
IP VIEW VALIDATION AUTOMATION

Submitted By

Arpit Garg

13MCEI03

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2015

IP VIEW VALIDATION AUTOMATION

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

(Information and Network Security)

Submitted By

Arpit Garg

(13MCEI03.)

Guided By

Mr Vivek Garg

and

Prof. Vijay Ukani

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

MAY 2015

Certificate

This is to certify that the major project entitled ”IP VIEW VALIDATION AU-

TOMATION” submitted by Arpit Garg(Roll No: 13MCEI03), towards the par-

tial fulfillment of the requirements for the award of degree of Master of Technology in

Information & Network Security (CSE) of Institute of Technology, Nirma University,

Ahmedabad, is the record of work carried out by him under my supervision and guid-

ance. In my opinion, the submitted work has reached a level required for being accepted

for examination. The results embodied in this project, to the best of my knowledge,

haven’t been submitted to any other university or institution for award of any degree or

diploma.

Prof Vijay Ukani Prof. Sharda Valiveti

Internal Guide, Program Co-ordinator-INS,

Assoc. Professor, Assoc. Professor,

Nirma University, Ahmedabad Nirma University, Ahmedabad

Dr Sanjay Garg Dr K Kotecha

Head of CSE Department Director,

Institute of Technogy Institute of Technology,

Nirma University Nirma University

Ahmedabad Ahmedabad

iii

Statement of Originality
———————————————————————————————————————

I, Arpit Garg, Roll. No. 13MCEI03, give undertaking that the Major Project entitled

”IP View Validation Automation” submitted by me, towards the partial fulfillment

of the requirements for the degree of Master of Technology in Computer Science &

Engineering of Institute of Technology, Nirma University, Ahmedabad, contains no ma-

terial that has been awarded for any degree or diploma in any university or school in any

territory to the best of my knowledge. It is the original work carried out by me and I

give assurance that no attempt of plagiarism has been made. It contains no material that

is previously published or written, except where reference has been made. I understand

that in the event of any similarity found subsequently with any published work or any

dissertation work elsewhere; it will result in severe disciplinary action.

———————–

Arpit Garg

Date:

Place:

Endorsed by

Prof Vijay Ukani

iv

Acknowledgements

First and foremost, I would sincerely like to thank Mr Vivek Garg, Project Guide,

STMicroElectronics, Greater Noida. I would like to thank, Project Manager Mr Ashu

Talwar STMicroElectronics, Greater Noida for his constant motivation and support

throughout the year. I would thank my thesis supervisor Prof Vijay Ukani, Inter-

nal Guide Nirma University for their guidance and support.

I would also like to express my gratitude and sincere thanks to Dr. Sanjay Garg

Head of Computer Science and Engineering Department and Prof. Sharda Valiveti

Coordinator of M.Tech Information and Network Security program for allowing me to

undertake the thesis work and for her guidelines during the review process.

A special thank you is expressed wholeheartedly to Dr K Kotecha, Hon’ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

See that you acknowledge each one who have helped you in the project directly or

indirectly.

- Arpit Garg

13MCEI03

v

Abstract

The project is related to automation of validation of libraries which are the Intellectual

Property. These libraries represent design data of cells, transistor level design and timing

information that will be integrated and fabricated on a chip. The automation requires

plugins to validate different views of a library under test. The plugins are in TCL, C

Shell. Launching the plugins on IPs and validation of the behavior of plugins is a time

consuming process. The aim of this project is to automate the task of input preparation

required for launching QA and simplify log analysis. PluginQAKit has been developed in

order to reduce human effort and save developer’s time to launch the plugins and validate

the results of plugins

vi

Abbreviations

IP Intellectual Property(Library).

QA Quality Assurance

TCL Tool Command Language

EDA Electronic Design Automation

LEF Library Exchange Format

GDS Graphical Data System

BASH Bourne Again SHell
——————————————————————————————————————

–

vii

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

Abbreviations vii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Introduction of Library IP . 1
1.2 Types of Library . 2

1.2.1 Core Library . 2
1.2.2 Input/Output Library . 2
1.2.3 Memory Library . 2
1.2.4 Analog and Mixed Cell Library 2

2 Literature Survey 3
2.1 Library Views . 3

2.1.1 Symbolic View . 3
2.1.2 SLIB . 4
2.1.3 Schematic View . 4
2.1.4 Circuit Description Language(CDL) 4
2.1.5 Layout Views . 6
2.1.6 Lef View (Library Exchange format) 6
2.1.7 Synopsis Technology File (.lib) 7

2.2 Structure of Library . 8
2.3 IC Design Flow . 8

3 Technology and Tools 11
3.1 C Shell . 11
3.2 Bash (Bourne-Again SHell) . 12
3.3 Tool Command Language(TCL) [3] . 12
3.4 VNC . 13
3.5 GMake [4] . 13

viii

3.5.1 Concept of Make rules and Target 14

4 IPScreen and PLUGINS 15
4.1 Inputs to IPScreen . 15
4.2 Information Dumped by IPScreen on parsing an IP 16
4.3 Final Output of Plugin Run on IPScreen 17
4.4 Plugins . 17

4.4.1 Old Approach vs Plugins . 18
4.4.2 Plugin to ensure Views consistency [6] 18
4.4.3 Tags Evaluator . 19
4.4.4 Plugin to ensure alignment with Library Structure 20
4.4.5 IP Comparator . 21

5 Implementation Details and Results 22
5.1 Manual Approach for Validation. 22
5.2 Intermediate PluginQAKIt . 22
5.3 Algorithm for automated Comamand File Creation 24
5.4 Plugin QA Kit . 26

5.4.1 Automated Command File Creation Module 28
5.4.2 Algorithm for Automated Setup Creation using PluginQAKit . . 29
5.4.3 Automated Log Analysis Module 31

5.5 Automated Launching of Parallel IPScreen Jobs 33
5.6 Difference in Quality Assurance of Plugins done manually vs Automated

PluginQAKit . 35
5.7 Time Difference achieved after automating Input Preparation 37
5.8 Time Comparison GUI mode vs PluginQAKit 37
5.9 Time Difference Achieved by Automating in primary level Log Analysis . 38

