
Security Framework for Web Applications

Submitted By

Tejas Chauhan

13MCEI05

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

Security Framework for Web Applications

Major Project

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology in Computer Science and Engineering

(Information & Network Security)

Submitted By

Tejas Chauhan

(13MCEI05)

Guided By

Prof. Vipul Chudasama

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF TECHNOLOGY

NIRMA UNIVERSITY

AHMEDABAD-382481

May 2015

Certificate

This is to certify that the major project entitled ”Security Framework for Web

Applications” submitted by Tejas Chauhan (Roll No: 13MCEI05), towards the

partial fulfillment of the requirements for the award of degree of Master of Technology

in Information & Network Security (CSE) of Institute of Technology, Nirma University,

Ahmedabad, is the record of work carried out by him under my supervision and guidance.

In my opinion, the submitted work has reached a level required for being accepted for

examination. The results embodied in this project, to the best of my knowledge, haven’t

been submitted to any other university or institution for award of any degree or diploma.

Mr. Asrar Malik Prof. Vipul Chudasama

External Guide, Guide & Assistant Professor,

Immix Solution, Ahmedabad. Institute of Technology,

Nirma University, Ahmedabad.

Prof. Sharada Valiveti Dr. Sanjay Garg

Coordinator M.Tech - INS, Professor and Head,

Institute of Technology, CSE Department,

Nirma University, Ahmedabad. Institute of Technology,

Nirma University, Ahmedabad.

Dr K Kotecha

Director,

Institute of Technology,

Nirma University, Ahmedabad.

iii

Statement of Originality
———————————————————————————————————————

I, Tejas Chauhan, Roll. No. 13MCEI05, give undertaking that the Major Project

entitled ”Security Framework for Web Applications” submitted by me, towards the

partial fulfillment of the requirements for the degree of Master of Technology in Com-

puter Science & Engineering of Institute of Technology, Nirma University, Ahmed-

abad, contains no material that has been awarded for any degree or diploma in any

university or school in any territory to the best of my knowledge. It is the original work

carried out by me and I give assurance that no attempt of plagiarism has been made. It

contains no material that is previously published or written, except where reference has

been made. I understand that in the event of any similarity found subsequently with any

published work or any dissertation work elsewhere; it will result in severe disciplinary

action.

———————–

Signature of Student

Date:

Place:

Endorsed by

Prof. Vipul Chudasama

(Signature of Guide)

iv

Acknowledgements

First and foremost, sincere thanks to Mr. Asrar Malik, from Immix Solution,

Ahmedabad for his valuable guidance. Throughout the training, he has given me much

valuable advice on project work. Without him, this project work would never have been

completed. I enjoyed his vast knowledge and owe him lots of gratitude for having a

profound impact on this report.

It gives me immense pleasure in expressing thanks and profound gratitude to Prof.

Vipul Chudasama, Assistant Professor, Computer Science Department, Institute of

Technology, Nirma University, Ahmedabad for his valuable guidance and continual en-

couragement throughout this work. The appreciation and continual support he has im-

parted has been a great motivation to me in reaching a higher goal. His guidance has

triggered and nourished my intellectual maturity that I will benefit from, for a long time

to come.

It gives me an immense pleasure to thank Dr. Sanjay Garg, Hon’ble Head of Com-

puter Science and Engineering Department, Institute of Technology, Nirma University,

Ahmedabad for his kind support and providing basic infrastructure and healthy research

environment.

A special thank you is expressed wholeheartedly to Dr K Kotecha, Hon’ble Director,

Institute of Technology, Nirma University, Ahmedabad for the unmentionable motivation

he has extended throughout course of this work.

I would also thank the Institution, all faculty members of Computer Engineering

Department, Nirma University, Ahmedabad for their special attention and suggestions

towards the project work.

- Tejas Chauhan

13MCEI05

v

Abstract

As the advancement and progression in internet technologies and computers, one of

the main issue which came in the limelight is web security. Every person in the world is

using internet as their daily routine but they are not aware with the risks of it. People

are doing online transaction without knowing that if they don’t use some security mech-

anisms, someone can steal their session ids and can empty their accounts. Attackers are

still able to fool people with some phishing mails which looks like a mail from their bank,

asking for their account details.

