter permits us to have an alternate csv record every heap test motor. It
must be done physically by duplicating the documents onto the Agent EC2
occurrences and have the same lename since the specialists allude to the Masters
properties. Blazemeter permits us to parameterize the estimations of even lenames
and have diverse csv records in every motor without o ering us to the inconvenience
of replicating documents into particular EC2 examples & holds the documents in a

typical storehouse so it can be alluded from that point to every specialists.

BlazeMeter o ers live observing of vital parameters of test servers when the test
is running which empowers user to settle on the number & occasion sort for the test.
It gives AWS Cloud watch integration. An account with IAM access must be made
and AWS Access Key & Secret Key qualities must be designed so that the
measurements are accessible in the Blazemeter s dashboard. This highlights helps
us to see how the bene ts in the cloud are responding to tests and help us likewise
tune the base. While performing burden testing, it is essential not just to screen your
Web Servers & Databases additionally the specialists from where the heap is
produced . The New Relic plugin issues us the front end KPIs and back end KPlIs. It
s frontend KPIs give knowledge on what number of clients are really attempting to
get to your site, versatile site or portable applications. It s backend KPIs demonstrate

what number of clients are getting past to your applications.

3.5.2 Testresult

Following table shows results evaluated after execution of 43 applications (20 java, 16

.net and 7 php based) for this tool: NOTE:values are considered for 2 decimal points

only

19

Virtual User | Technology of| Response Memory Uti- | Success Rate| Error Rate
Application Time (sec) lization (MB) | (%)
1 2.59 4.03
10 Java 22.02 23.75 100 0
100 190.95 207.59
1 0.2 10.92
10 .Net 2.95 132.72 89.4 10.6
100 26.58 832.6
1 1.69 3.62
10 php 30.49 482.02 92 8
100 200.47 1GB+
Table 3.5: Table
3.6 Comparison
Hence we deduced following comparison table form study of tools and results
obtained from the same:
Name of tool | License type | Pros Cons
LoadRunner | Commercial | Suitable outputs Easy | Commercial software
to add plugins Installation hard
Jmeter Open source | Open source Suitable | Missing features as
outputs Installation| compared to Load-
easy Light weight tool | Runner Improper GUI
Easy to add plugins
locust Open source | Open source Easy to | Linux based Unsuit-
add plugins able outputs
LoadTester Freemium Suitable outputs Only | Need to pay for more
response time can be| features Useful for
measured Installation| load test only
easy
BlazeMeter Commercial | Plugins can be added | Commercial software
Installation easy Unsuitable outputs
Improper GUI

Table 3.6: Table

20

Figure 3.10: JMeter Thread Setting

| —— L T——— - A —— - —

Figure 3.11: JMeter Working

21

from oeust importLocust, SubL.ogst, task. | ince Biswalght sefivedin 6
o Tasks™dict ishigher for e
Ebiggvisitoruser Visitsrlser -class, is will vave

def roamiself);

@fask(1) g
def comment(sei):

#biog alifhor user

Hans Rk

Hhemrd fagiBhhd amasit
BAGDT TS WP e R W Sl 2 4
@task(10)
detroamiself) '

@task{1}
det naw_adiclafseil:

tiass BaselocustiLotust)
min_iwait =4
max_wait =50

tasks'= {VigitorUser20, AuthorUser 1

Figure 3.12: Locust Example

The master node
aggregates the statistics
from all the slaves

ﬁ\ N—

nodes may run
on different Statistics from all the
Slave Node Slave Node Slave Node coresandior simulated users are
ditferent aggregated
machines

The simulated users
sends HTTP requests to
the host addess of the
service and logs data on

the responses

Figure 3.13: Locust Working Architecture

22

Molog/posi-siug)
Forum
Norum/fthread-siug]

Forumi[thread-slug]

Figure 3.14: Locust Running

Figure 3.15: Locust Test Analysis

eiratances Resporse Time Oczarbe¥olumes Response time

Figure 3.16: Locust Test Analysis

23

7 Navigator 53

v’

Figure 3.17: Load Test Creating Dataset

a PATH
path segment [2]
path segment [1]
path segment [0]

e laadeaa

T

O

"

/sqlrest/CUSTOMER/35 Heade
35 [Cou
CUSTOMER

sqlrest

| B Table Customization

[R S alo o

Figure 3.18: Loadtest Altering Datasource

Figure 3.19: Locust Test Analysis

24

Figure 3.20: BlazeMeter Working

p— S he B . - —
m ——
!
“ne : ’ —
-_e -
. .
- - - »
- .

Figure 3.21: BlazeMeter Analysis

25

Chapter 4

Conclusions and future work

4.1 Conclusion

After detailed study of tools and their features, we found that these tools have some
or other feature missing as compared to LoadRunner. However on close observation
Jmeter was found to be useful as it has many advantages over others (Please refer
section 3.6 for the same) Hence, to help organization achieve TMMI level 3, we
conclude that HP LoadRunner tool should be replaced with Jmeter as it is proper,

suitable and feasible option.

4.2 Future Work

Future work includes editing Jmeter as per organizations requirement and
transferring of testing activities from LoadRunner to Jmeter.

26

References

[1] \Online resource: http://en.wikipedia.org/wiki_Software performance

testing".

[2] \Online resource: " http://en.wikipedia.org/wiki/Performance__ engineering”.