6 Conclusion 39
6.1 Conclusion . 39

References 40

ix

List of Figures

2.1 Library View Block Diagram . 3
2.2 Symbolic View of a Inverter . 4
2.3 Schematic View of a Inverter as in Virtuso 5
2.4 Sub circuit of a sample circuit . 6
2.5 Layout View . 7
2.6 IC Design Flow . 9

4.1 IPScreen and Plugins Block Diagram . 16
4.2 Plugin Flow: Ensure Views Consistency 19

5.1 Block diagram of Intermediate PluginQAKit 23
5.2 Illustration of technology specific library repository created for Automated

QA Sessions. 26
5.3 Block diagram of PluginQAKit . 27
5.4 Run Area generated for a single library (C32 SC 12 CLK LR) showing

that all the plugins are symbolically linked 28
5.5 Example of a single main library and its supporting libraries maintained

in library datastore. 31
5.6 Basic Principle of Log Analysis . 32
5.7 Time Difference achieved after automating Input Preparation 37
5.8 Time Difference achieved by automating primary level log analysis 38

x

List of Tables

5.1 Differences in Validation using manual approach vs PluginQAKit 36
5.2 Time saved in input Preparation for validation 37
5.3 Time saved for running n number of Tasks. 38
5.4 Time saved using PluginQAKit during Log Analysis. 38

xi

Chapter 1

Introduction

System on Chip(SoC) design trend is to combine more functionalities usually named IPs

(Intellectual Property), that are developed in the design team or already available in mar-

ket. One of the demanding jobs for IP providers is related to IP models or representation

needed in the design flow targeted for the System on Chip(SoC) development. The main

debate for IP developers are:

• Coherency between different Views.

• Accuracy between IP models and real IP.

This chapter consists of brief preface to library IPs, types of libraries.

1.1 Introduction of Library IP

LIBRARY [1] is defined as a set of all design data available for an IP. The design data

consists of functionality, transistor level design of the IP, timing information that will

be fabricated on chip. We can also say that library is a collection of cells, comprising

of various views which are useful for designing a chip. Cell is a component performing

a basic function and a view is a particular representation of a cell. Due to increased

complexity of circuit and shorter time to market SoC designers cannot really concentrate

on design of basic building blocks. This database can be reused in designing various

System on Chip(SoC).

1

1.2 Types of Library

The different types of Library are as follows:

1.2.1 Core Library

It consists of a group of cells called Standard Cells. They implement basic logic functions

like Inverter, latches and flip flops etc. Digital designs are build from basic components

like gate, register, counters, adder, subtractors, RAM, ROM. Core Library is collection

of such building blocks. Physical/logical/timing models are created for these cells.

1.2.2 Input/Output Library

It consists of a group of cells called I/O buffers. I/O buffers are designed to interface off

chip signals to inside chip environment and vice-versa. I/Os are placed on the periphery

of the chip. Any signal which comes from off-chip environment (external voltages are at

a typical voltage of 2.5V, 3.3V or 5V) into the chip, must be checked by I/O for any

discrepancy in its behavior other than defined by the core for that particular signal. If

I/O finds any signal defying the expected behaviour from it, it modifies the signal so as

to ensure proper functioning of chip.

1.2.3 Memory Library

These library contain memory of different architecture. Examples are SRAM, DRAM,

ROM. As there can be number of memory sizes, we implement basic building block of

memory and configure the generation of different memory sizes.

1.2.4 Analog and Mixed Cell Library

These library are implemented in a full custom or semi custom manner using the CORE

library. Example of Analog and Mixed Signal Library are Digital to Analog Convertor,

U.S.B, Phase Locked Loop(PLL).

2

Chapter 2

Literature Survey

2.1 Library Views

As discussed previously, Library is a collection of cells and each cell has views which are

the representation of the cell. [2] All the cells have Layout view, Abstract view, Schematic

view, Symbolic view, Timing view etc. A cell is delivered as a set of view and each view

is used by different tool in a given electronic design flow.The basic Library views are as:

Figure 2.1: Library View Block Diagram

2.1.1 Symbolic View

It is the pictorial representation of cell. It includes pins, symbol, labels, selection box.

Pins represent the input and output of the cells. The shape of cells indicate its function.

Labels are mapped to some documentation of design, selection box select the complete

area for the cells. Symbolic Views allows the user to abstract a complex Schematic View

and replace it by a Symbolic view that can be used as in further designs. A symbol view

3

for an NOT gate is shown below:

Figure 2.2: Symbolic View of a Inverter

2.1.2 SLIB

This view is derived from symbol view and is the textual representation of Symbol View.

Example:

Symbol(IVHD)

set minimum boundary(0*SCALE,-40*SCALE,120 *SCALE,40*SCALE);

circle(88*SCALE,0*SCALE,5*SCALE);

line(83*SCALE,0*SCALE,40 *SCALE,-25*SCALE);

....

pin(A,0*SCALE,0*SCALE,ANY ROTATION);

pin(Z,120*SCALE,0*SCALE,ANY ROTATION)

2.1.3 Schematic View

Schematic Views are map to designing, building circuit. Different components of circuit

are shown as standard symbols along with power sources and signals.

2.1.4 Circuit Description Language(CDL)

It is the textual representation of Schematic View at Transistor level. Creating a sub

circuit allows you to reuse the circuit multiple times in a design and in future designs.

4

Figure 2.3: Schematic View of a Inverter as in Virtuso

Sub-circuits are similar to subroutines in software programming. It is representation of

circuit at transistor level.It is automatically generated from schematic view. It is used in

Layout vs Schematic Check and Electronic Circuit Simulation.

The sub-circuit for the circuit shown is as below:

SUBCKT Example 1 5 12 8

I 10 12 DC 10A

Ra 5 12 5.0

Rb5 13 4.0

Rc12 13 2.0

Rd5 18 8.0

Re13 18 3.0

Rf10 13 1.0

Rg10 18 6.0

.ENDS

Here, in the example Ra is the resistance between nodes 5 and 12 having value 5.0, Rb is

5

Figure 2.4: Sub circuit of a sample circuit

the resistance between nodes 5 and 13 which id 4 ohm. Current of 10A flows from node

10 towards node 12.

2.1.5 Layout Views

It is the representation of the circuit that goes to the foundry for fabrication. It is the

representation of IC that in terms of geometric shapes which correspond to patterns of

metal,oxide, semiconductor. Layout view must pass a sequence of checks during Verifi-

cation process. The most important checks are Design Rule Check (DRC) and Layout

vs Schematic (LVS). The parameters for such check are given by chip manufactures. A

design rule set specifies certain geometric and connectivity restrictions to ensure that

most of the part work correctly. Layout is also known as mask design, IC mask layout.