After every few years, Open Web Application Security Project, publishes a list of top

10 vulnerabilities which are mostly seen in web applications. The top two in the list is

SQL Injection and Cross site Scripting [1]. Many websites are also hacked just because

of bad file permissions are assigned to website’s file and folders and attackers are easily

able to put their mailicious code in some core files.

There are various security mechanisms proposed, to make the websites more secure

and to detect the attacks. In this paper ideas proposing a web security framework to

prevent/detect the attacks related to web applications have been discussed.

There are many types of authentication mechanisms available like passwords, biomet-

ric (voice, face and fingerprint) etc, but passwords are easy to implement and easy for

users to understand. Passwords also have many drawbacks like if passwords are short or

a dictionary word, it can be easy guessed or brute forced by an attacker. It is a difficult

task to create and remember passwords that are hard for an attacker to guess. So here we

are also proposing a usable password generator which generates usable and memorable

passwords for users.

——————————————————————————————————————

–

vi

Contents

Certificate iii

Statement of Originality iv

Acknowledgements v

Abstract vi

List of Figures 1

1 Introduction 2
1.1 Security Framework . 2

1.1.1 Cross Site Scripting (XSS) . 2
1.1.2 SQL Injection . 3
1.1.3 .htaccess . 4
1.1.4 Damn Vulnerable Web App . 4

1.2 Usable Password Generator . 4

2 Literature Survey - Security Framework 6
2.1 Different Approaches . 6

2.1.1 Dynamic Data Tainting . 6
2.1.2 Static Code Analysis . 7
2.1.3 Dynamic Analysis Techniques . 7

2.2 List of papers and some approaches which are alreday used 8

3 Literature Survey - Usable Password Generator 11
3.1 Usable Security . 11
3.2 Secure Memorable Passwords . 11

3.2.1 Secure Memorable Passwords . 11
3.3 Password Entropy . 13

3.3.1 NIST Guidelines . 13
3.3.2 Shannon’s Formula . 13

3.4 Comparison of Password Policies . 14
3.5 Markov Chains . 15

4 Implementation - Security Framework 17
4.1 Security Framework Implementation . 17
4.2 Input Filtering Class . 19

vii

5 Implementation - Usable Password Generator 22
5.1 XUL . 22
5.2 Javascript . 22
5.3 Password Strength Test . 23

6 Conclusion and Future Work 25
6.1 Conclusion . 25
6.2 Future Work . 25

References 26

viii

List of Figures

3.1 Secure Password Generator . 12
3.2 Memorable Passwords . 12
3.3 Shannon’s Formula . 14
3.4 Password Policies . 14
3.5 Markov Chains . 16

4.1 Proposed System . 18
4.2 Admin - Attack Overview . 18
4.3 File Permissions . 20
4.4 Input Filter Class . 20
4.5 View Results . 21

5.1 Usable Password Generator . 23
5.2 Password Strength Test . 24

1

Chapter 1

Introduction

1.1 Security Framework

Web Security deals with the security of websites and web applications. It can be a website

of a company with tells a user about them or a question/answer forum to help program-

mer to solve their issues or a social networking site which a person uses to stay connected

to his friends. Few years back most websites were static, but nowadays they became

much more interactive. Users can see sliders, popups and much more interactive content

which makes a website more user friendly. But as this user friendliness is developed by

some client side scripting languages, a new world of vulnerabilities also comes into pic-

ture. Nowadays attackers are mostly using client side scripting languages to create their

exploits as it runs in client’s machine, so they can fetch every details related to user like

cookies, session ids, web browsing history etc.

1.1.1 Cross Site Scripting (XSS)

Cross-Site Scripting is the most common vulnerability which exists in web applications

and it occurs because of data that is entered by the user is not properly filtered. Most

modern websites ask for user input for many purposes like feedback form, contact us

form, search query etc. Web site owners thinks that user will write text in those input

fields for which they are meant to be but attackers takes advantage of that and writes

malicious codes in those input fields. If proper security mechanisms are not in place,

then attacker can execute those scripts in another user’s machine as javascript and other

client side scripting languages runs in user’s machine.