[3] \Online resource: " http://en.wikipedia.org/wiki/Software_testing".

[4] \Online resource: " http://www.st.com/web/en/"."

[5] \Online resource: " http://prateekvjoshi.com/2013/08/21/ why-do-we-need-
performance-testing/"."

[6] K. Zhu, J. Fu, and Y. Li, \Research the performance testing and performance
im-provement strategy in web application," in 2010 2nd International Conference

on Education Technology and Computer, vol. 2, 2010.

[7] G. Jiang and S. Jiang, \A quick testing model of web performance based on
testing ow and its application," in Web Information Systems and Applications
Conference, 2009. WISA 2009. Sixth, pp. 57{61, IEEE, 2009.

[8] M. D. M. Su an and F. R. Fahrurazi, \Performance testing: Analyzing di erences of
response time between performance testing tools," in Computer & Information Science

(ICCIS), 2012 International Conference on, vol. 2, pp. 919{923, IEEE, 2012.

[9] M. Jovic and M. Hauswirth, \Performance testing of gui applications," in
Software Testing, Veri cation, and Validation Workshops (ICSTW), 2010 Third
International Conference on, pp. 247{251, IEEE, 2010.

27

[10] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip, \A framework for
automated testing of javascript web applications," in Software Engineering
(ICSE), 2011 33rd International Conference on, pp. 571{580, IEEE, 2011.

[11] O. Hamed and N. Kafri, \Performance testing for web based application
architec-tures (. net vs. java ee)," in Networked Digital Technologies, 2009.
NDT'09. First International Conference on, pp. 218{224, IEEE, 2009.

[12] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, \State of the art: Automated
black-box web application vulnerability testing," in Security and Privacy (SP),
2010 IEEE Symposium on, pp. 332{345, IEEE, 2010.

[13] A. Freitas and R. Vieira, \An ontology for guiding performance testing," in Pro-
ceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web
In-telligence (WI) and Intelligent Agent Technologies (IAT)-Volume 01, pp.
400{407, IEEE Computer Society, 2014.

[14] \Online resource: " https://msdn.microsoft.com/en-us/library/bb924363. aspx".

[15] \Online resource: " http://en.wikipedia.org/wiki/HP _LoadRunner".

[16] \Online resource: http://alternativeto.net/software/loadrunner/

?platform=linux".

[17] \Online resource: " http://www8.hp.com/us/en/software-solutions/ loadrunner-

load-testing/index.html?jumpid=va_uwxy6ce9tr".

[18] \Online resource: " http://www.wilsonmar.com/1loadrun.htm".

[19] \Online resource: " https://msdn.microsoft.com/en-us/library/bb924356. aspx".

[20] \Online resource: https://wiki.apache.org/jmeter/

JMeterArchitecturalOverview".

[21] \Online resource: " http://blazemeter.com/blog/ jmeter-viable-open-source-

alternative-loadrunner”.

28

[22] \Online resource: " http://jmeter.apache.org/"."

[23] \Online resource: " http://www.softwaretestingclub.com/forum/topics/ jmeter-vs-

load-runner-performance-too

[24] \Online resource: " hitp://en.wikipedia.org/wiki/Apache_JMeter".

[25] M. R. Dhote and G. Sarate, \Performance testing complexity analysis on ajax-
based web applications," Software, IEEE, vol. 30, no. 6, pp. 70{74, 2013.

[26] \Online resource: " http://killera.github.io/test/2013/07/29/Comparison_
between JMeter _and_Locust/"."

[27] A. I. Wasserman, \Software engineering issues for mobile application development,” in
Proceedings of the FSE/SDP workshop on Future of software engineering research,

pp. 397{400, ACM, 2010.

[28] M. A. S. Netto, S. Menon, H. V. Vieira, L. T. Costa, F. M. de Oliveira, R. Saad,
and A. Zorzo, \Evaluating load generation in virtualized environments for
software performance testing," in Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
pp. 993{1000, IEEE, 2011.

[29] G.-h. Kim, H.-c. Moon, G.-P. Song, and S.-K. Shin, \Software performance testing
scheme using virtualization technology," in Ubiquitous Information Technologies &
Applications, 2009. ICUT'09. Proceedings of the 4th International Conference on,
pp- 1{5, IEEE, 2009.

[30] \Online resource: " http://uu.diva-portal.org/smash/get/diva2:685934/
FULLTEXTO1.pdf"."

[31] \Online resource: http://www.webperformance.com/load-testing/blog/2015/

04/api-load-testing/"."

[32] \Online resource: https://docs.blazemeter.com/customer/portal/articles/

1808038-blazemeter-rest-apis".

29

[33] R. Mansharamani, A. Khanapurkar, B. Mathew, and R. Subramanyan, \Perfor-
mance testing: Far from steady state," in Computer Software and Applications
Con-ference Workshops (COMPSACW), 2010 IEEE 34th Annual, pp. 341{346,
IEEE, 2010.

[34] X. Che and S. Maag, \Passive testing on performance requirements of network
proto-cols," in Advanced Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, pp. 1439{1444, IEEE, 2013.

[35] Q. Wu and Y. Wang, \Performance testing and optimization of j2ee-based web
applications," in Education Technology and Computer Science (ETCS), 2010
Second International Workshop on, vol. 2, pp. 681{683, IEEE, 2010.

30