2.1.6 Lef View (Library Exchange format)

An ASCII data format file, to describe physical layout of an Integrated circuit. It includes

design rules and abstract information about cells. LEF has only the necessary information

required by the CAD tool. It provides only an abstract view and consumes less storage

overhead.

A LEF file contains the following sections:

6

Figure 2.5: Layout View

• Technology section: layer, Placement and Design Rules, Via definitions, metal ca-

pacitance.

• Macros Cell definitions: cell descriptions, cell dimensions, layout of pins and block-

ages, capacitances.

These two sections can be stored in two different file if the size of file becomes

large. While reading the lef view the technology file must be read first before

reading Macro Cell definitions.

2.1.7 Synopsis Technology File (.lib)

This file includes functional, timing and all the pin definitions. The functional part con-

tains the logical operation that the cell performs. This file includes the delay model,

documentation details, library units that is the unit of voltage, current, time unit, re-

sistance, capacitance unit, technology family like CMOS, operating condition (normal

pressure, temperature, voltage), default values for attributes like fanout, pin capacitance

etc. The ascii form of library usually has an .lib extension. Before a library can be used

it must be compiled to get lib.db, this is done using Design Compiler tool.

7

2.2 Structure of Library

The library is maintained by a index file .The structure of index file includes various

subsections that all together index the library files based on various conditions.

• Header: This section includes the library name, product name, process like 65nm,

45nm, 40nm etc, type of library example memory, standard cell, input-output etc.

• Cell: This section includes various cells.

• Conditions Section: This section includes conditions based on parameters like

Process Variation(PV), Voltage(V), Temperature(T).

• Index Section: The index section includes paths to various cells based on different

conditions. IPScreen parses this section to access the different views of the library.

2.3 IC Design Flow

The steps involved in IC design are as follows:

1. Design Specification: It is the first step in IC design, here the design functionality

is stated. All the requirements are clearly stated in terms of performance, speed,

power, functionality. All the architectural part is stated clearly.

2. Design Implementation using HDL: Hardware description Language allow to

implement a design without going into much architecture, simulate and verify the

output.For example Rather than building a MUX in hardware, Verilog code allows

us to verify the functionality.

3. Synthesis: A Register Transfer Language(RTL) is transformed into design imple-

mentation in terms of logic gates, using program called as synthesis tool. Examples

of synthesis tool are Synopsys’s Design Compiler and Candence’s Ambit. At the

end of this stage we have logic circuit in terms of gates and memories. The output

of Synthesis is netlist. Netlist indicates all the devices and interconnection between

them.

4. Simulation: This netlist is simulated to verify the functionality of gate level im-

plementation of design.

8

Figure 2.6: IC Design Flow

5. Timing Analysis: RTL and gate level simulation does not take into account time

delay in signal propagation from device to device. It is the method of calculating

the timing of digital circuit without simulating the circuit.Delays are errors that

arise due to clock skew, gate delays etc. This step ensures that the circuit meets

the required timing criterion.

6. Place and Route: This step of IC design decides where to place logic design,

components in a limited amount of space. Routing decides where to place wires in

order to connect the placed cells. This step implements all the connections handling

along with the space rules and constraints.

7. Extraction: During this step parasitic calculations are done in devices and inter-

connections to find parasitic effects like inductance, resistance, inductance. As the

9

design of ICs gets compact, more are the chances of parasitic components. This

interfaces in the functioning and performance in terms of timing speed and power

consumption.

8. Verification: It would either be tape out stage or the design is again send through

the same flow for the purpose of optimization or modification.

10

Chapter 3

Technology and Tools

Scripting Languages like Perl, Shell Script, Bash, Korn Shell, Python are used for au-

tomating small tasks. These languages are interpreted and not compiled. They are

dynamically typed, that is type checking is done at run time and not at compile time.

They are used for rapid application development and are good at string processing. They

allow batch jobs that would be entered manually entered on the command line to be exe-

cuted automatically one after another using scripts. Also, writing the scripts is more fast

than equivalent code in other programming language. The main advantage of scripting

languages is that the commands and syntax are exactly same when used at terminal.

Also, interactive debugging, easy file selection, quick start are other advantages. The

plugins are developed in C Shell and TCL.

3.1 C Shell

C Shell is a command interpreter with a syntax similar to the C programming language. It

is used both as an interactive login shell and a shell script command processor. It provides

I/O redirection, Joining of multiple commands using ’&&’ , ’;’. Piping provides output

of one command to be given as input to another command, the advantage is that both

commands run in parallel. C Shell provides Command Substitution which allows

output of one command to be taken as argument to another. Background Execution

command & means to run command in background and prompt immediately for a new

command line(command followed by ampersand). C Shell provides Control statements

like if, while, foreach, switch etc. It also provides SubShell, in which a child copy of

11

current shell is created inheriting the current state, without affecting the parent. Shell

script provide -x option for debugging by displaying commands as they are executed, -v

option to display all lines as they are read.

3.2 Bash (Bourne-Again SHell)

BASH is the Bourne -again SHell. BASH is a sh compatible shell having many useful

features from Korn Shell(ksh) and C Shell(csh). It has functional improvements over the

sh for both programming and interactive use. The improvements offered by bash include

• Shell Functions and Aliases . An alias allows a string to be substituted for a word

when it is used as the first word of a simple command.

• Bash provides one dimensional array variables. There is no maximum limit on

the size of array. Neither there is a requirement that members can be indexed or

assigned contiguously.

• Integer arithmetic in any base from two to sixty four.

• Unlimited size command history.

• Directory stack, which is a list of recently visited directories. The pushd built in

adds directories to the stack on change of current directory, and popd removes spec-

ified directories from the stack and changes the current directory to the directory

removed.

3.3 Tool Command Language(TCL) [3]

TCL is commonly used for rapid prototyping,scripted applications, GUIs and testing.

The main features of TCL are:

• The TCL uses tclsh command line interpreter. Other ways of starting TCL are

using Wish or Windowing Shell.

• All data types can be manipulated as strings.

• TCL interfaces natively with C language.

12

• TCL interpreter performs run time compilation of script into byte code. Running

compiled code allows TCL script to run faster than Perl.