2

In most common way, a well crafted link is presented to user in the form of mail. This

link will have valid domain, but some other scripting code is also attached with that link.

As the malicious scripting code is converted into some non readable format using some

encoding mechanisms and domain link looks genuine to the user, most users clicks on

that link. when user clicks, attached code runs into user’s browser without user’s consent

and steals some confidential information.

There are mainly two kinds of XSS attacks: Stored and Reflected. In stored XSS, the

malicious code will persistently stored in database and which can affect other users also,

who visits the pages which contains that malicious code. For example, Suppose we have

a ecommerce website and we allow the user to write some reviews about our products.

Legitimate users will write reviews related to product, but attackers can use those input

boxes to inject malicious code. If an attacker is able to inject those malicious code and if

proper filtering mechanisms is not in place, it will be stored in the database. Now every

person who visits that same product page, can be attacked as that malicious scripting

code will run in visitor’s browser. Now suppose attacker had wrote some code to steal

session ids of user, it can represent himself as any visitor he likes. In Reflected XSS, the

malicious code is not persistently stored in the database, but it is reflected back to the

user. For Example, Attacker can send the user a link which shows some search results

related to a keyword. That link contains the URL of search results with which some

scripting code is also attached. When user clicks on that link, he will see a list of search

results but he will not be aware of some scripting code is also executed without his consent.

1.1.2 SQL Injection

SQL Injection is an attack on web pages when user input contains some sql statements.

In this attack some sql queries are executed in the database results in theft of some

confidential infomration and even database crash. For example, Suppose we have a login

form, which contains two input fields, one for username and another for password. Now

whenever user enters a valid username/password combination, a sql query is executed in

database to check that combination is valid or not. The query looks like this,

3

SELECT * from user_data where username=’USERNAME’ and password = ’PASSWORD’

Here, USERNAME and PASSWORD are the user input. now suppose an attacker

try to put ” ’ or ’1’=’1’ – ” as username, then sql query becomes,

SELECT * from user_data where username=’USERNAME’ or ’1’ = ’1’ -- and

password = ’PASSWORD’

By above query, attacker is able to acccess the system as ’1’ = ’1’ is always true, and

in sql ”–” means comment so, sql server will ignore the remaining password matching part.

1.1.3 .htaccess

.htaccess is a configuration file for web servers. .htaccess file can be used for authentica-

tion, url rewrites, block some ip addresses etc. In our implementaion we used .htaccess

file to create some rules. This rules will check all form values which is passed through

GET/POST method. If any values matches with some predefined rules it will be blocked

immediately. We also used .htaccess file to create some rules which will block some ip

addresses to access our website. Web owner can set these ip addresses directly from ad-

min panel in our demo implementation.

1.1.4 Damn Vulnerable Web App

DVWA is a web application, which is developed for teaching purposes. DVWA is the

demo environment in which students or professionals can learn how we can secure web-

sites. It enables a programmer to think like an attacker and allows him to attack a

website in a demo environment. Programmer can learn basic security measures and can

apply it to real websites.

1.2 Usable Password Generator

Users generally create passwords which can be easily guessed or brute forced. To enforce

users create secure passwords, websites started to use password policies and password

strength meters. Unfortunately, password policies does not help to create secure pass-

words as users may fulfill policy requirments in predictable way like, creating their new

4

password based on old password and also using same password in multiple domains.

A passphrase is a password which contains a sequence of words. They are longer

compared to oridinary passwords. Passphrases are more secure and easier to remember.

Usable password generator automatically creates a passphrase from the input data sup-

plied by the user. It is like a sentence which can be easily remembered but can not be

brute forced easily. We can also make it more secure by some extra policies of adding

uppercase, lowercase, special symbols.

5

Chapter 2

Literature Survey - Security

Framework

This chapter provides an overview of the research done in filtering and validating user

input. The first section provides a brief overview of various approaches which are already

applied. The later part of this chapter contains a table which contains a list of papers

that we have read and approaches which are already used.