• TCL supports most of modern programming constructs like subroutines, standard

programming flow constructs, rich set of variable type like lists, associative ar-

ray,float, integer, string etc.

• TCL provides powerful string manipulation commands for searching and replacing,

extracting portion s of string, converting strings to list.

• Extensibility: TCL extension add a few new commands to extend interpreter into

new application domain.

• Provides GUI interface Tk.

• All commands of TCL generate error message on incorrect usage.

3.4 VNC

VNC allows you to remotely get to and control your PCs from another system. It provides

Cross Platform remote control. All the connections are encrypted using 128-bit AES.

You deploy VNC on system that you want to control and VNC viewer on system that

you want to control from. The Enterprise edition provides features like file transfer,

dedicated support channel, multi language support etc, remote deployment strategies,

remote configure techniques etc.

3.5 GMake [4]

GMake (GNU Make) finds which pieces of a large program need to be recompiled, and

issues commands to recompile them. Make uses the information on how to build your

program from a file called MakeFile. The features of Make are :

• Make allows any user to build and install package without the knowledge of how it

is done.

• Make automatically determines which file is to be made upto date on the basis of

timestamp of each file.

13

• Make is not limited to any particular language. For each non-source file in the

program, the makefile specifies the shell commands to compute on it. These shell

commands can run a compiler to produce an object file, the linker to produce an

executable, or TeX to format document.

3.5.1 Concept of Make rules and Target

Make file consist of targets and rules. Rules are commands that tell what to execute in

order to build the targets from the source file. The command line starts with tab. It

specifies the list of dependencies(prerequisite) of the target file. The list includes all files

that are input to commands in the rule. The simple rule looks like :

target : dependencies

commands(recipe)

...

A rule tells two things, firstly the targets that are out of date, and how to update them

when necessary.

14

Chapter 4

IPScreen and PLUGINS

IPScreen [5] is a framework built using TCL and Tk on which library are loaded for

validation. Multiple libraries of different technology can be loaded at the same time.

Plugins are loaded after the library are loaded on IPScreen. Each tuple of library, plugin

corresponds to a new tab in IPScreen window. The IPScreen can be run in GUI mode

or else in Batch mode, in GUI mode the user has to click on each task that they want to

run. To run in batch mode all the commands are given in a file as input.

Depending upon the availability of license for tools, the execution time of the check may

vary. Also the time of execution varies on the number of cells in the library and size of

each cell.

4.1 Inputs to IPScreen

• Command File: All the check(s) that are to be performed are given in this file

along with libraries.

The contents of command file are: command to load library, command to load

auxiliary library, command to run specific task.

• Tools, Plugin record: Depending upon the techno of library(65nm, 32 nm etc)

the tools version may change, so correct tools are to be ensured for each validation

of library. These tools are Electronic Design Automation Tools (EDA tools). All

the plugins that are to be used, are specified in a separate file along with their path.

• Setup: The setup script sets the environment in order to execute tasks on load

15

sharing facility and other environment variables required.

Figure 4.1: IPScreen and Plugins Block Diagram

The above block diagram shows the input required by the IPScreen Framework and the

final reports as output. Command File, tools record, plugin record, setup are the inputs

required.

4.2 Information Dumped by IPScreen on parsing an

IP

After an IP is loaded and parsed by IPScreen framework, the information dumped by

IPScreen is used by plugin for its specfic check. The developer of plugin may use this

information as per his choice. The structure of the dumped information is plugin inde-

pendent.

• Status of Tools : It tells {tool name, status of tool}, where status of tool is missing/

present.

• Library Information : For all the libraries loaded following information are dumped,

{Name, Version,Type, path, path till index file, product name, iptype.}

• Status of all Collection having {collection name, Status} , where Collection status

is failed, warning, Done correctly.

16

• Status of Task: It has plugin name, task name, tool status, task status.

• List of all cells present in a specific library.

• Path of each view for each cell, condition, plugin, type of library (main or supporting

library).

• Pairs of all plugin and library that are to be used.

On running, aborting, rerunning a task the Status of Task table is updated. On loading,

reloading a tool Status of tools table is updated. Initially when Library is loaded Library

table is created. On running and re running a collection, Collection status table is

updated. All the tables are initially dumped by IPScreen, and are later modified during

task run.

4.3 Final Output of Plugin Run on IPScreen

The primary level report shows ”No Error / Warnings found” if execution is correct and

input library is correctly validated, a green tick is shown on IPScreen GUI along with

”Done”. If during the execution of script, if the scripts aborts due to abnormal program

execution, then the task fails and primary report is not prepared, so FAILED is shown

on the IpScreen GUI along with Red Cross. If there are errors present in library then

the report shows ”FAILED” message, and IPscreen GUI shows ”Done” along with Red

Cross. If there are no errors but warnings like ”.v file not present in library” then ”Warn”

message is shown in report, along with Done on IpScreen GUI, and brown colour Tick

indicating warning. The final xls reports are hierarchical and tell status of each check.

4.4 Plugins

Plugins are the collection of checks that validate the IP. They are classified on the basis

of taxonomy that is, to ensure consistency between views, there is one plugin. To ensure

alignment with library structure there is different plugin. To validate the different tags

present in the library there is another plugin. These plugins are built in TCL and C

Shell.

17

4.4.1 Old Approach vs Plugins

These plugins bundle collection of checks. Prior to automation, there were two ways in

which the validation was done :

• Some checks required the user to manually check all the relationship between various

different views.

• By giving input to EDA tool through command line or GUI, the results had to

be collected, and analyzed for each cell. This would take weeks and the results of

validation may still be prone to human errors.

The different plugins are as below:

• Plugin to ensure Views consistency

• Tags Evaluator.

• Plugin to Ensure alignment with Library Structure.

• IP Comparator.

4.4.2 Plugin to ensure Views consistency [6]

This Plugin is designed to ensure view consistency. The aspects of this plugin are Similar

View Consistency: Ensure that the same type of views are consistent among them self.

DifferentView Consistency: Ensure that all the different type of views are consistent

among each other example:(.lef vs lib, .lef vs .v).

The tasks performed in this plugin are as follows:

1. Data Extraction: During this step the layout view are dumped into .lef format

and from the .lef a common tree format is built, the tree format includes information

like cell name, cell area, pin name, pin direction. Also, the abstract view is dumped

in a common tree format using ST internal tools, and information like cell name,

cell area, Pin name, Antenna Information, Pin direction, Pin type are dumped into

a textual format. Similarly, Verilog Views, Apache views are extracted and dumped

into a common tree format.

18

Figure 4.2: Plugin Flow: Ensure Views Consistency

2. Reference Preparation: During this step, the reference trees are prepared and are

then compared among themselves to ensure consistency among themselves. Here,

.lef, .lib and layout are compared among themselves. Out of all the reference views

one view is choosen as reference further consistency check.

3. Consistency Check: The consistency between all the trees dumped in Tree For-

mation steps checked with respect to reference views.

4. Liberty Comparator: This check check the consistency between .lib and .db

respectively.Also it checks the consistency between .lib and reference choosen.

4.4.3 Tags Evaluator

This plugin [7] is dedicated to different tags that are present in the library. The library

must be aligned with the tag specification, which is given as input during Setup task.

The tag specification input comprises of Vendor, Product, Version, CellType, Cell ID,

Tag Date, Library. The plugin can be run in both batch mode and GUI mode. The

detailed working of Tag Checker is as below:

1. Setup: Firstly all the required environment is setup, and the input tag Specification

is given.

19

2. Dumping of G.D.S. views: During this step all the layout view are dumped into

text files using dumping tools.

3. Checking of dumped tags: In this step, the dumped tags will be compared to

the specification input given. Existence of duplicate cells in done, checking that all

the top cells present in index file are tagged in the dump. Check Vendor, if different

vendor name is present in the same library, and vendor name does not match with

a valid vendor name then, the plugin reports error. Check Techno is done to ensure

that the techno value of all the cells should be equal to that in Tag Specification.

4. Cross Existence: This check will be launched if atleast two different dumps of

layout view exist. Suppose two dumps A and B exist, this check will be executed in

two ways that is from A to B and B to A. It compares the cells tagged in view1 with

the cells tagged in view2, and reports warning if cell is missing in view2. Then it

compares the cells tagged in view2 with cells tagged in view1 and reports warning

if tagged cell is missing in view1. If all the dump exist, then this check is done on

all the layout dumps pairwise. Product name, product Version are also checked.

5. Cross Compare: This check is done, if atleast two dumps exist. Here, check is

performed for all the fields of tags between two dumps, it checks all the value of

fields of tag of one cell in view1 to same cell in view2. If all dumps exist then this

check is done pair wise on all the dumps.

4.4.4 Plugin to ensure alignment with Library Structure

This plugin compares the library with the library structure. The library structure is

predefined. Some of the checks are as follows :

• Checking of indexation : This check verifies that all the all the paths present in

the index file are physically present the library. If for some view there is no such

physical presence file or directory in the IP, then error are reported. Also, it checks

for symbolic links, hidden files, locked files.

• Index File Verification: This check verifies the sections of index file are syntactically

correct or not. i.e. header section, cell section, mapping section.

20

• Checking of mandatory views: This task verifies that all the mandatory views as

per the library specification are present in the IP. It reports error if some mandatory

views are absent, or some extra views are present.

4.4.5 IP Comparator

This plugin compares different versions of the same IP. It is used to see how new IP

version is different from the old version. It tells all the files, views that are present or

absent in the newer version of IP.

21

Chapter 5

Implementation Details and Results

5.1 Manual Approach for Validation.

In the manual approach for IP Validation, the user had to firstly launch IPScreen win-

dow, manually locate the path of the IP to be loaded, specify its path and wait till the

library gets completely parsed by IPScreen. Secondly, the user then had to check if any

supporting libraries are needed(auxiliary library) by the main library, if yes then these

all supporting libraries are to be manually loaded so that all the IP data is parsed and

dumped by IPScreen. Depending on the size of the supporting IP, IPScreen takes time

to parse the IP and generate the dump.

The user had to find all the latest version of the plugins needed and specify their paths

in the IPScreen window. The user had to manually find all the correct version of tools

based on the technology of IP and write them in the tool record file. On launching the

validation, then all the tools are evaluated based on the technology of input IP. If some

missing tools are found, the cause of missing tool needs to be analyzed and fixed. Reasons

for missing tool error can be incompatible version of tool may be loaded due to human

error, it may be absent in the tool record, wrong tool name or its version.

5.2 Intermediate PluginQAKIt

Firstly by using an ST Internal tool, tool record and plugin record are prepared from

technology specific data. This technology specific data is decided and developed by the

Management, and stores all the valid tools their versions, specifies the tools based on the

22

type of IP (Memory/IO/CORE) etc.

I created a module that automatically parses some input given on command line and

prepares input command file as in figure 5.1. The input given to module was name of

library to validate, all its supporting IPs, path of the plugins to use, working directory,

option to append specific command in the generated command file. An example help

option is also provided that shows syntax of command.

After the input command file is prepared, and tool records, plugin records are prepared

the user automatically launches the job on the Load Sharing Facility. The validation

cannot be done on local machines as the tools used require large compute resources

and Licensed Tools. Licenses are uniformly given to jobs submitted by users by the Load

Sharing manager in a uniform manner. Also, the compute resources required are available

on LSF. The figure shows block diagram of Intermediate PluginQAKit.

Figure 5.1: Block diagram of Intermediate PluginQAKit

The main advantage of using Intermediate PluginQAKit was that overhead of creating

tool list,plugin list and command file was removed.

23

5.3 Algorithm for automated Command File Cre-

ation

The input given for automated command file creation is of the form.

Qa kit -libraries ”l1” -supp lib ”l2 l3” -plugins ”plugin name plugin param plugin libs

task field collection name” -work directory A/B/c -output command file -run yes.

where,

l1 is the name of the library to be validated.

l2 and l3 are the supporting libraries for l1.

plugin option specifies five fields namely plugin name, plugin param ie : any pa-

rameter to pluginname (it is of the form of File ”File path”). It is optional and is plugin

specific. plugin libs specifies the libraries to be validated by plugin name, task field

tells all the indvidual tasks to execute, collection name are collection present in the

plugin name.

A/B/c specifies the path to run area to be created at run time.

run yes means to launch ipscreen after command file creation.

Below are the steps to create ipscreen command :

1. Source all the required TCL packages and ST internal tools.

2. If work directory option is not specified then, set work directory to current di-

rectory, else create the specified work directory.