2.1 Different Approaches

2.1.1 Dynamic Data Tainting

In dynamic data tainting approach, some confidential information like cookies or session

ids, are first marked as secret. If any client side script, tries to access those secret values,

it will be carefully monitored and some logs will be generated for that [2]. In some cases,

access to this values will be blocked also. The problem with this approach is, many web

owners put some scripts on their websites to know statistics about it. Statistics includes

traffic on the website, number of hits per page, user tracking etc.[3] This scripts usually

accesses some cookie values and pass it to servers which provides web statistics informa-

tion like Google Analytics. Now in this case, this cookie value transfers are not done by

any cross site scripting attacks. So if we apply dynamic data tainting approach in this

scenario, it will result in large number of false positives. [4]

6

2.1.2 Static Code Analysis

Static code analysis is a commonly used technique to find security weaknesses in source

code of the website. In this approach, source code of a web application is manually exam-

ined and existing loopholes need to be finding out. It ensures that secure programming

practices are used or not while developing a web application [5].

However, web applications can also store untrusted data to external resources and

later on access and reuse it, a problem that is overlooked in this approach. It is also a

tedious task for web owners to check the source code of entire website and remove the

vulnerabilities one by one.

2.1.3 Dynamic Analysis Techniques

In dynamic analysis techniques, a list of XSS attack values are designed for each input

of every form of the website and submitted to the Web Application [6]. It will check

that, a perticular web application is vulnerable to that XSS attack value or not. This

strategy may be supported by a Web Application testing tool that automatically executes

the test cases. The problem with this approach is, website owners don’t check it in real

environment for every input field on their website. [7]

7

2.2 List of papers and some approaches which are

alreday used

Paper Title Approach Used

Cross-Site Scripting Pre-

vention with Dynamic Data

Tainting and Static Analy-

sis

Confidential information like cookies or session ids,

are first marked as secret. If any client side script,

tries to access those secret values, it will be care-

fully monitored and some logs will be generated

for that. In some cases, access to this values will

be blocked also.

Noxes A Client-Side Solu-

tion for Mitigating Cross-

Site Scripting Attacks

A standalone firewall is developed to check ev-

ery request and response of the browser. Fire-

wall is pre configured with some security policies

and each request/response will be matched against

those policies.

Identifying Cross Site Vul-

nerabilities in Web Applica-

tions

Both static and dynamic analysis techniques are

used. In static analysis, a control flow diagram is

developed. CFG nodes are created for each input

and output values. The page is considered as vul-

nerable if there is a path in CFG, which connects

a input and output node. In Dynamic Analysis, a

set of XSS attack values are submitted to the web

application.

BLUEPRINT: Robust Pre-

vention of Cross-site Script-

ing Attacks for Existing

Browsers

A whole new javascript parser is developed which

replaces browser’s javascript parser. Parser con-

tains many security mechanisms which tracks the

behavious of client side scripts and blocks it, if it

seems vulnerable.

8

Implementation of Auto-

matic Detection for Cross-

Site Scripting Vulnerability

It mainly targets reflected XSS attacks. A user

side proxy is used to check every request/response

combination. If any request contains some spe-

cial characters which are pre configured in proxy,

request will be stored and the response of that re-

quest will be checked. If the same special char-

acters exists in the response message, it will be

blocked and client side script will not be allowed

to execute.

Static Detection of Second-

Order Vulnerabilities in

Web Applications

In data flow analysis, if data is read from the data

store, it will be tainted. All taintable writings are

used to detect second order vulnerabilities.

MUTEC: Mutation-based

Testing of Cross Site

Scripting

It is a testing technique in which a faulty imple-

mentation called mutants is generated against the

original program. A list of vulnerable XSS strings

are injected to both, original and faulty applica-

tion. A mutant will be killed if both outputs dif-

fers otherwise it will be called as live mutant and

some changes are needed in the original program

to kill that.

XSSDS: Server-side Detec-

tion of Cross-site Scripting

Attacks

It is a server side technique in which HTTP traffic

is monitored. It checks input parameters and gen-

erated output to secure a website against reflected

XSS attacks. It also keeps track of each javascript

which is deployed by the website owner and it dif-

ferentiate all other javascript which is injected by

user and will not allow it to execute.

9

Detection of SQL Injection

and Cross-site Scripting At-

tacks

Create regular-expression based rules for detecting

XSS attacks. Apply those rules to open-source IDS

Snort.