3. If name of output command file is not specified set the name ”ipscreen.cmd” as the

default command file else use the specified name in output field.

4. For each parameter of -plugin option parse plugin name, plugin param, plu-

gin libs, task field and collection name.

5. Link all the libraries specified in -libraries option using an ST internal command.

A symbolic link is created by this command to the specified library, the actual

library is present in one of the central location.

6. For each specified library as argument to lib option, check if index file exists in

the locally linked library in the work directory, if no set run ipscreen as failure.

24

(a) If index file exists, set the iptype, parsing the METHOD field in index file.

(b) Parse the index file to get the library name.

(c) Append in newly created command file ”LoadIP lib library name -ipstyle ip-

type path to index file”.

7. For each plugin name, check if plugin library equals *, if yes set all the libraries

to be loaded for this plugin name, else set the specified library (plugin libs) to

libraries to be loaded for the plugin name.

8. For each plugin name, Write command SetupPlugin -lib Libname plugin name in

the command file.

9. For each plugin name,

(a) If Collection field is *, Check if collection table exists inside plugin, for all

collection name present in the the collection table append ”RunCollection -

plugin plugin name -lib Libname collection name” in the command file.

(b) If Collection field specified is not *, and is collection name, check if the

collection name is present in the plugin, if yes write command ”RunCollection -

plugin plugin name -lib Libname collection name”, if collection name is absent

in plugin raise an error.

10. For each plugin name in -plugin, check if task field is present in parsed plu-

gin name field.

(a) If task field is *, then extract all the task name from the plugin, and write

command ”RunTask -plugin plugin name -lib Libname task name”.

(b) If task field is not *, check if the specified task exists in the plugin, if yes, write

command ”RunTask -plugin plugin name -lib Libname task name”.

11. If the run ipscreen flag is set to yes and gui option is present and is yes, set the

current work directory to work area created, and execute ”ipscreen -f command file”

, if -gui option is no or absent, then execute ”ipscreen -nodisplay -f command file”.

If run ipscreen is set to failure display ”cannot start ipscreen due to fatal error

at startup”.

25

5.4 Plugin QA Kit

In order to further ease the task of regressive QA sessions before release of any plugin,

we have maintained a common technology specific repository which has correct library

name and names of its supporting libraries as in Figure 5.2. This repository is referred

at run time by automated QAKit, and all the required libraries are accessed by reading

their names from here. As in figure 5.2 there are different directory for each techno like

65 nm, 32nm, 28FDSOI etc. Each of them have corresponding library data for them.

Creation of tool record file has been bypassed in final QAKit, as it is picked from the

technology specific repository. Plugin record are generated at execution time based on

the path given by user. The tools records holds all the correct version of tool and version

as per the the technology of IP.

Figure 5.2: Illustration of technology specific library repository created for Automated
QA Sessions.

In order to run extensive QA session, different libraries of IO, memory, core etc have

been considered for designing the Library repository. All the IPs of a particular technology

have a common tool record, so a single correct tool record is stored for each technology.

The pluginQAKit has been developed in Sh.

As in the figure on next page, techno1 data store has required library name and its

supporting library names, similarly techno2 may have n number of library sharing the

26

common tool record. On run time the correct library name and all its supporting IPs

are automatically picked from this data store. At run time the specified library are

automatically downloaded in our area.

Figure 5.3: Block diagram of PluginQAKit

Examples of input command given :

• qa.sh -pluginpath < path pluginA > < path pluginB > < path pluginC > -

testLib < Lib1 > < Lib2 > -runDir < Directory name >

Using the above command, the user runs all the Validations checks of pluginA,

pluginB and pluginC on Lib1, Lib2 by creating the directory Directory name. If no

directory is specified then by default current directory is used. The submission of

job is done automatically.

• qa.sh -pluginpath < path pluginA > -testtechno < techoA > -setupOnly

Using the above command only input will be prepared for all the IPs present inside

27

technoA ie : plugin list, tool list, command file, and the required environ ment will

be sourced, and the user can latter manually launch the validation job.

• qa.sh -pluginpath < path pluginA > -testtechno < technoA > < technoB > -

runDir .

This command will prepare a command file that will have commnands to Load all

the Libraries under technology technoA and technoB in the current directory and

will launch the validation for the same.

Figure below shows the run area generated after execution of on single library (C32 SC 12 CLK LR).

As it can be seen in figure the plugins and ipscreen are symbolically linked to there actual

location.

Figure 5.4: Run Area generated for a single library (C32 SC 12 CLK LR) showing that
all the plugins are symbolically linked

5.4.1 Automated Command File Creation Module

This module is a part of Intermediate PluginQAKit. It manages creation of all the type

of commands that can be given as input to ipscreen. The tasks performed by automated

28

Command creation module are as follows:

• The commands that are created are Command to load an IP, command to load any

supporting libraries if present. Command to load IP includes the path till index

file, its name as specified in the product description file and its IPtype as specified

in the IP index file.

• Command to choose the desired plugins.

• Command to specify which plugin(s) to load on a specific IP.

• Automatically specific the RunTask commands that specify the name of the plugin,

”task name” that is specific to plugin and the IP on which it is to be executed.

• At the end, when all the tasks are executed, the generation of xls report or portable

document format (PDF) report may be optionally generated in the input command

file.

• If the user wants to run all the tasks then a single option on command line writes

all the Runtask command in the command file.

5.4.2 Algorithm for Automated Setup Creation using Plugin-

QAKit

Below is the description of how all the input preparation is handled by PluginQAKit,

which is developed in BASH.

1. Check if PluginQAKit is sourced, if not raise an error and exit.

2. Source the script to parse all the input arguments given by user i.e. parse Plugin

path (-plugin), library under test (-testLib), run directory(-runDir), -checkname,

technology name (-testtechno), setup Only Option. If Usage of arguments is incor-

rect, show sample correct usage.

3. Set inputDir, outputDir, ipscreen data, where

inputDir, is path to library repository.

outputDir, is path to generated run areas for each library.

ipscreen data, path to configuration required at run time by ipscreen.

29

4. If testLib is present in any of the library present in any techno repository, forcefully

remove existing outputDir, and create new outputDir.

5. If there exists tool list for the testLib in inputDir, copy the tool list to the new

outputDir.

6. For each plugin path given by user,

(a) Extract the plugin name and version from the plugin product table present

inside plugin. Remove existing symbolic link for the plugin and then create a

symbolic link ”pluginname@version” in run area to the plugin path given by

user.

(b) Create plugin list file in this run area, write plugin name, version entries in

plugin list.

7. Create a script (run1.csh) in the run area, having set pluginlist= {pluginName {}

{} {checkname} *} . This is an argument to automated command file creation

module as seen in Section 5.3. This script will be executed at runtime and will

invoke automated command creation module. This script works as a wrapper for

automated command file creation module. The wrapper is in csh as the default

SHELL is csh.

8. Append in the script, run1.csh, library names and supporting library names, from

the configFile maintained in inputDir/testLib. (example lib= A; support Lib =

B C D).

9. Copy the IPscreen preferences from ipscreen data, environment variables from the

ipscreen data that are required by the run time to launch jobs on LSF, project

name, wait time for licenses. Check that all these required files are made available

in the run area. Create symbolic Link for the IPScreen in this run area.

10. Grant execution permission to run1.csh in the work area.

11. Invoke parallel job execution module.

Below figure shows an example of data maintained in the library repository(datastore),

that will be used at run time to build a wrapper script, and which will further invoke

automated command creation module.

30

Figure 5.5: Example of a single main library and its supporting libraries maintained in
library datastore.

5.4.3 Automated Log Analysis Module

After all the checks are executed on the IPs, it is the responsibility of the developer to

check the logs for any issue or unexpected behavior. Till now, the QA was done by using

xxdiff utility, which is provided under GNU GPL open license. It is a graphical, file and

directory comparator. Using this utility, the new logs and primary logs generated at the

time of QA during previous release are compared manually for each plugin, IP pair. If

corresponding logs of both the QA sessions were same then it was considered as correct.

However, if the new log showed difference in content, then the new secondary level logs

are to be manually analyzed separately. For each task a single primary log is generated.

The secondary log is the main log and its size depends on the functionality of task and

the number of cells on which the check executes. The size of these logs varies from 1000

lines to 10,000 lines. The primary report log is made after extracting the desired infor-

mation from secondary log. If the check uses some CAD tool then the secondary report

is prepared from extracting required tool outputs from tool generated log and finally the

Check writes only the useful information in Primary report log.

Figure 5.3 shows the technique in which the log are created and compared for QA. The

31

figure shows comparison of logs generated by two different versions of the same plugin

(PLUGIN 1 OLD,PLUGIN 1 NEW) on validating the same IP (Library1).

Figure 5.6: Basic Principle of Log Analysis

Depending upon the size of log it was tedious process and time consuming. With the

new automated approach the automation, compares the in depth logs of new QA with

logs of previous QA done at the time of previous release. The intent of this module was

to reduce the logs analysis time. The output of this Automated Log Analysis module is

only the log messages that represent the new functionality of plugin. It has been done by

ignoring the log messages that are same in both the QA sessions and also the messages

that are to be ignored. We have found patterns and formed regular expressions for them.

The patterns were formed for messages that could be ignored as follows :

32

• Job submission message specifying the host ID on which job is submitted.

• Submission and Finishing of execution of Job on L.S.F. showing the submission

time and finish time along with date, log generation time.

• Pattern for check in (showing submission time) and check out (showing finish time)

of CAD tools during execution of tasks,CAD License information.

All the remaining log messages of primary logs had information of the shell scripts com-

mands statements when they are executed and when input is read, so these messages

showed no difference on comparison with the old QA logs. The final output of auto-

mated log analysis was only the log messages corresponding to new functionality coded

in the new plugins. So, all the messages that were same in both the QA regressions were

ignored, and only the new messages were analyzed manually.

Log Analysis : Undetected errors.

In order to perform fool proof analysis of logs and avoid any false positives in the report,

patterns of behavior shown by TCL commands on wrong input or on failing have been

identified. Generally on failure of specific command the TCL script do not abort and

exits, but continues its normal execution. Few examples of such incorrect execution of

commands are:

• Usage of a undefined variable in command like regexp, regsub, puts, etc. The error

thrown by TCL interpreter is UNDEFINED VARIABLE.

• Pattern for array out of index error.

• Pattern for unavailability of CAD tool licenses.

• Pattern for indefinite loop due to non availability of license.

With the help of regular expression on above messages, after all the regression are run,

we run this module to detect any such undetected errors.

5.5 Automated Launching of Parallel IPScreen Jobs

After all input is prepared, in order to launch the validation of IPs on Load Sharing

Facility, the command used is

33

”Change Directory to work area where wrapper script is present. Run wrapper script,

which further invokes the command file creation module.”

This is to be done for each library specific run area prepared by automated setup cre-

ation.This task of manually launching the wrapper script has been automated and mul-

tiple IPs can be validated at same time. We have implemented two techniques to launch

jobs, as explained below

• In the first approach we launched a certain number of predefined jobs in background

using ”eval command & ”. & allows process to be executed in background and

allow the current shell to be free for further inputs. Trap has been defined on signals

like Ctrl+C, user issues a quit signal Ctrl+D. These traps will kill all the running

jobs. To further kill a specific ipscreen window, user may use the bkill command.

I have used ”wait PIDLIST” command in order to wait for the executing jobs to

finish, where PIDLIST is the list of all the processes that are currently running.

The disadvantage of this approach was that it may lead to starvation for jobs yet

to be submitted as there is ”wait” until all the old jobs are finished.

Below are the steps to launch the multiple Jobs parallely on LSF, JobFile contains

invocation of each of the wrapper script for each library. I have set the maximum

parallel jobs as 5, as it becomes difficult to manage more number of IPScreen

windows.

1. Set job count as 1. Set max count as 5.

2. While job count is less than alljobs in Jobfile

(a) Extract command(job count) from jobfile.

(b) Increment job count.

(c) Launch the command(count) .

(d) Store the process id of the launched process in process list.

(e) Define trap to kill all jobs in process list on inputs like Ctrl+C, Ctrl+Z.

(f) If job count is greater than max count, Wait for all jobs submitted to

finish.

This method of launching parallel jobs was later not used as we had to wait for all

jobs to get finished, ie a new job could be launched only if all the previous five jobs

were completed.