Session Shield: Lightweight

Protection against Session

Hijacking

It checks http header of each request, whether they

set cookie value or not. If any attempt is detected

to set a session id as cookie value, it will be stored

in the internal database. In later client request,

it will add the session id information. Client side

script will not be allowed to access the internal

database where session ids are stored thus securing

user against XSS and session hijacking attacks.

One-Time Cookies: Pre-

venting Session Hijacking

Attacks with Disposable

Credentials

Session hijacking attack occurs as same session id

is used for each request of the user. OTC prevents

that scenario, and for each request generates a dif-

ferent session id. So, if any attacker eavesdrop the

ongoing communication and able to fetch the ses-

sion id, he will not able to hijack the user’s session

as it changes for every new request. It uses crypto-

graphic hash functions to generate a new random

value for each request.

10

Chapter 3

Literature Survey - Usable Password

Generator

3.1 Usable Security

While designing a security system, we should consider the users which are going to use

it and how they will use it. It should not be a frustrating part for users.

Measuring Usability

• Speed : How quickly can the task be accomplished?

• Efficiency : How many mistakes are made in accomplishing the task?

• Learnability : How easy is it to learn to use the system?

• Memorability : Once learned, how easy is it to remember how to use the system?

• User Preference : What do users like?

3.2 Secure Memorable Passwords

3.2.1 Secure Memorable Passwords

We reviewed many of the password generator available on firefox addon store. Usually all

password generators provide a popup where user can select some options and according

to the selected parameters it generates a unique password. Though those passwords are

secure, they were not memorable.

11

Figure 3.1: Secure Password Generator

Figure 3.2: Memorable Passwords

12

3.3 Password Entropy

Password entropy is defined as a passwords randomness, in regards to how difficult it

would be to crack. [8]

3.3.1 NIST Guidelines

NIST Special Publication of June 2004 [9] suggests the following scheme to roughly esti-

mate the entropy of human-generated passwords:

• The entropy of the first character is four bits;

• The entropy of the next seven characters are two bits per character;

• The ninth through the twentieth character has 1.5 bits of entropy per character;

• Characters 21 and above have one bit of entropy per character.

• A ”bonus” of six bits is added if both upper case letters and non-alphabetic char-

acters are used.

• A ”bonus” of six bits is added for passwords of length 1 through 19 characters

following an extensive dictionary check to ensure the password is not contained

within a large dictionary. Passwords of 20 characters or more do not receive this

bonus because it is assumed they are pass-phrases consisting of multiple dictionary

words.

Using this scheme, an eight-character human-selected password without upper case

letters and non-alphabetic characters is estimated to have 18 bits of entropy.

3.3.2 Shannon’s Formula

If we have a set of N symbols and if we select L number of symbols from that set then, the

number of possible passwords can be calculated by raising N to power L. By incrementing

either L or N we can more strengthen the generated password. A password’s entropy H,

13

Figure 3.3: Shannon’s Formula

Figure 3.4: Password Policies

can be given by following Shannon’s formula

where N is the number of symbols and L is number of symbols in generated password.

3.4 Comparison of Password Policies

The eight conditions are detailed below [10].

• basic8survey: Password should be atleast 8 characters long. It is in survey scenario.

• basic8: Password should be atleast 8 characters long. It is in email scenario.

• basic16: Password should be atleast 16 characters long.

• dictionary8: Password should be atleast 8 characters long. It should not have a

dictionary word.

14

• comprehensive8: Password should be atleast 8 characters long. It must have an up-

percase and lowercase letter, a symbol, and a digit. It should not have a dictionary

word.

• blacklistEasy: Password should be atleast 8 characters long. It should not have a

dictionary word. Here, the password is compared against simple unix dictionary.

• blacklistMedium: Password should be atleast 8 characters long. It should not have

a dictionary word. Here, the password is compared against paid Openwall list.

• blacklistHard:Password should be atleast 8 characters long. It should not have a

dictionary word. Here, the password is compared against a five-billion-word dictio-

nary.

3.5 Markov Chains

Markov chains, named after russian mathematician Andrey Markov is a stochastic pro-

cess in which outcome of an experiment depends only on the outcome of the previous

experiment, means the next state of the system depends only on the current state and

not on other previous states. [11] A stochastic process is a mathematical model that

evolves over time in a probabilistic manner. For example, if we model a babys behavior

as a markov chain we can consider eating, crying, sleeping and playing as different states.