34

• In this implemented approach, I have used gmake utility that allows us to automat-

ically send new job to LSF if an submitted job is finished. The -j option of make

utility tells how many jobs to execute parallely, by default it is one. Option -f of

make utility, specifies the name of the make file to execute having all the rules. The

advantage of this method is that it fully utilizes the LSF resources, as whenever a

job is completed the gmake utility automatically sends another job on execution.

So, this approach avoids starvation for waiting jobs.

The command used is gmake -f processedJobFile -k -j count paralleljobs,

where

processedJobFile is the make file where each line has rules to launch wrapper

script for each different run area. This processedJobFile is prepared after processing

all the wrapper script.

count paralleljobs is the decided number of parallel jobs sent.

5.6 Difference in Quality Assurance of Plugins done

manually vs Automated PluginQAKit

The table below shows the basic difference in traditional QA method versus new Auto-

mated PluginQA Approach (see next page).

35

Table 5.1: Differences in Validation using manual approach vs PluginQAKit

Point OLD Manual Approach to launch plu-
gins using GUI.

Automated Approach to launch plug-
ins using PluginQAKit.

Specifying Library, auxil-
lary library

Manually find the index file of each library,
its methodology and its reference libraries
and write the commands in command file.

The library’s central location is found out,
and then its name, Methodology, reference
library etc. are extracted and are written in
input command files.

Preparation of plugin record File having plugin and its path was manually
prepared.

The path is provided as an argument and the
plugin file is automatically generated on run
time.

Launching of Job on LSF The validation job was manually launched on
the LSF.

By default launches the job on compute farm
and also provides user an option to bypass
the launching of validation and just prepare
the input.

Selection of tools Each time to validate a library all the tools
required had to be written in a separate file
.The correct tools depending on the techno
of library had to be taken care of.

Now the correct tools are automatically
picked up depending on the techno of library.

Creation of Work space For each library validation a different work
space were manually created having com-
mand file, plugin record, tools list.

Now, for n number of libraries of same
Techno n workspaces are created by Plug-
inQAKit, in an automated manner in a flat
file structure.

Report Generation Manually generate after all tasks complete
using user interface.

Automatically Generated after tasks comple-
tion.

Scope of Human Error High Low

36

5.7 Time Difference achieved after automating Input

Preparation

The table below shows the time saved by automating the task of input preparation.

Table 5.2: Time saved in input Preparation for validation

Number of Libraries(of same
technology)

Manual Approach of In-
put Preparation

Using PluginQAKit

One Library 15-20 minutes 2 -3 minutes
Two Library 25-40 minutes 2 -3 minutes
Five Library 1.5 hour - 2 hours 5-7 minutes

Figure 5.7: Time Difference achieved after automating Input Preparation

5.8 Time Comparison GUI mode vs PluginQAKit

The table below shows the time saved by for running n number of tasks manually versus

pluginQAKit.

37

Table 5.3: Time saved for running n number of Tasks.

Number of Li-
braries

Average Number of
Tasks per Plugin

Manual GUI
mode of Vali-
dation

Using Plugin-
QAKit

One Library 10 1-1.5 hours 2-3 minutes
One Library 20 2-2.5 hours 2-3 minutes
Two Library 10 2-2.5 hours 2-5 minutes
Two Library 20 3-4 hours 2-5 minutes

5.9 Time Difference Achieved by Automating in pri-

mary level Log Analysis

The table below shows the time saved in analysis of all the output logs during QA of

plugins.

Table 5.4: Time saved using PluginQAKit during Log Analysis.

Number of Li-
braries

Number of Tasks
per Plugin

Manual Ap-
proach of Log
Analysis

Using Plugin-
QAKit

One Library 10 50 minutes 10 minutes
One Library 20 100 minutes 20 minutes

Figure 5.8: Time Difference achieved by automating primary level log analysis

38

Chapter 6

Conclusion

6.1 Conclusion

Plugins play a crucial role in validating an IP. With the development of PluginQAKit,

the time required for regressive QA of the plugins before the release has drastically

been reduced. Prior to development of PluginQAKit, it was difficult and tedious task

to manually launch QA sessions for each IP and check all the logs of Q.A. sessions to

check for any failure. With the use of PluginQAKit, the time to prepare and launch

Q.A. sessions has been drastically reduced also it has eased the task of cross checking the

behavior of plugins. Scope of human error and issue of incompatible tool, missing tools

has been solved using Automated PluginQAKit.

39

References

[1] STMicroElectronics Internal document on Library.

[2] STMicroElectronics Internal document on Views.

[3] TCL/Tk CookBook by L. Sastry

[4] GNU GMake Manual by Richard M. Stallman, Roland McGrath, Paul D. Smith.

[5] STMicroElectronics Internal document on IPScreen.

[6] STMicroElectronics Internal document on Plugins.

[7] STMicroElectronics Internal document on TagsEvaluator.

40

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Introduction of Library IP
	Types of Library
	Core Library
	Input/Output Library
	Memory Library
	Analog and Mixed Cell Library

	Literature Survey
	Library Views
	Symbolic View
	SLIB
	Schematic View
	Circuit Description Language(CDL)
	Layout Views
	Lef View (Library Exchange format)
	Synopsis Technology File (.lib)

	Structure of Library
	IC Design Flow

	Technology and Tools
	C Shell
	Bash (Bourne-Again SHell)
	Tool Command Language(TCL)p3
	VNC
	GMakep4
	Concept of Make rules and Target

	IPScreen and PLUGINS
	Inputs to IPScreen
	Information Dumped by IPScreen on parsing an IP
	Final Output of Plugin Run on IPScreen
	Plugins
	 Old Approach vs Plugins
	Plugin to ensure Views consistencyp6
	Tags Evaluator
	Plugin to ensure alignment with Library Structure
	IP Comparator

	Implementation Details and Results
	Manual Approach for Validation.
	Intermediate PluginQAKIt
	Algorithm for automated Comamand File Creation
	Plugin QA Kit
	Automated Command File Creation Module
	Algorithm for Automated Setup Creation using PluginQAKit
	Automated Log Analysis Module

	Automated Launching of Parallel IPScreen Jobs
	Difference in Quality Assurance of Plugins done manually vs Automated PluginQAKit
	Time Difference achieved after automating Input Preparation
	Time Comparison GUI mode vs PluginQAKit
	Time Difference Achieved by Automating in primary level Log Analysis

	Conclusion
	Conclusion

	References