We can also list out all other possible states which will become our state space. Now a

markov chain tells us the probability (chances) of transition from one state to another

e.g, the probability of a baby currently playing will sleep in next ten minutes without

crying.

In our demo implementation, we used a list of titles which is used to generate our

markov chain model. Now we can use that statistical information to generate new movie

titles by selecting the first word at random and then selecting other subsequent words

with probability of how they are arranged in the original list. This gives us a list of

different movie titles which are randomly created and will not be in that list.

First we list out all the unique words which appear in those movie titles. Next we

calculated the probability of one word following the other word. In this way whole graph

15

Figure 3.5: Markov Chains

is generated, vertex represents unique words and value above each edge represents the

probability of one word following the other word. In above graph we can say the word

The is followed by Colony with the probability of 0.1, while it is followed by Client and

Color with the probability of 0.2 and 0.3 respectively. Now as we can see, we can traverse

through any path of graph and generate different unique titles.

16

Chapter 4

Implementation - Security

Framework

To overcome problems as discussed in previous chapter, here is an approach proposed in

which a standalone security framework is used to check user input and allow/reject those

as per preconfigure rules. By standalone, we mean it can be used as the sub part of any

website that we want to secure. Every request or user input which comes to the website

will pass through our security framework. Instead of using some proxy servers and some

strict firewall rules to check each and every request, Our security framework can just be

installed as a sub folder of any website.

4.1 Security Framework Implementation

It is a demo setup of standalone framework which can be used to secure website.

The installation takes following steps:

• Copy our security framework as subfolder of website which we want to secure.

• In first step we need to enter database details, it will check those details and create

a database and some required tables.

• In second step, it will ask for domain URL which we want to secure.

• In Third step, it will allow the website owner to create an admin account by which

he can login to our secure framework.

17

Figure 4.1: Proposed System

Figure 4.2: Admin - Attack Overview

18

Now in admin area, we added an option to create .htaccess file. While creating

.htaccess file, we allows the website owner to set some parameters, according to which

that file will be created. We allow the web site owner to select following options while

creating .htaccess file.

• Trusted IP: Only by mentioned IP, website owner can login to our secure framework.

• Some keywords related to protection from cross site scripting and sql injection.

• IP Addresses that website owner wants to block.

• Secure access to some folders and files only to trusted IPs.

According to selected parameters, it will create .htaccess file and will put that into

root folder. Now if any attacker tries to attack the website it will be blocked if it matches

with the rules created in .htaccess. Website owner can see from admin panel, from which

IP address attack has been performed and can block those IP addresses.

I have also tested this security framework for a set of input values with Damn Vul-

nerable Web App, a very popular vulnerable web application. Our framework correctly

identifies xss and sql injection attacks which are predefined in .htaccess file.

We added the functionally in which user can set file permissions of files and folders of

a website directly from admin. By this a website owner can prevent invalid file permission

related attacks.

4.2 Input Filtering Class

I have also developed a standalone PHP class that can filter malicious user input. It

allows the programmer to predefine a set of tags and attributes which are malicious. So,

whenever any attacker comes to our site and try to attack it with some malicious input,

it will be compared with our predefined values and if it seems like an attack, our class

will filter it and remove those tags and attributes from input. So in this way, it can be

used to stop cross site scripting(XSS) attacks.

19

Figure 4.3: File Permissions

Figure 4.4: Input Filter Class

20

Figure 4.5: View Results

21

Chapter 5

Implementation - Usable Password

Generator

We implemented a demo version of password generator which generates sentences as pass-

word. It is implemented as a Firefox extension so anyone can install it in their browser.

To create a Firefox extension, we need to get familier with two technologies,

5.1 XUL

XUL (XML User Interface Language - pronounced ”zool”) is one of many technologies

used for creating user interface of Mozilla extensions. XUL is used to create portable and

cross platform user interfaces. It takes so much time to develop an application for one

platform, with XUL we can develop user interfaces which can be modified quickly and

easily across multiple platforms.

5.2 Javascript

JavaScript is a client side scripting language. It will run at client side (web browser)

and used to develop interactive web pages. In Mozilla extensions, it is used to write

application related functions.

22

Figure 5.1: Usable Password Generator

5.3 Password Strength Test

We used some well known password meters to check strength of password created by

usable password generator which is compared with password created by a password gen-

erator which is available on firefox addon store.

Here, ”Wandering Eye of Alex Kelly” is the password generated by our password gener-

ator and ”Tr0ub4dor3” is the password generated by other password generator available

on addon store.

23

Figure 5.2: Password Strength Test

24

Chapter 6

Conclusion and Future Work

6.1 Conclusion

All web application should validate and filter any user input and block malicious code.

In our demo setup we have designed and developed an security framework which con-

tains various mechanisms that can detect malicious code from user input and it also adds

mechanisms to block some IP addresses from accessing our website. Proper usage of our

security framework will result in the target system being much more secure.

For Usable Password Generators, As per the different password conditions we tested,

basic16 provides more security compared to other policies. Our demo implementation

successfully generates passphrases which can be more memorable and hard for an at-

tacker to break.

6.2 Future Work

In Usable Password Generator, We will further implement random sentense generator in

a firefox extension and upload it on addon store.

25

References

[1] “Top 10 - 2013 (the ten most critical web application security risks (2013)),” OWASP,

2013.

[2] N. J. E. K. C. K. Philipp Vogt, Florian Nentwich and G. Vigna, “Cross-site scripting

prevention with dynamic data tainting and static analysis,” In NDSS, 2011.

[3] M. G.A.Di Lucca, A.R.Fasolino and P.Tramontana, “Identifying cross site scripting

vulnerabilities in web applications,” IEEE, 2004.

[4] G. V. Engin Kirda, Christopher Kruegel and N. Jovanovic, “Noxes: A client-side

solution for mitigating cross-site scripting attacks,” ACM, 2006.

[5] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities in web appli-

cations,” USENIX Security Symposium, 2014.

[6] M. T. Louw and V. Venkatakrishnan, “Blueprint: Robust prevention of cross-site

scripting attacks for existing browsers,” IEEE Symposium on Security and Privacy,

2009.

[7] B. E. Martin Johns and J. Posegga, “Xssds: Server-side detection of cross-site script-

ing attacks,” Annual Computer Security Applications Conference, 2008.

[8] S. K. M. L. M. B. U. T. V. L. B. N. C. Richard Shay, Patrick Gage Kelley and L. F.

Cranor, “Correct horse battery staple: Exploring the usability of system-assigned

passphrases,” ACM, 2012.

[9] U. W. Klaus Peter Jochum and B. Stoll, “Determination of reference values for nist

srm 610617 glasses following iso guidelines,” 23rd USENIX Security Symposium,

2012.

26

[10] P. G. K. M. L. M. L. B. N. C. L. F. C. Saranga Komanduri, Richard Shay and S. Egel-

man, “Of passwords and people: Measuring the effect of password-composition poli-

cies,” ACM, 2011.

[11] M. L. M. R. S. T. V. L. N. C. L. F. C. Patrick Gage Kelley, Saranga Komanduri

and J. Lopez, “Guess again (and again and again): Measuring password strength by

simulating password-cracking algorithms,” CMU-CyLab-11-008, 2011.

27

	Certificate
	Statement of Originality
	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Security Framework
	Cross Site Scripting (XSS)
	SQL Injection
	.htaccess
	Damn Vulnerable Web App

	Usable Password Generator

	Literature Survey - Security Framework
	Different Approaches
	Dynamic Data Tainting
	Static Code Analysis
	Dynamic Analysis Techniques

	List of papers and some approaches which are alreday used

	Literature Survey - Usable Password Generator
	Usable Security
	Secure Memorable Passwords
	Secure Memorable Passwords

	Password Entropy
	NIST Guidelines
	Shannon's Formula

	Comparison of Password Policies
	Markov Chains

	Implementation - Security Framework
	Security Framework Implementation
	Input Filtering Class

	Implementation - Usable Password Generator
	XUL
	Javascript
	Password Strength Test

	Conclusion and Future Work
	Conclusion
	Future Work

	References

